block: define 'struct bvec_iter' as packed
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d
JA
28struct bio_alloc_cache {
29 struct bio_list free_list;
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
3a83f467
ML
252void bio_init(struct bio *bio, struct bio_vec *table,
253 unsigned short max_vecs)
1da177e4 254{
da521626
JA
255 bio->bi_next = NULL;
256 bio->bi_bdev = NULL;
257 bio->bi_opf = 0;
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268#ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
271#ifdef CONFIG_BLK_CGROUP_IOCOST
272 bio->bi_iocost_cost = 0;
273#endif
274#endif
275#ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 bio->bi_crypt_context = NULL;
277#endif
278#ifdef CONFIG_BLK_DEV_INTEGRITY
279 bio->bi_integrity = NULL;
280#endif
281 bio->bi_vcnt = 0;
282
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3a83f467 285
3a83f467 286 bio->bi_max_vecs = max_vecs;
da521626
JA
287 bio->bi_io_vec = table;
288 bio->bi_pool = NULL;
1da177e4 289}
a112a71d 290EXPORT_SYMBOL(bio_init);
1da177e4 291
f44b48c7
KO
292/**
293 * bio_reset - reinitialize a bio
294 * @bio: bio to reset
295 *
296 * Description:
297 * After calling bio_reset(), @bio will be in the same state as a freshly
298 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
299 * preserved are the ones that are initialized by bio_alloc_bioset(). See
300 * comment in struct bio.
301 */
302void bio_reset(struct bio *bio)
303{
9ae3b3f5 304 bio_uninit(bio);
f44b48c7 305 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 306 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
307}
308EXPORT_SYMBOL(bio_reset);
309
38f8baae 310static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 311{
4246a0b6
CH
312 struct bio *parent = bio->bi_private;
313
3edf5346 314 if (bio->bi_status && !parent->bi_status)
4e4cbee9 315 parent->bi_status = bio->bi_status;
196d38bc 316 bio_put(bio);
38f8baae
CH
317 return parent;
318}
319
320static void bio_chain_endio(struct bio *bio)
321{
322 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
323}
324
325/**
326 * bio_chain - chain bio completions
1051a902 327 * @bio: the target bio
5b874af6 328 * @parent: the parent bio of @bio
196d38bc
KO
329 *
330 * The caller won't have a bi_end_io called when @bio completes - instead,
331 * @parent's bi_end_io won't be called until both @parent and @bio have
332 * completed; the chained bio will also be freed when it completes.
333 *
334 * The caller must not set bi_private or bi_end_io in @bio.
335 */
336void bio_chain(struct bio *bio, struct bio *parent)
337{
338 BUG_ON(bio->bi_private || bio->bi_end_io);
339
340 bio->bi_private = parent;
341 bio->bi_end_io = bio_chain_endio;
c4cf5261 342 bio_inc_remaining(parent);
196d38bc
KO
343}
344EXPORT_SYMBOL(bio_chain);
345
df2cb6da
KO
346static void bio_alloc_rescue(struct work_struct *work)
347{
348 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
349 struct bio *bio;
350
351 while (1) {
352 spin_lock(&bs->rescue_lock);
353 bio = bio_list_pop(&bs->rescue_list);
354 spin_unlock(&bs->rescue_lock);
355
356 if (!bio)
357 break;
358
ed00aabd 359 submit_bio_noacct(bio);
df2cb6da
KO
360 }
361}
362
363static void punt_bios_to_rescuer(struct bio_set *bs)
364{
365 struct bio_list punt, nopunt;
366 struct bio *bio;
367
47e0fb46
N
368 if (WARN_ON_ONCE(!bs->rescue_workqueue))
369 return;
df2cb6da
KO
370 /*
371 * In order to guarantee forward progress we must punt only bios that
372 * were allocated from this bio_set; otherwise, if there was a bio on
373 * there for a stacking driver higher up in the stack, processing it
374 * could require allocating bios from this bio_set, and doing that from
375 * our own rescuer would be bad.
376 *
377 * Since bio lists are singly linked, pop them all instead of trying to
378 * remove from the middle of the list:
379 */
380
381 bio_list_init(&punt);
382 bio_list_init(&nopunt);
383
f5fe1b51 384 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 385 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 386 current->bio_list[0] = nopunt;
df2cb6da 387
f5fe1b51
N
388 bio_list_init(&nopunt);
389 while ((bio = bio_list_pop(&current->bio_list[1])))
390 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
391 current->bio_list[1] = nopunt;
df2cb6da
KO
392
393 spin_lock(&bs->rescue_lock);
394 bio_list_merge(&bs->rescue_list, &punt);
395 spin_unlock(&bs->rescue_lock);
396
397 queue_work(bs->rescue_workqueue, &bs->rescue_work);
398}
399
1da177e4
LT
400/**
401 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 402 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 403 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 404 * @bs: the bio_set to allocate from.
1da177e4 405 *
3175199a 406 * Allocate a bio from the mempools in @bs.
3f86a82a 407 *
3175199a
CH
408 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
409 * allocate a bio. This is due to the mempool guarantees. To make this work,
410 * callers must never allocate more than 1 bio at a time from the general pool.
411 * Callers that need to allocate more than 1 bio must always submit the
412 * previously allocated bio for IO before attempting to allocate a new one.
413 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 414 *
3175199a
CH
415 * Note that when running under submit_bio_noacct() (i.e. any block driver),
416 * bios are not submitted until after you return - see the code in
417 * submit_bio_noacct() that converts recursion into iteration, to prevent
418 * stack overflows.
df2cb6da 419 *
3175199a
CH
420 * This would normally mean allocating multiple bios under submit_bio_noacct()
421 * would be susceptible to deadlocks, but we have
422 * deadlock avoidance code that resubmits any blocked bios from a rescuer
423 * thread.
df2cb6da 424 *
3175199a
CH
425 * However, we do not guarantee forward progress for allocations from other
426 * mempools. Doing multiple allocations from the same mempool under
427 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
428 * for per bio allocations.
df2cb6da 429 *
3175199a 430 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 431 */
0f2e6ab8 432struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 433 struct bio_set *bs)
1da177e4 434{
df2cb6da 435 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
436 struct bio *bio;
437 void *p;
438
3175199a
CH
439 /* should not use nobvec bioset for nr_iovecs > 0 */
440 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
441 return NULL;
df2cb6da 442
3175199a
CH
443 /*
444 * submit_bio_noacct() converts recursion to iteration; this means if
445 * we're running beneath it, any bios we allocate and submit will not be
446 * submitted (and thus freed) until after we return.
447 *
448 * This exposes us to a potential deadlock if we allocate multiple bios
449 * from the same bio_set() while running underneath submit_bio_noacct().
450 * If we were to allocate multiple bios (say a stacking block driver
451 * that was splitting bios), we would deadlock if we exhausted the
452 * mempool's reserve.
453 *
454 * We solve this, and guarantee forward progress, with a rescuer
455 * workqueue per bio_set. If we go to allocate and there are bios on
456 * current->bio_list, we first try the allocation without
457 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
458 * blocking to the rescuer workqueue before we retry with the original
459 * gfp_flags.
460 */
461 if (current->bio_list &&
462 (!bio_list_empty(&current->bio_list[0]) ||
463 !bio_list_empty(&current->bio_list[1])) &&
464 bs->rescue_workqueue)
465 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
466
467 p = mempool_alloc(&bs->bio_pool, gfp_mask);
468 if (!p && gfp_mask != saved_gfp) {
469 punt_bios_to_rescuer(bs);
470 gfp_mask = saved_gfp;
8aa6ba2f 471 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 472 }
451a9ebf
TH
473 if (unlikely(!p))
474 return NULL;
1da177e4 475
3175199a
CH
476 bio = p + bs->front_pad;
477 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 478 struct bio_vec *bvl = NULL;
34053979 479
7a800a20 480 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
481 if (!bvl && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
7a800a20 484 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 485 }
34053979
IM
486 if (unlikely(!bvl))
487 goto err_free;
a38352e0 488
7a800a20 489 bio_init(bio, bvl, nr_iovecs);
3f86a82a 490 } else if (nr_iovecs) {
3175199a
CH
491 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
492 } else {
493 bio_init(bio, NULL, 0);
1da177e4 494 }
3f86a82a
KO
495
496 bio->bi_pool = bs;
1da177e4 497 return bio;
34053979
IM
498
499err_free:
8aa6ba2f 500 mempool_free(p, &bs->bio_pool);
34053979 501 return NULL;
1da177e4 502}
a112a71d 503EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 504
3175199a
CH
505/**
506 * bio_kmalloc - kmalloc a bio for I/O
507 * @gfp_mask: the GFP_* mask given to the slab allocator
508 * @nr_iovecs: number of iovecs to pre-allocate
509 *
510 * Use kmalloc to allocate and initialize a bio.
511 *
512 * Returns: Pointer to new bio on success, NULL on failure.
513 */
0f2e6ab8 514struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
515{
516 struct bio *bio;
517
518 if (nr_iovecs > UIO_MAXIOV)
519 return NULL;
520
521 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
522 if (unlikely(!bio))
523 return NULL;
524 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
525 bio->bi_pool = NULL;
526 return bio;
527}
528EXPORT_SYMBOL(bio_kmalloc);
529
6f822e1b 530void zero_fill_bio(struct bio *bio)
1da177e4 531{
7988613b
KO
532 struct bio_vec bv;
533 struct bvec_iter iter;
1da177e4 534
ab6c340e
CH
535 bio_for_each_segment(bv, bio, iter)
536 memzero_bvec(&bv);
1da177e4 537}
6f822e1b 538EXPORT_SYMBOL(zero_fill_bio);
1da177e4 539
83c9c547
ML
540/**
541 * bio_truncate - truncate the bio to small size of @new_size
542 * @bio: the bio to be truncated
543 * @new_size: new size for truncating the bio
544 *
545 * Description:
546 * Truncate the bio to new size of @new_size. If bio_op(bio) is
547 * REQ_OP_READ, zero the truncated part. This function should only
548 * be used for handling corner cases, such as bio eod.
549 */
4f7ab09a 550static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
551{
552 struct bio_vec bv;
553 struct bvec_iter iter;
554 unsigned int done = 0;
555 bool truncated = false;
556
557 if (new_size >= bio->bi_iter.bi_size)
558 return;
559
83c9c547 560 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
561 goto exit;
562
563 bio_for_each_segment(bv, bio, iter) {
564 if (done + bv.bv_len > new_size) {
565 unsigned offset;
566
567 if (!truncated)
568 offset = new_size - done;
569 else
570 offset = 0;
571 zero_user(bv.bv_page, offset, bv.bv_len - offset);
572 truncated = true;
573 }
574 done += bv.bv_len;
575 }
576
577 exit:
578 /*
579 * Don't touch bvec table here and make it really immutable, since
580 * fs bio user has to retrieve all pages via bio_for_each_segment_all
581 * in its .end_bio() callback.
582 *
583 * It is enough to truncate bio by updating .bi_size since we can make
584 * correct bvec with the updated .bi_size for drivers.
585 */
586 bio->bi_iter.bi_size = new_size;
587}
588
29125ed6
CH
589/**
590 * guard_bio_eod - truncate a BIO to fit the block device
591 * @bio: bio to truncate
592 *
593 * This allows us to do IO even on the odd last sectors of a device, even if the
594 * block size is some multiple of the physical sector size.
595 *
596 * We'll just truncate the bio to the size of the device, and clear the end of
597 * the buffer head manually. Truly out-of-range accesses will turn into actual
598 * I/O errors, this only handles the "we need to be able to do I/O at the final
599 * sector" case.
600 */
601void guard_bio_eod(struct bio *bio)
602{
309dca30 603 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
604
605 if (!maxsector)
606 return;
607
608 /*
609 * If the *whole* IO is past the end of the device,
610 * let it through, and the IO layer will turn it into
611 * an EIO.
612 */
613 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
614 return;
615
616 maxsector -= bio->bi_iter.bi_sector;
617 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
618 return;
619
620 bio_truncate(bio, maxsector << 9);
621}
622
be4d234d
JA
623#define ALLOC_CACHE_MAX 512
624#define ALLOC_CACHE_SLACK 64
625
626static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
627 unsigned int nr)
628{
629 unsigned int i = 0;
630 struct bio *bio;
631
632 while ((bio = bio_list_pop(&cache->free_list)) != NULL) {
633 cache->nr--;
634 bio_free(bio);
635 if (++i == nr)
636 break;
637 }
638}
639
640static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
641{
642 struct bio_set *bs;
643
644 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
645 if (bs->cache) {
646 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
647
648 bio_alloc_cache_prune(cache, -1U);
649 }
650 return 0;
651}
652
653static void bio_alloc_cache_destroy(struct bio_set *bs)
654{
655 int cpu;
656
657 if (!bs->cache)
658 return;
659
660 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
661 for_each_possible_cpu(cpu) {
662 struct bio_alloc_cache *cache;
663
664 cache = per_cpu_ptr(bs->cache, cpu);
665 bio_alloc_cache_prune(cache, -1U);
666 }
667 free_percpu(bs->cache);
668}
669
1da177e4
LT
670/**
671 * bio_put - release a reference to a bio
672 * @bio: bio to release reference to
673 *
674 * Description:
675 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 676 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
677 **/
678void bio_put(struct bio *bio)
679{
be4d234d 680 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 681 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
682 if (!atomic_dec_and_test(&bio->__bi_cnt))
683 return;
684 }
dac56212 685
be4d234d
JA
686 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
687 struct bio_alloc_cache *cache;
688
689 bio_uninit(bio);
690 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
691 bio_list_add_head(&cache->free_list, bio);
692 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
693 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
694 put_cpu();
695 } else {
696 bio_free(bio);
dac56212 697 }
1da177e4 698}
a112a71d 699EXPORT_SYMBOL(bio_put);
1da177e4 700
59d276fe
KO
701/**
702 * __bio_clone_fast - clone a bio that shares the original bio's biovec
703 * @bio: destination bio
704 * @bio_src: bio to clone
705 *
706 * Clone a &bio. Caller will own the returned bio, but not
707 * the actual data it points to. Reference count of returned
708 * bio will be one.
709 *
710 * Caller must ensure that @bio_src is not freed before @bio.
711 */
712void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
713{
7a800a20 714 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
715
716 /*
309dca30 717 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
718 * so we don't set nor calculate new physical/hw segment counts here
719 */
309dca30 720 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 721 bio_set_flag(bio, BIO_CLONED);
111be883
SL
722 if (bio_flagged(bio_src, BIO_THROTTLED))
723 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
724 if (bio_flagged(bio_src, BIO_REMAPPED))
725 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 726 bio->bi_opf = bio_src->bi_opf;
ca474b73 727 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 728 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
729 bio->bi_iter = bio_src->bi_iter;
730 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 731
db6638d7 732 bio_clone_blkg_association(bio, bio_src);
e439bedf 733 blkcg_bio_issue_init(bio);
59d276fe
KO
734}
735EXPORT_SYMBOL(__bio_clone_fast);
736
737/**
738 * bio_clone_fast - clone a bio that shares the original bio's biovec
739 * @bio: bio to clone
740 * @gfp_mask: allocation priority
741 * @bs: bio_set to allocate from
742 *
743 * Like __bio_clone_fast, only also allocates the returned bio
744 */
745struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
746{
747 struct bio *b;
748
749 b = bio_alloc_bioset(gfp_mask, 0, bs);
750 if (!b)
751 return NULL;
752
753 __bio_clone_fast(b, bio);
754
07560151
EB
755 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
756 goto err_put;
a892c8d5 757
07560151
EB
758 if (bio_integrity(bio) &&
759 bio_integrity_clone(b, bio, gfp_mask) < 0)
760 goto err_put;
59d276fe
KO
761
762 return b;
07560151
EB
763
764err_put:
765 bio_put(b);
766 return NULL;
59d276fe
KO
767}
768EXPORT_SYMBOL(bio_clone_fast);
769
5cbd28e3
CH
770const char *bio_devname(struct bio *bio, char *buf)
771{
309dca30 772 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
773}
774EXPORT_SYMBOL(bio_devname);
775
9a6083be
CH
776/**
777 * bio_full - check if the bio is full
778 * @bio: bio to check
779 * @len: length of one segment to be added
780 *
781 * Return true if @bio is full and one segment with @len bytes can't be
782 * added to the bio, otherwise return false
783 */
784static inline bool bio_full(struct bio *bio, unsigned len)
785{
786 if (bio->bi_vcnt >= bio->bi_max_vecs)
787 return true;
788 if (bio->bi_iter.bi_size > UINT_MAX - len)
789 return true;
790 return false;
791}
792
5919482e
ML
793static inline bool page_is_mergeable(const struct bio_vec *bv,
794 struct page *page, unsigned int len, unsigned int off,
ff896738 795 bool *same_page)
5919482e 796{
d8166519
MWO
797 size_t bv_end = bv->bv_offset + bv->bv_len;
798 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
799 phys_addr_t page_addr = page_to_phys(page);
800
801 if (vec_end_addr + 1 != page_addr + off)
802 return false;
803 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
804 return false;
52d52d1c 805
ff896738 806 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
807 if (*same_page)
808 return true;
809 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
810}
811
9774b391
CH
812/**
813 * __bio_try_merge_page - try appending data to an existing bvec.
814 * @bio: destination bio
815 * @page: start page to add
816 * @len: length of the data to add
817 * @off: offset of the data relative to @page
818 * @same_page: return if the segment has been merged inside the same page
819 *
820 * Try to add the data at @page + @off to the last bvec of @bio. This is a
821 * useful optimisation for file systems with a block size smaller than the
822 * page size.
823 *
824 * Warn if (@len, @off) crosses pages in case that @same_page is true.
825 *
826 * Return %true on success or %false on failure.
827 */
828static bool __bio_try_merge_page(struct bio *bio, struct page *page,
829 unsigned int len, unsigned int off, bool *same_page)
830{
831 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
832 return false;
833
834 if (bio->bi_vcnt > 0) {
835 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
836
837 if (page_is_mergeable(bv, page, len, off, same_page)) {
838 if (bio->bi_iter.bi_size > UINT_MAX - len) {
839 *same_page = false;
840 return false;
841 }
842 bv->bv_len += len;
843 bio->bi_iter.bi_size += len;
844 return true;
845 }
846 }
847 return false;
848}
849
e4581105
CH
850/*
851 * Try to merge a page into a segment, while obeying the hardware segment
852 * size limit. This is not for normal read/write bios, but for passthrough
853 * or Zone Append operations that we can't split.
854 */
855static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
856 struct page *page, unsigned len,
857 unsigned offset, bool *same_page)
489fbbcb 858{
384209cd 859 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
860 unsigned long mask = queue_segment_boundary(q);
861 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
862 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
863
864 if ((addr1 | mask) != (addr2 | mask))
865 return false;
489fbbcb
ML
866 if (bv->bv_len + len > queue_max_segment_size(q))
867 return false;
384209cd 868 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
869}
870
1da177e4 871/**
e4581105
CH
872 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
873 * @q: the target queue
874 * @bio: destination bio
875 * @page: page to add
876 * @len: vec entry length
877 * @offset: vec entry offset
878 * @max_sectors: maximum number of sectors that can be added
879 * @same_page: return if the segment has been merged inside the same page
c66a14d0 880 *
e4581105
CH
881 * Add a page to a bio while respecting the hardware max_sectors, max_segment
882 * and gap limitations.
1da177e4 883 */
e4581105 884int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 885 struct page *page, unsigned int len, unsigned int offset,
e4581105 886 unsigned int max_sectors, bool *same_page)
1da177e4 887{
1da177e4
LT
888 struct bio_vec *bvec;
889
e4581105 890 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
891 return 0;
892
e4581105 893 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
894 return 0;
895
80cfd548 896 if (bio->bi_vcnt > 0) {
e4581105 897 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 898 return len;
320ea869
CH
899
900 /*
901 * If the queue doesn't support SG gaps and adding this segment
902 * would create a gap, disallow it.
903 */
384209cd 904 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
905 if (bvec_gap_to_prev(q, bvec, offset))
906 return 0;
80cfd548
JA
907 }
908
79d08f89 909 if (bio_full(bio, len))
1da177e4
LT
910 return 0;
911
14ccb66b 912 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
913 return 0;
914
fcbf6a08
ML
915 bvec = &bio->bi_io_vec[bio->bi_vcnt];
916 bvec->bv_page = page;
917 bvec->bv_len = len;
918 bvec->bv_offset = offset;
919 bio->bi_vcnt++;
dcdca753 920 bio->bi_iter.bi_size += len;
1da177e4
LT
921 return len;
922}
19047087 923
e4581105
CH
924/**
925 * bio_add_pc_page - attempt to add page to passthrough bio
926 * @q: the target queue
927 * @bio: destination bio
928 * @page: page to add
929 * @len: vec entry length
930 * @offset: vec entry offset
931 *
932 * Attempt to add a page to the bio_vec maplist. This can fail for a
933 * number of reasons, such as the bio being full or target block device
934 * limitations. The target block device must allow bio's up to PAGE_SIZE,
935 * so it is always possible to add a single page to an empty bio.
936 *
937 * This should only be used by passthrough bios.
938 */
19047087
ML
939int bio_add_pc_page(struct request_queue *q, struct bio *bio,
940 struct page *page, unsigned int len, unsigned int offset)
941{
d1916c86 942 bool same_page = false;
e4581105
CH
943 return bio_add_hw_page(q, bio, page, len, offset,
944 queue_max_hw_sectors(q), &same_page);
19047087 945}
a112a71d 946EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 947
ae29333f
JT
948/**
949 * bio_add_zone_append_page - attempt to add page to zone-append bio
950 * @bio: destination bio
951 * @page: page to add
952 * @len: vec entry length
953 * @offset: vec entry offset
954 *
955 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
956 * for a zone-append request. This can fail for a number of reasons, such as the
957 * bio being full or the target block device is not a zoned block device or
958 * other limitations of the target block device. The target block device must
959 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
960 * to an empty bio.
961 *
962 * Returns: number of bytes added to the bio, or 0 in case of a failure.
963 */
964int bio_add_zone_append_page(struct bio *bio, struct page *page,
965 unsigned int len, unsigned int offset)
966{
582cd91f 967 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
ae29333f
JT
968 bool same_page = false;
969
970 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
971 return 0;
972
973 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
974 return 0;
975
976 return bio_add_hw_page(q, bio, page, len, offset,
977 queue_max_zone_append_sectors(q), &same_page);
978}
979EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
980
0aa69fd3 981/**
551879a4 982 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 983 * @bio: destination bio
551879a4
ML
984 * @page: start page to add
985 * @len: length of the data to add, may cross pages
986 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
987 *
988 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
989 * that @bio has space for another bvec.
990 */
991void __bio_add_page(struct bio *bio, struct page *page,
992 unsigned int len, unsigned int off)
993{
994 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 995
0aa69fd3 996 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 997 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
998
999 bv->bv_page = page;
1000 bv->bv_offset = off;
1001 bv->bv_len = len;
c66a14d0 1002
c66a14d0 1003 bio->bi_iter.bi_size += len;
0aa69fd3 1004 bio->bi_vcnt++;
b8e24a93
JW
1005
1006 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1007 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1008}
1009EXPORT_SYMBOL_GPL(__bio_add_page);
1010
1011/**
551879a4 1012 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1013 * @bio: destination bio
551879a4
ML
1014 * @page: start page to add
1015 * @len: vec entry length, may cross pages
1016 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1017 *
551879a4 1018 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1019 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1020 */
1021int bio_add_page(struct bio *bio, struct page *page,
1022 unsigned int len, unsigned int offset)
1023{
ff896738
CH
1024 bool same_page = false;
1025
1026 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1027 if (bio_full(bio, len))
0aa69fd3
CH
1028 return 0;
1029 __bio_add_page(bio, page, len, offset);
1030 }
c66a14d0 1031 return len;
1da177e4 1032}
a112a71d 1033EXPORT_SYMBOL(bio_add_page);
1da177e4 1034
d241a95f 1035void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1036{
1037 struct bvec_iter_all iter_all;
1038 struct bio_vec *bvec;
7321ecbf 1039
b2d0d991
CH
1040 if (bio_flagged(bio, BIO_NO_PAGE_REF))
1041 return;
1042
d241a95f
CH
1043 bio_for_each_segment_all(bvec, bio, iter_all) {
1044 if (mark_dirty && !PageCompound(bvec->bv_page))
1045 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1046 put_page(bvec->bv_page);
d241a95f 1047 }
7321ecbf 1048}
29b2a3aa 1049EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 1050
7de55b7d 1051static void __bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1052{
7a800a20 1053 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92
PB
1054
1055 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1056 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1057 bio->bi_iter.bi_bvec_done = iter->iov_offset;
1058 bio->bi_iter.bi_size = iter->count;
ed97ce5e 1059 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1060 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1061}
c42bca92 1062
7de55b7d
JT
1063static int bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
1064{
1065 __bio_iov_bvec_set(bio, iter);
c42bca92 1066 iov_iter_advance(iter, iter->count);
a10584c3 1067 return 0;
6d0c48ae
JA
1068}
1069
7de55b7d
JT
1070static int bio_iov_bvec_set_append(struct bio *bio, struct iov_iter *iter)
1071{
1072 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
1073 struct iov_iter i = *iter;
1074
1075 iov_iter_truncate(&i, queue_max_zone_append_sectors(q) << 9);
1076 __bio_iov_bvec_set(bio, &i);
1077 iov_iter_advance(iter, i.count);
1078 return 0;
1079}
1080
d9cf3bd5
PB
1081static void bio_put_pages(struct page **pages, size_t size, size_t off)
1082{
1083 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1084
1085 for (i = 0; i < nr; i++)
1086 put_page(pages[i]);
1087}
1088
576ed913
CH
1089#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1090
2cefe4db 1091/**
17d51b10 1092 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1093 * @bio: bio to add pages to
1094 * @iter: iov iterator describing the region to be mapped
1095 *
17d51b10 1096 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1097 * pages will have to be released using put_page() when done.
17d51b10 1098 * For multi-segment *iter, this function only adds pages from the
3cf14889 1099 * next non-empty segment of the iov iterator.
2cefe4db 1100 */
17d51b10 1101static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1102{
576ed913
CH
1103 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1104 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1105 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1106 struct page **pages = (struct page **)bv;
45691804 1107 bool same_page = false;
576ed913
CH
1108 ssize_t size, left;
1109 unsigned len, i;
b403ea24 1110 size_t offset;
576ed913
CH
1111
1112 /*
1113 * Move page array up in the allocated memory for the bio vecs as far as
1114 * possible so that we can start filling biovecs from the beginning
1115 * without overwriting the temporary page array.
1116 */
1117 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1118 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1119
35c820e7 1120 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1121 if (unlikely(size <= 0))
1122 return size ? size : -EFAULT;
2cefe4db 1123
576ed913
CH
1124 for (left = size, i = 0; left > 0; left -= len, i++) {
1125 struct page *page = pages[i];
2cefe4db 1126
576ed913 1127 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1128
1129 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1130 if (same_page)
1131 put_page(page);
1132 } else {
d9cf3bd5
PB
1133 if (WARN_ON_ONCE(bio_full(bio, len))) {
1134 bio_put_pages(pages + i, left, offset);
1135 return -EINVAL;
1136 }
45691804
CH
1137 __bio_add_page(bio, page, len, offset);
1138 }
576ed913 1139 offset = 0;
2cefe4db
KO
1140 }
1141
2cefe4db
KO
1142 iov_iter_advance(iter, size);
1143 return 0;
1144}
17d51b10 1145
0512a75b
KB
1146static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1147{
1148 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1149 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
309dca30 1150 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
0512a75b
KB
1151 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1152 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1153 struct page **pages = (struct page **)bv;
1154 ssize_t size, left;
1155 unsigned len, i;
1156 size_t offset;
4977d121 1157 int ret = 0;
0512a75b
KB
1158
1159 if (WARN_ON_ONCE(!max_append_sectors))
1160 return 0;
1161
1162 /*
1163 * Move page array up in the allocated memory for the bio vecs as far as
1164 * possible so that we can start filling biovecs from the beginning
1165 * without overwriting the temporary page array.
1166 */
1167 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1168 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1169
1170 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1171 if (unlikely(size <= 0))
1172 return size ? size : -EFAULT;
1173
1174 for (left = size, i = 0; left > 0; left -= len, i++) {
1175 struct page *page = pages[i];
1176 bool same_page = false;
1177
1178 len = min_t(size_t, PAGE_SIZE - offset, left);
1179 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1180 max_append_sectors, &same_page) != len) {
d9cf3bd5 1181 bio_put_pages(pages + i, left, offset);
4977d121
NA
1182 ret = -EINVAL;
1183 break;
1184 }
0512a75b
KB
1185 if (same_page)
1186 put_page(page);
1187 offset = 0;
1188 }
1189
4977d121
NA
1190 iov_iter_advance(iter, size - left);
1191 return ret;
0512a75b
KB
1192}
1193
17d51b10 1194/**
6d0c48ae 1195 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1196 * @bio: bio to add pages to
6d0c48ae
JA
1197 * @iter: iov iterator describing the region to be added
1198 *
1199 * This takes either an iterator pointing to user memory, or one pointing to
1200 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1201 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1202 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1203 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1204 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1205 * completed by a call to ->ki_complete() or returns with an error other than
1206 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1207 * on IO completion. If it isn't, then pages should be released.
17d51b10 1208 *
17d51b10 1209 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1210 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1211 * MM encounters an error pinning the requested pages, it stops. Error
1212 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1213 *
1214 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1215 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1216 */
1217int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1218{
c42bca92 1219 int ret = 0;
14eacf12 1220
c42bca92 1221 if (iov_iter_is_bvec(iter)) {
7de55b7d
JT
1222 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
1223 return bio_iov_bvec_set_append(bio, iter);
ed97ce5e 1224 return bio_iov_bvec_set(bio, iter);
c42bca92 1225 }
17d51b10
MW
1226
1227 do {
86004515 1228 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1229 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1230 else
1231 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1232 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1233
0cf41e5e
PB
1234 /* don't account direct I/O as memory stall */
1235 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1236 return bio->bi_vcnt ? 0 : ret;
17d51b10 1237}
29b2a3aa 1238EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1239
4246a0b6 1240static void submit_bio_wait_endio(struct bio *bio)
9e882242 1241{
65e53aab 1242 complete(bio->bi_private);
9e882242
KO
1243}
1244
1245/**
1246 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1247 * @bio: The &struct bio which describes the I/O
1248 *
1249 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1250 * bio_endio() on failure.
3d289d68
JK
1251 *
1252 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1253 * result in bio reference to be consumed. The caller must drop the reference
1254 * on his own.
9e882242 1255 */
4e49ea4a 1256int submit_bio_wait(struct bio *bio)
9e882242 1257{
309dca30
CH
1258 DECLARE_COMPLETION_ONSTACK_MAP(done,
1259 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1260 unsigned long hang_check;
9e882242 1261
65e53aab 1262 bio->bi_private = &done;
9e882242 1263 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1264 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1265 submit_bio(bio);
de6a78b6
ML
1266
1267 /* Prevent hang_check timer from firing at us during very long I/O */
1268 hang_check = sysctl_hung_task_timeout_secs;
1269 if (hang_check)
1270 while (!wait_for_completion_io_timeout(&done,
1271 hang_check * (HZ/2)))
1272 ;
1273 else
1274 wait_for_completion_io(&done);
9e882242 1275
65e53aab 1276 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1277}
1278EXPORT_SYMBOL(submit_bio_wait);
1279
054bdf64
KO
1280/**
1281 * bio_advance - increment/complete a bio by some number of bytes
1282 * @bio: bio to advance
1283 * @bytes: number of bytes to complete
1284 *
1285 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1286 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1287 * be updated on the last bvec as well.
1288 *
1289 * @bio will then represent the remaining, uncompleted portion of the io.
1290 */
1291void bio_advance(struct bio *bio, unsigned bytes)
1292{
1293 if (bio_integrity(bio))
1294 bio_integrity_advance(bio, bytes);
1295
a892c8d5 1296 bio_crypt_advance(bio, bytes);
4550dd6c 1297 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1298}
1299EXPORT_SYMBOL(bio_advance);
1300
45db54d5
KO
1301void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1302 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1303{
45db54d5 1304 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1305 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1306 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1307 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1308 void *src_buf;
1309
1310 src_buf = bvec_kmap_local(&src_bv);
1311 memcpy_to_bvec(&dst_bv, src_buf);
1312 kunmap_local(src_buf);
6e6e811d 1313
22b56c29
PB
1314 bio_advance_iter_single(src, src_iter, bytes);
1315 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1316 }
1317}
38a72dac
KO
1318EXPORT_SYMBOL(bio_copy_data_iter);
1319
1320/**
45db54d5
KO
1321 * bio_copy_data - copy contents of data buffers from one bio to another
1322 * @src: source bio
1323 * @dst: destination bio
38a72dac
KO
1324 *
1325 * Stops when it reaches the end of either @src or @dst - that is, copies
1326 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1327 */
1328void bio_copy_data(struct bio *dst, struct bio *src)
1329{
45db54d5
KO
1330 struct bvec_iter src_iter = src->bi_iter;
1331 struct bvec_iter dst_iter = dst->bi_iter;
1332
1333 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1334}
16ac3d63
KO
1335EXPORT_SYMBOL(bio_copy_data);
1336
491221f8 1337void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1338{
1339 struct bio_vec *bvec;
6dc4f100 1340 struct bvec_iter_all iter_all;
1dfa0f68 1341
2b070cfe 1342 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1343 __free_page(bvec->bv_page);
1344}
491221f8 1345EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1346
1da177e4
LT
1347/*
1348 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1349 * for performing direct-IO in BIOs.
1350 *
1351 * The problem is that we cannot run set_page_dirty() from interrupt context
1352 * because the required locks are not interrupt-safe. So what we can do is to
1353 * mark the pages dirty _before_ performing IO. And in interrupt context,
1354 * check that the pages are still dirty. If so, fine. If not, redirty them
1355 * in process context.
1356 *
1357 * We special-case compound pages here: normally this means reads into hugetlb
1358 * pages. The logic in here doesn't really work right for compound pages
1359 * because the VM does not uniformly chase down the head page in all cases.
1360 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1361 * handle them at all. So we skip compound pages here at an early stage.
1362 *
1363 * Note that this code is very hard to test under normal circumstances because
1364 * direct-io pins the pages with get_user_pages(). This makes
1365 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1366 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1367 * pagecache.
1368 *
1369 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1370 * deferred bio dirtying paths.
1371 */
1372
1373/*
1374 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1375 */
1376void bio_set_pages_dirty(struct bio *bio)
1377{
cb34e057 1378 struct bio_vec *bvec;
6dc4f100 1379 struct bvec_iter_all iter_all;
1da177e4 1380
2b070cfe 1381 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1382 if (!PageCompound(bvec->bv_page))
1383 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1384 }
1385}
1386
1da177e4
LT
1387/*
1388 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1389 * If they are, then fine. If, however, some pages are clean then they must
1390 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1391 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1392 *
1393 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1394 * here on. It will run one put_page() against each page and will run one
1395 * bio_put() against the BIO.
1da177e4
LT
1396 */
1397
65f27f38 1398static void bio_dirty_fn(struct work_struct *work);
1da177e4 1399
65f27f38 1400static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1401static DEFINE_SPINLOCK(bio_dirty_lock);
1402static struct bio *bio_dirty_list;
1403
1404/*
1405 * This runs in process context
1406 */
65f27f38 1407static void bio_dirty_fn(struct work_struct *work)
1da177e4 1408{
24d5493f 1409 struct bio *bio, *next;
1da177e4 1410
24d5493f
CH
1411 spin_lock_irq(&bio_dirty_lock);
1412 next = bio_dirty_list;
1da177e4 1413 bio_dirty_list = NULL;
24d5493f 1414 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1415
24d5493f
CH
1416 while ((bio = next) != NULL) {
1417 next = bio->bi_private;
1da177e4 1418
d241a95f 1419 bio_release_pages(bio, true);
1da177e4 1420 bio_put(bio);
1da177e4
LT
1421 }
1422}
1423
1424void bio_check_pages_dirty(struct bio *bio)
1425{
cb34e057 1426 struct bio_vec *bvec;
24d5493f 1427 unsigned long flags;
6dc4f100 1428 struct bvec_iter_all iter_all;
1da177e4 1429
2b070cfe 1430 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1431 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1432 goto defer;
1da177e4
LT
1433 }
1434
d241a95f 1435 bio_release_pages(bio, false);
24d5493f
CH
1436 bio_put(bio);
1437 return;
1438defer:
1439 spin_lock_irqsave(&bio_dirty_lock, flags);
1440 bio->bi_private = bio_dirty_list;
1441 bio_dirty_list = bio;
1442 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1443 schedule_work(&bio_dirty_work);
1da177e4
LT
1444}
1445
c4cf5261
JA
1446static inline bool bio_remaining_done(struct bio *bio)
1447{
1448 /*
1449 * If we're not chaining, then ->__bi_remaining is always 1 and
1450 * we always end io on the first invocation.
1451 */
1452 if (!bio_flagged(bio, BIO_CHAIN))
1453 return true;
1454
1455 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1456
326e1dbb 1457 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1458 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1459 return true;
326e1dbb 1460 }
c4cf5261
JA
1461
1462 return false;
1463}
1464
1da177e4
LT
1465/**
1466 * bio_endio - end I/O on a bio
1467 * @bio: bio
1da177e4
LT
1468 *
1469 * Description:
4246a0b6
CH
1470 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1471 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1472 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1473 *
1474 * bio_endio() can be called several times on a bio that has been chained
1475 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1476 * last time.
1da177e4 1477 **/
4246a0b6 1478void bio_endio(struct bio *bio)
1da177e4 1479{
ba8c6967 1480again:
2b885517 1481 if (!bio_remaining_done(bio))
ba8c6967 1482 return;
7c20f116
CH
1483 if (!bio_integrity_endio(bio))
1484 return;
1da177e4 1485
a647a524 1486 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
309dca30 1487 rq_qos_done_bio(bio->bi_bdev->bd_disk->queue, bio);
67b42d0b 1488
60b6a7e6
EH
1489 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1490 trace_block_bio_complete(bio->bi_bdev->bd_disk->queue, bio);
1491 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1492 }
1493
ba8c6967
CH
1494 /*
1495 * Need to have a real endio function for chained bios, otherwise
1496 * various corner cases will break (like stacking block devices that
1497 * save/restore bi_end_io) - however, we want to avoid unbounded
1498 * recursion and blowing the stack. Tail call optimization would
1499 * handle this, but compiling with frame pointers also disables
1500 * gcc's sibling call optimization.
1501 */
1502 if (bio->bi_end_io == bio_chain_endio) {
1503 bio = __bio_chain_endio(bio);
1504 goto again;
196d38bc 1505 }
ba8c6967 1506
9e234eea 1507 blk_throtl_bio_endio(bio);
b222dd2f
SL
1508 /* release cgroup info */
1509 bio_uninit(bio);
ba8c6967
CH
1510 if (bio->bi_end_io)
1511 bio->bi_end_io(bio);
1da177e4 1512}
a112a71d 1513EXPORT_SYMBOL(bio_endio);
1da177e4 1514
20d0189b
KO
1515/**
1516 * bio_split - split a bio
1517 * @bio: bio to split
1518 * @sectors: number of sectors to split from the front of @bio
1519 * @gfp: gfp mask
1520 * @bs: bio set to allocate from
1521 *
1522 * Allocates and returns a new bio which represents @sectors from the start of
1523 * @bio, and updates @bio to represent the remaining sectors.
1524 *
f3f5da62 1525 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1526 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1527 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1528 */
1529struct bio *bio_split(struct bio *bio, int sectors,
1530 gfp_t gfp, struct bio_set *bs)
1531{
f341a4d3 1532 struct bio *split;
20d0189b
KO
1533
1534 BUG_ON(sectors <= 0);
1535 BUG_ON(sectors >= bio_sectors(bio));
1536
0512a75b
KB
1537 /* Zone append commands cannot be split */
1538 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1539 return NULL;
1540
f9d03f96 1541 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1542 if (!split)
1543 return NULL;
1544
1545 split->bi_iter.bi_size = sectors << 9;
1546
1547 if (bio_integrity(split))
fbd08e76 1548 bio_integrity_trim(split);
20d0189b
KO
1549
1550 bio_advance(bio, split->bi_iter.bi_size);
1551
fbbaf700 1552 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1553 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1554
20d0189b
KO
1555 return split;
1556}
1557EXPORT_SYMBOL(bio_split);
1558
6678d83f
KO
1559/**
1560 * bio_trim - trim a bio
1561 * @bio: bio to trim
1562 * @offset: number of sectors to trim from the front of @bio
1563 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1564 *
1565 * This function is typically used for bios that are cloned and submitted
1566 * to the underlying device in parts.
6678d83f 1567 */
e83502ca 1568void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1569{
e83502ca
CK
1570 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1571 offset + size > bio->bi_iter.bi_size))
1572 return;
6678d83f
KO
1573
1574 size <<= 9;
4f024f37 1575 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1576 return;
1577
6678d83f 1578 bio_advance(bio, offset << 9);
4f024f37 1579 bio->bi_iter.bi_size = size;
376a78ab
DM
1580
1581 if (bio_integrity(bio))
fbd08e76 1582 bio_integrity_trim(bio);
6678d83f
KO
1583}
1584EXPORT_SYMBOL_GPL(bio_trim);
1585
1da177e4
LT
1586/*
1587 * create memory pools for biovec's in a bio_set.
1588 * use the global biovec slabs created for general use.
1589 */
8aa6ba2f 1590int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1591{
7a800a20 1592 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1593
8aa6ba2f 1594 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1595}
1596
917a38c7
KO
1597/*
1598 * bioset_exit - exit a bioset initialized with bioset_init()
1599 *
1600 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1601 * kzalloc()).
1602 */
1603void bioset_exit(struct bio_set *bs)
1da177e4 1604{
be4d234d 1605 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1606 if (bs->rescue_workqueue)
1607 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1608 bs->rescue_workqueue = NULL;
df2cb6da 1609
8aa6ba2f
KO
1610 mempool_exit(&bs->bio_pool);
1611 mempool_exit(&bs->bvec_pool);
9f060e22 1612
7878cba9 1613 bioset_integrity_free(bs);
917a38c7
KO
1614 if (bs->bio_slab)
1615 bio_put_slab(bs);
1616 bs->bio_slab = NULL;
1617}
1618EXPORT_SYMBOL(bioset_exit);
1da177e4 1619
917a38c7
KO
1620/**
1621 * bioset_init - Initialize a bio_set
dad08527 1622 * @bs: pool to initialize
917a38c7
KO
1623 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1624 * @front_pad: Number of bytes to allocate in front of the returned bio
1625 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1626 * and %BIOSET_NEED_RESCUER
1627 *
dad08527
KO
1628 * Description:
1629 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1630 * to ask for a number of bytes to be allocated in front of the bio.
1631 * Front pad allocation is useful for embedding the bio inside
1632 * another structure, to avoid allocating extra data to go with the bio.
1633 * Note that the bio must be embedded at the END of that structure always,
1634 * or things will break badly.
1635 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1636 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1637 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1638 * dispatch queued requests when the mempool runs out of space.
1639 *
917a38c7
KO
1640 */
1641int bioset_init(struct bio_set *bs,
1642 unsigned int pool_size,
1643 unsigned int front_pad,
1644 int flags)
1645{
917a38c7 1646 bs->front_pad = front_pad;
9f180e31
ML
1647 if (flags & BIOSET_NEED_BVECS)
1648 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1649 else
1650 bs->back_pad = 0;
917a38c7
KO
1651
1652 spin_lock_init(&bs->rescue_lock);
1653 bio_list_init(&bs->rescue_list);
1654 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1655
49d1ec85 1656 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1657 if (!bs->bio_slab)
1658 return -ENOMEM;
1659
1660 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1661 goto bad;
1662
1663 if ((flags & BIOSET_NEED_BVECS) &&
1664 biovec_init_pool(&bs->bvec_pool, pool_size))
1665 goto bad;
1666
be4d234d
JA
1667 if (flags & BIOSET_NEED_RESCUER) {
1668 bs->rescue_workqueue = alloc_workqueue("bioset",
1669 WQ_MEM_RECLAIM, 0);
1670 if (!bs->rescue_workqueue)
1671 goto bad;
1672 }
1673 if (flags & BIOSET_PERCPU_CACHE) {
1674 bs->cache = alloc_percpu(struct bio_alloc_cache);
1675 if (!bs->cache)
1676 goto bad;
1677 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1678 }
917a38c7
KO
1679
1680 return 0;
1681bad:
1682 bioset_exit(bs);
1683 return -ENOMEM;
1684}
1685EXPORT_SYMBOL(bioset_init);
1686
28e89fd9
JA
1687/*
1688 * Initialize and setup a new bio_set, based on the settings from
1689 * another bio_set.
1690 */
1691int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1692{
1693 int flags;
1694
1695 flags = 0;
1696 if (src->bvec_pool.min_nr)
1697 flags |= BIOSET_NEED_BVECS;
1698 if (src->rescue_workqueue)
1699 flags |= BIOSET_NEED_RESCUER;
1700
1701 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1702}
1703EXPORT_SYMBOL(bioset_init_from_src);
1704
be4d234d
JA
1705/**
1706 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1707 * @kiocb: kiocb describing the IO
0ef47db1 1708 * @nr_vecs: number of iovecs to pre-allocate
be4d234d
JA
1709 * @bs: bio_set to allocate from
1710 *
1711 * Description:
1712 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1713 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1714 * cache. The allocation uses GFP_KERNEL internally. On return, the
1715 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1716 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1717 *
1718 */
1719struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1720 struct bio_set *bs)
1721{
1722 struct bio_alloc_cache *cache;
1723 struct bio *bio;
1724
1725 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1726 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1727
1728 cache = per_cpu_ptr(bs->cache, get_cpu());
1729 bio = bio_list_pop(&cache->free_list);
1730 if (bio) {
1731 cache->nr--;
1732 put_cpu();
1733 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1734 bio->bi_pool = bs;
1735 bio_set_flag(bio, BIO_PERCPU_CACHE);
1736 return bio;
1737 }
1738 put_cpu();
1739 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1740 bio_set_flag(bio, BIO_PERCPU_CACHE);
1741 return bio;
1742}
1743EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1744
de76fd89 1745static int __init init_bio(void)
1da177e4
LT
1746{
1747 int i;
1748
7878cba9 1749 bio_integrity_init();
1da177e4 1750
de76fd89
CH
1751 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1752 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1753
de76fd89
CH
1754 bvs->slab = kmem_cache_create(bvs->name,
1755 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1756 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1757 }
1da177e4 1758
be4d234d
JA
1759 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1760 bio_cpu_dead);
1761
f4f8154a 1762 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1763 panic("bio: can't allocate bios\n");
1764
f4f8154a 1765 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1766 panic("bio: can't create integrity pool\n");
1767
1da177e4
LT
1768 return 0;
1769}
1da177e4 1770subsys_initcall(init_bio);