Merge tag 'irq-core-2020-08-04' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
0bfc2455 26
392ddc32
JA
27/*
28 * Test patch to inline a certain number of bi_io_vec's inside the bio
29 * itself, to shrink a bio data allocation from two mempool calls to one
30 */
31#define BIO_INLINE_VECS 4
32
1da177e4
LT
33/*
34 * if you change this list, also change bvec_alloc or things will
35 * break badly! cannot be bigger than what you can fit into an
36 * unsigned short
37 */
bd5c4fac 38#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 39static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 40 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
41};
42#undef BV
43
1da177e4
LT
44/*
45 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
46 * IO code that does not need private memory pools.
47 */
f4f8154a 48struct bio_set fs_bio_set;
3f86a82a 49EXPORT_SYMBOL(fs_bio_set);
1da177e4 50
bb799ca0
JA
51/*
52 * Our slab pool management
53 */
54struct bio_slab {
55 struct kmem_cache *slab;
56 unsigned int slab_ref;
57 unsigned int slab_size;
58 char name[8];
59};
60static DEFINE_MUTEX(bio_slab_lock);
61static struct bio_slab *bio_slabs;
62static unsigned int bio_slab_nr, bio_slab_max;
63
64static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
65{
66 unsigned int sz = sizeof(struct bio) + extra_size;
67 struct kmem_cache *slab = NULL;
389d7b26 68 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 69 unsigned int new_bio_slab_max;
bb799ca0
JA
70 unsigned int i, entry = -1;
71
72 mutex_lock(&bio_slab_lock);
73
74 i = 0;
75 while (i < bio_slab_nr) {
f06f135d 76 bslab = &bio_slabs[i];
bb799ca0
JA
77
78 if (!bslab->slab && entry == -1)
79 entry = i;
80 else if (bslab->slab_size == sz) {
81 slab = bslab->slab;
82 bslab->slab_ref++;
83 break;
84 }
85 i++;
86 }
87
88 if (slab)
89 goto out_unlock;
90
91 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 92 new_bio_slab_max = bio_slab_max << 1;
389d7b26 93 new_bio_slabs = krealloc(bio_slabs,
386bc35a 94 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
95 GFP_KERNEL);
96 if (!new_bio_slabs)
bb799ca0 97 goto out_unlock;
386bc35a 98 bio_slab_max = new_bio_slab_max;
389d7b26 99 bio_slabs = new_bio_slabs;
bb799ca0
JA
100 }
101 if (entry == -1)
102 entry = bio_slab_nr++;
103
104 bslab = &bio_slabs[entry];
105
106 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
107 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
108 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
109 if (!slab)
110 goto out_unlock;
111
bb799ca0
JA
112 bslab->slab = slab;
113 bslab->slab_ref = 1;
114 bslab->slab_size = sz;
115out_unlock:
116 mutex_unlock(&bio_slab_lock);
117 return slab;
118}
119
120static void bio_put_slab(struct bio_set *bs)
121{
122 struct bio_slab *bslab = NULL;
123 unsigned int i;
124
125 mutex_lock(&bio_slab_lock);
126
127 for (i = 0; i < bio_slab_nr; i++) {
128 if (bs->bio_slab == bio_slabs[i].slab) {
129 bslab = &bio_slabs[i];
130 break;
131 }
132 }
133
134 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
135 goto out;
136
137 WARN_ON(!bslab->slab_ref);
138
139 if (--bslab->slab_ref)
140 goto out;
141
142 kmem_cache_destroy(bslab->slab);
143 bslab->slab = NULL;
144
145out:
146 mutex_unlock(&bio_slab_lock);
147}
148
7ba1ba12
MP
149unsigned int bvec_nr_vecs(unsigned short idx)
150{
d6c02a9b 151 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
152}
153
9f060e22 154void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 155{
ed996a52
CH
156 if (!idx)
157 return;
158 idx--;
159
160 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 161
ed996a52 162 if (idx == BVEC_POOL_MAX) {
9f060e22 163 mempool_free(bv, pool);
ed996a52 164 } else {
bb799ca0
JA
165 struct biovec_slab *bvs = bvec_slabs + idx;
166
167 kmem_cache_free(bvs->slab, bv);
168 }
169}
170
9f060e22
KO
171struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
172 mempool_t *pool)
1da177e4
LT
173{
174 struct bio_vec *bvl;
1da177e4 175
7ff9345f
JA
176 /*
177 * see comment near bvec_array define!
178 */
179 switch (nr) {
180 case 1:
181 *idx = 0;
182 break;
183 case 2 ... 4:
184 *idx = 1;
185 break;
186 case 5 ... 16:
187 *idx = 2;
188 break;
189 case 17 ... 64:
190 *idx = 3;
191 break;
192 case 65 ... 128:
193 *idx = 4;
194 break;
195 case 129 ... BIO_MAX_PAGES:
196 *idx = 5;
197 break;
198 default:
199 return NULL;
200 }
201
202 /*
203 * idx now points to the pool we want to allocate from. only the
204 * 1-vec entry pool is mempool backed.
205 */
ed996a52 206 if (*idx == BVEC_POOL_MAX) {
7ff9345f 207fallback:
9f060e22 208 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
209 } else {
210 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 211 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 212
0a0d96b0 213 /*
7ff9345f
JA
214 * Make this allocation restricted and don't dump info on
215 * allocation failures, since we'll fallback to the mempool
216 * in case of failure.
0a0d96b0 217 */
7ff9345f 218 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 219
0a0d96b0 220 /*
d0164adc 221 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 222 * is set, retry with the 1-entry mempool
0a0d96b0 223 */
7ff9345f 224 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 225 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 226 *idx = BVEC_POOL_MAX;
7ff9345f
JA
227 goto fallback;
228 }
229 }
230
ed996a52 231 (*idx)++;
1da177e4
LT
232 return bvl;
233}
234
9ae3b3f5 235void bio_uninit(struct bio *bio)
1da177e4 236{
db9819c7
CH
237#ifdef CONFIG_BLK_CGROUP
238 if (bio->bi_blkg) {
239 blkg_put(bio->bi_blkg);
240 bio->bi_blkg = NULL;
241 }
242#endif
ece841ab
JT
243 if (bio_integrity(bio))
244 bio_integrity_free(bio);
a892c8d5
ST
245
246 bio_crypt_free_ctx(bio);
4254bba1 247}
9ae3b3f5 248EXPORT_SYMBOL(bio_uninit);
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
9ae3b3f5 255 bio_uninit(bio);
4254bba1
KO
256
257 if (bs) {
8aa6ba2f 258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
8aa6ba2f 266 mempool_free(p, &bs->bio_pool);
4254bba1
KO
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
9ae3b3f5
JA
273/*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
3a83f467
ML
278void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
1da177e4 280{
2b94de55 281 memset(bio, 0, sizeof(*bio));
c4cf5261 282 atomic_set(&bio->__bi_remaining, 1);
dac56212 283 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
284
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
1da177e4 287}
a112a71d 288EXPORT_SYMBOL(bio_init);
1da177e4 289
f44b48c7
KO
290/**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300void bio_reset(struct bio *bio)
301{
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
9ae3b3f5 304 bio_uninit(bio);
f44b48c7
KO
305
306 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 307 bio->bi_flags = flags;
c4cf5261 308 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
309}
310EXPORT_SYMBOL(bio_reset);
311
38f8baae 312static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 313{
4246a0b6
CH
314 struct bio *parent = bio->bi_private;
315
4e4cbee9
CH
316 if (!parent->bi_status)
317 parent->bi_status = bio->bi_status;
196d38bc 318 bio_put(bio);
38f8baae
CH
319 return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
325}
326
327/**
328 * bio_chain - chain bio completions
1051a902
RD
329 * @bio: the target bio
330 * @parent: the @bio's parent bio
196d38bc
KO
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
c4cf5261 344 bio_inc_remaining(parent);
196d38bc
KO
345}
346EXPORT_SYMBOL(bio_chain);
347
df2cb6da
KO
348static void bio_alloc_rescue(struct work_struct *work)
349{
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
ed00aabd 361 submit_bio_noacct(bio);
df2cb6da
KO
362 }
363}
364
365static void punt_bios_to_rescuer(struct bio_set *bs)
366{
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
47e0fb46
N
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
df2cb6da
KO
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
f5fe1b51 386 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 388 current->bio_list[0] = nopunt;
df2cb6da 389
f5fe1b51
N
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(&current->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
df2cb6da
KO
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400}
401
1da177e4
LT
402/**
403 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 404 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 405 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 406 * @bs: the bio_set to allocate from.
1da177e4
LT
407 *
408 * Description:
3f86a82a
KO
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
d0164adc
MG
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 418 *
ed00aabd 419 * Note that when running under submit_bio_noacct() (i.e. any block
df2cb6da 420 * driver), bios are not submitted until after you return - see the code in
ed00aabd 421 * submit_bio_noacct() that converts recursion into iteration, to prevent
df2cb6da
KO
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
ed00aabd 425 * submit_bio_noacct() would be susceptible to deadlocks, but we have
df2cb6da
KO
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
ed00aabd 431 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
df2cb6da
KO
432 * for per bio allocations.
433 *
3f86a82a
KO
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
7a88fa19
DC
437struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
1da177e4 439{
df2cb6da 440 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
441 unsigned front_pad;
442 unsigned inline_vecs;
34053979 443 struct bio_vec *bvl = NULL;
451a9ebf
TH
444 struct bio *bio;
445 void *p;
446
3f86a82a
KO
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
1f4fe21c 451 p = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
3f86a82a
KO
452 front_pad = 0;
453 inline_vecs = nr_iovecs;
454 } else {
d8f429e1 455 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
456 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
457 nr_iovecs > 0))
d8f429e1 458 return NULL;
df2cb6da 459 /*
ed00aabd 460 * submit_bio_noacct() converts recursion to iteration; this
df2cb6da
KO
461 * means if we're running beneath it, any bios we allocate and
462 * submit will not be submitted (and thus freed) until after we
463 * return.
464 *
465 * This exposes us to a potential deadlock if we allocate
466 * multiple bios from the same bio_set() while running
ed00aabd 467 * underneath submit_bio_noacct(). If we were to allocate
df2cb6da
KO
468 * multiple bios (say a stacking block driver that was splitting
469 * bios), we would deadlock if we exhausted the mempool's
470 * reserve.
471 *
472 * We solve this, and guarantee forward progress, with a rescuer
473 * workqueue per bio_set. If we go to allocate and there are
474 * bios on current->bio_list, we first try the allocation
d0164adc
MG
475 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
476 * bios we would be blocking to the rescuer workqueue before
477 * we retry with the original gfp_flags.
df2cb6da
KO
478 */
479
f5fe1b51
N
480 if (current->bio_list &&
481 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
482 !bio_list_empty(&current->bio_list[1])) &&
483 bs->rescue_workqueue)
d0164adc 484 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 485
8aa6ba2f 486 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
487 if (!p && gfp_mask != saved_gfp) {
488 punt_bios_to_rescuer(bs);
489 gfp_mask = saved_gfp;
8aa6ba2f 490 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
491 }
492
3f86a82a
KO
493 front_pad = bs->front_pad;
494 inline_vecs = BIO_INLINE_VECS;
495 }
496
451a9ebf
TH
497 if (unlikely(!p))
498 return NULL;
1da177e4 499
3f86a82a 500 bio = p + front_pad;
3a83f467 501 bio_init(bio, NULL, 0);
34053979 502
3f86a82a 503 if (nr_iovecs > inline_vecs) {
ed996a52
CH
504 unsigned long idx = 0;
505
8aa6ba2f 506 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
507 if (!bvl && gfp_mask != saved_gfp) {
508 punt_bios_to_rescuer(bs);
509 gfp_mask = saved_gfp;
8aa6ba2f 510 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
511 }
512
34053979
IM
513 if (unlikely(!bvl))
514 goto err_free;
a38352e0 515
ed996a52 516 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
517 } else if (nr_iovecs) {
518 bvl = bio->bi_inline_vecs;
1da177e4 519 }
3f86a82a
KO
520
521 bio->bi_pool = bs;
34053979 522 bio->bi_max_vecs = nr_iovecs;
34053979 523 bio->bi_io_vec = bvl;
1da177e4 524 return bio;
34053979
IM
525
526err_free:
8aa6ba2f 527 mempool_free(p, &bs->bio_pool);
34053979 528 return NULL;
1da177e4 529}
a112a71d 530EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 531
38a72dac 532void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
533{
534 unsigned long flags;
7988613b
KO
535 struct bio_vec bv;
536 struct bvec_iter iter;
1da177e4 537
38a72dac 538 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
539 char *data = bvec_kmap_irq(&bv, &flags);
540 memset(data, 0, bv.bv_len);
541 flush_dcache_page(bv.bv_page);
1da177e4
LT
542 bvec_kunmap_irq(data, &flags);
543 }
544}
38a72dac 545EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4 546
83c9c547
ML
547/**
548 * bio_truncate - truncate the bio to small size of @new_size
549 * @bio: the bio to be truncated
550 * @new_size: new size for truncating the bio
551 *
552 * Description:
553 * Truncate the bio to new size of @new_size. If bio_op(bio) is
554 * REQ_OP_READ, zero the truncated part. This function should only
555 * be used for handling corner cases, such as bio eod.
556 */
85a8ce62
ML
557void bio_truncate(struct bio *bio, unsigned new_size)
558{
559 struct bio_vec bv;
560 struct bvec_iter iter;
561 unsigned int done = 0;
562 bool truncated = false;
563
564 if (new_size >= bio->bi_iter.bi_size)
565 return;
566
83c9c547 567 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
568 goto exit;
569
570 bio_for_each_segment(bv, bio, iter) {
571 if (done + bv.bv_len > new_size) {
572 unsigned offset;
573
574 if (!truncated)
575 offset = new_size - done;
576 else
577 offset = 0;
578 zero_user(bv.bv_page, offset, bv.bv_len - offset);
579 truncated = true;
580 }
581 done += bv.bv_len;
582 }
583
584 exit:
585 /*
586 * Don't touch bvec table here and make it really immutable, since
587 * fs bio user has to retrieve all pages via bio_for_each_segment_all
588 * in its .end_bio() callback.
589 *
590 * It is enough to truncate bio by updating .bi_size since we can make
591 * correct bvec with the updated .bi_size for drivers.
592 */
593 bio->bi_iter.bi_size = new_size;
594}
595
29125ed6
CH
596/**
597 * guard_bio_eod - truncate a BIO to fit the block device
598 * @bio: bio to truncate
599 *
600 * This allows us to do IO even on the odd last sectors of a device, even if the
601 * block size is some multiple of the physical sector size.
602 *
603 * We'll just truncate the bio to the size of the device, and clear the end of
604 * the buffer head manually. Truly out-of-range accesses will turn into actual
605 * I/O errors, this only handles the "we need to be able to do I/O at the final
606 * sector" case.
607 */
608void guard_bio_eod(struct bio *bio)
609{
610 sector_t maxsector;
611 struct hd_struct *part;
612
613 rcu_read_lock();
614 part = __disk_get_part(bio->bi_disk, bio->bi_partno);
615 if (part)
616 maxsector = part_nr_sects_read(part);
617 else
618 maxsector = get_capacity(bio->bi_disk);
619 rcu_read_unlock();
620
621 if (!maxsector)
622 return;
623
624 /*
625 * If the *whole* IO is past the end of the device,
626 * let it through, and the IO layer will turn it into
627 * an EIO.
628 */
629 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
630 return;
631
632 maxsector -= bio->bi_iter.bi_sector;
633 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
634 return;
635
636 bio_truncate(bio, maxsector << 9);
637}
638
1da177e4
LT
639/**
640 * bio_put - release a reference to a bio
641 * @bio: bio to release reference to
642 *
643 * Description:
644 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 645 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
646 **/
647void bio_put(struct bio *bio)
648{
dac56212 649 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 650 bio_free(bio);
dac56212
JA
651 else {
652 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
653
654 /*
655 * last put frees it
656 */
657 if (atomic_dec_and_test(&bio->__bi_cnt))
658 bio_free(bio);
659 }
1da177e4 660}
a112a71d 661EXPORT_SYMBOL(bio_put);
1da177e4 662
59d276fe
KO
663/**
664 * __bio_clone_fast - clone a bio that shares the original bio's biovec
665 * @bio: destination bio
666 * @bio_src: bio to clone
667 *
668 * Clone a &bio. Caller will own the returned bio, but not
669 * the actual data it points to. Reference count of returned
670 * bio will be one.
671 *
672 * Caller must ensure that @bio_src is not freed before @bio.
673 */
674void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
675{
ed996a52 676 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
677
678 /*
74d46992 679 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
680 * so we don't set nor calculate new physical/hw segment counts here
681 */
74d46992 682 bio->bi_disk = bio_src->bi_disk;
62530ed8 683 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 684 bio_set_flag(bio, BIO_CLONED);
111be883
SL
685 if (bio_flagged(bio_src, BIO_THROTTLED))
686 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 687 bio->bi_opf = bio_src->bi_opf;
ca474b73 688 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 689 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
690 bio->bi_iter = bio_src->bi_iter;
691 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 692
db6638d7 693 bio_clone_blkg_association(bio, bio_src);
e439bedf 694 blkcg_bio_issue_init(bio);
59d276fe
KO
695}
696EXPORT_SYMBOL(__bio_clone_fast);
697
698/**
699 * bio_clone_fast - clone a bio that shares the original bio's biovec
700 * @bio: bio to clone
701 * @gfp_mask: allocation priority
702 * @bs: bio_set to allocate from
703 *
704 * Like __bio_clone_fast, only also allocates the returned bio
705 */
706struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
707{
708 struct bio *b;
709
710 b = bio_alloc_bioset(gfp_mask, 0, bs);
711 if (!b)
712 return NULL;
713
714 __bio_clone_fast(b, bio);
715
a892c8d5
ST
716 bio_crypt_clone(b, bio, gfp_mask);
717
59d276fe
KO
718 if (bio_integrity(bio)) {
719 int ret;
720
721 ret = bio_integrity_clone(b, bio, gfp_mask);
722
723 if (ret < 0) {
724 bio_put(b);
725 return NULL;
726 }
727 }
728
729 return b;
730}
731EXPORT_SYMBOL(bio_clone_fast);
732
5cbd28e3
CH
733const char *bio_devname(struct bio *bio, char *buf)
734{
735 return disk_name(bio->bi_disk, bio->bi_partno, buf);
736}
737EXPORT_SYMBOL(bio_devname);
738
5919482e
ML
739static inline bool page_is_mergeable(const struct bio_vec *bv,
740 struct page *page, unsigned int len, unsigned int off,
ff896738 741 bool *same_page)
5919482e
ML
742{
743 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
744 bv->bv_offset + bv->bv_len - 1;
745 phys_addr_t page_addr = page_to_phys(page);
746
747 if (vec_end_addr + 1 != page_addr + off)
748 return false;
749 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
750 return false;
52d52d1c 751
ff896738
CH
752 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
753 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
754 return false;
5919482e
ML
755 return true;
756}
757
e4581105
CH
758/*
759 * Try to merge a page into a segment, while obeying the hardware segment
760 * size limit. This is not for normal read/write bios, but for passthrough
761 * or Zone Append operations that we can't split.
762 */
763static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
764 struct page *page, unsigned len,
765 unsigned offset, bool *same_page)
489fbbcb 766{
384209cd 767 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
768 unsigned long mask = queue_segment_boundary(q);
769 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
770 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
771
772 if ((addr1 | mask) != (addr2 | mask))
773 return false;
489fbbcb
ML
774 if (bv->bv_len + len > queue_max_segment_size(q))
775 return false;
384209cd 776 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
777}
778
1da177e4 779/**
e4581105
CH
780 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
781 * @q: the target queue
782 * @bio: destination bio
783 * @page: page to add
784 * @len: vec entry length
785 * @offset: vec entry offset
786 * @max_sectors: maximum number of sectors that can be added
787 * @same_page: return if the segment has been merged inside the same page
c66a14d0 788 *
e4581105
CH
789 * Add a page to a bio while respecting the hardware max_sectors, max_segment
790 * and gap limitations.
1da177e4 791 */
e4581105 792int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 793 struct page *page, unsigned int len, unsigned int offset,
e4581105 794 unsigned int max_sectors, bool *same_page)
1da177e4 795{
1da177e4
LT
796 struct bio_vec *bvec;
797
e4581105 798 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
799 return 0;
800
e4581105 801 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
802 return 0;
803
80cfd548 804 if (bio->bi_vcnt > 0) {
e4581105 805 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 806 return len;
320ea869
CH
807
808 /*
809 * If the queue doesn't support SG gaps and adding this segment
810 * would create a gap, disallow it.
811 */
384209cd 812 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
813 if (bvec_gap_to_prev(q, bvec, offset))
814 return 0;
80cfd548
JA
815 }
816
79d08f89 817 if (bio_full(bio, len))
1da177e4
LT
818 return 0;
819
14ccb66b 820 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
821 return 0;
822
fcbf6a08
ML
823 bvec = &bio->bi_io_vec[bio->bi_vcnt];
824 bvec->bv_page = page;
825 bvec->bv_len = len;
826 bvec->bv_offset = offset;
827 bio->bi_vcnt++;
dcdca753 828 bio->bi_iter.bi_size += len;
1da177e4
LT
829 return len;
830}
19047087 831
e4581105
CH
832/**
833 * bio_add_pc_page - attempt to add page to passthrough bio
834 * @q: the target queue
835 * @bio: destination bio
836 * @page: page to add
837 * @len: vec entry length
838 * @offset: vec entry offset
839 *
840 * Attempt to add a page to the bio_vec maplist. This can fail for a
841 * number of reasons, such as the bio being full or target block device
842 * limitations. The target block device must allow bio's up to PAGE_SIZE,
843 * so it is always possible to add a single page to an empty bio.
844 *
845 * This should only be used by passthrough bios.
846 */
19047087
ML
847int bio_add_pc_page(struct request_queue *q, struct bio *bio,
848 struct page *page, unsigned int len, unsigned int offset)
849{
d1916c86 850 bool same_page = false;
e4581105
CH
851 return bio_add_hw_page(q, bio, page, len, offset,
852 queue_max_hw_sectors(q), &same_page);
19047087 853}
a112a71d 854EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 855
1da177e4 856/**
0aa69fd3
CH
857 * __bio_try_merge_page - try appending data to an existing bvec.
858 * @bio: destination bio
551879a4 859 * @page: start page to add
0aa69fd3 860 * @len: length of the data to add
551879a4 861 * @off: offset of the data relative to @page
ff896738 862 * @same_page: return if the segment has been merged inside the same page
1da177e4 863 *
0aa69fd3 864 * Try to add the data at @page + @off to the last bvec of @bio. This is a
3cf14889 865 * useful optimisation for file systems with a block size smaller than the
0aa69fd3
CH
866 * page size.
867 *
551879a4
ML
868 * Warn if (@len, @off) crosses pages in case that @same_page is true.
869 *
0aa69fd3 870 * Return %true on success or %false on failure.
1da177e4 871 */
0aa69fd3 872bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 873 unsigned int len, unsigned int off, bool *same_page)
1da177e4 874{
c66a14d0 875 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 876 return false;
762380ad 877
cc90bc68 878 if (bio->bi_vcnt > 0) {
0aa69fd3 879 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
880
881 if (page_is_mergeable(bv, page, len, off, same_page)) {
cc90bc68
AG
882 if (bio->bi_iter.bi_size > UINT_MAX - len)
883 return false;
5919482e
ML
884 bv->bv_len += len;
885 bio->bi_iter.bi_size += len;
886 return true;
887 }
c66a14d0 888 }
0aa69fd3
CH
889 return false;
890}
891EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 892
0aa69fd3 893/**
551879a4 894 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 895 * @bio: destination bio
551879a4
ML
896 * @page: start page to add
897 * @len: length of the data to add, may cross pages
898 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
899 *
900 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
901 * that @bio has space for another bvec.
902 */
903void __bio_add_page(struct bio *bio, struct page *page,
904 unsigned int len, unsigned int off)
905{
906 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 907
0aa69fd3 908 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 909 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
910
911 bv->bv_page = page;
912 bv->bv_offset = off;
913 bv->bv_len = len;
c66a14d0 914
c66a14d0 915 bio->bi_iter.bi_size += len;
0aa69fd3 916 bio->bi_vcnt++;
b8e24a93
JW
917
918 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
919 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
920}
921EXPORT_SYMBOL_GPL(__bio_add_page);
922
923/**
551879a4 924 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 925 * @bio: destination bio
551879a4
ML
926 * @page: start page to add
927 * @len: vec entry length, may cross pages
928 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 929 *
551879a4 930 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
931 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
932 */
933int bio_add_page(struct bio *bio, struct page *page,
934 unsigned int len, unsigned int offset)
935{
ff896738
CH
936 bool same_page = false;
937
938 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 939 if (bio_full(bio, len))
0aa69fd3
CH
940 return 0;
941 __bio_add_page(bio, page, len, offset);
942 }
c66a14d0 943 return len;
1da177e4 944}
a112a71d 945EXPORT_SYMBOL(bio_add_page);
1da177e4 946
d241a95f 947void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
948{
949 struct bvec_iter_all iter_all;
950 struct bio_vec *bvec;
7321ecbf 951
b2d0d991
CH
952 if (bio_flagged(bio, BIO_NO_PAGE_REF))
953 return;
954
d241a95f
CH
955 bio_for_each_segment_all(bvec, bio, iter_all) {
956 if (mark_dirty && !PageCompound(bvec->bv_page))
957 set_page_dirty_lock(bvec->bv_page);
7321ecbf 958 put_page(bvec->bv_page);
d241a95f 959 }
7321ecbf 960}
29b2a3aa 961EXPORT_SYMBOL_GPL(bio_release_pages);
7321ecbf 962
6d0c48ae
JA
963static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
964{
965 const struct bio_vec *bv = iter->bvec;
966 unsigned int len;
967 size_t size;
968
969 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
970 return -EINVAL;
971
972 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
973 size = bio_add_page(bio, bv->bv_page, len,
974 bv->bv_offset + iter->iov_offset);
a10584c3
CH
975 if (unlikely(size != len))
976 return -EINVAL;
a10584c3
CH
977 iov_iter_advance(iter, size);
978 return 0;
6d0c48ae
JA
979}
980
576ed913
CH
981#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
982
2cefe4db 983/**
17d51b10 984 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
985 * @bio: bio to add pages to
986 * @iter: iov iterator describing the region to be mapped
987 *
17d51b10 988 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 989 * pages will have to be released using put_page() when done.
17d51b10 990 * For multi-segment *iter, this function only adds pages from the
3cf14889 991 * next non-empty segment of the iov iterator.
2cefe4db 992 */
17d51b10 993static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 994{
576ed913
CH
995 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
996 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
997 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
998 struct page **pages = (struct page **)bv;
45691804 999 bool same_page = false;
576ed913
CH
1000 ssize_t size, left;
1001 unsigned len, i;
b403ea24 1002 size_t offset;
576ed913
CH
1003
1004 /*
1005 * Move page array up in the allocated memory for the bio vecs as far as
1006 * possible so that we can start filling biovecs from the beginning
1007 * without overwriting the temporary page array.
1008 */
1009 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1010 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
1011
1012 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1013 if (unlikely(size <= 0))
1014 return size ? size : -EFAULT;
2cefe4db 1015
576ed913
CH
1016 for (left = size, i = 0; left > 0; left -= len, i++) {
1017 struct page *page = pages[i];
2cefe4db 1018
576ed913 1019 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1020
1021 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1022 if (same_page)
1023 put_page(page);
1024 } else {
79d08f89 1025 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
1026 return -EINVAL;
1027 __bio_add_page(bio, page, len, offset);
1028 }
576ed913 1029 offset = 0;
2cefe4db
KO
1030 }
1031
2cefe4db
KO
1032 iov_iter_advance(iter, size);
1033 return 0;
1034}
17d51b10 1035
0512a75b
KB
1036static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1037{
1038 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1039 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
1040 struct request_queue *q = bio->bi_disk->queue;
1041 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1042 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1043 struct page **pages = (struct page **)bv;
1044 ssize_t size, left;
1045 unsigned len, i;
1046 size_t offset;
1047
1048 if (WARN_ON_ONCE(!max_append_sectors))
1049 return 0;
1050
1051 /*
1052 * Move page array up in the allocated memory for the bio vecs as far as
1053 * possible so that we can start filling biovecs from the beginning
1054 * without overwriting the temporary page array.
1055 */
1056 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1057 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1058
1059 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1060 if (unlikely(size <= 0))
1061 return size ? size : -EFAULT;
1062
1063 for (left = size, i = 0; left > 0; left -= len, i++) {
1064 struct page *page = pages[i];
1065 bool same_page = false;
1066
1067 len = min_t(size_t, PAGE_SIZE - offset, left);
1068 if (bio_add_hw_page(q, bio, page, len, offset,
1069 max_append_sectors, &same_page) != len)
1070 return -EINVAL;
1071 if (same_page)
1072 put_page(page);
1073 offset = 0;
1074 }
1075
1076 iov_iter_advance(iter, size);
1077 return 0;
1078}
1079
17d51b10 1080/**
6d0c48ae 1081 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1082 * @bio: bio to add pages to
6d0c48ae
JA
1083 * @iter: iov iterator describing the region to be added
1084 *
1085 * This takes either an iterator pointing to user memory, or one pointing to
1086 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1087 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
1088 * pages. If we're adding kernel pages, and the caller told us it's safe to
1089 * do so, we just have to add the pages to the bio directly. We don't grab an
1090 * extra reference to those pages (the user should already have that), and we
1091 * don't put the page on IO completion. The caller needs to check if the bio is
1092 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
1093 * released.
17d51b10 1094 *
17d51b10 1095 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
1096 * fit into the bio, or are requested in *iter, whatever is smaller. If
1097 * MM encounters an error pinning the requested pages, it stops. Error
1098 * is returned only if 0 pages could be pinned.
17d51b10
MW
1099 */
1100int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1101{
6d0c48ae 1102 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
1103 int ret;
1104
1105 if (WARN_ON_ONCE(bio->bi_vcnt))
1106 return -EINVAL;
17d51b10
MW
1107
1108 do {
0512a75b
KB
1109 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1110 if (WARN_ON_ONCE(is_bvec))
1111 return -EINVAL;
1112 ret = __bio_iov_append_get_pages(bio, iter);
1113 } else {
1114 if (is_bvec)
1115 ret = __bio_iov_bvec_add_pages(bio, iter);
1116 else
1117 ret = __bio_iov_iter_get_pages(bio, iter);
1118 }
79d08f89 1119 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1120
b6207430 1121 if (is_bvec)
7321ecbf 1122 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 1123 return bio->bi_vcnt ? 0 : ret;
17d51b10 1124}
29b2a3aa 1125EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1126
4246a0b6 1127static void submit_bio_wait_endio(struct bio *bio)
9e882242 1128{
65e53aab 1129 complete(bio->bi_private);
9e882242
KO
1130}
1131
1132/**
1133 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1134 * @bio: The &struct bio which describes the I/O
1135 *
1136 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1137 * bio_endio() on failure.
3d289d68
JK
1138 *
1139 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1140 * result in bio reference to be consumed. The caller must drop the reference
1141 * on his own.
9e882242 1142 */
4e49ea4a 1143int submit_bio_wait(struct bio *bio)
9e882242 1144{
e319e1fb 1145 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
de6a78b6 1146 unsigned long hang_check;
9e882242 1147
65e53aab 1148 bio->bi_private = &done;
9e882242 1149 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1150 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1151 submit_bio(bio);
de6a78b6
ML
1152
1153 /* Prevent hang_check timer from firing at us during very long I/O */
1154 hang_check = sysctl_hung_task_timeout_secs;
1155 if (hang_check)
1156 while (!wait_for_completion_io_timeout(&done,
1157 hang_check * (HZ/2)))
1158 ;
1159 else
1160 wait_for_completion_io(&done);
9e882242 1161
65e53aab 1162 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1163}
1164EXPORT_SYMBOL(submit_bio_wait);
1165
054bdf64
KO
1166/**
1167 * bio_advance - increment/complete a bio by some number of bytes
1168 * @bio: bio to advance
1169 * @bytes: number of bytes to complete
1170 *
1171 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
1172 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1173 * be updated on the last bvec as well.
1174 *
1175 * @bio will then represent the remaining, uncompleted portion of the io.
1176 */
1177void bio_advance(struct bio *bio, unsigned bytes)
1178{
1179 if (bio_integrity(bio))
1180 bio_integrity_advance(bio, bytes);
1181
a892c8d5 1182 bio_crypt_advance(bio, bytes);
4550dd6c 1183 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1184}
1185EXPORT_SYMBOL(bio_advance);
1186
45db54d5
KO
1187void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1188 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1189{
1cb9dda4 1190 struct bio_vec src_bv, dst_bv;
16ac3d63 1191 void *src_p, *dst_p;
1cb9dda4 1192 unsigned bytes;
16ac3d63 1193
45db54d5
KO
1194 while (src_iter->bi_size && dst_iter->bi_size) {
1195 src_bv = bio_iter_iovec(src, *src_iter);
1196 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1197
1198 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1199
1cb9dda4
KO
1200 src_p = kmap_atomic(src_bv.bv_page);
1201 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1202
1cb9dda4
KO
1203 memcpy(dst_p + dst_bv.bv_offset,
1204 src_p + src_bv.bv_offset,
16ac3d63
KO
1205 bytes);
1206
1207 kunmap_atomic(dst_p);
1208 kunmap_atomic(src_p);
1209
6e6e811d
KO
1210 flush_dcache_page(dst_bv.bv_page);
1211
45db54d5
KO
1212 bio_advance_iter(src, src_iter, bytes);
1213 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1214 }
1215}
38a72dac
KO
1216EXPORT_SYMBOL(bio_copy_data_iter);
1217
1218/**
45db54d5
KO
1219 * bio_copy_data - copy contents of data buffers from one bio to another
1220 * @src: source bio
1221 * @dst: destination bio
38a72dac
KO
1222 *
1223 * Stops when it reaches the end of either @src or @dst - that is, copies
1224 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1225 */
1226void bio_copy_data(struct bio *dst, struct bio *src)
1227{
45db54d5
KO
1228 struct bvec_iter src_iter = src->bi_iter;
1229 struct bvec_iter dst_iter = dst->bi_iter;
1230
1231 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1232}
16ac3d63
KO
1233EXPORT_SYMBOL(bio_copy_data);
1234
45db54d5
KO
1235/**
1236 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1237 * another
1238 * @src: source bio list
1239 * @dst: destination bio list
1240 *
1241 * Stops when it reaches the end of either the @src list or @dst list - that is,
1242 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1243 * bios).
1244 */
1245void bio_list_copy_data(struct bio *dst, struct bio *src)
1246{
1247 struct bvec_iter src_iter = src->bi_iter;
1248 struct bvec_iter dst_iter = dst->bi_iter;
1249
1250 while (1) {
1251 if (!src_iter.bi_size) {
1252 src = src->bi_next;
1253 if (!src)
1254 break;
1255
1256 src_iter = src->bi_iter;
1257 }
1258
1259 if (!dst_iter.bi_size) {
1260 dst = dst->bi_next;
1261 if (!dst)
1262 break;
1263
1264 dst_iter = dst->bi_iter;
1265 }
1266
1267 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1268 }
1269}
1270EXPORT_SYMBOL(bio_list_copy_data);
1271
491221f8 1272void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1273{
1274 struct bio_vec *bvec;
6dc4f100 1275 struct bvec_iter_all iter_all;
1dfa0f68 1276
2b070cfe 1277 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1278 __free_page(bvec->bv_page);
1279}
491221f8 1280EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1281
1da177e4
LT
1282/*
1283 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1284 * for performing direct-IO in BIOs.
1285 *
1286 * The problem is that we cannot run set_page_dirty() from interrupt context
1287 * because the required locks are not interrupt-safe. So what we can do is to
1288 * mark the pages dirty _before_ performing IO. And in interrupt context,
1289 * check that the pages are still dirty. If so, fine. If not, redirty them
1290 * in process context.
1291 *
1292 * We special-case compound pages here: normally this means reads into hugetlb
1293 * pages. The logic in here doesn't really work right for compound pages
1294 * because the VM does not uniformly chase down the head page in all cases.
1295 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1296 * handle them at all. So we skip compound pages here at an early stage.
1297 *
1298 * Note that this code is very hard to test under normal circumstances because
1299 * direct-io pins the pages with get_user_pages(). This makes
1300 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1301 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1302 * pagecache.
1303 *
1304 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1305 * deferred bio dirtying paths.
1306 */
1307
1308/*
1309 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1310 */
1311void bio_set_pages_dirty(struct bio *bio)
1312{
cb34e057 1313 struct bio_vec *bvec;
6dc4f100 1314 struct bvec_iter_all iter_all;
1da177e4 1315
2b070cfe 1316 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1317 if (!PageCompound(bvec->bv_page))
1318 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1319 }
1320}
1321
1da177e4
LT
1322/*
1323 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1324 * If they are, then fine. If, however, some pages are clean then they must
1325 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1326 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1327 *
1328 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1329 * here on. It will run one put_page() against each page and will run one
1330 * bio_put() against the BIO.
1da177e4
LT
1331 */
1332
65f27f38 1333static void bio_dirty_fn(struct work_struct *work);
1da177e4 1334
65f27f38 1335static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1336static DEFINE_SPINLOCK(bio_dirty_lock);
1337static struct bio *bio_dirty_list;
1338
1339/*
1340 * This runs in process context
1341 */
65f27f38 1342static void bio_dirty_fn(struct work_struct *work)
1da177e4 1343{
24d5493f 1344 struct bio *bio, *next;
1da177e4 1345
24d5493f
CH
1346 spin_lock_irq(&bio_dirty_lock);
1347 next = bio_dirty_list;
1da177e4 1348 bio_dirty_list = NULL;
24d5493f 1349 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1350
24d5493f
CH
1351 while ((bio = next) != NULL) {
1352 next = bio->bi_private;
1da177e4 1353
d241a95f 1354 bio_release_pages(bio, true);
1da177e4 1355 bio_put(bio);
1da177e4
LT
1356 }
1357}
1358
1359void bio_check_pages_dirty(struct bio *bio)
1360{
cb34e057 1361 struct bio_vec *bvec;
24d5493f 1362 unsigned long flags;
6dc4f100 1363 struct bvec_iter_all iter_all;
1da177e4 1364
2b070cfe 1365 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1366 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1367 goto defer;
1da177e4
LT
1368 }
1369
d241a95f 1370 bio_release_pages(bio, false);
24d5493f
CH
1371 bio_put(bio);
1372 return;
1373defer:
1374 spin_lock_irqsave(&bio_dirty_lock, flags);
1375 bio->bi_private = bio_dirty_list;
1376 bio_dirty_list = bio;
1377 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1378 schedule_work(&bio_dirty_work);
1da177e4
LT
1379}
1380
c4cf5261
JA
1381static inline bool bio_remaining_done(struct bio *bio)
1382{
1383 /*
1384 * If we're not chaining, then ->__bi_remaining is always 1 and
1385 * we always end io on the first invocation.
1386 */
1387 if (!bio_flagged(bio, BIO_CHAIN))
1388 return true;
1389
1390 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1391
326e1dbb 1392 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1393 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1394 return true;
326e1dbb 1395 }
c4cf5261
JA
1396
1397 return false;
1398}
1399
1da177e4
LT
1400/**
1401 * bio_endio - end I/O on a bio
1402 * @bio: bio
1da177e4
LT
1403 *
1404 * Description:
4246a0b6
CH
1405 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1406 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1407 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1408 *
1409 * bio_endio() can be called several times on a bio that has been chained
1410 * using bio_chain(). The ->bi_end_io() function will only be called the
1411 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1412 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1413 **/
4246a0b6 1414void bio_endio(struct bio *bio)
1da177e4 1415{
ba8c6967 1416again:
2b885517 1417 if (!bio_remaining_done(bio))
ba8c6967 1418 return;
7c20f116
CH
1419 if (!bio_integrity_endio(bio))
1420 return;
1da177e4 1421
67b42d0b
JB
1422 if (bio->bi_disk)
1423 rq_qos_done_bio(bio->bi_disk->queue, bio);
1424
ba8c6967
CH
1425 /*
1426 * Need to have a real endio function for chained bios, otherwise
1427 * various corner cases will break (like stacking block devices that
1428 * save/restore bi_end_io) - however, we want to avoid unbounded
1429 * recursion and blowing the stack. Tail call optimization would
1430 * handle this, but compiling with frame pointers also disables
1431 * gcc's sibling call optimization.
1432 */
1433 if (bio->bi_end_io == bio_chain_endio) {
1434 bio = __bio_chain_endio(bio);
1435 goto again;
196d38bc 1436 }
ba8c6967 1437
74d46992 1438 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
d24de76a 1439 trace_block_bio_complete(bio->bi_disk->queue, bio);
fbbaf700
N
1440 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1441 }
1442
9e234eea 1443 blk_throtl_bio_endio(bio);
b222dd2f
SL
1444 /* release cgroup info */
1445 bio_uninit(bio);
ba8c6967
CH
1446 if (bio->bi_end_io)
1447 bio->bi_end_io(bio);
1da177e4 1448}
a112a71d 1449EXPORT_SYMBOL(bio_endio);
1da177e4 1450
20d0189b
KO
1451/**
1452 * bio_split - split a bio
1453 * @bio: bio to split
1454 * @sectors: number of sectors to split from the front of @bio
1455 * @gfp: gfp mask
1456 * @bs: bio set to allocate from
1457 *
1458 * Allocates and returns a new bio which represents @sectors from the start of
1459 * @bio, and updates @bio to represent the remaining sectors.
1460 *
f3f5da62 1461 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1462 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1463 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1464 */
1465struct bio *bio_split(struct bio *bio, int sectors,
1466 gfp_t gfp, struct bio_set *bs)
1467{
f341a4d3 1468 struct bio *split;
20d0189b
KO
1469
1470 BUG_ON(sectors <= 0);
1471 BUG_ON(sectors >= bio_sectors(bio));
1472
0512a75b
KB
1473 /* Zone append commands cannot be split */
1474 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1475 return NULL;
1476
f9d03f96 1477 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1478 if (!split)
1479 return NULL;
1480
1481 split->bi_iter.bi_size = sectors << 9;
1482
1483 if (bio_integrity(split))
fbd08e76 1484 bio_integrity_trim(split);
20d0189b
KO
1485
1486 bio_advance(bio, split->bi_iter.bi_size);
1487
fbbaf700 1488 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1489 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1490
20d0189b
KO
1491 return split;
1492}
1493EXPORT_SYMBOL(bio_split);
1494
6678d83f
KO
1495/**
1496 * bio_trim - trim a bio
1497 * @bio: bio to trim
1498 * @offset: number of sectors to trim from the front of @bio
1499 * @size: size we want to trim @bio to, in sectors
1500 */
1501void bio_trim(struct bio *bio, int offset, int size)
1502{
1503 /* 'bio' is a cloned bio which we need to trim to match
1504 * the given offset and size.
6678d83f 1505 */
6678d83f
KO
1506
1507 size <<= 9;
4f024f37 1508 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1509 return;
1510
6678d83f 1511 bio_advance(bio, offset << 9);
4f024f37 1512 bio->bi_iter.bi_size = size;
376a78ab
DM
1513
1514 if (bio_integrity(bio))
fbd08e76 1515 bio_integrity_trim(bio);
376a78ab 1516
6678d83f
KO
1517}
1518EXPORT_SYMBOL_GPL(bio_trim);
1519
1da177e4
LT
1520/*
1521 * create memory pools for biovec's in a bio_set.
1522 * use the global biovec slabs created for general use.
1523 */
8aa6ba2f 1524int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1525{
ed996a52 1526 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1527
8aa6ba2f 1528 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1529}
1530
917a38c7
KO
1531/*
1532 * bioset_exit - exit a bioset initialized with bioset_init()
1533 *
1534 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1535 * kzalloc()).
1536 */
1537void bioset_exit(struct bio_set *bs)
1da177e4 1538{
df2cb6da
KO
1539 if (bs->rescue_workqueue)
1540 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1541 bs->rescue_workqueue = NULL;
df2cb6da 1542
8aa6ba2f
KO
1543 mempool_exit(&bs->bio_pool);
1544 mempool_exit(&bs->bvec_pool);
9f060e22 1545
7878cba9 1546 bioset_integrity_free(bs);
917a38c7
KO
1547 if (bs->bio_slab)
1548 bio_put_slab(bs);
1549 bs->bio_slab = NULL;
1550}
1551EXPORT_SYMBOL(bioset_exit);
1da177e4 1552
917a38c7
KO
1553/**
1554 * bioset_init - Initialize a bio_set
dad08527 1555 * @bs: pool to initialize
917a38c7
KO
1556 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1557 * @front_pad: Number of bytes to allocate in front of the returned bio
1558 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1559 * and %BIOSET_NEED_RESCUER
1560 *
dad08527
KO
1561 * Description:
1562 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1563 * to ask for a number of bytes to be allocated in front of the bio.
1564 * Front pad allocation is useful for embedding the bio inside
1565 * another structure, to avoid allocating extra data to go with the bio.
1566 * Note that the bio must be embedded at the END of that structure always,
1567 * or things will break badly.
1568 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1569 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1570 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1571 * dispatch queued requests when the mempool runs out of space.
1572 *
917a38c7
KO
1573 */
1574int bioset_init(struct bio_set *bs,
1575 unsigned int pool_size,
1576 unsigned int front_pad,
1577 int flags)
1578{
1579 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1580
1581 bs->front_pad = front_pad;
1582
1583 spin_lock_init(&bs->rescue_lock);
1584 bio_list_init(&bs->rescue_list);
1585 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1586
1587 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1588 if (!bs->bio_slab)
1589 return -ENOMEM;
1590
1591 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1592 goto bad;
1593
1594 if ((flags & BIOSET_NEED_BVECS) &&
1595 biovec_init_pool(&bs->bvec_pool, pool_size))
1596 goto bad;
1597
1598 if (!(flags & BIOSET_NEED_RESCUER))
1599 return 0;
1600
1601 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1602 if (!bs->rescue_workqueue)
1603 goto bad;
1604
1605 return 0;
1606bad:
1607 bioset_exit(bs);
1608 return -ENOMEM;
1609}
1610EXPORT_SYMBOL(bioset_init);
1611
28e89fd9
JA
1612/*
1613 * Initialize and setup a new bio_set, based on the settings from
1614 * another bio_set.
1615 */
1616int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1617{
1618 int flags;
1619
1620 flags = 0;
1621 if (src->bvec_pool.min_nr)
1622 flags |= BIOSET_NEED_BVECS;
1623 if (src->rescue_workqueue)
1624 flags |= BIOSET_NEED_RESCUER;
1625
1626 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1627}
1628EXPORT_SYMBOL(bioset_init_from_src);
1629
1da177e4
LT
1630static void __init biovec_init_slabs(void)
1631{
1632 int i;
1633
ed996a52 1634 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
1635 int size;
1636 struct biovec_slab *bvs = bvec_slabs + i;
1637
a7fcd37c
JA
1638 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
1639 bvs->slab = NULL;
1640 continue;
1641 }
a7fcd37c 1642
1da177e4
LT
1643 size = bvs->nr_vecs * sizeof(struct bio_vec);
1644 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 1645 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
1646 }
1647}
1648
1649static int __init init_bio(void)
1650{
bb799ca0
JA
1651 bio_slab_max = 2;
1652 bio_slab_nr = 0;
6396bb22
KC
1653 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
1654 GFP_KERNEL);
2b24e6f6
JT
1655
1656 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
1657
bb799ca0
JA
1658 if (!bio_slabs)
1659 panic("bio: can't allocate bios\n");
1da177e4 1660
7878cba9 1661 bio_integrity_init();
1da177e4
LT
1662 biovec_init_slabs();
1663
f4f8154a 1664 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1665 panic("bio: can't allocate bios\n");
1666
f4f8154a 1667 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1668 panic("bio: can't create integrity pool\n");
1669
1da177e4
LT
1670 return 0;
1671}
1da177e4 1672subsys_initcall(init_bio);