blkcg: add generic throttling mechanism
[linux-block.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
08e18eab 31#include <linux/blk-cgroup.h>
1da177e4 32
55782138 33#include <trace/events/block.h>
9e234eea 34#include "blk.h"
0bfc2455 35
392ddc32
JA
36/*
37 * Test patch to inline a certain number of bi_io_vec's inside the bio
38 * itself, to shrink a bio data allocation from two mempool calls to one
39 */
40#define BIO_INLINE_VECS 4
41
1da177e4
LT
42/*
43 * if you change this list, also change bvec_alloc or things will
44 * break badly! cannot be bigger than what you can fit into an
45 * unsigned short
46 */
bd5c4fac 47#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 48static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 49 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
50};
51#undef BV
52
1da177e4
LT
53/*
54 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
55 * IO code that does not need private memory pools.
56 */
f4f8154a 57struct bio_set fs_bio_set;
3f86a82a 58EXPORT_SYMBOL(fs_bio_set);
1da177e4 59
bb799ca0
JA
60/*
61 * Our slab pool management
62 */
63struct bio_slab {
64 struct kmem_cache *slab;
65 unsigned int slab_ref;
66 unsigned int slab_size;
67 char name[8];
68};
69static DEFINE_MUTEX(bio_slab_lock);
70static struct bio_slab *bio_slabs;
71static unsigned int bio_slab_nr, bio_slab_max;
72
73static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
74{
75 unsigned int sz = sizeof(struct bio) + extra_size;
76 struct kmem_cache *slab = NULL;
389d7b26 77 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 78 unsigned int new_bio_slab_max;
bb799ca0
JA
79 unsigned int i, entry = -1;
80
81 mutex_lock(&bio_slab_lock);
82
83 i = 0;
84 while (i < bio_slab_nr) {
f06f135d 85 bslab = &bio_slabs[i];
bb799ca0
JA
86
87 if (!bslab->slab && entry == -1)
88 entry = i;
89 else if (bslab->slab_size == sz) {
90 slab = bslab->slab;
91 bslab->slab_ref++;
92 break;
93 }
94 i++;
95 }
96
97 if (slab)
98 goto out_unlock;
99
100 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 101 new_bio_slab_max = bio_slab_max << 1;
389d7b26 102 new_bio_slabs = krealloc(bio_slabs,
386bc35a 103 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
104 GFP_KERNEL);
105 if (!new_bio_slabs)
bb799ca0 106 goto out_unlock;
386bc35a 107 bio_slab_max = new_bio_slab_max;
389d7b26 108 bio_slabs = new_bio_slabs;
bb799ca0
JA
109 }
110 if (entry == -1)
111 entry = bio_slab_nr++;
112
113 bslab = &bio_slabs[entry];
114
115 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
116 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
117 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
118 if (!slab)
119 goto out_unlock;
120
bb799ca0
JA
121 bslab->slab = slab;
122 bslab->slab_ref = 1;
123 bslab->slab_size = sz;
124out_unlock:
125 mutex_unlock(&bio_slab_lock);
126 return slab;
127}
128
129static void bio_put_slab(struct bio_set *bs)
130{
131 struct bio_slab *bslab = NULL;
132 unsigned int i;
133
134 mutex_lock(&bio_slab_lock);
135
136 for (i = 0; i < bio_slab_nr; i++) {
137 if (bs->bio_slab == bio_slabs[i].slab) {
138 bslab = &bio_slabs[i];
139 break;
140 }
141 }
142
143 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
144 goto out;
145
146 WARN_ON(!bslab->slab_ref);
147
148 if (--bslab->slab_ref)
149 goto out;
150
151 kmem_cache_destroy(bslab->slab);
152 bslab->slab = NULL;
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7ba1ba12
MP
158unsigned int bvec_nr_vecs(unsigned short idx)
159{
160 return bvec_slabs[idx].nr_vecs;
161}
162
9f060e22 163void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 164{
ed996a52
CH
165 if (!idx)
166 return;
167 idx--;
168
169 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 170
ed996a52 171 if (idx == BVEC_POOL_MAX) {
9f060e22 172 mempool_free(bv, pool);
ed996a52 173 } else {
bb799ca0
JA
174 struct biovec_slab *bvs = bvec_slabs + idx;
175
176 kmem_cache_free(bvs->slab, bv);
177 }
178}
179
9f060e22
KO
180struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
181 mempool_t *pool)
1da177e4
LT
182{
183 struct bio_vec *bvl;
1da177e4 184
7ff9345f
JA
185 /*
186 * see comment near bvec_array define!
187 */
188 switch (nr) {
189 case 1:
190 *idx = 0;
191 break;
192 case 2 ... 4:
193 *idx = 1;
194 break;
195 case 5 ... 16:
196 *idx = 2;
197 break;
198 case 17 ... 64:
199 *idx = 3;
200 break;
201 case 65 ... 128:
202 *idx = 4;
203 break;
204 case 129 ... BIO_MAX_PAGES:
205 *idx = 5;
206 break;
207 default:
208 return NULL;
209 }
210
211 /*
212 * idx now points to the pool we want to allocate from. only the
213 * 1-vec entry pool is mempool backed.
214 */
ed996a52 215 if (*idx == BVEC_POOL_MAX) {
7ff9345f 216fallback:
9f060e22 217 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
218 } else {
219 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 220 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 221
0a0d96b0 222 /*
7ff9345f
JA
223 * Make this allocation restricted and don't dump info on
224 * allocation failures, since we'll fallback to the mempool
225 * in case of failure.
0a0d96b0 226 */
7ff9345f 227 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 228
0a0d96b0 229 /*
d0164adc 230 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 231 * is set, retry with the 1-entry mempool
0a0d96b0 232 */
7ff9345f 233 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 234 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 235 *idx = BVEC_POOL_MAX;
7ff9345f
JA
236 goto fallback;
237 }
238 }
239
ed996a52 240 (*idx)++;
1da177e4
LT
241 return bvl;
242}
243
9ae3b3f5 244void bio_uninit(struct bio *bio)
1da177e4 245{
4254bba1 246 bio_disassociate_task(bio);
4254bba1 247}
9ae3b3f5 248EXPORT_SYMBOL(bio_uninit);
7ba1ba12 249
4254bba1
KO
250static void bio_free(struct bio *bio)
251{
252 struct bio_set *bs = bio->bi_pool;
253 void *p;
254
9ae3b3f5 255 bio_uninit(bio);
4254bba1
KO
256
257 if (bs) {
8aa6ba2f 258 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
259
260 /*
261 * If we have front padding, adjust the bio pointer before freeing
262 */
263 p = bio;
bb799ca0
JA
264 p -= bs->front_pad;
265
8aa6ba2f 266 mempool_free(p, &bs->bio_pool);
4254bba1
KO
267 } else {
268 /* Bio was allocated by bio_kmalloc() */
269 kfree(bio);
270 }
3676347a
PO
271}
272
9ae3b3f5
JA
273/*
274 * Users of this function have their own bio allocation. Subsequently,
275 * they must remember to pair any call to bio_init() with bio_uninit()
276 * when IO has completed, or when the bio is released.
277 */
3a83f467
ML
278void bio_init(struct bio *bio, struct bio_vec *table,
279 unsigned short max_vecs)
1da177e4 280{
2b94de55 281 memset(bio, 0, sizeof(*bio));
c4cf5261 282 atomic_set(&bio->__bi_remaining, 1);
dac56212 283 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
284
285 bio->bi_io_vec = table;
286 bio->bi_max_vecs = max_vecs;
1da177e4 287}
a112a71d 288EXPORT_SYMBOL(bio_init);
1da177e4 289
f44b48c7
KO
290/**
291 * bio_reset - reinitialize a bio
292 * @bio: bio to reset
293 *
294 * Description:
295 * After calling bio_reset(), @bio will be in the same state as a freshly
296 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
297 * preserved are the ones that are initialized by bio_alloc_bioset(). See
298 * comment in struct bio.
299 */
300void bio_reset(struct bio *bio)
301{
302 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
303
9ae3b3f5 304 bio_uninit(bio);
f44b48c7
KO
305
306 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 307 bio->bi_flags = flags;
c4cf5261 308 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
309}
310EXPORT_SYMBOL(bio_reset);
311
38f8baae 312static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 313{
4246a0b6
CH
314 struct bio *parent = bio->bi_private;
315
4e4cbee9
CH
316 if (!parent->bi_status)
317 parent->bi_status = bio->bi_status;
196d38bc 318 bio_put(bio);
38f8baae
CH
319 return parent;
320}
321
322static void bio_chain_endio(struct bio *bio)
323{
324 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
325}
326
327/**
328 * bio_chain - chain bio completions
1051a902
RD
329 * @bio: the target bio
330 * @parent: the @bio's parent bio
196d38bc
KO
331 *
332 * The caller won't have a bi_end_io called when @bio completes - instead,
333 * @parent's bi_end_io won't be called until both @parent and @bio have
334 * completed; the chained bio will also be freed when it completes.
335 *
336 * The caller must not set bi_private or bi_end_io in @bio.
337 */
338void bio_chain(struct bio *bio, struct bio *parent)
339{
340 BUG_ON(bio->bi_private || bio->bi_end_io);
341
342 bio->bi_private = parent;
343 bio->bi_end_io = bio_chain_endio;
c4cf5261 344 bio_inc_remaining(parent);
196d38bc
KO
345}
346EXPORT_SYMBOL(bio_chain);
347
df2cb6da
KO
348static void bio_alloc_rescue(struct work_struct *work)
349{
350 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
351 struct bio *bio;
352
353 while (1) {
354 spin_lock(&bs->rescue_lock);
355 bio = bio_list_pop(&bs->rescue_list);
356 spin_unlock(&bs->rescue_lock);
357
358 if (!bio)
359 break;
360
361 generic_make_request(bio);
362 }
363}
364
365static void punt_bios_to_rescuer(struct bio_set *bs)
366{
367 struct bio_list punt, nopunt;
368 struct bio *bio;
369
47e0fb46
N
370 if (WARN_ON_ONCE(!bs->rescue_workqueue))
371 return;
df2cb6da
KO
372 /*
373 * In order to guarantee forward progress we must punt only bios that
374 * were allocated from this bio_set; otherwise, if there was a bio on
375 * there for a stacking driver higher up in the stack, processing it
376 * could require allocating bios from this bio_set, and doing that from
377 * our own rescuer would be bad.
378 *
379 * Since bio lists are singly linked, pop them all instead of trying to
380 * remove from the middle of the list:
381 */
382
383 bio_list_init(&punt);
384 bio_list_init(&nopunt);
385
f5fe1b51 386 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 387 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 388 current->bio_list[0] = nopunt;
df2cb6da 389
f5fe1b51
N
390 bio_list_init(&nopunt);
391 while ((bio = bio_list_pop(&current->bio_list[1])))
392 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
393 current->bio_list[1] = nopunt;
df2cb6da
KO
394
395 spin_lock(&bs->rescue_lock);
396 bio_list_merge(&bs->rescue_list, &punt);
397 spin_unlock(&bs->rescue_lock);
398
399 queue_work(bs->rescue_workqueue, &bs->rescue_work);
400}
401
1da177e4
LT
402/**
403 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 404 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 405 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 406 * @bs: the bio_set to allocate from.
1da177e4
LT
407 *
408 * Description:
3f86a82a
KO
409 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
410 * backed by the @bs's mempool.
411 *
d0164adc
MG
412 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
413 * always be able to allocate a bio. This is due to the mempool guarantees.
414 * To make this work, callers must never allocate more than 1 bio at a time
415 * from this pool. Callers that need to allocate more than 1 bio must always
416 * submit the previously allocated bio for IO before attempting to allocate
417 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 418 *
df2cb6da
KO
419 * Note that when running under generic_make_request() (i.e. any block
420 * driver), bios are not submitted until after you return - see the code in
421 * generic_make_request() that converts recursion into iteration, to prevent
422 * stack overflows.
423 *
424 * This would normally mean allocating multiple bios under
425 * generic_make_request() would be susceptible to deadlocks, but we have
426 * deadlock avoidance code that resubmits any blocked bios from a rescuer
427 * thread.
428 *
429 * However, we do not guarantee forward progress for allocations from other
430 * mempools. Doing multiple allocations from the same mempool under
431 * generic_make_request() should be avoided - instead, use bio_set's front_pad
432 * for per bio allocations.
433 *
3f86a82a
KO
434 * RETURNS:
435 * Pointer to new bio on success, NULL on failure.
436 */
7a88fa19
DC
437struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
438 struct bio_set *bs)
1da177e4 439{
df2cb6da 440 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
441 unsigned front_pad;
442 unsigned inline_vecs;
34053979 443 struct bio_vec *bvl = NULL;
451a9ebf
TH
444 struct bio *bio;
445 void *p;
446
3f86a82a
KO
447 if (!bs) {
448 if (nr_iovecs > UIO_MAXIOV)
449 return NULL;
450
451 p = kmalloc(sizeof(struct bio) +
452 nr_iovecs * sizeof(struct bio_vec),
453 gfp_mask);
454 front_pad = 0;
455 inline_vecs = nr_iovecs;
456 } else {
d8f429e1 457 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
458 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
459 nr_iovecs > 0))
d8f429e1 460 return NULL;
df2cb6da
KO
461 /*
462 * generic_make_request() converts recursion to iteration; this
463 * means if we're running beneath it, any bios we allocate and
464 * submit will not be submitted (and thus freed) until after we
465 * return.
466 *
467 * This exposes us to a potential deadlock if we allocate
468 * multiple bios from the same bio_set() while running
469 * underneath generic_make_request(). If we were to allocate
470 * multiple bios (say a stacking block driver that was splitting
471 * bios), we would deadlock if we exhausted the mempool's
472 * reserve.
473 *
474 * We solve this, and guarantee forward progress, with a rescuer
475 * workqueue per bio_set. If we go to allocate and there are
476 * bios on current->bio_list, we first try the allocation
d0164adc
MG
477 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
478 * bios we would be blocking to the rescuer workqueue before
479 * we retry with the original gfp_flags.
df2cb6da
KO
480 */
481
f5fe1b51
N
482 if (current->bio_list &&
483 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
484 !bio_list_empty(&current->bio_list[1])) &&
485 bs->rescue_workqueue)
d0164adc 486 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 487
8aa6ba2f 488 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
489 if (!p && gfp_mask != saved_gfp) {
490 punt_bios_to_rescuer(bs);
491 gfp_mask = saved_gfp;
8aa6ba2f 492 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
493 }
494
3f86a82a
KO
495 front_pad = bs->front_pad;
496 inline_vecs = BIO_INLINE_VECS;
497 }
498
451a9ebf
TH
499 if (unlikely(!p))
500 return NULL;
1da177e4 501
3f86a82a 502 bio = p + front_pad;
3a83f467 503 bio_init(bio, NULL, 0);
34053979 504
3f86a82a 505 if (nr_iovecs > inline_vecs) {
ed996a52
CH
506 unsigned long idx = 0;
507
8aa6ba2f 508 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
509 if (!bvl && gfp_mask != saved_gfp) {
510 punt_bios_to_rescuer(bs);
511 gfp_mask = saved_gfp;
8aa6ba2f 512 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
513 }
514
34053979
IM
515 if (unlikely(!bvl))
516 goto err_free;
a38352e0 517
ed996a52 518 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
519 } else if (nr_iovecs) {
520 bvl = bio->bi_inline_vecs;
1da177e4 521 }
3f86a82a
KO
522
523 bio->bi_pool = bs;
34053979 524 bio->bi_max_vecs = nr_iovecs;
34053979 525 bio->bi_io_vec = bvl;
1da177e4 526 return bio;
34053979
IM
527
528err_free:
8aa6ba2f 529 mempool_free(p, &bs->bio_pool);
34053979 530 return NULL;
1da177e4 531}
a112a71d 532EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 533
38a72dac 534void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
535{
536 unsigned long flags;
7988613b
KO
537 struct bio_vec bv;
538 struct bvec_iter iter;
1da177e4 539
38a72dac 540 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
541 char *data = bvec_kmap_irq(&bv, &flags);
542 memset(data, 0, bv.bv_len);
543 flush_dcache_page(bv.bv_page);
1da177e4
LT
544 bvec_kunmap_irq(data, &flags);
545 }
546}
38a72dac 547EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
548
549/**
550 * bio_put - release a reference to a bio
551 * @bio: bio to release reference to
552 *
553 * Description:
554 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 555 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
556 **/
557void bio_put(struct bio *bio)
558{
dac56212 559 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 560 bio_free(bio);
dac56212
JA
561 else {
562 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
563
564 /*
565 * last put frees it
566 */
567 if (atomic_dec_and_test(&bio->__bi_cnt))
568 bio_free(bio);
569 }
1da177e4 570}
a112a71d 571EXPORT_SYMBOL(bio_put);
1da177e4 572
165125e1 573inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
574{
575 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
576 blk_recount_segments(q, bio);
577
578 return bio->bi_phys_segments;
579}
a112a71d 580EXPORT_SYMBOL(bio_phys_segments);
1da177e4 581
59d276fe
KO
582/**
583 * __bio_clone_fast - clone a bio that shares the original bio's biovec
584 * @bio: destination bio
585 * @bio_src: bio to clone
586 *
587 * Clone a &bio. Caller will own the returned bio, but not
588 * the actual data it points to. Reference count of returned
589 * bio will be one.
590 *
591 * Caller must ensure that @bio_src is not freed before @bio.
592 */
593void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
594{
ed996a52 595 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
596
597 /*
74d46992 598 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
599 * so we don't set nor calculate new physical/hw segment counts here
600 */
74d46992 601 bio->bi_disk = bio_src->bi_disk;
62530ed8 602 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 603 bio_set_flag(bio, BIO_CLONED);
111be883
SL
604 if (bio_flagged(bio_src, BIO_THROTTLED))
605 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 606 bio->bi_opf = bio_src->bi_opf;
cb6934f8 607 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
608 bio->bi_iter = bio_src->bi_iter;
609 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
610
611 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
612}
613EXPORT_SYMBOL(__bio_clone_fast);
614
615/**
616 * bio_clone_fast - clone a bio that shares the original bio's biovec
617 * @bio: bio to clone
618 * @gfp_mask: allocation priority
619 * @bs: bio_set to allocate from
620 *
621 * Like __bio_clone_fast, only also allocates the returned bio
622 */
623struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
624{
625 struct bio *b;
626
627 b = bio_alloc_bioset(gfp_mask, 0, bs);
628 if (!b)
629 return NULL;
630
631 __bio_clone_fast(b, bio);
632
633 if (bio_integrity(bio)) {
634 int ret;
635
636 ret = bio_integrity_clone(b, bio, gfp_mask);
637
638 if (ret < 0) {
639 bio_put(b);
640 return NULL;
641 }
642 }
643
644 return b;
645}
646EXPORT_SYMBOL(bio_clone_fast);
647
f4595875
SL
648/**
649 * bio_clone_bioset - clone a bio
650 * @bio_src: bio to clone
651 * @gfp_mask: allocation priority
652 * @bs: bio_set to allocate from
653 *
654 * Clone bio. Caller will own the returned bio, but not the actual data it
655 * points to. Reference count of returned bio will be one.
656 */
657struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
658 struct bio_set *bs)
1da177e4 659{
bdb53207
KO
660 struct bvec_iter iter;
661 struct bio_vec bv;
662 struct bio *bio;
1da177e4 663
bdb53207
KO
664 /*
665 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
666 * bio_src->bi_io_vec to bio->bi_io_vec.
667 *
668 * We can't do that anymore, because:
669 *
670 * - The point of cloning the biovec is to produce a bio with a biovec
671 * the caller can modify: bi_idx and bi_bvec_done should be 0.
672 *
673 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
674 * we tried to clone the whole thing bio_alloc_bioset() would fail.
675 * But the clone should succeed as long as the number of biovecs we
676 * actually need to allocate is fewer than BIO_MAX_PAGES.
677 *
678 * - Lastly, bi_vcnt should not be looked at or relied upon by code
679 * that does not own the bio - reason being drivers don't use it for
680 * iterating over the biovec anymore, so expecting it to be kept up
681 * to date (i.e. for clones that share the parent biovec) is just
682 * asking for trouble and would force extra work on
683 * __bio_clone_fast() anyways.
684 */
685
f4595875 686 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 687 if (!bio)
7ba1ba12 688 return NULL;
74d46992 689 bio->bi_disk = bio_src->bi_disk;
1eff9d32 690 bio->bi_opf = bio_src->bi_opf;
cb6934f8 691 bio->bi_write_hint = bio_src->bi_write_hint;
bdb53207
KO
692 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
693 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 694
7afafc8a
AH
695 switch (bio_op(bio)) {
696 case REQ_OP_DISCARD:
697 case REQ_OP_SECURE_ERASE:
a6f0788e 698 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
699 break;
700 case REQ_OP_WRITE_SAME:
8423ae3d 701 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
702 break;
703 default:
f4595875 704 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
705 bio->bi_io_vec[bio->bi_vcnt++] = bv;
706 break;
8423ae3d
KO
707 }
708
bdb53207
KO
709 if (bio_integrity(bio_src)) {
710 int ret;
7ba1ba12 711
bdb53207 712 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 713 if (ret < 0) {
bdb53207 714 bio_put(bio);
7ba1ba12 715 return NULL;
059ea331 716 }
3676347a 717 }
1da177e4 718
20bd723e
PV
719 bio_clone_blkcg_association(bio, bio_src);
720
bdb53207 721 return bio;
1da177e4 722}
bf800ef1 723EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
724
725/**
c66a14d0
KO
726 * bio_add_pc_page - attempt to add page to bio
727 * @q: the target queue
728 * @bio: destination bio
729 * @page: page to add
730 * @len: vec entry length
731 * @offset: vec entry offset
1da177e4 732 *
c66a14d0
KO
733 * Attempt to add a page to the bio_vec maplist. This can fail for a
734 * number of reasons, such as the bio being full or target block device
735 * limitations. The target block device must allow bio's up to PAGE_SIZE,
736 * so it is always possible to add a single page to an empty bio.
737 *
738 * This should only be used by REQ_PC bios.
1da177e4 739 */
c66a14d0
KO
740int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
741 *page, unsigned int len, unsigned int offset)
1da177e4
LT
742{
743 int retried_segments = 0;
744 struct bio_vec *bvec;
745
746 /*
747 * cloned bio must not modify vec list
748 */
749 if (unlikely(bio_flagged(bio, BIO_CLONED)))
750 return 0;
751
c66a14d0 752 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
753 return 0;
754
80cfd548
JA
755 /*
756 * For filesystems with a blocksize smaller than the pagesize
757 * we will often be called with the same page as last time and
758 * a consecutive offset. Optimize this special case.
759 */
760 if (bio->bi_vcnt > 0) {
761 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
762
763 if (page == prev->bv_page &&
764 offset == prev->bv_offset + prev->bv_len) {
765 prev->bv_len += len;
fcbf6a08 766 bio->bi_iter.bi_size += len;
80cfd548
JA
767 goto done;
768 }
66cb45aa
JA
769
770 /*
771 * If the queue doesn't support SG gaps and adding this
772 * offset would create a gap, disallow it.
773 */
03100aad 774 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 775 return 0;
80cfd548
JA
776 }
777
0aa69fd3 778 if (bio_full(bio))
1da177e4
LT
779 return 0;
780
781 /*
fcbf6a08
ML
782 * setup the new entry, we might clear it again later if we
783 * cannot add the page
784 */
785 bvec = &bio->bi_io_vec[bio->bi_vcnt];
786 bvec->bv_page = page;
787 bvec->bv_len = len;
788 bvec->bv_offset = offset;
789 bio->bi_vcnt++;
790 bio->bi_phys_segments++;
791 bio->bi_iter.bi_size += len;
792
793 /*
794 * Perform a recount if the number of segments is greater
795 * than queue_max_segments(q).
1da177e4
LT
796 */
797
fcbf6a08 798 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
799
800 if (retried_segments)
fcbf6a08 801 goto failed;
1da177e4
LT
802
803 retried_segments = 1;
804 blk_recount_segments(q, bio);
805 }
806
1da177e4 807 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 808 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 809 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 810
80cfd548 811 done:
1da177e4 812 return len;
fcbf6a08
ML
813
814 failed:
815 bvec->bv_page = NULL;
816 bvec->bv_len = 0;
817 bvec->bv_offset = 0;
818 bio->bi_vcnt--;
819 bio->bi_iter.bi_size -= len;
820 blk_recount_segments(q, bio);
821 return 0;
1da177e4 822}
a112a71d 823EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 824
1da177e4 825/**
0aa69fd3
CH
826 * __bio_try_merge_page - try appending data to an existing bvec.
827 * @bio: destination bio
828 * @page: page to add
829 * @len: length of the data to add
830 * @off: offset of the data in @page
1da177e4 831 *
0aa69fd3
CH
832 * Try to add the data at @page + @off to the last bvec of @bio. This is a
833 * a useful optimisation for file systems with a block size smaller than the
834 * page size.
835 *
836 * Return %true on success or %false on failure.
1da177e4 837 */
0aa69fd3
CH
838bool __bio_try_merge_page(struct bio *bio, struct page *page,
839 unsigned int len, unsigned int off)
1da177e4 840{
c66a14d0 841 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 842 return false;
762380ad 843
c66a14d0 844 if (bio->bi_vcnt > 0) {
0aa69fd3 845 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 846
0aa69fd3 847 if (page == bv->bv_page && off == bv->bv_offset + bv->bv_len) {
c66a14d0 848 bv->bv_len += len;
0aa69fd3
CH
849 bio->bi_iter.bi_size += len;
850 return true;
c66a14d0
KO
851 }
852 }
0aa69fd3
CH
853 return false;
854}
855EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 856
0aa69fd3
CH
857/**
858 * __bio_add_page - add page to a bio in a new segment
859 * @bio: destination bio
860 * @page: page to add
861 * @len: length of the data to add
862 * @off: offset of the data in @page
863 *
864 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
865 * that @bio has space for another bvec.
866 */
867void __bio_add_page(struct bio *bio, struct page *page,
868 unsigned int len, unsigned int off)
869{
870 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 871
0aa69fd3
CH
872 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
873 WARN_ON_ONCE(bio_full(bio));
874
875 bv->bv_page = page;
876 bv->bv_offset = off;
877 bv->bv_len = len;
c66a14d0 878
c66a14d0 879 bio->bi_iter.bi_size += len;
0aa69fd3
CH
880 bio->bi_vcnt++;
881}
882EXPORT_SYMBOL_GPL(__bio_add_page);
883
884/**
885 * bio_add_page - attempt to add page to bio
886 * @bio: destination bio
887 * @page: page to add
888 * @len: vec entry length
889 * @offset: vec entry offset
890 *
891 * Attempt to add a page to the bio_vec maplist. This will only fail
892 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
893 */
894int bio_add_page(struct bio *bio, struct page *page,
895 unsigned int len, unsigned int offset)
896{
897 if (!__bio_try_merge_page(bio, page, len, offset)) {
898 if (bio_full(bio))
899 return 0;
900 __bio_add_page(bio, page, len, offset);
901 }
c66a14d0 902 return len;
1da177e4 903}
a112a71d 904EXPORT_SYMBOL(bio_add_page);
1da177e4 905
2cefe4db
KO
906/**
907 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
908 * @bio: bio to add pages to
909 * @iter: iov iterator describing the region to be mapped
910 *
911 * Pins as many pages from *iter and appends them to @bio's bvec array. The
912 * pages will have to be released using put_page() when done.
913 */
914int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
915{
916 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
917 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
918 struct page **pages = (struct page **)bv;
919 size_t offset, diff;
920 ssize_t size;
921
922 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
923 if (unlikely(size <= 0))
924 return size ? size : -EFAULT;
925 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
926
927 /*
928 * Deep magic below: We need to walk the pinned pages backwards
929 * because we are abusing the space allocated for the bio_vecs
930 * for the page array. Because the bio_vecs are larger than the
931 * page pointers by definition this will always work. But it also
932 * means we can't use bio_add_page, so any changes to it's semantics
933 * need to be reflected here as well.
934 */
935 bio->bi_iter.bi_size += size;
936 bio->bi_vcnt += nr_pages;
937
938 diff = (nr_pages * PAGE_SIZE - offset) - size;
939 while (nr_pages--) {
940 bv[nr_pages].bv_page = pages[nr_pages];
941 bv[nr_pages].bv_len = PAGE_SIZE;
942 bv[nr_pages].bv_offset = 0;
943 }
944
945 bv[0].bv_offset += offset;
946 bv[0].bv_len -= offset;
947 if (diff)
948 bv[bio->bi_vcnt - 1].bv_len -= diff;
949
950 iov_iter_advance(iter, size);
951 return 0;
952}
953EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
954
4246a0b6 955static void submit_bio_wait_endio(struct bio *bio)
9e882242 956{
65e53aab 957 complete(bio->bi_private);
9e882242
KO
958}
959
960/**
961 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
962 * @bio: The &struct bio which describes the I/O
963 *
964 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
965 * bio_endio() on failure.
3d289d68
JK
966 *
967 * WARNING: Unlike to how submit_bio() is usually used, this function does not
968 * result in bio reference to be consumed. The caller must drop the reference
969 * on his own.
9e882242 970 */
4e49ea4a 971int submit_bio_wait(struct bio *bio)
9e882242 972{
e319e1fb 973 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 974
65e53aab 975 bio->bi_private = &done;
9e882242 976 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 977 bio->bi_opf |= REQ_SYNC;
4e49ea4a 978 submit_bio(bio);
65e53aab 979 wait_for_completion_io(&done);
9e882242 980
65e53aab 981 return blk_status_to_errno(bio->bi_status);
9e882242
KO
982}
983EXPORT_SYMBOL(submit_bio_wait);
984
054bdf64
KO
985/**
986 * bio_advance - increment/complete a bio by some number of bytes
987 * @bio: bio to advance
988 * @bytes: number of bytes to complete
989 *
990 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
991 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
992 * be updated on the last bvec as well.
993 *
994 * @bio will then represent the remaining, uncompleted portion of the io.
995 */
996void bio_advance(struct bio *bio, unsigned bytes)
997{
998 if (bio_integrity(bio))
999 bio_integrity_advance(bio, bytes);
1000
4550dd6c 1001 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1002}
1003EXPORT_SYMBOL(bio_advance);
1004
45db54d5
KO
1005void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1006 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1007{
1cb9dda4 1008 struct bio_vec src_bv, dst_bv;
16ac3d63 1009 void *src_p, *dst_p;
1cb9dda4 1010 unsigned bytes;
16ac3d63 1011
45db54d5
KO
1012 while (src_iter->bi_size && dst_iter->bi_size) {
1013 src_bv = bio_iter_iovec(src, *src_iter);
1014 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1015
1016 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1017
1cb9dda4
KO
1018 src_p = kmap_atomic(src_bv.bv_page);
1019 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1020
1cb9dda4
KO
1021 memcpy(dst_p + dst_bv.bv_offset,
1022 src_p + src_bv.bv_offset,
16ac3d63
KO
1023 bytes);
1024
1025 kunmap_atomic(dst_p);
1026 kunmap_atomic(src_p);
1027
6e6e811d
KO
1028 flush_dcache_page(dst_bv.bv_page);
1029
45db54d5
KO
1030 bio_advance_iter(src, src_iter, bytes);
1031 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1032 }
1033}
38a72dac
KO
1034EXPORT_SYMBOL(bio_copy_data_iter);
1035
1036/**
45db54d5
KO
1037 * bio_copy_data - copy contents of data buffers from one bio to another
1038 * @src: source bio
1039 * @dst: destination bio
38a72dac
KO
1040 *
1041 * Stops when it reaches the end of either @src or @dst - that is, copies
1042 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1043 */
1044void bio_copy_data(struct bio *dst, struct bio *src)
1045{
45db54d5
KO
1046 struct bvec_iter src_iter = src->bi_iter;
1047 struct bvec_iter dst_iter = dst->bi_iter;
1048
1049 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1050}
16ac3d63
KO
1051EXPORT_SYMBOL(bio_copy_data);
1052
45db54d5
KO
1053/**
1054 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1055 * another
1056 * @src: source bio list
1057 * @dst: destination bio list
1058 *
1059 * Stops when it reaches the end of either the @src list or @dst list - that is,
1060 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1061 * bios).
1062 */
1063void bio_list_copy_data(struct bio *dst, struct bio *src)
1064{
1065 struct bvec_iter src_iter = src->bi_iter;
1066 struct bvec_iter dst_iter = dst->bi_iter;
1067
1068 while (1) {
1069 if (!src_iter.bi_size) {
1070 src = src->bi_next;
1071 if (!src)
1072 break;
1073
1074 src_iter = src->bi_iter;
1075 }
1076
1077 if (!dst_iter.bi_size) {
1078 dst = dst->bi_next;
1079 if (!dst)
1080 break;
1081
1082 dst_iter = dst->bi_iter;
1083 }
1084
1085 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1086 }
1087}
1088EXPORT_SYMBOL(bio_list_copy_data);
1089
1da177e4 1090struct bio_map_data {
152e283f 1091 int is_our_pages;
26e49cfc
KO
1092 struct iov_iter iter;
1093 struct iovec iov[];
1da177e4
LT
1094};
1095
0e5b935d 1096static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1097 gfp_t gfp_mask)
1da177e4 1098{
0e5b935d
AV
1099 struct bio_map_data *bmd;
1100 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1101 return NULL;
1da177e4 1102
0e5b935d
AV
1103 bmd = kmalloc(sizeof(struct bio_map_data) +
1104 sizeof(struct iovec) * data->nr_segs, gfp_mask);
1105 if (!bmd)
1106 return NULL;
1107 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1108 bmd->iter = *data;
1109 bmd->iter.iov = bmd->iov;
1110 return bmd;
1da177e4
LT
1111}
1112
9124d3fe
DP
1113/**
1114 * bio_copy_from_iter - copy all pages from iov_iter to bio
1115 * @bio: The &struct bio which describes the I/O as destination
1116 * @iter: iov_iter as source
1117 *
1118 * Copy all pages from iov_iter to bio.
1119 * Returns 0 on success, or error on failure.
1120 */
98a09d61 1121static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1122{
9124d3fe 1123 int i;
c5dec1c3 1124 struct bio_vec *bvec;
c5dec1c3 1125
d74c6d51 1126 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1127 ssize_t ret;
c5dec1c3 1128
9124d3fe
DP
1129 ret = copy_page_from_iter(bvec->bv_page,
1130 bvec->bv_offset,
1131 bvec->bv_len,
98a09d61 1132 iter);
9124d3fe 1133
98a09d61 1134 if (!iov_iter_count(iter))
9124d3fe
DP
1135 break;
1136
1137 if (ret < bvec->bv_len)
1138 return -EFAULT;
c5dec1c3
FT
1139 }
1140
9124d3fe
DP
1141 return 0;
1142}
1143
1144/**
1145 * bio_copy_to_iter - copy all pages from bio to iov_iter
1146 * @bio: The &struct bio which describes the I/O as source
1147 * @iter: iov_iter as destination
1148 *
1149 * Copy all pages from bio to iov_iter.
1150 * Returns 0 on success, or error on failure.
1151 */
1152static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1153{
1154 int i;
1155 struct bio_vec *bvec;
1156
1157 bio_for_each_segment_all(bvec, bio, i) {
1158 ssize_t ret;
1159
1160 ret = copy_page_to_iter(bvec->bv_page,
1161 bvec->bv_offset,
1162 bvec->bv_len,
1163 &iter);
1164
1165 if (!iov_iter_count(&iter))
1166 break;
1167
1168 if (ret < bvec->bv_len)
1169 return -EFAULT;
1170 }
1171
1172 return 0;
c5dec1c3
FT
1173}
1174
491221f8 1175void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1176{
1177 struct bio_vec *bvec;
1178 int i;
1179
1180 bio_for_each_segment_all(bvec, bio, i)
1181 __free_page(bvec->bv_page);
1182}
491221f8 1183EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1184
1da177e4
LT
1185/**
1186 * bio_uncopy_user - finish previously mapped bio
1187 * @bio: bio being terminated
1188 *
ddad8dd0 1189 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1190 * to user space in case of a read.
1191 */
1192int bio_uncopy_user(struct bio *bio)
1193{
1194 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1195 int ret = 0;
1da177e4 1196
35dc2483
RD
1197 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1198 /*
1199 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1200 * don't copy into a random user address space, just free
1201 * and return -EINTR so user space doesn't expect any data.
35dc2483 1202 */
2d99b55d
HR
1203 if (!current->mm)
1204 ret = -EINTR;
1205 else if (bio_data_dir(bio) == READ)
9124d3fe 1206 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1207 if (bmd->is_our_pages)
1208 bio_free_pages(bio);
35dc2483 1209 }
c8db4448 1210 kfree(bmd);
1da177e4
LT
1211 bio_put(bio);
1212 return ret;
1213}
1214
1215/**
c5dec1c3 1216 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1217 * @q: destination block queue
1218 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1219 * @iter: iovec iterator
1220 * @gfp_mask: memory allocation flags
1da177e4
LT
1221 *
1222 * Prepares and returns a bio for indirect user io, bouncing data
1223 * to/from kernel pages as necessary. Must be paired with
1224 * call bio_uncopy_user() on io completion.
1225 */
152e283f
FT
1226struct bio *bio_copy_user_iov(struct request_queue *q,
1227 struct rq_map_data *map_data,
e81cef5d 1228 struct iov_iter *iter,
26e49cfc 1229 gfp_t gfp_mask)
1da177e4 1230{
1da177e4 1231 struct bio_map_data *bmd;
1da177e4
LT
1232 struct page *page;
1233 struct bio *bio;
d16d44eb
AV
1234 int i = 0, ret;
1235 int nr_pages;
26e49cfc 1236 unsigned int len = iter->count;
bd5cecea 1237 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1238
0e5b935d 1239 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1240 if (!bmd)
1241 return ERR_PTR(-ENOMEM);
1242
26e49cfc
KO
1243 /*
1244 * We need to do a deep copy of the iov_iter including the iovecs.
1245 * The caller provided iov might point to an on-stack or otherwise
1246 * shortlived one.
1247 */
1248 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1249
d16d44eb
AV
1250 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1251 if (nr_pages > BIO_MAX_PAGES)
1252 nr_pages = BIO_MAX_PAGES;
26e49cfc 1253
1da177e4 1254 ret = -ENOMEM;
a9e9dc24 1255 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1256 if (!bio)
1257 goto out_bmd;
1258
1da177e4 1259 ret = 0;
56c451f4
FT
1260
1261 if (map_data) {
e623ddb4 1262 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1263 i = map_data->offset / PAGE_SIZE;
1264 }
1da177e4 1265 while (len) {
e623ddb4 1266 unsigned int bytes = PAGE_SIZE;
1da177e4 1267
56c451f4
FT
1268 bytes -= offset;
1269
1da177e4
LT
1270 if (bytes > len)
1271 bytes = len;
1272
152e283f 1273 if (map_data) {
e623ddb4 1274 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1275 ret = -ENOMEM;
1276 break;
1277 }
e623ddb4
FT
1278
1279 page = map_data->pages[i / nr_pages];
1280 page += (i % nr_pages);
1281
1282 i++;
1283 } else {
152e283f 1284 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1285 if (!page) {
1286 ret = -ENOMEM;
1287 break;
1288 }
1da177e4
LT
1289 }
1290
56c451f4 1291 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1292 break;
1da177e4
LT
1293
1294 len -= bytes;
56c451f4 1295 offset = 0;
1da177e4
LT
1296 }
1297
1298 if (ret)
1299 goto cleanup;
1300
2884d0be
AV
1301 if (map_data)
1302 map_data->offset += bio->bi_iter.bi_size;
1303
1da177e4
LT
1304 /*
1305 * success
1306 */
26e49cfc 1307 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1308 (map_data && map_data->from_user)) {
98a09d61 1309 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1310 if (ret)
1311 goto cleanup;
98a09d61
AV
1312 } else {
1313 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1314 }
1315
26e49cfc 1316 bio->bi_private = bmd;
2884d0be
AV
1317 if (map_data && map_data->null_mapped)
1318 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1319 return bio;
1320cleanup:
152e283f 1321 if (!map_data)
1dfa0f68 1322 bio_free_pages(bio);
1da177e4
LT
1323 bio_put(bio);
1324out_bmd:
c8db4448 1325 kfree(bmd);
1da177e4
LT
1326 return ERR_PTR(ret);
1327}
1328
37f19e57
CH
1329/**
1330 * bio_map_user_iov - map user iovec into bio
1331 * @q: the struct request_queue for the bio
1332 * @iter: iovec iterator
1333 * @gfp_mask: memory allocation flags
1334 *
1335 * Map the user space address into a bio suitable for io to a block
1336 * device. Returns an error pointer in case of error.
1337 */
1338struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1339 struct iov_iter *iter,
37f19e57 1340 gfp_t gfp_mask)
1da177e4 1341{
26e49cfc 1342 int j;
1da177e4 1343 struct bio *bio;
076098e5 1344 int ret;
2b04e8f6 1345 struct bio_vec *bvec;
1da177e4 1346
b282cc76 1347 if (!iov_iter_count(iter))
1da177e4
LT
1348 return ERR_PTR(-EINVAL);
1349
b282cc76 1350 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1351 if (!bio)
1352 return ERR_PTR(-ENOMEM);
1353
0a0f1513 1354 while (iov_iter_count(iter)) {
629e42bc 1355 struct page **pages;
076098e5
AV
1356 ssize_t bytes;
1357 size_t offs, added = 0;
1358 int npages;
1da177e4 1359
0a0f1513 1360 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1361 if (unlikely(bytes <= 0)) {
1362 ret = bytes ? bytes : -EFAULT;
f1970baf 1363 goto out_unmap;
99172157 1364 }
f1970baf 1365
076098e5 1366 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1367
98f0bc99
AV
1368 if (unlikely(offs & queue_dma_alignment(q))) {
1369 ret = -EINVAL;
1370 j = 0;
1371 } else {
1372 for (j = 0; j < npages; j++) {
1373 struct page *page = pages[j];
1374 unsigned int n = PAGE_SIZE - offs;
1375 unsigned short prev_bi_vcnt = bio->bi_vcnt;
f1970baf 1376
98f0bc99
AV
1377 if (n > bytes)
1378 n = bytes;
95d78c28 1379
98f0bc99
AV
1380 if (!bio_add_pc_page(q, bio, page, n, offs))
1381 break;
1da177e4 1382
98f0bc99
AV
1383 /*
1384 * check if vector was merged with previous
1385 * drop page reference if needed
1386 */
1387 if (bio->bi_vcnt == prev_bi_vcnt)
1388 put_page(page);
1389
1390 added += n;
1391 bytes -= n;
1392 offs = 0;
1393 }
0a0f1513 1394 iov_iter_advance(iter, added);
f1970baf 1395 }
1da177e4 1396 /*
f1970baf 1397 * release the pages we didn't map into the bio, if any
1da177e4 1398 */
629e42bc 1399 while (j < npages)
09cbfeaf 1400 put_page(pages[j++]);
629e42bc 1401 kvfree(pages);
e2e115d1
AV
1402 /* couldn't stuff something into bio? */
1403 if (bytes)
1404 break;
1da177e4
LT
1405 }
1406
b7c44ed9 1407 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1408
1409 /*
5fad1b64 1410 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1411 * it would normally disappear when its bi_end_io is run.
1412 * however, we need it for the unmap, so grab an extra
1413 * reference to it
1414 */
1415 bio_get(bio);
1da177e4 1416 return bio;
f1970baf
JB
1417
1418 out_unmap:
2b04e8f6
AV
1419 bio_for_each_segment_all(bvec, bio, j) {
1420 put_page(bvec->bv_page);
f1970baf 1421 }
1da177e4
LT
1422 bio_put(bio);
1423 return ERR_PTR(ret);
1424}
1425
1da177e4
LT
1426static void __bio_unmap_user(struct bio *bio)
1427{
1428 struct bio_vec *bvec;
1429 int i;
1430
1431 /*
1432 * make sure we dirty pages we wrote to
1433 */
d74c6d51 1434 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1435 if (bio_data_dir(bio) == READ)
1436 set_page_dirty_lock(bvec->bv_page);
1437
09cbfeaf 1438 put_page(bvec->bv_page);
1da177e4
LT
1439 }
1440
1441 bio_put(bio);
1442}
1443
1444/**
1445 * bio_unmap_user - unmap a bio
1446 * @bio: the bio being unmapped
1447 *
5fad1b64
BVA
1448 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1449 * process context.
1da177e4
LT
1450 *
1451 * bio_unmap_user() may sleep.
1452 */
1453void bio_unmap_user(struct bio *bio)
1454{
1455 __bio_unmap_user(bio);
1456 bio_put(bio);
1457}
1458
4246a0b6 1459static void bio_map_kern_endio(struct bio *bio)
b823825e 1460{
b823825e 1461 bio_put(bio);
b823825e
JA
1462}
1463
75c72b83
CH
1464/**
1465 * bio_map_kern - map kernel address into bio
1466 * @q: the struct request_queue for the bio
1467 * @data: pointer to buffer to map
1468 * @len: length in bytes
1469 * @gfp_mask: allocation flags for bio allocation
1470 *
1471 * Map the kernel address into a bio suitable for io to a block
1472 * device. Returns an error pointer in case of error.
1473 */
1474struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1475 gfp_t gfp_mask)
df46b9a4
MC
1476{
1477 unsigned long kaddr = (unsigned long)data;
1478 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1479 unsigned long start = kaddr >> PAGE_SHIFT;
1480 const int nr_pages = end - start;
1481 int offset, i;
1482 struct bio *bio;
1483
a9e9dc24 1484 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1485 if (!bio)
1486 return ERR_PTR(-ENOMEM);
1487
1488 offset = offset_in_page(kaddr);
1489 for (i = 0; i < nr_pages; i++) {
1490 unsigned int bytes = PAGE_SIZE - offset;
1491
1492 if (len <= 0)
1493 break;
1494
1495 if (bytes > len)
1496 bytes = len;
1497
defd94b7 1498 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1499 offset) < bytes) {
1500 /* we don't support partial mappings */
1501 bio_put(bio);
1502 return ERR_PTR(-EINVAL);
1503 }
df46b9a4
MC
1504
1505 data += bytes;
1506 len -= bytes;
1507 offset = 0;
1508 }
1509
b823825e 1510 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1511 return bio;
1512}
a112a71d 1513EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1514
4246a0b6 1515static void bio_copy_kern_endio(struct bio *bio)
68154e90 1516{
1dfa0f68
CH
1517 bio_free_pages(bio);
1518 bio_put(bio);
1519}
1520
4246a0b6 1521static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1522{
42d2683a 1523 char *p = bio->bi_private;
1dfa0f68 1524 struct bio_vec *bvec;
68154e90
FT
1525 int i;
1526
d74c6d51 1527 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1528 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1529 p += bvec->bv_len;
68154e90
FT
1530 }
1531
4246a0b6 1532 bio_copy_kern_endio(bio);
68154e90
FT
1533}
1534
1535/**
1536 * bio_copy_kern - copy kernel address into bio
1537 * @q: the struct request_queue for the bio
1538 * @data: pointer to buffer to copy
1539 * @len: length in bytes
1540 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1541 * @reading: data direction is READ
68154e90
FT
1542 *
1543 * copy the kernel address into a bio suitable for io to a block
1544 * device. Returns an error pointer in case of error.
1545 */
1546struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1547 gfp_t gfp_mask, int reading)
1548{
42d2683a
CH
1549 unsigned long kaddr = (unsigned long)data;
1550 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1551 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1552 struct bio *bio;
1553 void *p = data;
1dfa0f68 1554 int nr_pages = 0;
68154e90 1555
42d2683a
CH
1556 /*
1557 * Overflow, abort
1558 */
1559 if (end < start)
1560 return ERR_PTR(-EINVAL);
68154e90 1561
42d2683a
CH
1562 nr_pages = end - start;
1563 bio = bio_kmalloc(gfp_mask, nr_pages);
1564 if (!bio)
1565 return ERR_PTR(-ENOMEM);
68154e90 1566
42d2683a
CH
1567 while (len) {
1568 struct page *page;
1569 unsigned int bytes = PAGE_SIZE;
68154e90 1570
42d2683a
CH
1571 if (bytes > len)
1572 bytes = len;
1573
1574 page = alloc_page(q->bounce_gfp | gfp_mask);
1575 if (!page)
1576 goto cleanup;
1577
1578 if (!reading)
1579 memcpy(page_address(page), p, bytes);
1580
1581 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1582 break;
1583
1584 len -= bytes;
1585 p += bytes;
68154e90
FT
1586 }
1587
1dfa0f68
CH
1588 if (reading) {
1589 bio->bi_end_io = bio_copy_kern_endio_read;
1590 bio->bi_private = data;
1591 } else {
1592 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1593 }
76029ff3 1594
68154e90 1595 return bio;
42d2683a
CH
1596
1597cleanup:
1dfa0f68 1598 bio_free_pages(bio);
42d2683a
CH
1599 bio_put(bio);
1600 return ERR_PTR(-ENOMEM);
68154e90
FT
1601}
1602
1da177e4
LT
1603/*
1604 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1605 * for performing direct-IO in BIOs.
1606 *
1607 * The problem is that we cannot run set_page_dirty() from interrupt context
1608 * because the required locks are not interrupt-safe. So what we can do is to
1609 * mark the pages dirty _before_ performing IO. And in interrupt context,
1610 * check that the pages are still dirty. If so, fine. If not, redirty them
1611 * in process context.
1612 *
1613 * We special-case compound pages here: normally this means reads into hugetlb
1614 * pages. The logic in here doesn't really work right for compound pages
1615 * because the VM does not uniformly chase down the head page in all cases.
1616 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1617 * handle them at all. So we skip compound pages here at an early stage.
1618 *
1619 * Note that this code is very hard to test under normal circumstances because
1620 * direct-io pins the pages with get_user_pages(). This makes
1621 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1622 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1623 * pagecache.
1624 *
1625 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1626 * deferred bio dirtying paths.
1627 */
1628
1629/*
1630 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1631 */
1632void bio_set_pages_dirty(struct bio *bio)
1633{
cb34e057 1634 struct bio_vec *bvec;
1da177e4
LT
1635 int i;
1636
cb34e057
KO
1637 bio_for_each_segment_all(bvec, bio, i) {
1638 struct page *page = bvec->bv_page;
1da177e4
LT
1639
1640 if (page && !PageCompound(page))
1641 set_page_dirty_lock(page);
1642 }
1643}
1900fcc4 1644EXPORT_SYMBOL_GPL(bio_set_pages_dirty);
1da177e4 1645
86b6c7a7 1646static void bio_release_pages(struct bio *bio)
1da177e4 1647{
cb34e057 1648 struct bio_vec *bvec;
1da177e4
LT
1649 int i;
1650
cb34e057
KO
1651 bio_for_each_segment_all(bvec, bio, i) {
1652 struct page *page = bvec->bv_page;
1da177e4
LT
1653
1654 if (page)
1655 put_page(page);
1656 }
1657}
1658
1659/*
1660 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1661 * If they are, then fine. If, however, some pages are clean then they must
1662 * have been written out during the direct-IO read. So we take another ref on
1663 * the BIO and the offending pages and re-dirty the pages in process context.
1664 *
1665 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1666 * here on. It will run one put_page() against each page and will run one
1667 * bio_put() against the BIO.
1da177e4
LT
1668 */
1669
65f27f38 1670static void bio_dirty_fn(struct work_struct *work);
1da177e4 1671
65f27f38 1672static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1673static DEFINE_SPINLOCK(bio_dirty_lock);
1674static struct bio *bio_dirty_list;
1675
1676/*
1677 * This runs in process context
1678 */
65f27f38 1679static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1680{
1681 unsigned long flags;
1682 struct bio *bio;
1683
1684 spin_lock_irqsave(&bio_dirty_lock, flags);
1685 bio = bio_dirty_list;
1686 bio_dirty_list = NULL;
1687 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1688
1689 while (bio) {
1690 struct bio *next = bio->bi_private;
1691
1692 bio_set_pages_dirty(bio);
1693 bio_release_pages(bio);
1694 bio_put(bio);
1695 bio = next;
1696 }
1697}
1698
1699void bio_check_pages_dirty(struct bio *bio)
1700{
cb34e057 1701 struct bio_vec *bvec;
1da177e4
LT
1702 int nr_clean_pages = 0;
1703 int i;
1704
cb34e057
KO
1705 bio_for_each_segment_all(bvec, bio, i) {
1706 struct page *page = bvec->bv_page;
1da177e4
LT
1707
1708 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1709 put_page(page);
cb34e057 1710 bvec->bv_page = NULL;
1da177e4
LT
1711 } else {
1712 nr_clean_pages++;
1713 }
1714 }
1715
1716 if (nr_clean_pages) {
1717 unsigned long flags;
1718
1719 spin_lock_irqsave(&bio_dirty_lock, flags);
1720 bio->bi_private = bio_dirty_list;
1721 bio_dirty_list = bio;
1722 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1723 schedule_work(&bio_dirty_work);
1724 } else {
1725 bio_put(bio);
1726 }
1727}
1900fcc4 1728EXPORT_SYMBOL_GPL(bio_check_pages_dirty);
1da177e4 1729
d62e26b3
JA
1730void generic_start_io_acct(struct request_queue *q, int rw,
1731 unsigned long sectors, struct hd_struct *part)
394ffa50
GZ
1732{
1733 int cpu = part_stat_lock();
1734
d62e26b3 1735 part_round_stats(q, cpu, part);
394ffa50
GZ
1736 part_stat_inc(cpu, part, ios[rw]);
1737 part_stat_add(cpu, part, sectors[rw], sectors);
d62e26b3 1738 part_inc_in_flight(q, part, rw);
394ffa50
GZ
1739
1740 part_stat_unlock();
1741}
1742EXPORT_SYMBOL(generic_start_io_acct);
1743
d62e26b3
JA
1744void generic_end_io_acct(struct request_queue *q, int rw,
1745 struct hd_struct *part, unsigned long start_time)
394ffa50
GZ
1746{
1747 unsigned long duration = jiffies - start_time;
1748 int cpu = part_stat_lock();
1749
1750 part_stat_add(cpu, part, ticks[rw], duration);
d62e26b3
JA
1751 part_round_stats(q, cpu, part);
1752 part_dec_in_flight(q, part, rw);
394ffa50
GZ
1753
1754 part_stat_unlock();
1755}
1756EXPORT_SYMBOL(generic_end_io_acct);
1757
2d4dc890
IL
1758#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1759void bio_flush_dcache_pages(struct bio *bi)
1760{
7988613b
KO
1761 struct bio_vec bvec;
1762 struct bvec_iter iter;
2d4dc890 1763
7988613b
KO
1764 bio_for_each_segment(bvec, bi, iter)
1765 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1766}
1767EXPORT_SYMBOL(bio_flush_dcache_pages);
1768#endif
1769
c4cf5261
JA
1770static inline bool bio_remaining_done(struct bio *bio)
1771{
1772 /*
1773 * If we're not chaining, then ->__bi_remaining is always 1 and
1774 * we always end io on the first invocation.
1775 */
1776 if (!bio_flagged(bio, BIO_CHAIN))
1777 return true;
1778
1779 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1780
326e1dbb 1781 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1782 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1783 return true;
326e1dbb 1784 }
c4cf5261
JA
1785
1786 return false;
1787}
1788
1da177e4
LT
1789/**
1790 * bio_endio - end I/O on a bio
1791 * @bio: bio
1da177e4
LT
1792 *
1793 * Description:
4246a0b6
CH
1794 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1795 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1796 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1797 *
1798 * bio_endio() can be called several times on a bio that has been chained
1799 * using bio_chain(). The ->bi_end_io() function will only be called the
1800 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1801 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1802 **/
4246a0b6 1803void bio_endio(struct bio *bio)
1da177e4 1804{
ba8c6967 1805again:
2b885517 1806 if (!bio_remaining_done(bio))
ba8c6967 1807 return;
7c20f116
CH
1808 if (!bio_integrity_endio(bio))
1809 return;
1da177e4 1810
ba8c6967
CH
1811 /*
1812 * Need to have a real endio function for chained bios, otherwise
1813 * various corner cases will break (like stacking block devices that
1814 * save/restore bi_end_io) - however, we want to avoid unbounded
1815 * recursion and blowing the stack. Tail call optimization would
1816 * handle this, but compiling with frame pointers also disables
1817 * gcc's sibling call optimization.
1818 */
1819 if (bio->bi_end_io == bio_chain_endio) {
1820 bio = __bio_chain_endio(bio);
1821 goto again;
196d38bc 1822 }
ba8c6967 1823
74d46992
CH
1824 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1825 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1826 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1827 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1828 }
1829
9e234eea 1830 blk_throtl_bio_endio(bio);
b222dd2f
SL
1831 /* release cgroup info */
1832 bio_uninit(bio);
ba8c6967
CH
1833 if (bio->bi_end_io)
1834 bio->bi_end_io(bio);
1da177e4 1835}
a112a71d 1836EXPORT_SYMBOL(bio_endio);
1da177e4 1837
20d0189b
KO
1838/**
1839 * bio_split - split a bio
1840 * @bio: bio to split
1841 * @sectors: number of sectors to split from the front of @bio
1842 * @gfp: gfp mask
1843 * @bs: bio set to allocate from
1844 *
1845 * Allocates and returns a new bio which represents @sectors from the start of
1846 * @bio, and updates @bio to represent the remaining sectors.
1847 *
f3f5da62
MP
1848 * Unless this is a discard request the newly allocated bio will point
1849 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1850 * @bio is not freed before the split.
20d0189b
KO
1851 */
1852struct bio *bio_split(struct bio *bio, int sectors,
1853 gfp_t gfp, struct bio_set *bs)
1854{
f341a4d3 1855 struct bio *split;
20d0189b
KO
1856
1857 BUG_ON(sectors <= 0);
1858 BUG_ON(sectors >= bio_sectors(bio));
1859
f9d03f96 1860 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1861 if (!split)
1862 return NULL;
1863
1864 split->bi_iter.bi_size = sectors << 9;
1865
1866 if (bio_integrity(split))
fbd08e76 1867 bio_integrity_trim(split);
20d0189b
KO
1868
1869 bio_advance(bio, split->bi_iter.bi_size);
1870
fbbaf700 1871 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1872 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1873
20d0189b
KO
1874 return split;
1875}
1876EXPORT_SYMBOL(bio_split);
1877
6678d83f
KO
1878/**
1879 * bio_trim - trim a bio
1880 * @bio: bio to trim
1881 * @offset: number of sectors to trim from the front of @bio
1882 * @size: size we want to trim @bio to, in sectors
1883 */
1884void bio_trim(struct bio *bio, int offset, int size)
1885{
1886 /* 'bio' is a cloned bio which we need to trim to match
1887 * the given offset and size.
6678d83f 1888 */
6678d83f
KO
1889
1890 size <<= 9;
4f024f37 1891 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1892 return;
1893
b7c44ed9 1894 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1895
1896 bio_advance(bio, offset << 9);
1897
4f024f37 1898 bio->bi_iter.bi_size = size;
376a78ab
DM
1899
1900 if (bio_integrity(bio))
fbd08e76 1901 bio_integrity_trim(bio);
376a78ab 1902
6678d83f
KO
1903}
1904EXPORT_SYMBOL_GPL(bio_trim);
1905
1da177e4
LT
1906/*
1907 * create memory pools for biovec's in a bio_set.
1908 * use the global biovec slabs created for general use.
1909 */
8aa6ba2f 1910int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1911{
ed996a52 1912 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1913
8aa6ba2f 1914 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1915}
1916
917a38c7
KO
1917/*
1918 * bioset_exit - exit a bioset initialized with bioset_init()
1919 *
1920 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1921 * kzalloc()).
1922 */
1923void bioset_exit(struct bio_set *bs)
1da177e4 1924{
df2cb6da
KO
1925 if (bs->rescue_workqueue)
1926 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1927 bs->rescue_workqueue = NULL;
df2cb6da 1928
8aa6ba2f
KO
1929 mempool_exit(&bs->bio_pool);
1930 mempool_exit(&bs->bvec_pool);
9f060e22 1931
7878cba9 1932 bioset_integrity_free(bs);
917a38c7
KO
1933 if (bs->bio_slab)
1934 bio_put_slab(bs);
1935 bs->bio_slab = NULL;
1936}
1937EXPORT_SYMBOL(bioset_exit);
1da177e4 1938
917a38c7
KO
1939/**
1940 * bioset_init - Initialize a bio_set
dad08527 1941 * @bs: pool to initialize
917a38c7
KO
1942 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1943 * @front_pad: Number of bytes to allocate in front of the returned bio
1944 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1945 * and %BIOSET_NEED_RESCUER
1946 *
dad08527
KO
1947 * Description:
1948 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1949 * to ask for a number of bytes to be allocated in front of the bio.
1950 * Front pad allocation is useful for embedding the bio inside
1951 * another structure, to avoid allocating extra data to go with the bio.
1952 * Note that the bio must be embedded at the END of that structure always,
1953 * or things will break badly.
1954 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1955 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1956 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1957 * dispatch queued requests when the mempool runs out of space.
1958 *
917a38c7
KO
1959 */
1960int bioset_init(struct bio_set *bs,
1961 unsigned int pool_size,
1962 unsigned int front_pad,
1963 int flags)
1964{
1965 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1966
1967 bs->front_pad = front_pad;
1968
1969 spin_lock_init(&bs->rescue_lock);
1970 bio_list_init(&bs->rescue_list);
1971 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1972
1973 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1974 if (!bs->bio_slab)
1975 return -ENOMEM;
1976
1977 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1978 goto bad;
1979
1980 if ((flags & BIOSET_NEED_BVECS) &&
1981 biovec_init_pool(&bs->bvec_pool, pool_size))
1982 goto bad;
1983
1984 if (!(flags & BIOSET_NEED_RESCUER))
1985 return 0;
1986
1987 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1988 if (!bs->rescue_workqueue)
1989 goto bad;
1990
1991 return 0;
1992bad:
1993 bioset_exit(bs);
1994 return -ENOMEM;
1995}
1996EXPORT_SYMBOL(bioset_init);
1997
28e89fd9
JA
1998/*
1999 * Initialize and setup a new bio_set, based on the settings from
2000 * another bio_set.
2001 */
2002int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
2003{
2004 int flags;
2005
2006 flags = 0;
2007 if (src->bvec_pool.min_nr)
2008 flags |= BIOSET_NEED_BVECS;
2009 if (src->rescue_workqueue)
2010 flags |= BIOSET_NEED_RESCUER;
2011
2012 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
2013}
2014EXPORT_SYMBOL(bioset_init_from_src);
2015
852c788f 2016#ifdef CONFIG_BLK_CGROUP
1d933cf0 2017
0d3bd88d
TH
2018#ifdef CONFIG_MEMCG
2019/**
2020 * bio_associate_blkcg_from_page - associate a bio with the page's blkcg
2021 * @bio: target bio
2022 * @page: the page to lookup the blkcg from
2023 *
2024 * Associate @bio with the blkcg from @page's owning memcg. This works like
2025 * every other associate function wrt references.
2026 */
2027int bio_associate_blkcg_from_page(struct bio *bio, struct page *page)
2028{
2029 struct cgroup_subsys_state *blkcg_css;
2030
2031 if (unlikely(bio->bi_css))
2032 return -EBUSY;
2033 if (!page->mem_cgroup)
2034 return 0;
2035 blkcg_css = cgroup_get_e_css(page->mem_cgroup->css.cgroup,
2036 &io_cgrp_subsys);
2037 bio->bi_css = blkcg_css;
2038 return 0;
2039}
2040#endif /* CONFIG_MEMCG */
2041
1d933cf0
TH
2042/**
2043 * bio_associate_blkcg - associate a bio with the specified blkcg
2044 * @bio: target bio
2045 * @blkcg_css: css of the blkcg to associate
2046 *
2047 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2048 * treat @bio as if it were issued by a task which belongs to the blkcg.
2049 *
2050 * This function takes an extra reference of @blkcg_css which will be put
2051 * when @bio is released. The caller must own @bio and is responsible for
2052 * synchronizing calls to this function.
2053 */
2054int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2055{
2056 if (unlikely(bio->bi_css))
2057 return -EBUSY;
2058 css_get(blkcg_css);
2059 bio->bi_css = blkcg_css;
2060 return 0;
2061}
5aa2a96b 2062EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2063
08e18eab
JB
2064/**
2065 * bio_associate_blkg - associate a bio with the specified blkg
2066 * @bio: target bio
2067 * @blkg: the blkg to associate
2068 *
2069 * Associate @bio with the blkg specified by @blkg. This is the queue specific
2070 * blkcg information associated with the @bio, a reference will be taken on the
2071 * @blkg and will be freed when the bio is freed.
2072 */
2073int bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
2074{
2075 if (unlikely(bio->bi_blkg))
2076 return -EBUSY;
2077 blkg_get(blkg);
2078 bio->bi_blkg = blkg;
2079 return 0;
2080}
2081
852c788f
TH
2082/**
2083 * bio_disassociate_task - undo bio_associate_current()
2084 * @bio: target bio
2085 */
2086void bio_disassociate_task(struct bio *bio)
2087{
2088 if (bio->bi_ioc) {
2089 put_io_context(bio->bi_ioc);
2090 bio->bi_ioc = NULL;
2091 }
2092 if (bio->bi_css) {
2093 css_put(bio->bi_css);
2094 bio->bi_css = NULL;
2095 }
08e18eab
JB
2096 if (bio->bi_blkg) {
2097 blkg_put(bio->bi_blkg);
2098 bio->bi_blkg = NULL;
2099 }
852c788f
TH
2100}
2101
20bd723e
PV
2102/**
2103 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2104 * @dst: destination bio
2105 * @src: source bio
2106 */
2107void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2108{
2109 if (src->bi_css)
2110 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2111}
8a8e6f84 2112EXPORT_SYMBOL_GPL(bio_clone_blkcg_association);
852c788f
TH
2113#endif /* CONFIG_BLK_CGROUP */
2114
1da177e4
LT
2115static void __init biovec_init_slabs(void)
2116{
2117 int i;
2118
ed996a52 2119 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2120 int size;
2121 struct biovec_slab *bvs = bvec_slabs + i;
2122
a7fcd37c
JA
2123 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2124 bvs->slab = NULL;
2125 continue;
2126 }
a7fcd37c 2127
1da177e4
LT
2128 size = bvs->nr_vecs * sizeof(struct bio_vec);
2129 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2130 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2131 }
2132}
2133
2134static int __init init_bio(void)
2135{
bb799ca0
JA
2136 bio_slab_max = 2;
2137 bio_slab_nr = 0;
6396bb22
KC
2138 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2139 GFP_KERNEL);
bb799ca0
JA
2140 if (!bio_slabs)
2141 panic("bio: can't allocate bios\n");
1da177e4 2142
7878cba9 2143 bio_integrity_init();
1da177e4
LT
2144 biovec_init_slabs();
2145
f4f8154a 2146 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2147 panic("bio: can't allocate bios\n");
2148
f4f8154a 2149 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2150 panic("bio: can't create integrity pool\n");
2151
1da177e4
LT
2152 return 0;
2153}
1da177e4 2154subsys_initcall(init_bio);