drm/amdgpu: support RLCP firmware front door load
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
b4c5875d 19#include <linux/highmem.h>
de6a78b6 20#include <linux/sched/sysctl.h>
a892c8d5 21#include <linux/blk-crypto.h>
49d1ec85 22#include <linux/xarray.h>
1da177e4 23
55782138 24#include <trace/events/block.h>
9e234eea 25#include "blk.h"
67b42d0b 26#include "blk-rq-qos.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
227 void *p;
228
9ae3b3f5 229 bio_uninit(bio);
4254bba1
KO
230
231 if (bs) {
7a800a20 232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
4254bba1
KO
233
234 /*
235 * If we have front padding, adjust the bio pointer before freeing
236 */
237 p = bio;
bb799ca0
JA
238 p -= bs->front_pad;
239
8aa6ba2f 240 mempool_free(p, &bs->bio_pool);
4254bba1
KO
241 } else {
242 /* Bio was allocated by bio_kmalloc() */
243 kfree(bio);
244 }
3676347a
PO
245}
246
9ae3b3f5
JA
247/*
248 * Users of this function have their own bio allocation. Subsequently,
249 * they must remember to pair any call to bio_init() with bio_uninit()
250 * when IO has completed, or when the bio is released.
251 */
3a83f467
ML
252void bio_init(struct bio *bio, struct bio_vec *table,
253 unsigned short max_vecs)
1da177e4 254{
da521626
JA
255 bio->bi_next = NULL;
256 bio->bi_bdev = NULL;
257 bio->bi_opf = 0;
258 bio->bi_flags = 0;
259 bio->bi_ioprio = 0;
260 bio->bi_write_hint = 0;
261 bio->bi_status = 0;
262 bio->bi_iter.bi_sector = 0;
263 bio->bi_iter.bi_size = 0;
264 bio->bi_iter.bi_idx = 0;
265 bio->bi_iter.bi_bvec_done = 0;
266 bio->bi_end_io = NULL;
267 bio->bi_private = NULL;
268#ifdef CONFIG_BLK_CGROUP
269 bio->bi_blkg = NULL;
270 bio->bi_issue.value = 0;
271#ifdef CONFIG_BLK_CGROUP_IOCOST
272 bio->bi_iocost_cost = 0;
273#endif
274#endif
275#ifdef CONFIG_BLK_INLINE_ENCRYPTION
276 bio->bi_crypt_context = NULL;
277#endif
278#ifdef CONFIG_BLK_DEV_INTEGRITY
279 bio->bi_integrity = NULL;
280#endif
281 bio->bi_vcnt = 0;
282
c4cf5261 283 atomic_set(&bio->__bi_remaining, 1);
dac56212 284 atomic_set(&bio->__bi_cnt, 1);
3e08773c 285 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 286
3a83f467 287 bio->bi_max_vecs = max_vecs;
da521626
JA
288 bio->bi_io_vec = table;
289 bio->bi_pool = NULL;
1da177e4 290}
a112a71d 291EXPORT_SYMBOL(bio_init);
1da177e4 292
f44b48c7
KO
293/**
294 * bio_reset - reinitialize a bio
295 * @bio: bio to reset
296 *
297 * Description:
298 * After calling bio_reset(), @bio will be in the same state as a freshly
299 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
300 * preserved are the ones that are initialized by bio_alloc_bioset(). See
301 * comment in struct bio.
302 */
303void bio_reset(struct bio *bio)
304{
9ae3b3f5 305 bio_uninit(bio);
f44b48c7 306 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 307 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
308}
309EXPORT_SYMBOL(bio_reset);
310
38f8baae 311static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 312{
4246a0b6
CH
313 struct bio *parent = bio->bi_private;
314
3edf5346 315 if (bio->bi_status && !parent->bi_status)
4e4cbee9 316 parent->bi_status = bio->bi_status;
196d38bc 317 bio_put(bio);
38f8baae
CH
318 return parent;
319}
320
321static void bio_chain_endio(struct bio *bio)
322{
323 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
324}
325
326/**
327 * bio_chain - chain bio completions
1051a902 328 * @bio: the target bio
5b874af6 329 * @parent: the parent bio of @bio
196d38bc
KO
330 *
331 * The caller won't have a bi_end_io called when @bio completes - instead,
332 * @parent's bi_end_io won't be called until both @parent and @bio have
333 * completed; the chained bio will also be freed when it completes.
334 *
335 * The caller must not set bi_private or bi_end_io in @bio.
336 */
337void bio_chain(struct bio *bio, struct bio *parent)
338{
339 BUG_ON(bio->bi_private || bio->bi_end_io);
340
341 bio->bi_private = parent;
342 bio->bi_end_io = bio_chain_endio;
c4cf5261 343 bio_inc_remaining(parent);
196d38bc
KO
344}
345EXPORT_SYMBOL(bio_chain);
346
df2cb6da
KO
347static void bio_alloc_rescue(struct work_struct *work)
348{
349 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
350 struct bio *bio;
351
352 while (1) {
353 spin_lock(&bs->rescue_lock);
354 bio = bio_list_pop(&bs->rescue_list);
355 spin_unlock(&bs->rescue_lock);
356
357 if (!bio)
358 break;
359
ed00aabd 360 submit_bio_noacct(bio);
df2cb6da
KO
361 }
362}
363
364static void punt_bios_to_rescuer(struct bio_set *bs)
365{
366 struct bio_list punt, nopunt;
367 struct bio *bio;
368
47e0fb46
N
369 if (WARN_ON_ONCE(!bs->rescue_workqueue))
370 return;
df2cb6da
KO
371 /*
372 * In order to guarantee forward progress we must punt only bios that
373 * were allocated from this bio_set; otherwise, if there was a bio on
374 * there for a stacking driver higher up in the stack, processing it
375 * could require allocating bios from this bio_set, and doing that from
376 * our own rescuer would be bad.
377 *
378 * Since bio lists are singly linked, pop them all instead of trying to
379 * remove from the middle of the list:
380 */
381
382 bio_list_init(&punt);
383 bio_list_init(&nopunt);
384
f5fe1b51 385 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 387 current->bio_list[0] = nopunt;
df2cb6da 388
f5fe1b51
N
389 bio_list_init(&nopunt);
390 while ((bio = bio_list_pop(&current->bio_list[1])))
391 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
392 current->bio_list[1] = nopunt;
df2cb6da
KO
393
394 spin_lock(&bs->rescue_lock);
395 bio_list_merge(&bs->rescue_list, &punt);
396 spin_unlock(&bs->rescue_lock);
397
398 queue_work(bs->rescue_workqueue, &bs->rescue_work);
399}
400
1da177e4
LT
401/**
402 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 403 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 404 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 405 * @bs: the bio_set to allocate from.
1da177e4 406 *
3175199a 407 * Allocate a bio from the mempools in @bs.
3f86a82a 408 *
3175199a
CH
409 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
410 * allocate a bio. This is due to the mempool guarantees. To make this work,
411 * callers must never allocate more than 1 bio at a time from the general pool.
412 * Callers that need to allocate more than 1 bio must always submit the
413 * previously allocated bio for IO before attempting to allocate a new one.
414 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 415 *
3175199a
CH
416 * Note that when running under submit_bio_noacct() (i.e. any block driver),
417 * bios are not submitted until after you return - see the code in
418 * submit_bio_noacct() that converts recursion into iteration, to prevent
419 * stack overflows.
df2cb6da 420 *
3175199a
CH
421 * This would normally mean allocating multiple bios under submit_bio_noacct()
422 * would be susceptible to deadlocks, but we have
423 * deadlock avoidance code that resubmits any blocked bios from a rescuer
424 * thread.
df2cb6da 425 *
3175199a
CH
426 * However, we do not guarantee forward progress for allocations from other
427 * mempools. Doing multiple allocations from the same mempool under
428 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
429 * for per bio allocations.
df2cb6da 430 *
3175199a 431 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 432 */
0f2e6ab8 433struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned short nr_iovecs,
7a88fa19 434 struct bio_set *bs)
1da177e4 435{
df2cb6da 436 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
437 struct bio *bio;
438 void *p;
439
3175199a
CH
440 /* should not use nobvec bioset for nr_iovecs > 0 */
441 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_iovecs > 0))
442 return NULL;
df2cb6da 443
3175199a
CH
444 /*
445 * submit_bio_noacct() converts recursion to iteration; this means if
446 * we're running beneath it, any bios we allocate and submit will not be
447 * submitted (and thus freed) until after we return.
448 *
449 * This exposes us to a potential deadlock if we allocate multiple bios
450 * from the same bio_set() while running underneath submit_bio_noacct().
451 * If we were to allocate multiple bios (say a stacking block driver
452 * that was splitting bios), we would deadlock if we exhausted the
453 * mempool's reserve.
454 *
455 * We solve this, and guarantee forward progress, with a rescuer
456 * workqueue per bio_set. If we go to allocate and there are bios on
457 * current->bio_list, we first try the allocation without
458 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
459 * blocking to the rescuer workqueue before we retry with the original
460 * gfp_flags.
461 */
462 if (current->bio_list &&
463 (!bio_list_empty(&current->bio_list[0]) ||
464 !bio_list_empty(&current->bio_list[1])) &&
465 bs->rescue_workqueue)
466 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
467
468 p = mempool_alloc(&bs->bio_pool, gfp_mask);
469 if (!p && gfp_mask != saved_gfp) {
470 punt_bios_to_rescuer(bs);
471 gfp_mask = saved_gfp;
8aa6ba2f 472 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 473 }
451a9ebf
TH
474 if (unlikely(!p))
475 return NULL;
1da177e4 476
3175199a
CH
477 bio = p + bs->front_pad;
478 if (nr_iovecs > BIO_INLINE_VECS) {
3175199a 479 struct bio_vec *bvl = NULL;
34053979 480
7a800a20 481 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da
KO
482 if (!bvl && gfp_mask != saved_gfp) {
483 punt_bios_to_rescuer(bs);
484 gfp_mask = saved_gfp;
7a800a20 485 bvl = bvec_alloc(&bs->bvec_pool, &nr_iovecs, gfp_mask);
df2cb6da 486 }
34053979
IM
487 if (unlikely(!bvl))
488 goto err_free;
a38352e0 489
7a800a20 490 bio_init(bio, bvl, nr_iovecs);
3f86a82a 491 } else if (nr_iovecs) {
3175199a
CH
492 bio_init(bio, bio->bi_inline_vecs, BIO_INLINE_VECS);
493 } else {
494 bio_init(bio, NULL, 0);
1da177e4 495 }
3f86a82a
KO
496
497 bio->bi_pool = bs;
1da177e4 498 return bio;
34053979
IM
499
500err_free:
8aa6ba2f 501 mempool_free(p, &bs->bio_pool);
34053979 502 return NULL;
1da177e4 503}
a112a71d 504EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 505
3175199a
CH
506/**
507 * bio_kmalloc - kmalloc a bio for I/O
508 * @gfp_mask: the GFP_* mask given to the slab allocator
509 * @nr_iovecs: number of iovecs to pre-allocate
510 *
511 * Use kmalloc to allocate and initialize a bio.
512 *
513 * Returns: Pointer to new bio on success, NULL on failure.
514 */
0f2e6ab8 515struct bio *bio_kmalloc(gfp_t gfp_mask, unsigned short nr_iovecs)
3175199a
CH
516{
517 struct bio *bio;
518
519 if (nr_iovecs > UIO_MAXIOV)
520 return NULL;
521
522 bio = kmalloc(struct_size(bio, bi_inline_vecs, nr_iovecs), gfp_mask);
523 if (unlikely(!bio))
524 return NULL;
525 bio_init(bio, nr_iovecs ? bio->bi_inline_vecs : NULL, nr_iovecs);
526 bio->bi_pool = NULL;
527 return bio;
528}
529EXPORT_SYMBOL(bio_kmalloc);
530
6f822e1b 531void zero_fill_bio(struct bio *bio)
1da177e4 532{
7988613b
KO
533 struct bio_vec bv;
534 struct bvec_iter iter;
1da177e4 535
ab6c340e
CH
536 bio_for_each_segment(bv, bio, iter)
537 memzero_bvec(&bv);
1da177e4 538}
6f822e1b 539EXPORT_SYMBOL(zero_fill_bio);
1da177e4 540
83c9c547
ML
541/**
542 * bio_truncate - truncate the bio to small size of @new_size
543 * @bio: the bio to be truncated
544 * @new_size: new size for truncating the bio
545 *
546 * Description:
547 * Truncate the bio to new size of @new_size. If bio_op(bio) is
548 * REQ_OP_READ, zero the truncated part. This function should only
549 * be used for handling corner cases, such as bio eod.
550 */
4f7ab09a 551static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
552{
553 struct bio_vec bv;
554 struct bvec_iter iter;
555 unsigned int done = 0;
556 bool truncated = false;
557
558 if (new_size >= bio->bi_iter.bi_size)
559 return;
560
83c9c547 561 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
562 goto exit;
563
564 bio_for_each_segment(bv, bio, iter) {
565 if (done + bv.bv_len > new_size) {
566 unsigned offset;
567
568 if (!truncated)
569 offset = new_size - done;
570 else
571 offset = 0;
3ee859e3
OH
572 zero_user(bv.bv_page, bv.bv_offset + offset,
573 bv.bv_len - offset);
85a8ce62
ML
574 truncated = true;
575 }
576 done += bv.bv_len;
577 }
578
579 exit:
580 /*
581 * Don't touch bvec table here and make it really immutable, since
582 * fs bio user has to retrieve all pages via bio_for_each_segment_all
583 * in its .end_bio() callback.
584 *
585 * It is enough to truncate bio by updating .bi_size since we can make
586 * correct bvec with the updated .bi_size for drivers.
587 */
588 bio->bi_iter.bi_size = new_size;
589}
590
29125ed6
CH
591/**
592 * guard_bio_eod - truncate a BIO to fit the block device
593 * @bio: bio to truncate
594 *
595 * This allows us to do IO even on the odd last sectors of a device, even if the
596 * block size is some multiple of the physical sector size.
597 *
598 * We'll just truncate the bio to the size of the device, and clear the end of
599 * the buffer head manually. Truly out-of-range accesses will turn into actual
600 * I/O errors, this only handles the "we need to be able to do I/O at the final
601 * sector" case.
602 */
603void guard_bio_eod(struct bio *bio)
604{
309dca30 605 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
606
607 if (!maxsector)
608 return;
609
610 /*
611 * If the *whole* IO is past the end of the device,
612 * let it through, and the IO layer will turn it into
613 * an EIO.
614 */
615 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
616 return;
617
618 maxsector -= bio->bi_iter.bi_sector;
619 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
620 return;
621
622 bio_truncate(bio, maxsector << 9);
623}
624
be4d234d
JA
625#define ALLOC_CACHE_MAX 512
626#define ALLOC_CACHE_SLACK 64
627
628static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
629 unsigned int nr)
630{
631 unsigned int i = 0;
632 struct bio *bio;
633
fcade2ce
JA
634 while ((bio = cache->free_list) != NULL) {
635 cache->free_list = bio->bi_next;
be4d234d
JA
636 cache->nr--;
637 bio_free(bio);
638 if (++i == nr)
639 break;
640 }
641}
642
643static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
644{
645 struct bio_set *bs;
646
647 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
648 if (bs->cache) {
649 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
650
651 bio_alloc_cache_prune(cache, -1U);
652 }
653 return 0;
654}
655
656static void bio_alloc_cache_destroy(struct bio_set *bs)
657{
658 int cpu;
659
660 if (!bs->cache)
661 return;
662
663 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
664 for_each_possible_cpu(cpu) {
665 struct bio_alloc_cache *cache;
666
667 cache = per_cpu_ptr(bs->cache, cpu);
668 bio_alloc_cache_prune(cache, -1U);
669 }
670 free_percpu(bs->cache);
671}
672
1da177e4
LT
673/**
674 * bio_put - release a reference to a bio
675 * @bio: bio to release reference to
676 *
677 * Description:
678 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 679 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
680 **/
681void bio_put(struct bio *bio)
682{
be4d234d 683 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 684 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
685 if (!atomic_dec_and_test(&bio->__bi_cnt))
686 return;
687 }
dac56212 688
be4d234d
JA
689 if (bio_flagged(bio, BIO_PERCPU_CACHE)) {
690 struct bio_alloc_cache *cache;
691
692 bio_uninit(bio);
693 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
694 bio->bi_next = cache->free_list;
695 cache->free_list = bio;
be4d234d
JA
696 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
697 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
698 put_cpu();
699 } else {
700 bio_free(bio);
dac56212 701 }
1da177e4 702}
a112a71d 703EXPORT_SYMBOL(bio_put);
1da177e4 704
59d276fe
KO
705/**
706 * __bio_clone_fast - clone a bio that shares the original bio's biovec
707 * @bio: destination bio
708 * @bio_src: bio to clone
709 *
710 * Clone a &bio. Caller will own the returned bio, but not
711 * the actual data it points to. Reference count of returned
712 * bio will be one.
713 *
714 * Caller must ensure that @bio_src is not freed before @bio.
715 */
716void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
717{
7a800a20 718 WARN_ON_ONCE(bio->bi_pool && bio->bi_max_vecs);
59d276fe
KO
719
720 /*
309dca30 721 * most users will be overriding ->bi_bdev with a new target,
59d276fe
KO
722 * so we don't set nor calculate new physical/hw segment counts here
723 */
309dca30 724 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 725 bio_set_flag(bio, BIO_CLONED);
111be883
SL
726 if (bio_flagged(bio_src, BIO_THROTTLED))
727 bio_set_flag(bio, BIO_THROTTLED);
46bbf653
CH
728 if (bio_flagged(bio_src, BIO_REMAPPED))
729 bio_set_flag(bio, BIO_REMAPPED);
1eff9d32 730 bio->bi_opf = bio_src->bi_opf;
ca474b73 731 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 732 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
733 bio->bi_iter = bio_src->bi_iter;
734 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 735
db6638d7 736 bio_clone_blkg_association(bio, bio_src);
e439bedf 737 blkcg_bio_issue_init(bio);
59d276fe
KO
738}
739EXPORT_SYMBOL(__bio_clone_fast);
740
741/**
742 * bio_clone_fast - clone a bio that shares the original bio's biovec
743 * @bio: bio to clone
744 * @gfp_mask: allocation priority
745 * @bs: bio_set to allocate from
746 *
747 * Like __bio_clone_fast, only also allocates the returned bio
748 */
749struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
750{
751 struct bio *b;
752
753 b = bio_alloc_bioset(gfp_mask, 0, bs);
754 if (!b)
755 return NULL;
756
757 __bio_clone_fast(b, bio);
758
07560151
EB
759 if (bio_crypt_clone(b, bio, gfp_mask) < 0)
760 goto err_put;
a892c8d5 761
07560151
EB
762 if (bio_integrity(bio) &&
763 bio_integrity_clone(b, bio, gfp_mask) < 0)
764 goto err_put;
59d276fe
KO
765
766 return b;
07560151
EB
767
768err_put:
769 bio_put(b);
770 return NULL;
59d276fe
KO
771}
772EXPORT_SYMBOL(bio_clone_fast);
773
5cbd28e3
CH
774const char *bio_devname(struct bio *bio, char *buf)
775{
309dca30 776 return bdevname(bio->bi_bdev, buf);
5cbd28e3
CH
777}
778EXPORT_SYMBOL(bio_devname);
779
9a6083be
CH
780/**
781 * bio_full - check if the bio is full
782 * @bio: bio to check
783 * @len: length of one segment to be added
784 *
785 * Return true if @bio is full and one segment with @len bytes can't be
786 * added to the bio, otherwise return false
787 */
788static inline bool bio_full(struct bio *bio, unsigned len)
789{
790 if (bio->bi_vcnt >= bio->bi_max_vecs)
791 return true;
792 if (bio->bi_iter.bi_size > UINT_MAX - len)
793 return true;
794 return false;
795}
796
5919482e
ML
797static inline bool page_is_mergeable(const struct bio_vec *bv,
798 struct page *page, unsigned int len, unsigned int off,
ff896738 799 bool *same_page)
5919482e 800{
d8166519
MWO
801 size_t bv_end = bv->bv_offset + bv->bv_len;
802 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
803 phys_addr_t page_addr = page_to_phys(page);
804
805 if (vec_end_addr + 1 != page_addr + off)
806 return false;
807 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
808 return false;
52d52d1c 809
ff896738 810 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
811 if (*same_page)
812 return true;
813 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
814}
815
9774b391
CH
816/**
817 * __bio_try_merge_page - try appending data to an existing bvec.
818 * @bio: destination bio
819 * @page: start page to add
820 * @len: length of the data to add
821 * @off: offset of the data relative to @page
822 * @same_page: return if the segment has been merged inside the same page
823 *
824 * Try to add the data at @page + @off to the last bvec of @bio. This is a
825 * useful optimisation for file systems with a block size smaller than the
826 * page size.
827 *
828 * Warn if (@len, @off) crosses pages in case that @same_page is true.
829 *
830 * Return %true on success or %false on failure.
831 */
832static bool __bio_try_merge_page(struct bio *bio, struct page *page,
833 unsigned int len, unsigned int off, bool *same_page)
834{
835 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
836 return false;
837
838 if (bio->bi_vcnt > 0) {
839 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
840
841 if (page_is_mergeable(bv, page, len, off, same_page)) {
842 if (bio->bi_iter.bi_size > UINT_MAX - len) {
843 *same_page = false;
844 return false;
845 }
846 bv->bv_len += len;
847 bio->bi_iter.bi_size += len;
848 return true;
849 }
850 }
851 return false;
852}
853
e4581105
CH
854/*
855 * Try to merge a page into a segment, while obeying the hardware segment
856 * size limit. This is not for normal read/write bios, but for passthrough
857 * or Zone Append operations that we can't split.
858 */
859static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
860 struct page *page, unsigned len,
861 unsigned offset, bool *same_page)
489fbbcb 862{
384209cd 863 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
864 unsigned long mask = queue_segment_boundary(q);
865 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
866 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
867
868 if ((addr1 | mask) != (addr2 | mask))
869 return false;
489fbbcb
ML
870 if (bv->bv_len + len > queue_max_segment_size(q))
871 return false;
384209cd 872 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
873}
874
1da177e4 875/**
e4581105
CH
876 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
877 * @q: the target queue
878 * @bio: destination bio
879 * @page: page to add
880 * @len: vec entry length
881 * @offset: vec entry offset
882 * @max_sectors: maximum number of sectors that can be added
883 * @same_page: return if the segment has been merged inside the same page
c66a14d0 884 *
e4581105
CH
885 * Add a page to a bio while respecting the hardware max_sectors, max_segment
886 * and gap limitations.
1da177e4 887 */
e4581105 888int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 889 struct page *page, unsigned int len, unsigned int offset,
e4581105 890 unsigned int max_sectors, bool *same_page)
1da177e4 891{
1da177e4
LT
892 struct bio_vec *bvec;
893
e4581105 894 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
895 return 0;
896
e4581105 897 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
898 return 0;
899
80cfd548 900 if (bio->bi_vcnt > 0) {
e4581105 901 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 902 return len;
320ea869
CH
903
904 /*
905 * If the queue doesn't support SG gaps and adding this segment
906 * would create a gap, disallow it.
907 */
384209cd 908 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
320ea869
CH
909 if (bvec_gap_to_prev(q, bvec, offset))
910 return 0;
80cfd548
JA
911 }
912
79d08f89 913 if (bio_full(bio, len))
1da177e4
LT
914 return 0;
915
14ccb66b 916 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
917 return 0;
918
fcbf6a08
ML
919 bvec = &bio->bi_io_vec[bio->bi_vcnt];
920 bvec->bv_page = page;
921 bvec->bv_len = len;
922 bvec->bv_offset = offset;
923 bio->bi_vcnt++;
dcdca753 924 bio->bi_iter.bi_size += len;
1da177e4
LT
925 return len;
926}
19047087 927
e4581105
CH
928/**
929 * bio_add_pc_page - attempt to add page to passthrough bio
930 * @q: the target queue
931 * @bio: destination bio
932 * @page: page to add
933 * @len: vec entry length
934 * @offset: vec entry offset
935 *
936 * Attempt to add a page to the bio_vec maplist. This can fail for a
937 * number of reasons, such as the bio being full or target block device
938 * limitations. The target block device must allow bio's up to PAGE_SIZE,
939 * so it is always possible to add a single page to an empty bio.
940 *
941 * This should only be used by passthrough bios.
942 */
19047087
ML
943int bio_add_pc_page(struct request_queue *q, struct bio *bio,
944 struct page *page, unsigned int len, unsigned int offset)
945{
d1916c86 946 bool same_page = false;
e4581105
CH
947 return bio_add_hw_page(q, bio, page, len, offset,
948 queue_max_hw_sectors(q), &same_page);
19047087 949}
a112a71d 950EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 951
ae29333f
JT
952/**
953 * bio_add_zone_append_page - attempt to add page to zone-append bio
954 * @bio: destination bio
955 * @page: page to add
956 * @len: vec entry length
957 * @offset: vec entry offset
958 *
959 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
960 * for a zone-append request. This can fail for a number of reasons, such as the
961 * bio being full or the target block device is not a zoned block device or
962 * other limitations of the target block device. The target block device must
963 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
964 * to an empty bio.
965 *
966 * Returns: number of bytes added to the bio, or 0 in case of a failure.
967 */
968int bio_add_zone_append_page(struct bio *bio, struct page *page,
969 unsigned int len, unsigned int offset)
970{
3caee463 971 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
972 bool same_page = false;
973
974 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
975 return 0;
976
977 if (WARN_ON_ONCE(!blk_queue_is_zoned(q)))
978 return 0;
979
980 return bio_add_hw_page(q, bio, page, len, offset,
981 queue_max_zone_append_sectors(q), &same_page);
982}
983EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
984
0aa69fd3 985/**
551879a4 986 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 987 * @bio: destination bio
551879a4
ML
988 * @page: start page to add
989 * @len: length of the data to add, may cross pages
990 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
991 *
992 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
993 * that @bio has space for another bvec.
994 */
995void __bio_add_page(struct bio *bio, struct page *page,
996 unsigned int len, unsigned int off)
997{
998 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 999
0aa69fd3 1000 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1001 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1002
1003 bv->bv_page = page;
1004 bv->bv_offset = off;
1005 bv->bv_len = len;
c66a14d0 1006
c66a14d0 1007 bio->bi_iter.bi_size += len;
0aa69fd3 1008 bio->bi_vcnt++;
b8e24a93
JW
1009
1010 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1011 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1012}
1013EXPORT_SYMBOL_GPL(__bio_add_page);
1014
1015/**
551879a4 1016 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1017 * @bio: destination bio
551879a4
ML
1018 * @page: start page to add
1019 * @len: vec entry length, may cross pages
1020 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1021 *
551879a4 1022 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1023 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1024 */
1025int bio_add_page(struct bio *bio, struct page *page,
1026 unsigned int len, unsigned int offset)
1027{
ff896738
CH
1028 bool same_page = false;
1029
1030 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1031 if (bio_full(bio, len))
0aa69fd3
CH
1032 return 0;
1033 __bio_add_page(bio, page, len, offset);
1034 }
c66a14d0 1035 return len;
1da177e4 1036}
a112a71d 1037EXPORT_SYMBOL(bio_add_page);
1da177e4 1038
85f5a74c
MWO
1039/**
1040 * bio_add_folio - Attempt to add part of a folio to a bio.
1041 * @bio: BIO to add to.
1042 * @folio: Folio to add.
1043 * @len: How many bytes from the folio to add.
1044 * @off: First byte in this folio to add.
1045 *
1046 * Filesystems that use folios can call this function instead of calling
1047 * bio_add_page() for each page in the folio. If @off is bigger than
1048 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1049 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1050 *
1051 * Return: Whether the addition was successful.
1052 */
1053bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1054 size_t off)
1055{
1056 if (len > UINT_MAX || off > UINT_MAX)
1057 return 0;
1058 return bio_add_page(bio, &folio->page, len, off) > 0;
1059}
1060
c809084a 1061void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1062{
1063 struct bvec_iter_all iter_all;
1064 struct bio_vec *bvec;
7321ecbf 1065
d241a95f
CH
1066 bio_for_each_segment_all(bvec, bio, iter_all) {
1067 if (mark_dirty && !PageCompound(bvec->bv_page))
1068 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1069 put_page(bvec->bv_page);
d241a95f 1070 }
7321ecbf 1071}
c809084a 1072EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1073
1bb6b810 1074void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1075{
fa5fa8ec
PB
1076 size_t size = iov_iter_count(iter);
1077
7a800a20 1078 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1079
fa5fa8ec
PB
1080 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1081 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1082 size_t max_sectors = queue_max_zone_append_sectors(q);
1083
1084 size = min(size, max_sectors << SECTOR_SHIFT);
1085 }
1086
c42bca92 1087 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1088 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1089 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1090 bio->bi_iter.bi_size = size;
ed97ce5e 1091 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1092 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1093}
c42bca92 1094
d9cf3bd5
PB
1095static void bio_put_pages(struct page **pages, size_t size, size_t off)
1096{
1097 size_t i, nr = DIV_ROUND_UP(size + (off & ~PAGE_MASK), PAGE_SIZE);
1098
1099 for (i = 0; i < nr; i++)
1100 put_page(pages[i]);
1101}
1102
576ed913
CH
1103#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1104
2cefe4db 1105/**
17d51b10 1106 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1107 * @bio: bio to add pages to
1108 * @iter: iov iterator describing the region to be mapped
1109 *
17d51b10 1110 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1111 * pages will have to be released using put_page() when done.
17d51b10 1112 * For multi-segment *iter, this function only adds pages from the
3cf14889 1113 * next non-empty segment of the iov iterator.
2cefe4db 1114 */
17d51b10 1115static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1116{
576ed913
CH
1117 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1118 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1119 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1120 struct page **pages = (struct page **)bv;
45691804 1121 bool same_page = false;
576ed913
CH
1122 ssize_t size, left;
1123 unsigned len, i;
b403ea24 1124 size_t offset;
576ed913
CH
1125
1126 /*
1127 * Move page array up in the allocated memory for the bio vecs as far as
1128 * possible so that we can start filling biovecs from the beginning
1129 * without overwriting the temporary page array.
1130 */
1131 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1132 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1133
35c820e7 1134 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
2cefe4db
KO
1135 if (unlikely(size <= 0))
1136 return size ? size : -EFAULT;
2cefe4db 1137
576ed913
CH
1138 for (left = size, i = 0; left > 0; left -= len, i++) {
1139 struct page *page = pages[i];
2cefe4db 1140
576ed913 1141 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
1142
1143 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
1144 if (same_page)
1145 put_page(page);
1146 } else {
d9cf3bd5
PB
1147 if (WARN_ON_ONCE(bio_full(bio, len))) {
1148 bio_put_pages(pages + i, left, offset);
1149 return -EINVAL;
1150 }
45691804
CH
1151 __bio_add_page(bio, page, len, offset);
1152 }
576ed913 1153 offset = 0;
2cefe4db
KO
1154 }
1155
2cefe4db
KO
1156 iov_iter_advance(iter, size);
1157 return 0;
1158}
17d51b10 1159
0512a75b
KB
1160static int __bio_iov_append_get_pages(struct bio *bio, struct iov_iter *iter)
1161{
1162 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1163 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
3caee463 1164 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
0512a75b
KB
1165 unsigned int max_append_sectors = queue_max_zone_append_sectors(q);
1166 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1167 struct page **pages = (struct page **)bv;
1168 ssize_t size, left;
1169 unsigned len, i;
1170 size_t offset;
4977d121 1171 int ret = 0;
0512a75b
KB
1172
1173 if (WARN_ON_ONCE(!max_append_sectors))
1174 return 0;
1175
1176 /*
1177 * Move page array up in the allocated memory for the bio vecs as far as
1178 * possible so that we can start filling biovecs from the beginning
1179 * without overwriting the temporary page array.
1180 */
1181 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1182 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
1183
1184 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
1185 if (unlikely(size <= 0))
1186 return size ? size : -EFAULT;
1187
1188 for (left = size, i = 0; left > 0; left -= len, i++) {
1189 struct page *page = pages[i];
1190 bool same_page = false;
1191
1192 len = min_t(size_t, PAGE_SIZE - offset, left);
1193 if (bio_add_hw_page(q, bio, page, len, offset,
4977d121 1194 max_append_sectors, &same_page) != len) {
d9cf3bd5 1195 bio_put_pages(pages + i, left, offset);
4977d121
NA
1196 ret = -EINVAL;
1197 break;
1198 }
0512a75b
KB
1199 if (same_page)
1200 put_page(page);
1201 offset = 0;
1202 }
1203
4977d121
NA
1204 iov_iter_advance(iter, size - left);
1205 return ret;
0512a75b
KB
1206}
1207
17d51b10 1208/**
6d0c48ae 1209 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1210 * @bio: bio to add pages to
6d0c48ae
JA
1211 * @iter: iov iterator describing the region to be added
1212 *
1213 * This takes either an iterator pointing to user memory, or one pointing to
1214 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1215 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1216 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1217 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1218 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1219 * completed by a call to ->ki_complete() or returns with an error other than
1220 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1221 * on IO completion. If it isn't, then pages should be released.
17d51b10 1222 *
17d51b10 1223 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1224 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1225 * MM encounters an error pinning the requested pages, it stops. Error
1226 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1227 *
1228 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1229 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1230 */
1231int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1232{
c42bca92 1233 int ret = 0;
14eacf12 1234
c42bca92 1235 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1236 bio_iov_bvec_set(bio, iter);
1237 iov_iter_advance(iter, bio->bi_iter.bi_size);
1238 return 0;
c42bca92 1239 }
17d51b10
MW
1240
1241 do {
86004515 1242 if (bio_op(bio) == REQ_OP_ZONE_APPEND)
0512a75b 1243 ret = __bio_iov_append_get_pages(bio, iter);
86004515
CH
1244 else
1245 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1246 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1247
0cf41e5e
PB
1248 /* don't account direct I/O as memory stall */
1249 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1250 return bio->bi_vcnt ? 0 : ret;
17d51b10 1251}
29b2a3aa 1252EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1253
4246a0b6 1254static void submit_bio_wait_endio(struct bio *bio)
9e882242 1255{
65e53aab 1256 complete(bio->bi_private);
9e882242
KO
1257}
1258
1259/**
1260 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1261 * @bio: The &struct bio which describes the I/O
1262 *
1263 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1264 * bio_endio() on failure.
3d289d68
JK
1265 *
1266 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1267 * result in bio reference to be consumed. The caller must drop the reference
1268 * on his own.
9e882242 1269 */
4e49ea4a 1270int submit_bio_wait(struct bio *bio)
9e882242 1271{
309dca30
CH
1272 DECLARE_COMPLETION_ONSTACK_MAP(done,
1273 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1274 unsigned long hang_check;
9e882242 1275
65e53aab 1276 bio->bi_private = &done;
9e882242 1277 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1278 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1279 submit_bio(bio);
de6a78b6
ML
1280
1281 /* Prevent hang_check timer from firing at us during very long I/O */
1282 hang_check = sysctl_hung_task_timeout_secs;
1283 if (hang_check)
1284 while (!wait_for_completion_io_timeout(&done,
1285 hang_check * (HZ/2)))
1286 ;
1287 else
1288 wait_for_completion_io(&done);
9e882242 1289
65e53aab 1290 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1291}
1292EXPORT_SYMBOL(submit_bio_wait);
1293
d4aa57a1 1294void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1295{
1296 if (bio_integrity(bio))
1297 bio_integrity_advance(bio, bytes);
1298
a892c8d5 1299 bio_crypt_advance(bio, bytes);
4550dd6c 1300 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1301}
d4aa57a1 1302EXPORT_SYMBOL(__bio_advance);
054bdf64 1303
45db54d5
KO
1304void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1305 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1306{
45db54d5 1307 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1308 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1309 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1310 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
1311 void *src_buf;
1312
1313 src_buf = bvec_kmap_local(&src_bv);
1314 memcpy_to_bvec(&dst_bv, src_buf);
1315 kunmap_local(src_buf);
6e6e811d 1316
22b56c29
PB
1317 bio_advance_iter_single(src, src_iter, bytes);
1318 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1319 }
1320}
38a72dac
KO
1321EXPORT_SYMBOL(bio_copy_data_iter);
1322
1323/**
45db54d5
KO
1324 * bio_copy_data - copy contents of data buffers from one bio to another
1325 * @src: source bio
1326 * @dst: destination bio
38a72dac
KO
1327 *
1328 * Stops when it reaches the end of either @src or @dst - that is, copies
1329 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1330 */
1331void bio_copy_data(struct bio *dst, struct bio *src)
1332{
45db54d5
KO
1333 struct bvec_iter src_iter = src->bi_iter;
1334 struct bvec_iter dst_iter = dst->bi_iter;
1335
1336 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1337}
16ac3d63
KO
1338EXPORT_SYMBOL(bio_copy_data);
1339
491221f8 1340void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1341{
1342 struct bio_vec *bvec;
6dc4f100 1343 struct bvec_iter_all iter_all;
1dfa0f68 1344
2b070cfe 1345 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1346 __free_page(bvec->bv_page);
1347}
491221f8 1348EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1349
1da177e4
LT
1350/*
1351 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1352 * for performing direct-IO in BIOs.
1353 *
1354 * The problem is that we cannot run set_page_dirty() from interrupt context
1355 * because the required locks are not interrupt-safe. So what we can do is to
1356 * mark the pages dirty _before_ performing IO. And in interrupt context,
1357 * check that the pages are still dirty. If so, fine. If not, redirty them
1358 * in process context.
1359 *
1360 * We special-case compound pages here: normally this means reads into hugetlb
1361 * pages. The logic in here doesn't really work right for compound pages
1362 * because the VM does not uniformly chase down the head page in all cases.
1363 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1364 * handle them at all. So we skip compound pages here at an early stage.
1365 *
1366 * Note that this code is very hard to test under normal circumstances because
1367 * direct-io pins the pages with get_user_pages(). This makes
1368 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1369 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1370 * pagecache.
1371 *
1372 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1373 * deferred bio dirtying paths.
1374 */
1375
1376/*
1377 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1378 */
1379void bio_set_pages_dirty(struct bio *bio)
1380{
cb34e057 1381 struct bio_vec *bvec;
6dc4f100 1382 struct bvec_iter_all iter_all;
1da177e4 1383
2b070cfe 1384 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1385 if (!PageCompound(bvec->bv_page))
1386 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1387 }
1388}
1389
1da177e4
LT
1390/*
1391 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1392 * If they are, then fine. If, however, some pages are clean then they must
1393 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1394 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1395 *
1396 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1397 * here on. It will run one put_page() against each page and will run one
1398 * bio_put() against the BIO.
1da177e4
LT
1399 */
1400
65f27f38 1401static void bio_dirty_fn(struct work_struct *work);
1da177e4 1402
65f27f38 1403static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1404static DEFINE_SPINLOCK(bio_dirty_lock);
1405static struct bio *bio_dirty_list;
1406
1407/*
1408 * This runs in process context
1409 */
65f27f38 1410static void bio_dirty_fn(struct work_struct *work)
1da177e4 1411{
24d5493f 1412 struct bio *bio, *next;
1da177e4 1413
24d5493f
CH
1414 spin_lock_irq(&bio_dirty_lock);
1415 next = bio_dirty_list;
1da177e4 1416 bio_dirty_list = NULL;
24d5493f 1417 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1418
24d5493f
CH
1419 while ((bio = next) != NULL) {
1420 next = bio->bi_private;
1da177e4 1421
d241a95f 1422 bio_release_pages(bio, true);
1da177e4 1423 bio_put(bio);
1da177e4
LT
1424 }
1425}
1426
1427void bio_check_pages_dirty(struct bio *bio)
1428{
cb34e057 1429 struct bio_vec *bvec;
24d5493f 1430 unsigned long flags;
6dc4f100 1431 struct bvec_iter_all iter_all;
1da177e4 1432
2b070cfe 1433 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1434 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1435 goto defer;
1da177e4
LT
1436 }
1437
d241a95f 1438 bio_release_pages(bio, false);
24d5493f
CH
1439 bio_put(bio);
1440 return;
1441defer:
1442 spin_lock_irqsave(&bio_dirty_lock, flags);
1443 bio->bi_private = bio_dirty_list;
1444 bio_dirty_list = bio;
1445 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1446 schedule_work(&bio_dirty_work);
1da177e4
LT
1447}
1448
c4cf5261
JA
1449static inline bool bio_remaining_done(struct bio *bio)
1450{
1451 /*
1452 * If we're not chaining, then ->__bi_remaining is always 1 and
1453 * we always end io on the first invocation.
1454 */
1455 if (!bio_flagged(bio, BIO_CHAIN))
1456 return true;
1457
1458 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1459
326e1dbb 1460 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1461 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1462 return true;
326e1dbb 1463 }
c4cf5261
JA
1464
1465 return false;
1466}
1467
1da177e4
LT
1468/**
1469 * bio_endio - end I/O on a bio
1470 * @bio: bio
1da177e4
LT
1471 *
1472 * Description:
4246a0b6
CH
1473 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1474 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1475 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1476 *
1477 * bio_endio() can be called several times on a bio that has been chained
1478 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1479 * last time.
1da177e4 1480 **/
4246a0b6 1481void bio_endio(struct bio *bio)
1da177e4 1482{
ba8c6967 1483again:
2b885517 1484 if (!bio_remaining_done(bio))
ba8c6967 1485 return;
7c20f116
CH
1486 if (!bio_integrity_endio(bio))
1487 return;
1da177e4 1488
a647a524 1489 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACKED))
3caee463 1490 rq_qos_done_bio(bdev_get_queue(bio->bi_bdev), bio);
67b42d0b 1491
60b6a7e6 1492 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1493 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1494 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1495 }
1496
ba8c6967
CH
1497 /*
1498 * Need to have a real endio function for chained bios, otherwise
1499 * various corner cases will break (like stacking block devices that
1500 * save/restore bi_end_io) - however, we want to avoid unbounded
1501 * recursion and blowing the stack. Tail call optimization would
1502 * handle this, but compiling with frame pointers also disables
1503 * gcc's sibling call optimization.
1504 */
1505 if (bio->bi_end_io == bio_chain_endio) {
1506 bio = __bio_chain_endio(bio);
1507 goto again;
196d38bc 1508 }
ba8c6967 1509
9e234eea 1510 blk_throtl_bio_endio(bio);
b222dd2f
SL
1511 /* release cgroup info */
1512 bio_uninit(bio);
ba8c6967
CH
1513 if (bio->bi_end_io)
1514 bio->bi_end_io(bio);
1da177e4 1515}
a112a71d 1516EXPORT_SYMBOL(bio_endio);
1da177e4 1517
20d0189b
KO
1518/**
1519 * bio_split - split a bio
1520 * @bio: bio to split
1521 * @sectors: number of sectors to split from the front of @bio
1522 * @gfp: gfp mask
1523 * @bs: bio set to allocate from
1524 *
1525 * Allocates and returns a new bio which represents @sectors from the start of
1526 * @bio, and updates @bio to represent the remaining sectors.
1527 *
f3f5da62 1528 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1529 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1530 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1531 */
1532struct bio *bio_split(struct bio *bio, int sectors,
1533 gfp_t gfp, struct bio_set *bs)
1534{
f341a4d3 1535 struct bio *split;
20d0189b
KO
1536
1537 BUG_ON(sectors <= 0);
1538 BUG_ON(sectors >= bio_sectors(bio));
1539
0512a75b
KB
1540 /* Zone append commands cannot be split */
1541 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1542 return NULL;
1543
f9d03f96 1544 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1545 if (!split)
1546 return NULL;
1547
1548 split->bi_iter.bi_size = sectors << 9;
1549
1550 if (bio_integrity(split))
fbd08e76 1551 bio_integrity_trim(split);
20d0189b
KO
1552
1553 bio_advance(bio, split->bi_iter.bi_size);
1554
fbbaf700 1555 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1556 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1557
20d0189b
KO
1558 return split;
1559}
1560EXPORT_SYMBOL(bio_split);
1561
6678d83f
KO
1562/**
1563 * bio_trim - trim a bio
1564 * @bio: bio to trim
1565 * @offset: number of sectors to trim from the front of @bio
1566 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1567 *
1568 * This function is typically used for bios that are cloned and submitted
1569 * to the underlying device in parts.
6678d83f 1570 */
e83502ca 1571void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1572{
e83502ca
CK
1573 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
1574 offset + size > bio->bi_iter.bi_size))
1575 return;
6678d83f
KO
1576
1577 size <<= 9;
4f024f37 1578 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1579 return;
1580
6678d83f 1581 bio_advance(bio, offset << 9);
4f024f37 1582 bio->bi_iter.bi_size = size;
376a78ab
DM
1583
1584 if (bio_integrity(bio))
fbd08e76 1585 bio_integrity_trim(bio);
6678d83f
KO
1586}
1587EXPORT_SYMBOL_GPL(bio_trim);
1588
1da177e4
LT
1589/*
1590 * create memory pools for biovec's in a bio_set.
1591 * use the global biovec slabs created for general use.
1592 */
8aa6ba2f 1593int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1594{
7a800a20 1595 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1596
8aa6ba2f 1597 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1598}
1599
917a38c7
KO
1600/*
1601 * bioset_exit - exit a bioset initialized with bioset_init()
1602 *
1603 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1604 * kzalloc()).
1605 */
1606void bioset_exit(struct bio_set *bs)
1da177e4 1607{
be4d234d 1608 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1609 if (bs->rescue_workqueue)
1610 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1611 bs->rescue_workqueue = NULL;
df2cb6da 1612
8aa6ba2f
KO
1613 mempool_exit(&bs->bio_pool);
1614 mempool_exit(&bs->bvec_pool);
9f060e22 1615
7878cba9 1616 bioset_integrity_free(bs);
917a38c7
KO
1617 if (bs->bio_slab)
1618 bio_put_slab(bs);
1619 bs->bio_slab = NULL;
1620}
1621EXPORT_SYMBOL(bioset_exit);
1da177e4 1622
917a38c7
KO
1623/**
1624 * bioset_init - Initialize a bio_set
dad08527 1625 * @bs: pool to initialize
917a38c7
KO
1626 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1627 * @front_pad: Number of bytes to allocate in front of the returned bio
1628 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1629 * and %BIOSET_NEED_RESCUER
1630 *
dad08527
KO
1631 * Description:
1632 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1633 * to ask for a number of bytes to be allocated in front of the bio.
1634 * Front pad allocation is useful for embedding the bio inside
1635 * another structure, to avoid allocating extra data to go with the bio.
1636 * Note that the bio must be embedded at the END of that structure always,
1637 * or things will break badly.
1638 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1639 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1640 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1641 * dispatch queued requests when the mempool runs out of space.
1642 *
917a38c7
KO
1643 */
1644int bioset_init(struct bio_set *bs,
1645 unsigned int pool_size,
1646 unsigned int front_pad,
1647 int flags)
1648{
917a38c7 1649 bs->front_pad = front_pad;
9f180e31
ML
1650 if (flags & BIOSET_NEED_BVECS)
1651 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1652 else
1653 bs->back_pad = 0;
917a38c7
KO
1654
1655 spin_lock_init(&bs->rescue_lock);
1656 bio_list_init(&bs->rescue_list);
1657 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1658
49d1ec85 1659 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1660 if (!bs->bio_slab)
1661 return -ENOMEM;
1662
1663 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1664 goto bad;
1665
1666 if ((flags & BIOSET_NEED_BVECS) &&
1667 biovec_init_pool(&bs->bvec_pool, pool_size))
1668 goto bad;
1669
be4d234d
JA
1670 if (flags & BIOSET_NEED_RESCUER) {
1671 bs->rescue_workqueue = alloc_workqueue("bioset",
1672 WQ_MEM_RECLAIM, 0);
1673 if (!bs->rescue_workqueue)
1674 goto bad;
1675 }
1676 if (flags & BIOSET_PERCPU_CACHE) {
1677 bs->cache = alloc_percpu(struct bio_alloc_cache);
1678 if (!bs->cache)
1679 goto bad;
1680 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1681 }
917a38c7
KO
1682
1683 return 0;
1684bad:
1685 bioset_exit(bs);
1686 return -ENOMEM;
1687}
1688EXPORT_SYMBOL(bioset_init);
1689
28e89fd9
JA
1690/*
1691 * Initialize and setup a new bio_set, based on the settings from
1692 * another bio_set.
1693 */
1694int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1695{
1696 int flags;
1697
1698 flags = 0;
1699 if (src->bvec_pool.min_nr)
1700 flags |= BIOSET_NEED_BVECS;
1701 if (src->rescue_workqueue)
1702 flags |= BIOSET_NEED_RESCUER;
1703
1704 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1705}
1706EXPORT_SYMBOL(bioset_init_from_src);
1707
be4d234d
JA
1708/**
1709 * bio_alloc_kiocb - Allocate a bio from bio_set based on kiocb
1710 * @kiocb: kiocb describing the IO
0ef47db1 1711 * @nr_vecs: number of iovecs to pre-allocate
be4d234d
JA
1712 * @bs: bio_set to allocate from
1713 *
1714 * Description:
1715 * Like @bio_alloc_bioset, but pass in the kiocb. The kiocb is only
1716 * used to check if we should dip into the per-cpu bio_set allocation
3d5b3fbe
JA
1717 * cache. The allocation uses GFP_KERNEL internally. On return, the
1718 * bio is marked BIO_PERCPU_CACHEABLE, and the final put of the bio
1719 * MUST be done from process context, not hard/soft IRQ.
be4d234d
JA
1720 *
1721 */
1722struct bio *bio_alloc_kiocb(struct kiocb *kiocb, unsigned short nr_vecs,
1723 struct bio_set *bs)
1724{
1725 struct bio_alloc_cache *cache;
1726 struct bio *bio;
1727
1728 if (!(kiocb->ki_flags & IOCB_ALLOC_CACHE) || nr_vecs > BIO_INLINE_VECS)
1729 return bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1730
1731 cache = per_cpu_ptr(bs->cache, get_cpu());
fcade2ce
JA
1732 if (cache->free_list) {
1733 bio = cache->free_list;
1734 cache->free_list = bio->bi_next;
be4d234d
JA
1735 cache->nr--;
1736 put_cpu();
1737 bio_init(bio, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs);
1738 bio->bi_pool = bs;
1739 bio_set_flag(bio, BIO_PERCPU_CACHE);
1740 return bio;
1741 }
1742 put_cpu();
1743 bio = bio_alloc_bioset(GFP_KERNEL, nr_vecs, bs);
1744 bio_set_flag(bio, BIO_PERCPU_CACHE);
1745 return bio;
1746}
1747EXPORT_SYMBOL_GPL(bio_alloc_kiocb);
1748
de76fd89 1749static int __init init_bio(void)
1da177e4
LT
1750{
1751 int i;
1752
7878cba9 1753 bio_integrity_init();
1da177e4 1754
de76fd89
CH
1755 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1756 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1757
de76fd89
CH
1758 bvs->slab = kmem_cache_create(bvs->name,
1759 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1760 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1761 }
1da177e4 1762
be4d234d
JA
1763 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1764 bio_cpu_dead);
1765
f4f8154a 1766 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1767 panic("bio: can't allocate bios\n");
1768
f4f8154a 1769 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1770 panic("bio: can't create integrity pool\n");
1771
1da177e4
LT
1772 return 0;
1773}
1da177e4 1774subsys_initcall(init_bio);