Merge tag 'pidfd-updates-v5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/braun...
[linux-2.6-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
08e18eab 18#include <linux/blk-cgroup.h>
1da177e4 19
55782138 20#include <trace/events/block.h>
9e234eea 21#include "blk.h"
67b42d0b 22#include "blk-rq-qos.h"
0bfc2455 23
392ddc32
JA
24/*
25 * Test patch to inline a certain number of bi_io_vec's inside the bio
26 * itself, to shrink a bio data allocation from two mempool calls to one
27 */
28#define BIO_INLINE_VECS 4
29
1da177e4
LT
30/*
31 * if you change this list, also change bvec_alloc or things will
32 * break badly! cannot be bigger than what you can fit into an
33 * unsigned short
34 */
bd5c4fac 35#define BV(x, n) { .nr_vecs = x, .name = "biovec-"#n }
ed996a52 36static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
bd5c4fac 37 BV(1, 1), BV(4, 4), BV(16, 16), BV(64, 64), BV(128, 128), BV(BIO_MAX_PAGES, max),
1da177e4
LT
38};
39#undef BV
40
1da177e4
LT
41/*
42 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
43 * IO code that does not need private memory pools.
44 */
f4f8154a 45struct bio_set fs_bio_set;
3f86a82a 46EXPORT_SYMBOL(fs_bio_set);
1da177e4 47
bb799ca0
JA
48/*
49 * Our slab pool management
50 */
51struct bio_slab {
52 struct kmem_cache *slab;
53 unsigned int slab_ref;
54 unsigned int slab_size;
55 char name[8];
56};
57static DEFINE_MUTEX(bio_slab_lock);
58static struct bio_slab *bio_slabs;
59static unsigned int bio_slab_nr, bio_slab_max;
60
61static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
62{
63 unsigned int sz = sizeof(struct bio) + extra_size;
64 struct kmem_cache *slab = NULL;
389d7b26 65 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 66 unsigned int new_bio_slab_max;
bb799ca0
JA
67 unsigned int i, entry = -1;
68
69 mutex_lock(&bio_slab_lock);
70
71 i = 0;
72 while (i < bio_slab_nr) {
f06f135d 73 bslab = &bio_slabs[i];
bb799ca0
JA
74
75 if (!bslab->slab && entry == -1)
76 entry = i;
77 else if (bslab->slab_size == sz) {
78 slab = bslab->slab;
79 bslab->slab_ref++;
80 break;
81 }
82 i++;
83 }
84
85 if (slab)
86 goto out_unlock;
87
88 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 89 new_bio_slab_max = bio_slab_max << 1;
389d7b26 90 new_bio_slabs = krealloc(bio_slabs,
386bc35a 91 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
92 GFP_KERNEL);
93 if (!new_bio_slabs)
bb799ca0 94 goto out_unlock;
386bc35a 95 bio_slab_max = new_bio_slab_max;
389d7b26 96 bio_slabs = new_bio_slabs;
bb799ca0
JA
97 }
98 if (entry == -1)
99 entry = bio_slab_nr++;
100
101 bslab = &bio_slabs[entry];
102
103 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
104 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
105 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
106 if (!slab)
107 goto out_unlock;
108
bb799ca0
JA
109 bslab->slab = slab;
110 bslab->slab_ref = 1;
111 bslab->slab_size = sz;
112out_unlock:
113 mutex_unlock(&bio_slab_lock);
114 return slab;
115}
116
117static void bio_put_slab(struct bio_set *bs)
118{
119 struct bio_slab *bslab = NULL;
120 unsigned int i;
121
122 mutex_lock(&bio_slab_lock);
123
124 for (i = 0; i < bio_slab_nr; i++) {
125 if (bs->bio_slab == bio_slabs[i].slab) {
126 bslab = &bio_slabs[i];
127 break;
128 }
129 }
130
131 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
132 goto out;
133
134 WARN_ON(!bslab->slab_ref);
135
136 if (--bslab->slab_ref)
137 goto out;
138
139 kmem_cache_destroy(bslab->slab);
140 bslab->slab = NULL;
141
142out:
143 mutex_unlock(&bio_slab_lock);
144}
145
7ba1ba12
MP
146unsigned int bvec_nr_vecs(unsigned short idx)
147{
d6c02a9b 148 return bvec_slabs[--idx].nr_vecs;
7ba1ba12
MP
149}
150
9f060e22 151void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 152{
ed996a52
CH
153 if (!idx)
154 return;
155 idx--;
156
157 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 158
ed996a52 159 if (idx == BVEC_POOL_MAX) {
9f060e22 160 mempool_free(bv, pool);
ed996a52 161 } else {
bb799ca0
JA
162 struct biovec_slab *bvs = bvec_slabs + idx;
163
164 kmem_cache_free(bvs->slab, bv);
165 }
166}
167
9f060e22
KO
168struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
169 mempool_t *pool)
1da177e4
LT
170{
171 struct bio_vec *bvl;
1da177e4 172
7ff9345f
JA
173 /*
174 * see comment near bvec_array define!
175 */
176 switch (nr) {
177 case 1:
178 *idx = 0;
179 break;
180 case 2 ... 4:
181 *idx = 1;
182 break;
183 case 5 ... 16:
184 *idx = 2;
185 break;
186 case 17 ... 64:
187 *idx = 3;
188 break;
189 case 65 ... 128:
190 *idx = 4;
191 break;
192 case 129 ... BIO_MAX_PAGES:
193 *idx = 5;
194 break;
195 default:
196 return NULL;
197 }
198
199 /*
200 * idx now points to the pool we want to allocate from. only the
201 * 1-vec entry pool is mempool backed.
202 */
ed996a52 203 if (*idx == BVEC_POOL_MAX) {
7ff9345f 204fallback:
9f060e22 205 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
206 } else {
207 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 208 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 209
0a0d96b0 210 /*
7ff9345f
JA
211 * Make this allocation restricted and don't dump info on
212 * allocation failures, since we'll fallback to the mempool
213 * in case of failure.
0a0d96b0 214 */
7ff9345f 215 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 216
0a0d96b0 217 /*
d0164adc 218 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 219 * is set, retry with the 1-entry mempool
0a0d96b0 220 */
7ff9345f 221 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 222 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 223 *idx = BVEC_POOL_MAX;
7ff9345f
JA
224 goto fallback;
225 }
226 }
227
ed996a52 228 (*idx)++;
1da177e4
LT
229 return bvl;
230}
231
9ae3b3f5 232void bio_uninit(struct bio *bio)
1da177e4 233{
6f70fb66 234 bio_disassociate_blkg(bio);
4254bba1 235}
9ae3b3f5 236EXPORT_SYMBOL(bio_uninit);
7ba1ba12 237
4254bba1
KO
238static void bio_free(struct bio *bio)
239{
240 struct bio_set *bs = bio->bi_pool;
241 void *p;
242
9ae3b3f5 243 bio_uninit(bio);
4254bba1
KO
244
245 if (bs) {
8aa6ba2f 246 bvec_free(&bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
247
248 /*
249 * If we have front padding, adjust the bio pointer before freeing
250 */
251 p = bio;
bb799ca0
JA
252 p -= bs->front_pad;
253
8aa6ba2f 254 mempool_free(p, &bs->bio_pool);
4254bba1
KO
255 } else {
256 /* Bio was allocated by bio_kmalloc() */
257 kfree(bio);
258 }
3676347a
PO
259}
260
9ae3b3f5
JA
261/*
262 * Users of this function have their own bio allocation. Subsequently,
263 * they must remember to pair any call to bio_init() with bio_uninit()
264 * when IO has completed, or when the bio is released.
265 */
3a83f467
ML
266void bio_init(struct bio *bio, struct bio_vec *table,
267 unsigned short max_vecs)
1da177e4 268{
2b94de55 269 memset(bio, 0, sizeof(*bio));
c4cf5261 270 atomic_set(&bio->__bi_remaining, 1);
dac56212 271 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
272
273 bio->bi_io_vec = table;
274 bio->bi_max_vecs = max_vecs;
1da177e4 275}
a112a71d 276EXPORT_SYMBOL(bio_init);
1da177e4 277
f44b48c7
KO
278/**
279 * bio_reset - reinitialize a bio
280 * @bio: bio to reset
281 *
282 * Description:
283 * After calling bio_reset(), @bio will be in the same state as a freshly
284 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
285 * preserved are the ones that are initialized by bio_alloc_bioset(). See
286 * comment in struct bio.
287 */
288void bio_reset(struct bio *bio)
289{
290 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
291
9ae3b3f5 292 bio_uninit(bio);
f44b48c7
KO
293
294 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 295 bio->bi_flags = flags;
c4cf5261 296 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
297}
298EXPORT_SYMBOL(bio_reset);
299
38f8baae 300static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 301{
4246a0b6
CH
302 struct bio *parent = bio->bi_private;
303
4e4cbee9
CH
304 if (!parent->bi_status)
305 parent->bi_status = bio->bi_status;
196d38bc 306 bio_put(bio);
38f8baae
CH
307 return parent;
308}
309
310static void bio_chain_endio(struct bio *bio)
311{
312 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
313}
314
315/**
316 * bio_chain - chain bio completions
1051a902
RD
317 * @bio: the target bio
318 * @parent: the @bio's parent bio
196d38bc
KO
319 *
320 * The caller won't have a bi_end_io called when @bio completes - instead,
321 * @parent's bi_end_io won't be called until both @parent and @bio have
322 * completed; the chained bio will also be freed when it completes.
323 *
324 * The caller must not set bi_private or bi_end_io in @bio.
325 */
326void bio_chain(struct bio *bio, struct bio *parent)
327{
328 BUG_ON(bio->bi_private || bio->bi_end_io);
329
330 bio->bi_private = parent;
331 bio->bi_end_io = bio_chain_endio;
c4cf5261 332 bio_inc_remaining(parent);
196d38bc
KO
333}
334EXPORT_SYMBOL(bio_chain);
335
df2cb6da
KO
336static void bio_alloc_rescue(struct work_struct *work)
337{
338 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
339 struct bio *bio;
340
341 while (1) {
342 spin_lock(&bs->rescue_lock);
343 bio = bio_list_pop(&bs->rescue_list);
344 spin_unlock(&bs->rescue_lock);
345
346 if (!bio)
347 break;
348
349 generic_make_request(bio);
350 }
351}
352
353static void punt_bios_to_rescuer(struct bio_set *bs)
354{
355 struct bio_list punt, nopunt;
356 struct bio *bio;
357
47e0fb46
N
358 if (WARN_ON_ONCE(!bs->rescue_workqueue))
359 return;
df2cb6da
KO
360 /*
361 * In order to guarantee forward progress we must punt only bios that
362 * were allocated from this bio_set; otherwise, if there was a bio on
363 * there for a stacking driver higher up in the stack, processing it
364 * could require allocating bios from this bio_set, and doing that from
365 * our own rescuer would be bad.
366 *
367 * Since bio lists are singly linked, pop them all instead of trying to
368 * remove from the middle of the list:
369 */
370
371 bio_list_init(&punt);
372 bio_list_init(&nopunt);
373
f5fe1b51 374 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 375 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 376 current->bio_list[0] = nopunt;
df2cb6da 377
f5fe1b51
N
378 bio_list_init(&nopunt);
379 while ((bio = bio_list_pop(&current->bio_list[1])))
380 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
381 current->bio_list[1] = nopunt;
df2cb6da
KO
382
383 spin_lock(&bs->rescue_lock);
384 bio_list_merge(&bs->rescue_list, &punt);
385 spin_unlock(&bs->rescue_lock);
386
387 queue_work(bs->rescue_workqueue, &bs->rescue_work);
388}
389
1da177e4
LT
390/**
391 * bio_alloc_bioset - allocate a bio for I/O
519c8e9f 392 * @gfp_mask: the GFP_* mask given to the slab allocator
1da177e4 393 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 394 * @bs: the bio_set to allocate from.
1da177e4
LT
395 *
396 * Description:
3f86a82a
KO
397 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
398 * backed by the @bs's mempool.
399 *
d0164adc
MG
400 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
401 * always be able to allocate a bio. This is due to the mempool guarantees.
402 * To make this work, callers must never allocate more than 1 bio at a time
403 * from this pool. Callers that need to allocate more than 1 bio must always
404 * submit the previously allocated bio for IO before attempting to allocate
405 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 406 *
df2cb6da
KO
407 * Note that when running under generic_make_request() (i.e. any block
408 * driver), bios are not submitted until after you return - see the code in
409 * generic_make_request() that converts recursion into iteration, to prevent
410 * stack overflows.
411 *
412 * This would normally mean allocating multiple bios under
413 * generic_make_request() would be susceptible to deadlocks, but we have
414 * deadlock avoidance code that resubmits any blocked bios from a rescuer
415 * thread.
416 *
417 * However, we do not guarantee forward progress for allocations from other
418 * mempools. Doing multiple allocations from the same mempool under
419 * generic_make_request() should be avoided - instead, use bio_set's front_pad
420 * for per bio allocations.
421 *
3f86a82a
KO
422 * RETURNS:
423 * Pointer to new bio on success, NULL on failure.
424 */
7a88fa19
DC
425struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
426 struct bio_set *bs)
1da177e4 427{
df2cb6da 428 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
429 unsigned front_pad;
430 unsigned inline_vecs;
34053979 431 struct bio_vec *bvl = NULL;
451a9ebf
TH
432 struct bio *bio;
433 void *p;
434
3f86a82a
KO
435 if (!bs) {
436 if (nr_iovecs > UIO_MAXIOV)
437 return NULL;
438
439 p = kmalloc(sizeof(struct bio) +
440 nr_iovecs * sizeof(struct bio_vec),
441 gfp_mask);
442 front_pad = 0;
443 inline_vecs = nr_iovecs;
444 } else {
d8f429e1 445 /* should not use nobvec bioset for nr_iovecs > 0 */
8aa6ba2f
KO
446 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) &&
447 nr_iovecs > 0))
d8f429e1 448 return NULL;
df2cb6da
KO
449 /*
450 * generic_make_request() converts recursion to iteration; this
451 * means if we're running beneath it, any bios we allocate and
452 * submit will not be submitted (and thus freed) until after we
453 * return.
454 *
455 * This exposes us to a potential deadlock if we allocate
456 * multiple bios from the same bio_set() while running
457 * underneath generic_make_request(). If we were to allocate
458 * multiple bios (say a stacking block driver that was splitting
459 * bios), we would deadlock if we exhausted the mempool's
460 * reserve.
461 *
462 * We solve this, and guarantee forward progress, with a rescuer
463 * workqueue per bio_set. If we go to allocate and there are
464 * bios on current->bio_list, we first try the allocation
d0164adc
MG
465 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
466 * bios we would be blocking to the rescuer workqueue before
467 * we retry with the original gfp_flags.
df2cb6da
KO
468 */
469
f5fe1b51
N
470 if (current->bio_list &&
471 (!bio_list_empty(&current->bio_list[0]) ||
47e0fb46
N
472 !bio_list_empty(&current->bio_list[1])) &&
473 bs->rescue_workqueue)
d0164adc 474 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 475
8aa6ba2f 476 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
477 if (!p && gfp_mask != saved_gfp) {
478 punt_bios_to_rescuer(bs);
479 gfp_mask = saved_gfp;
8aa6ba2f 480 p = mempool_alloc(&bs->bio_pool, gfp_mask);
df2cb6da
KO
481 }
482
3f86a82a
KO
483 front_pad = bs->front_pad;
484 inline_vecs = BIO_INLINE_VECS;
485 }
486
451a9ebf
TH
487 if (unlikely(!p))
488 return NULL;
1da177e4 489
3f86a82a 490 bio = p + front_pad;
3a83f467 491 bio_init(bio, NULL, 0);
34053979 492
3f86a82a 493 if (nr_iovecs > inline_vecs) {
ed996a52
CH
494 unsigned long idx = 0;
495
8aa6ba2f 496 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
497 if (!bvl && gfp_mask != saved_gfp) {
498 punt_bios_to_rescuer(bs);
499 gfp_mask = saved_gfp;
8aa6ba2f 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, &bs->bvec_pool);
df2cb6da
KO
501 }
502
34053979
IM
503 if (unlikely(!bvl))
504 goto err_free;
a38352e0 505
ed996a52 506 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
507 } else if (nr_iovecs) {
508 bvl = bio->bi_inline_vecs;
1da177e4 509 }
3f86a82a
KO
510
511 bio->bi_pool = bs;
34053979 512 bio->bi_max_vecs = nr_iovecs;
34053979 513 bio->bi_io_vec = bvl;
1da177e4 514 return bio;
34053979
IM
515
516err_free:
8aa6ba2f 517 mempool_free(p, &bs->bio_pool);
34053979 518 return NULL;
1da177e4 519}
a112a71d 520EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 521
38a72dac 522void zero_fill_bio_iter(struct bio *bio, struct bvec_iter start)
1da177e4
LT
523{
524 unsigned long flags;
7988613b
KO
525 struct bio_vec bv;
526 struct bvec_iter iter;
1da177e4 527
38a72dac 528 __bio_for_each_segment(bv, bio, iter, start) {
7988613b
KO
529 char *data = bvec_kmap_irq(&bv, &flags);
530 memset(data, 0, bv.bv_len);
531 flush_dcache_page(bv.bv_page);
1da177e4
LT
532 bvec_kunmap_irq(data, &flags);
533 }
534}
38a72dac 535EXPORT_SYMBOL(zero_fill_bio_iter);
1da177e4
LT
536
537/**
538 * bio_put - release a reference to a bio
539 * @bio: bio to release reference to
540 *
541 * Description:
542 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 543 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
544 **/
545void bio_put(struct bio *bio)
546{
dac56212 547 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 548 bio_free(bio);
dac56212
JA
549 else {
550 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
551
552 /*
553 * last put frees it
554 */
555 if (atomic_dec_and_test(&bio->__bi_cnt))
556 bio_free(bio);
557 }
1da177e4 558}
a112a71d 559EXPORT_SYMBOL(bio_put);
1da177e4 560
59d276fe
KO
561/**
562 * __bio_clone_fast - clone a bio that shares the original bio's biovec
563 * @bio: destination bio
564 * @bio_src: bio to clone
565 *
566 * Clone a &bio. Caller will own the returned bio, but not
567 * the actual data it points to. Reference count of returned
568 * bio will be one.
569 *
570 * Caller must ensure that @bio_src is not freed before @bio.
571 */
572void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
573{
ed996a52 574 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
575
576 /*
74d46992 577 * most users will be overriding ->bi_disk with a new target,
59d276fe
KO
578 * so we don't set nor calculate new physical/hw segment counts here
579 */
74d46992 580 bio->bi_disk = bio_src->bi_disk;
62530ed8 581 bio->bi_partno = bio_src->bi_partno;
b7c44ed9 582 bio_set_flag(bio, BIO_CLONED);
111be883
SL
583 if (bio_flagged(bio_src, BIO_THROTTLED))
584 bio_set_flag(bio, BIO_THROTTLED);
1eff9d32 585 bio->bi_opf = bio_src->bi_opf;
ca474b73 586 bio->bi_ioprio = bio_src->bi_ioprio;
cb6934f8 587 bio->bi_write_hint = bio_src->bi_write_hint;
59d276fe
KO
588 bio->bi_iter = bio_src->bi_iter;
589 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e 590
db6638d7 591 bio_clone_blkg_association(bio, bio_src);
e439bedf 592 blkcg_bio_issue_init(bio);
59d276fe
KO
593}
594EXPORT_SYMBOL(__bio_clone_fast);
595
596/**
597 * bio_clone_fast - clone a bio that shares the original bio's biovec
598 * @bio: bio to clone
599 * @gfp_mask: allocation priority
600 * @bs: bio_set to allocate from
601 *
602 * Like __bio_clone_fast, only also allocates the returned bio
603 */
604struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
605{
606 struct bio *b;
607
608 b = bio_alloc_bioset(gfp_mask, 0, bs);
609 if (!b)
610 return NULL;
611
612 __bio_clone_fast(b, bio);
613
614 if (bio_integrity(bio)) {
615 int ret;
616
617 ret = bio_integrity_clone(b, bio, gfp_mask);
618
619 if (ret < 0) {
620 bio_put(b);
621 return NULL;
622 }
623 }
624
625 return b;
626}
627EXPORT_SYMBOL(bio_clone_fast);
628
5919482e
ML
629static inline bool page_is_mergeable(const struct bio_vec *bv,
630 struct page *page, unsigned int len, unsigned int off,
ff896738 631 bool *same_page)
5919482e
ML
632{
633 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) +
634 bv->bv_offset + bv->bv_len - 1;
635 phys_addr_t page_addr = page_to_phys(page);
636
637 if (vec_end_addr + 1 != page_addr + off)
638 return false;
639 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
640 return false;
52d52d1c 641
ff896738
CH
642 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
643 if (!*same_page && pfn_to_page(PFN_DOWN(vec_end_addr)) + 1 != page)
644 return false;
5919482e
ML
645 return true;
646}
647
489fbbcb
ML
648/*
649 * Check if the @page can be added to the current segment(@bv), and make
650 * sure to call it only if page_is_mergeable(@bv, @page) is true
651 */
652static bool can_add_page_to_seg(struct request_queue *q,
653 struct bio_vec *bv, struct page *page, unsigned len,
654 unsigned offset)
655{
656 unsigned long mask = queue_segment_boundary(q);
657 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
658 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
659
660 if ((addr1 | mask) != (addr2 | mask))
661 return false;
662
663 if (bv->bv_len + len > queue_max_segment_size(q))
664 return false;
665
666 return true;
667}
668
1da177e4 669/**
19047087 670 * __bio_add_pc_page - attempt to add page to passthrough bio
c66a14d0
KO
671 * @q: the target queue
672 * @bio: destination bio
673 * @page: page to add
674 * @len: vec entry length
675 * @offset: vec entry offset
19047087 676 * @put_same_page: put the page if it is same with last added page
1da177e4 677 *
c66a14d0
KO
678 * Attempt to add a page to the bio_vec maplist. This can fail for a
679 * number of reasons, such as the bio being full or target block device
680 * limitations. The target block device must allow bio's up to PAGE_SIZE,
681 * so it is always possible to add a single page to an empty bio.
682 *
5a8ce240 683 * This should only be used by passthrough bios.
1da177e4 684 */
4713839d 685static int __bio_add_pc_page(struct request_queue *q, struct bio *bio,
19047087
ML
686 struct page *page, unsigned int len, unsigned int offset,
687 bool put_same_page)
1da177e4 688{
1da177e4 689 struct bio_vec *bvec;
ff896738 690 bool same_page = false;
1da177e4
LT
691
692 /*
693 * cloned bio must not modify vec list
694 */
695 if (unlikely(bio_flagged(bio, BIO_CLONED)))
696 return 0;
697
c66a14d0 698 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
699 return 0;
700
80cfd548 701 if (bio->bi_vcnt > 0) {
5a8ce240 702 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
80cfd548 703
5a8ce240
ML
704 if (page == bvec->bv_page &&
705 offset == bvec->bv_offset + bvec->bv_len) {
19047087
ML
706 if (put_same_page)
707 put_page(page);
5a8ce240 708 bvec->bv_len += len;
80cfd548
JA
709 goto done;
710 }
66cb45aa
JA
711
712 /*
713 * If the queue doesn't support SG gaps and adding this
714 * offset would create a gap, disallow it.
715 */
5a8ce240 716 if (bvec_gap_to_prev(q, bvec, offset))
66cb45aa 717 return 0;
489fbbcb 718
ff896738 719 if (page_is_mergeable(bvec, page, len, offset, &same_page) &&
dcdca753
CH
720 can_add_page_to_seg(q, bvec, page, len, offset)) {
721 bvec->bv_len += len;
722 goto done;
723 }
80cfd548
JA
724 }
725
79d08f89 726 if (bio_full(bio, len))
1da177e4
LT
727 return 0;
728
14ccb66b 729 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
730 return 0;
731
fcbf6a08
ML
732 bvec = &bio->bi_io_vec[bio->bi_vcnt];
733 bvec->bv_page = page;
734 bvec->bv_len = len;
735 bvec->bv_offset = offset;
736 bio->bi_vcnt++;
80cfd548 737 done:
dcdca753 738 bio->bi_iter.bi_size += len;
1da177e4
LT
739 return len;
740}
19047087
ML
741
742int bio_add_pc_page(struct request_queue *q, struct bio *bio,
743 struct page *page, unsigned int len, unsigned int offset)
744{
745 return __bio_add_pc_page(q, bio, page, len, offset, false);
746}
a112a71d 747EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 748
1da177e4 749/**
0aa69fd3
CH
750 * __bio_try_merge_page - try appending data to an existing bvec.
751 * @bio: destination bio
551879a4 752 * @page: start page to add
0aa69fd3 753 * @len: length of the data to add
551879a4 754 * @off: offset of the data relative to @page
ff896738 755 * @same_page: return if the segment has been merged inside the same page
1da177e4 756 *
0aa69fd3
CH
757 * Try to add the data at @page + @off to the last bvec of @bio. This is a
758 * a useful optimisation for file systems with a block size smaller than the
759 * page size.
760 *
551879a4
ML
761 * Warn if (@len, @off) crosses pages in case that @same_page is true.
762 *
0aa69fd3 763 * Return %true on success or %false on failure.
1da177e4 764 */
0aa69fd3 765bool __bio_try_merge_page(struct bio *bio, struct page *page,
ff896738 766 unsigned int len, unsigned int off, bool *same_page)
1da177e4 767{
c66a14d0 768 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
0aa69fd3 769 return false;
762380ad 770
c66a14d0 771 if (bio->bi_vcnt > 0) {
0aa69fd3 772 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
5919482e
ML
773
774 if (page_is_mergeable(bv, page, len, off, same_page)) {
775 bv->bv_len += len;
776 bio->bi_iter.bi_size += len;
777 return true;
778 }
c66a14d0 779 }
0aa69fd3
CH
780 return false;
781}
782EXPORT_SYMBOL_GPL(__bio_try_merge_page);
c66a14d0 783
0aa69fd3 784/**
551879a4 785 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 786 * @bio: destination bio
551879a4
ML
787 * @page: start page to add
788 * @len: length of the data to add, may cross pages
789 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
790 *
791 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
792 * that @bio has space for another bvec.
793 */
794void __bio_add_page(struct bio *bio, struct page *page,
795 unsigned int len, unsigned int off)
796{
797 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 798
0aa69fd3 799 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 800 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
801
802 bv->bv_page = page;
803 bv->bv_offset = off;
804 bv->bv_len = len;
c66a14d0 805
c66a14d0 806 bio->bi_iter.bi_size += len;
0aa69fd3
CH
807 bio->bi_vcnt++;
808}
809EXPORT_SYMBOL_GPL(__bio_add_page);
810
811/**
551879a4 812 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 813 * @bio: destination bio
551879a4
ML
814 * @page: start page to add
815 * @len: vec entry length, may cross pages
816 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 817 *
551879a4 818 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
819 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
820 */
821int bio_add_page(struct bio *bio, struct page *page,
822 unsigned int len, unsigned int offset)
823{
ff896738
CH
824 bool same_page = false;
825
826 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 827 if (bio_full(bio, len))
0aa69fd3
CH
828 return 0;
829 __bio_add_page(bio, page, len, offset);
830 }
c66a14d0 831 return len;
1da177e4 832}
a112a71d 833EXPORT_SYMBOL(bio_add_page);
1da177e4 834
d241a95f 835void bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
836{
837 struct bvec_iter_all iter_all;
838 struct bio_vec *bvec;
7321ecbf 839
b2d0d991
CH
840 if (bio_flagged(bio, BIO_NO_PAGE_REF))
841 return;
842
d241a95f
CH
843 bio_for_each_segment_all(bvec, bio, iter_all) {
844 if (mark_dirty && !PageCompound(bvec->bv_page))
845 set_page_dirty_lock(bvec->bv_page);
7321ecbf 846 put_page(bvec->bv_page);
d241a95f 847 }
7321ecbf
CH
848}
849
6d0c48ae
JA
850static int __bio_iov_bvec_add_pages(struct bio *bio, struct iov_iter *iter)
851{
852 const struct bio_vec *bv = iter->bvec;
853 unsigned int len;
854 size_t size;
855
856 if (WARN_ON_ONCE(iter->iov_offset > bv->bv_len))
857 return -EINVAL;
858
859 len = min_t(size_t, bv->bv_len - iter->iov_offset, iter->count);
860 size = bio_add_page(bio, bv->bv_page, len,
861 bv->bv_offset + iter->iov_offset);
a10584c3
CH
862 if (unlikely(size != len))
863 return -EINVAL;
a10584c3
CH
864 iov_iter_advance(iter, size);
865 return 0;
6d0c48ae
JA
866}
867
576ed913
CH
868#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
869
2cefe4db 870/**
17d51b10 871 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
872 * @bio: bio to add pages to
873 * @iter: iov iterator describing the region to be mapped
874 *
17d51b10 875 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 876 * pages will have to be released using put_page() when done.
17d51b10
MW
877 * For multi-segment *iter, this function only adds pages from the
878 * the next non-empty segment of the iov iterator.
2cefe4db 879 */
17d51b10 880static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 881{
576ed913
CH
882 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
883 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
884 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
885 struct page **pages = (struct page **)bv;
45691804 886 bool same_page = false;
576ed913
CH
887 ssize_t size, left;
888 unsigned len, i;
b403ea24 889 size_t offset;
576ed913
CH
890
891 /*
892 * Move page array up in the allocated memory for the bio vecs as far as
893 * possible so that we can start filling biovecs from the beginning
894 * without overwriting the temporary page array.
895 */
896 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
897 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db
KO
898
899 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
900 if (unlikely(size <= 0))
901 return size ? size : -EFAULT;
2cefe4db 902
576ed913
CH
903 for (left = size, i = 0; left > 0; left -= len, i++) {
904 struct page *page = pages[i];
2cefe4db 905
576ed913 906 len = min_t(size_t, PAGE_SIZE - offset, left);
45691804
CH
907
908 if (__bio_try_merge_page(bio, page, len, offset, &same_page)) {
909 if (same_page)
910 put_page(page);
911 } else {
79d08f89 912 if (WARN_ON_ONCE(bio_full(bio, len)))
45691804
CH
913 return -EINVAL;
914 __bio_add_page(bio, page, len, offset);
915 }
576ed913 916 offset = 0;
2cefe4db
KO
917 }
918
2cefe4db
KO
919 iov_iter_advance(iter, size);
920 return 0;
921}
17d51b10
MW
922
923/**
6d0c48ae 924 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 925 * @bio: bio to add pages to
6d0c48ae
JA
926 * @iter: iov iterator describing the region to be added
927 *
928 * This takes either an iterator pointing to user memory, or one pointing to
929 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
930 * map them into the kernel. On IO completion, the caller should put those
399254aa
JA
931 * pages. If we're adding kernel pages, and the caller told us it's safe to
932 * do so, we just have to add the pages to the bio directly. We don't grab an
933 * extra reference to those pages (the user should already have that), and we
934 * don't put the page on IO completion. The caller needs to check if the bio is
935 * flagged BIO_NO_PAGE_REF on IO completion. If it isn't, then pages should be
936 * released.
17d51b10 937 *
17d51b10 938 * The function tries, but does not guarantee, to pin as many pages as
6d0c48ae
JA
939 * fit into the bio, or are requested in *iter, whatever is smaller. If
940 * MM encounters an error pinning the requested pages, it stops. Error
941 * is returned only if 0 pages could be pinned.
17d51b10
MW
942 */
943int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
944{
6d0c48ae 945 const bool is_bvec = iov_iter_is_bvec(iter);
14eacf12
CH
946 int ret;
947
948 if (WARN_ON_ONCE(bio->bi_vcnt))
949 return -EINVAL;
17d51b10
MW
950
951 do {
6d0c48ae
JA
952 if (is_bvec)
953 ret = __bio_iov_bvec_add_pages(bio, iter);
954 else
955 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 956 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 957
b6207430 958 if (is_bvec)
7321ecbf 959 bio_set_flag(bio, BIO_NO_PAGE_REF);
14eacf12 960 return bio->bi_vcnt ? 0 : ret;
17d51b10 961}
2cefe4db 962
4246a0b6 963static void submit_bio_wait_endio(struct bio *bio)
9e882242 964{
65e53aab 965 complete(bio->bi_private);
9e882242
KO
966}
967
968/**
969 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
970 * @bio: The &struct bio which describes the I/O
971 *
972 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
973 * bio_endio() on failure.
3d289d68
JK
974 *
975 * WARNING: Unlike to how submit_bio() is usually used, this function does not
976 * result in bio reference to be consumed. The caller must drop the reference
977 * on his own.
9e882242 978 */
4e49ea4a 979int submit_bio_wait(struct bio *bio)
9e882242 980{
e319e1fb 981 DECLARE_COMPLETION_ONSTACK_MAP(done, bio->bi_disk->lockdep_map);
9e882242 982
65e53aab 983 bio->bi_private = &done;
9e882242 984 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 985 bio->bi_opf |= REQ_SYNC;
4e49ea4a 986 submit_bio(bio);
65e53aab 987 wait_for_completion_io(&done);
9e882242 988
65e53aab 989 return blk_status_to_errno(bio->bi_status);
9e882242
KO
990}
991EXPORT_SYMBOL(submit_bio_wait);
992
054bdf64
KO
993/**
994 * bio_advance - increment/complete a bio by some number of bytes
995 * @bio: bio to advance
996 * @bytes: number of bytes to complete
997 *
998 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
999 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
1000 * be updated on the last bvec as well.
1001 *
1002 * @bio will then represent the remaining, uncompleted portion of the io.
1003 */
1004void bio_advance(struct bio *bio, unsigned bytes)
1005{
1006 if (bio_integrity(bio))
1007 bio_integrity_advance(bio, bytes);
1008
4550dd6c 1009 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
1010}
1011EXPORT_SYMBOL(bio_advance);
1012
45db54d5
KO
1013void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1014 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1015{
1cb9dda4 1016 struct bio_vec src_bv, dst_bv;
16ac3d63 1017 void *src_p, *dst_p;
1cb9dda4 1018 unsigned bytes;
16ac3d63 1019
45db54d5
KO
1020 while (src_iter->bi_size && dst_iter->bi_size) {
1021 src_bv = bio_iter_iovec(src, *src_iter);
1022 dst_bv = bio_iter_iovec(dst, *dst_iter);
1cb9dda4
KO
1023
1024 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1025
1cb9dda4
KO
1026 src_p = kmap_atomic(src_bv.bv_page);
1027 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1028
1cb9dda4
KO
1029 memcpy(dst_p + dst_bv.bv_offset,
1030 src_p + src_bv.bv_offset,
16ac3d63
KO
1031 bytes);
1032
1033 kunmap_atomic(dst_p);
1034 kunmap_atomic(src_p);
1035
6e6e811d
KO
1036 flush_dcache_page(dst_bv.bv_page);
1037
45db54d5
KO
1038 bio_advance_iter(src, src_iter, bytes);
1039 bio_advance_iter(dst, dst_iter, bytes);
16ac3d63
KO
1040 }
1041}
38a72dac
KO
1042EXPORT_SYMBOL(bio_copy_data_iter);
1043
1044/**
45db54d5
KO
1045 * bio_copy_data - copy contents of data buffers from one bio to another
1046 * @src: source bio
1047 * @dst: destination bio
38a72dac
KO
1048 *
1049 * Stops when it reaches the end of either @src or @dst - that is, copies
1050 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1051 */
1052void bio_copy_data(struct bio *dst, struct bio *src)
1053{
45db54d5
KO
1054 struct bvec_iter src_iter = src->bi_iter;
1055 struct bvec_iter dst_iter = dst->bi_iter;
1056
1057 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1058}
16ac3d63
KO
1059EXPORT_SYMBOL(bio_copy_data);
1060
45db54d5
KO
1061/**
1062 * bio_list_copy_data - copy contents of data buffers from one chain of bios to
1063 * another
1064 * @src: source bio list
1065 * @dst: destination bio list
1066 *
1067 * Stops when it reaches the end of either the @src list or @dst list - that is,
1068 * copies min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of
1069 * bios).
1070 */
1071void bio_list_copy_data(struct bio *dst, struct bio *src)
1072{
1073 struct bvec_iter src_iter = src->bi_iter;
1074 struct bvec_iter dst_iter = dst->bi_iter;
1075
1076 while (1) {
1077 if (!src_iter.bi_size) {
1078 src = src->bi_next;
1079 if (!src)
1080 break;
1081
1082 src_iter = src->bi_iter;
1083 }
1084
1085 if (!dst_iter.bi_size) {
1086 dst = dst->bi_next;
1087 if (!dst)
1088 break;
1089
1090 dst_iter = dst->bi_iter;
1091 }
1092
1093 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
1094 }
1095}
1096EXPORT_SYMBOL(bio_list_copy_data);
1097
1da177e4 1098struct bio_map_data {
152e283f 1099 int is_our_pages;
26e49cfc
KO
1100 struct iov_iter iter;
1101 struct iovec iov[];
1da177e4
LT
1102};
1103
0e5b935d 1104static struct bio_map_data *bio_alloc_map_data(struct iov_iter *data,
76029ff3 1105 gfp_t gfp_mask)
1da177e4 1106{
0e5b935d
AV
1107 struct bio_map_data *bmd;
1108 if (data->nr_segs > UIO_MAXIOV)
f3f63c1c 1109 return NULL;
1da177e4 1110
f1f8f292 1111 bmd = kmalloc(struct_size(bmd, iov, data->nr_segs), gfp_mask);
0e5b935d
AV
1112 if (!bmd)
1113 return NULL;
1114 memcpy(bmd->iov, data->iov, sizeof(struct iovec) * data->nr_segs);
1115 bmd->iter = *data;
1116 bmd->iter.iov = bmd->iov;
1117 return bmd;
1da177e4
LT
1118}
1119
9124d3fe
DP
1120/**
1121 * bio_copy_from_iter - copy all pages from iov_iter to bio
1122 * @bio: The &struct bio which describes the I/O as destination
1123 * @iter: iov_iter as source
1124 *
1125 * Copy all pages from iov_iter to bio.
1126 * Returns 0 on success, or error on failure.
1127 */
98a09d61 1128static int bio_copy_from_iter(struct bio *bio, struct iov_iter *iter)
c5dec1c3 1129{
c5dec1c3 1130 struct bio_vec *bvec;
6dc4f100 1131 struct bvec_iter_all iter_all;
c5dec1c3 1132
2b070cfe 1133 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe 1134 ssize_t ret;
c5dec1c3 1135
9124d3fe
DP
1136 ret = copy_page_from_iter(bvec->bv_page,
1137 bvec->bv_offset,
1138 bvec->bv_len,
98a09d61 1139 iter);
9124d3fe 1140
98a09d61 1141 if (!iov_iter_count(iter))
9124d3fe
DP
1142 break;
1143
1144 if (ret < bvec->bv_len)
1145 return -EFAULT;
c5dec1c3
FT
1146 }
1147
9124d3fe
DP
1148 return 0;
1149}
1150
1151/**
1152 * bio_copy_to_iter - copy all pages from bio to iov_iter
1153 * @bio: The &struct bio which describes the I/O as source
1154 * @iter: iov_iter as destination
1155 *
1156 * Copy all pages from bio to iov_iter.
1157 * Returns 0 on success, or error on failure.
1158 */
1159static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1160{
9124d3fe 1161 struct bio_vec *bvec;
6dc4f100 1162 struct bvec_iter_all iter_all;
9124d3fe 1163
2b070cfe 1164 bio_for_each_segment_all(bvec, bio, iter_all) {
9124d3fe
DP
1165 ssize_t ret;
1166
1167 ret = copy_page_to_iter(bvec->bv_page,
1168 bvec->bv_offset,
1169 bvec->bv_len,
1170 &iter);
1171
1172 if (!iov_iter_count(&iter))
1173 break;
1174
1175 if (ret < bvec->bv_len)
1176 return -EFAULT;
1177 }
1178
1179 return 0;
c5dec1c3
FT
1180}
1181
491221f8 1182void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1183{
1184 struct bio_vec *bvec;
6dc4f100 1185 struct bvec_iter_all iter_all;
1dfa0f68 1186
2b070cfe 1187 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1188 __free_page(bvec->bv_page);
1189}
491221f8 1190EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1191
1da177e4
LT
1192/**
1193 * bio_uncopy_user - finish previously mapped bio
1194 * @bio: bio being terminated
1195 *
ddad8dd0 1196 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1197 * to user space in case of a read.
1198 */
1199int bio_uncopy_user(struct bio *bio)
1200{
1201 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1202 int ret = 0;
1da177e4 1203
35dc2483
RD
1204 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1205 /*
1206 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1207 * don't copy into a random user address space, just free
1208 * and return -EINTR so user space doesn't expect any data.
35dc2483 1209 */
2d99b55d
HR
1210 if (!current->mm)
1211 ret = -EINTR;
1212 else if (bio_data_dir(bio) == READ)
9124d3fe 1213 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1214 if (bmd->is_our_pages)
1215 bio_free_pages(bio);
35dc2483 1216 }
c8db4448 1217 kfree(bmd);
1da177e4
LT
1218 bio_put(bio);
1219 return ret;
1220}
1221
1222/**
c5dec1c3 1223 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1224 * @q: destination block queue
1225 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1226 * @iter: iovec iterator
1227 * @gfp_mask: memory allocation flags
1da177e4
LT
1228 *
1229 * Prepares and returns a bio for indirect user io, bouncing data
1230 * to/from kernel pages as necessary. Must be paired with
1231 * call bio_uncopy_user() on io completion.
1232 */
152e283f
FT
1233struct bio *bio_copy_user_iov(struct request_queue *q,
1234 struct rq_map_data *map_data,
e81cef5d 1235 struct iov_iter *iter,
26e49cfc 1236 gfp_t gfp_mask)
1da177e4 1237{
1da177e4 1238 struct bio_map_data *bmd;
1da177e4
LT
1239 struct page *page;
1240 struct bio *bio;
d16d44eb
AV
1241 int i = 0, ret;
1242 int nr_pages;
26e49cfc 1243 unsigned int len = iter->count;
bd5cecea 1244 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1245
0e5b935d 1246 bmd = bio_alloc_map_data(iter, gfp_mask);
1da177e4
LT
1247 if (!bmd)
1248 return ERR_PTR(-ENOMEM);
1249
26e49cfc
KO
1250 /*
1251 * We need to do a deep copy of the iov_iter including the iovecs.
1252 * The caller provided iov might point to an on-stack or otherwise
1253 * shortlived one.
1254 */
1255 bmd->is_our_pages = map_data ? 0 : 1;
26e49cfc 1256
d16d44eb
AV
1257 nr_pages = DIV_ROUND_UP(offset + len, PAGE_SIZE);
1258 if (nr_pages > BIO_MAX_PAGES)
1259 nr_pages = BIO_MAX_PAGES;
26e49cfc 1260
1da177e4 1261 ret = -ENOMEM;
a9e9dc24 1262 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1263 if (!bio)
1264 goto out_bmd;
1265
1da177e4 1266 ret = 0;
56c451f4
FT
1267
1268 if (map_data) {
e623ddb4 1269 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1270 i = map_data->offset / PAGE_SIZE;
1271 }
1da177e4 1272 while (len) {
e623ddb4 1273 unsigned int bytes = PAGE_SIZE;
1da177e4 1274
56c451f4
FT
1275 bytes -= offset;
1276
1da177e4
LT
1277 if (bytes > len)
1278 bytes = len;
1279
152e283f 1280 if (map_data) {
e623ddb4 1281 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1282 ret = -ENOMEM;
1283 break;
1284 }
e623ddb4
FT
1285
1286 page = map_data->pages[i / nr_pages];
1287 page += (i % nr_pages);
1288
1289 i++;
1290 } else {
152e283f 1291 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1292 if (!page) {
1293 ret = -ENOMEM;
1294 break;
1295 }
1da177e4
LT
1296 }
1297
a3761c3c
JG
1298 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes) {
1299 if (!map_data)
1300 __free_page(page);
1da177e4 1301 break;
a3761c3c 1302 }
1da177e4
LT
1303
1304 len -= bytes;
56c451f4 1305 offset = 0;
1da177e4
LT
1306 }
1307
1308 if (ret)
1309 goto cleanup;
1310
2884d0be
AV
1311 if (map_data)
1312 map_data->offset += bio->bi_iter.bi_size;
1313
1da177e4
LT
1314 /*
1315 * success
1316 */
00e23707 1317 if ((iov_iter_rw(iter) == WRITE && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1318 (map_data && map_data->from_user)) {
98a09d61 1319 ret = bio_copy_from_iter(bio, iter);
c5dec1c3
FT
1320 if (ret)
1321 goto cleanup;
98a09d61 1322 } else {
f55adad6
KB
1323 if (bmd->is_our_pages)
1324 zero_fill_bio(bio);
98a09d61 1325 iov_iter_advance(iter, bio->bi_iter.bi_size);
1da177e4
LT
1326 }
1327
26e49cfc 1328 bio->bi_private = bmd;
2884d0be
AV
1329 if (map_data && map_data->null_mapped)
1330 bio_set_flag(bio, BIO_NULL_MAPPED);
1da177e4
LT
1331 return bio;
1332cleanup:
152e283f 1333 if (!map_data)
1dfa0f68 1334 bio_free_pages(bio);
1da177e4
LT
1335 bio_put(bio);
1336out_bmd:
c8db4448 1337 kfree(bmd);
1da177e4
LT
1338 return ERR_PTR(ret);
1339}
1340
37f19e57
CH
1341/**
1342 * bio_map_user_iov - map user iovec into bio
1343 * @q: the struct request_queue for the bio
1344 * @iter: iovec iterator
1345 * @gfp_mask: memory allocation flags
1346 *
1347 * Map the user space address into a bio suitable for io to a block
1348 * device. Returns an error pointer in case of error.
1349 */
1350struct bio *bio_map_user_iov(struct request_queue *q,
e81cef5d 1351 struct iov_iter *iter,
37f19e57 1352 gfp_t gfp_mask)
1da177e4 1353{
26e49cfc 1354 int j;
1da177e4 1355 struct bio *bio;
076098e5 1356 int ret;
1da177e4 1357
b282cc76 1358 if (!iov_iter_count(iter))
1da177e4
LT
1359 return ERR_PTR(-EINVAL);
1360
b282cc76 1361 bio = bio_kmalloc(gfp_mask, iov_iter_npages(iter, BIO_MAX_PAGES));
1da177e4
LT
1362 if (!bio)
1363 return ERR_PTR(-ENOMEM);
1364
0a0f1513 1365 while (iov_iter_count(iter)) {
629e42bc 1366 struct page **pages;
076098e5
AV
1367 ssize_t bytes;
1368 size_t offs, added = 0;
1369 int npages;
1da177e4 1370
0a0f1513 1371 bytes = iov_iter_get_pages_alloc(iter, &pages, LONG_MAX, &offs);
076098e5
AV
1372 if (unlikely(bytes <= 0)) {
1373 ret = bytes ? bytes : -EFAULT;
f1970baf 1374 goto out_unmap;
99172157 1375 }
f1970baf 1376
076098e5 1377 npages = DIV_ROUND_UP(offs + bytes, PAGE_SIZE);
f1970baf 1378
98f0bc99
AV
1379 if (unlikely(offs & queue_dma_alignment(q))) {
1380 ret = -EINVAL;
1381 j = 0;
1382 } else {
1383 for (j = 0; j < npages; j++) {
1384 struct page *page = pages[j];
1385 unsigned int n = PAGE_SIZE - offs;
f1970baf 1386
98f0bc99
AV
1387 if (n > bytes)
1388 n = bytes;
95d78c28 1389
19047087
ML
1390 if (!__bio_add_pc_page(q, bio, page, n, offs,
1391 true))
98f0bc99 1392 break;
1da177e4 1393
98f0bc99
AV
1394 added += n;
1395 bytes -= n;
1396 offs = 0;
1397 }
0a0f1513 1398 iov_iter_advance(iter, added);
f1970baf 1399 }
1da177e4 1400 /*
f1970baf 1401 * release the pages we didn't map into the bio, if any
1da177e4 1402 */
629e42bc 1403 while (j < npages)
09cbfeaf 1404 put_page(pages[j++]);
629e42bc 1405 kvfree(pages);
e2e115d1
AV
1406 /* couldn't stuff something into bio? */
1407 if (bytes)
1408 break;
1da177e4
LT
1409 }
1410
b7c44ed9 1411 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1412
1413 /*
5fad1b64 1414 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1415 * it would normally disappear when its bi_end_io is run.
1416 * however, we need it for the unmap, so grab an extra
1417 * reference to it
1418 */
1419 bio_get(bio);
1da177e4 1420 return bio;
f1970baf
JB
1421
1422 out_unmap:
506e0798 1423 bio_release_pages(bio, false);
1da177e4
LT
1424 bio_put(bio);
1425 return ERR_PTR(ret);
1426}
1427
1da177e4
LT
1428/**
1429 * bio_unmap_user - unmap a bio
1430 * @bio: the bio being unmapped
1431 *
5fad1b64
BVA
1432 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1433 * process context.
1da177e4
LT
1434 *
1435 * bio_unmap_user() may sleep.
1436 */
1437void bio_unmap_user(struct bio *bio)
1438{
163cc2d3
CH
1439 bio_release_pages(bio, bio_data_dir(bio) == READ);
1440 bio_put(bio);
1da177e4
LT
1441 bio_put(bio);
1442}
1443
4246a0b6 1444static void bio_map_kern_endio(struct bio *bio)
b823825e 1445{
b823825e 1446 bio_put(bio);
b823825e
JA
1447}
1448
75c72b83
CH
1449/**
1450 * bio_map_kern - map kernel address into bio
1451 * @q: the struct request_queue for the bio
1452 * @data: pointer to buffer to map
1453 * @len: length in bytes
1454 * @gfp_mask: allocation flags for bio allocation
1455 *
1456 * Map the kernel address into a bio suitable for io to a block
1457 * device. Returns an error pointer in case of error.
1458 */
1459struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1460 gfp_t gfp_mask)
df46b9a4
MC
1461{
1462 unsigned long kaddr = (unsigned long)data;
1463 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1464 unsigned long start = kaddr >> PAGE_SHIFT;
1465 const int nr_pages = end - start;
1466 int offset, i;
1467 struct bio *bio;
1468
a9e9dc24 1469 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1470 if (!bio)
1471 return ERR_PTR(-ENOMEM);
1472
1473 offset = offset_in_page(kaddr);
1474 for (i = 0; i < nr_pages; i++) {
1475 unsigned int bytes = PAGE_SIZE - offset;
1476
1477 if (len <= 0)
1478 break;
1479
1480 if (bytes > len)
1481 bytes = len;
1482
defd94b7 1483 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1484 offset) < bytes) {
1485 /* we don't support partial mappings */
1486 bio_put(bio);
1487 return ERR_PTR(-EINVAL);
1488 }
df46b9a4
MC
1489
1490 data += bytes;
1491 len -= bytes;
1492 offset = 0;
1493 }
1494
b823825e 1495 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1496 return bio;
1497}
a112a71d 1498EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1499
4246a0b6 1500static void bio_copy_kern_endio(struct bio *bio)
68154e90 1501{
1dfa0f68
CH
1502 bio_free_pages(bio);
1503 bio_put(bio);
1504}
1505
4246a0b6 1506static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1507{
42d2683a 1508 char *p = bio->bi_private;
1dfa0f68 1509 struct bio_vec *bvec;
6dc4f100 1510 struct bvec_iter_all iter_all;
68154e90 1511
2b070cfe 1512 bio_for_each_segment_all(bvec, bio, iter_all) {
1dfa0f68 1513 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1514 p += bvec->bv_len;
68154e90
FT
1515 }
1516
4246a0b6 1517 bio_copy_kern_endio(bio);
68154e90
FT
1518}
1519
1520/**
1521 * bio_copy_kern - copy kernel address into bio
1522 * @q: the struct request_queue for the bio
1523 * @data: pointer to buffer to copy
1524 * @len: length in bytes
1525 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1526 * @reading: data direction is READ
68154e90
FT
1527 *
1528 * copy the kernel address into a bio suitable for io to a block
1529 * device. Returns an error pointer in case of error.
1530 */
1531struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1532 gfp_t gfp_mask, int reading)
1533{
42d2683a
CH
1534 unsigned long kaddr = (unsigned long)data;
1535 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1536 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1537 struct bio *bio;
1538 void *p = data;
1dfa0f68 1539 int nr_pages = 0;
68154e90 1540
42d2683a
CH
1541 /*
1542 * Overflow, abort
1543 */
1544 if (end < start)
1545 return ERR_PTR(-EINVAL);
68154e90 1546
42d2683a
CH
1547 nr_pages = end - start;
1548 bio = bio_kmalloc(gfp_mask, nr_pages);
1549 if (!bio)
1550 return ERR_PTR(-ENOMEM);
68154e90 1551
42d2683a
CH
1552 while (len) {
1553 struct page *page;
1554 unsigned int bytes = PAGE_SIZE;
68154e90 1555
42d2683a
CH
1556 if (bytes > len)
1557 bytes = len;
1558
1559 page = alloc_page(q->bounce_gfp | gfp_mask);
1560 if (!page)
1561 goto cleanup;
1562
1563 if (!reading)
1564 memcpy(page_address(page), p, bytes);
1565
1566 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1567 break;
1568
1569 len -= bytes;
1570 p += bytes;
68154e90
FT
1571 }
1572
1dfa0f68
CH
1573 if (reading) {
1574 bio->bi_end_io = bio_copy_kern_endio_read;
1575 bio->bi_private = data;
1576 } else {
1577 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1578 }
76029ff3 1579
68154e90 1580 return bio;
42d2683a
CH
1581
1582cleanup:
1dfa0f68 1583 bio_free_pages(bio);
42d2683a
CH
1584 bio_put(bio);
1585 return ERR_PTR(-ENOMEM);
68154e90
FT
1586}
1587
1da177e4
LT
1588/*
1589 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1590 * for performing direct-IO in BIOs.
1591 *
1592 * The problem is that we cannot run set_page_dirty() from interrupt context
1593 * because the required locks are not interrupt-safe. So what we can do is to
1594 * mark the pages dirty _before_ performing IO. And in interrupt context,
1595 * check that the pages are still dirty. If so, fine. If not, redirty them
1596 * in process context.
1597 *
1598 * We special-case compound pages here: normally this means reads into hugetlb
1599 * pages. The logic in here doesn't really work right for compound pages
1600 * because the VM does not uniformly chase down the head page in all cases.
1601 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1602 * handle them at all. So we skip compound pages here at an early stage.
1603 *
1604 * Note that this code is very hard to test under normal circumstances because
1605 * direct-io pins the pages with get_user_pages(). This makes
1606 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1607 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1608 * pagecache.
1609 *
1610 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1611 * deferred bio dirtying paths.
1612 */
1613
1614/*
1615 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1616 */
1617void bio_set_pages_dirty(struct bio *bio)
1618{
cb34e057 1619 struct bio_vec *bvec;
6dc4f100 1620 struct bvec_iter_all iter_all;
1da177e4 1621
2b070cfe 1622 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1623 if (!PageCompound(bvec->bv_page))
1624 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1625 }
1626}
1627
1da177e4
LT
1628/*
1629 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1630 * If they are, then fine. If, however, some pages are clean then they must
1631 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1632 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1633 *
1634 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1635 * here on. It will run one put_page() against each page and will run one
1636 * bio_put() against the BIO.
1da177e4
LT
1637 */
1638
65f27f38 1639static void bio_dirty_fn(struct work_struct *work);
1da177e4 1640
65f27f38 1641static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1642static DEFINE_SPINLOCK(bio_dirty_lock);
1643static struct bio *bio_dirty_list;
1644
1645/*
1646 * This runs in process context
1647 */
65f27f38 1648static void bio_dirty_fn(struct work_struct *work)
1da177e4 1649{
24d5493f 1650 struct bio *bio, *next;
1da177e4 1651
24d5493f
CH
1652 spin_lock_irq(&bio_dirty_lock);
1653 next = bio_dirty_list;
1da177e4 1654 bio_dirty_list = NULL;
24d5493f 1655 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1656
24d5493f
CH
1657 while ((bio = next) != NULL) {
1658 next = bio->bi_private;
1da177e4 1659
d241a95f 1660 bio_release_pages(bio, true);
1da177e4 1661 bio_put(bio);
1da177e4
LT
1662 }
1663}
1664
1665void bio_check_pages_dirty(struct bio *bio)
1666{
cb34e057 1667 struct bio_vec *bvec;
24d5493f 1668 unsigned long flags;
6dc4f100 1669 struct bvec_iter_all iter_all;
1da177e4 1670
2b070cfe 1671 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1672 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1673 goto defer;
1da177e4
LT
1674 }
1675
d241a95f 1676 bio_release_pages(bio, false);
24d5493f
CH
1677 bio_put(bio);
1678 return;
1679defer:
1680 spin_lock_irqsave(&bio_dirty_lock, flags);
1681 bio->bi_private = bio_dirty_list;
1682 bio_dirty_list = bio;
1683 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1684 schedule_work(&bio_dirty_work);
1da177e4
LT
1685}
1686
5b18b5a7
MP
1687void update_io_ticks(struct hd_struct *part, unsigned long now)
1688{
1689 unsigned long stamp;
1690again:
1691 stamp = READ_ONCE(part->stamp);
1692 if (unlikely(stamp != now)) {
1693 if (likely(cmpxchg(&part->stamp, stamp, now) == stamp)) {
1694 __part_stat_add(part, io_ticks, 1);
1695 }
1696 }
1697 if (part->partno) {
1698 part = &part_to_disk(part)->part0;
1699 goto again;
1700 }
1701}
1da177e4 1702
ddcf35d3 1703void generic_start_io_acct(struct request_queue *q, int op,
d62e26b3 1704 unsigned long sectors, struct hd_struct *part)
394ffa50 1705{
ddcf35d3 1706 const int sgrp = op_stat_group(op);
394ffa50 1707
112f158f
MS
1708 part_stat_lock();
1709
5b18b5a7 1710 update_io_ticks(part, jiffies);
112f158f
MS
1711 part_stat_inc(part, ios[sgrp]);
1712 part_stat_add(part, sectors[sgrp], sectors);
ddcf35d3 1713 part_inc_in_flight(q, part, op_is_write(op));
394ffa50
GZ
1714
1715 part_stat_unlock();
1716}
1717EXPORT_SYMBOL(generic_start_io_acct);
1718
ddcf35d3 1719void generic_end_io_acct(struct request_queue *q, int req_op,
d62e26b3 1720 struct hd_struct *part, unsigned long start_time)
394ffa50 1721{
5b18b5a7
MP
1722 unsigned long now = jiffies;
1723 unsigned long duration = now - start_time;
ddcf35d3 1724 const int sgrp = op_stat_group(req_op);
394ffa50 1725
112f158f
MS
1726 part_stat_lock();
1727
5b18b5a7 1728 update_io_ticks(part, now);
112f158f 1729 part_stat_add(part, nsecs[sgrp], jiffies_to_nsecs(duration));
5b18b5a7 1730 part_stat_add(part, time_in_queue, duration);
ddcf35d3 1731 part_dec_in_flight(q, part, op_is_write(req_op));
394ffa50
GZ
1732
1733 part_stat_unlock();
1734}
1735EXPORT_SYMBOL(generic_end_io_acct);
1736
c4cf5261
JA
1737static inline bool bio_remaining_done(struct bio *bio)
1738{
1739 /*
1740 * If we're not chaining, then ->__bi_remaining is always 1 and
1741 * we always end io on the first invocation.
1742 */
1743 if (!bio_flagged(bio, BIO_CHAIN))
1744 return true;
1745
1746 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1747
326e1dbb 1748 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1749 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1750 return true;
326e1dbb 1751 }
c4cf5261
JA
1752
1753 return false;
1754}
1755
1da177e4
LT
1756/**
1757 * bio_endio - end I/O on a bio
1758 * @bio: bio
1da177e4
LT
1759 *
1760 * Description:
4246a0b6
CH
1761 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1762 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1763 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1764 *
1765 * bio_endio() can be called several times on a bio that has been chained
1766 * using bio_chain(). The ->bi_end_io() function will only be called the
1767 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1768 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1769 **/
4246a0b6 1770void bio_endio(struct bio *bio)
1da177e4 1771{
ba8c6967 1772again:
2b885517 1773 if (!bio_remaining_done(bio))
ba8c6967 1774 return;
7c20f116
CH
1775 if (!bio_integrity_endio(bio))
1776 return;
1da177e4 1777
67b42d0b
JB
1778 if (bio->bi_disk)
1779 rq_qos_done_bio(bio->bi_disk->queue, bio);
1780
ba8c6967
CH
1781 /*
1782 * Need to have a real endio function for chained bios, otherwise
1783 * various corner cases will break (like stacking block devices that
1784 * save/restore bi_end_io) - however, we want to avoid unbounded
1785 * recursion and blowing the stack. Tail call optimization would
1786 * handle this, but compiling with frame pointers also disables
1787 * gcc's sibling call optimization.
1788 */
1789 if (bio->bi_end_io == bio_chain_endio) {
1790 bio = __bio_chain_endio(bio);
1791 goto again;
196d38bc 1792 }
ba8c6967 1793
74d46992
CH
1794 if (bio->bi_disk && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1795 trace_block_bio_complete(bio->bi_disk->queue, bio,
a462b950 1796 blk_status_to_errno(bio->bi_status));
fbbaf700
N
1797 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1798 }
1799
9e234eea 1800 blk_throtl_bio_endio(bio);
b222dd2f
SL
1801 /* release cgroup info */
1802 bio_uninit(bio);
ba8c6967
CH
1803 if (bio->bi_end_io)
1804 bio->bi_end_io(bio);
1da177e4 1805}
a112a71d 1806EXPORT_SYMBOL(bio_endio);
1da177e4 1807
20d0189b
KO
1808/**
1809 * bio_split - split a bio
1810 * @bio: bio to split
1811 * @sectors: number of sectors to split from the front of @bio
1812 * @gfp: gfp mask
1813 * @bs: bio set to allocate from
1814 *
1815 * Allocates and returns a new bio which represents @sectors from the start of
1816 * @bio, and updates @bio to represent the remaining sectors.
1817 *
f3f5da62
MP
1818 * Unless this is a discard request the newly allocated bio will point
1819 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1820 * @bio is not freed before the split.
20d0189b
KO
1821 */
1822struct bio *bio_split(struct bio *bio, int sectors,
1823 gfp_t gfp, struct bio_set *bs)
1824{
f341a4d3 1825 struct bio *split;
20d0189b
KO
1826
1827 BUG_ON(sectors <= 0);
1828 BUG_ON(sectors >= bio_sectors(bio));
1829
f9d03f96 1830 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1831 if (!split)
1832 return NULL;
1833
1834 split->bi_iter.bi_size = sectors << 9;
1835
1836 if (bio_integrity(split))
fbd08e76 1837 bio_integrity_trim(split);
20d0189b
KO
1838
1839 bio_advance(bio, split->bi_iter.bi_size);
1840
fbbaf700 1841 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1842 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1843
20d0189b
KO
1844 return split;
1845}
1846EXPORT_SYMBOL(bio_split);
1847
6678d83f
KO
1848/**
1849 * bio_trim - trim a bio
1850 * @bio: bio to trim
1851 * @offset: number of sectors to trim from the front of @bio
1852 * @size: size we want to trim @bio to, in sectors
1853 */
1854void bio_trim(struct bio *bio, int offset, int size)
1855{
1856 /* 'bio' is a cloned bio which we need to trim to match
1857 * the given offset and size.
6678d83f 1858 */
6678d83f
KO
1859
1860 size <<= 9;
4f024f37 1861 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1862 return;
1863
6678d83f 1864 bio_advance(bio, offset << 9);
4f024f37 1865 bio->bi_iter.bi_size = size;
376a78ab
DM
1866
1867 if (bio_integrity(bio))
fbd08e76 1868 bio_integrity_trim(bio);
376a78ab 1869
6678d83f
KO
1870}
1871EXPORT_SYMBOL_GPL(bio_trim);
1872
1da177e4
LT
1873/*
1874 * create memory pools for biovec's in a bio_set.
1875 * use the global biovec slabs created for general use.
1876 */
8aa6ba2f 1877int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1878{
ed996a52 1879 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1880
8aa6ba2f 1881 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1882}
1883
917a38c7
KO
1884/*
1885 * bioset_exit - exit a bioset initialized with bioset_init()
1886 *
1887 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1888 * kzalloc()).
1889 */
1890void bioset_exit(struct bio_set *bs)
1da177e4 1891{
df2cb6da
KO
1892 if (bs->rescue_workqueue)
1893 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1894 bs->rescue_workqueue = NULL;
df2cb6da 1895
8aa6ba2f
KO
1896 mempool_exit(&bs->bio_pool);
1897 mempool_exit(&bs->bvec_pool);
9f060e22 1898
7878cba9 1899 bioset_integrity_free(bs);
917a38c7
KO
1900 if (bs->bio_slab)
1901 bio_put_slab(bs);
1902 bs->bio_slab = NULL;
1903}
1904EXPORT_SYMBOL(bioset_exit);
1da177e4 1905
917a38c7
KO
1906/**
1907 * bioset_init - Initialize a bio_set
dad08527 1908 * @bs: pool to initialize
917a38c7
KO
1909 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1910 * @front_pad: Number of bytes to allocate in front of the returned bio
1911 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1912 * and %BIOSET_NEED_RESCUER
1913 *
dad08527
KO
1914 * Description:
1915 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1916 * to ask for a number of bytes to be allocated in front of the bio.
1917 * Front pad allocation is useful for embedding the bio inside
1918 * another structure, to avoid allocating extra data to go with the bio.
1919 * Note that the bio must be embedded at the END of that structure always,
1920 * or things will break badly.
1921 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
1922 * for allocating iovecs. This pool is not needed e.g. for bio_clone_fast().
1923 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used to
1924 * dispatch queued requests when the mempool runs out of space.
1925 *
917a38c7
KO
1926 */
1927int bioset_init(struct bio_set *bs,
1928 unsigned int pool_size,
1929 unsigned int front_pad,
1930 int flags)
1931{
1932 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1933
1934 bs->front_pad = front_pad;
1935
1936 spin_lock_init(&bs->rescue_lock);
1937 bio_list_init(&bs->rescue_list);
1938 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1939
1940 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
1941 if (!bs->bio_slab)
1942 return -ENOMEM;
1943
1944 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1945 goto bad;
1946
1947 if ((flags & BIOSET_NEED_BVECS) &&
1948 biovec_init_pool(&bs->bvec_pool, pool_size))
1949 goto bad;
1950
1951 if (!(flags & BIOSET_NEED_RESCUER))
1952 return 0;
1953
1954 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1955 if (!bs->rescue_workqueue)
1956 goto bad;
1957
1958 return 0;
1959bad:
1960 bioset_exit(bs);
1961 return -ENOMEM;
1962}
1963EXPORT_SYMBOL(bioset_init);
1964
28e89fd9
JA
1965/*
1966 * Initialize and setup a new bio_set, based on the settings from
1967 * another bio_set.
1968 */
1969int bioset_init_from_src(struct bio_set *bs, struct bio_set *src)
1970{
1971 int flags;
1972
1973 flags = 0;
1974 if (src->bvec_pool.min_nr)
1975 flags |= BIOSET_NEED_BVECS;
1976 if (src->rescue_workqueue)
1977 flags |= BIOSET_NEED_RESCUER;
1978
1979 return bioset_init(bs, src->bio_pool.min_nr, src->front_pad, flags);
1980}
1981EXPORT_SYMBOL(bioset_init_from_src);
1982
852c788f 1983#ifdef CONFIG_BLK_CGROUP
1d933cf0 1984
74b7c02a 1985/**
2268c0fe 1986 * bio_disassociate_blkg - puts back the blkg reference if associated
74b7c02a 1987 * @bio: target bio
74b7c02a 1988 *
2268c0fe 1989 * Helper to disassociate the blkg from @bio if a blkg is associated.
74b7c02a 1990 */
2268c0fe 1991void bio_disassociate_blkg(struct bio *bio)
74b7c02a 1992{
2268c0fe
DZ
1993 if (bio->bi_blkg) {
1994 blkg_put(bio->bi_blkg);
1995 bio->bi_blkg = NULL;
1996 }
74b7c02a 1997}
892ad71f 1998EXPORT_SYMBOL_GPL(bio_disassociate_blkg);
74b7c02a 1999
a7b39b4e 2000/**
2268c0fe 2001 * __bio_associate_blkg - associate a bio with the a blkg
a7b39b4e 2002 * @bio: target bio
b5f2954d 2003 * @blkg: the blkg to associate
b5f2954d 2004 *
beea9da0
DZ
2005 * This tries to associate @bio with the specified @blkg. Association failure
2006 * is handled by walking up the blkg tree. Therefore, the blkg associated can
2007 * be anything between @blkg and the root_blkg. This situation only happens
2008 * when a cgroup is dying and then the remaining bios will spill to the closest
2009 * alive blkg.
a7b39b4e 2010 *
beea9da0
DZ
2011 * A reference will be taken on the @blkg and will be released when @bio is
2012 * freed.
a7b39b4e 2013 */
2268c0fe 2014static void __bio_associate_blkg(struct bio *bio, struct blkcg_gq *blkg)
a7b39b4e 2015{
2268c0fe
DZ
2016 bio_disassociate_blkg(bio);
2017
7754f669 2018 bio->bi_blkg = blkg_tryget_closest(blkg);
a7b39b4e
DZF
2019}
2020
d459d853 2021/**
fd42df30 2022 * bio_associate_blkg_from_css - associate a bio with a specified css
d459d853 2023 * @bio: target bio
fd42df30 2024 * @css: target css
d459d853 2025 *
fd42df30 2026 * Associate @bio with the blkg found by combining the css's blkg and the
fc5a828b
DZ
2027 * request_queue of the @bio. This falls back to the queue's root_blkg if
2028 * the association fails with the css.
d459d853 2029 */
fd42df30
DZ
2030void bio_associate_blkg_from_css(struct bio *bio,
2031 struct cgroup_subsys_state *css)
d459d853 2032{
fc5a828b
DZ
2033 struct request_queue *q = bio->bi_disk->queue;
2034 struct blkcg_gq *blkg;
2035
2036 rcu_read_lock();
2037
2038 if (!css || !css->parent)
2039 blkg = q->root_blkg;
2040 else
2041 blkg = blkg_lookup_create(css_to_blkcg(css), q);
2042
2043 __bio_associate_blkg(bio, blkg);
2044
2045 rcu_read_unlock();
d459d853 2046}
fd42df30 2047EXPORT_SYMBOL_GPL(bio_associate_blkg_from_css);
d459d853 2048
6a7f6d86 2049#ifdef CONFIG_MEMCG
852c788f 2050/**
6a7f6d86 2051 * bio_associate_blkg_from_page - associate a bio with the page's blkg
852c788f 2052 * @bio: target bio
6a7f6d86
DZ
2053 * @page: the page to lookup the blkcg from
2054 *
2055 * Associate @bio with the blkg from @page's owning memcg and the respective
fc5a828b
DZ
2056 * request_queue. If cgroup_e_css returns %NULL, fall back to the queue's
2057 * root_blkg.
852c788f 2058 */
6a7f6d86 2059void bio_associate_blkg_from_page(struct bio *bio, struct page *page)
852c788f 2060{
6a7f6d86
DZ
2061 struct cgroup_subsys_state *css;
2062
6a7f6d86
DZ
2063 if (!page->mem_cgroup)
2064 return;
2065
fc5a828b
DZ
2066 rcu_read_lock();
2067
2068 css = cgroup_e_css(page->mem_cgroup->css.cgroup, &io_cgrp_subsys);
2069 bio_associate_blkg_from_css(bio, css);
2070
2071 rcu_read_unlock();
6a7f6d86
DZ
2072}
2073#endif /* CONFIG_MEMCG */
2074
2268c0fe
DZ
2075/**
2076 * bio_associate_blkg - associate a bio with a blkg
2077 * @bio: target bio
2078 *
2079 * Associate @bio with the blkg found from the bio's css and request_queue.
2080 * If one is not found, bio_lookup_blkg() creates the blkg. If a blkg is
2081 * already associated, the css is reused and association redone as the
2082 * request_queue may have changed.
2083 */
2084void bio_associate_blkg(struct bio *bio)
2085{
fc5a828b 2086 struct cgroup_subsys_state *css;
2268c0fe
DZ
2087
2088 rcu_read_lock();
2089
db6638d7 2090 if (bio->bi_blkg)
fc5a828b 2091 css = &bio_blkcg(bio)->css;
db6638d7 2092 else
fc5a828b 2093 css = blkcg_css();
2268c0fe 2094
fc5a828b 2095 bio_associate_blkg_from_css(bio, css);
2268c0fe
DZ
2096
2097 rcu_read_unlock();
852c788f 2098}
5cdf2e3f 2099EXPORT_SYMBOL_GPL(bio_associate_blkg);
852c788f 2100
20bd723e 2101/**
db6638d7 2102 * bio_clone_blkg_association - clone blkg association from src to dst bio
20bd723e
PV
2103 * @dst: destination bio
2104 * @src: source bio
2105 */
db6638d7 2106void bio_clone_blkg_association(struct bio *dst, struct bio *src)
20bd723e 2107{
6ab21879
DZ
2108 rcu_read_lock();
2109
fc5a828b 2110 if (src->bi_blkg)
2268c0fe 2111 __bio_associate_blkg(dst, src->bi_blkg);
6ab21879
DZ
2112
2113 rcu_read_unlock();
20bd723e 2114}
db6638d7 2115EXPORT_SYMBOL_GPL(bio_clone_blkg_association);
852c788f
TH
2116#endif /* CONFIG_BLK_CGROUP */
2117
1da177e4
LT
2118static void __init biovec_init_slabs(void)
2119{
2120 int i;
2121
ed996a52 2122 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2123 int size;
2124 struct biovec_slab *bvs = bvec_slabs + i;
2125
a7fcd37c
JA
2126 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2127 bvs->slab = NULL;
2128 continue;
2129 }
a7fcd37c 2130
1da177e4
LT
2131 size = bvs->nr_vecs * sizeof(struct bio_vec);
2132 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2133 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2134 }
2135}
2136
2137static int __init init_bio(void)
2138{
bb799ca0
JA
2139 bio_slab_max = 2;
2140 bio_slab_nr = 0;
6396bb22
KC
2141 bio_slabs = kcalloc(bio_slab_max, sizeof(struct bio_slab),
2142 GFP_KERNEL);
2b24e6f6
JT
2143
2144 BUILD_BUG_ON(BIO_FLAG_LAST > BVEC_POOL_OFFSET);
2145
bb799ca0
JA
2146 if (!bio_slabs)
2147 panic("bio: can't allocate bios\n");
1da177e4 2148
7878cba9 2149 bio_integrity_init();
1da177e4
LT
2150 biovec_init_slabs();
2151
f4f8154a 2152 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
2153 panic("bio: can't allocate bios\n");
2154
f4f8154a 2155 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
2156 panic("bio: can't create integrity pool\n");
2157
1da177e4
LT
2158 return 0;
2159}
1da177e4 2160subsys_initcall(init_bio);