mm/memory.c: fix race when faulting a device private page
[linux-block.git] / block / bio.c
CommitLineData
8c16567d 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
0fe23479 3 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
4 */
5#include <linux/mm.h>
6#include <linux/swap.h>
7#include <linux/bio.h>
8#include <linux/blkdev.h>
a27bb332 9#include <linux/uio.h>
852c788f 10#include <linux/iocontext.h>
1da177e4
LT
11#include <linux/slab.h>
12#include <linux/init.h>
13#include <linux/kernel.h>
630d9c47 14#include <linux/export.h>
1da177e4
LT
15#include <linux/mempool.h>
16#include <linux/workqueue.h>
852c788f 17#include <linux/cgroup.h>
b4c5875d 18#include <linux/highmem.h>
de6a78b6 19#include <linux/sched/sysctl.h>
a892c8d5 20#include <linux/blk-crypto.h>
49d1ec85 21#include <linux/xarray.h>
1da177e4 22
55782138 23#include <trace/events/block.h>
9e234eea 24#include "blk.h"
67b42d0b 25#include "blk-rq-qos.h"
672fdcf0 26#include "blk-cgroup.h"
0bfc2455 27
be4d234d 28struct bio_alloc_cache {
fcade2ce 29 struct bio *free_list;
be4d234d
JA
30 unsigned int nr;
31};
32
de76fd89 33static struct biovec_slab {
6ac0b715
CH
34 int nr_vecs;
35 char *name;
36 struct kmem_cache *slab;
de76fd89
CH
37} bvec_slabs[] __read_mostly = {
38 { .nr_vecs = 16, .name = "biovec-16" },
39 { .nr_vecs = 64, .name = "biovec-64" },
40 { .nr_vecs = 128, .name = "biovec-128" },
a8affc03 41 { .nr_vecs = BIO_MAX_VECS, .name = "biovec-max" },
1da177e4 42};
6ac0b715 43
7a800a20
CH
44static struct biovec_slab *biovec_slab(unsigned short nr_vecs)
45{
46 switch (nr_vecs) {
47 /* smaller bios use inline vecs */
48 case 5 ... 16:
49 return &bvec_slabs[0];
50 case 17 ... 64:
51 return &bvec_slabs[1];
52 case 65 ... 128:
53 return &bvec_slabs[2];
a8affc03 54 case 129 ... BIO_MAX_VECS:
7a800a20
CH
55 return &bvec_slabs[3];
56 default:
57 BUG();
58 return NULL;
59 }
60}
1da177e4 61
1da177e4
LT
62/*
63 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
64 * IO code that does not need private memory pools.
65 */
f4f8154a 66struct bio_set fs_bio_set;
3f86a82a 67EXPORT_SYMBOL(fs_bio_set);
1da177e4 68
bb799ca0
JA
69/*
70 * Our slab pool management
71 */
72struct bio_slab {
73 struct kmem_cache *slab;
74 unsigned int slab_ref;
75 unsigned int slab_size;
76 char name[8];
77};
78static DEFINE_MUTEX(bio_slab_lock);
49d1ec85 79static DEFINE_XARRAY(bio_slabs);
bb799ca0 80
49d1ec85 81static struct bio_slab *create_bio_slab(unsigned int size)
bb799ca0 82{
49d1ec85 83 struct bio_slab *bslab = kzalloc(sizeof(*bslab), GFP_KERNEL);
bb799ca0 84
49d1ec85
ML
85 if (!bslab)
86 return NULL;
bb799ca0 87
49d1ec85
ML
88 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", size);
89 bslab->slab = kmem_cache_create(bslab->name, size,
1a7e76e4
CH
90 ARCH_KMALLOC_MINALIGN,
91 SLAB_HWCACHE_ALIGN | SLAB_TYPESAFE_BY_RCU, NULL);
49d1ec85
ML
92 if (!bslab->slab)
93 goto fail_alloc_slab;
bb799ca0 94
49d1ec85
ML
95 bslab->slab_ref = 1;
96 bslab->slab_size = size;
bb799ca0 97
49d1ec85
ML
98 if (!xa_err(xa_store(&bio_slabs, size, bslab, GFP_KERNEL)))
99 return bslab;
bb799ca0 100
49d1ec85 101 kmem_cache_destroy(bslab->slab);
bb799ca0 102
49d1ec85
ML
103fail_alloc_slab:
104 kfree(bslab);
105 return NULL;
106}
bb799ca0 107
49d1ec85
ML
108static inline unsigned int bs_bio_slab_size(struct bio_set *bs)
109{
9f180e31 110 return bs->front_pad + sizeof(struct bio) + bs->back_pad;
49d1ec85 111}
bb799ca0 112
49d1ec85
ML
113static struct kmem_cache *bio_find_or_create_slab(struct bio_set *bs)
114{
115 unsigned int size = bs_bio_slab_size(bs);
116 struct bio_slab *bslab;
bb799ca0 117
49d1ec85
ML
118 mutex_lock(&bio_slab_lock);
119 bslab = xa_load(&bio_slabs, size);
120 if (bslab)
121 bslab->slab_ref++;
122 else
123 bslab = create_bio_slab(size);
bb799ca0 124 mutex_unlock(&bio_slab_lock);
49d1ec85
ML
125
126 if (bslab)
127 return bslab->slab;
128 return NULL;
bb799ca0
JA
129}
130
131static void bio_put_slab(struct bio_set *bs)
132{
133 struct bio_slab *bslab = NULL;
49d1ec85 134 unsigned int slab_size = bs_bio_slab_size(bs);
bb799ca0
JA
135
136 mutex_lock(&bio_slab_lock);
137
49d1ec85 138 bslab = xa_load(&bio_slabs, slab_size);
bb799ca0
JA
139 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
140 goto out;
141
49d1ec85
ML
142 WARN_ON_ONCE(bslab->slab != bs->bio_slab);
143
bb799ca0
JA
144 WARN_ON(!bslab->slab_ref);
145
146 if (--bslab->slab_ref)
147 goto out;
148
49d1ec85
ML
149 xa_erase(&bio_slabs, slab_size);
150
bb799ca0 151 kmem_cache_destroy(bslab->slab);
49d1ec85 152 kfree(bslab);
bb799ca0
JA
153
154out:
155 mutex_unlock(&bio_slab_lock);
156}
157
7a800a20 158void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned short nr_vecs)
7ba1ba12 159{
9e8c0d0d 160 BUG_ON(nr_vecs > BIO_MAX_VECS);
ed996a52 161
a8affc03 162 if (nr_vecs == BIO_MAX_VECS)
9f060e22 163 mempool_free(bv, pool);
7a800a20
CH
164 else if (nr_vecs > BIO_INLINE_VECS)
165 kmem_cache_free(biovec_slab(nr_vecs)->slab, bv);
bb799ca0 166}
bb799ca0 167
f2c3eb9b
CH
168/*
169 * Make the first allocation restricted and don't dump info on allocation
170 * failures, since we'll fall back to the mempool in case of failure.
171 */
172static inline gfp_t bvec_alloc_gfp(gfp_t gfp)
173{
174 return (gfp & ~(__GFP_DIRECT_RECLAIM | __GFP_IO)) |
175 __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
bb799ca0
JA
176}
177
7a800a20
CH
178struct bio_vec *bvec_alloc(mempool_t *pool, unsigned short *nr_vecs,
179 gfp_t gfp_mask)
1da177e4 180{
7a800a20 181 struct biovec_slab *bvs = biovec_slab(*nr_vecs);
1da177e4 182
7a800a20 183 if (WARN_ON_ONCE(!bvs))
7ff9345f 184 return NULL;
7ff9345f
JA
185
186 /*
7a800a20
CH
187 * Upgrade the nr_vecs request to take full advantage of the allocation.
188 * We also rely on this in the bvec_free path.
7ff9345f 189 */
7a800a20 190 *nr_vecs = bvs->nr_vecs;
7ff9345f 191
7ff9345f 192 /*
f007a3d6
CH
193 * Try a slab allocation first for all smaller allocations. If that
194 * fails and __GFP_DIRECT_RECLAIM is set retry with the mempool.
a8affc03 195 * The mempool is sized to handle up to BIO_MAX_VECS entries.
7ff9345f 196 */
a8affc03 197 if (*nr_vecs < BIO_MAX_VECS) {
f007a3d6 198 struct bio_vec *bvl;
1da177e4 199
f2c3eb9b 200 bvl = kmem_cache_alloc(bvs->slab, bvec_alloc_gfp(gfp_mask));
7a800a20 201 if (likely(bvl) || !(gfp_mask & __GFP_DIRECT_RECLAIM))
f007a3d6 202 return bvl;
a8affc03 203 *nr_vecs = BIO_MAX_VECS;
7ff9345f
JA
204 }
205
f007a3d6 206 return mempool_alloc(pool, gfp_mask);
1da177e4
LT
207}
208
9ae3b3f5 209void bio_uninit(struct bio *bio)
1da177e4 210{
db9819c7
CH
211#ifdef CONFIG_BLK_CGROUP
212 if (bio->bi_blkg) {
213 blkg_put(bio->bi_blkg);
214 bio->bi_blkg = NULL;
215 }
216#endif
ece841ab
JT
217 if (bio_integrity(bio))
218 bio_integrity_free(bio);
a892c8d5
ST
219
220 bio_crypt_free_ctx(bio);
4254bba1 221}
9ae3b3f5 222EXPORT_SYMBOL(bio_uninit);
7ba1ba12 223
4254bba1
KO
224static void bio_free(struct bio *bio)
225{
226 struct bio_set *bs = bio->bi_pool;
066ff571 227 void *p = bio;
4254bba1 228
066ff571 229 WARN_ON_ONCE(!bs);
4254bba1 230
066ff571
CH
231 bio_uninit(bio);
232 bvec_free(&bs->bvec_pool, bio->bi_io_vec, bio->bi_max_vecs);
233 mempool_free(p - bs->front_pad, &bs->bio_pool);
3676347a
PO
234}
235
9ae3b3f5
JA
236/*
237 * Users of this function have their own bio allocation. Subsequently,
238 * they must remember to pair any call to bio_init() with bio_uninit()
239 * when IO has completed, or when the bio is released.
240 */
49add496 241void bio_init(struct bio *bio, struct block_device *bdev, struct bio_vec *table,
16458cf3 242 unsigned short max_vecs, blk_opf_t opf)
1da177e4 243{
da521626 244 bio->bi_next = NULL;
49add496
CH
245 bio->bi_bdev = bdev;
246 bio->bi_opf = opf;
da521626
JA
247 bio->bi_flags = 0;
248 bio->bi_ioprio = 0;
da521626
JA
249 bio->bi_status = 0;
250 bio->bi_iter.bi_sector = 0;
251 bio->bi_iter.bi_size = 0;
252 bio->bi_iter.bi_idx = 0;
253 bio->bi_iter.bi_bvec_done = 0;
254 bio->bi_end_io = NULL;
255 bio->bi_private = NULL;
256#ifdef CONFIG_BLK_CGROUP
257 bio->bi_blkg = NULL;
258 bio->bi_issue.value = 0;
49add496
CH
259 if (bdev)
260 bio_associate_blkg(bio);
da521626
JA
261#ifdef CONFIG_BLK_CGROUP_IOCOST
262 bio->bi_iocost_cost = 0;
263#endif
264#endif
265#ifdef CONFIG_BLK_INLINE_ENCRYPTION
266 bio->bi_crypt_context = NULL;
267#endif
268#ifdef CONFIG_BLK_DEV_INTEGRITY
269 bio->bi_integrity = NULL;
270#endif
271 bio->bi_vcnt = 0;
272
c4cf5261 273 atomic_set(&bio->__bi_remaining, 1);
dac56212 274 atomic_set(&bio->__bi_cnt, 1);
3e08773c 275 bio->bi_cookie = BLK_QC_T_NONE;
3a83f467 276
3a83f467 277 bio->bi_max_vecs = max_vecs;
da521626
JA
278 bio->bi_io_vec = table;
279 bio->bi_pool = NULL;
1da177e4 280}
a112a71d 281EXPORT_SYMBOL(bio_init);
1da177e4 282
f44b48c7
KO
283/**
284 * bio_reset - reinitialize a bio
285 * @bio: bio to reset
a7c50c94
CH
286 * @bdev: block device to use the bio for
287 * @opf: operation and flags for bio
f44b48c7
KO
288 *
289 * Description:
290 * After calling bio_reset(), @bio will be in the same state as a freshly
291 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
292 * preserved are the ones that are initialized by bio_alloc_bioset(). See
293 * comment in struct bio.
294 */
16458cf3 295void bio_reset(struct bio *bio, struct block_device *bdev, blk_opf_t opf)
f44b48c7 296{
9ae3b3f5 297 bio_uninit(bio);
f44b48c7 298 memset(bio, 0, BIO_RESET_BYTES);
c4cf5261 299 atomic_set(&bio->__bi_remaining, 1);
a7c50c94 300 bio->bi_bdev = bdev;
78e34374
CH
301 if (bio->bi_bdev)
302 bio_associate_blkg(bio);
a7c50c94 303 bio->bi_opf = opf;
f44b48c7
KO
304}
305EXPORT_SYMBOL(bio_reset);
306
38f8baae 307static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 308{
4246a0b6
CH
309 struct bio *parent = bio->bi_private;
310
3edf5346 311 if (bio->bi_status && !parent->bi_status)
4e4cbee9 312 parent->bi_status = bio->bi_status;
196d38bc 313 bio_put(bio);
38f8baae
CH
314 return parent;
315}
316
317static void bio_chain_endio(struct bio *bio)
318{
319 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
320}
321
322/**
323 * bio_chain - chain bio completions
1051a902 324 * @bio: the target bio
5b874af6 325 * @parent: the parent bio of @bio
196d38bc
KO
326 *
327 * The caller won't have a bi_end_io called when @bio completes - instead,
328 * @parent's bi_end_io won't be called until both @parent and @bio have
329 * completed; the chained bio will also be freed when it completes.
330 *
331 * The caller must not set bi_private or bi_end_io in @bio.
332 */
333void bio_chain(struct bio *bio, struct bio *parent)
334{
335 BUG_ON(bio->bi_private || bio->bi_end_io);
336
337 bio->bi_private = parent;
338 bio->bi_end_io = bio_chain_endio;
c4cf5261 339 bio_inc_remaining(parent);
196d38bc
KO
340}
341EXPORT_SYMBOL(bio_chain);
342
0a3140ea 343struct bio *blk_next_bio(struct bio *bio, struct block_device *bdev,
16458cf3 344 unsigned int nr_pages, blk_opf_t opf, gfp_t gfp)
3b005bf6 345{
07888c66 346 struct bio *new = bio_alloc(bdev, nr_pages, opf, gfp);
0a3140ea 347
3b005bf6
CH
348 if (bio) {
349 bio_chain(bio, new);
350 submit_bio(bio);
351 }
352
353 return new;
354}
355EXPORT_SYMBOL_GPL(blk_next_bio);
356
df2cb6da
KO
357static void bio_alloc_rescue(struct work_struct *work)
358{
359 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
360 struct bio *bio;
361
362 while (1) {
363 spin_lock(&bs->rescue_lock);
364 bio = bio_list_pop(&bs->rescue_list);
365 spin_unlock(&bs->rescue_lock);
366
367 if (!bio)
368 break;
369
ed00aabd 370 submit_bio_noacct(bio);
df2cb6da
KO
371 }
372}
373
374static void punt_bios_to_rescuer(struct bio_set *bs)
375{
376 struct bio_list punt, nopunt;
377 struct bio *bio;
378
47e0fb46
N
379 if (WARN_ON_ONCE(!bs->rescue_workqueue))
380 return;
df2cb6da
KO
381 /*
382 * In order to guarantee forward progress we must punt only bios that
383 * were allocated from this bio_set; otherwise, if there was a bio on
384 * there for a stacking driver higher up in the stack, processing it
385 * could require allocating bios from this bio_set, and doing that from
386 * our own rescuer would be bad.
387 *
388 * Since bio lists are singly linked, pop them all instead of trying to
389 * remove from the middle of the list:
390 */
391
392 bio_list_init(&punt);
393 bio_list_init(&nopunt);
394
f5fe1b51 395 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 396 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 397 current->bio_list[0] = nopunt;
df2cb6da 398
f5fe1b51
N
399 bio_list_init(&nopunt);
400 while ((bio = bio_list_pop(&current->bio_list[1])))
401 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
402 current->bio_list[1] = nopunt;
df2cb6da
KO
403
404 spin_lock(&bs->rescue_lock);
405 bio_list_merge(&bs->rescue_list, &punt);
406 spin_unlock(&bs->rescue_lock);
407
408 queue_work(bs->rescue_workqueue, &bs->rescue_work);
409}
410
0df71650 411static struct bio *bio_alloc_percpu_cache(struct block_device *bdev,
16458cf3 412 unsigned short nr_vecs, blk_opf_t opf, gfp_t gfp,
0df71650
MS
413 struct bio_set *bs)
414{
415 struct bio_alloc_cache *cache;
416 struct bio *bio;
417
418 cache = per_cpu_ptr(bs->cache, get_cpu());
419 if (!cache->free_list) {
420 put_cpu();
421 return NULL;
422 }
423 bio = cache->free_list;
424 cache->free_list = bio->bi_next;
425 cache->nr--;
426 put_cpu();
427
428 bio_init(bio, bdev, nr_vecs ? bio->bi_inline_vecs : NULL, nr_vecs, opf);
429 bio->bi_pool = bs;
430 return bio;
431}
432
1da177e4
LT
433/**
434 * bio_alloc_bioset - allocate a bio for I/O
609be106
CH
435 * @bdev: block device to allocate the bio for (can be %NULL)
436 * @nr_vecs: number of bvecs to pre-allocate
437 * @opf: operation and flags for bio
519c8e9f 438 * @gfp_mask: the GFP_* mask given to the slab allocator
db18efac 439 * @bs: the bio_set to allocate from.
1da177e4 440 *
3175199a 441 * Allocate a bio from the mempools in @bs.
3f86a82a 442 *
3175199a
CH
443 * If %__GFP_DIRECT_RECLAIM is set then bio_alloc will always be able to
444 * allocate a bio. This is due to the mempool guarantees. To make this work,
445 * callers must never allocate more than 1 bio at a time from the general pool.
446 * Callers that need to allocate more than 1 bio must always submit the
447 * previously allocated bio for IO before attempting to allocate a new one.
448 * Failure to do so can cause deadlocks under memory pressure.
3f86a82a 449 *
3175199a
CH
450 * Note that when running under submit_bio_noacct() (i.e. any block driver),
451 * bios are not submitted until after you return - see the code in
452 * submit_bio_noacct() that converts recursion into iteration, to prevent
453 * stack overflows.
df2cb6da 454 *
3175199a
CH
455 * This would normally mean allocating multiple bios under submit_bio_noacct()
456 * would be susceptible to deadlocks, but we have
457 * deadlock avoidance code that resubmits any blocked bios from a rescuer
458 * thread.
df2cb6da 459 *
3175199a
CH
460 * However, we do not guarantee forward progress for allocations from other
461 * mempools. Doing multiple allocations from the same mempool under
462 * submit_bio_noacct() should be avoided - instead, use bio_set's front_pad
463 * for per bio allocations.
df2cb6da 464 *
0df71650
MS
465 * If REQ_ALLOC_CACHE is set, the final put of the bio MUST be done from process
466 * context, not hard/soft IRQ.
467 *
3175199a 468 * Returns: Pointer to new bio on success, NULL on failure.
3f86a82a 469 */
609be106 470struct bio *bio_alloc_bioset(struct block_device *bdev, unsigned short nr_vecs,
16458cf3 471 blk_opf_t opf, gfp_t gfp_mask,
7a88fa19 472 struct bio_set *bs)
1da177e4 473{
df2cb6da 474 gfp_t saved_gfp = gfp_mask;
451a9ebf
TH
475 struct bio *bio;
476 void *p;
477
609be106
CH
478 /* should not use nobvec bioset for nr_vecs > 0 */
479 if (WARN_ON_ONCE(!mempool_initialized(&bs->bvec_pool) && nr_vecs > 0))
3175199a 480 return NULL;
df2cb6da 481
0df71650
MS
482 if (opf & REQ_ALLOC_CACHE) {
483 if (bs->cache && nr_vecs <= BIO_INLINE_VECS) {
484 bio = bio_alloc_percpu_cache(bdev, nr_vecs, opf,
485 gfp_mask, bs);
486 if (bio)
487 return bio;
488 /*
489 * No cached bio available, bio returned below marked with
490 * REQ_ALLOC_CACHE to particpate in per-cpu alloc cache.
491 */
492 } else {
493 opf &= ~REQ_ALLOC_CACHE;
494 }
495 }
496
3175199a
CH
497 /*
498 * submit_bio_noacct() converts recursion to iteration; this means if
499 * we're running beneath it, any bios we allocate and submit will not be
500 * submitted (and thus freed) until after we return.
501 *
502 * This exposes us to a potential deadlock if we allocate multiple bios
503 * from the same bio_set() while running underneath submit_bio_noacct().
504 * If we were to allocate multiple bios (say a stacking block driver
505 * that was splitting bios), we would deadlock if we exhausted the
506 * mempool's reserve.
507 *
508 * We solve this, and guarantee forward progress, with a rescuer
509 * workqueue per bio_set. If we go to allocate and there are bios on
510 * current->bio_list, we first try the allocation without
511 * __GFP_DIRECT_RECLAIM; if that fails, we punt those bios we would be
512 * blocking to the rescuer workqueue before we retry with the original
513 * gfp_flags.
514 */
515 if (current->bio_list &&
516 (!bio_list_empty(&current->bio_list[0]) ||
517 !bio_list_empty(&current->bio_list[1])) &&
518 bs->rescue_workqueue)
519 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
520
521 p = mempool_alloc(&bs->bio_pool, gfp_mask);
522 if (!p && gfp_mask != saved_gfp) {
523 punt_bios_to_rescuer(bs);
524 gfp_mask = saved_gfp;
8aa6ba2f 525 p = mempool_alloc(&bs->bio_pool, gfp_mask);
3f86a82a 526 }
451a9ebf
TH
527 if (unlikely(!p))
528 return NULL;
1da177e4 529
3175199a 530 bio = p + bs->front_pad;
609be106 531 if (nr_vecs > BIO_INLINE_VECS) {
3175199a 532 struct bio_vec *bvl = NULL;
34053979 533
609be106 534 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da
KO
535 if (!bvl && gfp_mask != saved_gfp) {
536 punt_bios_to_rescuer(bs);
537 gfp_mask = saved_gfp;
609be106 538 bvl = bvec_alloc(&bs->bvec_pool, &nr_vecs, gfp_mask);
df2cb6da 539 }
34053979
IM
540 if (unlikely(!bvl))
541 goto err_free;
a38352e0 542
49add496 543 bio_init(bio, bdev, bvl, nr_vecs, opf);
609be106 544 } else if (nr_vecs) {
49add496 545 bio_init(bio, bdev, bio->bi_inline_vecs, BIO_INLINE_VECS, opf);
3175199a 546 } else {
49add496 547 bio_init(bio, bdev, NULL, 0, opf);
1da177e4 548 }
3f86a82a
KO
549
550 bio->bi_pool = bs;
1da177e4 551 return bio;
34053979
IM
552
553err_free:
8aa6ba2f 554 mempool_free(p, &bs->bio_pool);
34053979 555 return NULL;
1da177e4 556}
a112a71d 557EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 558
3175199a 559/**
066ff571
CH
560 * bio_kmalloc - kmalloc a bio
561 * @nr_vecs: number of bio_vecs to allocate
3175199a 562 * @gfp_mask: the GFP_* mask given to the slab allocator
3175199a 563 *
066ff571
CH
564 * Use kmalloc to allocate a bio (including bvecs). The bio must be initialized
565 * using bio_init() before use. To free a bio returned from this function use
566 * kfree() after calling bio_uninit(). A bio returned from this function can
567 * be reused by calling bio_uninit() before calling bio_init() again.
568 *
569 * Note that unlike bio_alloc() or bio_alloc_bioset() allocations from this
570 * function are not backed by a mempool can can fail. Do not use this function
571 * for allocations in the file system I/O path.
3175199a
CH
572 *
573 * Returns: Pointer to new bio on success, NULL on failure.
574 */
066ff571 575struct bio *bio_kmalloc(unsigned short nr_vecs, gfp_t gfp_mask)
3175199a
CH
576{
577 struct bio *bio;
578
066ff571 579 if (nr_vecs > UIO_MAXIOV)
3175199a 580 return NULL;
066ff571 581 return kmalloc(struct_size(bio, bi_inline_vecs, nr_vecs), gfp_mask);
3175199a
CH
582}
583EXPORT_SYMBOL(bio_kmalloc);
584
6f822e1b 585void zero_fill_bio(struct bio *bio)
1da177e4 586{
7988613b
KO
587 struct bio_vec bv;
588 struct bvec_iter iter;
1da177e4 589
ab6c340e
CH
590 bio_for_each_segment(bv, bio, iter)
591 memzero_bvec(&bv);
1da177e4 592}
6f822e1b 593EXPORT_SYMBOL(zero_fill_bio);
1da177e4 594
83c9c547
ML
595/**
596 * bio_truncate - truncate the bio to small size of @new_size
597 * @bio: the bio to be truncated
598 * @new_size: new size for truncating the bio
599 *
600 * Description:
601 * Truncate the bio to new size of @new_size. If bio_op(bio) is
602 * REQ_OP_READ, zero the truncated part. This function should only
603 * be used for handling corner cases, such as bio eod.
604 */
4f7ab09a 605static void bio_truncate(struct bio *bio, unsigned new_size)
85a8ce62
ML
606{
607 struct bio_vec bv;
608 struct bvec_iter iter;
609 unsigned int done = 0;
610 bool truncated = false;
611
612 if (new_size >= bio->bi_iter.bi_size)
613 return;
614
83c9c547 615 if (bio_op(bio) != REQ_OP_READ)
85a8ce62
ML
616 goto exit;
617
618 bio_for_each_segment(bv, bio, iter) {
619 if (done + bv.bv_len > new_size) {
620 unsigned offset;
621
622 if (!truncated)
623 offset = new_size - done;
624 else
625 offset = 0;
3ee859e3
OH
626 zero_user(bv.bv_page, bv.bv_offset + offset,
627 bv.bv_len - offset);
85a8ce62
ML
628 truncated = true;
629 }
630 done += bv.bv_len;
631 }
632
633 exit:
634 /*
635 * Don't touch bvec table here and make it really immutable, since
636 * fs bio user has to retrieve all pages via bio_for_each_segment_all
637 * in its .end_bio() callback.
638 *
639 * It is enough to truncate bio by updating .bi_size since we can make
640 * correct bvec with the updated .bi_size for drivers.
641 */
642 bio->bi_iter.bi_size = new_size;
643}
644
29125ed6
CH
645/**
646 * guard_bio_eod - truncate a BIO to fit the block device
647 * @bio: bio to truncate
648 *
649 * This allows us to do IO even on the odd last sectors of a device, even if the
650 * block size is some multiple of the physical sector size.
651 *
652 * We'll just truncate the bio to the size of the device, and clear the end of
653 * the buffer head manually. Truly out-of-range accesses will turn into actual
654 * I/O errors, this only handles the "we need to be able to do I/O at the final
655 * sector" case.
656 */
657void guard_bio_eod(struct bio *bio)
658{
309dca30 659 sector_t maxsector = bdev_nr_sectors(bio->bi_bdev);
29125ed6
CH
660
661 if (!maxsector)
662 return;
663
664 /*
665 * If the *whole* IO is past the end of the device,
666 * let it through, and the IO layer will turn it into
667 * an EIO.
668 */
669 if (unlikely(bio->bi_iter.bi_sector >= maxsector))
670 return;
671
672 maxsector -= bio->bi_iter.bi_sector;
673 if (likely((bio->bi_iter.bi_size >> 9) <= maxsector))
674 return;
675
676 bio_truncate(bio, maxsector << 9);
677}
678
be4d234d
JA
679#define ALLOC_CACHE_MAX 512
680#define ALLOC_CACHE_SLACK 64
681
682static void bio_alloc_cache_prune(struct bio_alloc_cache *cache,
683 unsigned int nr)
684{
685 unsigned int i = 0;
686 struct bio *bio;
687
fcade2ce
JA
688 while ((bio = cache->free_list) != NULL) {
689 cache->free_list = bio->bi_next;
be4d234d
JA
690 cache->nr--;
691 bio_free(bio);
692 if (++i == nr)
693 break;
694 }
695}
696
697static int bio_cpu_dead(unsigned int cpu, struct hlist_node *node)
698{
699 struct bio_set *bs;
700
701 bs = hlist_entry_safe(node, struct bio_set, cpuhp_dead);
702 if (bs->cache) {
703 struct bio_alloc_cache *cache = per_cpu_ptr(bs->cache, cpu);
704
705 bio_alloc_cache_prune(cache, -1U);
706 }
707 return 0;
708}
709
710static void bio_alloc_cache_destroy(struct bio_set *bs)
711{
712 int cpu;
713
714 if (!bs->cache)
715 return;
716
717 cpuhp_state_remove_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
718 for_each_possible_cpu(cpu) {
719 struct bio_alloc_cache *cache;
720
721 cache = per_cpu_ptr(bs->cache, cpu);
722 bio_alloc_cache_prune(cache, -1U);
723 }
724 free_percpu(bs->cache);
605f7415 725 bs->cache = NULL;
be4d234d
JA
726}
727
1da177e4
LT
728/**
729 * bio_put - release a reference to a bio
730 * @bio: bio to release reference to
731 *
732 * Description:
733 * Put a reference to a &struct bio, either one you have gotten with
9b10f6a9 734 * bio_alloc, bio_get or bio_clone_*. The last put of a bio will free it.
1da177e4
LT
735 **/
736void bio_put(struct bio *bio)
737{
be4d234d 738 if (unlikely(bio_flagged(bio, BIO_REFFED))) {
9e8c0d0d 739 BUG_ON(!atomic_read(&bio->__bi_cnt));
be4d234d
JA
740 if (!atomic_dec_and_test(&bio->__bi_cnt))
741 return;
742 }
dac56212 743
0df71650 744 if (bio->bi_opf & REQ_ALLOC_CACHE) {
be4d234d
JA
745 struct bio_alloc_cache *cache;
746
747 bio_uninit(bio);
748 cache = per_cpu_ptr(bio->bi_pool->cache, get_cpu());
fcade2ce
JA
749 bio->bi_next = cache->free_list;
750 cache->free_list = bio;
be4d234d
JA
751 if (++cache->nr > ALLOC_CACHE_MAX + ALLOC_CACHE_SLACK)
752 bio_alloc_cache_prune(cache, ALLOC_CACHE_SLACK);
753 put_cpu();
754 } else {
755 bio_free(bio);
dac56212 756 }
1da177e4 757}
a112a71d 758EXPORT_SYMBOL(bio_put);
1da177e4 759
a0e8de79 760static int __bio_clone(struct bio *bio, struct bio *bio_src, gfp_t gfp)
59d276fe 761{
b7c44ed9 762 bio_set_flag(bio, BIO_CLONED);
111be883
SL
763 if (bio_flagged(bio_src, BIO_THROTTLED))
764 bio_set_flag(bio, BIO_THROTTLED);
ca474b73 765 bio->bi_ioprio = bio_src->bi_ioprio;
59d276fe 766 bio->bi_iter = bio_src->bi_iter;
20bd723e 767
7ecc56c6
CH
768 if (bio->bi_bdev) {
769 if (bio->bi_bdev == bio_src->bi_bdev &&
770 bio_flagged(bio_src, BIO_REMAPPED))
771 bio_set_flag(bio, BIO_REMAPPED);
772 bio_clone_blkg_association(bio, bio_src);
773 }
56b4b5ab
CH
774
775 if (bio_crypt_clone(bio, bio_src, gfp) < 0)
776 return -ENOMEM;
777 if (bio_integrity(bio_src) &&
778 bio_integrity_clone(bio, bio_src, gfp) < 0)
779 return -ENOMEM;
780 return 0;
59d276fe 781}
59d276fe
KO
782
783/**
abfc426d
CH
784 * bio_alloc_clone - clone a bio that shares the original bio's biovec
785 * @bdev: block_device to clone onto
a0e8de79
CH
786 * @bio_src: bio to clone from
787 * @gfp: allocation priority
788 * @bs: bio_set to allocate from
59d276fe 789 *
a0e8de79
CH
790 * Allocate a new bio that is a clone of @bio_src. The caller owns the returned
791 * bio, but not the actual data it points to.
792 *
793 * The caller must ensure that the return bio is not freed before @bio_src.
59d276fe 794 */
abfc426d
CH
795struct bio *bio_alloc_clone(struct block_device *bdev, struct bio *bio_src,
796 gfp_t gfp, struct bio_set *bs)
59d276fe 797{
a0e8de79 798 struct bio *bio;
59d276fe 799
abfc426d 800 bio = bio_alloc_bioset(bdev, 0, bio_src->bi_opf, gfp, bs);
a0e8de79 801 if (!bio)
59d276fe
KO
802 return NULL;
803
a0e8de79
CH
804 if (__bio_clone(bio, bio_src, gfp) < 0) {
805 bio_put(bio);
56b4b5ab
CH
806 return NULL;
807 }
a0e8de79 808 bio->bi_io_vec = bio_src->bi_io_vec;
59d276fe 809
a0e8de79 810 return bio;
59d276fe 811}
abfc426d 812EXPORT_SYMBOL(bio_alloc_clone);
59d276fe 813
a0e8de79 814/**
abfc426d
CH
815 * bio_init_clone - clone a bio that shares the original bio's biovec
816 * @bdev: block_device to clone onto
a0e8de79
CH
817 * @bio: bio to clone into
818 * @bio_src: bio to clone from
819 * @gfp: allocation priority
820 *
821 * Initialize a new bio in caller provided memory that is a clone of @bio_src.
822 * The caller owns the returned bio, but not the actual data it points to.
823 *
824 * The caller must ensure that @bio_src is not freed before @bio.
825 */
abfc426d
CH
826int bio_init_clone(struct block_device *bdev, struct bio *bio,
827 struct bio *bio_src, gfp_t gfp)
a0e8de79
CH
828{
829 int ret;
830
abfc426d 831 bio_init(bio, bdev, bio_src->bi_io_vec, 0, bio_src->bi_opf);
a0e8de79
CH
832 ret = __bio_clone(bio, bio_src, gfp);
833 if (ret)
834 bio_uninit(bio);
835 return ret;
836}
abfc426d 837EXPORT_SYMBOL(bio_init_clone);
a0e8de79 838
9a6083be
CH
839/**
840 * bio_full - check if the bio is full
841 * @bio: bio to check
842 * @len: length of one segment to be added
843 *
844 * Return true if @bio is full and one segment with @len bytes can't be
845 * added to the bio, otherwise return false
846 */
847static inline bool bio_full(struct bio *bio, unsigned len)
848{
849 if (bio->bi_vcnt >= bio->bi_max_vecs)
850 return true;
851 if (bio->bi_iter.bi_size > UINT_MAX - len)
852 return true;
853 return false;
854}
855
5919482e
ML
856static inline bool page_is_mergeable(const struct bio_vec *bv,
857 struct page *page, unsigned int len, unsigned int off,
ff896738 858 bool *same_page)
5919482e 859{
d8166519
MWO
860 size_t bv_end = bv->bv_offset + bv->bv_len;
861 phys_addr_t vec_end_addr = page_to_phys(bv->bv_page) + bv_end - 1;
5919482e
ML
862 phys_addr_t page_addr = page_to_phys(page);
863
864 if (vec_end_addr + 1 != page_addr + off)
865 return false;
866 if (xen_domain() && !xen_biovec_phys_mergeable(bv, page))
867 return false;
52d52d1c 868
ff896738 869 *same_page = ((vec_end_addr & PAGE_MASK) == page_addr);
d8166519
MWO
870 if (*same_page)
871 return true;
11b331f8
AP
872 else if (IS_ENABLED(CONFIG_KMSAN))
873 return false;
d8166519 874 return (bv->bv_page + bv_end / PAGE_SIZE) == (page + off / PAGE_SIZE);
5919482e
ML
875}
876
9774b391
CH
877/**
878 * __bio_try_merge_page - try appending data to an existing bvec.
879 * @bio: destination bio
880 * @page: start page to add
881 * @len: length of the data to add
882 * @off: offset of the data relative to @page
883 * @same_page: return if the segment has been merged inside the same page
884 *
885 * Try to add the data at @page + @off to the last bvec of @bio. This is a
886 * useful optimisation for file systems with a block size smaller than the
887 * page size.
888 *
889 * Warn if (@len, @off) crosses pages in case that @same_page is true.
890 *
891 * Return %true on success or %false on failure.
892 */
893static bool __bio_try_merge_page(struct bio *bio, struct page *page,
894 unsigned int len, unsigned int off, bool *same_page)
895{
896 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
897 return false;
898
899 if (bio->bi_vcnt > 0) {
900 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
901
902 if (page_is_mergeable(bv, page, len, off, same_page)) {
903 if (bio->bi_iter.bi_size > UINT_MAX - len) {
904 *same_page = false;
905 return false;
906 }
907 bv->bv_len += len;
908 bio->bi_iter.bi_size += len;
909 return true;
910 }
911 }
912 return false;
913}
914
e4581105
CH
915/*
916 * Try to merge a page into a segment, while obeying the hardware segment
917 * size limit. This is not for normal read/write bios, but for passthrough
918 * or Zone Append operations that we can't split.
919 */
920static bool bio_try_merge_hw_seg(struct request_queue *q, struct bio *bio,
921 struct page *page, unsigned len,
922 unsigned offset, bool *same_page)
489fbbcb 923{
384209cd 924 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
489fbbcb
ML
925 unsigned long mask = queue_segment_boundary(q);
926 phys_addr_t addr1 = page_to_phys(bv->bv_page) + bv->bv_offset;
927 phys_addr_t addr2 = page_to_phys(page) + offset + len - 1;
928
929 if ((addr1 | mask) != (addr2 | mask))
930 return false;
489fbbcb
ML
931 if (bv->bv_len + len > queue_max_segment_size(q))
932 return false;
384209cd 933 return __bio_try_merge_page(bio, page, len, offset, same_page);
489fbbcb
ML
934}
935
1da177e4 936/**
e4581105
CH
937 * bio_add_hw_page - attempt to add a page to a bio with hw constraints
938 * @q: the target queue
939 * @bio: destination bio
940 * @page: page to add
941 * @len: vec entry length
942 * @offset: vec entry offset
943 * @max_sectors: maximum number of sectors that can be added
944 * @same_page: return if the segment has been merged inside the same page
c66a14d0 945 *
e4581105
CH
946 * Add a page to a bio while respecting the hardware max_sectors, max_segment
947 * and gap limitations.
1da177e4 948 */
e4581105 949int bio_add_hw_page(struct request_queue *q, struct bio *bio,
19047087 950 struct page *page, unsigned int len, unsigned int offset,
e4581105 951 unsigned int max_sectors, bool *same_page)
1da177e4 952{
1da177e4
LT
953 struct bio_vec *bvec;
954
e4581105 955 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
1da177e4
LT
956 return 0;
957
e4581105 958 if (((bio->bi_iter.bi_size + len) >> 9) > max_sectors)
1da177e4
LT
959 return 0;
960
80cfd548 961 if (bio->bi_vcnt > 0) {
e4581105 962 if (bio_try_merge_hw_seg(q, bio, page, len, offset, same_page))
384209cd 963 return len;
320ea869
CH
964
965 /*
966 * If the queue doesn't support SG gaps and adding this segment
967 * would create a gap, disallow it.
968 */
384209cd 969 bvec = &bio->bi_io_vec[bio->bi_vcnt - 1];
c55ddd90 970 if (bvec_gap_to_prev(&q->limits, bvec, offset))
320ea869 971 return 0;
80cfd548
JA
972 }
973
79d08f89 974 if (bio_full(bio, len))
1da177e4
LT
975 return 0;
976
14ccb66b 977 if (bio->bi_vcnt >= queue_max_segments(q))
489fbbcb
ML
978 return 0;
979
fcbf6a08
ML
980 bvec = &bio->bi_io_vec[bio->bi_vcnt];
981 bvec->bv_page = page;
982 bvec->bv_len = len;
983 bvec->bv_offset = offset;
984 bio->bi_vcnt++;
dcdca753 985 bio->bi_iter.bi_size += len;
1da177e4
LT
986 return len;
987}
19047087 988
e4581105
CH
989/**
990 * bio_add_pc_page - attempt to add page to passthrough bio
991 * @q: the target queue
992 * @bio: destination bio
993 * @page: page to add
994 * @len: vec entry length
995 * @offset: vec entry offset
996 *
997 * Attempt to add a page to the bio_vec maplist. This can fail for a
998 * number of reasons, such as the bio being full or target block device
999 * limitations. The target block device must allow bio's up to PAGE_SIZE,
1000 * so it is always possible to add a single page to an empty bio.
1001 *
1002 * This should only be used by passthrough bios.
1003 */
19047087
ML
1004int bio_add_pc_page(struct request_queue *q, struct bio *bio,
1005 struct page *page, unsigned int len, unsigned int offset)
1006{
d1916c86 1007 bool same_page = false;
e4581105
CH
1008 return bio_add_hw_page(q, bio, page, len, offset,
1009 queue_max_hw_sectors(q), &same_page);
19047087 1010}
a112a71d 1011EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 1012
ae29333f
JT
1013/**
1014 * bio_add_zone_append_page - attempt to add page to zone-append bio
1015 * @bio: destination bio
1016 * @page: page to add
1017 * @len: vec entry length
1018 * @offset: vec entry offset
1019 *
1020 * Attempt to add a page to the bio_vec maplist of a bio that will be submitted
1021 * for a zone-append request. This can fail for a number of reasons, such as the
1022 * bio being full or the target block device is not a zoned block device or
1023 * other limitations of the target block device. The target block device must
1024 * allow bio's up to PAGE_SIZE, so it is always possible to add a single page
1025 * to an empty bio.
1026 *
1027 * Returns: number of bytes added to the bio, or 0 in case of a failure.
1028 */
1029int bio_add_zone_append_page(struct bio *bio, struct page *page,
1030 unsigned int len, unsigned int offset)
1031{
3caee463 1032 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
ae29333f
JT
1033 bool same_page = false;
1034
1035 if (WARN_ON_ONCE(bio_op(bio) != REQ_OP_ZONE_APPEND))
1036 return 0;
1037
edd1dbc8 1038 if (WARN_ON_ONCE(!bdev_is_zoned(bio->bi_bdev)))
ae29333f
JT
1039 return 0;
1040
1041 return bio_add_hw_page(q, bio, page, len, offset,
1042 queue_max_zone_append_sectors(q), &same_page);
1043}
1044EXPORT_SYMBOL_GPL(bio_add_zone_append_page);
1045
0aa69fd3 1046/**
551879a4 1047 * __bio_add_page - add page(s) to a bio in a new segment
0aa69fd3 1048 * @bio: destination bio
551879a4
ML
1049 * @page: start page to add
1050 * @len: length of the data to add, may cross pages
1051 * @off: offset of the data relative to @page, may cross pages
0aa69fd3
CH
1052 *
1053 * Add the data at @page + @off to @bio as a new bvec. The caller must ensure
1054 * that @bio has space for another bvec.
1055 */
1056void __bio_add_page(struct bio *bio, struct page *page,
1057 unsigned int len, unsigned int off)
1058{
1059 struct bio_vec *bv = &bio->bi_io_vec[bio->bi_vcnt];
c66a14d0 1060
0aa69fd3 1061 WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED));
79d08f89 1062 WARN_ON_ONCE(bio_full(bio, len));
0aa69fd3
CH
1063
1064 bv->bv_page = page;
1065 bv->bv_offset = off;
1066 bv->bv_len = len;
c66a14d0 1067
c66a14d0 1068 bio->bi_iter.bi_size += len;
0aa69fd3 1069 bio->bi_vcnt++;
b8e24a93
JW
1070
1071 if (!bio_flagged(bio, BIO_WORKINGSET) && unlikely(PageWorkingset(page)))
1072 bio_set_flag(bio, BIO_WORKINGSET);
0aa69fd3
CH
1073}
1074EXPORT_SYMBOL_GPL(__bio_add_page);
1075
1076/**
551879a4 1077 * bio_add_page - attempt to add page(s) to bio
0aa69fd3 1078 * @bio: destination bio
551879a4
ML
1079 * @page: start page to add
1080 * @len: vec entry length, may cross pages
1081 * @offset: vec entry offset relative to @page, may cross pages
0aa69fd3 1082 *
551879a4 1083 * Attempt to add page(s) to the bio_vec maplist. This will only fail
0aa69fd3
CH
1084 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1085 */
1086int bio_add_page(struct bio *bio, struct page *page,
1087 unsigned int len, unsigned int offset)
1088{
ff896738
CH
1089 bool same_page = false;
1090
1091 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
79d08f89 1092 if (bio_full(bio, len))
0aa69fd3
CH
1093 return 0;
1094 __bio_add_page(bio, page, len, offset);
1095 }
c66a14d0 1096 return len;
1da177e4 1097}
a112a71d 1098EXPORT_SYMBOL(bio_add_page);
1da177e4 1099
85f5a74c
MWO
1100/**
1101 * bio_add_folio - Attempt to add part of a folio to a bio.
1102 * @bio: BIO to add to.
1103 * @folio: Folio to add.
1104 * @len: How many bytes from the folio to add.
1105 * @off: First byte in this folio to add.
1106 *
1107 * Filesystems that use folios can call this function instead of calling
1108 * bio_add_page() for each page in the folio. If @off is bigger than
1109 * PAGE_SIZE, this function can create a bio_vec that starts in a page
1110 * after the bv_page. BIOs do not support folios that are 4GiB or larger.
1111 *
1112 * Return: Whether the addition was successful.
1113 */
1114bool bio_add_folio(struct bio *bio, struct folio *folio, size_t len,
1115 size_t off)
1116{
1117 if (len > UINT_MAX || off > UINT_MAX)
455a844d 1118 return false;
85f5a74c
MWO
1119 return bio_add_page(bio, &folio->page, len, off) > 0;
1120}
1121
c809084a 1122void __bio_release_pages(struct bio *bio, bool mark_dirty)
7321ecbf
CH
1123{
1124 struct bvec_iter_all iter_all;
1125 struct bio_vec *bvec;
7321ecbf 1126
d241a95f
CH
1127 bio_for_each_segment_all(bvec, bio, iter_all) {
1128 if (mark_dirty && !PageCompound(bvec->bv_page))
1129 set_page_dirty_lock(bvec->bv_page);
7321ecbf 1130 put_page(bvec->bv_page);
d241a95f 1131 }
7321ecbf 1132}
c809084a 1133EXPORT_SYMBOL_GPL(__bio_release_pages);
7321ecbf 1134
1bb6b810 1135void bio_iov_bvec_set(struct bio *bio, struct iov_iter *iter)
6d0c48ae 1136{
fa5fa8ec
PB
1137 size_t size = iov_iter_count(iter);
1138
7a800a20 1139 WARN_ON_ONCE(bio->bi_max_vecs);
c42bca92 1140
fa5fa8ec
PB
1141 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
1142 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1143 size_t max_sectors = queue_max_zone_append_sectors(q);
1144
1145 size = min(size, max_sectors << SECTOR_SHIFT);
1146 }
1147
c42bca92 1148 bio->bi_vcnt = iter->nr_segs;
c42bca92
PB
1149 bio->bi_io_vec = (struct bio_vec *)iter->bvec;
1150 bio->bi_iter.bi_bvec_done = iter->iov_offset;
fa5fa8ec 1151 bio->bi_iter.bi_size = size;
ed97ce5e 1152 bio_set_flag(bio, BIO_NO_PAGE_REF);
977be012 1153 bio_set_flag(bio, BIO_CLONED);
7de55b7d 1154}
c42bca92 1155
c58c0074
KB
1156static int bio_iov_add_page(struct bio *bio, struct page *page,
1157 unsigned int len, unsigned int offset)
1158{
1159 bool same_page = false;
1160
1161 if (!__bio_try_merge_page(bio, page, len, offset, &same_page)) {
c58c0074
KB
1162 __bio_add_page(bio, page, len, offset);
1163 return 0;
1164 }
1165
1166 if (same_page)
1167 put_page(page);
1168 return 0;
1169}
1170
1171static int bio_iov_add_zone_append_page(struct bio *bio, struct page *page,
1172 unsigned int len, unsigned int offset)
1173{
1174 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1175 bool same_page = false;
1176
1177 if (bio_add_hw_page(q, bio, page, len, offset,
1178 queue_max_zone_append_sectors(q), &same_page) != len)
1179 return -EINVAL;
1180 if (same_page)
1181 put_page(page);
1182 return 0;
1183}
1184
576ed913
CH
1185#define PAGE_PTRS_PER_BVEC (sizeof(struct bio_vec) / sizeof(struct page *))
1186
2cefe4db 1187/**
17d51b10 1188 * __bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
2cefe4db
KO
1189 * @bio: bio to add pages to
1190 * @iter: iov iterator describing the region to be mapped
1191 *
17d51b10 1192 * Pins pages from *iter and appends them to @bio's bvec array. The
2cefe4db 1193 * pages will have to be released using put_page() when done.
17d51b10 1194 * For multi-segment *iter, this function only adds pages from the
3cf14889 1195 * next non-empty segment of the iov iterator.
2cefe4db 1196 */
17d51b10 1197static int __bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
2cefe4db 1198{
576ed913
CH
1199 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
1200 unsigned short entries_left = bio->bi_max_vecs - bio->bi_vcnt;
2cefe4db
KO
1201 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
1202 struct page **pages = (struct page **)bv;
576ed913 1203 ssize_t size, left;
e97424fd 1204 unsigned len, i = 0;
480cb846 1205 size_t offset, trim;
325347d9 1206 int ret = 0;
576ed913
CH
1207
1208 /*
1209 * Move page array up in the allocated memory for the bio vecs as far as
1210 * possible so that we can start filling biovecs from the beginning
1211 * without overwriting the temporary page array.
c58c0074 1212 */
576ed913
CH
1213 BUILD_BUG_ON(PAGE_PTRS_PER_BVEC < 2);
1214 pages += entries_left * (PAGE_PTRS_PER_BVEC - 1);
2cefe4db 1215
b1a000d3
KB
1216 /*
1217 * Each segment in the iov is required to be a block size multiple.
1218 * However, we may not be able to get the entire segment if it spans
1219 * more pages than bi_max_vecs allows, so we have to ALIGN_DOWN the
1220 * result to ensure the bio's total size is correct. The remainder of
1221 * the iov data will be picked up in the next bio iteration.
1222 */
480cb846 1223 size = iov_iter_get_pages2(iter, pages, UINT_MAX - bio->bi_iter.bi_size,
34cdb8c8 1224 nr_pages, &offset);
480cb846
AV
1225 if (unlikely(size <= 0))
1226 return size ? size : -EFAULT;
1227
1228 nr_pages = DIV_ROUND_UP(offset + size, PAGE_SIZE);
1229
1230 trim = size & (bdev_logical_block_size(bio->bi_bdev) - 1);
1231 iov_iter_revert(iter, trim);
1232
1233 size -= trim;
1234 if (unlikely(!size)) {
1235 ret = -EFAULT;
e97424fd
KB
1236 goto out;
1237 }
2cefe4db 1238
576ed913
CH
1239 for (left = size, i = 0; left > 0; left -= len, i++) {
1240 struct page *page = pages[i];
2cefe4db 1241
576ed913 1242 len = min_t(size_t, PAGE_SIZE - offset, left);
34cdb8c8 1243 if (bio_op(bio) == REQ_OP_ZONE_APPEND) {
c58c0074
KB
1244 ret = bio_iov_add_zone_append_page(bio, page, len,
1245 offset);
e97424fd 1246 if (ret)
34cdb8c8 1247 break;
34cdb8c8
KB
1248 } else
1249 bio_iov_add_page(bio, page, len, offset);
45691804 1250
576ed913 1251 offset = 0;
2cefe4db
KO
1252 }
1253
480cb846 1254 iov_iter_revert(iter, left);
e97424fd
KB
1255out:
1256 while (i < nr_pages)
1257 put_page(pages[i++]);
1258
325347d9 1259 return ret;
2cefe4db 1260}
17d51b10
MW
1261
1262/**
6d0c48ae 1263 * bio_iov_iter_get_pages - add user or kernel pages to a bio
17d51b10 1264 * @bio: bio to add pages to
6d0c48ae
JA
1265 * @iter: iov iterator describing the region to be added
1266 *
1267 * This takes either an iterator pointing to user memory, or one pointing to
1268 * kernel pages (BVEC iterator). If we're adding user pages, we pin them and
1269 * map them into the kernel. On IO completion, the caller should put those
c42bca92
PB
1270 * pages. For bvec based iterators bio_iov_iter_get_pages() uses the provided
1271 * bvecs rather than copying them. Hence anyone issuing kiocb based IO needs
1272 * to ensure the bvecs and pages stay referenced until the submitted I/O is
1273 * completed by a call to ->ki_complete() or returns with an error other than
1274 * -EIOCBQUEUED. The caller needs to check if the bio is flagged BIO_NO_PAGE_REF
1275 * on IO completion. If it isn't, then pages should be released.
17d51b10 1276 *
17d51b10 1277 * The function tries, but does not guarantee, to pin as many pages as
5cd3ddc1 1278 * fit into the bio, or are requested in @iter, whatever is smaller. If
6d0c48ae
JA
1279 * MM encounters an error pinning the requested pages, it stops. Error
1280 * is returned only if 0 pages could be pinned.
0cf41e5e
PB
1281 *
1282 * It's intended for direct IO, so doesn't do PSI tracking, the caller is
1283 * responsible for setting BIO_WORKINGSET if necessary.
17d51b10
MW
1284 */
1285int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
1286{
c42bca92 1287 int ret = 0;
14eacf12 1288
c42bca92 1289 if (iov_iter_is_bvec(iter)) {
fa5fa8ec
PB
1290 bio_iov_bvec_set(bio, iter);
1291 iov_iter_advance(iter, bio->bi_iter.bi_size);
1292 return 0;
c42bca92 1293 }
17d51b10
MW
1294
1295 do {
c58c0074 1296 ret = __bio_iov_iter_get_pages(bio, iter);
79d08f89 1297 } while (!ret && iov_iter_count(iter) && !bio_full(bio, 0));
17d51b10 1298
0cf41e5e
PB
1299 /* don't account direct I/O as memory stall */
1300 bio_clear_flag(bio, BIO_WORKINGSET);
14eacf12 1301 return bio->bi_vcnt ? 0 : ret;
17d51b10 1302}
29b2a3aa 1303EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
2cefe4db 1304
4246a0b6 1305static void submit_bio_wait_endio(struct bio *bio)
9e882242 1306{
65e53aab 1307 complete(bio->bi_private);
9e882242
KO
1308}
1309
1310/**
1311 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
1312 * @bio: The &struct bio which describes the I/O
1313 *
1314 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
1315 * bio_endio() on failure.
3d289d68
JK
1316 *
1317 * WARNING: Unlike to how submit_bio() is usually used, this function does not
1318 * result in bio reference to be consumed. The caller must drop the reference
1319 * on his own.
9e882242 1320 */
4e49ea4a 1321int submit_bio_wait(struct bio *bio)
9e882242 1322{
309dca30
CH
1323 DECLARE_COMPLETION_ONSTACK_MAP(done,
1324 bio->bi_bdev->bd_disk->lockdep_map);
de6a78b6 1325 unsigned long hang_check;
9e882242 1326
65e53aab 1327 bio->bi_private = &done;
9e882242 1328 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 1329 bio->bi_opf |= REQ_SYNC;
4e49ea4a 1330 submit_bio(bio);
de6a78b6
ML
1331
1332 /* Prevent hang_check timer from firing at us during very long I/O */
1333 hang_check = sysctl_hung_task_timeout_secs;
1334 if (hang_check)
1335 while (!wait_for_completion_io_timeout(&done,
1336 hang_check * (HZ/2)))
1337 ;
1338 else
1339 wait_for_completion_io(&done);
9e882242 1340
65e53aab 1341 return blk_status_to_errno(bio->bi_status);
9e882242
KO
1342}
1343EXPORT_SYMBOL(submit_bio_wait);
1344
d4aa57a1 1345void __bio_advance(struct bio *bio, unsigned bytes)
054bdf64
KO
1346{
1347 if (bio_integrity(bio))
1348 bio_integrity_advance(bio, bytes);
1349
a892c8d5 1350 bio_crypt_advance(bio, bytes);
4550dd6c 1351 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64 1352}
d4aa57a1 1353EXPORT_SYMBOL(__bio_advance);
054bdf64 1354
45db54d5
KO
1355void bio_copy_data_iter(struct bio *dst, struct bvec_iter *dst_iter,
1356 struct bio *src, struct bvec_iter *src_iter)
16ac3d63 1357{
45db54d5 1358 while (src_iter->bi_size && dst_iter->bi_size) {
f8b679a0
CH
1359 struct bio_vec src_bv = bio_iter_iovec(src, *src_iter);
1360 struct bio_vec dst_bv = bio_iter_iovec(dst, *dst_iter);
1361 unsigned int bytes = min(src_bv.bv_len, dst_bv.bv_len);
403d5034
CH
1362 void *src_buf = bvec_kmap_local(&src_bv);
1363 void *dst_buf = bvec_kmap_local(&dst_bv);
f8b679a0 1364
403d5034
CH
1365 memcpy(dst_buf, src_buf, bytes);
1366
1367 kunmap_local(dst_buf);
f8b679a0 1368 kunmap_local(src_buf);
6e6e811d 1369
22b56c29
PB
1370 bio_advance_iter_single(src, src_iter, bytes);
1371 bio_advance_iter_single(dst, dst_iter, bytes);
16ac3d63
KO
1372 }
1373}
38a72dac
KO
1374EXPORT_SYMBOL(bio_copy_data_iter);
1375
1376/**
45db54d5
KO
1377 * bio_copy_data - copy contents of data buffers from one bio to another
1378 * @src: source bio
1379 * @dst: destination bio
38a72dac
KO
1380 *
1381 * Stops when it reaches the end of either @src or @dst - that is, copies
1382 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1383 */
1384void bio_copy_data(struct bio *dst, struct bio *src)
1385{
45db54d5
KO
1386 struct bvec_iter src_iter = src->bi_iter;
1387 struct bvec_iter dst_iter = dst->bi_iter;
1388
1389 bio_copy_data_iter(dst, &dst_iter, src, &src_iter);
38a72dac 1390}
16ac3d63
KO
1391EXPORT_SYMBOL(bio_copy_data);
1392
491221f8 1393void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1394{
1395 struct bio_vec *bvec;
6dc4f100 1396 struct bvec_iter_all iter_all;
1dfa0f68 1397
2b070cfe 1398 bio_for_each_segment_all(bvec, bio, iter_all)
1dfa0f68
CH
1399 __free_page(bvec->bv_page);
1400}
491221f8 1401EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1402
1da177e4
LT
1403/*
1404 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1405 * for performing direct-IO in BIOs.
1406 *
1407 * The problem is that we cannot run set_page_dirty() from interrupt context
1408 * because the required locks are not interrupt-safe. So what we can do is to
1409 * mark the pages dirty _before_ performing IO. And in interrupt context,
1410 * check that the pages are still dirty. If so, fine. If not, redirty them
1411 * in process context.
1412 *
1413 * We special-case compound pages here: normally this means reads into hugetlb
1414 * pages. The logic in here doesn't really work right for compound pages
1415 * because the VM does not uniformly chase down the head page in all cases.
1416 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1417 * handle them at all. So we skip compound pages here at an early stage.
1418 *
1419 * Note that this code is very hard to test under normal circumstances because
1420 * direct-io pins the pages with get_user_pages(). This makes
1421 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1422 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1423 * pagecache.
1424 *
1425 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1426 * deferred bio dirtying paths.
1427 */
1428
1429/*
1430 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1431 */
1432void bio_set_pages_dirty(struct bio *bio)
1433{
cb34e057 1434 struct bio_vec *bvec;
6dc4f100 1435 struct bvec_iter_all iter_all;
1da177e4 1436
2b070cfe 1437 bio_for_each_segment_all(bvec, bio, iter_all) {
3bb50983
CH
1438 if (!PageCompound(bvec->bv_page))
1439 set_page_dirty_lock(bvec->bv_page);
1da177e4
LT
1440 }
1441}
1442
1da177e4
LT
1443/*
1444 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1445 * If they are, then fine. If, however, some pages are clean then they must
1446 * have been written out during the direct-IO read. So we take another ref on
24d5493f 1447 * the BIO and re-dirty the pages in process context.
1da177e4
LT
1448 *
1449 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1450 * here on. It will run one put_page() against each page and will run one
1451 * bio_put() against the BIO.
1da177e4
LT
1452 */
1453
65f27f38 1454static void bio_dirty_fn(struct work_struct *work);
1da177e4 1455
65f27f38 1456static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1457static DEFINE_SPINLOCK(bio_dirty_lock);
1458static struct bio *bio_dirty_list;
1459
1460/*
1461 * This runs in process context
1462 */
65f27f38 1463static void bio_dirty_fn(struct work_struct *work)
1da177e4 1464{
24d5493f 1465 struct bio *bio, *next;
1da177e4 1466
24d5493f
CH
1467 spin_lock_irq(&bio_dirty_lock);
1468 next = bio_dirty_list;
1da177e4 1469 bio_dirty_list = NULL;
24d5493f 1470 spin_unlock_irq(&bio_dirty_lock);
1da177e4 1471
24d5493f
CH
1472 while ((bio = next) != NULL) {
1473 next = bio->bi_private;
1da177e4 1474
d241a95f 1475 bio_release_pages(bio, true);
1da177e4 1476 bio_put(bio);
1da177e4
LT
1477 }
1478}
1479
1480void bio_check_pages_dirty(struct bio *bio)
1481{
cb34e057 1482 struct bio_vec *bvec;
24d5493f 1483 unsigned long flags;
6dc4f100 1484 struct bvec_iter_all iter_all;
1da177e4 1485
2b070cfe 1486 bio_for_each_segment_all(bvec, bio, iter_all) {
24d5493f
CH
1487 if (!PageDirty(bvec->bv_page) && !PageCompound(bvec->bv_page))
1488 goto defer;
1da177e4
LT
1489 }
1490
d241a95f 1491 bio_release_pages(bio, false);
24d5493f
CH
1492 bio_put(bio);
1493 return;
1494defer:
1495 spin_lock_irqsave(&bio_dirty_lock, flags);
1496 bio->bi_private = bio_dirty_list;
1497 bio_dirty_list = bio;
1498 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1499 schedule_work(&bio_dirty_work);
1da177e4
LT
1500}
1501
c4cf5261
JA
1502static inline bool bio_remaining_done(struct bio *bio)
1503{
1504 /*
1505 * If we're not chaining, then ->__bi_remaining is always 1 and
1506 * we always end io on the first invocation.
1507 */
1508 if (!bio_flagged(bio, BIO_CHAIN))
1509 return true;
1510
1511 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1512
326e1dbb 1513 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1514 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1515 return true;
326e1dbb 1516 }
c4cf5261
JA
1517
1518 return false;
1519}
1520
1da177e4
LT
1521/**
1522 * bio_endio - end I/O on a bio
1523 * @bio: bio
1da177e4
LT
1524 *
1525 * Description:
4246a0b6
CH
1526 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1527 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1528 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1529 *
1530 * bio_endio() can be called several times on a bio that has been chained
1531 * using bio_chain(). The ->bi_end_io() function will only be called the
60b6a7e6 1532 * last time.
1da177e4 1533 **/
4246a0b6 1534void bio_endio(struct bio *bio)
1da177e4 1535{
ba8c6967 1536again:
2b885517 1537 if (!bio_remaining_done(bio))
ba8c6967 1538 return;
7c20f116
CH
1539 if (!bio_integrity_endio(bio))
1540 return;
1da177e4 1541
aa1b46dc 1542 rq_qos_done_bio(bio);
67b42d0b 1543
60b6a7e6 1544 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
3caee463 1545 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev), bio);
60b6a7e6
EH
1546 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1547 }
1548
ba8c6967
CH
1549 /*
1550 * Need to have a real endio function for chained bios, otherwise
1551 * various corner cases will break (like stacking block devices that
1552 * save/restore bi_end_io) - however, we want to avoid unbounded
1553 * recursion and blowing the stack. Tail call optimization would
1554 * handle this, but compiling with frame pointers also disables
1555 * gcc's sibling call optimization.
1556 */
1557 if (bio->bi_end_io == bio_chain_endio) {
1558 bio = __bio_chain_endio(bio);
1559 goto again;
196d38bc 1560 }
ba8c6967 1561
9e234eea 1562 blk_throtl_bio_endio(bio);
b222dd2f
SL
1563 /* release cgroup info */
1564 bio_uninit(bio);
ba8c6967
CH
1565 if (bio->bi_end_io)
1566 bio->bi_end_io(bio);
1da177e4 1567}
a112a71d 1568EXPORT_SYMBOL(bio_endio);
1da177e4 1569
20d0189b
KO
1570/**
1571 * bio_split - split a bio
1572 * @bio: bio to split
1573 * @sectors: number of sectors to split from the front of @bio
1574 * @gfp: gfp mask
1575 * @bs: bio set to allocate from
1576 *
1577 * Allocates and returns a new bio which represents @sectors from the start of
1578 * @bio, and updates @bio to represent the remaining sectors.
1579 *
f3f5da62 1580 * Unless this is a discard request the newly allocated bio will point
dad77584
BVA
1581 * to @bio's bi_io_vec. It is the caller's responsibility to ensure that
1582 * neither @bio nor @bs are freed before the split bio.
20d0189b
KO
1583 */
1584struct bio *bio_split(struct bio *bio, int sectors,
1585 gfp_t gfp, struct bio_set *bs)
1586{
f341a4d3 1587 struct bio *split;
20d0189b
KO
1588
1589 BUG_ON(sectors <= 0);
1590 BUG_ON(sectors >= bio_sectors(bio));
1591
0512a75b
KB
1592 /* Zone append commands cannot be split */
1593 if (WARN_ON_ONCE(bio_op(bio) == REQ_OP_ZONE_APPEND))
1594 return NULL;
1595
abfc426d 1596 split = bio_alloc_clone(bio->bi_bdev, bio, gfp, bs);
20d0189b
KO
1597 if (!split)
1598 return NULL;
1599
1600 split->bi_iter.bi_size = sectors << 9;
1601
1602 if (bio_integrity(split))
fbd08e76 1603 bio_integrity_trim(split);
20d0189b
KO
1604
1605 bio_advance(bio, split->bi_iter.bi_size);
1606
fbbaf700 1607 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
20d59023 1608 bio_set_flag(split, BIO_TRACE_COMPLETION);
fbbaf700 1609
20d0189b
KO
1610 return split;
1611}
1612EXPORT_SYMBOL(bio_split);
1613
6678d83f
KO
1614/**
1615 * bio_trim - trim a bio
1616 * @bio: bio to trim
1617 * @offset: number of sectors to trim from the front of @bio
1618 * @size: size we want to trim @bio to, in sectors
e83502ca
CK
1619 *
1620 * This function is typically used for bios that are cloned and submitted
1621 * to the underlying device in parts.
6678d83f 1622 */
e83502ca 1623void bio_trim(struct bio *bio, sector_t offset, sector_t size)
6678d83f 1624{
e83502ca 1625 if (WARN_ON_ONCE(offset > BIO_MAX_SECTORS || size > BIO_MAX_SECTORS ||
8535c018 1626 offset + size > bio_sectors(bio)))
e83502ca 1627 return;
6678d83f
KO
1628
1629 size <<= 9;
4f024f37 1630 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1631 return;
1632
6678d83f 1633 bio_advance(bio, offset << 9);
4f024f37 1634 bio->bi_iter.bi_size = size;
376a78ab
DM
1635
1636 if (bio_integrity(bio))
fbd08e76 1637 bio_integrity_trim(bio);
6678d83f
KO
1638}
1639EXPORT_SYMBOL_GPL(bio_trim);
1640
1da177e4
LT
1641/*
1642 * create memory pools for biovec's in a bio_set.
1643 * use the global biovec slabs created for general use.
1644 */
8aa6ba2f 1645int biovec_init_pool(mempool_t *pool, int pool_entries)
1da177e4 1646{
7a800a20 1647 struct biovec_slab *bp = bvec_slabs + ARRAY_SIZE(bvec_slabs) - 1;
1da177e4 1648
8aa6ba2f 1649 return mempool_init_slab_pool(pool, pool_entries, bp->slab);
1da177e4
LT
1650}
1651
917a38c7
KO
1652/*
1653 * bioset_exit - exit a bioset initialized with bioset_init()
1654 *
1655 * May be called on a zeroed but uninitialized bioset (i.e. allocated with
1656 * kzalloc()).
1657 */
1658void bioset_exit(struct bio_set *bs)
1da177e4 1659{
be4d234d 1660 bio_alloc_cache_destroy(bs);
df2cb6da
KO
1661 if (bs->rescue_workqueue)
1662 destroy_workqueue(bs->rescue_workqueue);
917a38c7 1663 bs->rescue_workqueue = NULL;
df2cb6da 1664
8aa6ba2f
KO
1665 mempool_exit(&bs->bio_pool);
1666 mempool_exit(&bs->bvec_pool);
9f060e22 1667
7878cba9 1668 bioset_integrity_free(bs);
917a38c7
KO
1669 if (bs->bio_slab)
1670 bio_put_slab(bs);
1671 bs->bio_slab = NULL;
1672}
1673EXPORT_SYMBOL(bioset_exit);
1da177e4 1674
917a38c7
KO
1675/**
1676 * bioset_init - Initialize a bio_set
dad08527 1677 * @bs: pool to initialize
917a38c7
KO
1678 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1679 * @front_pad: Number of bytes to allocate in front of the returned bio
1680 * @flags: Flags to modify behavior, currently %BIOSET_NEED_BVECS
1681 * and %BIOSET_NEED_RESCUER
1682 *
dad08527
KO
1683 * Description:
1684 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1685 * to ask for a number of bytes to be allocated in front of the bio.
1686 * Front pad allocation is useful for embedding the bio inside
1687 * another structure, to avoid allocating extra data to go with the bio.
1688 * Note that the bio must be embedded at the END of that structure always,
1689 * or things will break badly.
1690 * If %BIOSET_NEED_BVECS is set in @flags, a separate pool will be allocated
abfc426d
CH
1691 * for allocating iovecs. This pool is not needed e.g. for bio_init_clone().
1692 * If %BIOSET_NEED_RESCUER is set, a workqueue is created which can be used
1693 * to dispatch queued requests when the mempool runs out of space.
dad08527 1694 *
917a38c7
KO
1695 */
1696int bioset_init(struct bio_set *bs,
1697 unsigned int pool_size,
1698 unsigned int front_pad,
1699 int flags)
1700{
917a38c7 1701 bs->front_pad = front_pad;
9f180e31
ML
1702 if (flags & BIOSET_NEED_BVECS)
1703 bs->back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1704 else
1705 bs->back_pad = 0;
917a38c7
KO
1706
1707 spin_lock_init(&bs->rescue_lock);
1708 bio_list_init(&bs->rescue_list);
1709 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1710
49d1ec85 1711 bs->bio_slab = bio_find_or_create_slab(bs);
917a38c7
KO
1712 if (!bs->bio_slab)
1713 return -ENOMEM;
1714
1715 if (mempool_init_slab_pool(&bs->bio_pool, pool_size, bs->bio_slab))
1716 goto bad;
1717
1718 if ((flags & BIOSET_NEED_BVECS) &&
1719 biovec_init_pool(&bs->bvec_pool, pool_size))
1720 goto bad;
1721
be4d234d
JA
1722 if (flags & BIOSET_NEED_RESCUER) {
1723 bs->rescue_workqueue = alloc_workqueue("bioset",
1724 WQ_MEM_RECLAIM, 0);
1725 if (!bs->rescue_workqueue)
1726 goto bad;
1727 }
1728 if (flags & BIOSET_PERCPU_CACHE) {
1729 bs->cache = alloc_percpu(struct bio_alloc_cache);
1730 if (!bs->cache)
1731 goto bad;
1732 cpuhp_state_add_instance_nocalls(CPUHP_BIO_DEAD, &bs->cpuhp_dead);
1733 }
917a38c7
KO
1734
1735 return 0;
1736bad:
1737 bioset_exit(bs);
1738 return -ENOMEM;
1739}
1740EXPORT_SYMBOL(bioset_init);
1741
de76fd89 1742static int __init init_bio(void)
1da177e4
LT
1743{
1744 int i;
1745
7878cba9 1746 bio_integrity_init();
1da177e4 1747
de76fd89
CH
1748 for (i = 0; i < ARRAY_SIZE(bvec_slabs); i++) {
1749 struct biovec_slab *bvs = bvec_slabs + i;
a7fcd37c 1750
de76fd89
CH
1751 bvs->slab = kmem_cache_create(bvs->name,
1752 bvs->nr_vecs * sizeof(struct bio_vec), 0,
1753 SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 1754 }
1da177e4 1755
be4d234d
JA
1756 cpuhp_setup_state_multi(CPUHP_BIO_DEAD, "block/bio:dead", NULL,
1757 bio_cpu_dead);
1758
f4f8154a 1759 if (bioset_init(&fs_bio_set, BIO_POOL_SIZE, 0, BIOSET_NEED_BVECS))
1da177e4
LT
1760 panic("bio: can't allocate bios\n");
1761
f4f8154a 1762 if (bioset_integrity_create(&fs_bio_set, BIO_POOL_SIZE))
a91a2785
MP
1763 panic("bio: can't create integrity pool\n");
1764
1da177e4
LT
1765 return 0;
1766}
1da177e4 1767subsys_initcall(init_bio);