block, bfq: do not idle if only one group is activated
[linux-2.6-block.git] / block / bfq-wf2q.c
CommitLineData
a497ee34 1// SPDX-License-Identifier: GPL-2.0-or-later
ea25da48
PV
2/*
3 * Hierarchical Budget Worst-case Fair Weighted Fair Queueing
4 * (B-WF2Q+): hierarchical scheduling algorithm by which the BFQ I/O
5 * scheduler schedules generic entities. The latter can represent
6 * either single bfq queues (associated with processes) or groups of
7 * bfq queues (associated with cgroups).
ea25da48
PV
8 */
9#include "bfq-iosched.h"
10
11/**
12 * bfq_gt - compare two timestamps.
13 * @a: first ts.
14 * @b: second ts.
15 *
16 * Return @a > @b, dealing with wrapping correctly.
17 */
18static int bfq_gt(u64 a, u64 b)
19{
20 return (s64)(a - b) > 0;
21}
22
23static struct bfq_entity *bfq_root_active_entity(struct rb_root *tree)
24{
25 struct rb_node *node = tree->rb_node;
26
27 return rb_entry(node, struct bfq_entity, rb_node);
28}
29
30static unsigned int bfq_class_idx(struct bfq_entity *entity)
31{
32 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
33
34 return bfqq ? bfqq->ioprio_class - 1 :
35 BFQ_DEFAULT_GRP_CLASS - 1;
36}
37
73d58118
PV
38unsigned int bfq_tot_busy_queues(struct bfq_data *bfqd)
39{
40 return bfqd->busy_queues[0] + bfqd->busy_queues[1] +
41 bfqd->busy_queues[2];
42}
43
80294c3b
PV
44static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
45 bool expiration);
ea25da48
PV
46
47static bool bfq_update_parent_budget(struct bfq_entity *next_in_service);
48
49/**
50 * bfq_update_next_in_service - update sd->next_in_service
51 * @sd: sched_data for which to perform the update.
52 * @new_entity: if not NULL, pointer to the entity whose activation,
636b8fe8 53 * requeueing or repositioning triggered the invocation of
ea25da48 54 * this function.
80294c3b
PV
55 * @expiration: id true, this function is being invoked after the
56 * expiration of the in-service entity
ea25da48
PV
57 *
58 * This function is called to update sd->next_in_service, which, in
59 * its turn, may change as a consequence of the insertion or
60 * extraction of an entity into/from one of the active trees of
61 * sd. These insertions/extractions occur as a consequence of
62 * activations/deactivations of entities, with some activations being
63 * 'true' activations, and other activations being requeueings (i.e.,
64 * implementing the second, requeueing phase of the mechanism used to
65 * reposition an entity in its active tree; see comments on
66 * __bfq_activate_entity and __bfq_requeue_entity for details). In
67 * both the last two activation sub-cases, new_entity points to the
68 * just activated or requeued entity.
69 *
70 * Returns true if sd->next_in_service changes in such a way that
71 * entity->parent may become the next_in_service for its parent
72 * entity.
73 */
74static bool bfq_update_next_in_service(struct bfq_sched_data *sd,
80294c3b
PV
75 struct bfq_entity *new_entity,
76 bool expiration)
ea25da48
PV
77{
78 struct bfq_entity *next_in_service = sd->next_in_service;
79 bool parent_sched_may_change = false;
24d90bb2 80 bool change_without_lookup = false;
ea25da48
PV
81
82 /*
83 * If this update is triggered by the activation, requeueing
636b8fe8 84 * or repositioning of an entity that does not coincide with
ea25da48
PV
85 * sd->next_in_service, then a full lookup in the active tree
86 * can be avoided. In fact, it is enough to check whether the
a02195ce
PV
87 * just-modified entity has the same priority as
88 * sd->next_in_service, is eligible and has a lower virtual
ea25da48
PV
89 * finish time than sd->next_in_service. If this compound
90 * condition holds, then the new entity becomes the new
91 * next_in_service. Otherwise no change is needed.
92 */
93 if (new_entity && new_entity != sd->next_in_service) {
94 /*
95 * Flag used to decide whether to replace
96 * sd->next_in_service with new_entity. Tentatively
97 * set to true, and left as true if
98 * sd->next_in_service is NULL.
99 */
24d90bb2 100 change_without_lookup = true;
ea25da48
PV
101
102 /*
103 * If there is already a next_in_service candidate
a02195ce
PV
104 * entity, then compare timestamps to decide whether
105 * to replace sd->service_tree with new_entity.
ea25da48
PV
106 */
107 if (next_in_service) {
108 unsigned int new_entity_class_idx =
109 bfq_class_idx(new_entity);
110 struct bfq_service_tree *st =
111 sd->service_tree + new_entity_class_idx;
112
24d90bb2 113 change_without_lookup =
ea25da48
PV
114 (new_entity_class_idx ==
115 bfq_class_idx(next_in_service)
116 &&
117 !bfq_gt(new_entity->start, st->vtime)
118 &&
119 bfq_gt(next_in_service->finish,
a02195ce 120 new_entity->finish));
ea25da48
PV
121 }
122
24d90bb2 123 if (change_without_lookup)
ea25da48 124 next_in_service = new_entity;
24d90bb2
PV
125 }
126
127 if (!change_without_lookup) /* lookup needed */
80294c3b 128 next_in_service = bfq_lookup_next_entity(sd, expiration);
ea25da48 129
e02a0aa2
PV
130 if (next_in_service) {
131 bool new_budget_triggers_change =
ea25da48 132 bfq_update_parent_budget(next_in_service);
ea25da48 133
e02a0aa2
PV
134 parent_sched_may_change = !sd->next_in_service ||
135 new_budget_triggers_change;
136 }
137
ea25da48
PV
138 sd->next_in_service = next_in_service;
139
ea25da48
PV
140 return parent_sched_may_change;
141}
142
143#ifdef CONFIG_BFQ_GROUP_IOSCHED
144
ea25da48
PV
145/*
146 * Returns true if this budget changes may let next_in_service->parent
147 * become the next_in_service entity for its parent entity.
148 */
149static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
150{
151 struct bfq_entity *bfqg_entity;
152 struct bfq_group *bfqg;
153 struct bfq_sched_data *group_sd;
154 bool ret = false;
155
156 group_sd = next_in_service->sched_data;
157
158 bfqg = container_of(group_sd, struct bfq_group, sched_data);
159 /*
160 * bfq_group's my_entity field is not NULL only if the group
161 * is not the root group. We must not touch the root entity
162 * as it must never become an in-service entity.
163 */
164 bfqg_entity = bfqg->my_entity;
165 if (bfqg_entity) {
166 if (bfqg_entity->budget > next_in_service->budget)
167 ret = true;
168 bfqg_entity->budget = next_in_service->budget;
169 }
170
171 return ret;
172}
173
174/*
175 * This function tells whether entity stops being a candidate for next
46d556e6
PV
176 * service, according to the restrictive definition of the field
177 * next_in_service. In particular, this function is invoked for an
178 * entity that is about to be set in service.
ea25da48 179 *
46d556e6
PV
180 * If entity is a queue, then the entity is no longer a candidate for
181 * next service according to the that definition, because entity is
182 * about to become the in-service queue. This function then returns
183 * true if entity is a queue.
ea25da48 184 *
46d556e6
PV
185 * In contrast, entity could still be a candidate for next service if
186 * it is not a queue, and has more than one active child. In fact,
187 * even if one of its children is about to be set in service, other
188 * active children may still be the next to serve, for the parent
189 * entity, even according to the above definition. As a consequence, a
190 * non-queue entity is not a candidate for next-service only if it has
191 * only one active child. And only if this condition holds, then this
192 * function returns true for a non-queue entity.
ea25da48
PV
193 */
194static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
195{
196 struct bfq_group *bfqg;
197
198 if (bfq_entity_to_bfqq(entity))
199 return true;
200
201 bfqg = container_of(entity, struct bfq_group, entity);
202
46d556e6
PV
203 /*
204 * The field active_entities does not always contain the
205 * actual number of active children entities: it happens to
206 * not account for the in-service entity in case the latter is
207 * removed from its active tree (which may get done after
208 * invoking the function bfq_no_longer_next_in_service in
209 * bfq_get_next_queue). Fortunately, here, i.e., while
210 * bfq_no_longer_next_in_service is not yet completed in
211 * bfq_get_next_queue, bfq_active_extract has not yet been
212 * invoked, and thus active_entities still coincides with the
213 * actual number of active entities.
214 */
ea25da48
PV
215 if (bfqg->active_entities == 1)
216 return true;
217
218 return false;
219}
220
221#else /* CONFIG_BFQ_GROUP_IOSCHED */
222
ea25da48
PV
223static bool bfq_update_parent_budget(struct bfq_entity *next_in_service)
224{
225 return false;
226}
227
228static bool bfq_no_longer_next_in_service(struct bfq_entity *entity)
229{
230 return true;
231}
232
233#endif /* CONFIG_BFQ_GROUP_IOSCHED */
234
235/*
236 * Shift for timestamp calculations. This actually limits the maximum
237 * service allowed in one timestamp delta (small shift values increase it),
238 * the maximum total weight that can be used for the queues in the system
239 * (big shift values increase it), and the period of virtual time
240 * wraparounds.
241 */
242#define WFQ_SERVICE_SHIFT 22
243
244struct bfq_queue *bfq_entity_to_bfqq(struct bfq_entity *entity)
245{
246 struct bfq_queue *bfqq = NULL;
247
248 if (!entity->my_sched_data)
249 bfqq = container_of(entity, struct bfq_queue, entity);
250
251 return bfqq;
252}
253
254
255/**
256 * bfq_delta - map service into the virtual time domain.
257 * @service: amount of service.
258 * @weight: scale factor (weight of an entity or weight sum).
259 */
260static u64 bfq_delta(unsigned long service, unsigned long weight)
261{
554d21ef 262 return div64_ul((u64)service << WFQ_SERVICE_SHIFT, weight);
ea25da48
PV
263}
264
265/**
266 * bfq_calc_finish - assign the finish time to an entity.
267 * @entity: the entity to act upon.
268 * @service: the service to be charged to the entity.
269 */
270static void bfq_calc_finish(struct bfq_entity *entity, unsigned long service)
271{
272 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
273
274 entity->finish = entity->start +
275 bfq_delta(service, entity->weight);
276
277 if (bfqq) {
278 bfq_log_bfqq(bfqq->bfqd, bfqq,
279 "calc_finish: serv %lu, w %d",
280 service, entity->weight);
281 bfq_log_bfqq(bfqq->bfqd, bfqq,
282 "calc_finish: start %llu, finish %llu, delta %llu",
283 entity->start, entity->finish,
284 bfq_delta(service, entity->weight));
285 }
286}
287
288/**
289 * bfq_entity_of - get an entity from a node.
290 * @node: the node field of the entity.
291 *
292 * Convert a node pointer to the relative entity. This is used only
293 * to simplify the logic of some functions and not as the generic
294 * conversion mechanism because, e.g., in the tree walking functions,
295 * the check for a %NULL value would be redundant.
296 */
297struct bfq_entity *bfq_entity_of(struct rb_node *node)
298{
299 struct bfq_entity *entity = NULL;
300
301 if (node)
302 entity = rb_entry(node, struct bfq_entity, rb_node);
303
304 return entity;
305}
306
307/**
308 * bfq_extract - remove an entity from a tree.
309 * @root: the tree root.
310 * @entity: the entity to remove.
311 */
312static void bfq_extract(struct rb_root *root, struct bfq_entity *entity)
313{
314 entity->tree = NULL;
315 rb_erase(&entity->rb_node, root);
316}
317
318/**
319 * bfq_idle_extract - extract an entity from the idle tree.
320 * @st: the service tree of the owning @entity.
321 * @entity: the entity being removed.
322 */
323static void bfq_idle_extract(struct bfq_service_tree *st,
324 struct bfq_entity *entity)
325{
326 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
327 struct rb_node *next;
328
329 if (entity == st->first_idle) {
330 next = rb_next(&entity->rb_node);
331 st->first_idle = bfq_entity_of(next);
332 }
333
334 if (entity == st->last_idle) {
335 next = rb_prev(&entity->rb_node);
336 st->last_idle = bfq_entity_of(next);
337 }
338
339 bfq_extract(&st->idle, entity);
340
341 if (bfqq)
342 list_del(&bfqq->bfqq_list);
343}
344
345/**
346 * bfq_insert - generic tree insertion.
347 * @root: tree root.
348 * @entity: entity to insert.
349 *
350 * This is used for the idle and the active tree, since they are both
351 * ordered by finish time.
352 */
353static void bfq_insert(struct rb_root *root, struct bfq_entity *entity)
354{
355 struct bfq_entity *entry;
356 struct rb_node **node = &root->rb_node;
357 struct rb_node *parent = NULL;
358
359 while (*node) {
360 parent = *node;
361 entry = rb_entry(parent, struct bfq_entity, rb_node);
362
363 if (bfq_gt(entry->finish, entity->finish))
364 node = &parent->rb_left;
365 else
366 node = &parent->rb_right;
367 }
368
369 rb_link_node(&entity->rb_node, parent, node);
370 rb_insert_color(&entity->rb_node, root);
371
372 entity->tree = root;
373}
374
375/**
376 * bfq_update_min - update the min_start field of a entity.
377 * @entity: the entity to update.
378 * @node: one of its children.
379 *
380 * This function is called when @entity may store an invalid value for
381 * min_start due to updates to the active tree. The function assumes
382 * that the subtree rooted at @node (which may be its left or its right
383 * child) has a valid min_start value.
384 */
385static void bfq_update_min(struct bfq_entity *entity, struct rb_node *node)
386{
387 struct bfq_entity *child;
388
389 if (node) {
390 child = rb_entry(node, struct bfq_entity, rb_node);
391 if (bfq_gt(entity->min_start, child->min_start))
392 entity->min_start = child->min_start;
393 }
394}
395
396/**
397 * bfq_update_active_node - recalculate min_start.
398 * @node: the node to update.
399 *
400 * @node may have changed position or one of its children may have moved,
401 * this function updates its min_start value. The left and right subtrees
402 * are assumed to hold a correct min_start value.
403 */
404static void bfq_update_active_node(struct rb_node *node)
405{
406 struct bfq_entity *entity = rb_entry(node, struct bfq_entity, rb_node);
407
408 entity->min_start = entity->start;
409 bfq_update_min(entity, node->rb_right);
410 bfq_update_min(entity, node->rb_left);
411}
412
413/**
414 * bfq_update_active_tree - update min_start for the whole active tree.
415 * @node: the starting node.
416 *
417 * @node must be the deepest modified node after an update. This function
418 * updates its min_start using the values held by its children, assuming
419 * that they did not change, and then updates all the nodes that may have
420 * changed in the path to the root. The only nodes that may have changed
421 * are the ones in the path or their siblings.
422 */
423static void bfq_update_active_tree(struct rb_node *node)
424{
425 struct rb_node *parent;
426
427up:
428 bfq_update_active_node(node);
429
430 parent = rb_parent(node);
431 if (!parent)
432 return;
433
434 if (node == parent->rb_left && parent->rb_right)
435 bfq_update_active_node(parent->rb_right);
436 else if (parent->rb_left)
437 bfq_update_active_node(parent->rb_left);
438
439 node = parent;
440 goto up;
441}
442
443/**
444 * bfq_active_insert - insert an entity in the active tree of its
445 * group/device.
446 * @st: the service tree of the entity.
447 * @entity: the entity being inserted.
448 *
449 * The active tree is ordered by finish time, but an extra key is kept
450 * per each node, containing the minimum value for the start times of
451 * its children (and the node itself), so it's possible to search for
452 * the eligible node with the lowest finish time in logarithmic time.
453 */
454static void bfq_active_insert(struct bfq_service_tree *st,
455 struct bfq_entity *entity)
456{
457 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
458 struct rb_node *node = &entity->rb_node;
459#ifdef CONFIG_BFQ_GROUP_IOSCHED
460 struct bfq_sched_data *sd = NULL;
461 struct bfq_group *bfqg = NULL;
462 struct bfq_data *bfqd = NULL;
463#endif
464
465 bfq_insert(&st->active, entity);
466
467 if (node->rb_left)
468 node = node->rb_left;
469 else if (node->rb_right)
470 node = node->rb_right;
471
472 bfq_update_active_tree(node);
473
474#ifdef CONFIG_BFQ_GROUP_IOSCHED
475 sd = entity->sched_data;
476 bfqg = container_of(sd, struct bfq_group, sched_data);
477 bfqd = (struct bfq_data *)bfqg->bfqd;
478#endif
479 if (bfqq)
480 list_add(&bfqq->bfqq_list, &bfqq->bfqd->active_list);
481#ifdef CONFIG_BFQ_GROUP_IOSCHED
ea25da48
PV
482 if (bfqg != bfqd->root_group)
483 bfqg->active_entities++;
484#endif
485}
486
487/**
488 * bfq_ioprio_to_weight - calc a weight from an ioprio.
489 * @ioprio: the ioprio value to convert.
490 */
491unsigned short bfq_ioprio_to_weight(int ioprio)
492{
202bc942 493 return (IOPRIO_NR_LEVELS - ioprio) * BFQ_WEIGHT_CONVERSION_COEFF;
ea25da48
PV
494}
495
496/**
497 * bfq_weight_to_ioprio - calc an ioprio from a weight.
498 * @weight: the weight value to convert.
499 *
500 * To preserve as much as possible the old only-ioprio user interface,
501 * 0 is used as an escape ioprio value for weights (numerically) equal or
202bc942 502 * larger than IOPRIO_NR_LEVELS * BFQ_WEIGHT_CONVERSION_COEFF.
ea25da48
PV
503 */
504static unsigned short bfq_weight_to_ioprio(int weight)
505{
506 return max_t(int, 0,
bcd2be76 507 IOPRIO_NR_LEVELS - weight / BFQ_WEIGHT_CONVERSION_COEFF);
ea25da48
PV
508}
509
510static void bfq_get_entity(struct bfq_entity *entity)
511{
512 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
513
514 if (bfqq) {
515 bfqq->ref++;
516 bfq_log_bfqq(bfqq->bfqd, bfqq, "get_entity: %p %d",
517 bfqq, bfqq->ref);
2de791ab 518 }
ea25da48
PV
519}
520
521/**
522 * bfq_find_deepest - find the deepest node that an extraction can modify.
523 * @node: the node being removed.
524 *
525 * Do the first step of an extraction in an rb tree, looking for the
526 * node that will replace @node, and returning the deepest node that
527 * the following modifications to the tree can touch. If @node is the
528 * last node in the tree return %NULL.
529 */
530static struct rb_node *bfq_find_deepest(struct rb_node *node)
531{
532 struct rb_node *deepest;
533
534 if (!node->rb_right && !node->rb_left)
535 deepest = rb_parent(node);
536 else if (!node->rb_right)
537 deepest = node->rb_left;
538 else if (!node->rb_left)
539 deepest = node->rb_right;
540 else {
541 deepest = rb_next(node);
542 if (deepest->rb_right)
543 deepest = deepest->rb_right;
544 else if (rb_parent(deepest) != node)
545 deepest = rb_parent(deepest);
546 }
547
548 return deepest;
549}
550
551/**
552 * bfq_active_extract - remove an entity from the active tree.
553 * @st: the service_tree containing the tree.
554 * @entity: the entity being removed.
555 */
556static void bfq_active_extract(struct bfq_service_tree *st,
557 struct bfq_entity *entity)
558{
559 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
560 struct rb_node *node;
561#ifdef CONFIG_BFQ_GROUP_IOSCHED
562 struct bfq_sched_data *sd = NULL;
563 struct bfq_group *bfqg = NULL;
564 struct bfq_data *bfqd = NULL;
565#endif
566
567 node = bfq_find_deepest(&entity->rb_node);
568 bfq_extract(&st->active, entity);
569
570 if (node)
571 bfq_update_active_tree(node);
572
573#ifdef CONFIG_BFQ_GROUP_IOSCHED
574 sd = entity->sched_data;
575 bfqg = container_of(sd, struct bfq_group, sched_data);
576 bfqd = (struct bfq_data *)bfqg->bfqd;
577#endif
578 if (bfqq)
579 list_del(&bfqq->bfqq_list);
580#ifdef CONFIG_BFQ_GROUP_IOSCHED
ea25da48
PV
581 if (bfqg != bfqd->root_group)
582 bfqg->active_entities--;
583#endif
584}
585
586/**
587 * bfq_idle_insert - insert an entity into the idle tree.
588 * @st: the service tree containing the tree.
589 * @entity: the entity to insert.
590 */
591static void bfq_idle_insert(struct bfq_service_tree *st,
592 struct bfq_entity *entity)
593{
594 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
595 struct bfq_entity *first_idle = st->first_idle;
596 struct bfq_entity *last_idle = st->last_idle;
597
598 if (!first_idle || bfq_gt(first_idle->finish, entity->finish))
599 st->first_idle = entity;
600 if (!last_idle || bfq_gt(entity->finish, last_idle->finish))
601 st->last_idle = entity;
602
603 bfq_insert(&st->idle, entity);
604
605 if (bfqq)
606 list_add(&bfqq->bfqq_list, &bfqq->bfqd->idle_list);
607}
608
609/**
610 * bfq_forget_entity - do not consider entity any longer for scheduling
611 * @st: the service tree.
612 * @entity: the entity being removed.
613 * @is_in_service: true if entity is currently the in-service entity.
614 *
615 * Forget everything about @entity. In addition, if entity represents
616 * a queue, and the latter is not in service, then release the service
617 * reference to the queue (the one taken through bfq_get_entity). In
618 * fact, in this case, there is really no more service reference to
619 * the queue, as the latter is also outside any service tree. If,
620 * instead, the queue is in service, then __bfq_bfqd_reset_in_service
621 * will take care of putting the reference when the queue finally
622 * stops being served.
623 */
624static void bfq_forget_entity(struct bfq_service_tree *st,
625 struct bfq_entity *entity,
626 bool is_in_service)
627{
628 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
629
33a16a98 630 entity->on_st_or_in_serv = false;
ea25da48 631 st->wsum -= entity->weight;
2de791ab 632 if (bfqq && !is_in_service)
ea25da48
PV
633 bfq_put_queue(bfqq);
634}
635
636/**
637 * bfq_put_idle_entity - release the idle tree ref of an entity.
638 * @st: service tree for the entity.
639 * @entity: the entity being released.
640 */
641void bfq_put_idle_entity(struct bfq_service_tree *st, struct bfq_entity *entity)
642{
643 bfq_idle_extract(st, entity);
644 bfq_forget_entity(st, entity,
645 entity == entity->sched_data->in_service_entity);
646}
647
648/**
649 * bfq_forget_idle - update the idle tree if necessary.
650 * @st: the service tree to act upon.
651 *
652 * To preserve the global O(log N) complexity we only remove one entry here;
653 * as the idle tree will not grow indefinitely this can be done safely.
654 */
655static void bfq_forget_idle(struct bfq_service_tree *st)
656{
657 struct bfq_entity *first_idle = st->first_idle;
658 struct bfq_entity *last_idle = st->last_idle;
659
660 if (RB_EMPTY_ROOT(&st->active) && last_idle &&
661 !bfq_gt(last_idle->finish, st->vtime)) {
662 /*
663 * Forget the whole idle tree, increasing the vtime past
664 * the last finish time of idle entities.
665 */
666 st->vtime = last_idle->finish;
667 }
668
669 if (first_idle && !bfq_gt(first_idle->finish, st->vtime))
670 bfq_put_idle_entity(st, first_idle);
671}
672
673struct bfq_service_tree *bfq_entity_service_tree(struct bfq_entity *entity)
674{
675 struct bfq_sched_data *sched_data = entity->sched_data;
676 unsigned int idx = bfq_class_idx(entity);
677
678 return sched_data->service_tree + idx;
679}
680
431b17f9
PV
681/*
682 * Update weight and priority of entity. If update_class_too is true,
683 * then update the ioprio_class of entity too.
684 *
685 * The reason why the update of ioprio_class is controlled through the
686 * last parameter is as follows. Changing the ioprio class of an
687 * entity implies changing the destination service trees for that
688 * entity. If such a change occurred when the entity is already on one
689 * of the service trees for its previous class, then the state of the
690 * entity would become more complex: none of the new possible service
691 * trees for the entity, according to bfq_entity_service_tree(), would
692 * match any of the possible service trees on which the entity
693 * is. Complex operations involving these trees, such as entity
694 * activations and deactivations, should take into account this
695 * additional complexity. To avoid this issue, this function is
696 * invoked with update_class_too unset in the points in the code where
697 * entity may happen to be on some tree.
698 */
ea25da48
PV
699struct bfq_service_tree *
700__bfq_entity_update_weight_prio(struct bfq_service_tree *old_st,
431b17f9
PV
701 struct bfq_entity *entity,
702 bool update_class_too)
ea25da48
PV
703{
704 struct bfq_service_tree *new_st = old_st;
705
706 if (entity->prio_changed) {
707 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
708 unsigned int prev_weight, new_weight;
709 struct bfq_data *bfqd = NULL;
fb53ac6c 710 struct rb_root_cached *root;
ea25da48
PV
711#ifdef CONFIG_BFQ_GROUP_IOSCHED
712 struct bfq_sched_data *sd;
713 struct bfq_group *bfqg;
714#endif
715
716 if (bfqq)
717 bfqd = bfqq->bfqd;
718#ifdef CONFIG_BFQ_GROUP_IOSCHED
719 else {
720 sd = entity->my_sched_data;
721 bfqg = container_of(sd, struct bfq_group, sched_data);
722 bfqd = (struct bfq_data *)bfqg->bfqd;
723 }
724#endif
725
e9d3c866
FZ
726 /* Matches the smp_wmb() in bfq_group_set_weight. */
727 smp_rmb();
ea25da48
PV
728 old_st->wsum -= entity->weight;
729
730 if (entity->new_weight != entity->orig_weight) {
731 if (entity->new_weight < BFQ_MIN_WEIGHT ||
732 entity->new_weight > BFQ_MAX_WEIGHT) {
733 pr_crit("update_weight_prio: new_weight %d\n",
734 entity->new_weight);
735 if (entity->new_weight < BFQ_MIN_WEIGHT)
736 entity->new_weight = BFQ_MIN_WEIGHT;
737 else
738 entity->new_weight = BFQ_MAX_WEIGHT;
739 }
740 entity->orig_weight = entity->new_weight;
741 if (bfqq)
742 bfqq->ioprio =
743 bfq_weight_to_ioprio(entity->orig_weight);
744 }
745
431b17f9 746 if (bfqq && update_class_too)
ea25da48 747 bfqq->ioprio_class = bfqq->new_ioprio_class;
431b17f9
PV
748
749 /*
750 * Reset prio_changed only if the ioprio_class change
751 * is not pending any longer.
752 */
753 if (!bfqq || bfqq->ioprio_class == bfqq->new_ioprio_class)
754 entity->prio_changed = 0;
ea25da48
PV
755
756 /*
757 * NOTE: here we may be changing the weight too early,
758 * this will cause unfairness. The correct approach
759 * would have required additional complexity to defer
760 * weight changes to the proper time instants (i.e.,
761 * when entity->finish <= old_st->vtime).
762 */
763 new_st = bfq_entity_service_tree(entity);
764
765 prev_weight = entity->weight;
766 new_weight = entity->orig_weight *
767 (bfqq ? bfqq->wr_coeff : 1);
768 /*
2d29c9f8
FM
769 * If the weight of the entity changes, and the entity is a
770 * queue, remove the entity from its old weight counter (if
771 * there is a counter associated with the entity).
ea25da48 772 */
98fa7a3e
FM
773 if (prev_weight != new_weight && bfqq) {
774 root = &bfqd->queue_weights_tree;
775 __bfq_weights_tree_remove(bfqd, bfqq, root);
ea25da48
PV
776 }
777 entity->weight = new_weight;
778 /*
2d29c9f8
FM
779 * Add the entity, if it is not a weight-raised queue,
780 * to the counter associated with its new weight.
ea25da48 781 */
98fa7a3e
FM
782 if (prev_weight != new_weight && bfqq && bfqq->wr_coeff == 1) {
783 /* If we get here, root has been initialized. */
784 bfq_weights_tree_add(bfqd, bfqq, root);
2d29c9f8 785 }
ea25da48
PV
786
787 new_st->wsum += entity->weight;
788
789 if (new_st != old_st)
790 entity->start = new_st->vtime;
791 }
792
793 return new_st;
794}
795
796/**
797 * bfq_bfqq_served - update the scheduler status after selection for
798 * service.
799 * @bfqq: the queue being served.
800 * @served: bytes to transfer.
801 *
802 * NOTE: this can be optimized, as the timestamps of upper level entities
803 * are synchronized every time a new bfqq is selected for service. By now,
804 * we keep it to better check consistency.
805 */
806void bfq_bfqq_served(struct bfq_queue *bfqq, int served)
807{
808 struct bfq_entity *entity = &bfqq->entity;
809 struct bfq_service_tree *st;
810
7b8fa3b9
PV
811 if (!bfqq->service_from_backlogged)
812 bfqq->first_IO_time = jiffies;
813
8a8747dc
PV
814 if (bfqq->wr_coeff > 1)
815 bfqq->service_from_wr += served;
816
7b8fa3b9 817 bfqq->service_from_backlogged += served;
ea25da48
PV
818 for_each_entity(entity) {
819 st = bfq_entity_service_tree(entity);
820
821 entity->service += served;
822
823 st->vtime += bfq_delta(served, st->wsum);
824 bfq_forget_idle(st);
825 }
ea25da48
PV
826 bfq_log_bfqq(bfqq->bfqd, bfqq, "bfqq_served %d secs", served);
827}
828
829/**
830 * bfq_bfqq_charge_time - charge an amount of service equivalent to the length
831 * of the time interval during which bfqq has been in
832 * service.
833 * @bfqd: the device
834 * @bfqq: the queue that needs a service update.
835 * @time_ms: the amount of time during which the queue has received service
836 *
837 * If a queue does not consume its budget fast enough, then providing
838 * the queue with service fairness may impair throughput, more or less
839 * severely. For this reason, queues that consume their budget slowly
840 * are provided with time fairness instead of service fairness. This
841 * goal is achieved through the BFQ scheduling engine, even if such an
842 * engine works in the service, and not in the time domain. The trick
843 * is charging these queues with an inflated amount of service, equal
844 * to the amount of service that they would have received during their
845 * service slot if they had been fast, i.e., if their requests had
846 * been dispatched at a rate equal to the estimated peak rate.
847 *
848 * It is worth noting that time fairness can cause important
849 * distortions in terms of bandwidth distribution, on devices with
850 * internal queueing. The reason is that I/O requests dispatched
851 * during the service slot of a queue may be served after that service
852 * slot is finished, and may have a total processing time loosely
853 * correlated with the duration of the service slot. This is
854 * especially true for short service slots.
855 */
856void bfq_bfqq_charge_time(struct bfq_data *bfqd, struct bfq_queue *bfqq,
857 unsigned long time_ms)
858{
859 struct bfq_entity *entity = &bfqq->entity;
f8121648
PV
860 unsigned long timeout_ms = jiffies_to_msecs(bfq_timeout);
861 unsigned long bounded_time_ms = min(time_ms, timeout_ms);
862 int serv_to_charge_for_time =
863 (bfqd->bfq_max_budget * bounded_time_ms) / timeout_ms;
864 int tot_serv_to_charge = max(serv_to_charge_for_time, entity->service);
ea25da48
PV
865
866 /* Increase budget to avoid inconsistencies */
867 if (tot_serv_to_charge > entity->budget)
868 entity->budget = tot_serv_to_charge;
869
870 bfq_bfqq_served(bfqq,
871 max_t(int, 0, tot_serv_to_charge - entity->service));
872}
873
874static void bfq_update_fin_time_enqueue(struct bfq_entity *entity,
875 struct bfq_service_tree *st,
876 bool backshifted)
877{
878 struct bfq_queue *bfqq = bfq_entity_to_bfqq(entity);
879
431b17f9
PV
880 /*
881 * When this function is invoked, entity is not in any service
882 * tree, then it is safe to invoke next function with the last
883 * parameter set (see the comments on the function).
884 */
885 st = __bfq_entity_update_weight_prio(st, entity, true);
ea25da48
PV
886 bfq_calc_finish(entity, entity->budget);
887
888 /*
889 * If some queues enjoy backshifting for a while, then their
890 * (virtual) finish timestamps may happen to become lower and
891 * lower than the system virtual time. In particular, if
892 * these queues often happen to be idle for short time
893 * periods, and during such time periods other queues with
894 * higher timestamps happen to be busy, then the backshifted
895 * timestamps of the former queues can become much lower than
896 * the system virtual time. In fact, to serve the queues with
897 * higher timestamps while the ones with lower timestamps are
898 * idle, the system virtual time may be pushed-up to much
899 * higher values than the finish timestamps of the idle
900 * queues. As a consequence, the finish timestamps of all new
901 * or newly activated queues may end up being much larger than
902 * those of lucky queues with backshifted timestamps. The
903 * latter queues may then monopolize the device for a lot of
904 * time. This would simply break service guarantees.
905 *
906 * To reduce this problem, push up a little bit the
907 * backshifted timestamps of the queue associated with this
908 * entity (only a queue can happen to have the backshifted
909 * flag set): just enough to let the finish timestamp of the
910 * queue be equal to the current value of the system virtual
911 * time. This may introduce a little unfairness among queues
912 * with backshifted timestamps, but it does not break
913 * worst-case fairness guarantees.
914 *
915 * As a special case, if bfqq is weight-raised, push up
916 * timestamps much less, to keep very low the probability that
917 * this push up causes the backshifted finish timestamps of
918 * weight-raised queues to become higher than the backshifted
919 * finish timestamps of non weight-raised queues.
920 */
921 if (backshifted && bfq_gt(st->vtime, entity->finish)) {
922 unsigned long delta = st->vtime - entity->finish;
923
924 if (bfqq)
925 delta /= bfqq->wr_coeff;
926
927 entity->start += delta;
928 entity->finish += delta;
929 }
930
931 bfq_active_insert(st, entity);
932}
933
934/**
935 * __bfq_activate_entity - handle activation of entity.
936 * @entity: the entity being activated.
937 * @non_blocking_wait_rq: true if entity was waiting for a request
938 *
939 * Called for a 'true' activation, i.e., if entity is not active and
940 * one of its children receives a new request.
941 *
942 * Basically, this function updates the timestamps of entity and
0471559c 943 * inserts entity into its active tree, after possibly extracting it
ea25da48
PV
944 * from its idle tree.
945 */
946static void __bfq_activate_entity(struct bfq_entity *entity,
947 bool non_blocking_wait_rq)
948{
949 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
950 bool backshifted = false;
951 unsigned long long min_vstart;
952
953 /* See comments on bfq_fqq_update_budg_for_activation */
954 if (non_blocking_wait_rq && bfq_gt(st->vtime, entity->finish)) {
955 backshifted = true;
956 min_vstart = entity->finish;
957 } else
958 min_vstart = st->vtime;
959
960 if (entity->tree == &st->idle) {
961 /*
962 * Must be on the idle tree, bfq_idle_extract() will
963 * check for that.
964 */
965 bfq_idle_extract(st, entity);
966 entity->start = bfq_gt(min_vstart, entity->finish) ?
967 min_vstart : entity->finish;
968 } else {
969 /*
970 * The finish time of the entity may be invalid, and
971 * it is in the past for sure, otherwise the queue
972 * would have been on the idle tree.
973 */
974 entity->start = min_vstart;
975 st->wsum += entity->weight;
976 /*
977 * entity is about to be inserted into a service tree,
978 * and then set in service: get a reference to make
979 * sure entity does not disappear until it is no
980 * longer in service or scheduled for service.
981 */
982 bfq_get_entity(entity);
983
33a16a98 984 entity->on_st_or_in_serv = true;
ea25da48
PV
985 }
986
987 bfq_update_fin_time_enqueue(entity, st, backshifted);
988}
989
990/**
991 * __bfq_requeue_entity - handle requeueing or repositioning of an entity.
992 * @entity: the entity being requeued or repositioned.
993 *
994 * Requeueing is needed if this entity stops being served, which
995 * happens if a leaf descendant entity has expired. On the other hand,
996 * repositioning is needed if the next_inservice_entity for the child
997 * entity has changed. See the comments inside the function for
998 * details.
999 *
1000 * Basically, this function: 1) removes entity from its active tree if
1001 * present there, 2) updates the timestamps of entity and 3) inserts
1002 * entity back into its active tree (in the new, right position for
1003 * the new values of the timestamps).
1004 */
1005static void __bfq_requeue_entity(struct bfq_entity *entity)
1006{
1007 struct bfq_sched_data *sd = entity->sched_data;
1008 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1009
1010 if (entity == sd->in_service_entity) {
1011 /*
1012 * We are requeueing the current in-service entity,
1013 * which may have to be done for one of the following
1014 * reasons:
1015 * - entity represents the in-service queue, and the
1016 * in-service queue is being requeued after an
1017 * expiration;
1018 * - entity represents a group, and its budget has
1019 * changed because one of its child entities has
1020 * just been either activated or requeued for some
1021 * reason; the timestamps of the entity need then to
1022 * be updated, and the entity needs to be enqueued
1023 * or repositioned accordingly.
1024 *
1025 * In particular, before requeueing, the start time of
1026 * the entity must be moved forward to account for the
1027 * service that the entity has received while in
1028 * service. This is done by the next instructions. The
1029 * finish time will then be updated according to this
1030 * new value of the start time, and to the budget of
1031 * the entity.
1032 */
1033 bfq_calc_finish(entity, entity->service);
1034 entity->start = entity->finish;
1035 /*
1036 * In addition, if the entity had more than one child
46d556e6 1037 * when set in service, then it was not extracted from
ea25da48
PV
1038 * the active tree. This implies that the position of
1039 * the entity in the active tree may need to be
1040 * changed now, because we have just updated the start
1041 * time of the entity, and we will update its finish
1042 * time in a moment (the requeueing is then, more
1043 * precisely, a repositioning in this case). To
1044 * implement this repositioning, we: 1) dequeue the
46d556e6
PV
1045 * entity here, 2) update the finish time and requeue
1046 * the entity according to the new timestamps below.
ea25da48
PV
1047 */
1048 if (entity->tree)
1049 bfq_active_extract(st, entity);
1050 } else { /* The entity is already active, and not in service */
1051 /*
1052 * In this case, this function gets called only if the
1053 * next_in_service entity below this entity has
1054 * changed, and this change has caused the budget of
1055 * this entity to change, which, finally implies that
1056 * the finish time of this entity must be
1057 * updated. Such an update may cause the scheduling,
1058 * i.e., the position in the active tree, of this
1059 * entity to change. We handle this change by: 1)
1060 * dequeueing the entity here, 2) updating the finish
1061 * time and requeueing the entity according to the new
1062 * timestamps below. This is the same approach as the
1063 * non-extracted-entity sub-case above.
1064 */
1065 bfq_active_extract(st, entity);
1066 }
1067
1068 bfq_update_fin_time_enqueue(entity, st, false);
1069}
1070
1071static void __bfq_activate_requeue_entity(struct bfq_entity *entity,
1072 struct bfq_sched_data *sd,
1073 bool non_blocking_wait_rq)
1074{
1075 struct bfq_service_tree *st = bfq_entity_service_tree(entity);
1076
1077 if (sd->in_service_entity == entity || entity->tree == &st->active)
1078 /*
1079 * in service or already queued on the active tree,
1080 * requeue or reposition
1081 */
1082 __bfq_requeue_entity(entity);
1083 else
1084 /*
1085 * Not in service and not queued on its active tree:
1086 * the activity is idle and this is a true activation.
1087 */
1088 __bfq_activate_entity(entity, non_blocking_wait_rq);
1089}
1090
1091
1092/**
46d556e6
PV
1093 * bfq_activate_requeue_entity - activate or requeue an entity representing a
1094 * bfq_queue, and activate, requeue or reposition
1095 * all ancestors for which such an update becomes
1096 * necessary.
ea25da48
PV
1097 * @entity: the entity to activate.
1098 * @non_blocking_wait_rq: true if this entity was waiting for a request
1099 * @requeue: true if this is a requeue, which implies that bfqq is
1100 * being expired; thus ALL its ancestors stop being served and must
1101 * therefore be requeued
80294c3b
PV
1102 * @expiration: true if this function is being invoked in the expiration path
1103 * of the in-service queue
ea25da48
PV
1104 */
1105static void bfq_activate_requeue_entity(struct bfq_entity *entity,
1106 bool non_blocking_wait_rq,
80294c3b 1107 bool requeue, bool expiration)
ea25da48
PV
1108{
1109 struct bfq_sched_data *sd;
1110
1111 for_each_entity(entity) {
1112 sd = entity->sched_data;
1113 __bfq_activate_requeue_entity(entity, sd, non_blocking_wait_rq);
1114
80294c3b
PV
1115 if (!bfq_update_next_in_service(sd, entity, expiration) &&
1116 !requeue)
ea25da48
PV
1117 break;
1118 }
1119}
1120
1121/**
5bf85908
PV
1122 * __bfq_deactivate_entity - update sched_data and service trees for
1123 * entity, so as to represent entity as inactive
1124 * @entity: the entity being deactivated.
ea25da48
PV
1125 * @ins_into_idle_tree: if false, the entity will not be put into the
1126 * idle tree.
1127 *
5bf85908
PV
1128 * If necessary and allowed, puts entity into the idle tree. NOTE:
1129 * entity may be on no tree if in service.
ea25da48
PV
1130 */
1131bool __bfq_deactivate_entity(struct bfq_entity *entity, bool ins_into_idle_tree)
1132{
1133 struct bfq_sched_data *sd = entity->sched_data;
a66c38a1
PV
1134 struct bfq_service_tree *st;
1135 bool is_in_service;
ea25da48 1136
33a16a98
PV
1137 if (!entity->on_st_or_in_serv) /*
1138 * entity never activated, or
1139 * already inactive
1140 */
ea25da48
PV
1141 return false;
1142
a66c38a1
PV
1143 /*
1144 * If we get here, then entity is active, which implies that
1145 * bfq_group_set_parent has already been invoked for the group
1146 * represented by entity. Therefore, the field
1147 * entity->sched_data has been set, and we can safely use it.
1148 */
1149 st = bfq_entity_service_tree(entity);
1150 is_in_service = entity == sd->in_service_entity;
1151
cbeb869a
PV
1152 bfq_calc_finish(entity, entity->service);
1153
1154 if (is_in_service)
6ab1d8da 1155 sd->in_service_entity = NULL;
cbeb869a
PV
1156 else
1157 /*
1158 * Non in-service entity: nobody will take care of
1159 * resetting its service counter on expiration. Do it
1160 * now.
1161 */
1162 entity->service = 0;
ea25da48
PV
1163
1164 if (entity->tree == &st->active)
1165 bfq_active_extract(st, entity);
1166 else if (!is_in_service && entity->tree == &st->idle)
1167 bfq_idle_extract(st, entity);
1168
1169 if (!ins_into_idle_tree || !bfq_gt(entity->finish, st->vtime))
1170 bfq_forget_entity(st, entity, is_in_service);
1171 else
1172 bfq_idle_insert(st, entity);
1173
1174 return true;
1175}
1176
1177/**
1178 * bfq_deactivate_entity - deactivate an entity representing a bfq_queue.
1179 * @entity: the entity to deactivate.
46d556e6 1180 * @ins_into_idle_tree: true if the entity can be put into the idle tree
80294c3b
PV
1181 * @expiration: true if this function is being invoked in the expiration path
1182 * of the in-service queue
ea25da48
PV
1183 */
1184static void bfq_deactivate_entity(struct bfq_entity *entity,
1185 bool ins_into_idle_tree,
1186 bool expiration)
1187{
1188 struct bfq_sched_data *sd;
1189 struct bfq_entity *parent = NULL;
1190
1191 for_each_entity_safe(entity, parent) {
1192 sd = entity->sched_data;
1193
1194 if (!__bfq_deactivate_entity(entity, ins_into_idle_tree)) {
1195 /*
1196 * entity is not in any tree any more, so
1197 * this deactivation is a no-op, and there is
1198 * nothing to change for upper-level entities
1199 * (in case of expiration, this can never
1200 * happen).
1201 */
1202 return;
1203 }
1204
1205 if (sd->next_in_service == entity)
1206 /*
1207 * entity was the next_in_service entity,
1208 * then, since entity has just been
1209 * deactivated, a new one must be found.
1210 */
80294c3b 1211 bfq_update_next_in_service(sd, NULL, expiration);
ea25da48 1212
46d556e6 1213 if (sd->next_in_service || sd->in_service_entity) {
ea25da48 1214 /*
46d556e6
PV
1215 * The parent entity is still active, because
1216 * either next_in_service or in_service_entity
1217 * is not NULL. So, no further upwards
1218 * deactivation must be performed. Yet,
1219 * next_in_service has changed. Then the
1220 * schedule does need to be updated upwards.
1221 *
1222 * NOTE If in_service_entity is not NULL, then
1223 * next_in_service may happen to be NULL,
1224 * although the parent entity is evidently
1225 * active. This happens if 1) the entity
1226 * pointed by in_service_entity is the only
1227 * active entity in the parent entity, and 2)
1228 * according to the definition of
1229 * next_in_service, the in_service_entity
1230 * cannot be considered as
1231 * next_in_service. See the comments on the
1232 * definition of next_in_service for details.
ea25da48
PV
1233 */
1234 break;
46d556e6 1235 }
ea25da48
PV
1236
1237 /*
1238 * If we get here, then the parent is no more
1239 * backlogged and we need to propagate the
1240 * deactivation upwards. Thus let the loop go on.
1241 */
1242
1243 /*
1244 * Also let parent be queued into the idle tree on
1245 * deactivation, to preserve service guarantees, and
1246 * assuming that who invoked this function does not
1247 * need parent entities too to be removed completely.
1248 */
1249 ins_into_idle_tree = true;
1250 }
1251
1252 /*
1253 * If the deactivation loop is fully executed, then there are
1254 * no more entities to touch and next loop is not executed at
1255 * all. Otherwise, requeue remaining entities if they are
1256 * about to stop receiving service, or reposition them if this
1257 * is not the case.
1258 */
1259 entity = parent;
1260 for_each_entity(entity) {
1261 /*
1262 * Invoke __bfq_requeue_entity on entity, even if
1263 * already active, to requeue/reposition it in the
1264 * active tree (because sd->next_in_service has
1265 * changed)
1266 */
1267 __bfq_requeue_entity(entity);
1268
1269 sd = entity->sched_data;
80294c3b 1270 if (!bfq_update_next_in_service(sd, entity, expiration) &&
ea25da48
PV
1271 !expiration)
1272 /*
1273 * next_in_service unchanged or not causing
1274 * any change in entity->parent->sd, and no
1275 * requeueing needed for expiration: stop
1276 * here.
1277 */
1278 break;
1279 }
1280}
1281
1282/**
1283 * bfq_calc_vtime_jump - compute the value to which the vtime should jump,
1284 * if needed, to have at least one entity eligible.
1285 * @st: the service tree to act upon.
1286 *
1287 * Assumes that st is not empty.
1288 */
1289static u64 bfq_calc_vtime_jump(struct bfq_service_tree *st)
1290{
1291 struct bfq_entity *root_entity = bfq_root_active_entity(&st->active);
1292
1293 if (bfq_gt(root_entity->min_start, st->vtime))
1294 return root_entity->min_start;
1295
1296 return st->vtime;
1297}
1298
1299static void bfq_update_vtime(struct bfq_service_tree *st, u64 new_value)
1300{
1301 if (new_value > st->vtime) {
1302 st->vtime = new_value;
1303 bfq_forget_idle(st);
1304 }
1305}
1306
1307/**
1308 * bfq_first_active_entity - find the eligible entity with
1309 * the smallest finish time
1310 * @st: the service tree to select from.
1311 * @vtime: the system virtual to use as a reference for eligibility
1312 *
1313 * This function searches the first schedulable entity, starting from the
1314 * root of the tree and going on the left every time on this side there is
38c91407 1315 * a subtree with at least one eligible (start <= vtime) entity. The path on
ea25da48
PV
1316 * the right is followed only if a) the left subtree contains no eligible
1317 * entities and b) no eligible entity has been found yet.
1318 */
1319static struct bfq_entity *bfq_first_active_entity(struct bfq_service_tree *st,
1320 u64 vtime)
1321{
1322 struct bfq_entity *entry, *first = NULL;
1323 struct rb_node *node = st->active.rb_node;
1324
1325 while (node) {
1326 entry = rb_entry(node, struct bfq_entity, rb_node);
1327left:
1328 if (!bfq_gt(entry->start, vtime))
1329 first = entry;
1330
1331 if (node->rb_left) {
1332 entry = rb_entry(node->rb_left,
1333 struct bfq_entity, rb_node);
1334 if (!bfq_gt(entry->min_start, vtime)) {
1335 node = node->rb_left;
1336 goto left;
1337 }
1338 }
1339 if (first)
1340 break;
1341 node = node->rb_right;
1342 }
1343
1344 return first;
1345}
1346
1347/**
1348 * __bfq_lookup_next_entity - return the first eligible entity in @st.
1349 * @st: the service tree.
1d87be82
BVA
1350 * @in_service: whether or not there is an in-service entity for the sched_data
1351 * this active tree belongs to.
ea25da48
PV
1352 *
1353 * If there is no in-service entity for the sched_data st belongs to,
1354 * then return the entity that will be set in service if:
1355 * 1) the parent entity this st belongs to is set in service;
1356 * 2) no entity belonging to such parent entity undergoes a state change
1357 * that would influence the timestamps of the entity (e.g., becomes idle,
1358 * becomes backlogged, changes its budget, ...).
1359 *
1360 * In this first case, update the virtual time in @st too (see the
1361 * comments on this update inside the function).
1362 *
636b8fe8 1363 * In contrast, if there is an in-service entity, then return the
ea25da48
PV
1364 * entity that would be set in service if not only the above
1365 * conditions, but also the next one held true: the currently
1366 * in-service entity, on expiration,
1367 * 1) gets a finish time equal to the current one, or
1368 * 2) is not eligible any more, or
1369 * 3) is idle.
1370 */
1371static struct bfq_entity *
1372__bfq_lookup_next_entity(struct bfq_service_tree *st, bool in_service)
1373{
1374 struct bfq_entity *entity;
1375 u64 new_vtime;
1376
1377 if (RB_EMPTY_ROOT(&st->active))
1378 return NULL;
1379
1380 /*
1381 * Get the value of the system virtual time for which at
1382 * least one entity is eligible.
1383 */
1384 new_vtime = bfq_calc_vtime_jump(st);
1385
1386 /*
1387 * If there is no in-service entity for the sched_data this
1388 * active tree belongs to, then push the system virtual time
1389 * up to the value that guarantees that at least one entity is
1390 * eligible. If, instead, there is an in-service entity, then
1391 * do not make any such update, because there is already an
1392 * eligible entity, namely the in-service one (even if the
1393 * entity is not on st, because it was extracted when set in
1394 * service).
1395 */
1396 if (!in_service)
1397 bfq_update_vtime(st, new_vtime);
1398
1399 entity = bfq_first_active_entity(st, new_vtime);
1400
1401 return entity;
1402}
1403
1404/**
1405 * bfq_lookup_next_entity - return the first eligible entity in @sd.
1406 * @sd: the sched_data.
80294c3b 1407 * @expiration: true if we are on the expiration path of the in-service queue
ea25da48
PV
1408 *
1409 * This function is invoked when there has been a change in the trees
80294c3b
PV
1410 * for sd, and we need to know what is the new next entity to serve
1411 * after this change.
ea25da48 1412 */
80294c3b
PV
1413static struct bfq_entity *bfq_lookup_next_entity(struct bfq_sched_data *sd,
1414 bool expiration)
ea25da48
PV
1415{
1416 struct bfq_service_tree *st = sd->service_tree;
1417 struct bfq_service_tree *idle_class_st = st + (BFQ_IOPRIO_CLASSES - 1);
1418 struct bfq_entity *entity = NULL;
1419 int class_idx = 0;
1420
1421 /*
1422 * Choose from idle class, if needed to guarantee a minimum
1423 * bandwidth to this class (and if there is some active entity
1424 * in idle class). This should also mitigate
1425 * priority-inversion problems in case a low priority task is
1426 * holding file system resources.
1427 */
1428 if (time_is_before_jiffies(sd->bfq_class_idle_last_service +
1429 BFQ_CL_IDLE_TIMEOUT)) {
1430 if (!RB_EMPTY_ROOT(&idle_class_st->active))
1431 class_idx = BFQ_IOPRIO_CLASSES - 1;
1432 /* About to be served if backlogged, or not yet backlogged */
1433 sd->bfq_class_idle_last_service = jiffies;
1434 }
1435
1436 /*
1437 * Find the next entity to serve for the highest-priority
1438 * class, unless the idle class needs to be served.
1439 */
1440 for (; class_idx < BFQ_IOPRIO_CLASSES; class_idx++) {
80294c3b
PV
1441 /*
1442 * If expiration is true, then bfq_lookup_next_entity
1443 * is being invoked as a part of the expiration path
1444 * of the in-service queue. In this case, even if
1445 * sd->in_service_entity is not NULL,
636b8fe8 1446 * sd->in_service_entity at this point is actually not
80294c3b
PV
1447 * in service any more, and, if needed, has already
1448 * been properly queued or requeued into the right
1449 * tree. The reason why sd->in_service_entity is still
1450 * not NULL here, even if expiration is true, is that
636b8fe8 1451 * sd->in_service_entity is reset as a last step in the
80294c3b
PV
1452 * expiration path. So, if expiration is true, tell
1453 * __bfq_lookup_next_entity that there is no
1454 * sd->in_service_entity.
1455 */
ea25da48 1456 entity = __bfq_lookup_next_entity(st + class_idx,
80294c3b
PV
1457 sd->in_service_entity &&
1458 !expiration);
ea25da48
PV
1459
1460 if (entity)
1461 break;
1462 }
1463
ea25da48
PV
1464 return entity;
1465}
1466
1467bool next_queue_may_preempt(struct bfq_data *bfqd)
1468{
1469 struct bfq_sched_data *sd = &bfqd->root_group->sched_data;
1470
1471 return sd->next_in_service != sd->in_service_entity;
1472}
1473
1474/*
1475 * Get next queue for service.
1476 */
1477struct bfq_queue *bfq_get_next_queue(struct bfq_data *bfqd)
1478{
1479 struct bfq_entity *entity = NULL;
1480 struct bfq_sched_data *sd;
1481 struct bfq_queue *bfqq;
1482
73d58118 1483 if (bfq_tot_busy_queues(bfqd) == 0)
ea25da48
PV
1484 return NULL;
1485
1486 /*
1487 * Traverse the path from the root to the leaf entity to
1488 * serve. Set in service all the entities visited along the
1489 * way.
1490 */
1491 sd = &bfqd->root_group->sched_data;
1492 for (; sd ; sd = entity->my_sched_data) {
1493 /*
1494 * WARNING. We are about to set the in-service entity
1495 * to sd->next_in_service, i.e., to the (cached) value
1496 * returned by bfq_lookup_next_entity(sd) the last
1497 * time it was invoked, i.e., the last time when the
1498 * service order in sd changed as a consequence of the
1499 * activation or deactivation of an entity. In this
1500 * respect, if we execute bfq_lookup_next_entity(sd)
1501 * in this very moment, it may, although with low
1502 * probability, yield a different entity than that
1503 * pointed to by sd->next_in_service. This rare event
1504 * happens in case there was no CLASS_IDLE entity to
1505 * serve for sd when bfq_lookup_next_entity(sd) was
1506 * invoked for the last time, while there is now one
1507 * such entity.
1508 *
1509 * If the above event happens, then the scheduling of
1510 * such entity in CLASS_IDLE is postponed until the
1511 * service of the sd->next_in_service entity
1512 * finishes. In fact, when the latter is expired,
1513 * bfq_lookup_next_entity(sd) gets called again,
1514 * exactly to update sd->next_in_service.
1515 */
1516
1517 /* Make next_in_service entity become in_service_entity */
1518 entity = sd->next_in_service;
1519 sd->in_service_entity = entity;
1520
ea25da48
PV
1521 /*
1522 * If entity is no longer a candidate for next
46d556e6
PV
1523 * service, then it must be extracted from its active
1524 * tree, so as to make sure that it won't be
1525 * considered when computing next_in_service. See the
1526 * comments on the function
1527 * bfq_no_longer_next_in_service() for details.
ea25da48
PV
1528 */
1529 if (bfq_no_longer_next_in_service(entity))
1530 bfq_active_extract(bfq_entity_service_tree(entity),
1531 entity);
1532
1533 /*
46d556e6
PV
1534 * Even if entity is not to be extracted according to
1535 * the above check, a descendant entity may get
1536 * extracted in one of the next iterations of this
1537 * loop. Such an event could cause a change in
1538 * next_in_service for the level of the descendant
1539 * entity, and thus possibly back to this level.
ea25da48 1540 *
46d556e6
PV
1541 * However, we cannot perform the resulting needed
1542 * update of next_in_service for this level before the
1543 * end of the whole loop, because, to know which is
1544 * the correct next-to-serve candidate entity for each
1545 * level, we need first to find the leaf entity to set
1546 * in service. In fact, only after we know which is
1547 * the next-to-serve leaf entity, we can discover
1548 * whether the parent entity of the leaf entity
1549 * becomes the next-to-serve, and so on.
ea25da48 1550 */
ea25da48
PV
1551 }
1552
1553 bfqq = bfq_entity_to_bfqq(entity);
1554
1555 /*
1556 * We can finally update all next-to-serve entities along the
1557 * path from the leaf entity just set in service to the root.
1558 */
1559 for_each_entity(entity) {
1560 struct bfq_sched_data *sd = entity->sched_data;
1561
80294c3b 1562 if (!bfq_update_next_in_service(sd, NULL, false))
ea25da48
PV
1563 break;
1564 }
1565
1566 return bfqq;
1567}
1568
eed47d19
PV
1569/* returns true if the in-service queue gets freed */
1570bool __bfq_bfqd_reset_in_service(struct bfq_data *bfqd)
ea25da48
PV
1571{
1572 struct bfq_queue *in_serv_bfqq = bfqd->in_service_queue;
1573 struct bfq_entity *in_serv_entity = &in_serv_bfqq->entity;
1574 struct bfq_entity *entity = in_serv_entity;
1575
1576 bfq_clear_bfqq_wait_request(in_serv_bfqq);
1577 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
1578 bfqd->in_service_queue = NULL;
1579
1580 /*
1581 * When this function is called, all in-service entities have
1582 * been properly deactivated or requeued, so we can safely
1583 * execute the final step: reset in_service_entity along the
1584 * path from entity to the root.
1585 */
1586 for_each_entity(entity)
1587 entity->sched_data->in_service_entity = NULL;
1588
1589 /*
1590 * in_serv_entity is no longer in service, so, if it is in no
1591 * service tree either, then release the service reference to
1592 * the queue it represents (taken with bfq_get_entity).
1593 */
33a16a98 1594 if (!in_serv_entity->on_st_or_in_serv) {
eed47d19
PV
1595 /*
1596 * If no process is referencing in_serv_bfqq any
1597 * longer, then the service reference may be the only
1598 * reference to the queue. If this is the case, then
1599 * bfqq gets freed here.
1600 */
1601 int ref = in_serv_bfqq->ref;
ea25da48 1602 bfq_put_queue(in_serv_bfqq);
eed47d19
PV
1603 if (ref == 1)
1604 return true;
1605 }
1606
1607 return false;
ea25da48
PV
1608}
1609
1610void bfq_deactivate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1611 bool ins_into_idle_tree, bool expiration)
1612{
1613 struct bfq_entity *entity = &bfqq->entity;
1614
1615 bfq_deactivate_entity(entity, ins_into_idle_tree, expiration);
1616}
1617
1618void bfq_activate_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1619{
1620 struct bfq_entity *entity = &bfqq->entity;
1621
1622 bfq_activate_requeue_entity(entity, bfq_bfqq_non_blocking_wait_rq(bfqq),
80294c3b 1623 false, false);
ea25da48
PV
1624 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
1625}
1626
80294c3b
PV
1627void bfq_requeue_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1628 bool expiration)
ea25da48
PV
1629{
1630 struct bfq_entity *entity = &bfqq->entity;
1631
1632 bfq_activate_requeue_entity(entity, false,
80294c3b 1633 bfqq == bfqd->in_service_queue, expiration);
ea25da48
PV
1634}
1635
3d89bd12
YK
1636void bfq_add_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq)
1637{
1638 struct bfq_entity *entity = &bfqq->entity;
1639
60a6e10c 1640 if (!entity->in_groups_with_pending_reqs) {
3d89bd12 1641 entity->in_groups_with_pending_reqs = true;
60a6e10c 1642#ifdef CONFIG_BFQ_GROUP_IOSCHED
71f8ca77
YK
1643 if (!(bfqq_group(bfqq)->num_queues_with_pending_reqs++))
1644 bfqq->bfqd->num_groups_with_pending_reqs++;
60a6e10c
YK
1645#endif
1646 }
3d89bd12
YK
1647}
1648
1649void bfq_del_bfqq_in_groups_with_pending_reqs(struct bfq_queue *bfqq)
1650{
1651 struct bfq_entity *entity = &bfqq->entity;
1652
60a6e10c 1653 if (entity->in_groups_with_pending_reqs) {
3d89bd12 1654 entity->in_groups_with_pending_reqs = false;
60a6e10c 1655#ifdef CONFIG_BFQ_GROUP_IOSCHED
71f8ca77
YK
1656 if (!(--bfqq_group(bfqq)->num_queues_with_pending_reqs))
1657 bfqq->bfqd->num_groups_with_pending_reqs--;
60a6e10c
YK
1658#endif
1659 }
3d89bd12
YK
1660}
1661
ea25da48
PV
1662/*
1663 * Called when the bfqq no longer has requests pending, remove it from
1664 * the service tree. As a special case, it can be invoked during an
1665 * expiration.
1666 */
d322f355 1667void bfq_del_bfqq_busy(struct bfq_queue *bfqq, bool expiration)
ea25da48 1668{
d322f355
YK
1669 struct bfq_data *bfqd = bfqq->bfqd;
1670
ea25da48
PV
1671 bfq_log_bfqq(bfqd, bfqq, "del from busy");
1672
1673 bfq_clear_bfqq_busy(bfqq);
1674
73d58118 1675 bfqd->busy_queues[bfqq->ioprio_class - 1]--;
ea25da48 1676
ea25da48
PV
1677 if (bfqq->wr_coeff > 1)
1678 bfqd->wr_busy_queues--;
1679
1680 bfqg_stats_update_dequeue(bfqq_group(bfqq));
1681
1682 bfq_deactivate_bfqq(bfqd, bfqq, true, expiration);
9dee8b3b 1683
3d89bd12
YK
1684 if (!bfqq->dispatched) {
1685 bfq_del_bfqq_in_groups_with_pending_reqs(bfqq);
71f8ca77
YK
1686 /*
1687 * Next function is invoked last, because it causes bfqq to be
1688 * freed. DO NOT use bfqq after the next function invocation.
1689 */
9dee8b3b 1690 bfq_weights_tree_remove(bfqd, bfqq);
3d89bd12 1691 }
ea25da48
PV
1692}
1693
1694/*
1695 * Called when an inactive queue receives a new request.
1696 */
d322f355 1697void bfq_add_bfqq_busy(struct bfq_queue *bfqq)
ea25da48 1698{
d322f355
YK
1699 struct bfq_data *bfqd = bfqq->bfqd;
1700
ea25da48
PV
1701 bfq_log_bfqq(bfqd, bfqq, "add to busy");
1702
1703 bfq_activate_bfqq(bfqd, bfqq);
1704
1705 bfq_mark_bfqq_busy(bfqq);
73d58118 1706 bfqd->busy_queues[bfqq->ioprio_class - 1]++;
ea25da48 1707
3d89bd12
YK
1708 if (!bfqq->dispatched) {
1709 bfq_add_bfqq_in_groups_with_pending_reqs(bfqq);
ea25da48 1710 if (bfqq->wr_coeff == 1)
2d29c9f8 1711 bfq_weights_tree_add(bfqd, bfqq,
ea25da48 1712 &bfqd->queue_weights_tree);
3d89bd12 1713 }
ea25da48
PV
1714
1715 if (bfqq->wr_coeff > 1)
1716 bfqd->wr_busy_queues++;
2ec5a5c4
PV
1717
1718 /* Move bfqq to the head of the woken list of its waker */
1719 if (!hlist_unhashed(&bfqq->woken_list_node) &&
1720 &bfqq->woken_list_node != bfqq->waker_bfqq->woken_list.first) {
1721 hlist_del_init(&bfqq->woken_list_node);
1722 hlist_add_head(&bfqq->woken_list_node,
1723 &bfqq->waker_bfqq->woken_list);
1724 }
ea25da48 1725}