block, bfq: limit tags for writes and async I/O
[linux-block.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
43c1b3d6
PV
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
62 * to 0.
63 *
aee69d78
PV
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
72 *
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
76 * in [3].
77 *
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82 *
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85 * Oct 1997.
86 *
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88 *
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
92 *
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94 */
95#include <linux/module.h>
96#include <linux/slab.h>
97#include <linux/blkdev.h>
e21b7a0b 98#include <linux/cgroup.h>
aee69d78
PV
99#include <linux/elevator.h>
100#include <linux/ktime.h>
101#include <linux/rbtree.h>
102#include <linux/ioprio.h>
103#include <linux/sbitmap.h>
104#include <linux/delay.h>
105
106#include "blk.h"
107#include "blk-mq.h"
108#include "blk-mq-tag.h"
109#include "blk-mq-sched.h"
ea25da48 110#include "bfq-iosched.h"
b5dc5d4d 111#include "blk-wbt.h"
aee69d78 112
ea25da48
PV
113#define BFQ_BFQQ_FNS(name) \
114void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
115{ \
116 __set_bit(BFQQF_##name, &(bfqq)->flags); \
117} \
118void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
119{ \
120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
121} \
122int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
123{ \
124 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
125}
126
ea25da48
PV
127BFQ_BFQQ_FNS(just_created);
128BFQ_BFQQ_FNS(busy);
129BFQ_BFQQ_FNS(wait_request);
130BFQ_BFQQ_FNS(non_blocking_wait_rq);
131BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 132BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
133BFQ_BFQQ_FNS(sync);
134BFQ_BFQQ_FNS(IO_bound);
135BFQ_BFQQ_FNS(in_large_burst);
136BFQ_BFQQ_FNS(coop);
137BFQ_BFQQ_FNS(split_coop);
138BFQ_BFQQ_FNS(softrt_update);
139#undef BFQ_BFQQ_FNS \
aee69d78 140
ea25da48
PV
141/* Expiration time of sync (0) and async (1) requests, in ns. */
142static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 143
ea25da48
PV
144/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145static const int bfq_back_max = 16 * 1024;
aee69d78 146
ea25da48
PV
147/* Penalty of a backwards seek, in number of sectors. */
148static const int bfq_back_penalty = 2;
e21b7a0b 149
ea25da48
PV
150/* Idling period duration, in ns. */
151static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 152
ea25da48
PV
153/* Minimum number of assigned budgets for which stats are safe to compute. */
154static const int bfq_stats_min_budgets = 194;
aee69d78 155
ea25da48
PV
156/* Default maximum budget values, in sectors and number of requests. */
157static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 158
ea25da48
PV
159/*
160 * Async to sync throughput distribution is controlled as follows:
161 * when an async request is served, the entity is charged the number
162 * of sectors of the request, multiplied by the factor below
163 */
164static const int bfq_async_charge_factor = 10;
aee69d78 165
ea25da48
PV
166/* Default timeout values, in jiffies, approximating CFQ defaults. */
167const int bfq_timeout = HZ / 8;
aee69d78 168
7b8fa3b9
PV
169/*
170 * Time limit for merging (see comments in bfq_setup_cooperator). Set
171 * to the slowest value that, in our tests, proved to be effective in
172 * removing false positives, while not causing true positives to miss
173 * queue merging.
174 *
175 * As can be deduced from the low time limit below, queue merging, if
176 * successful, happens at the very beggining of the I/O of the involved
177 * cooperating processes, as a consequence of the arrival of the very
178 * first requests from each cooperator. After that, there is very
179 * little chance to find cooperators.
180 */
181static const unsigned long bfq_merge_time_limit = HZ/10;
182
ea25da48 183static struct kmem_cache *bfq_pool;
e21b7a0b 184
ea25da48
PV
185/* Below this threshold (in ns), we consider thinktime immediate. */
186#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 187
ea25da48
PV
188/* hw_tag detection: parallel requests threshold and min samples needed. */
189#define BFQ_HW_QUEUE_THRESHOLD 4
190#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 191
ea25da48
PV
192#define BFQQ_SEEK_THR (sector_t)(8 * 100)
193#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
194#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
f0ba5ea2 195#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
aee69d78 196
ea25da48
PV
197/* Min number of samples required to perform peak-rate update */
198#define BFQ_RATE_MIN_SAMPLES 32
199/* Min observation time interval required to perform a peak-rate update (ns) */
200#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
201/* Target observation time interval for a peak-rate update (ns) */
202#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 203
ea25da48
PV
204/* Shift used for peak rate fixed precision calculations. */
205#define BFQ_RATE_SHIFT 16
aee69d78 206
ea25da48
PV
207/*
208 * By default, BFQ computes the duration of the weight raising for
209 * interactive applications automatically, using the following formula:
210 * duration = (R / r) * T, where r is the peak rate of the device, and
211 * R and T are two reference parameters.
212 * In particular, R is the peak rate of the reference device (see below),
213 * and T is a reference time: given the systems that are likely to be
214 * installed on the reference device according to its speed class, T is
215 * about the maximum time needed, under BFQ and while reading two files in
216 * parallel, to load typical large applications on these systems.
217 * In practice, the slower/faster the device at hand is, the more/less it
218 * takes to load applications with respect to the reference device.
219 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
220 * applications.
221 *
222 * BFQ uses four different reference pairs (R, T), depending on:
223 * . whether the device is rotational or non-rotational;
224 * . whether the device is slow, such as old or portable HDDs, as well as
225 * SD cards, or fast, such as newer HDDs and SSDs.
226 *
227 * The device's speed class is dynamically (re)detected in
228 * bfq_update_peak_rate() every time the estimated peak rate is updated.
229 *
230 * In the following definitions, R_slow[0]/R_fast[0] and
231 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
232 * rotational device, whereas R_slow[1]/R_fast[1] and
233 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
234 * non-rotational device. Finally, device_speed_thresh are the
235 * thresholds used to switch between speed classes. The reference
236 * rates are not the actual peak rates of the devices used as a
237 * reference, but slightly lower values. The reason for using these
238 * slightly lower values is that the peak-rate estimator tends to
239 * yield slightly lower values than the actual peak rate (it can yield
240 * the actual peak rate only if there is only one process doing I/O,
241 * and the process does sequential I/O).
242 *
243 * Both the reference peak rates and the thresholds are measured in
244 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
245 */
246static int R_slow[2] = {1000, 10700};
247static int R_fast[2] = {14000, 33000};
248/*
249 * To improve readability, a conversion function is used to initialize the
250 * following arrays, which entails that they can be initialized only in a
251 * function.
252 */
253static int T_slow[2];
254static int T_fast[2];
255static int device_speed_thresh[2];
aee69d78 256
12cd3a2f 257#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 258#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 259
ea25da48 260struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 261{
ea25da48 262 return bic->bfqq[is_sync];
aee69d78
PV
263}
264
ea25da48 265void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 266{
ea25da48 267 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
268}
269
ea25da48 270struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 271{
ea25da48 272 return bic->icq.q->elevator->elevator_data;
e21b7a0b 273}
aee69d78 274
ea25da48
PV
275/**
276 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
277 * @icq: the iocontext queue.
278 */
279static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 280{
ea25da48
PV
281 /* bic->icq is the first member, %NULL will convert to %NULL */
282 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 283}
aee69d78 284
ea25da48
PV
285/**
286 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
287 * @bfqd: the lookup key.
288 * @ioc: the io_context of the process doing I/O.
289 * @q: the request queue.
290 */
291static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
292 struct io_context *ioc,
293 struct request_queue *q)
e21b7a0b 294{
ea25da48
PV
295 if (ioc) {
296 unsigned long flags;
297 struct bfq_io_cq *icq;
aee69d78 298
ea25da48
PV
299 spin_lock_irqsave(q->queue_lock, flags);
300 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
301 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 302
ea25da48 303 return icq;
e21b7a0b 304 }
e21b7a0b 305
ea25da48 306 return NULL;
aee69d78
PV
307}
308
ea25da48
PV
309/*
310 * Scheduler run of queue, if there are requests pending and no one in the
311 * driver that will restart queueing.
312 */
313void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 314{
ea25da48
PV
315 if (bfqd->queued != 0) {
316 bfq_log(bfqd, "schedule dispatch");
317 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 318 }
aee69d78
PV
319}
320
321#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
322#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
323
324#define bfq_sample_valid(samples) ((samples) > 80)
325
aee69d78
PV
326/*
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closesr to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
330 */
331static struct request *bfq_choose_req(struct bfq_data *bfqd,
332 struct request *rq1,
333 struct request *rq2,
334 sector_t last)
335{
336 sector_t s1, s2, d1 = 0, d2 = 0;
337 unsigned long back_max;
338#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
339#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
340 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
341
342 if (!rq1 || rq1 == rq2)
343 return rq2;
344 if (!rq2)
345 return rq1;
346
347 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
348 return rq1;
349 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
350 return rq2;
351 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
352 return rq1;
353 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
354 return rq2;
355
356 s1 = blk_rq_pos(rq1);
357 s2 = blk_rq_pos(rq2);
358
359 /*
360 * By definition, 1KiB is 2 sectors.
361 */
362 back_max = bfqd->bfq_back_max * 2;
363
364 /*
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
368 */
369 if (s1 >= last)
370 d1 = s1 - last;
371 else if (s1 + back_max >= last)
372 d1 = (last - s1) * bfqd->bfq_back_penalty;
373 else
374 wrap |= BFQ_RQ1_WRAP;
375
376 if (s2 >= last)
377 d2 = s2 - last;
378 else if (s2 + back_max >= last)
379 d2 = (last - s2) * bfqd->bfq_back_penalty;
380 else
381 wrap |= BFQ_RQ2_WRAP;
382
383 /* Found required data */
384
385 /*
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
388 */
389 switch (wrap) {
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391 if (d1 < d2)
392 return rq1;
393 else if (d2 < d1)
394 return rq2;
395
396 if (s1 >= s2)
397 return rq1;
398 else
399 return rq2;
400
401 case BFQ_RQ2_WRAP:
402 return rq1;
403 case BFQ_RQ1_WRAP:
404 return rq2;
405 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
406 default:
407 /*
408 * Since both rqs are wrapped,
409 * start with the one that's further behind head
410 * (--> only *one* back seek required),
411 * since back seek takes more time than forward.
412 */
413 if (s1 <= s2)
414 return rq1;
415 else
416 return rq2;
417 }
418}
419
a52a69ea
PV
420/*
421 * See the comments on bfq_limit_depth for the purpose of
422 * the depths set in the function.
423 */
424static void bfq_update_depths(struct bfq_data *bfqd, struct sbitmap_queue *bt)
425{
426 bfqd->sb_shift = bt->sb.shift;
427
428 /*
429 * In-word depths if no bfq_queue is being weight-raised:
430 * leaving 25% of tags only for sync reads.
431 *
432 * In next formulas, right-shift the value
433 * (1U<<bfqd->sb_shift), instead of computing directly
434 * (1U<<(bfqd->sb_shift - something)), to be robust against
435 * any possible value of bfqd->sb_shift, without having to
436 * limit 'something'.
437 */
438 /* no more than 50% of tags for async I/O */
439 bfqd->word_depths[0][0] = max((1U<<bfqd->sb_shift)>>1, 1U);
440 /*
441 * no more than 75% of tags for sync writes (25% extra tags
442 * w.r.t. async I/O, to prevent async I/O from starving sync
443 * writes)
444 */
445 bfqd->word_depths[0][1] = max(((1U<<bfqd->sb_shift) * 3)>>2, 1U);
446
447 /*
448 * In-word depths in case some bfq_queue is being weight-
449 * raised: leaving ~63% of tags for sync reads. This is the
450 * highest percentage for which, in our tests, application
451 * start-up times didn't suffer from any regression due to tag
452 * shortage.
453 */
454 /* no more than ~18% of tags for async I/O */
455 bfqd->word_depths[1][0] = max(((1U<<bfqd->sb_shift) * 3)>>4, 1U);
456 /* no more than ~37% of tags for sync writes (~20% extra tags) */
457 bfqd->word_depths[1][1] = max(((1U<<bfqd->sb_shift) * 6)>>4, 1U);
458}
459
460/*
461 * Async I/O can easily starve sync I/O (both sync reads and sync
462 * writes), by consuming all tags. Similarly, storms of sync writes,
463 * such as those that sync(2) may trigger, can starve sync reads.
464 * Limit depths of async I/O and sync writes so as to counter both
465 * problems.
466 */
467static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
468{
469 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
470 struct bfq_data *bfqd = data->q->elevator->elevator_data;
471 struct sbitmap_queue *bt;
472
473 if (op_is_sync(op) && !op_is_write(op))
474 return;
475
476 if (data->flags & BLK_MQ_REQ_RESERVED) {
477 if (unlikely(!tags->nr_reserved_tags)) {
478 WARN_ON_ONCE(1);
479 return;
480 }
481 bt = &tags->breserved_tags;
482 } else
483 bt = &tags->bitmap_tags;
484
485 if (unlikely(bfqd->sb_shift != bt->sb.shift))
486 bfq_update_depths(bfqd, bt);
487
488 data->shallow_depth =
489 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
490
491 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
492 __func__, bfqd->wr_busy_queues, op_is_sync(op),
493 data->shallow_depth);
494}
495
36eca894
AA
496static struct bfq_queue *
497bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
498 sector_t sector, struct rb_node **ret_parent,
499 struct rb_node ***rb_link)
500{
501 struct rb_node **p, *parent;
502 struct bfq_queue *bfqq = NULL;
503
504 parent = NULL;
505 p = &root->rb_node;
506 while (*p) {
507 struct rb_node **n;
508
509 parent = *p;
510 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
511
512 /*
513 * Sort strictly based on sector. Smallest to the left,
514 * largest to the right.
515 */
516 if (sector > blk_rq_pos(bfqq->next_rq))
517 n = &(*p)->rb_right;
518 else if (sector < blk_rq_pos(bfqq->next_rq))
519 n = &(*p)->rb_left;
520 else
521 break;
522 p = n;
523 bfqq = NULL;
524 }
525
526 *ret_parent = parent;
527 if (rb_link)
528 *rb_link = p;
529
530 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
531 (unsigned long long)sector,
532 bfqq ? bfqq->pid : 0);
533
534 return bfqq;
535}
536
7b8fa3b9
PV
537static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
538{
539 return bfqq->service_from_backlogged > 0 &&
540 time_is_before_jiffies(bfqq->first_IO_time +
541 bfq_merge_time_limit);
542}
543
ea25da48 544void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
545{
546 struct rb_node **p, *parent;
547 struct bfq_queue *__bfqq;
548
549 if (bfqq->pos_root) {
550 rb_erase(&bfqq->pos_node, bfqq->pos_root);
551 bfqq->pos_root = NULL;
552 }
553
7b8fa3b9
PV
554 /*
555 * bfqq cannot be merged any longer (see comments in
556 * bfq_setup_cooperator): no point in adding bfqq into the
557 * position tree.
558 */
559 if (bfq_too_late_for_merging(bfqq))
560 return;
561
36eca894
AA
562 if (bfq_class_idle(bfqq))
563 return;
564 if (!bfqq->next_rq)
565 return;
566
567 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
568 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
569 blk_rq_pos(bfqq->next_rq), &parent, &p);
570 if (!__bfqq) {
571 rb_link_node(&bfqq->pos_node, parent, p);
572 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
573 } else
574 bfqq->pos_root = NULL;
575}
576
1de0c4cd
AA
577/*
578 * Tell whether there are active queues or groups with differentiated weights.
579 */
580static bool bfq_differentiated_weights(struct bfq_data *bfqd)
581{
582 /*
583 * For weights to differ, at least one of the trees must contain
584 * at least two nodes.
585 */
586 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
587 (bfqd->queue_weights_tree.rb_node->rb_left ||
588 bfqd->queue_weights_tree.rb_node->rb_right)
589#ifdef CONFIG_BFQ_GROUP_IOSCHED
590 ) ||
591 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
592 (bfqd->group_weights_tree.rb_node->rb_left ||
593 bfqd->group_weights_tree.rb_node->rb_right)
594#endif
595 );
596}
597
598/*
599 * The following function returns true if every queue must receive the
600 * same share of the throughput (this condition is used when deciding
601 * whether idling may be disabled, see the comments in the function
602 * bfq_bfqq_may_idle()).
603 *
604 * Such a scenario occurs when:
605 * 1) all active queues have the same weight,
606 * 2) all active groups at the same level in the groups tree have the same
607 * weight,
608 * 3) all active groups at the same level in the groups tree have the same
609 * number of children.
610 *
611 * Unfortunately, keeping the necessary state for evaluating exactly the
612 * above symmetry conditions would be quite complex and time-consuming.
613 * Therefore this function evaluates, instead, the following stronger
614 * sub-conditions, for which it is much easier to maintain the needed
615 * state:
616 * 1) all active queues have the same weight,
617 * 2) all active groups have the same weight,
618 * 3) all active groups have at most one active child each.
619 * In particular, the last two conditions are always true if hierarchical
620 * support and the cgroups interface are not enabled, thus no state needs
621 * to be maintained in this case.
622 */
623static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
624{
625 return !bfq_differentiated_weights(bfqd);
626}
627
628/*
629 * If the weight-counter tree passed as input contains no counter for
630 * the weight of the input entity, then add that counter; otherwise just
631 * increment the existing counter.
632 *
633 * Note that weight-counter trees contain few nodes in mostly symmetric
634 * scenarios. For example, if all queues have the same weight, then the
635 * weight-counter tree for the queues may contain at most one node.
636 * This holds even if low_latency is on, because weight-raised queues
637 * are not inserted in the tree.
638 * In most scenarios, the rate at which nodes are created/destroyed
639 * should be low too.
640 */
ea25da48
PV
641void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
642 struct rb_root *root)
1de0c4cd
AA
643{
644 struct rb_node **new = &(root->rb_node), *parent = NULL;
645
646 /*
647 * Do not insert if the entity is already associated with a
648 * counter, which happens if:
649 * 1) the entity is associated with a queue,
650 * 2) a request arrival has caused the queue to become both
651 * non-weight-raised, and hence change its weight, and
652 * backlogged; in this respect, each of the two events
653 * causes an invocation of this function,
654 * 3) this is the invocation of this function caused by the
655 * second event. This second invocation is actually useless,
656 * and we handle this fact by exiting immediately. More
657 * efficient or clearer solutions might possibly be adopted.
658 */
659 if (entity->weight_counter)
660 return;
661
662 while (*new) {
663 struct bfq_weight_counter *__counter = container_of(*new,
664 struct bfq_weight_counter,
665 weights_node);
666 parent = *new;
667
668 if (entity->weight == __counter->weight) {
669 entity->weight_counter = __counter;
670 goto inc_counter;
671 }
672 if (entity->weight < __counter->weight)
673 new = &((*new)->rb_left);
674 else
675 new = &((*new)->rb_right);
676 }
677
678 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
679 GFP_ATOMIC);
680
681 /*
682 * In the unlucky event of an allocation failure, we just
683 * exit. This will cause the weight of entity to not be
684 * considered in bfq_differentiated_weights, which, in its
685 * turn, causes the scenario to be deemed wrongly symmetric in
686 * case entity's weight would have been the only weight making
687 * the scenario asymmetric. On the bright side, no unbalance
688 * will however occur when entity becomes inactive again (the
689 * invocation of this function is triggered by an activation
690 * of entity). In fact, bfq_weights_tree_remove does nothing
691 * if !entity->weight_counter.
692 */
693 if (unlikely(!entity->weight_counter))
694 return;
695
696 entity->weight_counter->weight = entity->weight;
697 rb_link_node(&entity->weight_counter->weights_node, parent, new);
698 rb_insert_color(&entity->weight_counter->weights_node, root);
699
700inc_counter:
701 entity->weight_counter->num_active++;
702}
703
704/*
705 * Decrement the weight counter associated with the entity, and, if the
706 * counter reaches 0, remove the counter from the tree.
707 * See the comments to the function bfq_weights_tree_add() for considerations
708 * about overhead.
709 */
ea25da48
PV
710void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
711 struct rb_root *root)
1de0c4cd
AA
712{
713 if (!entity->weight_counter)
714 return;
715
716 entity->weight_counter->num_active--;
717 if (entity->weight_counter->num_active > 0)
718 goto reset_entity_pointer;
719
720 rb_erase(&entity->weight_counter->weights_node, root);
721 kfree(entity->weight_counter);
722
723reset_entity_pointer:
724 entity->weight_counter = NULL;
725}
726
aee69d78
PV
727/*
728 * Return expired entry, or NULL to just start from scratch in rbtree.
729 */
730static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
731 struct request *last)
732{
733 struct request *rq;
734
735 if (bfq_bfqq_fifo_expire(bfqq))
736 return NULL;
737
738 bfq_mark_bfqq_fifo_expire(bfqq);
739
740 rq = rq_entry_fifo(bfqq->fifo.next);
741
742 if (rq == last || ktime_get_ns() < rq->fifo_time)
743 return NULL;
744
745 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
746 return rq;
747}
748
749static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
750 struct bfq_queue *bfqq,
751 struct request *last)
752{
753 struct rb_node *rbnext = rb_next(&last->rb_node);
754 struct rb_node *rbprev = rb_prev(&last->rb_node);
755 struct request *next, *prev = NULL;
756
757 /* Follow expired path, else get first next available. */
758 next = bfq_check_fifo(bfqq, last);
759 if (next)
760 return next;
761
762 if (rbprev)
763 prev = rb_entry_rq(rbprev);
764
765 if (rbnext)
766 next = rb_entry_rq(rbnext);
767 else {
768 rbnext = rb_first(&bfqq->sort_list);
769 if (rbnext && rbnext != &last->rb_node)
770 next = rb_entry_rq(rbnext);
771 }
772
773 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
774}
775
c074170e 776/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
777static unsigned long bfq_serv_to_charge(struct request *rq,
778 struct bfq_queue *bfqq)
779{
44e44a1b 780 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
781 return blk_rq_sectors(rq);
782
cfd69712
PV
783 /*
784 * If there are no weight-raised queues, then amplify service
785 * by just the async charge factor; otherwise amplify service
786 * by twice the async charge factor, to further reduce latency
787 * for weight-raised queues.
788 */
789 if (bfqq->bfqd->wr_busy_queues == 0)
790 return blk_rq_sectors(rq) * bfq_async_charge_factor;
791
792 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
793}
794
795/**
796 * bfq_updated_next_req - update the queue after a new next_rq selection.
797 * @bfqd: the device data the queue belongs to.
798 * @bfqq: the queue to update.
799 *
800 * If the first request of a queue changes we make sure that the queue
801 * has enough budget to serve at least its first request (if the
802 * request has grown). We do this because if the queue has not enough
803 * budget for its first request, it has to go through two dispatch
804 * rounds to actually get it dispatched.
805 */
806static void bfq_updated_next_req(struct bfq_data *bfqd,
807 struct bfq_queue *bfqq)
808{
809 struct bfq_entity *entity = &bfqq->entity;
810 struct request *next_rq = bfqq->next_rq;
811 unsigned long new_budget;
812
813 if (!next_rq)
814 return;
815
816 if (bfqq == bfqd->in_service_queue)
817 /*
818 * In order not to break guarantees, budgets cannot be
819 * changed after an entity has been selected.
820 */
821 return;
822
823 new_budget = max_t(unsigned long, bfqq->max_budget,
824 bfq_serv_to_charge(next_rq, bfqq));
825 if (entity->budget != new_budget) {
826 entity->budget = new_budget;
827 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
828 new_budget);
80294c3b 829 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
830 }
831}
832
3e2bdd6d
PV
833static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
834{
835 u64 dur;
836
837 if (bfqd->bfq_wr_max_time > 0)
838 return bfqd->bfq_wr_max_time;
839
840 dur = bfqd->RT_prod;
841 do_div(dur, bfqd->peak_rate);
842
843 /*
844 * Limit duration between 3 and 13 seconds. Tests show that
845 * higher values than 13 seconds often yield the opposite of
846 * the desired result, i.e., worsen responsiveness by letting
847 * non-interactive and non-soft-real-time applications
848 * preserve weight raising for a too long time interval.
849 *
850 * On the other end, lower values than 3 seconds make it
851 * difficult for most interactive tasks to complete their jobs
852 * before weight-raising finishes.
853 */
854 if (dur > msecs_to_jiffies(13000))
855 dur = msecs_to_jiffies(13000);
856 else if (dur < msecs_to_jiffies(3000))
857 dur = msecs_to_jiffies(3000);
858
859 return dur;
860}
861
862/* switch back from soft real-time to interactive weight raising */
863static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
864 struct bfq_data *bfqd)
865{
866 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
867 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
868 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
869}
870
36eca894 871static void
13c931bd
PV
872bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
873 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 874{
13c931bd
PV
875 unsigned int old_wr_coeff = bfqq->wr_coeff;
876 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
877
d5be3fef
PV
878 if (bic->saved_has_short_ttime)
879 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 880 else
d5be3fef 881 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
882
883 if (bic->saved_IO_bound)
884 bfq_mark_bfqq_IO_bound(bfqq);
885 else
886 bfq_clear_bfqq_IO_bound(bfqq);
887
888 bfqq->ttime = bic->saved_ttime;
889 bfqq->wr_coeff = bic->saved_wr_coeff;
890 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
891 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
892 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
893
e1b2324d 894 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 895 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 896 bfqq->wr_cur_max_time))) {
3e2bdd6d
PV
897 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
898 !bfq_bfqq_in_large_burst(bfqq) &&
899 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
900 bfq_wr_duration(bfqd))) {
901 switch_back_to_interactive_wr(bfqq, bfqd);
902 } else {
903 bfqq->wr_coeff = 1;
904 bfq_log_bfqq(bfqq->bfqd, bfqq,
905 "resume state: switching off wr");
906 }
36eca894
AA
907 }
908
909 /* make sure weight will be updated, however we got here */
910 bfqq->entity.prio_changed = 1;
13c931bd
PV
911
912 if (likely(!busy))
913 return;
914
915 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
916 bfqd->wr_busy_queues++;
917 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
918 bfqd->wr_busy_queues--;
36eca894
AA
919}
920
921static int bfqq_process_refs(struct bfq_queue *bfqq)
922{
923 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
924}
925
e1b2324d
AA
926/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
927static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
928{
929 struct bfq_queue *item;
930 struct hlist_node *n;
931
932 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
933 hlist_del_init(&item->burst_list_node);
934 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
935 bfqd->burst_size = 1;
936 bfqd->burst_parent_entity = bfqq->entity.parent;
937}
938
939/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
940static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
941{
942 /* Increment burst size to take into account also bfqq */
943 bfqd->burst_size++;
944
945 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
946 struct bfq_queue *pos, *bfqq_item;
947 struct hlist_node *n;
948
949 /*
950 * Enough queues have been activated shortly after each
951 * other to consider this burst as large.
952 */
953 bfqd->large_burst = true;
954
955 /*
956 * We can now mark all queues in the burst list as
957 * belonging to a large burst.
958 */
959 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
960 burst_list_node)
961 bfq_mark_bfqq_in_large_burst(bfqq_item);
962 bfq_mark_bfqq_in_large_burst(bfqq);
963
964 /*
965 * From now on, and until the current burst finishes, any
966 * new queue being activated shortly after the last queue
967 * was inserted in the burst can be immediately marked as
968 * belonging to a large burst. So the burst list is not
969 * needed any more. Remove it.
970 */
971 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
972 burst_list_node)
973 hlist_del_init(&pos->burst_list_node);
974 } else /*
975 * Burst not yet large: add bfqq to the burst list. Do
976 * not increment the ref counter for bfqq, because bfqq
977 * is removed from the burst list before freeing bfqq
978 * in put_queue.
979 */
980 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
981}
982
983/*
984 * If many queues belonging to the same group happen to be created
985 * shortly after each other, then the processes associated with these
986 * queues have typically a common goal. In particular, bursts of queue
987 * creations are usually caused by services or applications that spawn
988 * many parallel threads/processes. Examples are systemd during boot,
989 * or git grep. To help these processes get their job done as soon as
990 * possible, it is usually better to not grant either weight-raising
991 * or device idling to their queues.
992 *
993 * In this comment we describe, firstly, the reasons why this fact
994 * holds, and, secondly, the next function, which implements the main
995 * steps needed to properly mark these queues so that they can then be
996 * treated in a different way.
997 *
998 * The above services or applications benefit mostly from a high
999 * throughput: the quicker the requests of the activated queues are
1000 * cumulatively served, the sooner the target job of these queues gets
1001 * completed. As a consequence, weight-raising any of these queues,
1002 * which also implies idling the device for it, is almost always
1003 * counterproductive. In most cases it just lowers throughput.
1004 *
1005 * On the other hand, a burst of queue creations may be caused also by
1006 * the start of an application that does not consist of a lot of
1007 * parallel I/O-bound threads. In fact, with a complex application,
1008 * several short processes may need to be executed to start-up the
1009 * application. In this respect, to start an application as quickly as
1010 * possible, the best thing to do is in any case to privilege the I/O
1011 * related to the application with respect to all other
1012 * I/O. Therefore, the best strategy to start as quickly as possible
1013 * an application that causes a burst of queue creations is to
1014 * weight-raise all the queues created during the burst. This is the
1015 * exact opposite of the best strategy for the other type of bursts.
1016 *
1017 * In the end, to take the best action for each of the two cases, the
1018 * two types of bursts need to be distinguished. Fortunately, this
1019 * seems relatively easy, by looking at the sizes of the bursts. In
1020 * particular, we found a threshold such that only bursts with a
1021 * larger size than that threshold are apparently caused by
1022 * services or commands such as systemd or git grep. For brevity,
1023 * hereafter we call just 'large' these bursts. BFQ *does not*
1024 * weight-raise queues whose creation occurs in a large burst. In
1025 * addition, for each of these queues BFQ performs or does not perform
1026 * idling depending on which choice boosts the throughput more. The
1027 * exact choice depends on the device and request pattern at
1028 * hand.
1029 *
1030 * Unfortunately, false positives may occur while an interactive task
1031 * is starting (e.g., an application is being started). The
1032 * consequence is that the queues associated with the task do not
1033 * enjoy weight raising as expected. Fortunately these false positives
1034 * are very rare. They typically occur if some service happens to
1035 * start doing I/O exactly when the interactive task starts.
1036 *
1037 * Turning back to the next function, it implements all the steps
1038 * needed to detect the occurrence of a large burst and to properly
1039 * mark all the queues belonging to it (so that they can then be
1040 * treated in a different way). This goal is achieved by maintaining a
1041 * "burst list" that holds, temporarily, the queues that belong to the
1042 * burst in progress. The list is then used to mark these queues as
1043 * belonging to a large burst if the burst does become large. The main
1044 * steps are the following.
1045 *
1046 * . when the very first queue is created, the queue is inserted into the
1047 * list (as it could be the first queue in a possible burst)
1048 *
1049 * . if the current burst has not yet become large, and a queue Q that does
1050 * not yet belong to the burst is activated shortly after the last time
1051 * at which a new queue entered the burst list, then the function appends
1052 * Q to the burst list
1053 *
1054 * . if, as a consequence of the previous step, the burst size reaches
1055 * the large-burst threshold, then
1056 *
1057 * . all the queues in the burst list are marked as belonging to a
1058 * large burst
1059 *
1060 * . the burst list is deleted; in fact, the burst list already served
1061 * its purpose (keeping temporarily track of the queues in a burst,
1062 * so as to be able to mark them as belonging to a large burst in the
1063 * previous sub-step), and now is not needed any more
1064 *
1065 * . the device enters a large-burst mode
1066 *
1067 * . if a queue Q that does not belong to the burst is created while
1068 * the device is in large-burst mode and shortly after the last time
1069 * at which a queue either entered the burst list or was marked as
1070 * belonging to the current large burst, then Q is immediately marked
1071 * as belonging to a large burst.
1072 *
1073 * . if a queue Q that does not belong to the burst is created a while
1074 * later, i.e., not shortly after, than the last time at which a queue
1075 * either entered the burst list or was marked as belonging to the
1076 * current large burst, then the current burst is deemed as finished and:
1077 *
1078 * . the large-burst mode is reset if set
1079 *
1080 * . the burst list is emptied
1081 *
1082 * . Q is inserted in the burst list, as Q may be the first queue
1083 * in a possible new burst (then the burst list contains just Q
1084 * after this step).
1085 */
1086static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1087{
1088 /*
1089 * If bfqq is already in the burst list or is part of a large
1090 * burst, or finally has just been split, then there is
1091 * nothing else to do.
1092 */
1093 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1094 bfq_bfqq_in_large_burst(bfqq) ||
1095 time_is_after_eq_jiffies(bfqq->split_time +
1096 msecs_to_jiffies(10)))
1097 return;
1098
1099 /*
1100 * If bfqq's creation happens late enough, or bfqq belongs to
1101 * a different group than the burst group, then the current
1102 * burst is finished, and related data structures must be
1103 * reset.
1104 *
1105 * In this respect, consider the special case where bfqq is
1106 * the very first queue created after BFQ is selected for this
1107 * device. In this case, last_ins_in_burst and
1108 * burst_parent_entity are not yet significant when we get
1109 * here. But it is easy to verify that, whether or not the
1110 * following condition is true, bfqq will end up being
1111 * inserted into the burst list. In particular the list will
1112 * happen to contain only bfqq. And this is exactly what has
1113 * to happen, as bfqq may be the first queue of the first
1114 * burst.
1115 */
1116 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1117 bfqd->bfq_burst_interval) ||
1118 bfqq->entity.parent != bfqd->burst_parent_entity) {
1119 bfqd->large_burst = false;
1120 bfq_reset_burst_list(bfqd, bfqq);
1121 goto end;
1122 }
1123
1124 /*
1125 * If we get here, then bfqq is being activated shortly after the
1126 * last queue. So, if the current burst is also large, we can mark
1127 * bfqq as belonging to this large burst immediately.
1128 */
1129 if (bfqd->large_burst) {
1130 bfq_mark_bfqq_in_large_burst(bfqq);
1131 goto end;
1132 }
1133
1134 /*
1135 * If we get here, then a large-burst state has not yet been
1136 * reached, but bfqq is being activated shortly after the last
1137 * queue. Then we add bfqq to the burst.
1138 */
1139 bfq_add_to_burst(bfqd, bfqq);
1140end:
1141 /*
1142 * At this point, bfqq either has been added to the current
1143 * burst or has caused the current burst to terminate and a
1144 * possible new burst to start. In particular, in the second
1145 * case, bfqq has become the first queue in the possible new
1146 * burst. In both cases last_ins_in_burst needs to be moved
1147 * forward.
1148 */
1149 bfqd->last_ins_in_burst = jiffies;
1150}
1151
aee69d78
PV
1152static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1153{
1154 struct bfq_entity *entity = &bfqq->entity;
1155
1156 return entity->budget - entity->service;
1157}
1158
1159/*
1160 * If enough samples have been computed, return the current max budget
1161 * stored in bfqd, which is dynamically updated according to the
1162 * estimated disk peak rate; otherwise return the default max budget
1163 */
1164static int bfq_max_budget(struct bfq_data *bfqd)
1165{
1166 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1167 return bfq_default_max_budget;
1168 else
1169 return bfqd->bfq_max_budget;
1170}
1171
1172/*
1173 * Return min budget, which is a fraction of the current or default
1174 * max budget (trying with 1/32)
1175 */
1176static int bfq_min_budget(struct bfq_data *bfqd)
1177{
1178 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1179 return bfq_default_max_budget / 32;
1180 else
1181 return bfqd->bfq_max_budget / 32;
1182}
1183
aee69d78
PV
1184/*
1185 * The next function, invoked after the input queue bfqq switches from
1186 * idle to busy, updates the budget of bfqq. The function also tells
1187 * whether the in-service queue should be expired, by returning
1188 * true. The purpose of expiring the in-service queue is to give bfqq
1189 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1190 * for preempting the in-service queue is to achieve one of the two
1191 * goals below.
aee69d78 1192 *
44e44a1b
PV
1193 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1194 * expired because it has remained idle. In particular, bfqq may have
1195 * expired for one of the following two reasons:
aee69d78
PV
1196 *
1197 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1198 * and did not make it to issue a new request before its last
1199 * request was served;
1200 *
1201 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1202 * a new request before the expiration of the idling-time.
1203 *
1204 * Even if bfqq has expired for one of the above reasons, the process
1205 * associated with the queue may be however issuing requests greedily,
1206 * and thus be sensitive to the bandwidth it receives (bfqq may have
1207 * remained idle for other reasons: CPU high load, bfqq not enjoying
1208 * idling, I/O throttling somewhere in the path from the process to
1209 * the I/O scheduler, ...). But if, after every expiration for one of
1210 * the above two reasons, bfqq has to wait for the service of at least
1211 * one full budget of another queue before being served again, then
1212 * bfqq is likely to get a much lower bandwidth or resource time than
1213 * its reserved ones. To address this issue, two countermeasures need
1214 * to be taken.
1215 *
1216 * First, the budget and the timestamps of bfqq need to be updated in
1217 * a special way on bfqq reactivation: they need to be updated as if
1218 * bfqq did not remain idle and did not expire. In fact, if they are
1219 * computed as if bfqq expired and remained idle until reactivation,
1220 * then the process associated with bfqq is treated as if, instead of
1221 * being greedy, it stopped issuing requests when bfqq remained idle,
1222 * and restarts issuing requests only on this reactivation. In other
1223 * words, the scheduler does not help the process recover the "service
1224 * hole" between bfqq expiration and reactivation. As a consequence,
1225 * the process receives a lower bandwidth than its reserved one. In
1226 * contrast, to recover this hole, the budget must be updated as if
1227 * bfqq was not expired at all before this reactivation, i.e., it must
1228 * be set to the value of the remaining budget when bfqq was
1229 * expired. Along the same line, timestamps need to be assigned the
1230 * value they had the last time bfqq was selected for service, i.e.,
1231 * before last expiration. Thus timestamps need to be back-shifted
1232 * with respect to their normal computation (see [1] for more details
1233 * on this tricky aspect).
1234 *
1235 * Secondly, to allow the process to recover the hole, the in-service
1236 * queue must be expired too, to give bfqq the chance to preempt it
1237 * immediately. In fact, if bfqq has to wait for a full budget of the
1238 * in-service queue to be completed, then it may become impossible to
1239 * let the process recover the hole, even if the back-shifted
1240 * timestamps of bfqq are lower than those of the in-service queue. If
1241 * this happens for most or all of the holes, then the process may not
1242 * receive its reserved bandwidth. In this respect, it is worth noting
1243 * that, being the service of outstanding requests unpreemptible, a
1244 * little fraction of the holes may however be unrecoverable, thereby
1245 * causing a little loss of bandwidth.
1246 *
1247 * The last important point is detecting whether bfqq does need this
1248 * bandwidth recovery. In this respect, the next function deems the
1249 * process associated with bfqq greedy, and thus allows it to recover
1250 * the hole, if: 1) the process is waiting for the arrival of a new
1251 * request (which implies that bfqq expired for one of the above two
1252 * reasons), and 2) such a request has arrived soon. The first
1253 * condition is controlled through the flag non_blocking_wait_rq,
1254 * while the second through the flag arrived_in_time. If both
1255 * conditions hold, then the function computes the budget in the
1256 * above-described special way, and signals that the in-service queue
1257 * should be expired. Timestamp back-shifting is done later in
1258 * __bfq_activate_entity.
44e44a1b
PV
1259 *
1260 * 2. Reduce latency. Even if timestamps are not backshifted to let
1261 * the process associated with bfqq recover a service hole, bfqq may
1262 * however happen to have, after being (re)activated, a lower finish
1263 * timestamp than the in-service queue. That is, the next budget of
1264 * bfqq may have to be completed before the one of the in-service
1265 * queue. If this is the case, then preempting the in-service queue
1266 * allows this goal to be achieved, apart from the unpreemptible,
1267 * outstanding requests mentioned above.
1268 *
1269 * Unfortunately, regardless of which of the above two goals one wants
1270 * to achieve, service trees need first to be updated to know whether
1271 * the in-service queue must be preempted. To have service trees
1272 * correctly updated, the in-service queue must be expired and
1273 * rescheduled, and bfqq must be scheduled too. This is one of the
1274 * most costly operations (in future versions, the scheduling
1275 * mechanism may be re-designed in such a way to make it possible to
1276 * know whether preemption is needed without needing to update service
1277 * trees). In addition, queue preemptions almost always cause random
1278 * I/O, and thus loss of throughput. Because of these facts, the next
1279 * function adopts the following simple scheme to avoid both costly
1280 * operations and too frequent preemptions: it requests the expiration
1281 * of the in-service queue (unconditionally) only for queues that need
1282 * to recover a hole, or that either are weight-raised or deserve to
1283 * be weight-raised.
aee69d78
PV
1284 */
1285static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1286 struct bfq_queue *bfqq,
44e44a1b
PV
1287 bool arrived_in_time,
1288 bool wr_or_deserves_wr)
aee69d78
PV
1289{
1290 struct bfq_entity *entity = &bfqq->entity;
1291
1292 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1293 /*
1294 * We do not clear the flag non_blocking_wait_rq here, as
1295 * the latter is used in bfq_activate_bfqq to signal
1296 * that timestamps need to be back-shifted (and is
1297 * cleared right after).
1298 */
1299
1300 /*
1301 * In next assignment we rely on that either
1302 * entity->service or entity->budget are not updated
1303 * on expiration if bfqq is empty (see
1304 * __bfq_bfqq_recalc_budget). Thus both quantities
1305 * remain unchanged after such an expiration, and the
1306 * following statement therefore assigns to
1307 * entity->budget the remaining budget on such an
1308 * expiration. For clarity, entity->service is not
1309 * updated on expiration in any case, and, in normal
1310 * operation, is reset only when bfqq is selected for
1311 * service (see bfq_get_next_queue).
1312 */
1313 entity->budget = min_t(unsigned long,
1314 bfq_bfqq_budget_left(bfqq),
1315 bfqq->max_budget);
1316
1317 return true;
1318 }
1319
1320 entity->budget = max_t(unsigned long, bfqq->max_budget,
1321 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1322 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1323 return wr_or_deserves_wr;
1324}
1325
4baa8bb1
PV
1326/*
1327 * Return the farthest future time instant according to jiffies
1328 * macros.
1329 */
1330static unsigned long bfq_greatest_from_now(void)
1331{
1332 return jiffies + MAX_JIFFY_OFFSET;
1333}
1334
1335/*
1336 * Return the farthest past time instant according to jiffies
1337 * macros.
1338 */
1339static unsigned long bfq_smallest_from_now(void)
1340{
1341 return jiffies - MAX_JIFFY_OFFSET;
1342}
1343
44e44a1b
PV
1344static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1345 struct bfq_queue *bfqq,
1346 unsigned int old_wr_coeff,
1347 bool wr_or_deserves_wr,
77b7dcea 1348 bool interactive,
e1b2324d 1349 bool in_burst,
77b7dcea 1350 bool soft_rt)
44e44a1b
PV
1351{
1352 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1353 /* start a weight-raising period */
77b7dcea
PV
1354 if (interactive) {
1355 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1356 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1357 } else {
4baa8bb1
PV
1358 /*
1359 * No interactive weight raising in progress
1360 * here: assign minus infinity to
1361 * wr_start_at_switch_to_srt, to make sure
1362 * that, at the end of the soft-real-time
1363 * weight raising periods that is starting
1364 * now, no interactive weight-raising period
1365 * may be wrongly considered as still in
1366 * progress (and thus actually started by
1367 * mistake).
1368 */
1369 bfqq->wr_start_at_switch_to_srt =
1370 bfq_smallest_from_now();
77b7dcea
PV
1371 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1372 BFQ_SOFTRT_WEIGHT_FACTOR;
1373 bfqq->wr_cur_max_time =
1374 bfqd->bfq_wr_rt_max_time;
1375 }
44e44a1b
PV
1376
1377 /*
1378 * If needed, further reduce budget to make sure it is
1379 * close to bfqq's backlog, so as to reduce the
1380 * scheduling-error component due to a too large
1381 * budget. Do not care about throughput consequences,
1382 * but only about latency. Finally, do not assign a
1383 * too small budget either, to avoid increasing
1384 * latency by causing too frequent expirations.
1385 */
1386 bfqq->entity.budget = min_t(unsigned long,
1387 bfqq->entity.budget,
1388 2 * bfq_min_budget(bfqd));
1389 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1390 if (interactive) { /* update wr coeff and duration */
1391 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1392 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1393 } else if (in_burst)
1394 bfqq->wr_coeff = 1;
1395 else if (soft_rt) {
77b7dcea
PV
1396 /*
1397 * The application is now or still meeting the
1398 * requirements for being deemed soft rt. We
1399 * can then correctly and safely (re)charge
1400 * the weight-raising duration for the
1401 * application with the weight-raising
1402 * duration for soft rt applications.
1403 *
1404 * In particular, doing this recharge now, i.e.,
1405 * before the weight-raising period for the
1406 * application finishes, reduces the probability
1407 * of the following negative scenario:
1408 * 1) the weight of a soft rt application is
1409 * raised at startup (as for any newly
1410 * created application),
1411 * 2) since the application is not interactive,
1412 * at a certain time weight-raising is
1413 * stopped for the application,
1414 * 3) at that time the application happens to
1415 * still have pending requests, and hence
1416 * is destined to not have a chance to be
1417 * deemed soft rt before these requests are
1418 * completed (see the comments to the
1419 * function bfq_bfqq_softrt_next_start()
1420 * for details on soft rt detection),
1421 * 4) these pending requests experience a high
1422 * latency because the application is not
1423 * weight-raised while they are pending.
1424 */
1425 if (bfqq->wr_cur_max_time !=
1426 bfqd->bfq_wr_rt_max_time) {
1427 bfqq->wr_start_at_switch_to_srt =
1428 bfqq->last_wr_start_finish;
1429
1430 bfqq->wr_cur_max_time =
1431 bfqd->bfq_wr_rt_max_time;
1432 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1433 BFQ_SOFTRT_WEIGHT_FACTOR;
1434 }
1435 bfqq->last_wr_start_finish = jiffies;
1436 }
44e44a1b
PV
1437 }
1438}
1439
1440static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1441 struct bfq_queue *bfqq)
1442{
1443 return bfqq->dispatched == 0 &&
1444 time_is_before_jiffies(
1445 bfqq->budget_timeout +
1446 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1447}
1448
1449static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1450 struct bfq_queue *bfqq,
44e44a1b
PV
1451 int old_wr_coeff,
1452 struct request *rq,
1453 bool *interactive)
aee69d78 1454{
e1b2324d
AA
1455 bool soft_rt, in_burst, wr_or_deserves_wr,
1456 bfqq_wants_to_preempt,
44e44a1b 1457 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1458 /*
1459 * See the comments on
1460 * bfq_bfqq_update_budg_for_activation for
1461 * details on the usage of the next variable.
1462 */
1463 arrived_in_time = ktime_get_ns() <=
1464 bfqq->ttime.last_end_request +
1465 bfqd->bfq_slice_idle * 3;
1466
e21b7a0b 1467
aee69d78 1468 /*
44e44a1b
PV
1469 * bfqq deserves to be weight-raised if:
1470 * - it is sync,
e1b2324d 1471 * - it does not belong to a large burst,
36eca894
AA
1472 * - it has been idle for enough time or is soft real-time,
1473 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1474 */
e1b2324d 1475 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1476 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1477 !in_burst &&
77b7dcea 1478 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 1479 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1480 wr_or_deserves_wr = bfqd->low_latency &&
1481 (bfqq->wr_coeff > 1 ||
36eca894
AA
1482 (bfq_bfqq_sync(bfqq) &&
1483 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1484
1485 /*
1486 * Using the last flag, update budget and check whether bfqq
1487 * may want to preempt the in-service queue.
aee69d78
PV
1488 */
1489 bfqq_wants_to_preempt =
1490 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1491 arrived_in_time,
1492 wr_or_deserves_wr);
aee69d78 1493
e1b2324d
AA
1494 /*
1495 * If bfqq happened to be activated in a burst, but has been
1496 * idle for much more than an interactive queue, then we
1497 * assume that, in the overall I/O initiated in the burst, the
1498 * I/O associated with bfqq is finished. So bfqq does not need
1499 * to be treated as a queue belonging to a burst
1500 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1501 * if set, and remove bfqq from the burst list if it's
1502 * there. We do not decrement burst_size, because the fact
1503 * that bfqq does not need to belong to the burst list any
1504 * more does not invalidate the fact that bfqq was created in
1505 * a burst.
1506 */
1507 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1508 idle_for_long_time &&
1509 time_is_before_jiffies(
1510 bfqq->budget_timeout +
1511 msecs_to_jiffies(10000))) {
1512 hlist_del_init(&bfqq->burst_list_node);
1513 bfq_clear_bfqq_in_large_burst(bfqq);
1514 }
1515
1516 bfq_clear_bfqq_just_created(bfqq);
1517
1518
aee69d78
PV
1519 if (!bfq_bfqq_IO_bound(bfqq)) {
1520 if (arrived_in_time) {
1521 bfqq->requests_within_timer++;
1522 if (bfqq->requests_within_timer >=
1523 bfqd->bfq_requests_within_timer)
1524 bfq_mark_bfqq_IO_bound(bfqq);
1525 } else
1526 bfqq->requests_within_timer = 0;
1527 }
1528
44e44a1b 1529 if (bfqd->low_latency) {
36eca894
AA
1530 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1531 /* wraparound */
1532 bfqq->split_time =
1533 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1534
1535 if (time_is_before_jiffies(bfqq->split_time +
1536 bfqd->bfq_wr_min_idle_time)) {
1537 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1538 old_wr_coeff,
1539 wr_or_deserves_wr,
1540 *interactive,
e1b2324d 1541 in_burst,
36eca894
AA
1542 soft_rt);
1543
1544 if (old_wr_coeff != bfqq->wr_coeff)
1545 bfqq->entity.prio_changed = 1;
1546 }
44e44a1b
PV
1547 }
1548
77b7dcea
PV
1549 bfqq->last_idle_bklogged = jiffies;
1550 bfqq->service_from_backlogged = 0;
1551 bfq_clear_bfqq_softrt_update(bfqq);
1552
aee69d78
PV
1553 bfq_add_bfqq_busy(bfqd, bfqq);
1554
1555 /*
1556 * Expire in-service queue only if preemption may be needed
1557 * for guarantees. In this respect, the function
1558 * next_queue_may_preempt just checks a simple, necessary
1559 * condition, and not a sufficient condition based on
1560 * timestamps. In fact, for the latter condition to be
1561 * evaluated, timestamps would need first to be updated, and
1562 * this operation is quite costly (see the comments on the
1563 * function bfq_bfqq_update_budg_for_activation).
1564 */
1565 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1566 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1567 next_queue_may_preempt(bfqd))
1568 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1569 false, BFQQE_PREEMPTED);
1570}
1571
1572static void bfq_add_request(struct request *rq)
1573{
1574 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1575 struct bfq_data *bfqd = bfqq->bfqd;
1576 struct request *next_rq, *prev;
44e44a1b
PV
1577 unsigned int old_wr_coeff = bfqq->wr_coeff;
1578 bool interactive = false;
aee69d78
PV
1579
1580 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1581 bfqq->queued[rq_is_sync(rq)]++;
1582 bfqd->queued++;
1583
1584 elv_rb_add(&bfqq->sort_list, rq);
1585
1586 /*
1587 * Check if this request is a better next-serve candidate.
1588 */
1589 prev = bfqq->next_rq;
1590 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1591 bfqq->next_rq = next_rq;
1592
36eca894
AA
1593 /*
1594 * Adjust priority tree position, if next_rq changes.
1595 */
1596 if (prev != bfqq->next_rq)
1597 bfq_pos_tree_add_move(bfqd, bfqq);
1598
aee69d78 1599 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1600 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1601 rq, &interactive);
1602 else {
1603 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1604 time_is_before_jiffies(
1605 bfqq->last_wr_start_finish +
1606 bfqd->bfq_wr_min_inter_arr_async)) {
1607 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1608 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1609
cfd69712 1610 bfqd->wr_busy_queues++;
44e44a1b
PV
1611 bfqq->entity.prio_changed = 1;
1612 }
1613 if (prev != bfqq->next_rq)
1614 bfq_updated_next_req(bfqd, bfqq);
1615 }
1616
1617 /*
1618 * Assign jiffies to last_wr_start_finish in the following
1619 * cases:
1620 *
1621 * . if bfqq is not going to be weight-raised, because, for
1622 * non weight-raised queues, last_wr_start_finish stores the
1623 * arrival time of the last request; as of now, this piece
1624 * of information is used only for deciding whether to
1625 * weight-raise async queues
1626 *
1627 * . if bfqq is not weight-raised, because, if bfqq is now
1628 * switching to weight-raised, then last_wr_start_finish
1629 * stores the time when weight-raising starts
1630 *
1631 * . if bfqq is interactive, because, regardless of whether
1632 * bfqq is currently weight-raised, the weight-raising
1633 * period must start or restart (this case is considered
1634 * separately because it is not detected by the above
1635 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1636 *
1637 * last_wr_start_finish has to be updated also if bfqq is soft
1638 * real-time, because the weight-raising period is constantly
1639 * restarted on idle-to-busy transitions for these queues, but
1640 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1641 * needed.
44e44a1b
PV
1642 */
1643 if (bfqd->low_latency &&
1644 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1645 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1646}
1647
1648static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1649 struct bio *bio,
1650 struct request_queue *q)
1651{
1652 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1653
1654
1655 if (bfqq)
1656 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1657
1658 return NULL;
1659}
1660
ab0e43e9
PV
1661static sector_t get_sdist(sector_t last_pos, struct request *rq)
1662{
1663 if (last_pos)
1664 return abs(blk_rq_pos(rq) - last_pos);
1665
1666 return 0;
1667}
1668
aee69d78
PV
1669#if 0 /* Still not clear if we can do without next two functions */
1670static void bfq_activate_request(struct request_queue *q, struct request *rq)
1671{
1672 struct bfq_data *bfqd = q->elevator->elevator_data;
1673
1674 bfqd->rq_in_driver++;
aee69d78
PV
1675}
1676
1677static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1678{
1679 struct bfq_data *bfqd = q->elevator->elevator_data;
1680
1681 bfqd->rq_in_driver--;
1682}
1683#endif
1684
1685static void bfq_remove_request(struct request_queue *q,
1686 struct request *rq)
1687{
1688 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1689 struct bfq_data *bfqd = bfqq->bfqd;
1690 const int sync = rq_is_sync(rq);
1691
1692 if (bfqq->next_rq == rq) {
1693 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1694 bfq_updated_next_req(bfqd, bfqq);
1695 }
1696
1697 if (rq->queuelist.prev != &rq->queuelist)
1698 list_del_init(&rq->queuelist);
1699 bfqq->queued[sync]--;
1700 bfqd->queued--;
1701 elv_rb_del(&bfqq->sort_list, rq);
1702
1703 elv_rqhash_del(q, rq);
1704 if (q->last_merge == rq)
1705 q->last_merge = NULL;
1706
1707 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1708 bfqq->next_rq = NULL;
1709
1710 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1711 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1712 /*
1713 * bfqq emptied. In normal operation, when
1714 * bfqq is empty, bfqq->entity.service and
1715 * bfqq->entity.budget must contain,
1716 * respectively, the service received and the
1717 * budget used last time bfqq emptied. These
1718 * facts do not hold in this case, as at least
1719 * this last removal occurred while bfqq is
1720 * not in service. To avoid inconsistencies,
1721 * reset both bfqq->entity.service and
1722 * bfqq->entity.budget, if bfqq has still a
1723 * process that may issue I/O requests to it.
1724 */
1725 bfqq->entity.budget = bfqq->entity.service = 0;
1726 }
36eca894
AA
1727
1728 /*
1729 * Remove queue from request-position tree as it is empty.
1730 */
1731 if (bfqq->pos_root) {
1732 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1733 bfqq->pos_root = NULL;
1734 }
05e90283
PV
1735 } else {
1736 bfq_pos_tree_add_move(bfqd, bfqq);
aee69d78
PV
1737 }
1738
1739 if (rq->cmd_flags & REQ_META)
1740 bfqq->meta_pending--;
e21b7a0b 1741
aee69d78
PV
1742}
1743
1744static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1745{
1746 struct request_queue *q = hctx->queue;
1747 struct bfq_data *bfqd = q->elevator->elevator_data;
1748 struct request *free = NULL;
1749 /*
1750 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1751 * store its return value for later use, to avoid nesting
1752 * queue_lock inside the bfqd->lock. We assume that the bic
1753 * returned by bfq_bic_lookup does not go away before
1754 * bfqd->lock is taken.
1755 */
1756 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1757 bool ret;
1758
1759 spin_lock_irq(&bfqd->lock);
1760
1761 if (bic)
1762 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1763 else
1764 bfqd->bio_bfqq = NULL;
1765 bfqd->bio_bic = bic;
1766
1767 ret = blk_mq_sched_try_merge(q, bio, &free);
1768
1769 if (free)
1770 blk_mq_free_request(free);
1771 spin_unlock_irq(&bfqd->lock);
1772
1773 return ret;
1774}
1775
1776static int bfq_request_merge(struct request_queue *q, struct request **req,
1777 struct bio *bio)
1778{
1779 struct bfq_data *bfqd = q->elevator->elevator_data;
1780 struct request *__rq;
1781
1782 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1783 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1784 *req = __rq;
1785 return ELEVATOR_FRONT_MERGE;
1786 }
1787
1788 return ELEVATOR_NO_MERGE;
1789}
1790
1791static void bfq_request_merged(struct request_queue *q, struct request *req,
1792 enum elv_merge type)
1793{
1794 if (type == ELEVATOR_FRONT_MERGE &&
1795 rb_prev(&req->rb_node) &&
1796 blk_rq_pos(req) <
1797 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1798 struct request, rb_node))) {
1799 struct bfq_queue *bfqq = RQ_BFQQ(req);
1800 struct bfq_data *bfqd = bfqq->bfqd;
1801 struct request *prev, *next_rq;
1802
1803 /* Reposition request in its sort_list */
1804 elv_rb_del(&bfqq->sort_list, req);
1805 elv_rb_add(&bfqq->sort_list, req);
1806
1807 /* Choose next request to be served for bfqq */
1808 prev = bfqq->next_rq;
1809 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1810 bfqd->last_position);
1811 bfqq->next_rq = next_rq;
1812 /*
36eca894
AA
1813 * If next_rq changes, update both the queue's budget to
1814 * fit the new request and the queue's position in its
1815 * rq_pos_tree.
aee69d78 1816 */
36eca894 1817 if (prev != bfqq->next_rq) {
aee69d78 1818 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1819 bfq_pos_tree_add_move(bfqd, bfqq);
1820 }
aee69d78
PV
1821 }
1822}
1823
1824static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1825 struct request *next)
1826{
1827 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1828
1829 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 1830 goto end;
aee69d78
PV
1831 spin_lock_irq(&bfqq->bfqd->lock);
1832
1833 /*
1834 * If next and rq belong to the same bfq_queue and next is older
1835 * than rq, then reposition rq in the fifo (by substituting next
1836 * with rq). Otherwise, if next and rq belong to different
1837 * bfq_queues, never reposition rq: in fact, we would have to
1838 * reposition it with respect to next's position in its own fifo,
1839 * which would most certainly be too expensive with respect to
1840 * the benefits.
1841 */
1842 if (bfqq == next_bfqq &&
1843 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1844 next->fifo_time < rq->fifo_time) {
1845 list_del_init(&rq->queuelist);
1846 list_replace_init(&next->queuelist, &rq->queuelist);
1847 rq->fifo_time = next->fifo_time;
1848 }
1849
1850 if (bfqq->next_rq == next)
1851 bfqq->next_rq = rq;
1852
1853 bfq_remove_request(q, next);
614822f8 1854 bfqg_stats_update_io_remove(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1855
1856 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
1857end:
1858 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1859}
1860
44e44a1b
PV
1861/* Must be called with bfqq != NULL */
1862static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1863{
cfd69712
PV
1864 if (bfq_bfqq_busy(bfqq))
1865 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1866 bfqq->wr_coeff = 1;
1867 bfqq->wr_cur_max_time = 0;
77b7dcea 1868 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1869 /*
1870 * Trigger a weight change on the next invocation of
1871 * __bfq_entity_update_weight_prio.
1872 */
1873 bfqq->entity.prio_changed = 1;
1874}
1875
ea25da48
PV
1876void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1877 struct bfq_group *bfqg)
44e44a1b
PV
1878{
1879 int i, j;
1880
1881 for (i = 0; i < 2; i++)
1882 for (j = 0; j < IOPRIO_BE_NR; j++)
1883 if (bfqg->async_bfqq[i][j])
1884 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1885 if (bfqg->async_idle_bfqq)
1886 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1887}
1888
1889static void bfq_end_wr(struct bfq_data *bfqd)
1890{
1891 struct bfq_queue *bfqq;
1892
1893 spin_lock_irq(&bfqd->lock);
1894
1895 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1896 bfq_bfqq_end_wr(bfqq);
1897 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1898 bfq_bfqq_end_wr(bfqq);
1899 bfq_end_wr_async(bfqd);
1900
1901 spin_unlock_irq(&bfqd->lock);
1902}
1903
36eca894
AA
1904static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1905{
1906 if (request)
1907 return blk_rq_pos(io_struct);
1908 else
1909 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1910}
1911
1912static int bfq_rq_close_to_sector(void *io_struct, bool request,
1913 sector_t sector)
1914{
1915 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1916 BFQQ_CLOSE_THR;
1917}
1918
1919static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1920 struct bfq_queue *bfqq,
1921 sector_t sector)
1922{
1923 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1924 struct rb_node *parent, *node;
1925 struct bfq_queue *__bfqq;
1926
1927 if (RB_EMPTY_ROOT(root))
1928 return NULL;
1929
1930 /*
1931 * First, if we find a request starting at the end of the last
1932 * request, choose it.
1933 */
1934 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1935 if (__bfqq)
1936 return __bfqq;
1937
1938 /*
1939 * If the exact sector wasn't found, the parent of the NULL leaf
1940 * will contain the closest sector (rq_pos_tree sorted by
1941 * next_request position).
1942 */
1943 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1944 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1945 return __bfqq;
1946
1947 if (blk_rq_pos(__bfqq->next_rq) < sector)
1948 node = rb_next(&__bfqq->pos_node);
1949 else
1950 node = rb_prev(&__bfqq->pos_node);
1951 if (!node)
1952 return NULL;
1953
1954 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1955 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1956 return __bfqq;
1957
1958 return NULL;
1959}
1960
1961static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1962 struct bfq_queue *cur_bfqq,
1963 sector_t sector)
1964{
1965 struct bfq_queue *bfqq;
1966
1967 /*
1968 * We shall notice if some of the queues are cooperating,
1969 * e.g., working closely on the same area of the device. In
1970 * that case, we can group them together and: 1) don't waste
1971 * time idling, and 2) serve the union of their requests in
1972 * the best possible order for throughput.
1973 */
1974 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1975 if (!bfqq || bfqq == cur_bfqq)
1976 return NULL;
1977
1978 return bfqq;
1979}
1980
1981static struct bfq_queue *
1982bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1983{
1984 int process_refs, new_process_refs;
1985 struct bfq_queue *__bfqq;
1986
1987 /*
1988 * If there are no process references on the new_bfqq, then it is
1989 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1990 * may have dropped their last reference (not just their last process
1991 * reference).
1992 */
1993 if (!bfqq_process_refs(new_bfqq))
1994 return NULL;
1995
1996 /* Avoid a circular list and skip interim queue merges. */
1997 while ((__bfqq = new_bfqq->new_bfqq)) {
1998 if (__bfqq == bfqq)
1999 return NULL;
2000 new_bfqq = __bfqq;
2001 }
2002
2003 process_refs = bfqq_process_refs(bfqq);
2004 new_process_refs = bfqq_process_refs(new_bfqq);
2005 /*
2006 * If the process for the bfqq has gone away, there is no
2007 * sense in merging the queues.
2008 */
2009 if (process_refs == 0 || new_process_refs == 0)
2010 return NULL;
2011
2012 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2013 new_bfqq->pid);
2014
2015 /*
2016 * Merging is just a redirection: the requests of the process
2017 * owning one of the two queues are redirected to the other queue.
2018 * The latter queue, in its turn, is set as shared if this is the
2019 * first time that the requests of some process are redirected to
2020 * it.
2021 *
6fa3e8d3
PV
2022 * We redirect bfqq to new_bfqq and not the opposite, because
2023 * we are in the context of the process owning bfqq, thus we
2024 * have the io_cq of this process. So we can immediately
2025 * configure this io_cq to redirect the requests of the
2026 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2027 * not available any more (new_bfqq->bic == NULL).
36eca894 2028 *
6fa3e8d3
PV
2029 * Anyway, even in case new_bfqq coincides with the in-service
2030 * queue, redirecting requests the in-service queue is the
2031 * best option, as we feed the in-service queue with new
2032 * requests close to the last request served and, by doing so,
2033 * are likely to increase the throughput.
36eca894
AA
2034 */
2035 bfqq->new_bfqq = new_bfqq;
2036 new_bfqq->ref += process_refs;
2037 return new_bfqq;
2038}
2039
2040static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2041 struct bfq_queue *new_bfqq)
2042{
7b8fa3b9
PV
2043 if (bfq_too_late_for_merging(new_bfqq))
2044 return false;
2045
36eca894
AA
2046 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2047 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2048 return false;
2049
2050 /*
2051 * If either of the queues has already been detected as seeky,
2052 * then merging it with the other queue is unlikely to lead to
2053 * sequential I/O.
2054 */
2055 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2056 return false;
2057
2058 /*
2059 * Interleaved I/O is known to be done by (some) applications
2060 * only for reads, so it does not make sense to merge async
2061 * queues.
2062 */
2063 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2064 return false;
2065
2066 return true;
2067}
2068
36eca894
AA
2069/*
2070 * Attempt to schedule a merge of bfqq with the currently in-service
2071 * queue or with a close queue among the scheduled queues. Return
2072 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2073 * structure otherwise.
2074 *
2075 * The OOM queue is not allowed to participate to cooperation: in fact, since
2076 * the requests temporarily redirected to the OOM queue could be redirected
2077 * again to dedicated queues at any time, the state needed to correctly
2078 * handle merging with the OOM queue would be quite complex and expensive
2079 * to maintain. Besides, in such a critical condition as an out of memory,
2080 * the benefits of queue merging may be little relevant, or even negligible.
2081 *
36eca894
AA
2082 * WARNING: queue merging may impair fairness among non-weight raised
2083 * queues, for at least two reasons: 1) the original weight of a
2084 * merged queue may change during the merged state, 2) even being the
2085 * weight the same, a merged queue may be bloated with many more
2086 * requests than the ones produced by its originally-associated
2087 * process.
2088 */
2089static struct bfq_queue *
2090bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2091 void *io_struct, bool request)
2092{
2093 struct bfq_queue *in_service_bfqq, *new_bfqq;
2094
7b8fa3b9
PV
2095 /*
2096 * Prevent bfqq from being merged if it has been created too
2097 * long ago. The idea is that true cooperating processes, and
2098 * thus their associated bfq_queues, are supposed to be
2099 * created shortly after each other. This is the case, e.g.,
2100 * for KVM/QEMU and dump I/O threads. Basing on this
2101 * assumption, the following filtering greatly reduces the
2102 * probability that two non-cooperating processes, which just
2103 * happen to do close I/O for some short time interval, have
2104 * their queues merged by mistake.
2105 */
2106 if (bfq_too_late_for_merging(bfqq))
2107 return NULL;
2108
36eca894
AA
2109 if (bfqq->new_bfqq)
2110 return bfqq->new_bfqq;
2111
4403e4e4 2112 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
36eca894
AA
2113 return NULL;
2114
2115 /* If there is only one backlogged queue, don't search. */
2116 if (bfqd->busy_queues == 1)
2117 return NULL;
2118
2119 in_service_bfqq = bfqd->in_service_queue;
2120
4403e4e4
AR
2121 if (in_service_bfqq && in_service_bfqq != bfqq &&
2122 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2123 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
36eca894
AA
2124 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2125 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2126 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2127 if (new_bfqq)
2128 return new_bfqq;
2129 }
2130 /*
2131 * Check whether there is a cooperator among currently scheduled
2132 * queues. The only thing we need is that the bio/request is not
2133 * NULL, as we need it to establish whether a cooperator exists.
2134 */
36eca894
AA
2135 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2136 bfq_io_struct_pos(io_struct, request));
2137
4403e4e4 2138 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
36eca894
AA
2139 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2140 return bfq_setup_merge(bfqq, new_bfqq);
2141
2142 return NULL;
2143}
2144
2145static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2146{
2147 struct bfq_io_cq *bic = bfqq->bic;
2148
2149 /*
2150 * If !bfqq->bic, the queue is already shared or its requests
2151 * have already been redirected to a shared queue; both idle window
2152 * and weight raising state have already been saved. Do nothing.
2153 */
2154 if (!bic)
2155 return;
2156
2157 bic->saved_ttime = bfqq->ttime;
d5be3fef 2158 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2159 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2160 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2161 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
894df937 2162 if (unlikely(bfq_bfqq_just_created(bfqq) &&
1be6e8a9
AR
2163 !bfq_bfqq_in_large_burst(bfqq) &&
2164 bfqq->bfqd->low_latency)) {
894df937
PV
2165 /*
2166 * bfqq being merged right after being created: bfqq
2167 * would have deserved interactive weight raising, but
2168 * did not make it to be set in a weight-raised state,
2169 * because of this early merge. Store directly the
2170 * weight-raising state that would have been assigned
2171 * to bfqq, so that to avoid that bfqq unjustly fails
2172 * to enjoy weight raising if split soon.
2173 */
2174 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2175 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2176 bic->saved_last_wr_start_finish = jiffies;
2177 } else {
2178 bic->saved_wr_coeff = bfqq->wr_coeff;
2179 bic->saved_wr_start_at_switch_to_srt =
2180 bfqq->wr_start_at_switch_to_srt;
2181 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2182 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2183 }
36eca894
AA
2184}
2185
36eca894
AA
2186static void
2187bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2188 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2189{
2190 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2191 (unsigned long)new_bfqq->pid);
2192 /* Save weight raising and idle window of the merged queues */
2193 bfq_bfqq_save_state(bfqq);
2194 bfq_bfqq_save_state(new_bfqq);
2195 if (bfq_bfqq_IO_bound(bfqq))
2196 bfq_mark_bfqq_IO_bound(new_bfqq);
2197 bfq_clear_bfqq_IO_bound(bfqq);
2198
2199 /*
2200 * If bfqq is weight-raised, then let new_bfqq inherit
2201 * weight-raising. To reduce false positives, neglect the case
2202 * where bfqq has just been created, but has not yet made it
2203 * to be weight-raised (which may happen because EQM may merge
2204 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2205 * time for bfqq). Handling this case would however be very
2206 * easy, thanks to the flag just_created.
36eca894
AA
2207 */
2208 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2209 new_bfqq->wr_coeff = bfqq->wr_coeff;
2210 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2211 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2212 new_bfqq->wr_start_at_switch_to_srt =
2213 bfqq->wr_start_at_switch_to_srt;
2214 if (bfq_bfqq_busy(new_bfqq))
2215 bfqd->wr_busy_queues++;
2216 new_bfqq->entity.prio_changed = 1;
2217 }
2218
2219 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2220 bfqq->wr_coeff = 1;
2221 bfqq->entity.prio_changed = 1;
2222 if (bfq_bfqq_busy(bfqq))
2223 bfqd->wr_busy_queues--;
2224 }
2225
2226 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2227 bfqd->wr_busy_queues);
2228
36eca894
AA
2229 /*
2230 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2231 */
2232 bic_set_bfqq(bic, new_bfqq, 1);
2233 bfq_mark_bfqq_coop(new_bfqq);
2234 /*
2235 * new_bfqq now belongs to at least two bics (it is a shared queue):
2236 * set new_bfqq->bic to NULL. bfqq either:
2237 * - does not belong to any bic any more, and hence bfqq->bic must
2238 * be set to NULL, or
2239 * - is a queue whose owning bics have already been redirected to a
2240 * different queue, hence the queue is destined to not belong to
2241 * any bic soon and bfqq->bic is already NULL (therefore the next
2242 * assignment causes no harm).
2243 */
2244 new_bfqq->bic = NULL;
2245 bfqq->bic = NULL;
2246 /* release process reference to bfqq */
2247 bfq_put_queue(bfqq);
2248}
2249
aee69d78
PV
2250static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2251 struct bio *bio)
2252{
2253 struct bfq_data *bfqd = q->elevator->elevator_data;
2254 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2255 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2256
2257 /*
2258 * Disallow merge of a sync bio into an async request.
2259 */
2260 if (is_sync && !rq_is_sync(rq))
2261 return false;
2262
2263 /*
2264 * Lookup the bfqq that this bio will be queued with. Allow
2265 * merge only if rq is queued there.
2266 */
2267 if (!bfqq)
2268 return false;
2269
36eca894
AA
2270 /*
2271 * We take advantage of this function to perform an early merge
2272 * of the queues of possible cooperating processes.
2273 */
2274 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2275 if (new_bfqq) {
2276 /*
2277 * bic still points to bfqq, then it has not yet been
2278 * redirected to some other bfq_queue, and a queue
2279 * merge beween bfqq and new_bfqq can be safely
2280 * fulfillled, i.e., bic can be redirected to new_bfqq
2281 * and bfqq can be put.
2282 */
2283 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2284 new_bfqq);
2285 /*
2286 * If we get here, bio will be queued into new_queue,
2287 * so use new_bfqq to decide whether bio and rq can be
2288 * merged.
2289 */
2290 bfqq = new_bfqq;
2291
2292 /*
2293 * Change also bqfd->bio_bfqq, as
2294 * bfqd->bio_bic now points to new_bfqq, and
2295 * this function may be invoked again (and then may
2296 * use again bqfd->bio_bfqq).
2297 */
2298 bfqd->bio_bfqq = bfqq;
2299 }
2300
aee69d78
PV
2301 return bfqq == RQ_BFQQ(rq);
2302}
2303
44e44a1b
PV
2304/*
2305 * Set the maximum time for the in-service queue to consume its
2306 * budget. This prevents seeky processes from lowering the throughput.
2307 * In practice, a time-slice service scheme is used with seeky
2308 * processes.
2309 */
2310static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2311 struct bfq_queue *bfqq)
2312{
77b7dcea
PV
2313 unsigned int timeout_coeff;
2314
2315 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2316 timeout_coeff = 1;
2317 else
2318 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2319
44e44a1b
PV
2320 bfqd->last_budget_start = ktime_get();
2321
2322 bfqq->budget_timeout = jiffies +
77b7dcea 2323 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2324}
2325
aee69d78
PV
2326static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2327 struct bfq_queue *bfqq)
2328{
2329 if (bfqq) {
aee69d78
PV
2330 bfq_clear_bfqq_fifo_expire(bfqq);
2331
2332 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2333
77b7dcea
PV
2334 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2335 bfqq->wr_coeff > 1 &&
2336 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2337 time_is_before_jiffies(bfqq->budget_timeout)) {
2338 /*
2339 * For soft real-time queues, move the start
2340 * of the weight-raising period forward by the
2341 * time the queue has not received any
2342 * service. Otherwise, a relatively long
2343 * service delay is likely to cause the
2344 * weight-raising period of the queue to end,
2345 * because of the short duration of the
2346 * weight-raising period of a soft real-time
2347 * queue. It is worth noting that this move
2348 * is not so dangerous for the other queues,
2349 * because soft real-time queues are not
2350 * greedy.
2351 *
2352 * To not add a further variable, we use the
2353 * overloaded field budget_timeout to
2354 * determine for how long the queue has not
2355 * received service, i.e., how much time has
2356 * elapsed since the queue expired. However,
2357 * this is a little imprecise, because
2358 * budget_timeout is set to jiffies if bfqq
2359 * not only expires, but also remains with no
2360 * request.
2361 */
2362 if (time_after(bfqq->budget_timeout,
2363 bfqq->last_wr_start_finish))
2364 bfqq->last_wr_start_finish +=
2365 jiffies - bfqq->budget_timeout;
2366 else
2367 bfqq->last_wr_start_finish = jiffies;
2368 }
2369
44e44a1b 2370 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2371 bfq_log_bfqq(bfqd, bfqq,
2372 "set_in_service_queue, cur-budget = %d",
2373 bfqq->entity.budget);
2374 }
2375
2376 bfqd->in_service_queue = bfqq;
2377}
2378
2379/*
2380 * Get and set a new queue for service.
2381 */
2382static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2383{
2384 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2385
2386 __bfq_set_in_service_queue(bfqd, bfqq);
2387 return bfqq;
2388}
2389
aee69d78
PV
2390static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2391{
2392 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2393 u32 sl;
2394
aee69d78
PV
2395 bfq_mark_bfqq_wait_request(bfqq);
2396
2397 /*
2398 * We don't want to idle for seeks, but we do want to allow
2399 * fair distribution of slice time for a process doing back-to-back
2400 * seeks. So allow a little bit of time for him to submit a new rq.
2401 */
2402 sl = bfqd->bfq_slice_idle;
2403 /*
1de0c4cd
AA
2404 * Unless the queue is being weight-raised or the scenario is
2405 * asymmetric, grant only minimum idle time if the queue
2406 * is seeky. A long idling is preserved for a weight-raised
2407 * queue, or, more in general, in an asymmetric scenario,
2408 * because a long idling is needed for guaranteeing to a queue
2409 * its reserved share of the throughput (in particular, it is
2410 * needed if the queue has a higher weight than some other
2411 * queue).
aee69d78 2412 */
1de0c4cd
AA
2413 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2414 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2415 sl = min_t(u64, sl, BFQ_MIN_TT);
2416
2417 bfqd->last_idling_start = ktime_get();
2418 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2419 HRTIMER_MODE_REL);
e21b7a0b 2420 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2421}
2422
ab0e43e9
PV
2423/*
2424 * In autotuning mode, max_budget is dynamically recomputed as the
2425 * amount of sectors transferred in timeout at the estimated peak
2426 * rate. This enables BFQ to utilize a full timeslice with a full
2427 * budget, even if the in-service queue is served at peak rate. And
2428 * this maximises throughput with sequential workloads.
2429 */
2430static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2431{
2432 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2433 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2434}
2435
44e44a1b
PV
2436/*
2437 * Update parameters related to throughput and responsiveness, as a
2438 * function of the estimated peak rate. See comments on
2439 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2440 */
2441static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2442{
2443 int dev_type = blk_queue_nonrot(bfqd->queue);
2444
2445 if (bfqd->bfq_user_max_budget == 0)
2446 bfqd->bfq_max_budget =
2447 bfq_calc_max_budget(bfqd);
2448
2449 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2450 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2451 bfqd->device_speed = BFQ_BFQD_SLOW;
2452 bfqd->RT_prod = R_slow[dev_type] *
2453 T_slow[dev_type];
2454 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2455 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2456 bfqd->device_speed = BFQ_BFQD_FAST;
2457 bfqd->RT_prod = R_fast[dev_type] *
2458 T_fast[dev_type];
2459 }
2460
2461 bfq_log(bfqd,
2462"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2463 dev_type == 0 ? "ROT" : "NONROT",
2464 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2465 bfqd->device_speed == BFQ_BFQD_FAST ?
2466 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2467 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2468 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2469 BFQ_RATE_SHIFT);
2470}
2471
ab0e43e9
PV
2472static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2473 struct request *rq)
2474{
2475 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2476 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2477 bfqd->peak_rate_samples = 1;
2478 bfqd->sequential_samples = 0;
2479 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2480 blk_rq_sectors(rq);
2481 } else /* no new rq dispatched, just reset the number of samples */
2482 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2483
2484 bfq_log(bfqd,
2485 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2486 bfqd->peak_rate_samples, bfqd->sequential_samples,
2487 bfqd->tot_sectors_dispatched);
2488}
2489
2490static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2491{
2492 u32 rate, weight, divisor;
2493
2494 /*
2495 * For the convergence property to hold (see comments on
2496 * bfq_update_peak_rate()) and for the assessment to be
2497 * reliable, a minimum number of samples must be present, and
2498 * a minimum amount of time must have elapsed. If not so, do
2499 * not compute new rate. Just reset parameters, to get ready
2500 * for a new evaluation attempt.
2501 */
2502 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2503 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2504 goto reset_computation;
2505
2506 /*
2507 * If a new request completion has occurred after last
2508 * dispatch, then, to approximate the rate at which requests
2509 * have been served by the device, it is more precise to
2510 * extend the observation interval to the last completion.
2511 */
2512 bfqd->delta_from_first =
2513 max_t(u64, bfqd->delta_from_first,
2514 bfqd->last_completion - bfqd->first_dispatch);
2515
2516 /*
2517 * Rate computed in sects/usec, and not sects/nsec, for
2518 * precision issues.
2519 */
2520 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2521 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2522
2523 /*
2524 * Peak rate not updated if:
2525 * - the percentage of sequential dispatches is below 3/4 of the
2526 * total, and rate is below the current estimated peak rate
2527 * - rate is unreasonably high (> 20M sectors/sec)
2528 */
2529 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2530 rate <= bfqd->peak_rate) ||
2531 rate > 20<<BFQ_RATE_SHIFT)
2532 goto reset_computation;
2533
2534 /*
2535 * We have to update the peak rate, at last! To this purpose,
2536 * we use a low-pass filter. We compute the smoothing constant
2537 * of the filter as a function of the 'weight' of the new
2538 * measured rate.
2539 *
2540 * As can be seen in next formulas, we define this weight as a
2541 * quantity proportional to how sequential the workload is,
2542 * and to how long the observation time interval is.
2543 *
2544 * The weight runs from 0 to 8. The maximum value of the
2545 * weight, 8, yields the minimum value for the smoothing
2546 * constant. At this minimum value for the smoothing constant,
2547 * the measured rate contributes for half of the next value of
2548 * the estimated peak rate.
2549 *
2550 * So, the first step is to compute the weight as a function
2551 * of how sequential the workload is. Note that the weight
2552 * cannot reach 9, because bfqd->sequential_samples cannot
2553 * become equal to bfqd->peak_rate_samples, which, in its
2554 * turn, holds true because bfqd->sequential_samples is not
2555 * incremented for the first sample.
2556 */
2557 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2558
2559 /*
2560 * Second step: further refine the weight as a function of the
2561 * duration of the observation interval.
2562 */
2563 weight = min_t(u32, 8,
2564 div_u64(weight * bfqd->delta_from_first,
2565 BFQ_RATE_REF_INTERVAL));
2566
2567 /*
2568 * Divisor ranging from 10, for minimum weight, to 2, for
2569 * maximum weight.
2570 */
2571 divisor = 10 - weight;
2572
2573 /*
2574 * Finally, update peak rate:
2575 *
2576 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2577 */
2578 bfqd->peak_rate *= divisor-1;
2579 bfqd->peak_rate /= divisor;
2580 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2581
2582 bfqd->peak_rate += rate;
44e44a1b 2583 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2584
2585reset_computation:
2586 bfq_reset_rate_computation(bfqd, rq);
2587}
2588
2589/*
2590 * Update the read/write peak rate (the main quantity used for
2591 * auto-tuning, see update_thr_responsiveness_params()).
2592 *
2593 * It is not trivial to estimate the peak rate (correctly): because of
2594 * the presence of sw and hw queues between the scheduler and the
2595 * device components that finally serve I/O requests, it is hard to
2596 * say exactly when a given dispatched request is served inside the
2597 * device, and for how long. As a consequence, it is hard to know
2598 * precisely at what rate a given set of requests is actually served
2599 * by the device.
2600 *
2601 * On the opposite end, the dispatch time of any request is trivially
2602 * available, and, from this piece of information, the "dispatch rate"
2603 * of requests can be immediately computed. So, the idea in the next
2604 * function is to use what is known, namely request dispatch times
2605 * (plus, when useful, request completion times), to estimate what is
2606 * unknown, namely in-device request service rate.
2607 *
2608 * The main issue is that, because of the above facts, the rate at
2609 * which a certain set of requests is dispatched over a certain time
2610 * interval can vary greatly with respect to the rate at which the
2611 * same requests are then served. But, since the size of any
2612 * intermediate queue is limited, and the service scheme is lossless
2613 * (no request is silently dropped), the following obvious convergence
2614 * property holds: the number of requests dispatched MUST become
2615 * closer and closer to the number of requests completed as the
2616 * observation interval grows. This is the key property used in
2617 * the next function to estimate the peak service rate as a function
2618 * of the observed dispatch rate. The function assumes to be invoked
2619 * on every request dispatch.
2620 */
2621static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2622{
2623 u64 now_ns = ktime_get_ns();
2624
2625 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2626 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2627 bfqd->peak_rate_samples);
2628 bfq_reset_rate_computation(bfqd, rq);
2629 goto update_last_values; /* will add one sample */
2630 }
2631
2632 /*
2633 * Device idle for very long: the observation interval lasting
2634 * up to this dispatch cannot be a valid observation interval
2635 * for computing a new peak rate (similarly to the late-
2636 * completion event in bfq_completed_request()). Go to
2637 * update_rate_and_reset to have the following three steps
2638 * taken:
2639 * - close the observation interval at the last (previous)
2640 * request dispatch or completion
2641 * - compute rate, if possible, for that observation interval
2642 * - start a new observation interval with this dispatch
2643 */
2644 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2645 bfqd->rq_in_driver == 0)
2646 goto update_rate_and_reset;
2647
2648 /* Update sampling information */
2649 bfqd->peak_rate_samples++;
2650
2651 if ((bfqd->rq_in_driver > 0 ||
2652 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2653 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2654 bfqd->sequential_samples++;
2655
2656 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2657
2658 /* Reset max observed rq size every 32 dispatches */
2659 if (likely(bfqd->peak_rate_samples % 32))
2660 bfqd->last_rq_max_size =
2661 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2662 else
2663 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2664
2665 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2666
2667 /* Target observation interval not yet reached, go on sampling */
2668 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2669 goto update_last_values;
2670
2671update_rate_and_reset:
2672 bfq_update_rate_reset(bfqd, rq);
2673update_last_values:
2674 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2675 bfqd->last_dispatch = now_ns;
2676}
2677
aee69d78
PV
2678/*
2679 * Remove request from internal lists.
2680 */
2681static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2682{
2683 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2684
2685 /*
2686 * For consistency, the next instruction should have been
2687 * executed after removing the request from the queue and
2688 * dispatching it. We execute instead this instruction before
2689 * bfq_remove_request() (and hence introduce a temporary
2690 * inconsistency), for efficiency. In fact, should this
2691 * dispatch occur for a non in-service bfqq, this anticipated
2692 * increment prevents two counters related to bfqq->dispatched
2693 * from risking to be, first, uselessly decremented, and then
2694 * incremented again when the (new) value of bfqq->dispatched
2695 * happens to be taken into account.
2696 */
2697 bfqq->dispatched++;
ab0e43e9 2698 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2699
2700 bfq_remove_request(q, rq);
2701}
2702
2703static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2704{
36eca894
AA
2705 /*
2706 * If this bfqq is shared between multiple processes, check
2707 * to make sure that those processes are still issuing I/Os
2708 * within the mean seek distance. If not, it may be time to
2709 * break the queues apart again.
2710 */
2711 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2712 bfq_mark_bfqq_split_coop(bfqq);
2713
44e44a1b
PV
2714 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2715 if (bfqq->dispatched == 0)
2716 /*
2717 * Overloading budget_timeout field to store
2718 * the time at which the queue remains with no
2719 * backlog and no outstanding request; used by
2720 * the weight-raising mechanism.
2721 */
2722 bfqq->budget_timeout = jiffies;
2723
e21b7a0b 2724 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2725 } else {
80294c3b 2726 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
2727 /*
2728 * Resort priority tree of potential close cooperators.
2729 */
2730 bfq_pos_tree_add_move(bfqd, bfqq);
2731 }
e21b7a0b
AA
2732
2733 /*
2734 * All in-service entities must have been properly deactivated
2735 * or requeued before executing the next function, which
2736 * resets all in-service entites as no more in service.
2737 */
2738 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2739}
2740
2741/**
2742 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2743 * @bfqd: device data.
2744 * @bfqq: queue to update.
2745 * @reason: reason for expiration.
2746 *
2747 * Handle the feedback on @bfqq budget at queue expiration.
2748 * See the body for detailed comments.
2749 */
2750static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2751 struct bfq_queue *bfqq,
2752 enum bfqq_expiration reason)
2753{
2754 struct request *next_rq;
2755 int budget, min_budget;
2756
aee69d78
PV
2757 min_budget = bfq_min_budget(bfqd);
2758
44e44a1b
PV
2759 if (bfqq->wr_coeff == 1)
2760 budget = bfqq->max_budget;
2761 else /*
2762 * Use a constant, low budget for weight-raised queues,
2763 * to help achieve a low latency. Keep it slightly higher
2764 * than the minimum possible budget, to cause a little
2765 * bit fewer expirations.
2766 */
2767 budget = 2 * min_budget;
2768
aee69d78
PV
2769 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2770 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2771 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2772 budget, bfq_min_budget(bfqd));
2773 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2774 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2775
44e44a1b 2776 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2777 switch (reason) {
2778 /*
2779 * Caveat: in all the following cases we trade latency
2780 * for throughput.
2781 */
2782 case BFQQE_TOO_IDLE:
54b60456
PV
2783 /*
2784 * This is the only case where we may reduce
2785 * the budget: if there is no request of the
2786 * process still waiting for completion, then
2787 * we assume (tentatively) that the timer has
2788 * expired because the batch of requests of
2789 * the process could have been served with a
2790 * smaller budget. Hence, betting that
2791 * process will behave in the same way when it
2792 * becomes backlogged again, we reduce its
2793 * next budget. As long as we guess right,
2794 * this budget cut reduces the latency
2795 * experienced by the process.
2796 *
2797 * However, if there are still outstanding
2798 * requests, then the process may have not yet
2799 * issued its next request just because it is
2800 * still waiting for the completion of some of
2801 * the still outstanding ones. So in this
2802 * subcase we do not reduce its budget, on the
2803 * contrary we increase it to possibly boost
2804 * the throughput, as discussed in the
2805 * comments to the BUDGET_TIMEOUT case.
2806 */
2807 if (bfqq->dispatched > 0) /* still outstanding reqs */
2808 budget = min(budget * 2, bfqd->bfq_max_budget);
2809 else {
2810 if (budget > 5 * min_budget)
2811 budget -= 4 * min_budget;
2812 else
2813 budget = min_budget;
2814 }
aee69d78
PV
2815 break;
2816 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2817 /*
2818 * We double the budget here because it gives
2819 * the chance to boost the throughput if this
2820 * is not a seeky process (and has bumped into
2821 * this timeout because of, e.g., ZBR).
2822 */
2823 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2824 break;
2825 case BFQQE_BUDGET_EXHAUSTED:
2826 /*
2827 * The process still has backlog, and did not
2828 * let either the budget timeout or the disk
2829 * idling timeout expire. Hence it is not
2830 * seeky, has a short thinktime and may be
2831 * happy with a higher budget too. So
2832 * definitely increase the budget of this good
2833 * candidate to boost the disk throughput.
2834 */
54b60456 2835 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2836 break;
2837 case BFQQE_NO_MORE_REQUESTS:
2838 /*
2839 * For queues that expire for this reason, it
2840 * is particularly important to keep the
2841 * budget close to the actual service they
2842 * need. Doing so reduces the timestamp
2843 * misalignment problem described in the
2844 * comments in the body of
2845 * __bfq_activate_entity. In fact, suppose
2846 * that a queue systematically expires for
2847 * BFQQE_NO_MORE_REQUESTS and presents a
2848 * new request in time to enjoy timestamp
2849 * back-shifting. The larger the budget of the
2850 * queue is with respect to the service the
2851 * queue actually requests in each service
2852 * slot, the more times the queue can be
2853 * reactivated with the same virtual finish
2854 * time. It follows that, even if this finish
2855 * time is pushed to the system virtual time
2856 * to reduce the consequent timestamp
2857 * misalignment, the queue unjustly enjoys for
2858 * many re-activations a lower finish time
2859 * than all newly activated queues.
2860 *
2861 * The service needed by bfqq is measured
2862 * quite precisely by bfqq->entity.service.
2863 * Since bfqq does not enjoy device idling,
2864 * bfqq->entity.service is equal to the number
2865 * of sectors that the process associated with
2866 * bfqq requested to read/write before waiting
2867 * for request completions, or blocking for
2868 * other reasons.
2869 */
2870 budget = max_t(int, bfqq->entity.service, min_budget);
2871 break;
2872 default:
2873 return;
2874 }
44e44a1b 2875 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2876 /*
2877 * Async queues get always the maximum possible
2878 * budget, as for them we do not care about latency
2879 * (in addition, their ability to dispatch is limited
2880 * by the charging factor).
2881 */
2882 budget = bfqd->bfq_max_budget;
2883 }
2884
2885 bfqq->max_budget = budget;
2886
2887 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2888 !bfqd->bfq_user_max_budget)
2889 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2890
2891 /*
2892 * If there is still backlog, then assign a new budget, making
2893 * sure that it is large enough for the next request. Since
2894 * the finish time of bfqq must be kept in sync with the
2895 * budget, be sure to call __bfq_bfqq_expire() *after* this
2896 * update.
2897 *
2898 * If there is no backlog, then no need to update the budget;
2899 * it will be updated on the arrival of a new request.
2900 */
2901 next_rq = bfqq->next_rq;
2902 if (next_rq)
2903 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2904 bfq_serv_to_charge(next_rq, bfqq));
2905
2906 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2907 next_rq ? blk_rq_sectors(next_rq) : 0,
2908 bfqq->entity.budget);
2909}
2910
aee69d78 2911/*
ab0e43e9
PV
2912 * Return true if the process associated with bfqq is "slow". The slow
2913 * flag is used, in addition to the budget timeout, to reduce the
2914 * amount of service provided to seeky processes, and thus reduce
2915 * their chances to lower the throughput. More details in the comments
2916 * on the function bfq_bfqq_expire().
2917 *
2918 * An important observation is in order: as discussed in the comments
2919 * on the function bfq_update_peak_rate(), with devices with internal
2920 * queues, it is hard if ever possible to know when and for how long
2921 * an I/O request is processed by the device (apart from the trivial
2922 * I/O pattern where a new request is dispatched only after the
2923 * previous one has been completed). This makes it hard to evaluate
2924 * the real rate at which the I/O requests of each bfq_queue are
2925 * served. In fact, for an I/O scheduler like BFQ, serving a
2926 * bfq_queue means just dispatching its requests during its service
2927 * slot (i.e., until the budget of the queue is exhausted, or the
2928 * queue remains idle, or, finally, a timeout fires). But, during the
2929 * service slot of a bfq_queue, around 100 ms at most, the device may
2930 * be even still processing requests of bfq_queues served in previous
2931 * service slots. On the opposite end, the requests of the in-service
2932 * bfq_queue may be completed after the service slot of the queue
2933 * finishes.
2934 *
2935 * Anyway, unless more sophisticated solutions are used
2936 * (where possible), the sum of the sizes of the requests dispatched
2937 * during the service slot of a bfq_queue is probably the only
2938 * approximation available for the service received by the bfq_queue
2939 * during its service slot. And this sum is the quantity used in this
2940 * function to evaluate the I/O speed of a process.
aee69d78 2941 */
ab0e43e9
PV
2942static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2943 bool compensate, enum bfqq_expiration reason,
2944 unsigned long *delta_ms)
aee69d78 2945{
ab0e43e9
PV
2946 ktime_t delta_ktime;
2947 u32 delta_usecs;
2948 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 2949
ab0e43e9 2950 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
2951 return false;
2952
2953 if (compensate)
ab0e43e9 2954 delta_ktime = bfqd->last_idling_start;
aee69d78 2955 else
ab0e43e9
PV
2956 delta_ktime = ktime_get();
2957 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2958 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
2959
2960 /* don't use too short time intervals */
ab0e43e9
PV
2961 if (delta_usecs < 1000) {
2962 if (blk_queue_nonrot(bfqd->queue))
2963 /*
2964 * give same worst-case guarantees as idling
2965 * for seeky
2966 */
2967 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2968 else /* charge at least one seek */
2969 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2970
2971 return slow;
2972 }
aee69d78 2973
ab0e43e9 2974 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
2975
2976 /*
ab0e43e9
PV
2977 * Use only long (> 20ms) intervals to filter out excessive
2978 * spikes in service rate estimation.
aee69d78 2979 */
ab0e43e9
PV
2980 if (delta_usecs > 20000) {
2981 /*
2982 * Caveat for rotational devices: processes doing I/O
2983 * in the slower disk zones tend to be slow(er) even
2984 * if not seeky. In this respect, the estimated peak
2985 * rate is likely to be an average over the disk
2986 * surface. Accordingly, to not be too harsh with
2987 * unlucky processes, a process is deemed slow only if
2988 * its rate has been lower than half of the estimated
2989 * peak rate.
2990 */
2991 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
2992 }
2993
ab0e43e9 2994 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 2995
ab0e43e9 2996 return slow;
aee69d78
PV
2997}
2998
77b7dcea
PV
2999/*
3000 * To be deemed as soft real-time, an application must meet two
3001 * requirements. First, the application must not require an average
3002 * bandwidth higher than the approximate bandwidth required to playback or
3003 * record a compressed high-definition video.
3004 * The next function is invoked on the completion of the last request of a
3005 * batch, to compute the next-start time instant, soft_rt_next_start, such
3006 * that, if the next request of the application does not arrive before
3007 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3008 *
3009 * The second requirement is that the request pattern of the application is
3010 * isochronous, i.e., that, after issuing a request or a batch of requests,
3011 * the application stops issuing new requests until all its pending requests
3012 * have been completed. After that, the application may issue a new batch,
3013 * and so on.
3014 * For this reason the next function is invoked to compute
3015 * soft_rt_next_start only for applications that meet this requirement,
3016 * whereas soft_rt_next_start is set to infinity for applications that do
3017 * not.
3018 *
a34b0244
PV
3019 * Unfortunately, even a greedy (i.e., I/O-bound) application may
3020 * happen to meet, occasionally or systematically, both the above
3021 * bandwidth and isochrony requirements. This may happen at least in
3022 * the following circumstances. First, if the CPU load is high. The
3023 * application may stop issuing requests while the CPUs are busy
3024 * serving other processes, then restart, then stop again for a while,
3025 * and so on. The other circumstances are related to the storage
3026 * device: the storage device is highly loaded or reaches a low-enough
3027 * throughput with the I/O of the application (e.g., because the I/O
3028 * is random and/or the device is slow). In all these cases, the
3029 * I/O of the application may be simply slowed down enough to meet
3030 * the bandwidth and isochrony requirements. To reduce the probability
3031 * that greedy applications are deemed as soft real-time in these
3032 * corner cases, a further rule is used in the computation of
3033 * soft_rt_next_start: the return value of this function is forced to
3034 * be higher than the maximum between the following two quantities.
3035 *
3036 * (a) Current time plus: (1) the maximum time for which the arrival
3037 * of a request is waited for when a sync queue becomes idle,
3038 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
3039 * postpone for a moment the reason for adding a few extra
3040 * jiffies; we get back to it after next item (b). Lower-bounding
3041 * the return value of this function with the current time plus
3042 * bfqd->bfq_slice_idle tends to filter out greedy applications,
3043 * because the latter issue their next request as soon as possible
3044 * after the last one has been completed. In contrast, a soft
3045 * real-time application spends some time processing data, after a
3046 * batch of its requests has been completed.
3047 *
3048 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
3049 * above, greedy applications may happen to meet both the
3050 * bandwidth and isochrony requirements under heavy CPU or
3051 * storage-device load. In more detail, in these scenarios, these
3052 * applications happen, only for limited time periods, to do I/O
3053 * slowly enough to meet all the requirements described so far,
3054 * including the filtering in above item (a). These slow-speed
3055 * time intervals are usually interspersed between other time
3056 * intervals during which these applications do I/O at a very high
3057 * speed. Fortunately, exactly because of the high speed of the
3058 * I/O in the high-speed intervals, the values returned by this
3059 * function happen to be so high, near the end of any such
3060 * high-speed interval, to be likely to fall *after* the end of
3061 * the low-speed time interval that follows. These high values are
3062 * stored in bfqq->soft_rt_next_start after each invocation of
3063 * this function. As a consequence, if the last value of
3064 * bfqq->soft_rt_next_start is constantly used to lower-bound the
3065 * next value that this function may return, then, from the very
3066 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
3067 * likely to be constantly kept so high that any I/O request
3068 * issued during the low-speed interval is considered as arriving
3069 * to soon for the application to be deemed as soft
3070 * real-time. Then, in the high-speed interval that follows, the
3071 * application will not be deemed as soft real-time, just because
3072 * it will do I/O at a high speed. And so on.
3073 *
3074 * Getting back to the filtering in item (a), in the following two
3075 * cases this filtering might be easily passed by a greedy
3076 * application, if the reference quantity was just
3077 * bfqd->bfq_slice_idle:
3078 * 1) HZ is so low that the duration of a jiffy is comparable to or
3079 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
3080 * devices with HZ=100. The time granularity may be so coarse
3081 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
3082 * is rather lower than the exact value.
77b7dcea
PV
3083 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
3084 * for a while, then suddenly 'jump' by several units to recover the lost
3085 * increments. This seems to happen, e.g., inside virtual machines.
a34b0244
PV
3086 * To address this issue, in the filtering in (a) we do not use as a
3087 * reference time interval just bfqd->bfq_slice_idle, but
3088 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
3089 * minimum number of jiffies for which the filter seems to be quite
3090 * precise also in embedded systems and KVM/QEMU virtual machines.
77b7dcea
PV
3091 */
3092static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
3093 struct bfq_queue *bfqq)
3094{
a34b0244
PV
3095 return max3(bfqq->soft_rt_next_start,
3096 bfqq->last_idle_bklogged +
3097 HZ * bfqq->service_from_backlogged /
3098 bfqd->bfq_wr_max_softrt_rate,
3099 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
77b7dcea
PV
3100}
3101
aee69d78
PV
3102/**
3103 * bfq_bfqq_expire - expire a queue.
3104 * @bfqd: device owning the queue.
3105 * @bfqq: the queue to expire.
3106 * @compensate: if true, compensate for the time spent idling.
3107 * @reason: the reason causing the expiration.
3108 *
c074170e
PV
3109 * If the process associated with bfqq does slow I/O (e.g., because it
3110 * issues random requests), we charge bfqq with the time it has been
3111 * in service instead of the service it has received (see
3112 * bfq_bfqq_charge_time for details on how this goal is achieved). As
3113 * a consequence, bfqq will typically get higher timestamps upon
3114 * reactivation, and hence it will be rescheduled as if it had
3115 * received more service than what it has actually received. In the
3116 * end, bfqq receives less service in proportion to how slowly its
3117 * associated process consumes its budgets (and hence how seriously it
3118 * tends to lower the throughput). In addition, this time-charging
3119 * strategy guarantees time fairness among slow processes. In
3120 * contrast, if the process associated with bfqq is not slow, we
3121 * charge bfqq exactly with the service it has received.
aee69d78 3122 *
c074170e
PV
3123 * Charging time to the first type of queues and the exact service to
3124 * the other has the effect of using the WF2Q+ policy to schedule the
3125 * former on a timeslice basis, without violating service domain
3126 * guarantees among the latter.
aee69d78 3127 */
ea25da48
PV
3128void bfq_bfqq_expire(struct bfq_data *bfqd,
3129 struct bfq_queue *bfqq,
3130 bool compensate,
3131 enum bfqq_expiration reason)
aee69d78
PV
3132{
3133 bool slow;
ab0e43e9
PV
3134 unsigned long delta = 0;
3135 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
3136 int ref;
3137
3138 /*
ab0e43e9 3139 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 3140 */
ab0e43e9 3141 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78
PV
3142
3143 /*
c074170e
PV
3144 * As above explained, charge slow (typically seeky) and
3145 * timed-out queues with the time and not the service
3146 * received, to favor sequential workloads.
3147 *
3148 * Processes doing I/O in the slower disk zones will tend to
3149 * be slow(er) even if not seeky. Therefore, since the
3150 * estimated peak rate is actually an average over the disk
3151 * surface, these processes may timeout just for bad luck. To
3152 * avoid punishing them, do not charge time to processes that
3153 * succeeded in consuming at least 2/3 of their budget. This
3154 * allows BFQ to preserve enough elasticity to still perform
3155 * bandwidth, and not time, distribution with little unlucky
3156 * or quasi-sequential processes.
aee69d78 3157 */
44e44a1b
PV
3158 if (bfqq->wr_coeff == 1 &&
3159 (slow ||
3160 (reason == BFQQE_BUDGET_TIMEOUT &&
3161 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 3162 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
3163
3164 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 3165 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
3166 bfq_clear_bfqq_IO_bound(bfqq);
3167
44e44a1b
PV
3168 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3169 bfqq->last_wr_start_finish = jiffies;
3170
77b7dcea
PV
3171 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3172 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3173 /*
3174 * If we get here, and there are no outstanding
3175 * requests, then the request pattern is isochronous
3176 * (see the comments on the function
3177 * bfq_bfqq_softrt_next_start()). Thus we can compute
3178 * soft_rt_next_start. If, instead, the queue still
3179 * has outstanding requests, then we have to wait for
3180 * the completion of all the outstanding requests to
3181 * discover whether the request pattern is actually
3182 * isochronous.
3183 */
3184 if (bfqq->dispatched == 0)
3185 bfqq->soft_rt_next_start =
3186 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3187 else {
3188 /*
3189 * The application is still waiting for the
3190 * completion of one or more requests:
3191 * prevent it from possibly being incorrectly
3192 * deemed as soft real-time by setting its
3193 * soft_rt_next_start to infinity. In fact,
3194 * without this assignment, the application
3195 * would be incorrectly deemed as soft
3196 * real-time if:
3197 * 1) it issued a new request before the
3198 * completion of all its in-flight
3199 * requests, and
3200 * 2) at that time, its soft_rt_next_start
3201 * happened to be in the past.
3202 */
3203 bfqq->soft_rt_next_start =
3204 bfq_greatest_from_now();
3205 /*
3206 * Schedule an update of soft_rt_next_start to when
3207 * the task may be discovered to be isochronous.
3208 */
3209 bfq_mark_bfqq_softrt_update(bfqq);
3210 }
3211 }
3212
aee69d78 3213 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
3214 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3215 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78
PV
3216
3217 /*
3218 * Increase, decrease or leave budget unchanged according to
3219 * reason.
3220 */
3221 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3222 ref = bfqq->ref;
3223 __bfq_bfqq_expire(bfqd, bfqq);
3224
3225 /* mark bfqq as waiting a request only if a bic still points to it */
3226 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3227 reason != BFQQE_BUDGET_TIMEOUT &&
3228 reason != BFQQE_BUDGET_EXHAUSTED)
3229 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3230}
3231
3232/*
3233 * Budget timeout is not implemented through a dedicated timer, but
3234 * just checked on request arrivals and completions, as well as on
3235 * idle timer expirations.
3236 */
3237static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3238{
44e44a1b 3239 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3240}
3241
3242/*
3243 * If we expire a queue that is actively waiting (i.e., with the
3244 * device idled) for the arrival of a new request, then we may incur
3245 * the timestamp misalignment problem described in the body of the
3246 * function __bfq_activate_entity. Hence we return true only if this
3247 * condition does not hold, or if the queue is slow enough to deserve
3248 * only to be kicked off for preserving a high throughput.
3249 */
3250static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3251{
3252 bfq_log_bfqq(bfqq->bfqd, bfqq,
3253 "may_budget_timeout: wait_request %d left %d timeout %d",
3254 bfq_bfqq_wait_request(bfqq),
3255 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3256 bfq_bfqq_budget_timeout(bfqq));
3257
3258 return (!bfq_bfqq_wait_request(bfqq) ||
3259 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3260 &&
3261 bfq_bfqq_budget_timeout(bfqq);
3262}
3263
3264/*
3265 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3266 * this function returns true for the queue. As a consequence, since
3267 * device idling plays a critical role in both throughput boosting and
3268 * service guarantees, the return value of this function plays a
3269 * critical role in both these aspects as well.
3270 *
3271 * In a nutshell, this function returns true only if idling is
3272 * beneficial for throughput or, even if detrimental for throughput,
3273 * idling is however necessary to preserve service guarantees (low
3274 * latency, desired throughput distribution, ...). In particular, on
3275 * NCQ-capable devices, this function tries to return false, so as to
3276 * help keep the drives' internal queues full, whenever this helps the
3277 * device boost the throughput without causing any service-guarantee
3278 * issue.
3279 *
3280 * In more detail, the return value of this function is obtained by,
3281 * first, computing a number of boolean variables that take into
3282 * account throughput and service-guarantee issues, and, then,
3283 * combining these variables in a logical expression. Most of the
3284 * issues taken into account are not trivial. We discuss these issues
3285 * individually while introducing the variables.
aee69d78
PV
3286 */
3287static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3288{
3289 struct bfq_data *bfqd = bfqq->bfqd;
edaf9428
PV
3290 bool rot_without_queueing =
3291 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3292 bfqq_sequential_and_IO_bound,
3293 idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3294 idling_needed_for_service_guarantees,
cfd69712 3295 asymmetric_scenario;
aee69d78
PV
3296
3297 if (bfqd->strict_guarantees)
3298 return true;
3299
d5be3fef
PV
3300 /*
3301 * Idling is performed only if slice_idle > 0. In addition, we
3302 * do not idle if
3303 * (a) bfqq is async
3304 * (b) bfqq is in the idle io prio class: in this case we do
3305 * not idle because we want to minimize the bandwidth that
3306 * queues in this class can steal to higher-priority queues
3307 */
3308 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3309 bfq_class_idle(bfqq))
3310 return false;
3311
edaf9428
PV
3312 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3313 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3314
aee69d78 3315 /*
44e44a1b
PV
3316 * The next variable takes into account the cases where idling
3317 * boosts the throughput.
3318 *
e01eff01
PV
3319 * The value of the variable is computed considering, first, that
3320 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
3321 * (a) the device is not NCQ-capable and rotational, or
3322 * (b) regardless of the presence of NCQ, the device is rotational and
3323 * the request pattern for bfqq is I/O-bound and sequential, or
3324 * (c) regardless of whether it is rotational, the device is
3325 * not NCQ-capable and the request pattern for bfqq is
3326 * I/O-bound and sequential.
bf2b79e7
PV
3327 *
3328 * Secondly, and in contrast to the above item (b), idling an
3329 * NCQ-capable flash-based device would not boost the
e01eff01 3330 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3331 * the throughput in proportion to how fast the device
3332 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
3333 * above conditions (a), (b) or (c) is true, and, in
3334 * particular, happens to be false if bfqd is an NCQ-capable
3335 * flash-based device.
aee69d78 3336 */
edaf9428
PV
3337 idling_boosts_thr = rot_without_queueing ||
3338 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3339 bfqq_sequential_and_IO_bound);
aee69d78 3340
cfd69712
PV
3341 /*
3342 * The value of the next variable,
3343 * idling_boosts_thr_without_issues, is equal to that of
3344 * idling_boosts_thr, unless a special case holds. In this
3345 * special case, described below, idling may cause problems to
3346 * weight-raised queues.
3347 *
3348 * When the request pool is saturated (e.g., in the presence
3349 * of write hogs), if the processes associated with
3350 * non-weight-raised queues ask for requests at a lower rate,
3351 * then processes associated with weight-raised queues have a
3352 * higher probability to get a request from the pool
3353 * immediately (or at least soon) when they need one. Thus
3354 * they have a higher probability to actually get a fraction
3355 * of the device throughput proportional to their high
3356 * weight. This is especially true with NCQ-capable drives,
3357 * which enqueue several requests in advance, and further
3358 * reorder internally-queued requests.
3359 *
3360 * For this reason, we force to false the value of
3361 * idling_boosts_thr_without_issues if there are weight-raised
3362 * busy queues. In this case, and if bfqq is not weight-raised,
3363 * this guarantees that the device is not idled for bfqq (if,
3364 * instead, bfqq is weight-raised, then idling will be
3365 * guaranteed by another variable, see below). Combined with
3366 * the timestamping rules of BFQ (see [1] for details), this
3367 * behavior causes bfqq, and hence any sync non-weight-raised
3368 * queue, to get a lower number of requests served, and thus
3369 * to ask for a lower number of requests from the request
3370 * pool, before the busy weight-raised queues get served
3371 * again. This often mitigates starvation problems in the
3372 * presence of heavy write workloads and NCQ, thereby
3373 * guaranteeing a higher application and system responsiveness
3374 * in these hostile scenarios.
3375 */
3376 idling_boosts_thr_without_issues = idling_boosts_thr &&
3377 bfqd->wr_busy_queues == 0;
3378
aee69d78 3379 /*
bf2b79e7
PV
3380 * There is then a case where idling must be performed not
3381 * for throughput concerns, but to preserve service
3382 * guarantees.
3383 *
3384 * To introduce this case, we can note that allowing the drive
3385 * to enqueue more than one request at a time, and hence
44e44a1b 3386 * delegating de facto final scheduling decisions to the
bf2b79e7 3387 * drive's internal scheduler, entails loss of control on the
44e44a1b 3388 * actual request service order. In particular, the critical
bf2b79e7 3389 * situation is when requests from different processes happen
44e44a1b
PV
3390 * to be present, at the same time, in the internal queue(s)
3391 * of the drive. In such a situation, the drive, by deciding
3392 * the service order of the internally-queued requests, does
3393 * determine also the actual throughput distribution among
3394 * these processes. But the drive typically has no notion or
3395 * concern about per-process throughput distribution, and
3396 * makes its decisions only on a per-request basis. Therefore,
3397 * the service distribution enforced by the drive's internal
3398 * scheduler is likely to coincide with the desired
3399 * device-throughput distribution only in a completely
bf2b79e7
PV
3400 * symmetric scenario where:
3401 * (i) each of these processes must get the same throughput as
3402 * the others;
3403 * (ii) all these processes have the same I/O pattern
3404 (either sequential or random).
3405 * In fact, in such a scenario, the drive will tend to treat
3406 * the requests of each of these processes in about the same
3407 * way as the requests of the others, and thus to provide
3408 * each of these processes with about the same throughput
3409 * (which is exactly the desired throughput distribution). In
3410 * contrast, in any asymmetric scenario, device idling is
3411 * certainly needed to guarantee that bfqq receives its
3412 * assigned fraction of the device throughput (see [1] for
3413 * details).
3414 *
3415 * We address this issue by controlling, actually, only the
3416 * symmetry sub-condition (i), i.e., provided that
3417 * sub-condition (i) holds, idling is not performed,
3418 * regardless of whether sub-condition (ii) holds. In other
3419 * words, only if sub-condition (i) holds, then idling is
3420 * allowed, and the device tends to be prevented from queueing
3421 * many requests, possibly of several processes. The reason
3422 * for not controlling also sub-condition (ii) is that we
3423 * exploit preemption to preserve guarantees in case of
3424 * symmetric scenarios, even if (ii) does not hold, as
3425 * explained in the next two paragraphs.
3426 *
3427 * Even if a queue, say Q, is expired when it remains idle, Q
3428 * can still preempt the new in-service queue if the next
3429 * request of Q arrives soon (see the comments on
3430 * bfq_bfqq_update_budg_for_activation). If all queues and
3431 * groups have the same weight, this form of preemption,
3432 * combined with the hole-recovery heuristic described in the
3433 * comments on function bfq_bfqq_update_budg_for_activation,
3434 * are enough to preserve a correct bandwidth distribution in
3435 * the mid term, even without idling. In fact, even if not
3436 * idling allows the internal queues of the device to contain
3437 * many requests, and thus to reorder requests, we can rather
3438 * safely assume that the internal scheduler still preserves a
3439 * minimum of mid-term fairness. The motivation for using
3440 * preemption instead of idling is that, by not idling,
3441 * service guarantees are preserved without minimally
3442 * sacrificing throughput. In other words, both a high
3443 * throughput and its desired distribution are obtained.
3444 *
3445 * More precisely, this preemption-based, idleless approach
3446 * provides fairness in terms of IOPS, and not sectors per
3447 * second. This can be seen with a simple example. Suppose
3448 * that there are two queues with the same weight, but that
3449 * the first queue receives requests of 8 sectors, while the
3450 * second queue receives requests of 1024 sectors. In
3451 * addition, suppose that each of the two queues contains at
3452 * most one request at a time, which implies that each queue
3453 * always remains idle after it is served. Finally, after
3454 * remaining idle, each queue receives very quickly a new
3455 * request. It follows that the two queues are served
3456 * alternatively, preempting each other if needed. This
3457 * implies that, although both queues have the same weight,
3458 * the queue with large requests receives a service that is
3459 * 1024/8 times as high as the service received by the other
3460 * queue.
44e44a1b 3461 *
bf2b79e7
PV
3462 * On the other hand, device idling is performed, and thus
3463 * pure sector-domain guarantees are provided, for the
3464 * following queues, which are likely to need stronger
3465 * throughput guarantees: weight-raised queues, and queues
3466 * with a higher weight than other queues. When such queues
3467 * are active, sub-condition (i) is false, which triggers
3468 * device idling.
44e44a1b 3469 *
bf2b79e7
PV
3470 * According to the above considerations, the next variable is
3471 * true (only) if sub-condition (i) holds. To compute the
3472 * value of this variable, we not only use the return value of
3473 * the function bfq_symmetric_scenario(), but also check
3474 * whether bfqq is being weight-raised, because
3475 * bfq_symmetric_scenario() does not take into account also
3476 * weight-raised queues (see comments on
3477 * bfq_weights_tree_add()).
44e44a1b
PV
3478 *
3479 * As a side note, it is worth considering that the above
3480 * device-idling countermeasures may however fail in the
3481 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3482 * disabled in a time period during which all symmetry
3483 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3484 * enqueue many requests, but at some later point in time some
3485 * sub-condition stops to hold, then it may become impossible
3486 * to let requests be served in the desired order until all
3487 * the requests already queued in the device have been served.
3488 */
bf2b79e7
PV
3489 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3490 !bfq_symmetric_scenario(bfqd);
44e44a1b 3491
e1b2324d
AA
3492 /*
3493 * Finally, there is a case where maximizing throughput is the
3494 * best choice even if it may cause unfairness toward
3495 * bfqq. Such a case is when bfqq became active in a burst of
3496 * queue activations. Queues that became active during a large
3497 * burst benefit only from throughput, as discussed in the
3498 * comments on bfq_handle_burst. Thus, if bfqq became active
3499 * in a burst and not idling the device maximizes throughput,
3500 * then the device must no be idled, because not idling the
3501 * device provides bfqq and all other queues in the burst with
3502 * maximum benefit. Combining this and the above case, we can
3503 * now establish when idling is actually needed to preserve
3504 * service guarantees.
3505 */
3506 idling_needed_for_service_guarantees =
3507 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3508
44e44a1b 3509 /*
d5be3fef
PV
3510 * We have now all the components we need to compute the
3511 * return value of the function, which is true only if idling
3512 * either boosts the throughput (without issues), or is
3513 * necessary to preserve service guarantees.
aee69d78 3514 */
d5be3fef
PV
3515 return idling_boosts_thr_without_issues ||
3516 idling_needed_for_service_guarantees;
aee69d78
PV
3517}
3518
3519/*
3520 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3521 * returns true, then:
3522 * 1) the queue must remain in service and cannot be expired, and
3523 * 2) the device must be idled to wait for the possible arrival of a new
3524 * request for the queue.
3525 * See the comments on the function bfq_bfqq_may_idle for the reasons
3526 * why performing device idling is the best choice to boost the throughput
3527 * and preserve service guarantees when bfq_bfqq_may_idle itself
3528 * returns true.
3529 */
3530static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3531{
d5be3fef 3532 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
aee69d78
PV
3533}
3534
3535/*
3536 * Select a queue for service. If we have a current queue in service,
3537 * check whether to continue servicing it, or retrieve and set a new one.
3538 */
3539static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3540{
3541 struct bfq_queue *bfqq;
3542 struct request *next_rq;
3543 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3544
3545 bfqq = bfqd->in_service_queue;
3546 if (!bfqq)
3547 goto new_queue;
3548
3549 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3550
3551 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3552 !bfq_bfqq_wait_request(bfqq) &&
3553 !bfq_bfqq_must_idle(bfqq))
3554 goto expire;
3555
3556check_queue:
3557 /*
3558 * This loop is rarely executed more than once. Even when it
3559 * happens, it is much more convenient to re-execute this loop
3560 * than to return NULL and trigger a new dispatch to get a
3561 * request served.
3562 */
3563 next_rq = bfqq->next_rq;
3564 /*
3565 * If bfqq has requests queued and it has enough budget left to
3566 * serve them, keep the queue, otherwise expire it.
3567 */
3568 if (next_rq) {
3569 if (bfq_serv_to_charge(next_rq, bfqq) >
3570 bfq_bfqq_budget_left(bfqq)) {
3571 /*
3572 * Expire the queue for budget exhaustion,
3573 * which makes sure that the next budget is
3574 * enough to serve the next request, even if
3575 * it comes from the fifo expired path.
3576 */
3577 reason = BFQQE_BUDGET_EXHAUSTED;
3578 goto expire;
3579 } else {
3580 /*
3581 * The idle timer may be pending because we may
3582 * not disable disk idling even when a new request
3583 * arrives.
3584 */
3585 if (bfq_bfqq_wait_request(bfqq)) {
3586 /*
3587 * If we get here: 1) at least a new request
3588 * has arrived but we have not disabled the
3589 * timer because the request was too small,
3590 * 2) then the block layer has unplugged
3591 * the device, causing the dispatch to be
3592 * invoked.
3593 *
3594 * Since the device is unplugged, now the
3595 * requests are probably large enough to
3596 * provide a reasonable throughput.
3597 * So we disable idling.
3598 */
3599 bfq_clear_bfqq_wait_request(bfqq);
3600 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3601 }
3602 goto keep_queue;
3603 }
3604 }
3605
3606 /*
3607 * No requests pending. However, if the in-service queue is idling
3608 * for a new request, or has requests waiting for a completion and
3609 * may idle after their completion, then keep it anyway.
3610 */
3611 if (bfq_bfqq_wait_request(bfqq) ||
3612 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3613 bfqq = NULL;
3614 goto keep_queue;
3615 }
3616
3617 reason = BFQQE_NO_MORE_REQUESTS;
3618expire:
3619 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3620new_queue:
3621 bfqq = bfq_set_in_service_queue(bfqd);
3622 if (bfqq) {
3623 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3624 goto check_queue;
3625 }
3626keep_queue:
3627 if (bfqq)
3628 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3629 else
3630 bfq_log(bfqd, "select_queue: no queue returned");
3631
3632 return bfqq;
3633}
3634
44e44a1b
PV
3635static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3636{
3637 struct bfq_entity *entity = &bfqq->entity;
3638
3639 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3640 bfq_log_bfqq(bfqd, bfqq,
3641 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3642 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3643 jiffies_to_msecs(bfqq->wr_cur_max_time),
3644 bfqq->wr_coeff,
3645 bfqq->entity.weight, bfqq->entity.orig_weight);
3646
3647 if (entity->prio_changed)
3648 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3649
3650 /*
e1b2324d
AA
3651 * If the queue was activated in a burst, or too much
3652 * time has elapsed from the beginning of this
3653 * weight-raising period, then end weight raising.
44e44a1b 3654 */
e1b2324d
AA
3655 if (bfq_bfqq_in_large_burst(bfqq))
3656 bfq_bfqq_end_wr(bfqq);
3657 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3658 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3659 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3660 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3661 bfq_wr_duration(bfqd)))
77b7dcea
PV
3662 bfq_bfqq_end_wr(bfqq);
3663 else {
3e2bdd6d 3664 switch_back_to_interactive_wr(bfqq, bfqd);
77b7dcea
PV
3665 bfqq->entity.prio_changed = 1;
3666 }
44e44a1b
PV
3667 }
3668 }
431b17f9
PV
3669 /*
3670 * To improve latency (for this or other queues), immediately
3671 * update weight both if it must be raised and if it must be
3672 * lowered. Since, entity may be on some active tree here, and
3673 * might have a pending change of its ioprio class, invoke
3674 * next function with the last parameter unset (see the
3675 * comments on the function).
3676 */
44e44a1b 3677 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
3678 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3679 entity, false);
44e44a1b
PV
3680}
3681
aee69d78
PV
3682/*
3683 * Dispatch next request from bfqq.
3684 */
3685static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3686 struct bfq_queue *bfqq)
3687{
3688 struct request *rq = bfqq->next_rq;
3689 unsigned long service_to_charge;
3690
3691 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3692
3693 bfq_bfqq_served(bfqq, service_to_charge);
3694
3695 bfq_dispatch_remove(bfqd->queue, rq);
3696
44e44a1b
PV
3697 /*
3698 * If weight raising has to terminate for bfqq, then next
3699 * function causes an immediate update of bfqq's weight,
3700 * without waiting for next activation. As a consequence, on
3701 * expiration, bfqq will be timestamped as if has never been
3702 * weight-raised during this service slot, even if it has
3703 * received part or even most of the service as a
3704 * weight-raised queue. This inflates bfqq's timestamps, which
3705 * is beneficial, as bfqq is then more willing to leave the
3706 * device immediately to possible other weight-raised queues.
3707 */
3708 bfq_update_wr_data(bfqd, bfqq);
3709
aee69d78
PV
3710 /*
3711 * Expire bfqq, pretending that its budget expired, if bfqq
3712 * belongs to CLASS_IDLE and other queues are waiting for
3713 * service.
3714 */
3715 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3716 goto expire;
3717
3718 return rq;
3719
3720expire:
3721 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3722 return rq;
3723}
3724
3725static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3726{
3727 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3728
3729 /*
3730 * Avoiding lock: a race on bfqd->busy_queues should cause at
3731 * most a call to dispatch for nothing
3732 */
3733 return !list_empty_careful(&bfqd->dispatch) ||
3734 bfqd->busy_queues > 0;
3735}
3736
3737static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3738{
3739 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3740 struct request *rq = NULL;
3741 struct bfq_queue *bfqq = NULL;
3742
3743 if (!list_empty(&bfqd->dispatch)) {
3744 rq = list_first_entry(&bfqd->dispatch, struct request,
3745 queuelist);
3746 list_del_init(&rq->queuelist);
3747
3748 bfqq = RQ_BFQQ(rq);
3749
3750 if (bfqq) {
3751 /*
3752 * Increment counters here, because this
3753 * dispatch does not follow the standard
3754 * dispatch flow (where counters are
3755 * incremented)
3756 */
3757 bfqq->dispatched++;
3758
3759 goto inc_in_driver_start_rq;
3760 }
3761
3762 /*
8993d445
CB
3763 * We exploit the bfq_finish_request hook to decrement
3764 * rq_in_driver, but bfq_finish_request will not be
aee69d78
PV
3765 * invoked on this request. So, to avoid unbalance,
3766 * just start this request, without incrementing
3767 * rq_in_driver. As a negative consequence,
3768 * rq_in_driver is deceptively lower than it should be
3769 * while this request is in service. This may cause
3770 * bfq_schedule_dispatch to be invoked uselessly.
3771 *
3772 * As for implementing an exact solution, the
8993d445
CB
3773 * bfq_finish_request hook, if defined, is probably
3774 * invoked also on this request. So, by exploiting
3775 * this hook, we could 1) increment rq_in_driver here,
3776 * and 2) decrement it in bfq_finish_request. Such a
3777 * solution would let the value of the counter be
3778 * always accurate, but it would entail using an extra
3779 * interface function. This cost seems higher than the
3780 * benefit, being the frequency of non-elevator-private
aee69d78
PV
3781 * requests very low.
3782 */
3783 goto start_rq;
3784 }
3785
3786 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3787
3788 if (bfqd->busy_queues == 0)
3789 goto exit;
3790
3791 /*
3792 * Force device to serve one request at a time if
3793 * strict_guarantees is true. Forcing this service scheme is
3794 * currently the ONLY way to guarantee that the request
3795 * service order enforced by the scheduler is respected by a
3796 * queueing device. Otherwise the device is free even to make
3797 * some unlucky request wait for as long as the device
3798 * wishes.
3799 *
3800 * Of course, serving one request at at time may cause loss of
3801 * throughput.
3802 */
3803 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3804 goto exit;
3805
3806 bfqq = bfq_select_queue(bfqd);
3807 if (!bfqq)
3808 goto exit;
3809
3810 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3811
3812 if (rq) {
3813inc_in_driver_start_rq:
3814 bfqd->rq_in_driver++;
3815start_rq:
3816 rq->rq_flags |= RQF_STARTED;
3817 }
3818exit:
3819 return rq;
3820}
3821
a33801e8 3822#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
9b25bd03
PV
3823static void bfq_update_dispatch_stats(struct request_queue *q,
3824 struct request *rq,
3825 struct bfq_queue *in_serv_queue,
3826 bool idle_timer_disabled)
3827{
3828 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
aee69d78 3829
24bfd19b 3830 if (!idle_timer_disabled && !bfqq)
9b25bd03 3831 return;
24bfd19b
PV
3832
3833 /*
3834 * rq and bfqq are guaranteed to exist until this function
3835 * ends, for the following reasons. First, rq can be
3836 * dispatched to the device, and then can be completed and
3837 * freed, only after this function ends. Second, rq cannot be
3838 * merged (and thus freed because of a merge) any longer,
3839 * because it has already started. Thus rq cannot be freed
3840 * before this function ends, and, since rq has a reference to
3841 * bfqq, the same guarantee holds for bfqq too.
3842 *
3843 * In addition, the following queue lock guarantees that
3844 * bfqq_group(bfqq) exists as well.
3845 */
9b25bd03 3846 spin_lock_irq(q->queue_lock);
24bfd19b
PV
3847 if (idle_timer_disabled)
3848 /*
3849 * Since the idle timer has been disabled,
3850 * in_serv_queue contained some request when
3851 * __bfq_dispatch_request was invoked above, which
3852 * implies that rq was picked exactly from
3853 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3854 * therefore guaranteed to exist because of the above
3855 * arguments.
3856 */
3857 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3858 if (bfqq) {
3859 struct bfq_group *bfqg = bfqq_group(bfqq);
3860
3861 bfqg_stats_update_avg_queue_size(bfqg);
3862 bfqg_stats_set_start_empty_time(bfqg);
3863 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3864 }
9b25bd03
PV
3865 spin_unlock_irq(q->queue_lock);
3866}
3867#else
3868static inline void bfq_update_dispatch_stats(struct request_queue *q,
3869 struct request *rq,
3870 struct bfq_queue *in_serv_queue,
3871 bool idle_timer_disabled) {}
24bfd19b
PV
3872#endif
3873
9b25bd03
PV
3874static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3875{
3876 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3877 struct request *rq;
3878 struct bfq_queue *in_serv_queue;
3879 bool waiting_rq, idle_timer_disabled;
3880
3881 spin_lock_irq(&bfqd->lock);
3882
3883 in_serv_queue = bfqd->in_service_queue;
3884 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3885
3886 rq = __bfq_dispatch_request(hctx);
3887
3888 idle_timer_disabled =
3889 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3890
3891 spin_unlock_irq(&bfqd->lock);
3892
3893 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
3894 idle_timer_disabled);
3895
aee69d78
PV
3896 return rq;
3897}
3898
3899/*
3900 * Task holds one reference to the queue, dropped when task exits. Each rq
3901 * in-flight on this queue also holds a reference, dropped when rq is freed.
3902 *
3903 * Scheduler lock must be held here. Recall not to use bfqq after calling
3904 * this function on it.
3905 */
ea25da48 3906void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 3907{
e21b7a0b
AA
3908#ifdef CONFIG_BFQ_GROUP_IOSCHED
3909 struct bfq_group *bfqg = bfqq_group(bfqq);
3910#endif
3911
aee69d78
PV
3912 if (bfqq->bfqd)
3913 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3914 bfqq, bfqq->ref);
3915
3916 bfqq->ref--;
3917 if (bfqq->ref)
3918 return;
3919
99fead8d 3920 if (!hlist_unhashed(&bfqq->burst_list_node)) {
e1b2324d 3921 hlist_del_init(&bfqq->burst_list_node);
99fead8d
PV
3922 /*
3923 * Decrement also burst size after the removal, if the
3924 * process associated with bfqq is exiting, and thus
3925 * does not contribute to the burst any longer. This
3926 * decrement helps filter out false positives of large
3927 * bursts, when some short-lived process (often due to
3928 * the execution of commands by some service) happens
3929 * to start and exit while a complex application is
3930 * starting, and thus spawning several processes that
3931 * do I/O (and that *must not* be treated as a large
3932 * burst, see comments on bfq_handle_burst).
3933 *
3934 * In particular, the decrement is performed only if:
3935 * 1) bfqq is not a merged queue, because, if it is,
3936 * then this free of bfqq is not triggered by the exit
3937 * of the process bfqq is associated with, but exactly
3938 * by the fact that bfqq has just been merged.
3939 * 2) burst_size is greater than 0, to handle
3940 * unbalanced decrements. Unbalanced decrements may
3941 * happen in te following case: bfqq is inserted into
3942 * the current burst list--without incrementing
3943 * bust_size--because of a split, but the current
3944 * burst list is not the burst list bfqq belonged to
3945 * (see comments on the case of a split in
3946 * bfq_set_request).
3947 */
3948 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3949 bfqq->bfqd->burst_size--;
7cb04004 3950 }
e21b7a0b 3951
aee69d78 3952 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b 3953#ifdef CONFIG_BFQ_GROUP_IOSCHED
8f9bebc3 3954 bfqg_and_blkg_put(bfqg);
e21b7a0b 3955#endif
aee69d78
PV
3956}
3957
36eca894
AA
3958static void bfq_put_cooperator(struct bfq_queue *bfqq)
3959{
3960 struct bfq_queue *__bfqq, *next;
3961
3962 /*
3963 * If this queue was scheduled to merge with another queue, be
3964 * sure to drop the reference taken on that queue (and others in
3965 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3966 */
3967 __bfqq = bfqq->new_bfqq;
3968 while (__bfqq) {
3969 if (__bfqq == bfqq)
3970 break;
3971 next = __bfqq->new_bfqq;
3972 bfq_put_queue(__bfqq);
3973 __bfqq = next;
3974 }
3975}
3976
aee69d78
PV
3977static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3978{
3979 if (bfqq == bfqd->in_service_queue) {
3980 __bfq_bfqq_expire(bfqd, bfqq);
3981 bfq_schedule_dispatch(bfqd);
3982 }
3983
3984 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3985
36eca894
AA
3986 bfq_put_cooperator(bfqq);
3987
aee69d78
PV
3988 bfq_put_queue(bfqq); /* release process reference */
3989}
3990
3991static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3992{
3993 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3994 struct bfq_data *bfqd;
3995
3996 if (bfqq)
3997 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3998
3999 if (bfqq && bfqd) {
4000 unsigned long flags;
4001
4002 spin_lock_irqsave(&bfqd->lock, flags);
4003 bfq_exit_bfqq(bfqd, bfqq);
4004 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 4005 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4006 }
4007}
4008
4009static void bfq_exit_icq(struct io_cq *icq)
4010{
4011 struct bfq_io_cq *bic = icq_to_bic(icq);
4012
4013 bfq_exit_icq_bfqq(bic, true);
4014 bfq_exit_icq_bfqq(bic, false);
4015}
4016
4017/*
4018 * Update the entity prio values; note that the new values will not
4019 * be used until the next (re)activation.
4020 */
4021static void
4022bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
4023{
4024 struct task_struct *tsk = current;
4025 int ioprio_class;
4026 struct bfq_data *bfqd = bfqq->bfqd;
4027
4028 if (!bfqd)
4029 return;
4030
4031 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4032 switch (ioprio_class) {
4033 default:
4034 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
4035 "bfq: bad prio class %d\n", ioprio_class);
fa393d1b 4036 /* fall through */
aee69d78
PV
4037 case IOPRIO_CLASS_NONE:
4038 /*
4039 * No prio set, inherit CPU scheduling settings.
4040 */
4041 bfqq->new_ioprio = task_nice_ioprio(tsk);
4042 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
4043 break;
4044 case IOPRIO_CLASS_RT:
4045 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4046 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
4047 break;
4048 case IOPRIO_CLASS_BE:
4049 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4050 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
4051 break;
4052 case IOPRIO_CLASS_IDLE:
4053 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
4054 bfqq->new_ioprio = 7;
aee69d78
PV
4055 break;
4056 }
4057
4058 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
4059 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
4060 bfqq->new_ioprio);
4061 bfqq->new_ioprio = IOPRIO_BE_NR;
4062 }
4063
4064 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
4065 bfqq->entity.prio_changed = 1;
4066}
4067
ea25da48
PV
4068static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4069 struct bio *bio, bool is_sync,
4070 struct bfq_io_cq *bic);
4071
aee69d78
PV
4072static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
4073{
4074 struct bfq_data *bfqd = bic_to_bfqd(bic);
4075 struct bfq_queue *bfqq;
4076 int ioprio = bic->icq.ioc->ioprio;
4077
4078 /*
4079 * This condition may trigger on a newly created bic, be sure to
4080 * drop the lock before returning.
4081 */
4082 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
4083 return;
4084
4085 bic->ioprio = ioprio;
4086
4087 bfqq = bic_to_bfqq(bic, false);
4088 if (bfqq) {
4089 /* release process reference on this queue */
4090 bfq_put_queue(bfqq);
4091 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
4092 bic_set_bfqq(bic, bfqq, false);
4093 }
4094
4095 bfqq = bic_to_bfqq(bic, true);
4096 if (bfqq)
4097 bfq_set_next_ioprio_data(bfqq, bic);
4098}
4099
4100static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4101 struct bfq_io_cq *bic, pid_t pid, int is_sync)
4102{
4103 RB_CLEAR_NODE(&bfqq->entity.rb_node);
4104 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 4105 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
4106
4107 bfqq->ref = 0;
4108 bfqq->bfqd = bfqd;
4109
4110 if (bic)
4111 bfq_set_next_ioprio_data(bfqq, bic);
4112
4113 if (is_sync) {
d5be3fef
PV
4114 /*
4115 * No need to mark as has_short_ttime if in
4116 * idle_class, because no device idling is performed
4117 * for queues in idle class
4118 */
aee69d78 4119 if (!bfq_class_idle(bfqq))
d5be3fef
PV
4120 /* tentatively mark as has_short_ttime */
4121 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4122 bfq_mark_bfqq_sync(bfqq);
e1b2324d 4123 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
4124 } else
4125 bfq_clear_bfqq_sync(bfqq);
4126
4127 /* set end request to minus infinity from now */
4128 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4129
4130 bfq_mark_bfqq_IO_bound(bfqq);
4131
4132 bfqq->pid = pid;
4133
4134 /* Tentative initial value to trade off between thr and lat */
54b60456 4135 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 4136 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 4137
44e44a1b 4138 bfqq->wr_coeff = 1;
36eca894 4139 bfqq->last_wr_start_finish = jiffies;
77b7dcea 4140 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 4141 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
4142
4143 /*
a34b0244
PV
4144 * To not forget the possibly high bandwidth consumed by a
4145 * process/queue in the recent past,
4146 * bfq_bfqq_softrt_next_start() returns a value at least equal
4147 * to the current value of bfqq->soft_rt_next_start (see
4148 * comments on bfq_bfqq_softrt_next_start). Set
4149 * soft_rt_next_start to now, to mean that bfqq has consumed
4150 * no bandwidth so far.
77b7dcea 4151 */
a34b0244 4152 bfqq->soft_rt_next_start = jiffies;
44e44a1b 4153
aee69d78
PV
4154 /* first request is almost certainly seeky */
4155 bfqq->seek_history = 1;
4156}
4157
4158static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 4159 struct bfq_group *bfqg,
aee69d78
PV
4160 int ioprio_class, int ioprio)
4161{
4162 switch (ioprio_class) {
4163 case IOPRIO_CLASS_RT:
e21b7a0b 4164 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
4165 case IOPRIO_CLASS_NONE:
4166 ioprio = IOPRIO_NORM;
4167 /* fall through */
4168 case IOPRIO_CLASS_BE:
e21b7a0b 4169 return &bfqg->async_bfqq[1][ioprio];
aee69d78 4170 case IOPRIO_CLASS_IDLE:
e21b7a0b 4171 return &bfqg->async_idle_bfqq;
aee69d78
PV
4172 default:
4173 return NULL;
4174 }
4175}
4176
4177static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4178 struct bio *bio, bool is_sync,
4179 struct bfq_io_cq *bic)
4180{
4181 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4182 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4183 struct bfq_queue **async_bfqq = NULL;
4184 struct bfq_queue *bfqq;
e21b7a0b 4185 struct bfq_group *bfqg;
aee69d78
PV
4186
4187 rcu_read_lock();
4188
e21b7a0b
AA
4189 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4190 if (!bfqg) {
4191 bfqq = &bfqd->oom_bfqq;
4192 goto out;
4193 }
4194
aee69d78 4195 if (!is_sync) {
e21b7a0b 4196 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
4197 ioprio);
4198 bfqq = *async_bfqq;
4199 if (bfqq)
4200 goto out;
4201 }
4202
4203 bfqq = kmem_cache_alloc_node(bfq_pool,
4204 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4205 bfqd->queue->node);
4206
4207 if (bfqq) {
4208 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4209 is_sync);
e21b7a0b 4210 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
4211 bfq_log_bfqq(bfqd, bfqq, "allocated");
4212 } else {
4213 bfqq = &bfqd->oom_bfqq;
4214 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4215 goto out;
4216 }
4217
4218 /*
4219 * Pin the queue now that it's allocated, scheduler exit will
4220 * prune it.
4221 */
4222 if (async_bfqq) {
e21b7a0b
AA
4223 bfqq->ref++; /*
4224 * Extra group reference, w.r.t. sync
4225 * queue. This extra reference is removed
4226 * only if bfqq->bfqg disappears, to
4227 * guarantee that this queue is not freed
4228 * until its group goes away.
4229 */
4230 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
4231 bfqq, bfqq->ref);
4232 *async_bfqq = bfqq;
4233 }
4234
4235out:
4236 bfqq->ref++; /* get a process reference to this queue */
4237 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4238 rcu_read_unlock();
4239 return bfqq;
4240}
4241
4242static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4243 struct bfq_queue *bfqq)
4244{
4245 struct bfq_ttime *ttime = &bfqq->ttime;
4246 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4247
4248 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4249
4250 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4251 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4252 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4253 ttime->ttime_samples);
4254}
4255
4256static void
4257bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4258 struct request *rq)
4259{
aee69d78 4260 bfqq->seek_history <<= 1;
ab0e43e9
PV
4261 bfqq->seek_history |=
4262 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
4263 (!blk_queue_nonrot(bfqd->queue) ||
4264 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4265}
4266
d5be3fef
PV
4267static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4268 struct bfq_queue *bfqq,
4269 struct bfq_io_cq *bic)
aee69d78 4270{
d5be3fef 4271 bool has_short_ttime = true;
aee69d78 4272
d5be3fef
PV
4273 /*
4274 * No need to update has_short_ttime if bfqq is async or in
4275 * idle io prio class, or if bfq_slice_idle is zero, because
4276 * no device idling is performed for bfqq in this case.
4277 */
4278 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4279 bfqd->bfq_slice_idle == 0)
aee69d78
PV
4280 return;
4281
36eca894
AA
4282 /* Idle window just restored, statistics are meaningless. */
4283 if (time_is_after_eq_jiffies(bfqq->split_time +
4284 bfqd->bfq_wr_min_idle_time))
4285 return;
4286
d5be3fef
PV
4287 /* Think time is infinite if no process is linked to
4288 * bfqq. Otherwise check average think time to
4289 * decide whether to mark as has_short_ttime
4290 */
aee69d78 4291 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef
PV
4292 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4293 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4294 has_short_ttime = false;
4295
4296 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4297 has_short_ttime);
aee69d78 4298
d5be3fef
PV
4299 if (has_short_ttime)
4300 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4301 else
d5be3fef 4302 bfq_clear_bfqq_has_short_ttime(bfqq);
aee69d78
PV
4303}
4304
4305/*
4306 * Called when a new fs request (rq) is added to bfqq. Check if there's
4307 * something we should do about it.
4308 */
4309static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4310 struct request *rq)
4311{
4312 struct bfq_io_cq *bic = RQ_BIC(rq);
4313
4314 if (rq->cmd_flags & REQ_META)
4315 bfqq->meta_pending++;
4316
4317 bfq_update_io_thinktime(bfqd, bfqq);
d5be3fef 4318 bfq_update_has_short_ttime(bfqd, bfqq, bic);
aee69d78 4319 bfq_update_io_seektime(bfqd, bfqq, rq);
aee69d78
PV
4320
4321 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4322 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4323 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
aee69d78
PV
4324
4325 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4326
4327 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4328 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4329 blk_rq_sectors(rq) < 32;
4330 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4331
4332 /*
4333 * There is just this request queued: if the request
4334 * is small and the queue is not to be expired, then
4335 * just exit.
4336 *
4337 * In this way, if the device is being idled to wait
4338 * for a new request from the in-service queue, we
4339 * avoid unplugging the device and committing the
4340 * device to serve just a small request. On the
4341 * contrary, we wait for the block layer to decide
4342 * when to unplug the device: hopefully, new requests
4343 * will be merged to this one quickly, then the device
4344 * will be unplugged and larger requests will be
4345 * dispatched.
4346 */
4347 if (small_req && !budget_timeout)
4348 return;
4349
4350 /*
4351 * A large enough request arrived, or the queue is to
4352 * be expired: in both cases disk idling is to be
4353 * stopped, so clear wait_request flag and reset
4354 * timer.
4355 */
4356 bfq_clear_bfqq_wait_request(bfqq);
4357 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4358
4359 /*
4360 * The queue is not empty, because a new request just
4361 * arrived. Hence we can safely expire the queue, in
4362 * case of budget timeout, without risking that the
4363 * timestamps of the queue are not updated correctly.
4364 * See [1] for more details.
4365 */
4366 if (budget_timeout)
4367 bfq_bfqq_expire(bfqd, bfqq, false,
4368 BFQQE_BUDGET_TIMEOUT);
4369 }
4370}
4371
24bfd19b
PV
4372/* returns true if it causes the idle timer to be disabled */
4373static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
aee69d78 4374{
36eca894
AA
4375 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4376 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
24bfd19b 4377 bool waiting, idle_timer_disabled = false;
36eca894
AA
4378
4379 if (new_bfqq) {
4380 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4381 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4382 /*
4383 * Release the request's reference to the old bfqq
4384 * and make sure one is taken to the shared queue.
4385 */
4386 new_bfqq->allocated++;
4387 bfqq->allocated--;
4388 new_bfqq->ref++;
4389 /*
4390 * If the bic associated with the process
4391 * issuing this request still points to bfqq
4392 * (and thus has not been already redirected
4393 * to new_bfqq or even some other bfq_queue),
4394 * then complete the merge and redirect it to
4395 * new_bfqq.
4396 */
4397 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4398 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4399 bfqq, new_bfqq);
894df937
PV
4400
4401 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4402 /*
4403 * rq is about to be enqueued into new_bfqq,
4404 * release rq reference on bfqq
4405 */
4406 bfq_put_queue(bfqq);
4407 rq->elv.priv[1] = new_bfqq;
4408 bfqq = new_bfqq;
4409 }
aee69d78 4410
24bfd19b 4411 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
aee69d78 4412 bfq_add_request(rq);
24bfd19b 4413 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
aee69d78
PV
4414
4415 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4416 list_add_tail(&rq->queuelist, &bfqq->fifo);
4417
4418 bfq_rq_enqueued(bfqd, bfqq, rq);
24bfd19b
PV
4419
4420 return idle_timer_disabled;
aee69d78
PV
4421}
4422
9b25bd03
PV
4423#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
4424static void bfq_update_insert_stats(struct request_queue *q,
4425 struct bfq_queue *bfqq,
4426 bool idle_timer_disabled,
4427 unsigned int cmd_flags)
4428{
4429 if (!bfqq)
4430 return;
4431
4432 /*
4433 * bfqq still exists, because it can disappear only after
4434 * either it is merged with another queue, or the process it
4435 * is associated with exits. But both actions must be taken by
4436 * the same process currently executing this flow of
4437 * instructions.
4438 *
4439 * In addition, the following queue lock guarantees that
4440 * bfqq_group(bfqq) exists as well.
4441 */
4442 spin_lock_irq(q->queue_lock);
4443 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4444 if (idle_timer_disabled)
4445 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4446 spin_unlock_irq(q->queue_lock);
4447}
4448#else
4449static inline void bfq_update_insert_stats(struct request_queue *q,
4450 struct bfq_queue *bfqq,
4451 bool idle_timer_disabled,
4452 unsigned int cmd_flags) {}
4453#endif
4454
aee69d78
PV
4455static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4456 bool at_head)
4457{
4458 struct request_queue *q = hctx->queue;
4459 struct bfq_data *bfqd = q->elevator->elevator_data;
614822f8 4460 struct bfq_queue *bfqq = RQ_BFQQ(rq);
24bfd19b
PV
4461 bool idle_timer_disabled = false;
4462 unsigned int cmd_flags;
aee69d78
PV
4463
4464 spin_lock_irq(&bfqd->lock);
4465 if (blk_mq_sched_try_insert_merge(q, rq)) {
4466 spin_unlock_irq(&bfqd->lock);
4467 return;
4468 }
4469
4470 spin_unlock_irq(&bfqd->lock);
4471
4472 blk_mq_sched_request_inserted(rq);
4473
4474 spin_lock_irq(&bfqd->lock);
4475 if (at_head || blk_rq_is_passthrough(rq)) {
4476 if (at_head)
4477 list_add(&rq->queuelist, &bfqd->dispatch);
4478 else
4479 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4480 } else {
24bfd19b 4481 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
614822f8
LM
4482 /*
4483 * Update bfqq, because, if a queue merge has occurred
4484 * in __bfq_insert_request, then rq has been
4485 * redirected into a new queue.
4486 */
4487 bfqq = RQ_BFQQ(rq);
aee69d78
PV
4488
4489 if (rq_mergeable(rq)) {
4490 elv_rqhash_add(q, rq);
4491 if (!q->last_merge)
4492 q->last_merge = rq;
4493 }
4494 }
4495
24bfd19b
PV
4496 /*
4497 * Cache cmd_flags before releasing scheduler lock, because rq
4498 * may disappear afterwards (for example, because of a request
4499 * merge).
4500 */
4501 cmd_flags = rq->cmd_flags;
9b25bd03 4502
6fa3e8d3 4503 spin_unlock_irq(&bfqd->lock);
24bfd19b 4504
9b25bd03
PV
4505 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
4506 cmd_flags);
aee69d78
PV
4507}
4508
4509static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4510 struct list_head *list, bool at_head)
4511{
4512 while (!list_empty(list)) {
4513 struct request *rq;
4514
4515 rq = list_first_entry(list, struct request, queuelist);
4516 list_del_init(&rq->queuelist);
4517 bfq_insert_request(hctx, rq, at_head);
4518 }
4519}
4520
4521static void bfq_update_hw_tag(struct bfq_data *bfqd)
4522{
4523 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4524 bfqd->rq_in_driver);
4525
4526 if (bfqd->hw_tag == 1)
4527 return;
4528
4529 /*
4530 * This sample is valid if the number of outstanding requests
4531 * is large enough to allow a queueing behavior. Note that the
4532 * sum is not exact, as it's not taking into account deactivated
4533 * requests.
4534 */
4535 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4536 return;
4537
4538 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4539 return;
4540
4541 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4542 bfqd->max_rq_in_driver = 0;
4543 bfqd->hw_tag_samples = 0;
4544}
4545
4546static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4547{
ab0e43e9
PV
4548 u64 now_ns;
4549 u32 delta_us;
4550
aee69d78
PV
4551 bfq_update_hw_tag(bfqd);
4552
4553 bfqd->rq_in_driver--;
4554 bfqq->dispatched--;
4555
44e44a1b
PV
4556 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4557 /*
4558 * Set budget_timeout (which we overload to store the
4559 * time at which the queue remains with no backlog and
4560 * no outstanding request; used by the weight-raising
4561 * mechanism).
4562 */
4563 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
4564
4565 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4566 &bfqd->queue_weights_tree);
44e44a1b
PV
4567 }
4568
ab0e43e9
PV
4569 now_ns = ktime_get_ns();
4570
4571 bfqq->ttime.last_end_request = now_ns;
4572
4573 /*
4574 * Using us instead of ns, to get a reasonable precision in
4575 * computing rate in next check.
4576 */
4577 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4578
4579 /*
4580 * If the request took rather long to complete, and, according
4581 * to the maximum request size recorded, this completion latency
4582 * implies that the request was certainly served at a very low
4583 * rate (less than 1M sectors/sec), then the whole observation
4584 * interval that lasts up to this time instant cannot be a
4585 * valid time interval for computing a new peak rate. Invoke
4586 * bfq_update_rate_reset to have the following three steps
4587 * taken:
4588 * - close the observation interval at the last (previous)
4589 * request dispatch or completion
4590 * - compute rate, if possible, for that observation interval
4591 * - reset to zero samples, which will trigger a proper
4592 * re-initialization of the observation interval on next
4593 * dispatch
4594 */
4595 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4596 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4597 1UL<<(BFQ_RATE_SHIFT - 10))
4598 bfq_update_rate_reset(bfqd, NULL);
4599 bfqd->last_completion = now_ns;
aee69d78 4600
77b7dcea
PV
4601 /*
4602 * If we are waiting to discover whether the request pattern
4603 * of the task associated with the queue is actually
4604 * isochronous, and both requisites for this condition to hold
4605 * are now satisfied, then compute soft_rt_next_start (see the
4606 * comments on the function bfq_bfqq_softrt_next_start()). We
4607 * schedule this delayed check when bfqq expires, if it still
4608 * has in-flight requests.
4609 */
4610 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4611 RB_EMPTY_ROOT(&bfqq->sort_list))
4612 bfqq->soft_rt_next_start =
4613 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4614
aee69d78
PV
4615 /*
4616 * If this is the in-service queue, check if it needs to be expired,
4617 * or if we want to idle in case it has no pending requests.
4618 */
4619 if (bfqd->in_service_queue == bfqq) {
44e44a1b 4620 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
4621 bfq_arm_slice_timer(bfqd);
4622 return;
4623 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4624 bfq_bfqq_expire(bfqd, bfqq, false,
4625 BFQQE_BUDGET_TIMEOUT);
4626 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4627 (bfqq->dispatched == 0 ||
4628 !bfq_bfqq_may_idle(bfqq)))
4629 bfq_bfqq_expire(bfqd, bfqq, false,
4630 BFQQE_NO_MORE_REQUESTS);
4631 }
3f7cb4f4
HT
4632
4633 if (!bfqd->rq_in_driver)
4634 bfq_schedule_dispatch(bfqd);
aee69d78
PV
4635}
4636
8993d445 4637static void bfq_finish_request_body(struct bfq_queue *bfqq)
aee69d78
PV
4638{
4639 bfqq->allocated--;
4640
4641 bfq_put_queue(bfqq);
4642}
4643
7b9e9361 4644static void bfq_finish_request(struct request *rq)
aee69d78 4645{
5bbf4e5a
CH
4646 struct bfq_queue *bfqq;
4647 struct bfq_data *bfqd;
4648
4649 if (!rq->elv.icq)
4650 return;
4651
4652 bfqq = RQ_BFQQ(rq);
4653 bfqd = bfqq->bfqd;
aee69d78 4654
e21b7a0b
AA
4655 if (rq->rq_flags & RQF_STARTED)
4656 bfqg_stats_update_completion(bfqq_group(bfqq),
4657 rq_start_time_ns(rq),
4658 rq_io_start_time_ns(rq),
4659 rq->cmd_flags);
aee69d78
PV
4660
4661 if (likely(rq->rq_flags & RQF_STARTED)) {
4662 unsigned long flags;
4663
4664 spin_lock_irqsave(&bfqd->lock, flags);
4665
4666 bfq_completed_request(bfqq, bfqd);
8993d445 4667 bfq_finish_request_body(bfqq);
aee69d78 4668
6fa3e8d3 4669 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4670 } else {
4671 /*
4672 * Request rq may be still/already in the scheduler,
4673 * in which case we need to remove it. And we cannot
4674 * defer such a check and removal, to avoid
4675 * inconsistencies in the time interval from the end
4676 * of this function to the start of the deferred work.
4677 * This situation seems to occur only in process
4678 * context, as a consequence of a merge. In the
4679 * current version of the code, this implies that the
4680 * lock is held.
4681 */
4682
614822f8 4683 if (!RB_EMPTY_NODE(&rq->rb_node)) {
7b9e9361 4684 bfq_remove_request(rq->q, rq);
614822f8
LM
4685 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4686 rq->cmd_flags);
4687 }
8993d445 4688 bfq_finish_request_body(bfqq);
aee69d78
PV
4689 }
4690
4691 rq->elv.priv[0] = NULL;
4692 rq->elv.priv[1] = NULL;
4693}
4694
36eca894
AA
4695/*
4696 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4697 * was the last process referring to that bfqq.
4698 */
4699static struct bfq_queue *
4700bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4701{
4702 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4703
4704 if (bfqq_process_refs(bfqq) == 1) {
4705 bfqq->pid = current->pid;
4706 bfq_clear_bfqq_coop(bfqq);
4707 bfq_clear_bfqq_split_coop(bfqq);
4708 return bfqq;
4709 }
4710
4711 bic_set_bfqq(bic, NULL, 1);
4712
4713 bfq_put_cooperator(bfqq);
4714
4715 bfq_put_queue(bfqq);
4716 return NULL;
4717}
4718
4719static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4720 struct bfq_io_cq *bic,
4721 struct bio *bio,
4722 bool split, bool is_sync,
4723 bool *new_queue)
4724{
4725 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4726
4727 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4728 return bfqq;
4729
4730 if (new_queue)
4731 *new_queue = true;
4732
4733 if (bfqq)
4734 bfq_put_queue(bfqq);
4735 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4736
4737 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4738 if (split && is_sync) {
4739 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4740 bic->saved_in_large_burst)
4741 bfq_mark_bfqq_in_large_burst(bfqq);
4742 else {
4743 bfq_clear_bfqq_in_large_burst(bfqq);
4744 if (bic->was_in_burst_list)
99fead8d
PV
4745 /*
4746 * If bfqq was in the current
4747 * burst list before being
4748 * merged, then we have to add
4749 * it back. And we do not need
4750 * to increase burst_size, as
4751 * we did not decrement
4752 * burst_size when we removed
4753 * bfqq from the burst list as
4754 * a consequence of a merge
4755 * (see comments in
4756 * bfq_put_queue). In this
4757 * respect, it would be rather
4758 * costly to know whether the
4759 * current burst list is still
4760 * the same burst list from
4761 * which bfqq was removed on
4762 * the merge. To avoid this
4763 * cost, if bfqq was in a
4764 * burst list, then we add
4765 * bfqq to the current burst
4766 * list without any further
4767 * check. This can cause
4768 * inappropriate insertions,
4769 * but rarely enough to not
4770 * harm the detection of large
4771 * bursts significantly.
4772 */
e1b2324d
AA
4773 hlist_add_head(&bfqq->burst_list_node,
4774 &bfqd->burst_list);
4775 }
36eca894 4776 bfqq->split_time = jiffies;
e1b2324d 4777 }
36eca894
AA
4778
4779 return bfqq;
4780}
4781
aee69d78
PV
4782/*
4783 * Allocate bfq data structures associated with this request.
4784 */
5bbf4e5a 4785static void bfq_prepare_request(struct request *rq, struct bio *bio)
aee69d78 4786{
5bbf4e5a 4787 struct request_queue *q = rq->q;
aee69d78 4788 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 4789 struct bfq_io_cq *bic;
aee69d78
PV
4790 const int is_sync = rq_is_sync(rq);
4791 struct bfq_queue *bfqq;
36eca894 4792 bool new_queue = false;
13c931bd 4793 bool bfqq_already_existing = false, split = false;
aee69d78 4794
9f210738 4795 if (!rq->elv.icq)
5bbf4e5a 4796 return;
9f210738 4797 bic = icq_to_bic(rq->elv.icq);
aee69d78 4798
9f210738 4799 spin_lock_irq(&bfqd->lock);
aee69d78 4800
8c9ff1ad
CIK
4801 bfq_check_ioprio_change(bic, bio);
4802
e21b7a0b
AA
4803 bfq_bic_update_cgroup(bic, bio);
4804
36eca894
AA
4805 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4806 &new_queue);
4807
4808 if (likely(!new_queue)) {
4809 /* If the queue was seeky for too long, break it apart. */
4810 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4811 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
4812
4813 /* Update bic before losing reference to bfqq */
4814 if (bfq_bfqq_in_large_burst(bfqq))
4815 bic->saved_in_large_burst = true;
4816
36eca894 4817 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 4818 split = true;
36eca894
AA
4819
4820 if (!bfqq)
4821 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4822 true, is_sync,
4823 NULL);
13c931bd
PV
4824 else
4825 bfqq_already_existing = true;
36eca894 4826 }
aee69d78
PV
4827 }
4828
4829 bfqq->allocated++;
4830 bfqq->ref++;
4831 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4832 rq, bfqq, bfqq->ref);
4833
4834 rq->elv.priv[0] = bic;
4835 rq->elv.priv[1] = bfqq;
4836
36eca894
AA
4837 /*
4838 * If a bfq_queue has only one process reference, it is owned
4839 * by only this bic: we can then set bfqq->bic = bic. in
4840 * addition, if the queue has also just been split, we have to
4841 * resume its state.
4842 */
4843 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4844 bfqq->bic = bic;
6fa3e8d3 4845 if (split) {
36eca894
AA
4846 /*
4847 * The queue has just been split from a shared
4848 * queue: restore the idle window and the
4849 * possible weight raising period.
4850 */
13c931bd
PV
4851 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4852 bfqq_already_existing);
36eca894
AA
4853 }
4854 }
4855
e1b2324d
AA
4856 if (unlikely(bfq_bfqq_just_created(bfqq)))
4857 bfq_handle_burst(bfqd, bfqq);
4858
6fa3e8d3 4859 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4860}
4861
4862static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4863{
4864 struct bfq_data *bfqd = bfqq->bfqd;
4865 enum bfqq_expiration reason;
4866 unsigned long flags;
4867
4868 spin_lock_irqsave(&bfqd->lock, flags);
4869 bfq_clear_bfqq_wait_request(bfqq);
4870
4871 if (bfqq != bfqd->in_service_queue) {
4872 spin_unlock_irqrestore(&bfqd->lock, flags);
4873 return;
4874 }
4875
4876 if (bfq_bfqq_budget_timeout(bfqq))
4877 /*
4878 * Also here the queue can be safely expired
4879 * for budget timeout without wasting
4880 * guarantees
4881 */
4882 reason = BFQQE_BUDGET_TIMEOUT;
4883 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4884 /*
4885 * The queue may not be empty upon timer expiration,
4886 * because we may not disable the timer when the
4887 * first request of the in-service queue arrives
4888 * during disk idling.
4889 */
4890 reason = BFQQE_TOO_IDLE;
4891 else
4892 goto schedule_dispatch;
4893
4894 bfq_bfqq_expire(bfqd, bfqq, true, reason);
4895
4896schedule_dispatch:
6fa3e8d3 4897 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4898 bfq_schedule_dispatch(bfqd);
4899}
4900
4901/*
4902 * Handler of the expiration of the timer running if the in-service queue
4903 * is idling inside its time slice.
4904 */
4905static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4906{
4907 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4908 idle_slice_timer);
4909 struct bfq_queue *bfqq = bfqd->in_service_queue;
4910
4911 /*
4912 * Theoretical race here: the in-service queue can be NULL or
4913 * different from the queue that was idling if a new request
4914 * arrives for the current queue and there is a full dispatch
4915 * cycle that changes the in-service queue. This can hardly
4916 * happen, but in the worst case we just expire a queue too
4917 * early.
4918 */
4919 if (bfqq)
4920 bfq_idle_slice_timer_body(bfqq);
4921
4922 return HRTIMER_NORESTART;
4923}
4924
4925static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4926 struct bfq_queue **bfqq_ptr)
4927{
4928 struct bfq_queue *bfqq = *bfqq_ptr;
4929
4930 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4931 if (bfqq) {
e21b7a0b
AA
4932 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4933
aee69d78
PV
4934 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4935 bfqq, bfqq->ref);
4936 bfq_put_queue(bfqq);
4937 *bfqq_ptr = NULL;
4938 }
4939}
4940
4941/*
e21b7a0b
AA
4942 * Release all the bfqg references to its async queues. If we are
4943 * deallocating the group these queues may still contain requests, so
4944 * we reparent them to the root cgroup (i.e., the only one that will
4945 * exist for sure until all the requests on a device are gone).
aee69d78 4946 */
ea25da48 4947void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
4948{
4949 int i, j;
4950
4951 for (i = 0; i < 2; i++)
4952 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 4953 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 4954
e21b7a0b 4955 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
4956}
4957
4958static void bfq_exit_queue(struct elevator_queue *e)
4959{
4960 struct bfq_data *bfqd = e->elevator_data;
4961 struct bfq_queue *bfqq, *n;
4962
4963 hrtimer_cancel(&bfqd->idle_slice_timer);
4964
4965 spin_lock_irq(&bfqd->lock);
4966 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 4967 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
4968 spin_unlock_irq(&bfqd->lock);
4969
4970 hrtimer_cancel(&bfqd->idle_slice_timer);
4971
8abef10b 4972#ifdef CONFIG_BFQ_GROUP_IOSCHED
0d52af59
PV
4973 /* release oom-queue reference to root group */
4974 bfqg_and_blkg_put(bfqd->root_group);
4975
e21b7a0b
AA
4976 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4977#else
4978 spin_lock_irq(&bfqd->lock);
4979 bfq_put_async_queues(bfqd, bfqd->root_group);
4980 kfree(bfqd->root_group);
4981 spin_unlock_irq(&bfqd->lock);
4982#endif
4983
aee69d78
PV
4984 kfree(bfqd);
4985}
4986
e21b7a0b
AA
4987static void bfq_init_root_group(struct bfq_group *root_group,
4988 struct bfq_data *bfqd)
4989{
4990 int i;
4991
4992#ifdef CONFIG_BFQ_GROUP_IOSCHED
4993 root_group->entity.parent = NULL;
4994 root_group->my_entity = NULL;
4995 root_group->bfqd = bfqd;
4996#endif
36eca894 4997 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
4998 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4999 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
5000 root_group->sched_data.bfq_class_idle_last_service = jiffies;
5001}
5002
aee69d78
PV
5003static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
5004{
5005 struct bfq_data *bfqd;
5006 struct elevator_queue *eq;
aee69d78
PV
5007
5008 eq = elevator_alloc(q, e);
5009 if (!eq)
5010 return -ENOMEM;
5011
5012 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
5013 if (!bfqd) {
5014 kobject_put(&eq->kobj);
5015 return -ENOMEM;
5016 }
5017 eq->elevator_data = bfqd;
5018
e21b7a0b
AA
5019 spin_lock_irq(q->queue_lock);
5020 q->elevator = eq;
5021 spin_unlock_irq(q->queue_lock);
5022
aee69d78
PV
5023 /*
5024 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
5025 * Grab a permanent reference to it, so that the normal code flow
5026 * will not attempt to free it.
5027 */
5028 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
5029 bfqd->oom_bfqq.ref++;
5030 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
5031 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
5032 bfqd->oom_bfqq.entity.new_weight =
5033 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
5034
5035 /* oom_bfqq does not participate to bursts */
5036 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
5037
aee69d78
PV
5038 /*
5039 * Trigger weight initialization, according to ioprio, at the
5040 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
5041 * class won't be changed any more.
5042 */
5043 bfqd->oom_bfqq.entity.prio_changed = 1;
5044
5045 bfqd->queue = q;
5046
e21b7a0b 5047 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
5048
5049 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
5050 HRTIMER_MODE_REL);
5051 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
5052
1de0c4cd
AA
5053 bfqd->queue_weights_tree = RB_ROOT;
5054 bfqd->group_weights_tree = RB_ROOT;
5055
aee69d78
PV
5056 INIT_LIST_HEAD(&bfqd->active_list);
5057 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 5058 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
5059
5060 bfqd->hw_tag = -1;
5061
5062 bfqd->bfq_max_budget = bfq_default_max_budget;
5063
5064 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
5065 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
5066 bfqd->bfq_back_max = bfq_back_max;
5067 bfqd->bfq_back_penalty = bfq_back_penalty;
5068 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
5069 bfqd->bfq_timeout = bfq_timeout;
5070
5071 bfqd->bfq_requests_within_timer = 120;
5072
e1b2324d
AA
5073 bfqd->bfq_large_burst_thresh = 8;
5074 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
5075
44e44a1b
PV
5076 bfqd->low_latency = true;
5077
5078 /*
5079 * Trade-off between responsiveness and fairness.
5080 */
5081 bfqd->bfq_wr_coeff = 30;
77b7dcea 5082 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
5083 bfqd->bfq_wr_max_time = 0;
5084 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
5085 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
5086 bfqd->bfq_wr_max_softrt_rate = 7000; /*
5087 * Approximate rate required
5088 * to playback or record a
5089 * high-definition compressed
5090 * video.
5091 */
cfd69712 5092 bfqd->wr_busy_queues = 0;
44e44a1b
PV
5093
5094 /*
5095 * Begin by assuming, optimistically, that the device is a
5096 * high-speed one, and that its peak rate is equal to 2/3 of
5097 * the highest reference rate.
5098 */
5099 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
5100 T_fast[blk_queue_nonrot(bfqd->queue)];
5101 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
5102 bfqd->device_speed = BFQ_BFQD_FAST;
5103
aee69d78 5104 spin_lock_init(&bfqd->lock);
aee69d78 5105
e21b7a0b
AA
5106 /*
5107 * The invocation of the next bfq_create_group_hierarchy
5108 * function is the head of a chain of function calls
5109 * (bfq_create_group_hierarchy->blkcg_activate_policy->
5110 * blk_mq_freeze_queue) that may lead to the invocation of the
5111 * has_work hook function. For this reason,
5112 * bfq_create_group_hierarchy is invoked only after all
5113 * scheduler data has been initialized, apart from the fields
5114 * that can be initialized only after invoking
5115 * bfq_create_group_hierarchy. This, in particular, enables
5116 * has_work to correctly return false. Of course, to avoid
5117 * other inconsistencies, the blk-mq stack must then refrain
5118 * from invoking further scheduler hooks before this init
5119 * function is finished.
5120 */
5121 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
5122 if (!bfqd->root_group)
5123 goto out_free;
5124 bfq_init_root_group(bfqd->root_group, bfqd);
5125 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
5126
b5dc5d4d 5127 wbt_disable_default(q);
aee69d78 5128 return 0;
e21b7a0b
AA
5129
5130out_free:
5131 kfree(bfqd);
5132 kobject_put(&eq->kobj);
5133 return -ENOMEM;
aee69d78
PV
5134}
5135
5136static void bfq_slab_kill(void)
5137{
5138 kmem_cache_destroy(bfq_pool);
5139}
5140
5141static int __init bfq_slab_setup(void)
5142{
5143 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5144 if (!bfq_pool)
5145 return -ENOMEM;
5146 return 0;
5147}
5148
5149static ssize_t bfq_var_show(unsigned int var, char *page)
5150{
5151 return sprintf(page, "%u\n", var);
5152}
5153
2f79136b 5154static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
5155{
5156 unsigned long new_val;
5157 int ret = kstrtoul(page, 10, &new_val);
5158
2f79136b
BVA
5159 if (ret)
5160 return ret;
5161 *var = new_val;
5162 return 0;
aee69d78
PV
5163}
5164
5165#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5166static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5167{ \
5168 struct bfq_data *bfqd = e->elevator_data; \
5169 u64 __data = __VAR; \
5170 if (__CONV == 1) \
5171 __data = jiffies_to_msecs(__data); \
5172 else if (__CONV == 2) \
5173 __data = div_u64(__data, NSEC_PER_MSEC); \
5174 return bfq_var_show(__data, (page)); \
5175}
5176SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5177SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5178SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5179SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5180SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5181SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5182SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5183SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 5184SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
5185#undef SHOW_FUNCTION
5186
5187#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5188static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5189{ \
5190 struct bfq_data *bfqd = e->elevator_data; \
5191 u64 __data = __VAR; \
5192 __data = div_u64(__data, NSEC_PER_USEC); \
5193 return bfq_var_show(__data, (page)); \
5194}
5195USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5196#undef USEC_SHOW_FUNCTION
5197
5198#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5199static ssize_t \
5200__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5201{ \
5202 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5203 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5204 int ret; \
5205 \
5206 ret = bfq_var_store(&__data, (page)); \
5207 if (ret) \
5208 return ret; \
1530486c
BVA
5209 if (__data < __min) \
5210 __data = __min; \
5211 else if (__data > __max) \
5212 __data = __max; \
aee69d78
PV
5213 if (__CONV == 1) \
5214 *(__PTR) = msecs_to_jiffies(__data); \
5215 else if (__CONV == 2) \
5216 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5217 else \
5218 *(__PTR) = __data; \
235f8da1 5219 return count; \
aee69d78
PV
5220}
5221STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5222 INT_MAX, 2);
5223STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5224 INT_MAX, 2);
5225STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5226STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5227 INT_MAX, 0);
5228STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5229#undef STORE_FUNCTION
5230
5231#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5232static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5233{ \
5234 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5235 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5236 int ret; \
5237 \
5238 ret = bfq_var_store(&__data, (page)); \
5239 if (ret) \
5240 return ret; \
1530486c
BVA
5241 if (__data < __min) \
5242 __data = __min; \
5243 else if (__data > __max) \
5244 __data = __max; \
aee69d78 5245 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 5246 return count; \
aee69d78
PV
5247}
5248USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5249 UINT_MAX);
5250#undef USEC_STORE_FUNCTION
5251
aee69d78
PV
5252static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5253 const char *page, size_t count)
5254{
5255 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5256 unsigned long __data;
5257 int ret;
235f8da1 5258
2f79136b
BVA
5259 ret = bfq_var_store(&__data, (page));
5260 if (ret)
5261 return ret;
aee69d78
PV
5262
5263 if (__data == 0)
ab0e43e9 5264 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
5265 else {
5266 if (__data > INT_MAX)
5267 __data = INT_MAX;
5268 bfqd->bfq_max_budget = __data;
5269 }
5270
5271 bfqd->bfq_user_max_budget = __data;
5272
235f8da1 5273 return count;
aee69d78
PV
5274}
5275
5276/*
5277 * Leaving this name to preserve name compatibility with cfq
5278 * parameters, but this timeout is used for both sync and async.
5279 */
5280static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5281 const char *page, size_t count)
5282{
5283 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5284 unsigned long __data;
5285 int ret;
235f8da1 5286
2f79136b
BVA
5287 ret = bfq_var_store(&__data, (page));
5288 if (ret)
5289 return ret;
aee69d78
PV
5290
5291 if (__data < 1)
5292 __data = 1;
5293 else if (__data > INT_MAX)
5294 __data = INT_MAX;
5295
5296 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5297 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 5298 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 5299
235f8da1 5300 return count;
aee69d78
PV
5301}
5302
5303static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5304 const char *page, size_t count)
5305{
5306 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5307 unsigned long __data;
5308 int ret;
235f8da1 5309
2f79136b
BVA
5310 ret = bfq_var_store(&__data, (page));
5311 if (ret)
5312 return ret;
aee69d78
PV
5313
5314 if (__data > 1)
5315 __data = 1;
5316 if (!bfqd->strict_guarantees && __data == 1
5317 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5318 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5319
5320 bfqd->strict_guarantees = __data;
5321
235f8da1 5322 return count;
aee69d78
PV
5323}
5324
44e44a1b
PV
5325static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5326 const char *page, size_t count)
5327{
5328 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5329 unsigned long __data;
5330 int ret;
235f8da1 5331
2f79136b
BVA
5332 ret = bfq_var_store(&__data, (page));
5333 if (ret)
5334 return ret;
44e44a1b
PV
5335
5336 if (__data > 1)
5337 __data = 1;
5338 if (__data == 0 && bfqd->low_latency != 0)
5339 bfq_end_wr(bfqd);
5340 bfqd->low_latency = __data;
5341
235f8da1 5342 return count;
44e44a1b
PV
5343}
5344
aee69d78
PV
5345#define BFQ_ATTR(name) \
5346 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5347
5348static struct elv_fs_entry bfq_attrs[] = {
5349 BFQ_ATTR(fifo_expire_sync),
5350 BFQ_ATTR(fifo_expire_async),
5351 BFQ_ATTR(back_seek_max),
5352 BFQ_ATTR(back_seek_penalty),
5353 BFQ_ATTR(slice_idle),
5354 BFQ_ATTR(slice_idle_us),
5355 BFQ_ATTR(max_budget),
5356 BFQ_ATTR(timeout_sync),
5357 BFQ_ATTR(strict_guarantees),
44e44a1b 5358 BFQ_ATTR(low_latency),
aee69d78
PV
5359 __ATTR_NULL
5360};
5361
5362static struct elevator_type iosched_bfq_mq = {
5363 .ops.mq = {
a52a69ea 5364 .limit_depth = bfq_limit_depth,
5bbf4e5a 5365 .prepare_request = bfq_prepare_request,
7b9e9361 5366 .finish_request = bfq_finish_request,
aee69d78
PV
5367 .exit_icq = bfq_exit_icq,
5368 .insert_requests = bfq_insert_requests,
5369 .dispatch_request = bfq_dispatch_request,
5370 .next_request = elv_rb_latter_request,
5371 .former_request = elv_rb_former_request,
5372 .allow_merge = bfq_allow_bio_merge,
5373 .bio_merge = bfq_bio_merge,
5374 .request_merge = bfq_request_merge,
5375 .requests_merged = bfq_requests_merged,
5376 .request_merged = bfq_request_merged,
5377 .has_work = bfq_has_work,
5378 .init_sched = bfq_init_queue,
5379 .exit_sched = bfq_exit_queue,
5380 },
5381
5382 .uses_mq = true,
5383 .icq_size = sizeof(struct bfq_io_cq),
5384 .icq_align = __alignof__(struct bfq_io_cq),
5385 .elevator_attrs = bfq_attrs,
5386 .elevator_name = "bfq",
5387 .elevator_owner = THIS_MODULE,
5388};
26b4cf24 5389MODULE_ALIAS("bfq-iosched");
aee69d78
PV
5390
5391static int __init bfq_init(void)
5392{
5393 int ret;
5394
e21b7a0b
AA
5395#ifdef CONFIG_BFQ_GROUP_IOSCHED
5396 ret = blkcg_policy_register(&blkcg_policy_bfq);
5397 if (ret)
5398 return ret;
5399#endif
5400
aee69d78
PV
5401 ret = -ENOMEM;
5402 if (bfq_slab_setup())
5403 goto err_pol_unreg;
5404
44e44a1b
PV
5405 /*
5406 * Times to load large popular applications for the typical
5407 * systems installed on the reference devices (see the
5408 * comments before the definitions of the next two
5409 * arrays). Actually, we use slightly slower values, as the
5410 * estimated peak rate tends to be smaller than the actual
5411 * peak rate. The reason for this last fact is that estimates
5412 * are computed over much shorter time intervals than the long
5413 * intervals typically used for benchmarking. Why? First, to
5414 * adapt more quickly to variations. Second, because an I/O
5415 * scheduler cannot rely on a peak-rate-evaluation workload to
5416 * be run for a long time.
5417 */
5418 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5419 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5420 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5421 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5422
5423 /*
5424 * Thresholds that determine the switch between speed classes
5425 * (see the comments before the definition of the array
5426 * device_speed_thresh). These thresholds are biased towards
5427 * transitions to the fast class. This is safer than the
5428 * opposite bias. In fact, a wrong transition to the slow
5429 * class results in short weight-raising periods, because the
5430 * speed of the device then tends to be higher that the
5431 * reference peak rate. On the opposite end, a wrong
5432 * transition to the fast class tends to increase
5433 * weight-raising periods, because of the opposite reason.
5434 */
5435 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5436 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5437
aee69d78
PV
5438 ret = elv_register(&iosched_bfq_mq);
5439 if (ret)
37dcd657 5440 goto slab_kill;
aee69d78
PV
5441
5442 return 0;
5443
37dcd657 5444slab_kill:
5445 bfq_slab_kill();
aee69d78 5446err_pol_unreg:
e21b7a0b
AA
5447#ifdef CONFIG_BFQ_GROUP_IOSCHED
5448 blkcg_policy_unregister(&blkcg_policy_bfq);
5449#endif
aee69d78
PV
5450 return ret;
5451}
5452
5453static void __exit bfq_exit(void)
5454{
5455 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5456#ifdef CONFIG_BFQ_GROUP_IOSCHED
5457 blkcg_policy_unregister(&blkcg_policy_bfq);
5458#endif
aee69d78
PV
5459 bfq_slab_kill();
5460}
5461
5462module_init(bfq_init);
5463module_exit(bfq_exit);
5464
5465MODULE_AUTHOR("Paolo Valente");
5466MODULE_LICENSE("GPL");
5467MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");