blk-wbt: make sure throttle is enabled properly
[linux-2.6-block.git] / block / bfq-iosched.c
CommitLineData
a497ee34 1// SPDX-License-Identifier: GPL-2.0-or-later
aee69d78
PV
2/*
3 * Budget Fair Queueing (BFQ) I/O scheduler.
4 *
5 * Based on ideas and code from CFQ:
6 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
7 *
8 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
9 * Paolo Valente <paolo.valente@unimore.it>
10 *
11 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
12 * Arianna Avanzini <avanzini@google.com>
13 *
14 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
15 *
aee69d78
PV
16 * BFQ is a proportional-share I/O scheduler, with some extra
17 * low-latency capabilities. BFQ also supports full hierarchical
18 * scheduling through cgroups. Next paragraphs provide an introduction
19 * on BFQ inner workings. Details on BFQ benefits, usage and
898bd37a 20 * limitations can be found in Documentation/block/bfq-iosched.rst.
aee69d78
PV
21 *
22 * BFQ is a proportional-share storage-I/O scheduling algorithm based
23 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
24 * budgets, measured in number of sectors, to processes instead of
25 * time slices. The device is not granted to the in-service process
26 * for a given time slice, but until it has exhausted its assigned
27 * budget. This change from the time to the service domain enables BFQ
28 * to distribute the device throughput among processes as desired,
29 * without any distortion due to throughput fluctuations, or to device
30 * internal queueing. BFQ uses an ad hoc internal scheduler, called
31 * B-WF2Q+, to schedule processes according to their budgets. More
32 * precisely, BFQ schedules queues associated with processes. Each
33 * process/queue is assigned a user-configurable weight, and B-WF2Q+
34 * guarantees that each queue receives a fraction of the throughput
35 * proportional to its weight. Thanks to the accurate policy of
36 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
37 * processes issuing sequential requests (to boost the throughput),
38 * and yet guarantee a low latency to interactive and soft real-time
39 * applications.
40 *
41 * In particular, to provide these low-latency guarantees, BFQ
42 * explicitly privileges the I/O of two classes of time-sensitive
4029eef1
PV
43 * applications: interactive and soft real-time. In more detail, BFQ
44 * behaves this way if the low_latency parameter is set (default
45 * configuration). This feature enables BFQ to provide applications in
46 * these classes with a very low latency.
47 *
48 * To implement this feature, BFQ constantly tries to detect whether
49 * the I/O requests in a bfq_queue come from an interactive or a soft
50 * real-time application. For brevity, in these cases, the queue is
51 * said to be interactive or soft real-time. In both cases, BFQ
52 * privileges the service of the queue, over that of non-interactive
53 * and non-soft-real-time queues. This privileging is performed,
54 * mainly, by raising the weight of the queue. So, for brevity, we
55 * call just weight-raising periods the time periods during which a
56 * queue is privileged, because deemed interactive or soft real-time.
57 *
58 * The detection of soft real-time queues/applications is described in
59 * detail in the comments on the function
60 * bfq_bfqq_softrt_next_start. On the other hand, the detection of an
61 * interactive queue works as follows: a queue is deemed interactive
62 * if it is constantly non empty only for a limited time interval,
63 * after which it does become empty. The queue may be deemed
64 * interactive again (for a limited time), if it restarts being
65 * constantly non empty, provided that this happens only after the
66 * queue has remained empty for a given minimum idle time.
67 *
68 * By default, BFQ computes automatically the above maximum time
69 * interval, i.e., the time interval after which a constantly
70 * non-empty queue stops being deemed interactive. Since a queue is
71 * weight-raised while it is deemed interactive, this maximum time
72 * interval happens to coincide with the (maximum) duration of the
73 * weight-raising for interactive queues.
74 *
75 * Finally, BFQ also features additional heuristics for
aee69d78
PV
76 * preserving both a low latency and a high throughput on NCQ-capable,
77 * rotational or flash-based devices, and to get the job done quickly
78 * for applications consisting in many I/O-bound processes.
79 *
43c1b3d6
PV
80 * NOTE: if the main or only goal, with a given device, is to achieve
81 * the maximum-possible throughput at all times, then do switch off
82 * all low-latency heuristics for that device, by setting low_latency
83 * to 0.
84 *
4029eef1
PV
85 * BFQ is described in [1], where also a reference to the initial,
86 * more theoretical paper on BFQ can be found. The interested reader
87 * can find in the latter paper full details on the main algorithm, as
88 * well as formulas of the guarantees and formal proofs of all the
89 * properties. With respect to the version of BFQ presented in these
90 * papers, this implementation adds a few more heuristics, such as the
91 * ones that guarantee a low latency to interactive and soft real-time
92 * applications, and a hierarchical extension based on H-WF2Q+.
aee69d78
PV
93 *
94 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
95 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
96 * with O(log N) complexity derives from the one introduced with EEVDF
97 * in [3].
98 *
99 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
100 * Scheduler", Proceedings of the First Workshop on Mobile System
101 * Technologies (MST-2015), May 2015.
102 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
103 *
104 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
105 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
106 * Oct 1997.
107 *
108 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
109 *
110 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
111 * First: A Flexible and Accurate Mechanism for Proportional Share
112 * Resource Allocation", technical report.
113 *
114 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
115 */
116#include <linux/module.h>
117#include <linux/slab.h>
118#include <linux/blkdev.h>
e21b7a0b 119#include <linux/cgroup.h>
aee69d78
PV
120#include <linux/elevator.h>
121#include <linux/ktime.h>
122#include <linux/rbtree.h>
123#include <linux/ioprio.h>
124#include <linux/sbitmap.h>
125#include <linux/delay.h>
d51cfc53 126#include <linux/backing-dev.h>
aee69d78 127
b357e4a6
CK
128#include <trace/events/block.h>
129
aee69d78
PV
130#include "blk.h"
131#include "blk-mq.h"
132#include "blk-mq-tag.h"
133#include "blk-mq-sched.h"
ea25da48 134#include "bfq-iosched.h"
b5dc5d4d 135#include "blk-wbt.h"
aee69d78 136
ea25da48
PV
137#define BFQ_BFQQ_FNS(name) \
138void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
139{ \
140 __set_bit(BFQQF_##name, &(bfqq)->flags); \
141} \
142void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
143{ \
144 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
145} \
146int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
147{ \
148 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
149}
150
ea25da48
PV
151BFQ_BFQQ_FNS(just_created);
152BFQ_BFQQ_FNS(busy);
153BFQ_BFQQ_FNS(wait_request);
154BFQ_BFQQ_FNS(non_blocking_wait_rq);
155BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 156BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
157BFQ_BFQQ_FNS(sync);
158BFQ_BFQQ_FNS(IO_bound);
159BFQ_BFQQ_FNS(in_large_burst);
160BFQ_BFQQ_FNS(coop);
161BFQ_BFQQ_FNS(split_coop);
162BFQ_BFQQ_FNS(softrt_update);
163#undef BFQ_BFQQ_FNS \
aee69d78 164
4168a8d2 165/* Expiration time of async (0) and sync (1) requests, in ns. */
ea25da48 166static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 167
ea25da48
PV
168/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
169static const int bfq_back_max = 16 * 1024;
aee69d78 170
ea25da48
PV
171/* Penalty of a backwards seek, in number of sectors. */
172static const int bfq_back_penalty = 2;
e21b7a0b 173
ea25da48
PV
174/* Idling period duration, in ns. */
175static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 176
ea25da48
PV
177/* Minimum number of assigned budgets for which stats are safe to compute. */
178static const int bfq_stats_min_budgets = 194;
aee69d78 179
ea25da48
PV
180/* Default maximum budget values, in sectors and number of requests. */
181static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 182
ea25da48 183/*
d5801088
PV
184 * When a sync request is dispatched, the queue that contains that
185 * request, and all the ancestor entities of that queue, are charged
636b8fe8 186 * with the number of sectors of the request. In contrast, if the
d5801088
PV
187 * request is async, then the queue and its ancestor entities are
188 * charged with the number of sectors of the request, multiplied by
189 * the factor below. This throttles the bandwidth for async I/O,
190 * w.r.t. to sync I/O, and it is done to counter the tendency of async
191 * writes to steal I/O throughput to reads.
192 *
193 * The current value of this parameter is the result of a tuning with
194 * several hardware and software configurations. We tried to find the
195 * lowest value for which writes do not cause noticeable problems to
196 * reads. In fact, the lower this parameter, the stabler I/O control,
197 * in the following respect. The lower this parameter is, the less
198 * the bandwidth enjoyed by a group decreases
199 * - when the group does writes, w.r.t. to when it does reads;
200 * - when other groups do reads, w.r.t. to when they do writes.
ea25da48 201 */
d5801088 202static const int bfq_async_charge_factor = 3;
aee69d78 203
ea25da48
PV
204/* Default timeout values, in jiffies, approximating CFQ defaults. */
205const int bfq_timeout = HZ / 8;
aee69d78 206
7b8fa3b9
PV
207/*
208 * Time limit for merging (see comments in bfq_setup_cooperator). Set
209 * to the slowest value that, in our tests, proved to be effective in
210 * removing false positives, while not causing true positives to miss
211 * queue merging.
212 *
213 * As can be deduced from the low time limit below, queue merging, if
636b8fe8 214 * successful, happens at the very beginning of the I/O of the involved
7b8fa3b9
PV
215 * cooperating processes, as a consequence of the arrival of the very
216 * first requests from each cooperator. After that, there is very
217 * little chance to find cooperators.
218 */
219static const unsigned long bfq_merge_time_limit = HZ/10;
220
ea25da48 221static struct kmem_cache *bfq_pool;
e21b7a0b 222
ea25da48
PV
223/* Below this threshold (in ns), we consider thinktime immediate. */
224#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 225
ea25da48 226/* hw_tag detection: parallel requests threshold and min samples needed. */
a3c92560 227#define BFQ_HW_QUEUE_THRESHOLD 3
ea25da48 228#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 229
ea25da48
PV
230#define BFQQ_SEEK_THR (sector_t)(8 * 100)
231#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
d87447d8
PV
232#define BFQ_RQ_SEEKY(bfqd, last_pos, rq) \
233 (get_sdist(last_pos, rq) > \
234 BFQQ_SEEK_THR && \
235 (!blk_queue_nonrot(bfqd->queue) || \
236 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT))
ea25da48 237#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
f0ba5ea2 238#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
7074f076
PV
239/*
240 * Sync random I/O is likely to be confused with soft real-time I/O,
241 * because it is characterized by limited throughput and apparently
242 * isochronous arrival pattern. To avoid false positives, queues
243 * containing only random (seeky) I/O are prevented from being tagged
244 * as soft real-time.
245 */
e6feaf21 246#define BFQQ_TOTALLY_SEEKY(bfqq) (bfqq->seek_history == -1)
aee69d78 247
ea25da48
PV
248/* Min number of samples required to perform peak-rate update */
249#define BFQ_RATE_MIN_SAMPLES 32
250/* Min observation time interval required to perform a peak-rate update (ns) */
251#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
252/* Target observation time interval for a peak-rate update (ns) */
253#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 254
bc56e2ca
PV
255/*
256 * Shift used for peak-rate fixed precision calculations.
257 * With
258 * - the current shift: 16 positions
259 * - the current type used to store rate: u32
260 * - the current unit of measure for rate: [sectors/usec], or, more precisely,
261 * [(sectors/usec) / 2^BFQ_RATE_SHIFT] to take into account the shift,
262 * the range of rates that can be stored is
263 * [1 / 2^BFQ_RATE_SHIFT, 2^(32 - BFQ_RATE_SHIFT)] sectors/usec =
264 * [1 / 2^16, 2^16] sectors/usec = [15e-6, 65536] sectors/usec =
265 * [15, 65G] sectors/sec
266 * Which, assuming a sector size of 512B, corresponds to a range of
267 * [7.5K, 33T] B/sec
268 */
ea25da48 269#define BFQ_RATE_SHIFT 16
aee69d78 270
ea25da48 271/*
4029eef1
PV
272 * When configured for computing the duration of the weight-raising
273 * for interactive queues automatically (see the comments at the
274 * beginning of this file), BFQ does it using the following formula:
e24f1c24
PV
275 * duration = (ref_rate / r) * ref_wr_duration,
276 * where r is the peak rate of the device, and ref_rate and
277 * ref_wr_duration are two reference parameters. In particular,
278 * ref_rate is the peak rate of the reference storage device (see
279 * below), and ref_wr_duration is about the maximum time needed, with
280 * BFQ and while reading two files in parallel, to load typical large
281 * applications on the reference device (see the comments on
282 * max_service_from_wr below, for more details on how ref_wr_duration
283 * is obtained). In practice, the slower/faster the device at hand
284 * is, the more/less it takes to load applications with respect to the
4029eef1
PV
285 * reference device. Accordingly, the longer/shorter BFQ grants
286 * weight raising to interactive applications.
ea25da48 287 *
e24f1c24
PV
288 * BFQ uses two different reference pairs (ref_rate, ref_wr_duration),
289 * depending on whether the device is rotational or non-rotational.
ea25da48 290 *
e24f1c24
PV
291 * In the following definitions, ref_rate[0] and ref_wr_duration[0]
292 * are the reference values for a rotational device, whereas
293 * ref_rate[1] and ref_wr_duration[1] are the reference values for a
294 * non-rotational device. The reference rates are not the actual peak
295 * rates of the devices used as a reference, but slightly lower
296 * values. The reason for using slightly lower values is that the
297 * peak-rate estimator tends to yield slightly lower values than the
298 * actual peak rate (it can yield the actual peak rate only if there
299 * is only one process doing I/O, and the process does sequential
300 * I/O).
ea25da48 301 *
e24f1c24
PV
302 * The reference peak rates are measured in sectors/usec, left-shifted
303 * by BFQ_RATE_SHIFT.
ea25da48 304 */
e24f1c24 305static int ref_rate[2] = {14000, 33000};
ea25da48 306/*
e24f1c24
PV
307 * To improve readability, a conversion function is used to initialize
308 * the following array, which entails that the array can be
309 * initialized only in a function.
ea25da48 310 */
e24f1c24 311static int ref_wr_duration[2];
aee69d78 312
8a8747dc
PV
313/*
314 * BFQ uses the above-detailed, time-based weight-raising mechanism to
315 * privilege interactive tasks. This mechanism is vulnerable to the
316 * following false positives: I/O-bound applications that will go on
317 * doing I/O for much longer than the duration of weight
318 * raising. These applications have basically no benefit from being
319 * weight-raised at the beginning of their I/O. On the opposite end,
320 * while being weight-raised, these applications
321 * a) unjustly steal throughput to applications that may actually need
322 * low latency;
323 * b) make BFQ uselessly perform device idling; device idling results
324 * in loss of device throughput with most flash-based storage, and may
325 * increase latencies when used purposelessly.
326 *
327 * BFQ tries to reduce these problems, by adopting the following
328 * countermeasure. To introduce this countermeasure, we need first to
329 * finish explaining how the duration of weight-raising for
330 * interactive tasks is computed.
331 *
332 * For a bfq_queue deemed as interactive, the duration of weight
333 * raising is dynamically adjusted, as a function of the estimated
334 * peak rate of the device, so as to be equal to the time needed to
335 * execute the 'largest' interactive task we benchmarked so far. By
336 * largest task, we mean the task for which each involved process has
337 * to do more I/O than for any of the other tasks we benchmarked. This
338 * reference interactive task is the start-up of LibreOffice Writer,
339 * and in this task each process/bfq_queue needs to have at most ~110K
340 * sectors transferred.
341 *
342 * This last piece of information enables BFQ to reduce the actual
343 * duration of weight-raising for at least one class of I/O-bound
344 * applications: those doing sequential or quasi-sequential I/O. An
345 * example is file copy. In fact, once started, the main I/O-bound
346 * processes of these applications usually consume the above 110K
347 * sectors in much less time than the processes of an application that
348 * is starting, because these I/O-bound processes will greedily devote
349 * almost all their CPU cycles only to their target,
350 * throughput-friendly I/O operations. This is even more true if BFQ
351 * happens to be underestimating the device peak rate, and thus
352 * overestimating the duration of weight raising. But, according to
353 * our measurements, once transferred 110K sectors, these processes
354 * have no right to be weight-raised any longer.
355 *
356 * Basing on the last consideration, BFQ ends weight-raising for a
357 * bfq_queue if the latter happens to have received an amount of
358 * service at least equal to the following constant. The constant is
359 * set to slightly more than 110K, to have a minimum safety margin.
360 *
361 * This early ending of weight-raising reduces the amount of time
362 * during which interactive false positives cause the two problems
363 * described at the beginning of these comments.
364 */
365static const unsigned long max_service_from_wr = 120000;
366
12cd3a2f 367#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 368#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 369
ea25da48 370struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 371{
ea25da48 372 return bic->bfqq[is_sync];
aee69d78
PV
373}
374
7ea96eef
PV
375static void bfq_put_stable_ref(struct bfq_queue *bfqq);
376
ea25da48 377void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 378{
7ea96eef
PV
379 /*
380 * If bfqq != NULL, then a non-stable queue merge between
381 * bic->bfqq and bfqq is happening here. This causes troubles
382 * in the following case: bic->bfqq has also been scheduled
383 * for a possible stable merge with bic->stable_merge_bfqq,
384 * and bic->stable_merge_bfqq == bfqq happens to
385 * hold. Troubles occur because bfqq may then undergo a split,
386 * thereby becoming eligible for a stable merge. Yet, if
387 * bic->stable_merge_bfqq points exactly to bfqq, then bfqq
388 * would be stably merged with itself. To avoid this anomaly,
389 * we cancel the stable merge if
390 * bic->stable_merge_bfqq == bfqq.
391 */
ea25da48 392 bic->bfqq[is_sync] = bfqq;
7ea96eef
PV
393
394 if (bfqq && bic->stable_merge_bfqq == bfqq) {
395 /*
396 * Actually, these same instructions are executed also
397 * in bfq_setup_cooperator, in case of abort or actual
398 * execution of a stable merge. We could avoid
399 * repeating these instructions there too, but if we
400 * did so, we would nest even more complexity in this
401 * function.
402 */
403 bfq_put_stable_ref(bic->stable_merge_bfqq);
404
405 bic->stable_merge_bfqq = NULL;
406 }
aee69d78
PV
407}
408
ea25da48 409struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 410{
ea25da48 411 return bic->icq.q->elevator->elevator_data;
e21b7a0b 412}
aee69d78 413
ea25da48
PV
414/**
415 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
416 * @icq: the iocontext queue.
417 */
418static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 419{
ea25da48
PV
420 /* bic->icq is the first member, %NULL will convert to %NULL */
421 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 422}
aee69d78 423
ea25da48
PV
424/**
425 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
426 * @bfqd: the lookup key.
427 * @ioc: the io_context of the process doing I/O.
428 * @q: the request queue.
429 */
430static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
431 struct io_context *ioc,
432 struct request_queue *q)
e21b7a0b 433{
ea25da48
PV
434 if (ioc) {
435 unsigned long flags;
436 struct bfq_io_cq *icq;
aee69d78 437
0d945c1f 438 spin_lock_irqsave(&q->queue_lock, flags);
ea25da48 439 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
0d945c1f 440 spin_unlock_irqrestore(&q->queue_lock, flags);
aee69d78 441
ea25da48 442 return icq;
e21b7a0b 443 }
e21b7a0b 444
ea25da48 445 return NULL;
aee69d78
PV
446}
447
ea25da48
PV
448/*
449 * Scheduler run of queue, if there are requests pending and no one in the
450 * driver that will restart queueing.
451 */
452void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 453{
ea25da48
PV
454 if (bfqd->queued != 0) {
455 bfq_log(bfqd, "schedule dispatch");
456 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 457 }
aee69d78
PV
458}
459
460#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
aee69d78
PV
461
462#define bfq_sample_valid(samples) ((samples) > 80)
463
aee69d78
PV
464/*
465 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
636b8fe8 466 * We choose the request that is closer to the head right now. Distance
aee69d78
PV
467 * behind the head is penalized and only allowed to a certain extent.
468 */
469static struct request *bfq_choose_req(struct bfq_data *bfqd,
470 struct request *rq1,
471 struct request *rq2,
472 sector_t last)
473{
474 sector_t s1, s2, d1 = 0, d2 = 0;
475 unsigned long back_max;
476#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
477#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
478 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
479
480 if (!rq1 || rq1 == rq2)
481 return rq2;
482 if (!rq2)
483 return rq1;
484
485 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
486 return rq1;
487 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
488 return rq2;
489 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
490 return rq1;
491 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
492 return rq2;
493
494 s1 = blk_rq_pos(rq1);
495 s2 = blk_rq_pos(rq2);
496
497 /*
498 * By definition, 1KiB is 2 sectors.
499 */
500 back_max = bfqd->bfq_back_max * 2;
501
502 /*
503 * Strict one way elevator _except_ in the case where we allow
504 * short backward seeks which are biased as twice the cost of a
505 * similar forward seek.
506 */
507 if (s1 >= last)
508 d1 = s1 - last;
509 else if (s1 + back_max >= last)
510 d1 = (last - s1) * bfqd->bfq_back_penalty;
511 else
512 wrap |= BFQ_RQ1_WRAP;
513
514 if (s2 >= last)
515 d2 = s2 - last;
516 else if (s2 + back_max >= last)
517 d2 = (last - s2) * bfqd->bfq_back_penalty;
518 else
519 wrap |= BFQ_RQ2_WRAP;
520
521 /* Found required data */
522
523 /*
524 * By doing switch() on the bit mask "wrap" we avoid having to
525 * check two variables for all permutations: --> faster!
526 */
527 switch (wrap) {
528 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
529 if (d1 < d2)
530 return rq1;
531 else if (d2 < d1)
532 return rq2;
533
534 if (s1 >= s2)
535 return rq1;
536 else
537 return rq2;
538
539 case BFQ_RQ2_WRAP:
540 return rq1;
541 case BFQ_RQ1_WRAP:
542 return rq2;
543 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
544 default:
545 /*
546 * Since both rqs are wrapped,
547 * start with the one that's further behind head
548 * (--> only *one* back seek required),
549 * since back seek takes more time than forward.
550 */
551 if (s1 <= s2)
552 return rq1;
553 else
554 return rq2;
555 }
556}
557
a52a69ea
PV
558/*
559 * Async I/O can easily starve sync I/O (both sync reads and sync
560 * writes), by consuming all tags. Similarly, storms of sync writes,
561 * such as those that sync(2) may trigger, can starve sync reads.
562 * Limit depths of async I/O and sync writes so as to counter both
563 * problems.
564 */
565static void bfq_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
566{
a52a69ea 567 struct bfq_data *bfqd = data->q->elevator->elevator_data;
a52a69ea
PV
568
569 if (op_is_sync(op) && !op_is_write(op))
570 return;
571
a52a69ea
PV
572 data->shallow_depth =
573 bfqd->word_depths[!!bfqd->wr_busy_queues][op_is_sync(op)];
574
575 bfq_log(bfqd, "[%s] wr_busy %d sync %d depth %u",
576 __func__, bfqd->wr_busy_queues, op_is_sync(op),
577 data->shallow_depth);
578}
579
36eca894
AA
580static struct bfq_queue *
581bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
582 sector_t sector, struct rb_node **ret_parent,
583 struct rb_node ***rb_link)
584{
585 struct rb_node **p, *parent;
586 struct bfq_queue *bfqq = NULL;
587
588 parent = NULL;
589 p = &root->rb_node;
590 while (*p) {
591 struct rb_node **n;
592
593 parent = *p;
594 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
595
596 /*
597 * Sort strictly based on sector. Smallest to the left,
598 * largest to the right.
599 */
600 if (sector > blk_rq_pos(bfqq->next_rq))
601 n = &(*p)->rb_right;
602 else if (sector < blk_rq_pos(bfqq->next_rq))
603 n = &(*p)->rb_left;
604 else
605 break;
606 p = n;
607 bfqq = NULL;
608 }
609
610 *ret_parent = parent;
611 if (rb_link)
612 *rb_link = p;
613
614 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
615 (unsigned long long)sector,
616 bfqq ? bfqq->pid : 0);
617
618 return bfqq;
619}
620
7b8fa3b9
PV
621static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
622{
623 return bfqq->service_from_backlogged > 0 &&
624 time_is_before_jiffies(bfqq->first_IO_time +
625 bfq_merge_time_limit);
626}
627
8cacc5ab
PV
628/*
629 * The following function is not marked as __cold because it is
630 * actually cold, but for the same performance goal described in the
631 * comments on the likely() at the beginning of
632 * bfq_setup_cooperator(). Unexpectedly, to reach an even lower
633 * execution time for the case where this function is not invoked, we
634 * had to add an unlikely() in each involved if().
635 */
636void __cold
637bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
638{
639 struct rb_node **p, *parent;
640 struct bfq_queue *__bfqq;
641
642 if (bfqq->pos_root) {
643 rb_erase(&bfqq->pos_node, bfqq->pos_root);
644 bfqq->pos_root = NULL;
645 }
646
32c59e3a
PV
647 /* oom_bfqq does not participate in queue merging */
648 if (bfqq == &bfqd->oom_bfqq)
649 return;
650
7b8fa3b9
PV
651 /*
652 * bfqq cannot be merged any longer (see comments in
653 * bfq_setup_cooperator): no point in adding bfqq into the
654 * position tree.
655 */
656 if (bfq_too_late_for_merging(bfqq))
657 return;
658
36eca894
AA
659 if (bfq_class_idle(bfqq))
660 return;
661 if (!bfqq->next_rq)
662 return;
663
664 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
665 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
666 blk_rq_pos(bfqq->next_rq), &parent, &p);
667 if (!__bfqq) {
668 rb_link_node(&bfqq->pos_node, parent, p);
669 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
670 } else
671 bfqq->pos_root = NULL;
672}
673
1de0c4cd 674/*
fb53ac6c
PV
675 * The following function returns false either if every active queue
676 * must receive the same share of the throughput (symmetric scenario),
677 * or, as a special case, if bfqq must receive a share of the
678 * throughput lower than or equal to the share that every other active
679 * queue must receive. If bfqq does sync I/O, then these are the only
680 * two cases where bfqq happens to be guaranteed its share of the
681 * throughput even if I/O dispatching is not plugged when bfqq remains
682 * temporarily empty (for more details, see the comments in the
683 * function bfq_better_to_idle()). For this reason, the return value
684 * of this function is used to check whether I/O-dispatch plugging can
685 * be avoided.
1de0c4cd 686 *
fb53ac6c 687 * The above first case (symmetric scenario) occurs when:
1de0c4cd 688 * 1) all active queues have the same weight,
73d58118 689 * 2) all active queues belong to the same I/O-priority class,
1de0c4cd 690 * 3) all active groups at the same level in the groups tree have the same
73d58118
PV
691 * weight,
692 * 4) all active groups at the same level in the groups tree have the same
1de0c4cd
AA
693 * number of children.
694 *
2d29c9f8
FM
695 * Unfortunately, keeping the necessary state for evaluating exactly
696 * the last two symmetry sub-conditions above would be quite complex
73d58118
PV
697 * and time consuming. Therefore this function evaluates, instead,
698 * only the following stronger three sub-conditions, for which it is
2d29c9f8 699 * much easier to maintain the needed state:
1de0c4cd 700 * 1) all active queues have the same weight,
73d58118
PV
701 * 2) all active queues belong to the same I/O-priority class,
702 * 3) there are no active groups.
2d29c9f8
FM
703 * In particular, the last condition is always true if hierarchical
704 * support or the cgroups interface are not enabled, thus no state
705 * needs to be maintained in this case.
1de0c4cd 706 */
fb53ac6c
PV
707static bool bfq_asymmetric_scenario(struct bfq_data *bfqd,
708 struct bfq_queue *bfqq)
1de0c4cd 709{
fb53ac6c
PV
710 bool smallest_weight = bfqq &&
711 bfqq->weight_counter &&
712 bfqq->weight_counter ==
713 container_of(
714 rb_first_cached(&bfqd->queue_weights_tree),
715 struct bfq_weight_counter,
716 weights_node);
717
73d58118
PV
718 /*
719 * For queue weights to differ, queue_weights_tree must contain
720 * at least two nodes.
721 */
fb53ac6c
PV
722 bool varied_queue_weights = !smallest_weight &&
723 !RB_EMPTY_ROOT(&bfqd->queue_weights_tree.rb_root) &&
724 (bfqd->queue_weights_tree.rb_root.rb_node->rb_left ||
725 bfqd->queue_weights_tree.rb_root.rb_node->rb_right);
73d58118
PV
726
727 bool multiple_classes_busy =
728 (bfqd->busy_queues[0] && bfqd->busy_queues[1]) ||
729 (bfqd->busy_queues[0] && bfqd->busy_queues[2]) ||
730 (bfqd->busy_queues[1] && bfqd->busy_queues[2]);
731
fb53ac6c 732 return varied_queue_weights || multiple_classes_busy
42b1bd33 733#ifdef CONFIG_BFQ_GROUP_IOSCHED
73d58118
PV
734 || bfqd->num_groups_with_pending_reqs > 0
735#endif
fb53ac6c 736 ;
1de0c4cd
AA
737}
738
739/*
740 * If the weight-counter tree passed as input contains no counter for
2d29c9f8 741 * the weight of the input queue, then add that counter; otherwise just
1de0c4cd
AA
742 * increment the existing counter.
743 *
744 * Note that weight-counter trees contain few nodes in mostly symmetric
745 * scenarios. For example, if all queues have the same weight, then the
746 * weight-counter tree for the queues may contain at most one node.
747 * This holds even if low_latency is on, because weight-raised queues
748 * are not inserted in the tree.
749 * In most scenarios, the rate at which nodes are created/destroyed
750 * should be low too.
751 */
2d29c9f8 752void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_queue *bfqq,
fb53ac6c 753 struct rb_root_cached *root)
1de0c4cd 754{
2d29c9f8 755 struct bfq_entity *entity = &bfqq->entity;
fb53ac6c
PV
756 struct rb_node **new = &(root->rb_root.rb_node), *parent = NULL;
757 bool leftmost = true;
1de0c4cd
AA
758
759 /*
2d29c9f8 760 * Do not insert if the queue is already associated with a
1de0c4cd 761 * counter, which happens if:
2d29c9f8 762 * 1) a request arrival has caused the queue to become both
1de0c4cd
AA
763 * non-weight-raised, and hence change its weight, and
764 * backlogged; in this respect, each of the two events
765 * causes an invocation of this function,
2d29c9f8 766 * 2) this is the invocation of this function caused by the
1de0c4cd
AA
767 * second event. This second invocation is actually useless,
768 * and we handle this fact by exiting immediately. More
769 * efficient or clearer solutions might possibly be adopted.
770 */
2d29c9f8 771 if (bfqq->weight_counter)
1de0c4cd
AA
772 return;
773
774 while (*new) {
775 struct bfq_weight_counter *__counter = container_of(*new,
776 struct bfq_weight_counter,
777 weights_node);
778 parent = *new;
779
780 if (entity->weight == __counter->weight) {
2d29c9f8 781 bfqq->weight_counter = __counter;
1de0c4cd
AA
782 goto inc_counter;
783 }
784 if (entity->weight < __counter->weight)
785 new = &((*new)->rb_left);
fb53ac6c 786 else {
1de0c4cd 787 new = &((*new)->rb_right);
fb53ac6c
PV
788 leftmost = false;
789 }
1de0c4cd
AA
790 }
791
2d29c9f8
FM
792 bfqq->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
793 GFP_ATOMIC);
1de0c4cd
AA
794
795 /*
796 * In the unlucky event of an allocation failure, we just
2d29c9f8 797 * exit. This will cause the weight of queue to not be
fb53ac6c 798 * considered in bfq_asymmetric_scenario, which, in its turn,
73d58118
PV
799 * causes the scenario to be deemed wrongly symmetric in case
800 * bfqq's weight would have been the only weight making the
801 * scenario asymmetric. On the bright side, no unbalance will
802 * however occur when bfqq becomes inactive again (the
803 * invocation of this function is triggered by an activation
804 * of queue). In fact, bfq_weights_tree_remove does nothing
805 * if !bfqq->weight_counter.
1de0c4cd 806 */
2d29c9f8 807 if (unlikely(!bfqq->weight_counter))
1de0c4cd
AA
808 return;
809
2d29c9f8
FM
810 bfqq->weight_counter->weight = entity->weight;
811 rb_link_node(&bfqq->weight_counter->weights_node, parent, new);
fb53ac6c
PV
812 rb_insert_color_cached(&bfqq->weight_counter->weights_node, root,
813 leftmost);
1de0c4cd
AA
814
815inc_counter:
2d29c9f8 816 bfqq->weight_counter->num_active++;
9dee8b3b 817 bfqq->ref++;
1de0c4cd
AA
818}
819
820/*
2d29c9f8 821 * Decrement the weight counter associated with the queue, and, if the
1de0c4cd
AA
822 * counter reaches 0, remove the counter from the tree.
823 * See the comments to the function bfq_weights_tree_add() for considerations
824 * about overhead.
825 */
0471559c 826void __bfq_weights_tree_remove(struct bfq_data *bfqd,
2d29c9f8 827 struct bfq_queue *bfqq,
fb53ac6c 828 struct rb_root_cached *root)
1de0c4cd 829{
2d29c9f8 830 if (!bfqq->weight_counter)
1de0c4cd
AA
831 return;
832
2d29c9f8
FM
833 bfqq->weight_counter->num_active--;
834 if (bfqq->weight_counter->num_active > 0)
1de0c4cd
AA
835 goto reset_entity_pointer;
836
fb53ac6c 837 rb_erase_cached(&bfqq->weight_counter->weights_node, root);
2d29c9f8 838 kfree(bfqq->weight_counter);
1de0c4cd
AA
839
840reset_entity_pointer:
2d29c9f8 841 bfqq->weight_counter = NULL;
9dee8b3b 842 bfq_put_queue(bfqq);
1de0c4cd
AA
843}
844
0471559c 845/*
2d29c9f8
FM
846 * Invoke __bfq_weights_tree_remove on bfqq and decrement the number
847 * of active groups for each queue's inactive parent entity.
0471559c
PV
848 */
849void bfq_weights_tree_remove(struct bfq_data *bfqd,
850 struct bfq_queue *bfqq)
851{
852 struct bfq_entity *entity = bfqq->entity.parent;
853
0471559c
PV
854 for_each_entity(entity) {
855 struct bfq_sched_data *sd = entity->my_sched_data;
856
857 if (sd->next_in_service || sd->in_service_entity) {
858 /*
859 * entity is still active, because either
860 * next_in_service or in_service_entity is not
861 * NULL (see the comments on the definition of
862 * next_in_service for details on why
863 * in_service_entity must be checked too).
864 *
2d29c9f8
FM
865 * As a consequence, its parent entities are
866 * active as well, and thus this loop must
867 * stop here.
0471559c
PV
868 */
869 break;
870 }
ba7aeae5
PV
871
872 /*
873 * The decrement of num_groups_with_pending_reqs is
874 * not performed immediately upon the deactivation of
875 * entity, but it is delayed to when it also happens
876 * that the first leaf descendant bfqq of entity gets
877 * all its pending requests completed. The following
878 * instructions perform this delayed decrement, if
879 * needed. See the comments on
880 * num_groups_with_pending_reqs for details.
881 */
882 if (entity->in_groups_with_pending_reqs) {
883 entity->in_groups_with_pending_reqs = false;
884 bfqd->num_groups_with_pending_reqs--;
885 }
0471559c 886 }
9dee8b3b
PV
887
888 /*
889 * Next function is invoked last, because it causes bfqq to be
890 * freed if the following holds: bfqq is not in service and
891 * has no dispatched request. DO NOT use bfqq after the next
892 * function invocation.
893 */
894 __bfq_weights_tree_remove(bfqd, bfqq,
895 &bfqd->queue_weights_tree);
0471559c
PV
896}
897
aee69d78
PV
898/*
899 * Return expired entry, or NULL to just start from scratch in rbtree.
900 */
901static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
902 struct request *last)
903{
904 struct request *rq;
905
906 if (bfq_bfqq_fifo_expire(bfqq))
907 return NULL;
908
909 bfq_mark_bfqq_fifo_expire(bfqq);
910
911 rq = rq_entry_fifo(bfqq->fifo.next);
912
913 if (rq == last || ktime_get_ns() < rq->fifo_time)
914 return NULL;
915
916 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
917 return rq;
918}
919
920static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
921 struct bfq_queue *bfqq,
922 struct request *last)
923{
924 struct rb_node *rbnext = rb_next(&last->rb_node);
925 struct rb_node *rbprev = rb_prev(&last->rb_node);
926 struct request *next, *prev = NULL;
927
928 /* Follow expired path, else get first next available. */
929 next = bfq_check_fifo(bfqq, last);
930 if (next)
931 return next;
932
933 if (rbprev)
934 prev = rb_entry_rq(rbprev);
935
936 if (rbnext)
937 next = rb_entry_rq(rbnext);
938 else {
939 rbnext = rb_first(&bfqq->sort_list);
940 if (rbnext && rbnext != &last->rb_node)
941 next = rb_entry_rq(rbnext);
942 }
943
944 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
945}
946
c074170e 947/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
948static unsigned long bfq_serv_to_charge(struct request *rq,
949 struct bfq_queue *bfqq)
950{
02a6d787 951 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1 ||
fb53ac6c 952 bfq_asymmetric_scenario(bfqq->bfqd, bfqq))
c074170e
PV
953 return blk_rq_sectors(rq);
954
d5801088 955 return blk_rq_sectors(rq) * bfq_async_charge_factor;
aee69d78
PV
956}
957
958/**
959 * bfq_updated_next_req - update the queue after a new next_rq selection.
960 * @bfqd: the device data the queue belongs to.
961 * @bfqq: the queue to update.
962 *
963 * If the first request of a queue changes we make sure that the queue
964 * has enough budget to serve at least its first request (if the
965 * request has grown). We do this because if the queue has not enough
966 * budget for its first request, it has to go through two dispatch
967 * rounds to actually get it dispatched.
968 */
969static void bfq_updated_next_req(struct bfq_data *bfqd,
970 struct bfq_queue *bfqq)
971{
972 struct bfq_entity *entity = &bfqq->entity;
973 struct request *next_rq = bfqq->next_rq;
974 unsigned long new_budget;
975
976 if (!next_rq)
977 return;
978
979 if (bfqq == bfqd->in_service_queue)
980 /*
981 * In order not to break guarantees, budgets cannot be
982 * changed after an entity has been selected.
983 */
984 return;
985
f3218ad8
PV
986 new_budget = max_t(unsigned long,
987 max_t(unsigned long, bfqq->max_budget,
988 bfq_serv_to_charge(next_rq, bfqq)),
989 entity->service);
aee69d78
PV
990 if (entity->budget != new_budget) {
991 entity->budget = new_budget;
992 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
993 new_budget);
80294c3b 994 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
995 }
996}
997
3e2bdd6d
PV
998static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
999{
1000 u64 dur;
1001
1002 if (bfqd->bfq_wr_max_time > 0)
1003 return bfqd->bfq_wr_max_time;
1004
e24f1c24 1005 dur = bfqd->rate_dur_prod;
3e2bdd6d
PV
1006 do_div(dur, bfqd->peak_rate);
1007
1008 /*
d450542e
DS
1009 * Limit duration between 3 and 25 seconds. The upper limit
1010 * has been conservatively set after the following worst case:
1011 * on a QEMU/KVM virtual machine
1012 * - running in a slow PC
1013 * - with a virtual disk stacked on a slow low-end 5400rpm HDD
1014 * - serving a heavy I/O workload, such as the sequential reading
1015 * of several files
1016 * mplayer took 23 seconds to start, if constantly weight-raised.
1017 *
636b8fe8 1018 * As for higher values than that accommodating the above bad
d450542e
DS
1019 * scenario, tests show that higher values would often yield
1020 * the opposite of the desired result, i.e., would worsen
1021 * responsiveness by allowing non-interactive applications to
1022 * preserve weight raising for too long.
3e2bdd6d
PV
1023 *
1024 * On the other end, lower values than 3 seconds make it
1025 * difficult for most interactive tasks to complete their jobs
1026 * before weight-raising finishes.
1027 */
d450542e 1028 return clamp_val(dur, msecs_to_jiffies(3000), msecs_to_jiffies(25000));
3e2bdd6d
PV
1029}
1030
1031/* switch back from soft real-time to interactive weight raising */
1032static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
1033 struct bfq_data *bfqd)
1034{
1035 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1036 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1037 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
1038}
1039
36eca894 1040static void
13c931bd
PV
1041bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
1042 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 1043{
8c544770 1044 unsigned int old_wr_coeff = 1;
13c931bd
PV
1045 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
1046
d5be3fef
PV
1047 if (bic->saved_has_short_ttime)
1048 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 1049 else
d5be3fef 1050 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
1051
1052 if (bic->saved_IO_bound)
1053 bfq_mark_bfqq_IO_bound(bfqq);
1054 else
1055 bfq_clear_bfqq_IO_bound(bfqq);
1056
5a5436b9
PV
1057 bfqq->last_serv_time_ns = bic->saved_last_serv_time_ns;
1058 bfqq->inject_limit = bic->saved_inject_limit;
1059 bfqq->decrease_time_jif = bic->saved_decrease_time_jif;
1060
fffca087 1061 bfqq->entity.new_weight = bic->saved_weight;
36eca894 1062 bfqq->ttime = bic->saved_ttime;
eb2fd80f
PV
1063 bfqq->io_start_time = bic->saved_io_start_time;
1064 bfqq->tot_idle_time = bic->saved_tot_idle_time;
8c544770
PV
1065 /*
1066 * Restore weight coefficient only if low_latency is on
1067 */
1068 if (bfqd->low_latency) {
1069 old_wr_coeff = bfqq->wr_coeff;
1070 bfqq->wr_coeff = bic->saved_wr_coeff;
1071 }
e673914d 1072 bfqq->service_from_wr = bic->saved_service_from_wr;
36eca894
AA
1073 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
1074 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
1075 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
1076
e1b2324d 1077 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 1078 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 1079 bfqq->wr_cur_max_time))) {
3e2bdd6d
PV
1080 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
1081 !bfq_bfqq_in_large_burst(bfqq) &&
1082 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
1083 bfq_wr_duration(bfqd))) {
1084 switch_back_to_interactive_wr(bfqq, bfqd);
1085 } else {
1086 bfqq->wr_coeff = 1;
1087 bfq_log_bfqq(bfqq->bfqd, bfqq,
1088 "resume state: switching off wr");
1089 }
36eca894
AA
1090 }
1091
1092 /* make sure weight will be updated, however we got here */
1093 bfqq->entity.prio_changed = 1;
13c931bd
PV
1094
1095 if (likely(!busy))
1096 return;
1097
1098 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
1099 bfqd->wr_busy_queues++;
1100 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
1101 bfqd->wr_busy_queues--;
36eca894
AA
1102}
1103
1104static int bfqq_process_refs(struct bfq_queue *bfqq)
1105{
33a16a98 1106 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st_or_in_serv -
430a67f9 1107 (bfqq->weight_counter != NULL) - bfqq->stable_ref;
36eca894
AA
1108}
1109
e1b2324d
AA
1110/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
1111static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1112{
1113 struct bfq_queue *item;
1114 struct hlist_node *n;
1115
1116 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
1117 hlist_del_init(&item->burst_list_node);
84a74689
PV
1118
1119 /*
1120 * Start the creation of a new burst list only if there is no
1121 * active queue. See comments on the conditional invocation of
1122 * bfq_handle_burst().
1123 */
1124 if (bfq_tot_busy_queues(bfqd) == 0) {
1125 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1126 bfqd->burst_size = 1;
1127 } else
1128 bfqd->burst_size = 0;
1129
e1b2324d
AA
1130 bfqd->burst_parent_entity = bfqq->entity.parent;
1131}
1132
1133/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
1134static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1135{
1136 /* Increment burst size to take into account also bfqq */
1137 bfqd->burst_size++;
1138
1139 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
1140 struct bfq_queue *pos, *bfqq_item;
1141 struct hlist_node *n;
1142
1143 /*
1144 * Enough queues have been activated shortly after each
1145 * other to consider this burst as large.
1146 */
1147 bfqd->large_burst = true;
1148
1149 /*
1150 * We can now mark all queues in the burst list as
1151 * belonging to a large burst.
1152 */
1153 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
1154 burst_list_node)
1155 bfq_mark_bfqq_in_large_burst(bfqq_item);
1156 bfq_mark_bfqq_in_large_burst(bfqq);
1157
1158 /*
1159 * From now on, and until the current burst finishes, any
1160 * new queue being activated shortly after the last queue
1161 * was inserted in the burst can be immediately marked as
1162 * belonging to a large burst. So the burst list is not
1163 * needed any more. Remove it.
1164 */
1165 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
1166 burst_list_node)
1167 hlist_del_init(&pos->burst_list_node);
1168 } else /*
1169 * Burst not yet large: add bfqq to the burst list. Do
1170 * not increment the ref counter for bfqq, because bfqq
1171 * is removed from the burst list before freeing bfqq
1172 * in put_queue.
1173 */
1174 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
1175}
1176
1177/*
1178 * If many queues belonging to the same group happen to be created
1179 * shortly after each other, then the processes associated with these
1180 * queues have typically a common goal. In particular, bursts of queue
1181 * creations are usually caused by services or applications that spawn
1182 * many parallel threads/processes. Examples are systemd during boot,
1183 * or git grep. To help these processes get their job done as soon as
1184 * possible, it is usually better to not grant either weight-raising
84a74689
PV
1185 * or device idling to their queues, unless these queues must be
1186 * protected from the I/O flowing through other active queues.
e1b2324d
AA
1187 *
1188 * In this comment we describe, firstly, the reasons why this fact
1189 * holds, and, secondly, the next function, which implements the main
1190 * steps needed to properly mark these queues so that they can then be
1191 * treated in a different way.
1192 *
1193 * The above services or applications benefit mostly from a high
1194 * throughput: the quicker the requests of the activated queues are
1195 * cumulatively served, the sooner the target job of these queues gets
1196 * completed. As a consequence, weight-raising any of these queues,
1197 * which also implies idling the device for it, is almost always
84a74689
PV
1198 * counterproductive, unless there are other active queues to isolate
1199 * these new queues from. If there no other active queues, then
1200 * weight-raising these new queues just lowers throughput in most
1201 * cases.
e1b2324d
AA
1202 *
1203 * On the other hand, a burst of queue creations may be caused also by
1204 * the start of an application that does not consist of a lot of
1205 * parallel I/O-bound threads. In fact, with a complex application,
1206 * several short processes may need to be executed to start-up the
1207 * application. In this respect, to start an application as quickly as
1208 * possible, the best thing to do is in any case to privilege the I/O
1209 * related to the application with respect to all other
1210 * I/O. Therefore, the best strategy to start as quickly as possible
1211 * an application that causes a burst of queue creations is to
1212 * weight-raise all the queues created during the burst. This is the
1213 * exact opposite of the best strategy for the other type of bursts.
1214 *
1215 * In the end, to take the best action for each of the two cases, the
1216 * two types of bursts need to be distinguished. Fortunately, this
1217 * seems relatively easy, by looking at the sizes of the bursts. In
1218 * particular, we found a threshold such that only bursts with a
1219 * larger size than that threshold are apparently caused by
1220 * services or commands such as systemd or git grep. For brevity,
1221 * hereafter we call just 'large' these bursts. BFQ *does not*
1222 * weight-raise queues whose creation occurs in a large burst. In
1223 * addition, for each of these queues BFQ performs or does not perform
1224 * idling depending on which choice boosts the throughput more. The
1225 * exact choice depends on the device and request pattern at
1226 * hand.
1227 *
1228 * Unfortunately, false positives may occur while an interactive task
1229 * is starting (e.g., an application is being started). The
1230 * consequence is that the queues associated with the task do not
1231 * enjoy weight raising as expected. Fortunately these false positives
1232 * are very rare. They typically occur if some service happens to
1233 * start doing I/O exactly when the interactive task starts.
1234 *
84a74689
PV
1235 * Turning back to the next function, it is invoked only if there are
1236 * no active queues (apart from active queues that would belong to the
1237 * same, possible burst bfqq would belong to), and it implements all
1238 * the steps needed to detect the occurrence of a large burst and to
1239 * properly mark all the queues belonging to it (so that they can then
1240 * be treated in a different way). This goal is achieved by
1241 * maintaining a "burst list" that holds, temporarily, the queues that
1242 * belong to the burst in progress. The list is then used to mark
1243 * these queues as belonging to a large burst if the burst does become
1244 * large. The main steps are the following.
e1b2324d
AA
1245 *
1246 * . when the very first queue is created, the queue is inserted into the
1247 * list (as it could be the first queue in a possible burst)
1248 *
1249 * . if the current burst has not yet become large, and a queue Q that does
1250 * not yet belong to the burst is activated shortly after the last time
1251 * at which a new queue entered the burst list, then the function appends
1252 * Q to the burst list
1253 *
1254 * . if, as a consequence of the previous step, the burst size reaches
1255 * the large-burst threshold, then
1256 *
1257 * . all the queues in the burst list are marked as belonging to a
1258 * large burst
1259 *
1260 * . the burst list is deleted; in fact, the burst list already served
1261 * its purpose (keeping temporarily track of the queues in a burst,
1262 * so as to be able to mark them as belonging to a large burst in the
1263 * previous sub-step), and now is not needed any more
1264 *
1265 * . the device enters a large-burst mode
1266 *
1267 * . if a queue Q that does not belong to the burst is created while
1268 * the device is in large-burst mode and shortly after the last time
1269 * at which a queue either entered the burst list or was marked as
1270 * belonging to the current large burst, then Q is immediately marked
1271 * as belonging to a large burst.
1272 *
1273 * . if a queue Q that does not belong to the burst is created a while
1274 * later, i.e., not shortly after, than the last time at which a queue
1275 * either entered the burst list or was marked as belonging to the
1276 * current large burst, then the current burst is deemed as finished and:
1277 *
1278 * . the large-burst mode is reset if set
1279 *
1280 * . the burst list is emptied
1281 *
1282 * . Q is inserted in the burst list, as Q may be the first queue
1283 * in a possible new burst (then the burst list contains just Q
1284 * after this step).
1285 */
1286static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1287{
1288 /*
1289 * If bfqq is already in the burst list or is part of a large
1290 * burst, or finally has just been split, then there is
1291 * nothing else to do.
1292 */
1293 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1294 bfq_bfqq_in_large_burst(bfqq) ||
1295 time_is_after_eq_jiffies(bfqq->split_time +
1296 msecs_to_jiffies(10)))
1297 return;
1298
1299 /*
1300 * If bfqq's creation happens late enough, or bfqq belongs to
1301 * a different group than the burst group, then the current
1302 * burst is finished, and related data structures must be
1303 * reset.
1304 *
1305 * In this respect, consider the special case where bfqq is
1306 * the very first queue created after BFQ is selected for this
1307 * device. In this case, last_ins_in_burst and
1308 * burst_parent_entity are not yet significant when we get
1309 * here. But it is easy to verify that, whether or not the
1310 * following condition is true, bfqq will end up being
1311 * inserted into the burst list. In particular the list will
1312 * happen to contain only bfqq. And this is exactly what has
1313 * to happen, as bfqq may be the first queue of the first
1314 * burst.
1315 */
1316 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1317 bfqd->bfq_burst_interval) ||
1318 bfqq->entity.parent != bfqd->burst_parent_entity) {
1319 bfqd->large_burst = false;
1320 bfq_reset_burst_list(bfqd, bfqq);
1321 goto end;
1322 }
1323
1324 /*
1325 * If we get here, then bfqq is being activated shortly after the
1326 * last queue. So, if the current burst is also large, we can mark
1327 * bfqq as belonging to this large burst immediately.
1328 */
1329 if (bfqd->large_burst) {
1330 bfq_mark_bfqq_in_large_burst(bfqq);
1331 goto end;
1332 }
1333
1334 /*
1335 * If we get here, then a large-burst state has not yet been
1336 * reached, but bfqq is being activated shortly after the last
1337 * queue. Then we add bfqq to the burst.
1338 */
1339 bfq_add_to_burst(bfqd, bfqq);
1340end:
1341 /*
1342 * At this point, bfqq either has been added to the current
1343 * burst or has caused the current burst to terminate and a
1344 * possible new burst to start. In particular, in the second
1345 * case, bfqq has become the first queue in the possible new
1346 * burst. In both cases last_ins_in_burst needs to be moved
1347 * forward.
1348 */
1349 bfqd->last_ins_in_burst = jiffies;
1350}
1351
aee69d78
PV
1352static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1353{
1354 struct bfq_entity *entity = &bfqq->entity;
1355
1356 return entity->budget - entity->service;
1357}
1358
1359/*
1360 * If enough samples have been computed, return the current max budget
1361 * stored in bfqd, which is dynamically updated according to the
1362 * estimated disk peak rate; otherwise return the default max budget
1363 */
1364static int bfq_max_budget(struct bfq_data *bfqd)
1365{
1366 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1367 return bfq_default_max_budget;
1368 else
1369 return bfqd->bfq_max_budget;
1370}
1371
1372/*
1373 * Return min budget, which is a fraction of the current or default
1374 * max budget (trying with 1/32)
1375 */
1376static int bfq_min_budget(struct bfq_data *bfqd)
1377{
1378 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1379 return bfq_default_max_budget / 32;
1380 else
1381 return bfqd->bfq_max_budget / 32;
1382}
1383
aee69d78
PV
1384/*
1385 * The next function, invoked after the input queue bfqq switches from
1386 * idle to busy, updates the budget of bfqq. The function also tells
1387 * whether the in-service queue should be expired, by returning
1388 * true. The purpose of expiring the in-service queue is to give bfqq
1389 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1390 * for preempting the in-service queue is to achieve one of the two
1391 * goals below.
aee69d78 1392 *
44e44a1b
PV
1393 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1394 * expired because it has remained idle. In particular, bfqq may have
1395 * expired for one of the following two reasons:
aee69d78
PV
1396 *
1397 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1398 * and did not make it to issue a new request before its last
1399 * request was served;
1400 *
1401 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1402 * a new request before the expiration of the idling-time.
1403 *
1404 * Even if bfqq has expired for one of the above reasons, the process
1405 * associated with the queue may be however issuing requests greedily,
1406 * and thus be sensitive to the bandwidth it receives (bfqq may have
1407 * remained idle for other reasons: CPU high load, bfqq not enjoying
1408 * idling, I/O throttling somewhere in the path from the process to
1409 * the I/O scheduler, ...). But if, after every expiration for one of
1410 * the above two reasons, bfqq has to wait for the service of at least
1411 * one full budget of another queue before being served again, then
1412 * bfqq is likely to get a much lower bandwidth or resource time than
1413 * its reserved ones. To address this issue, two countermeasures need
1414 * to be taken.
1415 *
1416 * First, the budget and the timestamps of bfqq need to be updated in
1417 * a special way on bfqq reactivation: they need to be updated as if
1418 * bfqq did not remain idle and did not expire. In fact, if they are
1419 * computed as if bfqq expired and remained idle until reactivation,
1420 * then the process associated with bfqq is treated as if, instead of
1421 * being greedy, it stopped issuing requests when bfqq remained idle,
1422 * and restarts issuing requests only on this reactivation. In other
1423 * words, the scheduler does not help the process recover the "service
1424 * hole" between bfqq expiration and reactivation. As a consequence,
1425 * the process receives a lower bandwidth than its reserved one. In
1426 * contrast, to recover this hole, the budget must be updated as if
1427 * bfqq was not expired at all before this reactivation, i.e., it must
1428 * be set to the value of the remaining budget when bfqq was
1429 * expired. Along the same line, timestamps need to be assigned the
1430 * value they had the last time bfqq was selected for service, i.e.,
1431 * before last expiration. Thus timestamps need to be back-shifted
1432 * with respect to their normal computation (see [1] for more details
1433 * on this tricky aspect).
1434 *
1435 * Secondly, to allow the process to recover the hole, the in-service
1436 * queue must be expired too, to give bfqq the chance to preempt it
1437 * immediately. In fact, if bfqq has to wait for a full budget of the
1438 * in-service queue to be completed, then it may become impossible to
1439 * let the process recover the hole, even if the back-shifted
1440 * timestamps of bfqq are lower than those of the in-service queue. If
1441 * this happens for most or all of the holes, then the process may not
1442 * receive its reserved bandwidth. In this respect, it is worth noting
1443 * that, being the service of outstanding requests unpreemptible, a
1444 * little fraction of the holes may however be unrecoverable, thereby
1445 * causing a little loss of bandwidth.
1446 *
1447 * The last important point is detecting whether bfqq does need this
1448 * bandwidth recovery. In this respect, the next function deems the
1449 * process associated with bfqq greedy, and thus allows it to recover
1450 * the hole, if: 1) the process is waiting for the arrival of a new
1451 * request (which implies that bfqq expired for one of the above two
1452 * reasons), and 2) such a request has arrived soon. The first
1453 * condition is controlled through the flag non_blocking_wait_rq,
1454 * while the second through the flag arrived_in_time. If both
1455 * conditions hold, then the function computes the budget in the
1456 * above-described special way, and signals that the in-service queue
1457 * should be expired. Timestamp back-shifting is done later in
1458 * __bfq_activate_entity.
44e44a1b
PV
1459 *
1460 * 2. Reduce latency. Even if timestamps are not backshifted to let
1461 * the process associated with bfqq recover a service hole, bfqq may
1462 * however happen to have, after being (re)activated, a lower finish
1463 * timestamp than the in-service queue. That is, the next budget of
1464 * bfqq may have to be completed before the one of the in-service
1465 * queue. If this is the case, then preempting the in-service queue
1466 * allows this goal to be achieved, apart from the unpreemptible,
1467 * outstanding requests mentioned above.
1468 *
1469 * Unfortunately, regardless of which of the above two goals one wants
1470 * to achieve, service trees need first to be updated to know whether
1471 * the in-service queue must be preempted. To have service trees
1472 * correctly updated, the in-service queue must be expired and
1473 * rescheduled, and bfqq must be scheduled too. This is one of the
1474 * most costly operations (in future versions, the scheduling
1475 * mechanism may be re-designed in such a way to make it possible to
1476 * know whether preemption is needed without needing to update service
1477 * trees). In addition, queue preemptions almost always cause random
96a291c3
PV
1478 * I/O, which may in turn cause loss of throughput. Finally, there may
1479 * even be no in-service queue when the next function is invoked (so,
1480 * no queue to compare timestamps with). Because of these facts, the
1481 * next function adopts the following simple scheme to avoid costly
1482 * operations, too frequent preemptions and too many dependencies on
1483 * the state of the scheduler: it requests the expiration of the
1484 * in-service queue (unconditionally) only for queues that need to
1485 * recover a hole. Then it delegates to other parts of the code the
1486 * responsibility of handling the above case 2.
aee69d78
PV
1487 */
1488static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1489 struct bfq_queue *bfqq,
96a291c3 1490 bool arrived_in_time)
aee69d78
PV
1491{
1492 struct bfq_entity *entity = &bfqq->entity;
1493
218cb897
PV
1494 /*
1495 * In the next compound condition, we check also whether there
1496 * is some budget left, because otherwise there is no point in
1497 * trying to go on serving bfqq with this same budget: bfqq
1498 * would be expired immediately after being selected for
1499 * service. This would only cause useless overhead.
1500 */
1501 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time &&
1502 bfq_bfqq_budget_left(bfqq) > 0) {
aee69d78
PV
1503 /*
1504 * We do not clear the flag non_blocking_wait_rq here, as
1505 * the latter is used in bfq_activate_bfqq to signal
1506 * that timestamps need to be back-shifted (and is
1507 * cleared right after).
1508 */
1509
1510 /*
1511 * In next assignment we rely on that either
1512 * entity->service or entity->budget are not updated
1513 * on expiration if bfqq is empty (see
1514 * __bfq_bfqq_recalc_budget). Thus both quantities
1515 * remain unchanged after such an expiration, and the
1516 * following statement therefore assigns to
1517 * entity->budget the remaining budget on such an
9fae8dd5 1518 * expiration.
aee69d78
PV
1519 */
1520 entity->budget = min_t(unsigned long,
1521 bfq_bfqq_budget_left(bfqq),
1522 bfqq->max_budget);
1523
9fae8dd5
PV
1524 /*
1525 * At this point, we have used entity->service to get
1526 * the budget left (needed for updating
1527 * entity->budget). Thus we finally can, and have to,
1528 * reset entity->service. The latter must be reset
1529 * because bfqq would otherwise be charged again for
1530 * the service it has received during its previous
1531 * service slot(s).
1532 */
1533 entity->service = 0;
1534
aee69d78
PV
1535 return true;
1536 }
1537
9fae8dd5
PV
1538 /*
1539 * We can finally complete expiration, by setting service to 0.
1540 */
1541 entity->service = 0;
aee69d78
PV
1542 entity->budget = max_t(unsigned long, bfqq->max_budget,
1543 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1544 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
96a291c3 1545 return false;
44e44a1b
PV
1546}
1547
4baa8bb1
PV
1548/*
1549 * Return the farthest past time instant according to jiffies
1550 * macros.
1551 */
1552static unsigned long bfq_smallest_from_now(void)
1553{
1554 return jiffies - MAX_JIFFY_OFFSET;
1555}
1556
44e44a1b
PV
1557static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1558 struct bfq_queue *bfqq,
1559 unsigned int old_wr_coeff,
1560 bool wr_or_deserves_wr,
77b7dcea 1561 bool interactive,
e1b2324d 1562 bool in_burst,
77b7dcea 1563 bool soft_rt)
44e44a1b
PV
1564{
1565 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1566 /* start a weight-raising period */
77b7dcea 1567 if (interactive) {
8a8747dc 1568 bfqq->service_from_wr = 0;
77b7dcea
PV
1569 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1570 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1571 } else {
4baa8bb1
PV
1572 /*
1573 * No interactive weight raising in progress
1574 * here: assign minus infinity to
1575 * wr_start_at_switch_to_srt, to make sure
1576 * that, at the end of the soft-real-time
1577 * weight raising periods that is starting
1578 * now, no interactive weight-raising period
1579 * may be wrongly considered as still in
1580 * progress (and thus actually started by
1581 * mistake).
1582 */
1583 bfqq->wr_start_at_switch_to_srt =
1584 bfq_smallest_from_now();
77b7dcea
PV
1585 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1586 BFQ_SOFTRT_WEIGHT_FACTOR;
1587 bfqq->wr_cur_max_time =
1588 bfqd->bfq_wr_rt_max_time;
1589 }
44e44a1b
PV
1590
1591 /*
1592 * If needed, further reduce budget to make sure it is
1593 * close to bfqq's backlog, so as to reduce the
1594 * scheduling-error component due to a too large
1595 * budget. Do not care about throughput consequences,
1596 * but only about latency. Finally, do not assign a
1597 * too small budget either, to avoid increasing
1598 * latency by causing too frequent expirations.
1599 */
1600 bfqq->entity.budget = min_t(unsigned long,
1601 bfqq->entity.budget,
1602 2 * bfq_min_budget(bfqd));
1603 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1604 if (interactive) { /* update wr coeff and duration */
1605 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1606 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1607 } else if (in_burst)
1608 bfqq->wr_coeff = 1;
1609 else if (soft_rt) {
77b7dcea
PV
1610 /*
1611 * The application is now or still meeting the
1612 * requirements for being deemed soft rt. We
1613 * can then correctly and safely (re)charge
1614 * the weight-raising duration for the
1615 * application with the weight-raising
1616 * duration for soft rt applications.
1617 *
1618 * In particular, doing this recharge now, i.e.,
1619 * before the weight-raising period for the
1620 * application finishes, reduces the probability
1621 * of the following negative scenario:
1622 * 1) the weight of a soft rt application is
1623 * raised at startup (as for any newly
1624 * created application),
1625 * 2) since the application is not interactive,
1626 * at a certain time weight-raising is
1627 * stopped for the application,
1628 * 3) at that time the application happens to
1629 * still have pending requests, and hence
1630 * is destined to not have a chance to be
1631 * deemed soft rt before these requests are
1632 * completed (see the comments to the
1633 * function bfq_bfqq_softrt_next_start()
1634 * for details on soft rt detection),
1635 * 4) these pending requests experience a high
1636 * latency because the application is not
1637 * weight-raised while they are pending.
1638 */
1639 if (bfqq->wr_cur_max_time !=
1640 bfqd->bfq_wr_rt_max_time) {
1641 bfqq->wr_start_at_switch_to_srt =
1642 bfqq->last_wr_start_finish;
1643
1644 bfqq->wr_cur_max_time =
1645 bfqd->bfq_wr_rt_max_time;
1646 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1647 BFQ_SOFTRT_WEIGHT_FACTOR;
1648 }
1649 bfqq->last_wr_start_finish = jiffies;
1650 }
44e44a1b
PV
1651 }
1652}
1653
1654static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1655 struct bfq_queue *bfqq)
1656{
1657 return bfqq->dispatched == 0 &&
1658 time_is_before_jiffies(
1659 bfqq->budget_timeout +
1660 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1661}
1662
96a291c3
PV
1663
1664/*
1665 * Return true if bfqq is in a higher priority class, or has a higher
1666 * weight than the in-service queue.
1667 */
1668static bool bfq_bfqq_higher_class_or_weight(struct bfq_queue *bfqq,
1669 struct bfq_queue *in_serv_bfqq)
1670{
1671 int bfqq_weight, in_serv_weight;
1672
1673 if (bfqq->ioprio_class < in_serv_bfqq->ioprio_class)
1674 return true;
1675
1676 if (in_serv_bfqq->entity.parent == bfqq->entity.parent) {
1677 bfqq_weight = bfqq->entity.weight;
1678 in_serv_weight = in_serv_bfqq->entity.weight;
1679 } else {
1680 if (bfqq->entity.parent)
1681 bfqq_weight = bfqq->entity.parent->weight;
1682 else
1683 bfqq_weight = bfqq->entity.weight;
1684 if (in_serv_bfqq->entity.parent)
1685 in_serv_weight = in_serv_bfqq->entity.parent->weight;
1686 else
1687 in_serv_weight = in_serv_bfqq->entity.weight;
1688 }
1689
1690 return bfqq_weight > in_serv_weight;
1691}
1692
7f1995c2
PV
1693static bool bfq_better_to_idle(struct bfq_queue *bfqq);
1694
aee69d78
PV
1695static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1696 struct bfq_queue *bfqq,
44e44a1b
PV
1697 int old_wr_coeff,
1698 struct request *rq,
1699 bool *interactive)
aee69d78 1700{
e1b2324d
AA
1701 bool soft_rt, in_burst, wr_or_deserves_wr,
1702 bfqq_wants_to_preempt,
44e44a1b 1703 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1704 /*
1705 * See the comments on
1706 * bfq_bfqq_update_budg_for_activation for
1707 * details on the usage of the next variable.
1708 */
1709 arrived_in_time = ktime_get_ns() <=
1710 bfqq->ttime.last_end_request +
1711 bfqd->bfq_slice_idle * 3;
1712
e21b7a0b 1713
aee69d78 1714 /*
44e44a1b
PV
1715 * bfqq deserves to be weight-raised if:
1716 * - it is sync,
e1b2324d 1717 * - it does not belong to a large burst,
36eca894 1718 * - it has been idle for enough time or is soft real-time,
91b896f6
PV
1719 * - is linked to a bfq_io_cq (it is not shared in any sense),
1720 * - has a default weight (otherwise we assume the user wanted
1721 * to control its weight explicitly)
44e44a1b 1722 */
e1b2324d 1723 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1724 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
7074f076 1725 !BFQQ_TOTALLY_SEEKY(bfqq) &&
e1b2324d 1726 !in_burst &&
f6c3ca0e 1727 time_is_before_jiffies(bfqq->soft_rt_next_start) &&
91b896f6
PV
1728 bfqq->dispatched == 0 &&
1729 bfqq->entity.new_weight == 40;
1730 *interactive = !in_burst && idle_for_long_time &&
1731 bfqq->entity.new_weight == 40;
44e44a1b
PV
1732 wr_or_deserves_wr = bfqd->low_latency &&
1733 (bfqq->wr_coeff > 1 ||
36eca894
AA
1734 (bfq_bfqq_sync(bfqq) &&
1735 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1736
1737 /*
1738 * Using the last flag, update budget and check whether bfqq
1739 * may want to preempt the in-service queue.
aee69d78
PV
1740 */
1741 bfqq_wants_to_preempt =
1742 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
96a291c3 1743 arrived_in_time);
aee69d78 1744
e1b2324d
AA
1745 /*
1746 * If bfqq happened to be activated in a burst, but has been
1747 * idle for much more than an interactive queue, then we
1748 * assume that, in the overall I/O initiated in the burst, the
1749 * I/O associated with bfqq is finished. So bfqq does not need
1750 * to be treated as a queue belonging to a burst
1751 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1752 * if set, and remove bfqq from the burst list if it's
1753 * there. We do not decrement burst_size, because the fact
1754 * that bfqq does not need to belong to the burst list any
1755 * more does not invalidate the fact that bfqq was created in
1756 * a burst.
1757 */
1758 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1759 idle_for_long_time &&
1760 time_is_before_jiffies(
1761 bfqq->budget_timeout +
1762 msecs_to_jiffies(10000))) {
1763 hlist_del_init(&bfqq->burst_list_node);
1764 bfq_clear_bfqq_in_large_burst(bfqq);
1765 }
1766
1767 bfq_clear_bfqq_just_created(bfqq);
1768
44e44a1b 1769 if (bfqd->low_latency) {
36eca894
AA
1770 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1771 /* wraparound */
1772 bfqq->split_time =
1773 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1774
1775 if (time_is_before_jiffies(bfqq->split_time +
1776 bfqd->bfq_wr_min_idle_time)) {
1777 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1778 old_wr_coeff,
1779 wr_or_deserves_wr,
1780 *interactive,
e1b2324d 1781 in_burst,
36eca894
AA
1782 soft_rt);
1783
1784 if (old_wr_coeff != bfqq->wr_coeff)
1785 bfqq->entity.prio_changed = 1;
1786 }
44e44a1b
PV
1787 }
1788
77b7dcea
PV
1789 bfqq->last_idle_bklogged = jiffies;
1790 bfqq->service_from_backlogged = 0;
1791 bfq_clear_bfqq_softrt_update(bfqq);
1792
aee69d78
PV
1793 bfq_add_bfqq_busy(bfqd, bfqq);
1794
1795 /*
7f1995c2
PV
1796 * Expire in-service queue if preemption may be needed for
1797 * guarantees or throughput. As for guarantees, we care
1798 * explicitly about two cases. The first is that bfqq has to
1799 * recover a service hole, as explained in the comments on
96a291c3
PV
1800 * bfq_bfqq_update_budg_for_activation(), i.e., that
1801 * bfqq_wants_to_preempt is true. However, if bfqq does not
1802 * carry time-critical I/O, then bfqq's bandwidth is less
1803 * important than that of queues that carry time-critical I/O.
1804 * So, as a further constraint, we consider this case only if
1805 * bfqq is at least as weight-raised, i.e., at least as time
1806 * critical, as the in-service queue.
1807 *
1808 * The second case is that bfqq is in a higher priority class,
1809 * or has a higher weight than the in-service queue. If this
1810 * condition does not hold, we don't care because, even if
1811 * bfqq does not start to be served immediately, the resulting
1812 * delay for bfqq's I/O is however lower or much lower than
1813 * the ideal completion time to be guaranteed to bfqq's I/O.
1814 *
1815 * In both cases, preemption is needed only if, according to
1816 * the timestamps of both bfqq and of the in-service queue,
1817 * bfqq actually is the next queue to serve. So, to reduce
1818 * useless preemptions, the return value of
1819 * next_queue_may_preempt() is considered in the next compound
1820 * condition too. Yet next_queue_may_preempt() just checks a
1821 * simple, necessary condition for bfqq to be the next queue
1822 * to serve. In fact, to evaluate a sufficient condition, the
1823 * timestamps of the in-service queue would need to be
1824 * updated, and this operation is quite costly (see the
1825 * comments on bfq_bfqq_update_budg_for_activation()).
7f1995c2
PV
1826 *
1827 * As for throughput, we ask bfq_better_to_idle() whether we
1828 * still need to plug I/O dispatching. If bfq_better_to_idle()
1829 * says no, then plugging is not needed any longer, either to
1830 * boost throughput or to perserve service guarantees. Then
1831 * the best option is to stop plugging I/O, as not doing so
1832 * would certainly lower throughput. We may end up in this
1833 * case if: (1) upon a dispatch attempt, we detected that it
1834 * was better to plug I/O dispatch, and to wait for a new
1835 * request to arrive for the currently in-service queue, but
1836 * (2) this switch of bfqq to busy changes the scenario.
aee69d78 1837 */
96a291c3
PV
1838 if (bfqd->in_service_queue &&
1839 ((bfqq_wants_to_preempt &&
1840 bfqq->wr_coeff >= bfqd->in_service_queue->wr_coeff) ||
7f1995c2
PV
1841 bfq_bfqq_higher_class_or_weight(bfqq, bfqd->in_service_queue) ||
1842 !bfq_better_to_idle(bfqd->in_service_queue)) &&
aee69d78
PV
1843 next_queue_may_preempt(bfqd))
1844 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1845 false, BFQQE_PREEMPTED);
1846}
1847
766d6141
PV
1848static void bfq_reset_inject_limit(struct bfq_data *bfqd,
1849 struct bfq_queue *bfqq)
1850{
1851 /* invalidate baseline total service time */
1852 bfqq->last_serv_time_ns = 0;
1853
1854 /*
1855 * Reset pointer in case we are waiting for
1856 * some request completion.
1857 */
1858 bfqd->waited_rq = NULL;
1859
1860 /*
1861 * If bfqq has a short think time, then start by setting the
1862 * inject limit to 0 prudentially, because the service time of
1863 * an injected I/O request may be higher than the think time
1864 * of bfqq, and therefore, if one request was injected when
1865 * bfqq remains empty, this injected request might delay the
1866 * service of the next I/O request for bfqq significantly. In
1867 * case bfqq can actually tolerate some injection, then the
1868 * adaptive update will however raise the limit soon. This
1869 * lucky circumstance holds exactly because bfqq has a short
1870 * think time, and thus, after remaining empty, is likely to
1871 * get new I/O enqueued---and then completed---before being
1872 * expired. This is the very pattern that gives the
1873 * limit-update algorithm the chance to measure the effect of
1874 * injection on request service times, and then to update the
1875 * limit accordingly.
1876 *
1877 * However, in the following special case, the inject limit is
1878 * left to 1 even if the think time is short: bfqq's I/O is
1879 * synchronized with that of some other queue, i.e., bfqq may
1880 * receive new I/O only after the I/O of the other queue is
1881 * completed. Keeping the inject limit to 1 allows the
1882 * blocking I/O to be served while bfqq is in service. And
1883 * this is very convenient both for bfqq and for overall
1884 * throughput, as explained in detail in the comments in
1885 * bfq_update_has_short_ttime().
1886 *
1887 * On the opposite end, if bfqq has a long think time, then
1888 * start directly by 1, because:
1889 * a) on the bright side, keeping at most one request in
1890 * service in the drive is unlikely to cause any harm to the
1891 * latency of bfqq's requests, as the service time of a single
1892 * request is likely to be lower than the think time of bfqq;
1893 * b) on the downside, after becoming empty, bfqq is likely to
1894 * expire before getting its next request. With this request
1895 * arrival pattern, it is very hard to sample total service
1896 * times and update the inject limit accordingly (see comments
1897 * on bfq_update_inject_limit()). So the limit is likely to be
1898 * never, or at least seldom, updated. As a consequence, by
1899 * setting the limit to 1, we avoid that no injection ever
1900 * occurs with bfqq. On the downside, this proactive step
1901 * further reduces chances to actually compute the baseline
1902 * total service time. Thus it reduces chances to execute the
1903 * limit-update algorithm and possibly raise the limit to more
1904 * than 1.
1905 */
1906 if (bfq_bfqq_has_short_ttime(bfqq))
1907 bfqq->inject_limit = 0;
1908 else
1909 bfqq->inject_limit = 1;
1910
1911 bfqq->decrease_time_jif = jiffies;
1912}
1913
eb2fd80f
PV
1914static void bfq_update_io_intensity(struct bfq_queue *bfqq, u64 now_ns)
1915{
1916 u64 tot_io_time = now_ns - bfqq->io_start_time;
1917
1918 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfqq->dispatched == 0)
1919 bfqq->tot_idle_time +=
1920 now_ns - bfqq->ttime.last_end_request;
1921
1922 if (unlikely(bfq_bfqq_just_created(bfqq)))
1923 return;
1924
1925 /*
1926 * Must be busy for at least about 80% of the time to be
1927 * considered I/O bound.
1928 */
1929 if (bfqq->tot_idle_time * 5 > tot_io_time)
1930 bfq_clear_bfqq_IO_bound(bfqq);
1931 else
1932 bfq_mark_bfqq_IO_bound(bfqq);
1933
1934 /*
1935 * Keep an observation window of at most 200 ms in the past
1936 * from now.
1937 */
1938 if (tot_io_time > 200 * NSEC_PER_MSEC) {
1939 bfqq->io_start_time = now_ns - (tot_io_time>>1);
1940 bfqq->tot_idle_time >>= 1;
1941 }
1942}
1943
71217df3
PV
1944/*
1945 * Detect whether bfqq's I/O seems synchronized with that of some
1946 * other queue, i.e., whether bfqq, after remaining empty, happens to
1947 * receive new I/O only right after some I/O request of the other
1948 * queue has been completed. We call waker queue the other queue, and
1949 * we assume, for simplicity, that bfqq may have at most one waker
1950 * queue.
1951 *
1952 * A remarkable throughput boost can be reached by unconditionally
1953 * injecting the I/O of the waker queue, every time a new
1954 * bfq_dispatch_request happens to be invoked while I/O is being
1955 * plugged for bfqq. In addition to boosting throughput, this
1956 * unblocks bfqq's I/O, thereby improving bandwidth and latency for
1957 * bfqq. Note that these same results may be achieved with the general
1958 * injection mechanism, but less effectively. For details on this
1959 * aspect, see the comments on the choice of the queue for injection
1960 * in bfq_select_queue().
1961 *
1962 * Turning back to the detection of a waker queue, a queue Q is deemed
1963 * as a waker queue for bfqq if, for three consecutive times, bfqq
1964 * happens to become non empty right after a request of Q has been
1965 * completed. In particular, on the first time, Q is tentatively set
1966 * as a candidate waker queue, while on the third consecutive time
1967 * that Q is detected, the field waker_bfqq is set to Q, to confirm
1968 * that Q is a waker queue for bfqq. These detection steps are
1969 * performed only if bfqq has a long think time, so as to make it more
1970 * likely that bfqq's I/O is actually being blocked by a
1971 * synchronization. This last filter, plus the above three-times
1972 * requirement, make false positives less likely.
1973 *
1974 * NOTE
1975 *
1976 * The sooner a waker queue is detected, the sooner throughput can be
1977 * boosted by injecting I/O from the waker queue. Fortunately,
1978 * detection is likely to be actually fast, for the following
1979 * reasons. While blocked by synchronization, bfqq has a long think
1980 * time. This implies that bfqq's inject limit is at least equal to 1
1981 * (see the comments in bfq_update_inject_limit()). So, thanks to
1982 * injection, the waker queue is likely to be served during the very
1983 * first I/O-plugging time interval for bfqq. This triggers the first
1984 * step of the detection mechanism. Thanks again to injection, the
1985 * candidate waker queue is then likely to be confirmed no later than
1986 * during the next I/O-plugging interval for bfqq.
1987 *
1988 * ISSUE
1989 *
1990 * On queue merging all waker information is lost.
1991 */
a5bf0a92
JA
1992static void bfq_check_waker(struct bfq_data *bfqd, struct bfq_queue *bfqq,
1993 u64 now_ns)
71217df3
PV
1994{
1995 if (!bfqd->last_completed_rq_bfqq ||
1996 bfqd->last_completed_rq_bfqq == bfqq ||
1997 bfq_bfqq_has_short_ttime(bfqq) ||
1998 now_ns - bfqd->last_completion >= 4 * NSEC_PER_MSEC ||
1999 bfqd->last_completed_rq_bfqq == bfqq->waker_bfqq)
2000 return;
2001
2002 if (bfqd->last_completed_rq_bfqq !=
2003 bfqq->tentative_waker_bfqq) {
2004 /*
2005 * First synchronization detected with a
2006 * candidate waker queue, or with a different
2007 * candidate waker queue from the current one.
2008 */
2009 bfqq->tentative_waker_bfqq =
2010 bfqd->last_completed_rq_bfqq;
2011 bfqq->num_waker_detections = 1;
2012 } else /* Same tentative waker queue detected again */
2013 bfqq->num_waker_detections++;
2014
2015 if (bfqq->num_waker_detections == 3) {
2016 bfqq->waker_bfqq = bfqd->last_completed_rq_bfqq;
2017 bfqq->tentative_waker_bfqq = NULL;
2018
2019 /*
2020 * If the waker queue disappears, then
2021 * bfqq->waker_bfqq must be reset. To
2022 * this goal, we maintain in each
2023 * waker queue a list, woken_list, of
2024 * all the queues that reference the
2025 * waker queue through their
2026 * waker_bfqq pointer. When the waker
2027 * queue exits, the waker_bfqq pointer
2028 * of all the queues in the woken_list
2029 * is reset.
2030 *
2031 * In addition, if bfqq is already in
2032 * the woken_list of a waker queue,
2033 * then, before being inserted into
2034 * the woken_list of a new waker
2035 * queue, bfqq must be removed from
2036 * the woken_list of the old waker
2037 * queue.
2038 */
2039 if (!hlist_unhashed(&bfqq->woken_list_node))
2040 hlist_del_init(&bfqq->woken_list_node);
2041 hlist_add_head(&bfqq->woken_list_node,
2042 &bfqd->last_completed_rq_bfqq->woken_list);
2043 }
2044}
2045
aee69d78
PV
2046static void bfq_add_request(struct request *rq)
2047{
2048 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2049 struct bfq_data *bfqd = bfqq->bfqd;
2050 struct request *next_rq, *prev;
44e44a1b
PV
2051 unsigned int old_wr_coeff = bfqq->wr_coeff;
2052 bool interactive = false;
eb2fd80f 2053 u64 now_ns = ktime_get_ns();
aee69d78
PV
2054
2055 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
2056 bfqq->queued[rq_is_sync(rq)]++;
2057 bfqd->queued++;
2058
2341d662 2059 if (RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_sync(bfqq)) {
71217df3 2060 bfq_check_waker(bfqd, bfqq, now_ns);
13a857a4 2061
2341d662
PV
2062 /*
2063 * Periodically reset inject limit, to make sure that
2064 * the latter eventually drops in case workload
2065 * changes, see step (3) in the comments on
2066 * bfq_update_inject_limit().
2067 */
2068 if (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
766d6141
PV
2069 msecs_to_jiffies(1000)))
2070 bfq_reset_inject_limit(bfqd, bfqq);
2341d662
PV
2071
2072 /*
2073 * The following conditions must hold to setup a new
2074 * sampling of total service time, and then a new
2075 * update of the inject limit:
2076 * - bfqq is in service, because the total service
2077 * time is evaluated only for the I/O requests of
2078 * the queues in service;
2079 * - this is the right occasion to compute or to
2080 * lower the baseline total service time, because
2081 * there are actually no requests in the drive,
2082 * or
2083 * the baseline total service time is available, and
2084 * this is the right occasion to compute the other
2085 * quantity needed to update the inject limit, i.e.,
2086 * the total service time caused by the amount of
2087 * injection allowed by the current value of the
2088 * limit. It is the right occasion because injection
2089 * has actually been performed during the service
2090 * hole, and there are still in-flight requests,
2091 * which are very likely to be exactly the injected
2092 * requests, or part of them;
2093 * - the minimum interval for sampling the total
2094 * service time and updating the inject limit has
2095 * elapsed.
2096 */
2097 if (bfqq == bfqd->in_service_queue &&
2098 (bfqd->rq_in_driver == 0 ||
2099 (bfqq->last_serv_time_ns > 0 &&
2100 bfqd->rqs_injected && bfqd->rq_in_driver > 0)) &&
2101 time_is_before_eq_jiffies(bfqq->decrease_time_jif +
17c3d266 2102 msecs_to_jiffies(10))) {
2341d662
PV
2103 bfqd->last_empty_occupied_ns = ktime_get_ns();
2104 /*
2105 * Start the state machine for measuring the
2106 * total service time of rq: setting
2107 * wait_dispatch will cause bfqd->waited_rq to
2108 * be set when rq will be dispatched.
2109 */
2110 bfqd->wait_dispatch = true;
23ed570a
PV
2111 /*
2112 * If there is no I/O in service in the drive,
2113 * then possible injection occurred before the
2114 * arrival of rq will not affect the total
2115 * service time of rq. So the injection limit
2116 * must not be updated as a function of such
2117 * total service time, unless new injection
2118 * occurs before rq is completed. To have the
2119 * injection limit updated only in the latter
2120 * case, reset rqs_injected here (rqs_injected
2121 * will be set in case injection is performed
2122 * on bfqq before rq is completed).
2123 */
2124 if (bfqd->rq_in_driver == 0)
2125 bfqd->rqs_injected = false;
2341d662
PV
2126 }
2127 }
2128
eb2fd80f
PV
2129 if (bfq_bfqq_sync(bfqq))
2130 bfq_update_io_intensity(bfqq, now_ns);
2131
aee69d78
PV
2132 elv_rb_add(&bfqq->sort_list, rq);
2133
2134 /*
2135 * Check if this request is a better next-serve candidate.
2136 */
2137 prev = bfqq->next_rq;
2138 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
2139 bfqq->next_rq = next_rq;
2140
36eca894
AA
2141 /*
2142 * Adjust priority tree position, if next_rq changes.
8cacc5ab 2143 * See comments on bfq_pos_tree_add_move() for the unlikely().
36eca894 2144 */
8cacc5ab 2145 if (unlikely(!bfqd->nonrot_with_queueing && prev != bfqq->next_rq))
36eca894
AA
2146 bfq_pos_tree_add_move(bfqd, bfqq);
2147
aee69d78 2148 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
2149 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
2150 rq, &interactive);
2151 else {
2152 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
2153 time_is_before_jiffies(
2154 bfqq->last_wr_start_finish +
2155 bfqd->bfq_wr_min_inter_arr_async)) {
2156 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
2157 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
2158
cfd69712 2159 bfqd->wr_busy_queues++;
44e44a1b
PV
2160 bfqq->entity.prio_changed = 1;
2161 }
2162 if (prev != bfqq->next_rq)
2163 bfq_updated_next_req(bfqd, bfqq);
2164 }
2165
2166 /*
2167 * Assign jiffies to last_wr_start_finish in the following
2168 * cases:
2169 *
2170 * . if bfqq is not going to be weight-raised, because, for
2171 * non weight-raised queues, last_wr_start_finish stores the
2172 * arrival time of the last request; as of now, this piece
2173 * of information is used only for deciding whether to
2174 * weight-raise async queues
2175 *
2176 * . if bfqq is not weight-raised, because, if bfqq is now
2177 * switching to weight-raised, then last_wr_start_finish
2178 * stores the time when weight-raising starts
2179 *
2180 * . if bfqq is interactive, because, regardless of whether
2181 * bfqq is currently weight-raised, the weight-raising
2182 * period must start or restart (this case is considered
2183 * separately because it is not detected by the above
2184 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
2185 *
2186 * last_wr_start_finish has to be updated also if bfqq is soft
2187 * real-time, because the weight-raising period is constantly
2188 * restarted on idle-to-busy transitions for these queues, but
2189 * this is already done in bfq_bfqq_handle_idle_busy_switch if
2190 * needed.
44e44a1b
PV
2191 */
2192 if (bfqd->low_latency &&
2193 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
2194 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
2195}
2196
2197static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
2198 struct bio *bio,
2199 struct request_queue *q)
2200{
2201 struct bfq_queue *bfqq = bfqd->bio_bfqq;
2202
2203
2204 if (bfqq)
2205 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
2206
2207 return NULL;
2208}
2209
ab0e43e9
PV
2210static sector_t get_sdist(sector_t last_pos, struct request *rq)
2211{
2212 if (last_pos)
2213 return abs(blk_rq_pos(rq) - last_pos);
2214
2215 return 0;
2216}
2217
aee69d78
PV
2218#if 0 /* Still not clear if we can do without next two functions */
2219static void bfq_activate_request(struct request_queue *q, struct request *rq)
2220{
2221 struct bfq_data *bfqd = q->elevator->elevator_data;
2222
2223 bfqd->rq_in_driver++;
aee69d78
PV
2224}
2225
2226static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
2227{
2228 struct bfq_data *bfqd = q->elevator->elevator_data;
2229
2230 bfqd->rq_in_driver--;
2231}
2232#endif
2233
2234static void bfq_remove_request(struct request_queue *q,
2235 struct request *rq)
2236{
2237 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2238 struct bfq_data *bfqd = bfqq->bfqd;
2239 const int sync = rq_is_sync(rq);
2240
2241 if (bfqq->next_rq == rq) {
2242 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
2243 bfq_updated_next_req(bfqd, bfqq);
2244 }
2245
2246 if (rq->queuelist.prev != &rq->queuelist)
2247 list_del_init(&rq->queuelist);
2248 bfqq->queued[sync]--;
2249 bfqd->queued--;
2250 elv_rb_del(&bfqq->sort_list, rq);
2251
2252 elv_rqhash_del(q, rq);
2253 if (q->last_merge == rq)
2254 q->last_merge = NULL;
2255
2256 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2257 bfqq->next_rq = NULL;
2258
2259 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 2260 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
2261 /*
2262 * bfqq emptied. In normal operation, when
2263 * bfqq is empty, bfqq->entity.service and
2264 * bfqq->entity.budget must contain,
2265 * respectively, the service received and the
2266 * budget used last time bfqq emptied. These
2267 * facts do not hold in this case, as at least
2268 * this last removal occurred while bfqq is
2269 * not in service. To avoid inconsistencies,
2270 * reset both bfqq->entity.service and
2271 * bfqq->entity.budget, if bfqq has still a
2272 * process that may issue I/O requests to it.
2273 */
2274 bfqq->entity.budget = bfqq->entity.service = 0;
2275 }
36eca894
AA
2276
2277 /*
2278 * Remove queue from request-position tree as it is empty.
2279 */
2280 if (bfqq->pos_root) {
2281 rb_erase(&bfqq->pos_node, bfqq->pos_root);
2282 bfqq->pos_root = NULL;
2283 }
05e90283 2284 } else {
8cacc5ab
PV
2285 /* see comments on bfq_pos_tree_add_move() for the unlikely() */
2286 if (unlikely(!bfqd->nonrot_with_queueing))
2287 bfq_pos_tree_add_move(bfqd, bfqq);
aee69d78
PV
2288 }
2289
2290 if (rq->cmd_flags & REQ_META)
2291 bfqq->meta_pending--;
e21b7a0b 2292
aee69d78
PV
2293}
2294
efed9a33 2295static bool bfq_bio_merge(struct request_queue *q, struct bio *bio,
14ccb66b 2296 unsigned int nr_segs)
aee69d78 2297{
aee69d78
PV
2298 struct bfq_data *bfqd = q->elevator->elevator_data;
2299 struct request *free = NULL;
2300 /*
2301 * bfq_bic_lookup grabs the queue_lock: invoke it now and
2302 * store its return value for later use, to avoid nesting
2303 * queue_lock inside the bfqd->lock. We assume that the bic
2304 * returned by bfq_bic_lookup does not go away before
2305 * bfqd->lock is taken.
2306 */
2307 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
2308 bool ret;
2309
2310 spin_lock_irq(&bfqd->lock);
2311
2312 if (bic)
2313 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
2314 else
2315 bfqd->bio_bfqq = NULL;
2316 bfqd->bio_bic = bic;
2317
14ccb66b 2318 ret = blk_mq_sched_try_merge(q, bio, nr_segs, &free);
aee69d78
PV
2319
2320 if (free)
2321 blk_mq_free_request(free);
2322 spin_unlock_irq(&bfqd->lock);
2323
2324 return ret;
2325}
2326
2327static int bfq_request_merge(struct request_queue *q, struct request **req,
2328 struct bio *bio)
2329{
2330 struct bfq_data *bfqd = q->elevator->elevator_data;
2331 struct request *__rq;
2332
2333 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
2334 if (__rq && elv_bio_merge_ok(__rq, bio)) {
2335 *req = __rq;
2336 return ELEVATOR_FRONT_MERGE;
2337 }
2338
2339 return ELEVATOR_NO_MERGE;
2340}
2341
18e5a57d
PV
2342static struct bfq_queue *bfq_init_rq(struct request *rq);
2343
aee69d78
PV
2344static void bfq_request_merged(struct request_queue *q, struct request *req,
2345 enum elv_merge type)
2346{
2347 if (type == ELEVATOR_FRONT_MERGE &&
2348 rb_prev(&req->rb_node) &&
2349 blk_rq_pos(req) <
2350 blk_rq_pos(container_of(rb_prev(&req->rb_node),
2351 struct request, rb_node))) {
18e5a57d 2352 struct bfq_queue *bfqq = bfq_init_rq(req);
fd03177c 2353 struct bfq_data *bfqd;
aee69d78
PV
2354 struct request *prev, *next_rq;
2355
fd03177c
PV
2356 if (!bfqq)
2357 return;
2358
2359 bfqd = bfqq->bfqd;
2360
aee69d78
PV
2361 /* Reposition request in its sort_list */
2362 elv_rb_del(&bfqq->sort_list, req);
2363 elv_rb_add(&bfqq->sort_list, req);
2364
2365 /* Choose next request to be served for bfqq */
2366 prev = bfqq->next_rq;
2367 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
2368 bfqd->last_position);
2369 bfqq->next_rq = next_rq;
2370 /*
36eca894
AA
2371 * If next_rq changes, update both the queue's budget to
2372 * fit the new request and the queue's position in its
2373 * rq_pos_tree.
aee69d78 2374 */
36eca894 2375 if (prev != bfqq->next_rq) {
aee69d78 2376 bfq_updated_next_req(bfqd, bfqq);
8cacc5ab
PV
2377 /*
2378 * See comments on bfq_pos_tree_add_move() for
2379 * the unlikely().
2380 */
2381 if (unlikely(!bfqd->nonrot_with_queueing))
2382 bfq_pos_tree_add_move(bfqd, bfqq);
36eca894 2383 }
aee69d78
PV
2384 }
2385}
2386
8abfa4d6
PV
2387/*
2388 * This function is called to notify the scheduler that the requests
2389 * rq and 'next' have been merged, with 'next' going away. BFQ
2390 * exploits this hook to address the following issue: if 'next' has a
2391 * fifo_time lower that rq, then the fifo_time of rq must be set to
2392 * the value of 'next', to not forget the greater age of 'next'.
8abfa4d6
PV
2393 *
2394 * NOTE: in this function we assume that rq is in a bfq_queue, basing
2395 * on that rq is picked from the hash table q->elevator->hash, which,
2396 * in its turn, is filled only with I/O requests present in
2397 * bfq_queues, while BFQ is in use for the request queue q. In fact,
2398 * the function that fills this hash table (elv_rqhash_add) is called
2399 * only by bfq_insert_request.
2400 */
aee69d78
PV
2401static void bfq_requests_merged(struct request_queue *q, struct request *rq,
2402 struct request *next)
2403{
18e5a57d
PV
2404 struct bfq_queue *bfqq = bfq_init_rq(rq),
2405 *next_bfqq = bfq_init_rq(next);
aee69d78 2406
fd03177c
PV
2407 if (!bfqq)
2408 return;
2409
aee69d78
PV
2410 /*
2411 * If next and rq belong to the same bfq_queue and next is older
2412 * than rq, then reposition rq in the fifo (by substituting next
2413 * with rq). Otherwise, if next and rq belong to different
2414 * bfq_queues, never reposition rq: in fact, we would have to
2415 * reposition it with respect to next's position in its own fifo,
2416 * which would most certainly be too expensive with respect to
2417 * the benefits.
2418 */
2419 if (bfqq == next_bfqq &&
2420 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
2421 next->fifo_time < rq->fifo_time) {
2422 list_del_init(&rq->queuelist);
2423 list_replace_init(&next->queuelist, &rq->queuelist);
2424 rq->fifo_time = next->fifo_time;
2425 }
2426
2427 if (bfqq->next_rq == next)
2428 bfqq->next_rq = rq;
2429
e21b7a0b 2430 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
2431}
2432
44e44a1b
PV
2433/* Must be called with bfqq != NULL */
2434static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
2435{
3c337690
PV
2436 /*
2437 * If bfqq has been enjoying interactive weight-raising, then
2438 * reset soft_rt_next_start. We do it for the following
2439 * reason. bfqq may have been conveying the I/O needed to load
2440 * a soft real-time application. Such an application actually
2441 * exhibits a soft real-time I/O pattern after it finishes
2442 * loading, and finally starts doing its job. But, if bfqq has
2443 * been receiving a lot of bandwidth so far (likely to happen
2444 * on a fast device), then soft_rt_next_start now contains a
2445 * high value that. So, without this reset, bfqq would be
2446 * prevented from being possibly considered as soft_rt for a
2447 * very long time.
2448 */
2449
2450 if (bfqq->wr_cur_max_time !=
2451 bfqq->bfqd->bfq_wr_rt_max_time)
2452 bfqq->soft_rt_next_start = jiffies;
2453
cfd69712
PV
2454 if (bfq_bfqq_busy(bfqq))
2455 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
2456 bfqq->wr_coeff = 1;
2457 bfqq->wr_cur_max_time = 0;
77b7dcea 2458 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
2459 /*
2460 * Trigger a weight change on the next invocation of
2461 * __bfq_entity_update_weight_prio.
2462 */
2463 bfqq->entity.prio_changed = 1;
2464}
2465
ea25da48
PV
2466void bfq_end_wr_async_queues(struct bfq_data *bfqd,
2467 struct bfq_group *bfqg)
44e44a1b
PV
2468{
2469 int i, j;
2470
2471 for (i = 0; i < 2; i++)
2472 for (j = 0; j < IOPRIO_BE_NR; j++)
2473 if (bfqg->async_bfqq[i][j])
2474 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
2475 if (bfqg->async_idle_bfqq)
2476 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
2477}
2478
2479static void bfq_end_wr(struct bfq_data *bfqd)
2480{
2481 struct bfq_queue *bfqq;
2482
2483 spin_lock_irq(&bfqd->lock);
2484
2485 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
2486 bfq_bfqq_end_wr(bfqq);
2487 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
2488 bfq_bfqq_end_wr(bfqq);
2489 bfq_end_wr_async(bfqd);
2490
2491 spin_unlock_irq(&bfqd->lock);
2492}
2493
36eca894
AA
2494static sector_t bfq_io_struct_pos(void *io_struct, bool request)
2495{
2496 if (request)
2497 return blk_rq_pos(io_struct);
2498 else
2499 return ((struct bio *)io_struct)->bi_iter.bi_sector;
2500}
2501
2502static int bfq_rq_close_to_sector(void *io_struct, bool request,
2503 sector_t sector)
2504{
2505 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
2506 BFQQ_CLOSE_THR;
2507}
2508
2509static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
2510 struct bfq_queue *bfqq,
2511 sector_t sector)
2512{
2513 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
2514 struct rb_node *parent, *node;
2515 struct bfq_queue *__bfqq;
2516
2517 if (RB_EMPTY_ROOT(root))
2518 return NULL;
2519
2520 /*
2521 * First, if we find a request starting at the end of the last
2522 * request, choose it.
2523 */
2524 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
2525 if (__bfqq)
2526 return __bfqq;
2527
2528 /*
2529 * If the exact sector wasn't found, the parent of the NULL leaf
2530 * will contain the closest sector (rq_pos_tree sorted by
2531 * next_request position).
2532 */
2533 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
2534 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2535 return __bfqq;
2536
2537 if (blk_rq_pos(__bfqq->next_rq) < sector)
2538 node = rb_next(&__bfqq->pos_node);
2539 else
2540 node = rb_prev(&__bfqq->pos_node);
2541 if (!node)
2542 return NULL;
2543
2544 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
2545 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
2546 return __bfqq;
2547
2548 return NULL;
2549}
2550
2551static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
2552 struct bfq_queue *cur_bfqq,
2553 sector_t sector)
2554{
2555 struct bfq_queue *bfqq;
2556
2557 /*
2558 * We shall notice if some of the queues are cooperating,
2559 * e.g., working closely on the same area of the device. In
2560 * that case, we can group them together and: 1) don't waste
2561 * time idling, and 2) serve the union of their requests in
2562 * the best possible order for throughput.
2563 */
2564 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
2565 if (!bfqq || bfqq == cur_bfqq)
2566 return NULL;
2567
2568 return bfqq;
2569}
2570
2571static struct bfq_queue *
2572bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2573{
2574 int process_refs, new_process_refs;
2575 struct bfq_queue *__bfqq;
2576
2577 /*
2578 * If there are no process references on the new_bfqq, then it is
2579 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
2580 * may have dropped their last reference (not just their last process
2581 * reference).
2582 */
2583 if (!bfqq_process_refs(new_bfqq))
2584 return NULL;
2585
2586 /* Avoid a circular list and skip interim queue merges. */
2587 while ((__bfqq = new_bfqq->new_bfqq)) {
2588 if (__bfqq == bfqq)
2589 return NULL;
2590 new_bfqq = __bfqq;
2591 }
2592
2593 process_refs = bfqq_process_refs(bfqq);
2594 new_process_refs = bfqq_process_refs(new_bfqq);
2595 /*
2596 * If the process for the bfqq has gone away, there is no
2597 * sense in merging the queues.
2598 */
2599 if (process_refs == 0 || new_process_refs == 0)
2600 return NULL;
2601
2602 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
2603 new_bfqq->pid);
2604
2605 /*
2606 * Merging is just a redirection: the requests of the process
2607 * owning one of the two queues are redirected to the other queue.
2608 * The latter queue, in its turn, is set as shared if this is the
2609 * first time that the requests of some process are redirected to
2610 * it.
2611 *
6fa3e8d3
PV
2612 * We redirect bfqq to new_bfqq and not the opposite, because
2613 * we are in the context of the process owning bfqq, thus we
2614 * have the io_cq of this process. So we can immediately
2615 * configure this io_cq to redirect the requests of the
2616 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
2617 * not available any more (new_bfqq->bic == NULL).
36eca894 2618 *
6fa3e8d3
PV
2619 * Anyway, even in case new_bfqq coincides with the in-service
2620 * queue, redirecting requests the in-service queue is the
2621 * best option, as we feed the in-service queue with new
2622 * requests close to the last request served and, by doing so,
2623 * are likely to increase the throughput.
36eca894
AA
2624 */
2625 bfqq->new_bfqq = new_bfqq;
2626 new_bfqq->ref += process_refs;
2627 return new_bfqq;
2628}
2629
2630static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
2631 struct bfq_queue *new_bfqq)
2632{
7b8fa3b9
PV
2633 if (bfq_too_late_for_merging(new_bfqq))
2634 return false;
2635
36eca894
AA
2636 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
2637 (bfqq->ioprio_class != new_bfqq->ioprio_class))
2638 return false;
2639
2640 /*
2641 * If either of the queues has already been detected as seeky,
2642 * then merging it with the other queue is unlikely to lead to
2643 * sequential I/O.
2644 */
2645 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
2646 return false;
2647
2648 /*
2649 * Interleaved I/O is known to be done by (some) applications
2650 * only for reads, so it does not make sense to merge async
2651 * queues.
2652 */
2653 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
2654 return false;
2655
2656 return true;
2657}
2658
430a67f9
PV
2659static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
2660 struct bfq_queue *bfqq);
2661
36eca894
AA
2662/*
2663 * Attempt to schedule a merge of bfqq with the currently in-service
2664 * queue or with a close queue among the scheduled queues. Return
2665 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
2666 * structure otherwise.
2667 *
2668 * The OOM queue is not allowed to participate to cooperation: in fact, since
2669 * the requests temporarily redirected to the OOM queue could be redirected
2670 * again to dedicated queues at any time, the state needed to correctly
2671 * handle merging with the OOM queue would be quite complex and expensive
2672 * to maintain. Besides, in such a critical condition as an out of memory,
2673 * the benefits of queue merging may be little relevant, or even negligible.
2674 *
36eca894
AA
2675 * WARNING: queue merging may impair fairness among non-weight raised
2676 * queues, for at least two reasons: 1) the original weight of a
2677 * merged queue may change during the merged state, 2) even being the
2678 * weight the same, a merged queue may be bloated with many more
2679 * requests than the ones produced by its originally-associated
2680 * process.
2681 */
2682static struct bfq_queue *
2683bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
430a67f9 2684 void *io_struct, bool request, struct bfq_io_cq *bic)
36eca894
AA
2685{
2686 struct bfq_queue *in_service_bfqq, *new_bfqq;
2687
430a67f9
PV
2688 /*
2689 * Check delayed stable merge for rotational or non-queueing
2690 * devs. For this branch to be executed, bfqq must not be
2691 * currently merged with some other queue (i.e., bfqq->bic
2692 * must be non null). If we considered also merged queues,
2693 * then we should also check whether bfqq has already been
2694 * merged with bic->stable_merge_bfqq. But this would be
2695 * costly and complicated.
2696 */
2697 if (unlikely(!bfqd->nonrot_with_queueing)) {
2698 if (bic->stable_merge_bfqq &&
2699 !bfq_bfqq_just_created(bfqq) &&
2700 time_is_after_jiffies(bfqq->split_time +
2701 msecs_to_jiffies(200))) {
2702 struct bfq_queue *stable_merge_bfqq =
2703 bic->stable_merge_bfqq;
2704 int proc_ref = min(bfqq_process_refs(bfqq),
2705 bfqq_process_refs(stable_merge_bfqq));
2706
2707 /* deschedule stable merge, because done or aborted here */
2708 bfq_put_stable_ref(stable_merge_bfqq);
2709
2710 bic->stable_merge_bfqq = NULL;
2711
2712 if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
2713 proc_ref > 0) {
2714 /* next function will take at least one ref */
2715 struct bfq_queue *new_bfqq =
2716 bfq_setup_merge(bfqq, stable_merge_bfqq);
2717
2718 bic->stably_merged = true;
2719 if (new_bfqq && new_bfqq->bic)
2720 new_bfqq->bic->stably_merged = true;
2721 return new_bfqq;
2722 } else
2723 return NULL;
2724 }
2725 }
2726
8cacc5ab
PV
2727 /*
2728 * Do not perform queue merging if the device is non
2729 * rotational and performs internal queueing. In fact, such a
2730 * device reaches a high speed through internal parallelism
2731 * and pipelining. This means that, to reach a high
2732 * throughput, it must have many requests enqueued at the same
2733 * time. But, in this configuration, the internal scheduling
2734 * algorithm of the device does exactly the job of queue
2735 * merging: it reorders requests so as to obtain as much as
2736 * possible a sequential I/O pattern. As a consequence, with
2737 * the workload generated by processes doing interleaved I/O,
2738 * the throughput reached by the device is likely to be the
2739 * same, with and without queue merging.
2740 *
2741 * Disabling merging also provides a remarkable benefit in
2742 * terms of throughput. Merging tends to make many workloads
2743 * artificially more uneven, because of shared queues
2744 * remaining non empty for incomparably more time than
2745 * non-merged queues. This may accentuate workload
2746 * asymmetries. For example, if one of the queues in a set of
2747 * merged queues has a higher weight than a normal queue, then
2748 * the shared queue may inherit such a high weight and, by
2749 * staying almost always active, may force BFQ to perform I/O
2750 * plugging most of the time. This evidently makes it harder
2751 * for BFQ to let the device reach a high throughput.
2752 *
2753 * Finally, the likely() macro below is not used because one
2754 * of the two branches is more likely than the other, but to
2755 * have the code path after the following if() executed as
2756 * fast as possible for the case of a non rotational device
2757 * with queueing. We want it because this is the fastest kind
2758 * of device. On the opposite end, the likely() may lengthen
2759 * the execution time of BFQ for the case of slower devices
2760 * (rotational or at least without queueing). But in this case
2761 * the execution time of BFQ matters very little, if not at
2762 * all.
2763 */
2764 if (likely(bfqd->nonrot_with_queueing))
2765 return NULL;
2766
7b8fa3b9
PV
2767 /*
2768 * Prevent bfqq from being merged if it has been created too
2769 * long ago. The idea is that true cooperating processes, and
2770 * thus their associated bfq_queues, are supposed to be
2771 * created shortly after each other. This is the case, e.g.,
2772 * for KVM/QEMU and dump I/O threads. Basing on this
2773 * assumption, the following filtering greatly reduces the
2774 * probability that two non-cooperating processes, which just
2775 * happen to do close I/O for some short time interval, have
2776 * their queues merged by mistake.
2777 */
2778 if (bfq_too_late_for_merging(bfqq))
2779 return NULL;
2780
36eca894
AA
2781 if (bfqq->new_bfqq)
2782 return bfqq->new_bfqq;
2783
4403e4e4 2784 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
36eca894
AA
2785 return NULL;
2786
2787 /* If there is only one backlogged queue, don't search. */
73d58118 2788 if (bfq_tot_busy_queues(bfqd) == 1)
36eca894
AA
2789 return NULL;
2790
2791 in_service_bfqq = bfqd->in_service_queue;
2792
4403e4e4
AR
2793 if (in_service_bfqq && in_service_bfqq != bfqq &&
2794 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
058fdecc
PV
2795 bfq_rq_close_to_sector(io_struct, request,
2796 bfqd->in_serv_last_pos) &&
36eca894
AA
2797 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2798 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2799 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2800 if (new_bfqq)
2801 return new_bfqq;
2802 }
2803 /*
2804 * Check whether there is a cooperator among currently scheduled
2805 * queues. The only thing we need is that the bio/request is not
2806 * NULL, as we need it to establish whether a cooperator exists.
2807 */
36eca894
AA
2808 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2809 bfq_io_struct_pos(io_struct, request));
2810
4403e4e4 2811 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
36eca894
AA
2812 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2813 return bfq_setup_merge(bfqq, new_bfqq);
2814
2815 return NULL;
2816}
2817
2818static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2819{
2820 struct bfq_io_cq *bic = bfqq->bic;
2821
2822 /*
2823 * If !bfqq->bic, the queue is already shared or its requests
2824 * have already been redirected to a shared queue; both idle window
2825 * and weight raising state have already been saved. Do nothing.
2826 */
2827 if (!bic)
2828 return;
2829
5a5436b9
PV
2830 bic->saved_last_serv_time_ns = bfqq->last_serv_time_ns;
2831 bic->saved_inject_limit = bfqq->inject_limit;
2832 bic->saved_decrease_time_jif = bfqq->decrease_time_jif;
2833
fffca087 2834 bic->saved_weight = bfqq->entity.orig_weight;
36eca894 2835 bic->saved_ttime = bfqq->ttime;
d5be3fef 2836 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2837 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
eb2fd80f
PV
2838 bic->saved_io_start_time = bfqq->io_start_time;
2839 bic->saved_tot_idle_time = bfqq->tot_idle_time;
e1b2324d
AA
2840 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2841 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
894df937 2842 if (unlikely(bfq_bfqq_just_created(bfqq) &&
1be6e8a9
AR
2843 !bfq_bfqq_in_large_burst(bfqq) &&
2844 bfqq->bfqd->low_latency)) {
894df937
PV
2845 /*
2846 * bfqq being merged right after being created: bfqq
2847 * would have deserved interactive weight raising, but
2848 * did not make it to be set in a weight-raised state,
2849 * because of this early merge. Store directly the
2850 * weight-raising state that would have been assigned
2851 * to bfqq, so that to avoid that bfqq unjustly fails
2852 * to enjoy weight raising if split soon.
2853 */
2854 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2b50f230 2855 bic->saved_wr_start_at_switch_to_srt = bfq_smallest_from_now();
894df937
PV
2856 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2857 bic->saved_last_wr_start_finish = jiffies;
2858 } else {
2859 bic->saved_wr_coeff = bfqq->wr_coeff;
2860 bic->saved_wr_start_at_switch_to_srt =
2861 bfqq->wr_start_at_switch_to_srt;
e673914d 2862 bic->saved_service_from_wr = bfqq->service_from_wr;
894df937
PV
2863 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2864 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2865 }
36eca894
AA
2866}
2867
430a67f9
PV
2868
2869static void
2870bfq_reassign_last_bfqq(struct bfq_queue *cur_bfqq, struct bfq_queue *new_bfqq)
2871{
2872 if (cur_bfqq->entity.parent &&
2873 cur_bfqq->entity.parent->last_bfqq_created == cur_bfqq)
2874 cur_bfqq->entity.parent->last_bfqq_created = new_bfqq;
2875 else if (cur_bfqq->bfqd && cur_bfqq->bfqd->last_bfqq_created == cur_bfqq)
2876 cur_bfqq->bfqd->last_bfqq_created = new_bfqq;
2877}
2878
478de338
PV
2879void bfq_release_process_ref(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2880{
2881 /*
2882 * To prevent bfqq's service guarantees from being violated,
2883 * bfqq may be left busy, i.e., queued for service, even if
2884 * empty (see comments in __bfq_bfqq_expire() for
2885 * details). But, if no process will send requests to bfqq any
2886 * longer, then there is no point in keeping bfqq queued for
2887 * service. In addition, keeping bfqq queued for service, but
2888 * with no process ref any longer, may have caused bfqq to be
2889 * freed when dequeued from service. But this is assumed to
2890 * never happen.
2891 */
2892 if (bfq_bfqq_busy(bfqq) && RB_EMPTY_ROOT(&bfqq->sort_list) &&
2893 bfqq != bfqd->in_service_queue)
2894 bfq_del_bfqq_busy(bfqd, bfqq, false);
2895
430a67f9
PV
2896 bfq_reassign_last_bfqq(bfqq, NULL);
2897
478de338
PV
2898 bfq_put_queue(bfqq);
2899}
2900
36eca894
AA
2901static void
2902bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2903 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2904{
2905 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2906 (unsigned long)new_bfqq->pid);
2907 /* Save weight raising and idle window of the merged queues */
2908 bfq_bfqq_save_state(bfqq);
2909 bfq_bfqq_save_state(new_bfqq);
2910 if (bfq_bfqq_IO_bound(bfqq))
2911 bfq_mark_bfqq_IO_bound(new_bfqq);
2912 bfq_clear_bfqq_IO_bound(bfqq);
2913
8ef3fc3a
PV
2914 /*
2915 * The processes associated with bfqq are cooperators of the
2916 * processes associated with new_bfqq. So, if bfqq has a
2917 * waker, then assume that all these processes will be happy
2918 * to let bfqq's waker freely inject I/O when they have no
2919 * I/O.
2920 */
2921 if (bfqq->waker_bfqq && !new_bfqq->waker_bfqq &&
2922 bfqq->waker_bfqq != new_bfqq) {
2923 new_bfqq->waker_bfqq = bfqq->waker_bfqq;
2924 new_bfqq->tentative_waker_bfqq = NULL;
2925
2926 /*
2927 * If the waker queue disappears, then
2928 * new_bfqq->waker_bfqq must be reset. So insert
2929 * new_bfqq into the woken_list of the waker. See
2930 * bfq_check_waker for details.
2931 */
2932 hlist_add_head(&new_bfqq->woken_list_node,
2933 &new_bfqq->waker_bfqq->woken_list);
2934
2935 }
2936
36eca894
AA
2937 /*
2938 * If bfqq is weight-raised, then let new_bfqq inherit
2939 * weight-raising. To reduce false positives, neglect the case
2940 * where bfqq has just been created, but has not yet made it
2941 * to be weight-raised (which may happen because EQM may merge
2942 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2943 * time for bfqq). Handling this case would however be very
2944 * easy, thanks to the flag just_created.
36eca894
AA
2945 */
2946 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2947 new_bfqq->wr_coeff = bfqq->wr_coeff;
2948 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2949 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2950 new_bfqq->wr_start_at_switch_to_srt =
2951 bfqq->wr_start_at_switch_to_srt;
2952 if (bfq_bfqq_busy(new_bfqq))
2953 bfqd->wr_busy_queues++;
2954 new_bfqq->entity.prio_changed = 1;
2955 }
2956
2957 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2958 bfqq->wr_coeff = 1;
2959 bfqq->entity.prio_changed = 1;
2960 if (bfq_bfqq_busy(bfqq))
2961 bfqd->wr_busy_queues--;
2962 }
2963
2964 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2965 bfqd->wr_busy_queues);
2966
36eca894
AA
2967 /*
2968 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2969 */
2970 bic_set_bfqq(bic, new_bfqq, 1);
2971 bfq_mark_bfqq_coop(new_bfqq);
2972 /*
2973 * new_bfqq now belongs to at least two bics (it is a shared queue):
2974 * set new_bfqq->bic to NULL. bfqq either:
2975 * - does not belong to any bic any more, and hence bfqq->bic must
2976 * be set to NULL, or
2977 * - is a queue whose owning bics have already been redirected to a
2978 * different queue, hence the queue is destined to not belong to
2979 * any bic soon and bfqq->bic is already NULL (therefore the next
2980 * assignment causes no harm).
2981 */
2982 new_bfqq->bic = NULL;
1e66413c
FP
2983 /*
2984 * If the queue is shared, the pid is the pid of one of the associated
2985 * processes. Which pid depends on the exact sequence of merge events
2986 * the queue underwent. So printing such a pid is useless and confusing
2987 * because it reports a random pid between those of the associated
2988 * processes.
2989 * We mark such a queue with a pid -1, and then print SHARED instead of
2990 * a pid in logging messages.
2991 */
2992 new_bfqq->pid = -1;
36eca894 2993 bfqq->bic = NULL;
430a67f9
PV
2994
2995 bfq_reassign_last_bfqq(bfqq, new_bfqq);
2996
478de338 2997 bfq_release_process_ref(bfqd, bfqq);
36eca894
AA
2998}
2999
aee69d78
PV
3000static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
3001 struct bio *bio)
3002{
3003 struct bfq_data *bfqd = q->elevator->elevator_data;
3004 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 3005 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
3006
3007 /*
3008 * Disallow merge of a sync bio into an async request.
3009 */
3010 if (is_sync && !rq_is_sync(rq))
3011 return false;
3012
3013 /*
3014 * Lookup the bfqq that this bio will be queued with. Allow
3015 * merge only if rq is queued there.
3016 */
3017 if (!bfqq)
3018 return false;
3019
36eca894
AA
3020 /*
3021 * We take advantage of this function to perform an early merge
3022 * of the queues of possible cooperating processes.
3023 */
430a67f9 3024 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false, bfqd->bio_bic);
36eca894
AA
3025 if (new_bfqq) {
3026 /*
3027 * bic still points to bfqq, then it has not yet been
3028 * redirected to some other bfq_queue, and a queue
636b8fe8
AR
3029 * merge between bfqq and new_bfqq can be safely
3030 * fulfilled, i.e., bic can be redirected to new_bfqq
36eca894
AA
3031 * and bfqq can be put.
3032 */
3033 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
3034 new_bfqq);
3035 /*
3036 * If we get here, bio will be queued into new_queue,
3037 * so use new_bfqq to decide whether bio and rq can be
3038 * merged.
3039 */
3040 bfqq = new_bfqq;
3041
3042 /*
3043 * Change also bqfd->bio_bfqq, as
3044 * bfqd->bio_bic now points to new_bfqq, and
3045 * this function may be invoked again (and then may
3046 * use again bqfd->bio_bfqq).
3047 */
3048 bfqd->bio_bfqq = bfqq;
3049 }
3050
aee69d78
PV
3051 return bfqq == RQ_BFQQ(rq);
3052}
3053
44e44a1b
PV
3054/*
3055 * Set the maximum time for the in-service queue to consume its
3056 * budget. This prevents seeky processes from lowering the throughput.
3057 * In practice, a time-slice service scheme is used with seeky
3058 * processes.
3059 */
3060static void bfq_set_budget_timeout(struct bfq_data *bfqd,
3061 struct bfq_queue *bfqq)
3062{
77b7dcea
PV
3063 unsigned int timeout_coeff;
3064
3065 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
3066 timeout_coeff = 1;
3067 else
3068 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
3069
44e44a1b
PV
3070 bfqd->last_budget_start = ktime_get();
3071
3072 bfqq->budget_timeout = jiffies +
77b7dcea 3073 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
3074}
3075
aee69d78
PV
3076static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
3077 struct bfq_queue *bfqq)
3078{
3079 if (bfqq) {
aee69d78
PV
3080 bfq_clear_bfqq_fifo_expire(bfqq);
3081
3082 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
3083
77b7dcea
PV
3084 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
3085 bfqq->wr_coeff > 1 &&
3086 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
3087 time_is_before_jiffies(bfqq->budget_timeout)) {
3088 /*
3089 * For soft real-time queues, move the start
3090 * of the weight-raising period forward by the
3091 * time the queue has not received any
3092 * service. Otherwise, a relatively long
3093 * service delay is likely to cause the
3094 * weight-raising period of the queue to end,
3095 * because of the short duration of the
3096 * weight-raising period of a soft real-time
3097 * queue. It is worth noting that this move
3098 * is not so dangerous for the other queues,
3099 * because soft real-time queues are not
3100 * greedy.
3101 *
3102 * To not add a further variable, we use the
3103 * overloaded field budget_timeout to
3104 * determine for how long the queue has not
3105 * received service, i.e., how much time has
3106 * elapsed since the queue expired. However,
3107 * this is a little imprecise, because
3108 * budget_timeout is set to jiffies if bfqq
3109 * not only expires, but also remains with no
3110 * request.
3111 */
3112 if (time_after(bfqq->budget_timeout,
3113 bfqq->last_wr_start_finish))
3114 bfqq->last_wr_start_finish +=
3115 jiffies - bfqq->budget_timeout;
3116 else
3117 bfqq->last_wr_start_finish = jiffies;
3118 }
3119
44e44a1b 3120 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
3121 bfq_log_bfqq(bfqd, bfqq,
3122 "set_in_service_queue, cur-budget = %d",
3123 bfqq->entity.budget);
3124 }
3125
3126 bfqd->in_service_queue = bfqq;
41e76c85 3127 bfqd->in_serv_last_pos = 0;
aee69d78
PV
3128}
3129
3130/*
3131 * Get and set a new queue for service.
3132 */
3133static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
3134{
3135 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
3136
3137 __bfq_set_in_service_queue(bfqd, bfqq);
3138 return bfqq;
3139}
3140
aee69d78
PV
3141static void bfq_arm_slice_timer(struct bfq_data *bfqd)
3142{
3143 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
3144 u32 sl;
3145
aee69d78
PV
3146 bfq_mark_bfqq_wait_request(bfqq);
3147
3148 /*
3149 * We don't want to idle for seeks, but we do want to allow
3150 * fair distribution of slice time for a process doing back-to-back
3151 * seeks. So allow a little bit of time for him to submit a new rq.
3152 */
3153 sl = bfqd->bfq_slice_idle;
3154 /*
1de0c4cd
AA
3155 * Unless the queue is being weight-raised or the scenario is
3156 * asymmetric, grant only minimum idle time if the queue
3157 * is seeky. A long idling is preserved for a weight-raised
3158 * queue, or, more in general, in an asymmetric scenario,
3159 * because a long idling is needed for guaranteeing to a queue
3160 * its reserved share of the throughput (in particular, it is
3161 * needed if the queue has a higher weight than some other
3162 * queue).
aee69d78 3163 */
1de0c4cd 3164 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
fb53ac6c 3165 !bfq_asymmetric_scenario(bfqd, bfqq))
aee69d78 3166 sl = min_t(u64, sl, BFQ_MIN_TT);
778c02a2
PV
3167 else if (bfqq->wr_coeff > 1)
3168 sl = max_t(u32, sl, 20ULL * NSEC_PER_MSEC);
aee69d78
PV
3169
3170 bfqd->last_idling_start = ktime_get();
2341d662
PV
3171 bfqd->last_idling_start_jiffies = jiffies;
3172
aee69d78
PV
3173 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
3174 HRTIMER_MODE_REL);
e21b7a0b 3175 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
3176}
3177
ab0e43e9
PV
3178/*
3179 * In autotuning mode, max_budget is dynamically recomputed as the
3180 * amount of sectors transferred in timeout at the estimated peak
3181 * rate. This enables BFQ to utilize a full timeslice with a full
3182 * budget, even if the in-service queue is served at peak rate. And
3183 * this maximises throughput with sequential workloads.
3184 */
3185static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
3186{
3187 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
3188 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
3189}
3190
44e44a1b
PV
3191/*
3192 * Update parameters related to throughput and responsiveness, as a
3193 * function of the estimated peak rate. See comments on
e24f1c24 3194 * bfq_calc_max_budget(), and on the ref_wr_duration array.
44e44a1b
PV
3195 */
3196static void update_thr_responsiveness_params(struct bfq_data *bfqd)
3197{
e24f1c24 3198 if (bfqd->bfq_user_max_budget == 0) {
44e44a1b
PV
3199 bfqd->bfq_max_budget =
3200 bfq_calc_max_budget(bfqd);
e24f1c24 3201 bfq_log(bfqd, "new max_budget = %d", bfqd->bfq_max_budget);
44e44a1b 3202 }
44e44a1b
PV
3203}
3204
ab0e43e9
PV
3205static void bfq_reset_rate_computation(struct bfq_data *bfqd,
3206 struct request *rq)
3207{
3208 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
3209 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
3210 bfqd->peak_rate_samples = 1;
3211 bfqd->sequential_samples = 0;
3212 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
3213 blk_rq_sectors(rq);
3214 } else /* no new rq dispatched, just reset the number of samples */
3215 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
3216
3217 bfq_log(bfqd,
3218 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
3219 bfqd->peak_rate_samples, bfqd->sequential_samples,
3220 bfqd->tot_sectors_dispatched);
3221}
3222
3223static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
3224{
3225 u32 rate, weight, divisor;
3226
3227 /*
3228 * For the convergence property to hold (see comments on
3229 * bfq_update_peak_rate()) and for the assessment to be
3230 * reliable, a minimum number of samples must be present, and
3231 * a minimum amount of time must have elapsed. If not so, do
3232 * not compute new rate. Just reset parameters, to get ready
3233 * for a new evaluation attempt.
3234 */
3235 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
3236 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
3237 goto reset_computation;
3238
3239 /*
3240 * If a new request completion has occurred after last
3241 * dispatch, then, to approximate the rate at which requests
3242 * have been served by the device, it is more precise to
3243 * extend the observation interval to the last completion.
3244 */
3245 bfqd->delta_from_first =
3246 max_t(u64, bfqd->delta_from_first,
3247 bfqd->last_completion - bfqd->first_dispatch);
3248
3249 /*
3250 * Rate computed in sects/usec, and not sects/nsec, for
3251 * precision issues.
3252 */
3253 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
3254 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
3255
3256 /*
3257 * Peak rate not updated if:
3258 * - the percentage of sequential dispatches is below 3/4 of the
3259 * total, and rate is below the current estimated peak rate
3260 * - rate is unreasonably high (> 20M sectors/sec)
3261 */
3262 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
3263 rate <= bfqd->peak_rate) ||
3264 rate > 20<<BFQ_RATE_SHIFT)
3265 goto reset_computation;
3266
3267 /*
3268 * We have to update the peak rate, at last! To this purpose,
3269 * we use a low-pass filter. We compute the smoothing constant
3270 * of the filter as a function of the 'weight' of the new
3271 * measured rate.
3272 *
3273 * As can be seen in next formulas, we define this weight as a
3274 * quantity proportional to how sequential the workload is,
3275 * and to how long the observation time interval is.
3276 *
3277 * The weight runs from 0 to 8. The maximum value of the
3278 * weight, 8, yields the minimum value for the smoothing
3279 * constant. At this minimum value for the smoothing constant,
3280 * the measured rate contributes for half of the next value of
3281 * the estimated peak rate.
3282 *
3283 * So, the first step is to compute the weight as a function
3284 * of how sequential the workload is. Note that the weight
3285 * cannot reach 9, because bfqd->sequential_samples cannot
3286 * become equal to bfqd->peak_rate_samples, which, in its
3287 * turn, holds true because bfqd->sequential_samples is not
3288 * incremented for the first sample.
3289 */
3290 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
3291
3292 /*
3293 * Second step: further refine the weight as a function of the
3294 * duration of the observation interval.
3295 */
3296 weight = min_t(u32, 8,
3297 div_u64(weight * bfqd->delta_from_first,
3298 BFQ_RATE_REF_INTERVAL));
3299
3300 /*
3301 * Divisor ranging from 10, for minimum weight, to 2, for
3302 * maximum weight.
3303 */
3304 divisor = 10 - weight;
3305
3306 /*
3307 * Finally, update peak rate:
3308 *
3309 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
3310 */
3311 bfqd->peak_rate *= divisor-1;
3312 bfqd->peak_rate /= divisor;
3313 rate /= divisor; /* smoothing constant alpha = 1/divisor */
3314
3315 bfqd->peak_rate += rate;
bc56e2ca
PV
3316
3317 /*
3318 * For a very slow device, bfqd->peak_rate can reach 0 (see
3319 * the minimum representable values reported in the comments
3320 * on BFQ_RATE_SHIFT). Push to 1 if this happens, to avoid
3321 * divisions by zero where bfqd->peak_rate is used as a
3322 * divisor.
3323 */
3324 bfqd->peak_rate = max_t(u32, 1, bfqd->peak_rate);
3325
44e44a1b 3326 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
3327
3328reset_computation:
3329 bfq_reset_rate_computation(bfqd, rq);
3330}
3331
3332/*
3333 * Update the read/write peak rate (the main quantity used for
3334 * auto-tuning, see update_thr_responsiveness_params()).
3335 *
3336 * It is not trivial to estimate the peak rate (correctly): because of
3337 * the presence of sw and hw queues between the scheduler and the
3338 * device components that finally serve I/O requests, it is hard to
3339 * say exactly when a given dispatched request is served inside the
3340 * device, and for how long. As a consequence, it is hard to know
3341 * precisely at what rate a given set of requests is actually served
3342 * by the device.
3343 *
3344 * On the opposite end, the dispatch time of any request is trivially
3345 * available, and, from this piece of information, the "dispatch rate"
3346 * of requests can be immediately computed. So, the idea in the next
3347 * function is to use what is known, namely request dispatch times
3348 * (plus, when useful, request completion times), to estimate what is
3349 * unknown, namely in-device request service rate.
3350 *
3351 * The main issue is that, because of the above facts, the rate at
3352 * which a certain set of requests is dispatched over a certain time
3353 * interval can vary greatly with respect to the rate at which the
3354 * same requests are then served. But, since the size of any
3355 * intermediate queue is limited, and the service scheme is lossless
3356 * (no request is silently dropped), the following obvious convergence
3357 * property holds: the number of requests dispatched MUST become
3358 * closer and closer to the number of requests completed as the
3359 * observation interval grows. This is the key property used in
3360 * the next function to estimate the peak service rate as a function
3361 * of the observed dispatch rate. The function assumes to be invoked
3362 * on every request dispatch.
3363 */
3364static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
3365{
3366 u64 now_ns = ktime_get_ns();
3367
3368 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
3369 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
3370 bfqd->peak_rate_samples);
3371 bfq_reset_rate_computation(bfqd, rq);
3372 goto update_last_values; /* will add one sample */
3373 }
3374
3375 /*
3376 * Device idle for very long: the observation interval lasting
3377 * up to this dispatch cannot be a valid observation interval
3378 * for computing a new peak rate (similarly to the late-
3379 * completion event in bfq_completed_request()). Go to
3380 * update_rate_and_reset to have the following three steps
3381 * taken:
3382 * - close the observation interval at the last (previous)
3383 * request dispatch or completion
3384 * - compute rate, if possible, for that observation interval
3385 * - start a new observation interval with this dispatch
3386 */
3387 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
3388 bfqd->rq_in_driver == 0)
3389 goto update_rate_and_reset;
3390
3391 /* Update sampling information */
3392 bfqd->peak_rate_samples++;
3393
3394 if ((bfqd->rq_in_driver > 0 ||
3395 now_ns - bfqd->last_completion < BFQ_MIN_TT)
d87447d8 3396 && !BFQ_RQ_SEEKY(bfqd, bfqd->last_position, rq))
ab0e43e9
PV
3397 bfqd->sequential_samples++;
3398
3399 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
3400
3401 /* Reset max observed rq size every 32 dispatches */
3402 if (likely(bfqd->peak_rate_samples % 32))
3403 bfqd->last_rq_max_size =
3404 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
3405 else
3406 bfqd->last_rq_max_size = blk_rq_sectors(rq);
3407
3408 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
3409
3410 /* Target observation interval not yet reached, go on sampling */
3411 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
3412 goto update_last_values;
3413
3414update_rate_and_reset:
3415 bfq_update_rate_reset(bfqd, rq);
3416update_last_values:
3417 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
058fdecc
PV
3418 if (RQ_BFQQ(rq) == bfqd->in_service_queue)
3419 bfqd->in_serv_last_pos = bfqd->last_position;
ab0e43e9
PV
3420 bfqd->last_dispatch = now_ns;
3421}
3422
aee69d78
PV
3423/*
3424 * Remove request from internal lists.
3425 */
3426static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
3427{
3428 struct bfq_queue *bfqq = RQ_BFQQ(rq);
3429
3430 /*
3431 * For consistency, the next instruction should have been
3432 * executed after removing the request from the queue and
3433 * dispatching it. We execute instead this instruction before
3434 * bfq_remove_request() (and hence introduce a temporary
3435 * inconsistency), for efficiency. In fact, should this
3436 * dispatch occur for a non in-service bfqq, this anticipated
3437 * increment prevents two counters related to bfqq->dispatched
3438 * from risking to be, first, uselessly decremented, and then
3439 * incremented again when the (new) value of bfqq->dispatched
3440 * happens to be taken into account.
3441 */
3442 bfqq->dispatched++;
ab0e43e9 3443 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
3444
3445 bfq_remove_request(q, rq);
3446}
3447
3726112e
PV
3448/*
3449 * There is a case where idling does not have to be performed for
3450 * throughput concerns, but to preserve the throughput share of
3451 * the process associated with bfqq.
3452 *
3453 * To introduce this case, we can note that allowing the drive
3454 * to enqueue more than one request at a time, and hence
3455 * delegating de facto final scheduling decisions to the
3456 * drive's internal scheduler, entails loss of control on the
3457 * actual request service order. In particular, the critical
3458 * situation is when requests from different processes happen
3459 * to be present, at the same time, in the internal queue(s)
3460 * of the drive. In such a situation, the drive, by deciding
3461 * the service order of the internally-queued requests, does
3462 * determine also the actual throughput distribution among
3463 * these processes. But the drive typically has no notion or
3464 * concern about per-process throughput distribution, and
3465 * makes its decisions only on a per-request basis. Therefore,
3466 * the service distribution enforced by the drive's internal
3467 * scheduler is likely to coincide with the desired throughput
3468 * distribution only in a completely symmetric, or favorably
3469 * skewed scenario where:
3470 * (i-a) each of these processes must get the same throughput as
3471 * the others,
3472 * (i-b) in case (i-a) does not hold, it holds that the process
3473 * associated with bfqq must receive a lower or equal
3474 * throughput than any of the other processes;
3475 * (ii) the I/O of each process has the same properties, in
3476 * terms of locality (sequential or random), direction
3477 * (reads or writes), request sizes, greediness
3478 * (from I/O-bound to sporadic), and so on;
3479
3480 * In fact, in such a scenario, the drive tends to treat the requests
3481 * of each process in about the same way as the requests of the
3482 * others, and thus to provide each of these processes with about the
3483 * same throughput. This is exactly the desired throughput
3484 * distribution if (i-a) holds, or, if (i-b) holds instead, this is an
3485 * even more convenient distribution for (the process associated with)
3486 * bfqq.
3487 *
3488 * In contrast, in any asymmetric or unfavorable scenario, device
3489 * idling (I/O-dispatch plugging) is certainly needed to guarantee
3490 * that bfqq receives its assigned fraction of the device throughput
3491 * (see [1] for details).
3492 *
3493 * The problem is that idling may significantly reduce throughput with
3494 * certain combinations of types of I/O and devices. An important
3495 * example is sync random I/O on flash storage with command
3496 * queueing. So, unless bfqq falls in cases where idling also boosts
3497 * throughput, it is important to check conditions (i-a), i(-b) and
3498 * (ii) accurately, so as to avoid idling when not strictly needed for
3499 * service guarantees.
3500 *
3501 * Unfortunately, it is extremely difficult to thoroughly check
3502 * condition (ii). And, in case there are active groups, it becomes
3503 * very difficult to check conditions (i-a) and (i-b) too. In fact,
3504 * if there are active groups, then, for conditions (i-a) or (i-b) to
3505 * become false 'indirectly', it is enough that an active group
3506 * contains more active processes or sub-groups than some other active
3507 * group. More precisely, for conditions (i-a) or (i-b) to become
3508 * false because of such a group, it is not even necessary that the
3509 * group is (still) active: it is sufficient that, even if the group
3510 * has become inactive, some of its descendant processes still have
3511 * some request already dispatched but still waiting for
3512 * completion. In fact, requests have still to be guaranteed their
3513 * share of the throughput even after being dispatched. In this
3514 * respect, it is easy to show that, if a group frequently becomes
3515 * inactive while still having in-flight requests, and if, when this
3516 * happens, the group is not considered in the calculation of whether
3517 * the scenario is asymmetric, then the group may fail to be
3518 * guaranteed its fair share of the throughput (basically because
3519 * idling may not be performed for the descendant processes of the
3520 * group, but it had to be). We address this issue with the following
3521 * bi-modal behavior, implemented in the function
3522 * bfq_asymmetric_scenario().
3523 *
3524 * If there are groups with requests waiting for completion
3525 * (as commented above, some of these groups may even be
3526 * already inactive), then the scenario is tagged as
3527 * asymmetric, conservatively, without checking any of the
3528 * conditions (i-a), (i-b) or (ii). So the device is idled for bfqq.
3529 * This behavior matches also the fact that groups are created
3530 * exactly if controlling I/O is a primary concern (to
3531 * preserve bandwidth and latency guarantees).
3532 *
3533 * On the opposite end, if there are no groups with requests waiting
3534 * for completion, then only conditions (i-a) and (i-b) are actually
3535 * controlled, i.e., provided that conditions (i-a) or (i-b) holds,
3536 * idling is not performed, regardless of whether condition (ii)
3537 * holds. In other words, only if conditions (i-a) and (i-b) do not
3538 * hold, then idling is allowed, and the device tends to be prevented
3539 * from queueing many requests, possibly of several processes. Since
3540 * there are no groups with requests waiting for completion, then, to
3541 * control conditions (i-a) and (i-b) it is enough to check just
3542 * whether all the queues with requests waiting for completion also
3543 * have the same weight.
3544 *
3545 * Not checking condition (ii) evidently exposes bfqq to the
3546 * risk of getting less throughput than its fair share.
3547 * However, for queues with the same weight, a further
3548 * mechanism, preemption, mitigates or even eliminates this
3549 * problem. And it does so without consequences on overall
3550 * throughput. This mechanism and its benefits are explained
3551 * in the next three paragraphs.
3552 *
3553 * Even if a queue, say Q, is expired when it remains idle, Q
3554 * can still preempt the new in-service queue if the next
3555 * request of Q arrives soon (see the comments on
3556 * bfq_bfqq_update_budg_for_activation). If all queues and
3557 * groups have the same weight, this form of preemption,
3558 * combined with the hole-recovery heuristic described in the
3559 * comments on function bfq_bfqq_update_budg_for_activation,
3560 * are enough to preserve a correct bandwidth distribution in
3561 * the mid term, even without idling. In fact, even if not
3562 * idling allows the internal queues of the device to contain
3563 * many requests, and thus to reorder requests, we can rather
3564 * safely assume that the internal scheduler still preserves a
3565 * minimum of mid-term fairness.
3566 *
3567 * More precisely, this preemption-based, idleless approach
3568 * provides fairness in terms of IOPS, and not sectors per
3569 * second. This can be seen with a simple example. Suppose
3570 * that there are two queues with the same weight, but that
3571 * the first queue receives requests of 8 sectors, while the
3572 * second queue receives requests of 1024 sectors. In
3573 * addition, suppose that each of the two queues contains at
3574 * most one request at a time, which implies that each queue
3575 * always remains idle after it is served. Finally, after
3576 * remaining idle, each queue receives very quickly a new
3577 * request. It follows that the two queues are served
3578 * alternatively, preempting each other if needed. This
3579 * implies that, although both queues have the same weight,
3580 * the queue with large requests receives a service that is
3581 * 1024/8 times as high as the service received by the other
3582 * queue.
3583 *
3584 * The motivation for using preemption instead of idling (for
3585 * queues with the same weight) is that, by not idling,
3586 * service guarantees are preserved (completely or at least in
3587 * part) without minimally sacrificing throughput. And, if
3588 * there is no active group, then the primary expectation for
3589 * this device is probably a high throughput.
3590 *
b5e02b48
PV
3591 * We are now left only with explaining the two sub-conditions in the
3592 * additional compound condition that is checked below for deciding
3593 * whether the scenario is asymmetric. To explain the first
3594 * sub-condition, we need to add that the function
3726112e 3595 * bfq_asymmetric_scenario checks the weights of only
b5e02b48
PV
3596 * non-weight-raised queues, for efficiency reasons (see comments on
3597 * bfq_weights_tree_add()). Then the fact that bfqq is weight-raised
3598 * is checked explicitly here. More precisely, the compound condition
3599 * below takes into account also the fact that, even if bfqq is being
3600 * weight-raised, the scenario is still symmetric if all queues with
3601 * requests waiting for completion happen to be
3602 * weight-raised. Actually, we should be even more precise here, and
3603 * differentiate between interactive weight raising and soft real-time
3604 * weight raising.
3605 *
3606 * The second sub-condition checked in the compound condition is
3607 * whether there is a fair amount of already in-flight I/O not
3608 * belonging to bfqq. If so, I/O dispatching is to be plugged, for the
3609 * following reason. The drive may decide to serve in-flight
3610 * non-bfqq's I/O requests before bfqq's ones, thereby delaying the
3611 * arrival of new I/O requests for bfqq (recall that bfqq is sync). If
3612 * I/O-dispatching is not plugged, then, while bfqq remains empty, a
3613 * basically uncontrolled amount of I/O from other queues may be
3614 * dispatched too, possibly causing the service of bfqq's I/O to be
3615 * delayed even longer in the drive. This problem gets more and more
3616 * serious as the speed and the queue depth of the drive grow,
3617 * because, as these two quantities grow, the probability to find no
3618 * queue busy but many requests in flight grows too. By contrast,
3619 * plugging I/O dispatching minimizes the delay induced by already
3620 * in-flight I/O, and enables bfqq to recover the bandwidth it may
3621 * lose because of this delay.
3726112e
PV
3622 *
3623 * As a side note, it is worth considering that the above
b5e02b48
PV
3624 * device-idling countermeasures may however fail in the following
3625 * unlucky scenario: if I/O-dispatch plugging is (correctly) disabled
3626 * in a time period during which all symmetry sub-conditions hold, and
3627 * therefore the device is allowed to enqueue many requests, but at
3628 * some later point in time some sub-condition stops to hold, then it
3629 * may become impossible to make requests be served in the desired
3630 * order until all the requests already queued in the device have been
3631 * served. The last sub-condition commented above somewhat mitigates
3632 * this problem for weight-raised queues.
2391d13e
PV
3633 *
3634 * However, as an additional mitigation for this problem, we preserve
3635 * plugging for a special symmetric case that may suddenly turn into
3636 * asymmetric: the case where only bfqq is busy. In this case, not
3637 * expiring bfqq does not cause any harm to any other queues in terms
3638 * of service guarantees. In contrast, it avoids the following unlucky
3639 * sequence of events: (1) bfqq is expired, (2) a new queue with a
3640 * lower weight than bfqq becomes busy (or more queues), (3) the new
3641 * queue is served until a new request arrives for bfqq, (4) when bfqq
3642 * is finally served, there are so many requests of the new queue in
3643 * the drive that the pending requests for bfqq take a lot of time to
3644 * be served. In particular, event (2) may case even already
3645 * dispatched requests of bfqq to be delayed, inside the drive. So, to
3646 * avoid this series of events, the scenario is preventively declared
3647 * as asymmetric also if bfqq is the only busy queues
3726112e
PV
3648 */
3649static bool idling_needed_for_service_guarantees(struct bfq_data *bfqd,
3650 struct bfq_queue *bfqq)
3651{
2391d13e
PV
3652 int tot_busy_queues = bfq_tot_busy_queues(bfqd);
3653
f718b093
PV
3654 /* No point in idling for bfqq if it won't get requests any longer */
3655 if (unlikely(!bfqq_process_refs(bfqq)))
3656 return false;
3657
3726112e 3658 return (bfqq->wr_coeff > 1 &&
b5e02b48 3659 (bfqd->wr_busy_queues <
2391d13e 3660 tot_busy_queues ||
b5e02b48
PV
3661 bfqd->rq_in_driver >=
3662 bfqq->dispatched + 4)) ||
2391d13e
PV
3663 bfq_asymmetric_scenario(bfqd, bfqq) ||
3664 tot_busy_queues == 1;
3726112e
PV
3665}
3666
3667static bool __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3668 enum bfqq_expiration reason)
aee69d78 3669{
36eca894
AA
3670 /*
3671 * If this bfqq is shared between multiple processes, check
3672 * to make sure that those processes are still issuing I/Os
3673 * within the mean seek distance. If not, it may be time to
3674 * break the queues apart again.
3675 */
3676 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
3677 bfq_mark_bfqq_split_coop(bfqq);
3678
3726112e
PV
3679 /*
3680 * Consider queues with a higher finish virtual time than
3681 * bfqq. If idling_needed_for_service_guarantees(bfqq) returns
3682 * true, then bfqq's bandwidth would be violated if an
3683 * uncontrolled amount of I/O from these queues were
3684 * dispatched while bfqq is waiting for its new I/O to
3685 * arrive. This is exactly what may happen if this is a forced
3686 * expiration caused by a preemption attempt, and if bfqq is
3687 * not re-scheduled. To prevent this from happening, re-queue
3688 * bfqq if it needs I/O-dispatch plugging, even if it is
3689 * empty. By doing so, bfqq is granted to be served before the
3690 * above queues (provided that bfqq is of course eligible).
3691 */
3692 if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
3693 !(reason == BFQQE_PREEMPTED &&
3694 idling_needed_for_service_guarantees(bfqd, bfqq))) {
44e44a1b
PV
3695 if (bfqq->dispatched == 0)
3696 /*
3697 * Overloading budget_timeout field to store
3698 * the time at which the queue remains with no
3699 * backlog and no outstanding request; used by
3700 * the weight-raising mechanism.
3701 */
3702 bfqq->budget_timeout = jiffies;
3703
e21b7a0b 3704 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 3705 } else {
80294c3b 3706 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
3707 /*
3708 * Resort priority tree of potential close cooperators.
8cacc5ab 3709 * See comments on bfq_pos_tree_add_move() for the unlikely().
36eca894 3710 */
3726112e
PV
3711 if (unlikely(!bfqd->nonrot_with_queueing &&
3712 !RB_EMPTY_ROOT(&bfqq->sort_list)))
8cacc5ab 3713 bfq_pos_tree_add_move(bfqd, bfqq);
36eca894 3714 }
e21b7a0b
AA
3715
3716 /*
3717 * All in-service entities must have been properly deactivated
3718 * or requeued before executing the next function, which
eed47d19
PV
3719 * resets all in-service entities as no more in service. This
3720 * may cause bfqq to be freed. If this happens, the next
3721 * function returns true.
e21b7a0b 3722 */
eed47d19 3723 return __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
3724}
3725
3726/**
3727 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
3728 * @bfqd: device data.
3729 * @bfqq: queue to update.
3730 * @reason: reason for expiration.
3731 *
3732 * Handle the feedback on @bfqq budget at queue expiration.
3733 * See the body for detailed comments.
3734 */
3735static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
3736 struct bfq_queue *bfqq,
3737 enum bfqq_expiration reason)
3738{
3739 struct request *next_rq;
3740 int budget, min_budget;
3741
aee69d78
PV
3742 min_budget = bfq_min_budget(bfqd);
3743
44e44a1b
PV
3744 if (bfqq->wr_coeff == 1)
3745 budget = bfqq->max_budget;
3746 else /*
3747 * Use a constant, low budget for weight-raised queues,
3748 * to help achieve a low latency. Keep it slightly higher
3749 * than the minimum possible budget, to cause a little
3750 * bit fewer expirations.
3751 */
3752 budget = 2 * min_budget;
3753
aee69d78
PV
3754 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
3755 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
3756 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
3757 budget, bfq_min_budget(bfqd));
3758 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
3759 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
3760
44e44a1b 3761 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
3762 switch (reason) {
3763 /*
3764 * Caveat: in all the following cases we trade latency
3765 * for throughput.
3766 */
3767 case BFQQE_TOO_IDLE:
54b60456
PV
3768 /*
3769 * This is the only case where we may reduce
3770 * the budget: if there is no request of the
3771 * process still waiting for completion, then
3772 * we assume (tentatively) that the timer has
3773 * expired because the batch of requests of
3774 * the process could have been served with a
3775 * smaller budget. Hence, betting that
3776 * process will behave in the same way when it
3777 * becomes backlogged again, we reduce its
3778 * next budget. As long as we guess right,
3779 * this budget cut reduces the latency
3780 * experienced by the process.
3781 *
3782 * However, if there are still outstanding
3783 * requests, then the process may have not yet
3784 * issued its next request just because it is
3785 * still waiting for the completion of some of
3786 * the still outstanding ones. So in this
3787 * subcase we do not reduce its budget, on the
3788 * contrary we increase it to possibly boost
3789 * the throughput, as discussed in the
3790 * comments to the BUDGET_TIMEOUT case.
3791 */
3792 if (bfqq->dispatched > 0) /* still outstanding reqs */
3793 budget = min(budget * 2, bfqd->bfq_max_budget);
3794 else {
3795 if (budget > 5 * min_budget)
3796 budget -= 4 * min_budget;
3797 else
3798 budget = min_budget;
3799 }
aee69d78
PV
3800 break;
3801 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
3802 /*
3803 * We double the budget here because it gives
3804 * the chance to boost the throughput if this
3805 * is not a seeky process (and has bumped into
3806 * this timeout because of, e.g., ZBR).
3807 */
3808 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
3809 break;
3810 case BFQQE_BUDGET_EXHAUSTED:
3811 /*
3812 * The process still has backlog, and did not
3813 * let either the budget timeout or the disk
3814 * idling timeout expire. Hence it is not
3815 * seeky, has a short thinktime and may be
3816 * happy with a higher budget too. So
3817 * definitely increase the budget of this good
3818 * candidate to boost the disk throughput.
3819 */
54b60456 3820 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
3821 break;
3822 case BFQQE_NO_MORE_REQUESTS:
3823 /*
3824 * For queues that expire for this reason, it
3825 * is particularly important to keep the
3826 * budget close to the actual service they
3827 * need. Doing so reduces the timestamp
3828 * misalignment problem described in the
3829 * comments in the body of
3830 * __bfq_activate_entity. In fact, suppose
3831 * that a queue systematically expires for
3832 * BFQQE_NO_MORE_REQUESTS and presents a
3833 * new request in time to enjoy timestamp
3834 * back-shifting. The larger the budget of the
3835 * queue is with respect to the service the
3836 * queue actually requests in each service
3837 * slot, the more times the queue can be
3838 * reactivated with the same virtual finish
3839 * time. It follows that, even if this finish
3840 * time is pushed to the system virtual time
3841 * to reduce the consequent timestamp
3842 * misalignment, the queue unjustly enjoys for
3843 * many re-activations a lower finish time
3844 * than all newly activated queues.
3845 *
3846 * The service needed by bfqq is measured
3847 * quite precisely by bfqq->entity.service.
3848 * Since bfqq does not enjoy device idling,
3849 * bfqq->entity.service is equal to the number
3850 * of sectors that the process associated with
3851 * bfqq requested to read/write before waiting
3852 * for request completions, or blocking for
3853 * other reasons.
3854 */
3855 budget = max_t(int, bfqq->entity.service, min_budget);
3856 break;
3857 default:
3858 return;
3859 }
44e44a1b 3860 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
3861 /*
3862 * Async queues get always the maximum possible
3863 * budget, as for them we do not care about latency
3864 * (in addition, their ability to dispatch is limited
3865 * by the charging factor).
3866 */
3867 budget = bfqd->bfq_max_budget;
3868 }
3869
3870 bfqq->max_budget = budget;
3871
3872 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
3873 !bfqd->bfq_user_max_budget)
3874 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
3875
3876 /*
3877 * If there is still backlog, then assign a new budget, making
3878 * sure that it is large enough for the next request. Since
3879 * the finish time of bfqq must be kept in sync with the
3880 * budget, be sure to call __bfq_bfqq_expire() *after* this
3881 * update.
3882 *
3883 * If there is no backlog, then no need to update the budget;
3884 * it will be updated on the arrival of a new request.
3885 */
3886 next_rq = bfqq->next_rq;
3887 if (next_rq)
3888 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
3889 bfq_serv_to_charge(next_rq, bfqq));
3890
3891 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
3892 next_rq ? blk_rq_sectors(next_rq) : 0,
3893 bfqq->entity.budget);
3894}
3895
aee69d78 3896/*
ab0e43e9
PV
3897 * Return true if the process associated with bfqq is "slow". The slow
3898 * flag is used, in addition to the budget timeout, to reduce the
3899 * amount of service provided to seeky processes, and thus reduce
3900 * their chances to lower the throughput. More details in the comments
3901 * on the function bfq_bfqq_expire().
3902 *
3903 * An important observation is in order: as discussed in the comments
3904 * on the function bfq_update_peak_rate(), with devices with internal
3905 * queues, it is hard if ever possible to know when and for how long
3906 * an I/O request is processed by the device (apart from the trivial
3907 * I/O pattern where a new request is dispatched only after the
3908 * previous one has been completed). This makes it hard to evaluate
3909 * the real rate at which the I/O requests of each bfq_queue are
3910 * served. In fact, for an I/O scheduler like BFQ, serving a
3911 * bfq_queue means just dispatching its requests during its service
3912 * slot (i.e., until the budget of the queue is exhausted, or the
3913 * queue remains idle, or, finally, a timeout fires). But, during the
3914 * service slot of a bfq_queue, around 100 ms at most, the device may
3915 * be even still processing requests of bfq_queues served in previous
3916 * service slots. On the opposite end, the requests of the in-service
3917 * bfq_queue may be completed after the service slot of the queue
3918 * finishes.
3919 *
3920 * Anyway, unless more sophisticated solutions are used
3921 * (where possible), the sum of the sizes of the requests dispatched
3922 * during the service slot of a bfq_queue is probably the only
3923 * approximation available for the service received by the bfq_queue
3924 * during its service slot. And this sum is the quantity used in this
3925 * function to evaluate the I/O speed of a process.
aee69d78 3926 */
ab0e43e9
PV
3927static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3928 bool compensate, enum bfqq_expiration reason,
3929 unsigned long *delta_ms)
aee69d78 3930{
ab0e43e9
PV
3931 ktime_t delta_ktime;
3932 u32 delta_usecs;
3933 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 3934
ab0e43e9 3935 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
3936 return false;
3937
3938 if (compensate)
ab0e43e9 3939 delta_ktime = bfqd->last_idling_start;
aee69d78 3940 else
ab0e43e9
PV
3941 delta_ktime = ktime_get();
3942 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
3943 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
3944
3945 /* don't use too short time intervals */
ab0e43e9
PV
3946 if (delta_usecs < 1000) {
3947 if (blk_queue_nonrot(bfqd->queue))
3948 /*
3949 * give same worst-case guarantees as idling
3950 * for seeky
3951 */
3952 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
3953 else /* charge at least one seek */
3954 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
3955
3956 return slow;
3957 }
aee69d78 3958
ab0e43e9 3959 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
3960
3961 /*
ab0e43e9
PV
3962 * Use only long (> 20ms) intervals to filter out excessive
3963 * spikes in service rate estimation.
aee69d78 3964 */
ab0e43e9
PV
3965 if (delta_usecs > 20000) {
3966 /*
3967 * Caveat for rotational devices: processes doing I/O
3968 * in the slower disk zones tend to be slow(er) even
3969 * if not seeky. In this respect, the estimated peak
3970 * rate is likely to be an average over the disk
3971 * surface. Accordingly, to not be too harsh with
3972 * unlucky processes, a process is deemed slow only if
3973 * its rate has been lower than half of the estimated
3974 * peak rate.
3975 */
3976 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
3977 }
3978
ab0e43e9 3979 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 3980
ab0e43e9 3981 return slow;
aee69d78
PV
3982}
3983
77b7dcea
PV
3984/*
3985 * To be deemed as soft real-time, an application must meet two
3986 * requirements. First, the application must not require an average
3987 * bandwidth higher than the approximate bandwidth required to playback or
3988 * record a compressed high-definition video.
3989 * The next function is invoked on the completion of the last request of a
3990 * batch, to compute the next-start time instant, soft_rt_next_start, such
3991 * that, if the next request of the application does not arrive before
3992 * soft_rt_next_start, then the above requirement on the bandwidth is met.
3993 *
3994 * The second requirement is that the request pattern of the application is
3995 * isochronous, i.e., that, after issuing a request or a batch of requests,
3996 * the application stops issuing new requests until all its pending requests
3997 * have been completed. After that, the application may issue a new batch,
3998 * and so on.
3999 * For this reason the next function is invoked to compute
4000 * soft_rt_next_start only for applications that meet this requirement,
4001 * whereas soft_rt_next_start is set to infinity for applications that do
4002 * not.
4003 *
a34b0244
PV
4004 * Unfortunately, even a greedy (i.e., I/O-bound) application may
4005 * happen to meet, occasionally or systematically, both the above
4006 * bandwidth and isochrony requirements. This may happen at least in
4007 * the following circumstances. First, if the CPU load is high. The
4008 * application may stop issuing requests while the CPUs are busy
4009 * serving other processes, then restart, then stop again for a while,
4010 * and so on. The other circumstances are related to the storage
4011 * device: the storage device is highly loaded or reaches a low-enough
4012 * throughput with the I/O of the application (e.g., because the I/O
4013 * is random and/or the device is slow). In all these cases, the
4014 * I/O of the application may be simply slowed down enough to meet
4015 * the bandwidth and isochrony requirements. To reduce the probability
4016 * that greedy applications are deemed as soft real-time in these
4017 * corner cases, a further rule is used in the computation of
4018 * soft_rt_next_start: the return value of this function is forced to
4019 * be higher than the maximum between the following two quantities.
4020 *
4021 * (a) Current time plus: (1) the maximum time for which the arrival
4022 * of a request is waited for when a sync queue becomes idle,
4023 * namely bfqd->bfq_slice_idle, and (2) a few extra jiffies. We
4024 * postpone for a moment the reason for adding a few extra
4025 * jiffies; we get back to it after next item (b). Lower-bounding
4026 * the return value of this function with the current time plus
4027 * bfqd->bfq_slice_idle tends to filter out greedy applications,
4028 * because the latter issue their next request as soon as possible
4029 * after the last one has been completed. In contrast, a soft
4030 * real-time application spends some time processing data, after a
4031 * batch of its requests has been completed.
4032 *
4033 * (b) Current value of bfqq->soft_rt_next_start. As pointed out
4034 * above, greedy applications may happen to meet both the
4035 * bandwidth and isochrony requirements under heavy CPU or
4036 * storage-device load. In more detail, in these scenarios, these
4037 * applications happen, only for limited time periods, to do I/O
4038 * slowly enough to meet all the requirements described so far,
4039 * including the filtering in above item (a). These slow-speed
4040 * time intervals are usually interspersed between other time
4041 * intervals during which these applications do I/O at a very high
4042 * speed. Fortunately, exactly because of the high speed of the
4043 * I/O in the high-speed intervals, the values returned by this
4044 * function happen to be so high, near the end of any such
4045 * high-speed interval, to be likely to fall *after* the end of
4046 * the low-speed time interval that follows. These high values are
4047 * stored in bfqq->soft_rt_next_start after each invocation of
4048 * this function. As a consequence, if the last value of
4049 * bfqq->soft_rt_next_start is constantly used to lower-bound the
4050 * next value that this function may return, then, from the very
4051 * beginning of a low-speed interval, bfqq->soft_rt_next_start is
4052 * likely to be constantly kept so high that any I/O request
4053 * issued during the low-speed interval is considered as arriving
4054 * to soon for the application to be deemed as soft
4055 * real-time. Then, in the high-speed interval that follows, the
4056 * application will not be deemed as soft real-time, just because
4057 * it will do I/O at a high speed. And so on.
4058 *
4059 * Getting back to the filtering in item (a), in the following two
4060 * cases this filtering might be easily passed by a greedy
4061 * application, if the reference quantity was just
4062 * bfqd->bfq_slice_idle:
4063 * 1) HZ is so low that the duration of a jiffy is comparable to or
4064 * higher than bfqd->bfq_slice_idle. This happens, e.g., on slow
4065 * devices with HZ=100. The time granularity may be so coarse
4066 * that the approximation, in jiffies, of bfqd->bfq_slice_idle
4067 * is rather lower than the exact value.
77b7dcea
PV
4068 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
4069 * for a while, then suddenly 'jump' by several units to recover the lost
4070 * increments. This seems to happen, e.g., inside virtual machines.
a34b0244
PV
4071 * To address this issue, in the filtering in (a) we do not use as a
4072 * reference time interval just bfqd->bfq_slice_idle, but
4073 * bfqd->bfq_slice_idle plus a few jiffies. In particular, we add the
4074 * minimum number of jiffies for which the filter seems to be quite
4075 * precise also in embedded systems and KVM/QEMU virtual machines.
77b7dcea
PV
4076 */
4077static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
4078 struct bfq_queue *bfqq)
4079{
a34b0244
PV
4080 return max3(bfqq->soft_rt_next_start,
4081 bfqq->last_idle_bklogged +
4082 HZ * bfqq->service_from_backlogged /
4083 bfqd->bfq_wr_max_softrt_rate,
4084 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
77b7dcea
PV
4085}
4086
aee69d78
PV
4087/**
4088 * bfq_bfqq_expire - expire a queue.
4089 * @bfqd: device owning the queue.
4090 * @bfqq: the queue to expire.
4091 * @compensate: if true, compensate for the time spent idling.
4092 * @reason: the reason causing the expiration.
4093 *
c074170e
PV
4094 * If the process associated with bfqq does slow I/O (e.g., because it
4095 * issues random requests), we charge bfqq with the time it has been
4096 * in service instead of the service it has received (see
4097 * bfq_bfqq_charge_time for details on how this goal is achieved). As
4098 * a consequence, bfqq will typically get higher timestamps upon
4099 * reactivation, and hence it will be rescheduled as if it had
4100 * received more service than what it has actually received. In the
4101 * end, bfqq receives less service in proportion to how slowly its
4102 * associated process consumes its budgets (and hence how seriously it
4103 * tends to lower the throughput). In addition, this time-charging
4104 * strategy guarantees time fairness among slow processes. In
4105 * contrast, if the process associated with bfqq is not slow, we
4106 * charge bfqq exactly with the service it has received.
aee69d78 4107 *
c074170e
PV
4108 * Charging time to the first type of queues and the exact service to
4109 * the other has the effect of using the WF2Q+ policy to schedule the
4110 * former on a timeslice basis, without violating service domain
4111 * guarantees among the latter.
aee69d78 4112 */
ea25da48
PV
4113void bfq_bfqq_expire(struct bfq_data *bfqd,
4114 struct bfq_queue *bfqq,
4115 bool compensate,
4116 enum bfqq_expiration reason)
aee69d78
PV
4117{
4118 bool slow;
ab0e43e9
PV
4119 unsigned long delta = 0;
4120 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
4121
4122 /*
ab0e43e9 4123 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 4124 */
ab0e43e9 4125 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78
PV
4126
4127 /*
c074170e
PV
4128 * As above explained, charge slow (typically seeky) and
4129 * timed-out queues with the time and not the service
4130 * received, to favor sequential workloads.
4131 *
4132 * Processes doing I/O in the slower disk zones will tend to
4133 * be slow(er) even if not seeky. Therefore, since the
4134 * estimated peak rate is actually an average over the disk
4135 * surface, these processes may timeout just for bad luck. To
4136 * avoid punishing them, do not charge time to processes that
4137 * succeeded in consuming at least 2/3 of their budget. This
4138 * allows BFQ to preserve enough elasticity to still perform
4139 * bandwidth, and not time, distribution with little unlucky
4140 * or quasi-sequential processes.
aee69d78 4141 */
44e44a1b
PV
4142 if (bfqq->wr_coeff == 1 &&
4143 (slow ||
4144 (reason == BFQQE_BUDGET_TIMEOUT &&
4145 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 4146 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78 4147
44e44a1b
PV
4148 if (bfqd->low_latency && bfqq->wr_coeff == 1)
4149 bfqq->last_wr_start_finish = jiffies;
4150
77b7dcea
PV
4151 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
4152 RB_EMPTY_ROOT(&bfqq->sort_list)) {
4153 /*
4154 * If we get here, and there are no outstanding
4155 * requests, then the request pattern is isochronous
4156 * (see the comments on the function
3c337690
PV
4157 * bfq_bfqq_softrt_next_start()). Therefore we can
4158 * compute soft_rt_next_start.
20cd3245
PV
4159 *
4160 * If, instead, the queue still has outstanding
4161 * requests, then we have to wait for the completion
4162 * of all the outstanding requests to discover whether
4163 * the request pattern is actually isochronous.
77b7dcea 4164 */
3c337690 4165 if (bfqq->dispatched == 0)
77b7dcea
PV
4166 bfqq->soft_rt_next_start =
4167 bfq_bfqq_softrt_next_start(bfqd, bfqq);
20cd3245 4168 else if (bfqq->dispatched > 0) {
77b7dcea
PV
4169 /*
4170 * Schedule an update of soft_rt_next_start to when
4171 * the task may be discovered to be isochronous.
4172 */
4173 bfq_mark_bfqq_softrt_update(bfqq);
4174 }
4175 }
4176
aee69d78 4177 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4178 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
4179 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78 4180
2341d662
PV
4181 /*
4182 * bfqq expired, so no total service time needs to be computed
4183 * any longer: reset state machine for measuring total service
4184 * times.
4185 */
4186 bfqd->rqs_injected = bfqd->wait_dispatch = false;
4187 bfqd->waited_rq = NULL;
4188
aee69d78
PV
4189 /*
4190 * Increase, decrease or leave budget unchanged according to
4191 * reason.
4192 */
4193 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3726112e 4194 if (__bfq_bfqq_expire(bfqd, bfqq, reason))
eed47d19 4195 /* bfqq is gone, no more actions on it */
9fae8dd5
PV
4196 return;
4197
aee69d78 4198 /* mark bfqq as waiting a request only if a bic still points to it */
9fae8dd5 4199 if (!bfq_bfqq_busy(bfqq) &&
aee69d78 4200 reason != BFQQE_BUDGET_TIMEOUT &&
9fae8dd5 4201 reason != BFQQE_BUDGET_EXHAUSTED) {
aee69d78 4202 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
9fae8dd5
PV
4203 /*
4204 * Not setting service to 0, because, if the next rq
4205 * arrives in time, the queue will go on receiving
4206 * service with this same budget (as if it never expired)
4207 */
4208 } else
4209 entity->service = 0;
8a511ba5
PV
4210
4211 /*
4212 * Reset the received-service counter for every parent entity.
4213 * Differently from what happens with bfqq->entity.service,
4214 * the resetting of this counter never needs to be postponed
4215 * for parent entities. In fact, in case bfqq may have a
4216 * chance to go on being served using the last, partially
4217 * consumed budget, bfqq->entity.service needs to be kept,
4218 * because if bfqq then actually goes on being served using
4219 * the same budget, the last value of bfqq->entity.service is
4220 * needed to properly decrement bfqq->entity.budget by the
4221 * portion already consumed. In contrast, it is not necessary
4222 * to keep entity->service for parent entities too, because
4223 * the bubble up of the new value of bfqq->entity.budget will
4224 * make sure that the budgets of parent entities are correct,
4225 * even in case bfqq and thus parent entities go on receiving
4226 * service with the same budget.
4227 */
4228 entity = entity->parent;
4229 for_each_entity(entity)
4230 entity->service = 0;
aee69d78
PV
4231}
4232
4233/*
4234 * Budget timeout is not implemented through a dedicated timer, but
4235 * just checked on request arrivals and completions, as well as on
4236 * idle timer expirations.
4237 */
4238static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
4239{
44e44a1b 4240 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
4241}
4242
4243/*
4244 * If we expire a queue that is actively waiting (i.e., with the
4245 * device idled) for the arrival of a new request, then we may incur
4246 * the timestamp misalignment problem described in the body of the
4247 * function __bfq_activate_entity. Hence we return true only if this
4248 * condition does not hold, or if the queue is slow enough to deserve
4249 * only to be kicked off for preserving a high throughput.
4250 */
4251static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
4252{
4253 bfq_log_bfqq(bfqq->bfqd, bfqq,
4254 "may_budget_timeout: wait_request %d left %d timeout %d",
4255 bfq_bfqq_wait_request(bfqq),
4256 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
4257 bfq_bfqq_budget_timeout(bfqq));
4258
4259 return (!bfq_bfqq_wait_request(bfqq) ||
4260 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
4261 &&
4262 bfq_bfqq_budget_timeout(bfqq);
4263}
4264
05c2f5c3
PV
4265static bool idling_boosts_thr_without_issues(struct bfq_data *bfqd,
4266 struct bfq_queue *bfqq)
aee69d78 4267{
edaf9428
PV
4268 bool rot_without_queueing =
4269 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
4270 bfqq_sequential_and_IO_bound,
05c2f5c3 4271 idling_boosts_thr;
d5be3fef 4272
f718b093
PV
4273 /* No point in idling for bfqq if it won't get requests any longer */
4274 if (unlikely(!bfqq_process_refs(bfqq)))
4275 return false;
4276
edaf9428
PV
4277 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
4278 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
4279
aee69d78 4280 /*
44e44a1b
PV
4281 * The next variable takes into account the cases where idling
4282 * boosts the throughput.
4283 *
e01eff01
PV
4284 * The value of the variable is computed considering, first, that
4285 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
4286 * (a) the device is not NCQ-capable and rotational, or
4287 * (b) regardless of the presence of NCQ, the device is rotational and
4288 * the request pattern for bfqq is I/O-bound and sequential, or
4289 * (c) regardless of whether it is rotational, the device is
4290 * not NCQ-capable and the request pattern for bfqq is
4291 * I/O-bound and sequential.
bf2b79e7
PV
4292 *
4293 * Secondly, and in contrast to the above item (b), idling an
4294 * NCQ-capable flash-based device would not boost the
e01eff01 4295 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
4296 * the throughput in proportion to how fast the device
4297 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
4298 * above conditions (a), (b) or (c) is true, and, in
4299 * particular, happens to be false if bfqd is an NCQ-capable
4300 * flash-based device.
aee69d78 4301 */
edaf9428
PV
4302 idling_boosts_thr = rot_without_queueing ||
4303 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
4304 bfqq_sequential_and_IO_bound);
aee69d78 4305
cfd69712 4306 /*
05c2f5c3 4307 * The return value of this function is equal to that of
cfd69712
PV
4308 * idling_boosts_thr, unless a special case holds. In this
4309 * special case, described below, idling may cause problems to
4310 * weight-raised queues.
4311 *
4312 * When the request pool is saturated (e.g., in the presence
4313 * of write hogs), if the processes associated with
4314 * non-weight-raised queues ask for requests at a lower rate,
4315 * then processes associated with weight-raised queues have a
4316 * higher probability to get a request from the pool
4317 * immediately (or at least soon) when they need one. Thus
4318 * they have a higher probability to actually get a fraction
4319 * of the device throughput proportional to their high
4320 * weight. This is especially true with NCQ-capable drives,
4321 * which enqueue several requests in advance, and further
4322 * reorder internally-queued requests.
4323 *
05c2f5c3
PV
4324 * For this reason, we force to false the return value if
4325 * there are weight-raised busy queues. In this case, and if
4326 * bfqq is not weight-raised, this guarantees that the device
4327 * is not idled for bfqq (if, instead, bfqq is weight-raised,
4328 * then idling will be guaranteed by another variable, see
4329 * below). Combined with the timestamping rules of BFQ (see
4330 * [1] for details), this behavior causes bfqq, and hence any
4331 * sync non-weight-raised queue, to get a lower number of
4332 * requests served, and thus to ask for a lower number of
4333 * requests from the request pool, before the busy
4334 * weight-raised queues get served again. This often mitigates
4335 * starvation problems in the presence of heavy write
4336 * workloads and NCQ, thereby guaranteeing a higher
4337 * application and system responsiveness in these hostile
4338 * scenarios.
4339 */
4340 return idling_boosts_thr &&
cfd69712 4341 bfqd->wr_busy_queues == 0;
05c2f5c3 4342}
cfd69712 4343
05c2f5c3
PV
4344/*
4345 * For a queue that becomes empty, device idling is allowed only if
4346 * this function returns true for that queue. As a consequence, since
4347 * device idling plays a critical role for both throughput boosting
4348 * and service guarantees, the return value of this function plays a
4349 * critical role as well.
4350 *
4351 * In a nutshell, this function returns true only if idling is
4352 * beneficial for throughput or, even if detrimental for throughput,
4353 * idling is however necessary to preserve service guarantees (low
4354 * latency, desired throughput distribution, ...). In particular, on
4355 * NCQ-capable devices, this function tries to return false, so as to
4356 * help keep the drives' internal queues full, whenever this helps the
4357 * device boost the throughput without causing any service-guarantee
4358 * issue.
4359 *
4360 * Most of the issues taken into account to get the return value of
4361 * this function are not trivial. We discuss these issues in the two
4362 * functions providing the main pieces of information needed by this
4363 * function.
4364 */
4365static bool bfq_better_to_idle(struct bfq_queue *bfqq)
4366{
4367 struct bfq_data *bfqd = bfqq->bfqd;
4368 bool idling_boosts_thr_with_no_issue, idling_needed_for_service_guar;
4369
f718b093
PV
4370 /* No point in idling for bfqq if it won't get requests any longer */
4371 if (unlikely(!bfqq_process_refs(bfqq)))
4372 return false;
4373
05c2f5c3
PV
4374 if (unlikely(bfqd->strict_guarantees))
4375 return true;
4376
4377 /*
4378 * Idling is performed only if slice_idle > 0. In addition, we
4379 * do not idle if
4380 * (a) bfqq is async
4381 * (b) bfqq is in the idle io prio class: in this case we do
4382 * not idle because we want to minimize the bandwidth that
4383 * queues in this class can steal to higher-priority queues
4384 */
4385 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
4386 bfq_class_idle(bfqq))
4387 return false;
4388
4389 idling_boosts_thr_with_no_issue =
4390 idling_boosts_thr_without_issues(bfqd, bfqq);
4391
4392 idling_needed_for_service_guar =
4393 idling_needed_for_service_guarantees(bfqd, bfqq);
e1b2324d 4394
44e44a1b 4395 /*
05c2f5c3 4396 * We have now the two components we need to compute the
d5be3fef
PV
4397 * return value of the function, which is true only if idling
4398 * either boosts the throughput (without issues), or is
4399 * necessary to preserve service guarantees.
aee69d78 4400 */
05c2f5c3
PV
4401 return idling_boosts_thr_with_no_issue ||
4402 idling_needed_for_service_guar;
aee69d78
PV
4403}
4404
4405/*
277a4a9b 4406 * If the in-service queue is empty but the function bfq_better_to_idle
aee69d78
PV
4407 * returns true, then:
4408 * 1) the queue must remain in service and cannot be expired, and
4409 * 2) the device must be idled to wait for the possible arrival of a new
4410 * request for the queue.
277a4a9b 4411 * See the comments on the function bfq_better_to_idle for the reasons
aee69d78 4412 * why performing device idling is the best choice to boost the throughput
277a4a9b 4413 * and preserve service guarantees when bfq_better_to_idle itself
aee69d78
PV
4414 * returns true.
4415 */
4416static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
4417{
277a4a9b 4418 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_better_to_idle(bfqq);
aee69d78
PV
4419}
4420
2341d662
PV
4421/*
4422 * This function chooses the queue from which to pick the next extra
4423 * I/O request to inject, if it finds a compatible queue. See the
4424 * comments on bfq_update_inject_limit() for details on the injection
4425 * mechanism, and for the definitions of the quantities mentioned
4426 * below.
4427 */
4428static struct bfq_queue *
4429bfq_choose_bfqq_for_injection(struct bfq_data *bfqd)
d0edc247 4430{
2341d662
PV
4431 struct bfq_queue *bfqq, *in_serv_bfqq = bfqd->in_service_queue;
4432 unsigned int limit = in_serv_bfqq->inject_limit;
4433 /*
4434 * If
4435 * - bfqq is not weight-raised and therefore does not carry
4436 * time-critical I/O,
4437 * or
4438 * - regardless of whether bfqq is weight-raised, bfqq has
4439 * however a long think time, during which it can absorb the
4440 * effect of an appropriate number of extra I/O requests
4441 * from other queues (see bfq_update_inject_limit for
4442 * details on the computation of this number);
4443 * then injection can be performed without restrictions.
4444 */
4445 bool in_serv_always_inject = in_serv_bfqq->wr_coeff == 1 ||
4446 !bfq_bfqq_has_short_ttime(in_serv_bfqq);
d0edc247
PV
4447
4448 /*
2341d662
PV
4449 * If
4450 * - the baseline total service time could not be sampled yet,
4451 * so the inject limit happens to be still 0, and
4452 * - a lot of time has elapsed since the plugging of I/O
4453 * dispatching started, so drive speed is being wasted
4454 * significantly;
4455 * then temporarily raise inject limit to one request.
4456 */
4457 if (limit == 0 && in_serv_bfqq->last_serv_time_ns == 0 &&
4458 bfq_bfqq_wait_request(in_serv_bfqq) &&
4459 time_is_before_eq_jiffies(bfqd->last_idling_start_jiffies +
4460 bfqd->bfq_slice_idle)
4461 )
4462 limit = 1;
4463
4464 if (bfqd->rq_in_driver >= limit)
4465 return NULL;
4466
4467 /*
4468 * Linear search of the source queue for injection; but, with
4469 * a high probability, very few steps are needed to find a
4470 * candidate queue, i.e., a queue with enough budget left for
4471 * its next request. In fact:
d0edc247
PV
4472 * - BFQ dynamically updates the budget of every queue so as
4473 * to accommodate the expected backlog of the queue;
4474 * - if a queue gets all its requests dispatched as injected
4475 * service, then the queue is removed from the active list
2341d662
PV
4476 * (and re-added only if it gets new requests, but then it
4477 * is assigned again enough budget for its new backlog).
d0edc247
PV
4478 */
4479 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
4480 if (!RB_EMPTY_ROOT(&bfqq->sort_list) &&
2341d662 4481 (in_serv_always_inject || bfqq->wr_coeff > 1) &&
d0edc247 4482 bfq_serv_to_charge(bfqq->next_rq, bfqq) <=
2341d662
PV
4483 bfq_bfqq_budget_left(bfqq)) {
4484 /*
4485 * Allow for only one large in-flight request
4486 * on non-rotational devices, for the
4487 * following reason. On non-rotationl drives,
4488 * large requests take much longer than
4489 * smaller requests to be served. In addition,
4490 * the drive prefers to serve large requests
4491 * w.r.t. to small ones, if it can choose. So,
4492 * having more than one large requests queued
4493 * in the drive may easily make the next first
4494 * request of the in-service queue wait for so
4495 * long to break bfqq's service guarantees. On
4496 * the bright side, large requests let the
4497 * drive reach a very high throughput, even if
4498 * there is only one in-flight large request
4499 * at a time.
4500 */
4501 if (blk_queue_nonrot(bfqd->queue) &&
4502 blk_rq_sectors(bfqq->next_rq) >=
4503 BFQQ_SECT_THR_NONROT)
4504 limit = min_t(unsigned int, 1, limit);
4505 else
4506 limit = in_serv_bfqq->inject_limit;
4507
4508 if (bfqd->rq_in_driver < limit) {
4509 bfqd->rqs_injected = true;
4510 return bfqq;
4511 }
4512 }
d0edc247
PV
4513
4514 return NULL;
4515}
4516
aee69d78
PV
4517/*
4518 * Select a queue for service. If we have a current queue in service,
4519 * check whether to continue servicing it, or retrieve and set a new one.
4520 */
4521static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
4522{
4523 struct bfq_queue *bfqq;
4524 struct request *next_rq;
4525 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
4526
4527 bfqq = bfqd->in_service_queue;
4528 if (!bfqq)
4529 goto new_queue;
4530
4531 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
4532
4420b095
PV
4533 /*
4534 * Do not expire bfqq for budget timeout if bfqq may be about
4535 * to enjoy device idling. The reason why, in this case, we
4536 * prevent bfqq from expiring is the same as in the comments
4537 * on the case where bfq_bfqq_must_idle() returns true, in
4538 * bfq_completed_request().
4539 */
aee69d78 4540 if (bfq_may_expire_for_budg_timeout(bfqq) &&
aee69d78
PV
4541 !bfq_bfqq_must_idle(bfqq))
4542 goto expire;
4543
4544check_queue:
4545 /*
4546 * This loop is rarely executed more than once. Even when it
4547 * happens, it is much more convenient to re-execute this loop
4548 * than to return NULL and trigger a new dispatch to get a
4549 * request served.
4550 */
4551 next_rq = bfqq->next_rq;
4552 /*
4553 * If bfqq has requests queued and it has enough budget left to
4554 * serve them, keep the queue, otherwise expire it.
4555 */
4556 if (next_rq) {
4557 if (bfq_serv_to_charge(next_rq, bfqq) >
4558 bfq_bfqq_budget_left(bfqq)) {
4559 /*
4560 * Expire the queue for budget exhaustion,
4561 * which makes sure that the next budget is
4562 * enough to serve the next request, even if
4563 * it comes from the fifo expired path.
4564 */
4565 reason = BFQQE_BUDGET_EXHAUSTED;
4566 goto expire;
4567 } else {
4568 /*
4569 * The idle timer may be pending because we may
4570 * not disable disk idling even when a new request
4571 * arrives.
4572 */
4573 if (bfq_bfqq_wait_request(bfqq)) {
4574 /*
4575 * If we get here: 1) at least a new request
4576 * has arrived but we have not disabled the
4577 * timer because the request was too small,
4578 * 2) then the block layer has unplugged
4579 * the device, causing the dispatch to be
4580 * invoked.
4581 *
4582 * Since the device is unplugged, now the
4583 * requests are probably large enough to
4584 * provide a reasonable throughput.
4585 * So we disable idling.
4586 */
4587 bfq_clear_bfqq_wait_request(bfqq);
4588 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4589 }
4590 goto keep_queue;
4591 }
4592 }
4593
4594 /*
4595 * No requests pending. However, if the in-service queue is idling
4596 * for a new request, or has requests waiting for a completion and
4597 * may idle after their completion, then keep it anyway.
d0edc247 4598 *
2341d662
PV
4599 * Yet, inject service from other queues if it boosts
4600 * throughput and is possible.
aee69d78
PV
4601 */
4602 if (bfq_bfqq_wait_request(bfqq) ||
277a4a9b 4603 (bfqq->dispatched != 0 && bfq_better_to_idle(bfqq))) {
2341d662
PV
4604 struct bfq_queue *async_bfqq =
4605 bfqq->bic && bfqq->bic->bfqq[0] &&
3726112e
PV
4606 bfq_bfqq_busy(bfqq->bic->bfqq[0]) &&
4607 bfqq->bic->bfqq[0]->next_rq ?
2341d662 4608 bfqq->bic->bfqq[0] : NULL;
2ec5a5c4
PV
4609 struct bfq_queue *blocked_bfqq =
4610 !hlist_empty(&bfqq->woken_list) ?
4611 container_of(bfqq->woken_list.first,
4612 struct bfq_queue,
4613 woken_list_node)
4614 : NULL;
2341d662
PV
4615
4616 /*
2ec5a5c4 4617 * The next four mutually-exclusive ifs decide
13a857a4
PV
4618 * whether to try injection, and choose the queue to
4619 * pick an I/O request from.
4620 *
4621 * The first if checks whether the process associated
4622 * with bfqq has also async I/O pending. If so, it
4623 * injects such I/O unconditionally. Injecting async
4624 * I/O from the same process can cause no harm to the
4625 * process. On the contrary, it can only increase
4626 * bandwidth and reduce latency for the process.
4627 *
4628 * The second if checks whether there happens to be a
4629 * non-empty waker queue for bfqq, i.e., a queue whose
4630 * I/O needs to be completed for bfqq to receive new
4631 * I/O. This happens, e.g., if bfqq is associated with
4632 * a process that does some sync. A sync generates
4633 * extra blocking I/O, which must be completed before
4634 * the process associated with bfqq can go on with its
4635 * I/O. If the I/O of the waker queue is not served,
4636 * then bfqq remains empty, and no I/O is dispatched,
4637 * until the idle timeout fires for bfqq. This is
4638 * likely to result in lower bandwidth and higher
4639 * latencies for bfqq, and in a severe loss of total
4640 * throughput. The best action to take is therefore to
4641 * serve the waker queue as soon as possible. So do it
4642 * (without relying on the third alternative below for
4643 * eventually serving waker_bfqq's I/O; see the last
4644 * paragraph for further details). This systematic
4645 * injection of I/O from the waker queue does not
4646 * cause any delay to bfqq's I/O. On the contrary,
4647 * next bfqq's I/O is brought forward dramatically,
4648 * for it is not blocked for milliseconds.
4649 *
2ec5a5c4
PV
4650 * The third if checks whether there is a queue woken
4651 * by bfqq, and currently with pending I/O. Such a
4652 * woken queue does not steal bandwidth from bfqq,
4653 * because it remains soon without I/O if bfqq is not
4654 * served. So there is virtually no risk of loss of
4655 * bandwidth for bfqq if this woken queue has I/O
4656 * dispatched while bfqq is waiting for new I/O.
4657 *
4658 * The fourth if checks whether bfqq is a queue for
13a857a4
PV
4659 * which it is better to avoid injection. It is so if
4660 * bfqq delivers more throughput when served without
4661 * any further I/O from other queues in the middle, or
4662 * if the service times of bfqq's I/O requests both
4663 * count more than overall throughput, and may be
4664 * easily increased by injection (this happens if bfqq
4665 * has a short think time). If none of these
4666 * conditions holds, then a candidate queue for
4667 * injection is looked for through
4668 * bfq_choose_bfqq_for_injection(). Note that the
4669 * latter may return NULL (for example if the inject
4670 * limit for bfqq is currently 0).
4671 *
4672 * NOTE: motivation for the second alternative
4673 *
4674 * Thanks to the way the inject limit is updated in
4675 * bfq_update_has_short_ttime(), it is rather likely
4676 * that, if I/O is being plugged for bfqq and the
4677 * waker queue has pending I/O requests that are
2ec5a5c4 4678 * blocking bfqq's I/O, then the fourth alternative
13a857a4
PV
4679 * above lets the waker queue get served before the
4680 * I/O-plugging timeout fires. So one may deem the
4681 * second alternative superfluous. It is not, because
2ec5a5c4 4682 * the fourth alternative may be way less effective in
13a857a4
PV
4683 * case of a synchronization. For two main
4684 * reasons. First, throughput may be low because the
4685 * inject limit may be too low to guarantee the same
4686 * amount of injected I/O, from the waker queue or
4687 * other queues, that the second alternative
4688 * guarantees (the second alternative unconditionally
4689 * injects a pending I/O request of the waker queue
4690 * for each bfq_dispatch_request()). Second, with the
2ec5a5c4 4691 * fourth alternative, the duration of the plugging,
13a857a4
PV
4692 * i.e., the time before bfqq finally receives new I/O,
4693 * may not be minimized, because the waker queue may
4694 * happen to be served only after other queues.
2341d662
PV
4695 */
4696 if (async_bfqq &&
4697 icq_to_bic(async_bfqq->next_rq->elv.icq) == bfqq->bic &&
4698 bfq_serv_to_charge(async_bfqq->next_rq, async_bfqq) <=
4699 bfq_bfqq_budget_left(async_bfqq))
4700 bfqq = bfqq->bic->bfqq[0];
71217df3 4701 else if (bfqq->waker_bfqq &&
13a857a4 4702 bfq_bfqq_busy(bfqq->waker_bfqq) &&
d4fc3640 4703 bfqq->waker_bfqq->next_rq &&
13a857a4
PV
4704 bfq_serv_to_charge(bfqq->waker_bfqq->next_rq,
4705 bfqq->waker_bfqq) <=
4706 bfq_bfqq_budget_left(bfqq->waker_bfqq)
4707 )
4708 bfqq = bfqq->waker_bfqq;
2ec5a5c4
PV
4709 else if (blocked_bfqq &&
4710 bfq_bfqq_busy(blocked_bfqq) &&
4711 blocked_bfqq->next_rq &&
4712 bfq_serv_to_charge(blocked_bfqq->next_rq,
4713 blocked_bfqq) <=
4714 bfq_bfqq_budget_left(blocked_bfqq)
4715 )
4716 bfqq = blocked_bfqq;
2341d662
PV
4717 else if (!idling_boosts_thr_without_issues(bfqd, bfqq) &&
4718 (bfqq->wr_coeff == 1 || bfqd->wr_busy_queues > 1 ||
4719 !bfq_bfqq_has_short_ttime(bfqq)))
d0edc247
PV
4720 bfqq = bfq_choose_bfqq_for_injection(bfqd);
4721 else
4722 bfqq = NULL;
4723
aee69d78
PV
4724 goto keep_queue;
4725 }
4726
4727 reason = BFQQE_NO_MORE_REQUESTS;
4728expire:
4729 bfq_bfqq_expire(bfqd, bfqq, false, reason);
4730new_queue:
4731 bfqq = bfq_set_in_service_queue(bfqd);
4732 if (bfqq) {
4733 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
4734 goto check_queue;
4735 }
4736keep_queue:
4737 if (bfqq)
4738 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
4739 else
4740 bfq_log(bfqd, "select_queue: no queue returned");
4741
4742 return bfqq;
4743}
4744
44e44a1b
PV
4745static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
4746{
4747 struct bfq_entity *entity = &bfqq->entity;
4748
4749 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
4750 bfq_log_bfqq(bfqd, bfqq,
4751 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
4752 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
4753 jiffies_to_msecs(bfqq->wr_cur_max_time),
4754 bfqq->wr_coeff,
4755 bfqq->entity.weight, bfqq->entity.orig_weight);
4756
4757 if (entity->prio_changed)
4758 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
4759
4760 /*
e1b2324d
AA
4761 * If the queue was activated in a burst, or too much
4762 * time has elapsed from the beginning of this
4763 * weight-raising period, then end weight raising.
44e44a1b 4764 */
e1b2324d
AA
4765 if (bfq_bfqq_in_large_burst(bfqq))
4766 bfq_bfqq_end_wr(bfqq);
4767 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
4768 bfqq->wr_cur_max_time)) {
77b7dcea
PV
4769 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
4770 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
3c337690
PV
4771 bfq_wr_duration(bfqd))) {
4772 /*
4773 * Either in interactive weight
4774 * raising, or in soft_rt weight
4775 * raising with the
4776 * interactive-weight-raising period
4777 * elapsed (so no switch back to
4778 * interactive weight raising).
4779 */
77b7dcea 4780 bfq_bfqq_end_wr(bfqq);
3c337690
PV
4781 } else { /*
4782 * soft_rt finishing while still in
4783 * interactive period, switch back to
4784 * interactive weight raising
4785 */
3e2bdd6d 4786 switch_back_to_interactive_wr(bfqq, bfqd);
77b7dcea
PV
4787 bfqq->entity.prio_changed = 1;
4788 }
44e44a1b 4789 }
8a8747dc
PV
4790 if (bfqq->wr_coeff > 1 &&
4791 bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time &&
4792 bfqq->service_from_wr > max_service_from_wr) {
4793 /* see comments on max_service_from_wr */
4794 bfq_bfqq_end_wr(bfqq);
4795 }
44e44a1b 4796 }
431b17f9
PV
4797 /*
4798 * To improve latency (for this or other queues), immediately
4799 * update weight both if it must be raised and if it must be
4800 * lowered. Since, entity may be on some active tree here, and
4801 * might have a pending change of its ioprio class, invoke
4802 * next function with the last parameter unset (see the
4803 * comments on the function).
4804 */
44e44a1b 4805 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
4806 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
4807 entity, false);
44e44a1b
PV
4808}
4809
aee69d78
PV
4810/*
4811 * Dispatch next request from bfqq.
4812 */
4813static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
4814 struct bfq_queue *bfqq)
4815{
4816 struct request *rq = bfqq->next_rq;
4817 unsigned long service_to_charge;
4818
4819 service_to_charge = bfq_serv_to_charge(rq, bfqq);
4820
4821 bfq_bfqq_served(bfqq, service_to_charge);
4822
2341d662
PV
4823 if (bfqq == bfqd->in_service_queue && bfqd->wait_dispatch) {
4824 bfqd->wait_dispatch = false;
4825 bfqd->waited_rq = rq;
4826 }
aee69d78 4827
2341d662 4828 bfq_dispatch_remove(bfqd->queue, rq);
d0edc247 4829
2341d662 4830 if (bfqq != bfqd->in_service_queue)
d0edc247 4831 goto return_rq;
d0edc247 4832
44e44a1b
PV
4833 /*
4834 * If weight raising has to terminate for bfqq, then next
4835 * function causes an immediate update of bfqq's weight,
4836 * without waiting for next activation. As a consequence, on
4837 * expiration, bfqq will be timestamped as if has never been
4838 * weight-raised during this service slot, even if it has
4839 * received part or even most of the service as a
4840 * weight-raised queue. This inflates bfqq's timestamps, which
4841 * is beneficial, as bfqq is then more willing to leave the
4842 * device immediately to possible other weight-raised queues.
4843 */
4844 bfq_update_wr_data(bfqd, bfqq);
4845
aee69d78
PV
4846 /*
4847 * Expire bfqq, pretending that its budget expired, if bfqq
4848 * belongs to CLASS_IDLE and other queues are waiting for
4849 * service.
4850 */
73d58118 4851 if (!(bfq_tot_busy_queues(bfqd) > 1 && bfq_class_idle(bfqq)))
d0edc247 4852 goto return_rq;
aee69d78 4853
aee69d78 4854 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
d0edc247
PV
4855
4856return_rq:
aee69d78
PV
4857 return rq;
4858}
4859
4860static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
4861{
4862 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4863
4864 /*
4865 * Avoiding lock: a race on bfqd->busy_queues should cause at
4866 * most a call to dispatch for nothing
4867 */
4868 return !list_empty_careful(&bfqd->dispatch) ||
73d58118 4869 bfq_tot_busy_queues(bfqd) > 0;
aee69d78
PV
4870}
4871
4872static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
4873{
4874 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
4875 struct request *rq = NULL;
4876 struct bfq_queue *bfqq = NULL;
4877
4878 if (!list_empty(&bfqd->dispatch)) {
4879 rq = list_first_entry(&bfqd->dispatch, struct request,
4880 queuelist);
4881 list_del_init(&rq->queuelist);
4882
4883 bfqq = RQ_BFQQ(rq);
4884
4885 if (bfqq) {
4886 /*
4887 * Increment counters here, because this
4888 * dispatch does not follow the standard
4889 * dispatch flow (where counters are
4890 * incremented)
4891 */
4892 bfqq->dispatched++;
4893
4894 goto inc_in_driver_start_rq;
4895 }
4896
4897 /*
a7877390
PV
4898 * We exploit the bfq_finish_requeue_request hook to
4899 * decrement rq_in_driver, but
4900 * bfq_finish_requeue_request will not be invoked on
4901 * this request. So, to avoid unbalance, just start
4902 * this request, without incrementing rq_in_driver. As
4903 * a negative consequence, rq_in_driver is deceptively
4904 * lower than it should be while this request is in
4905 * service. This may cause bfq_schedule_dispatch to be
4906 * invoked uselessly.
aee69d78
PV
4907 *
4908 * As for implementing an exact solution, the
a7877390
PV
4909 * bfq_finish_requeue_request hook, if defined, is
4910 * probably invoked also on this request. So, by
4911 * exploiting this hook, we could 1) increment
4912 * rq_in_driver here, and 2) decrement it in
4913 * bfq_finish_requeue_request. Such a solution would
4914 * let the value of the counter be always accurate,
4915 * but it would entail using an extra interface
4916 * function. This cost seems higher than the benefit,
4917 * being the frequency of non-elevator-private
aee69d78
PV
4918 * requests very low.
4919 */
4920 goto start_rq;
4921 }
4922
73d58118
PV
4923 bfq_log(bfqd, "dispatch requests: %d busy queues",
4924 bfq_tot_busy_queues(bfqd));
aee69d78 4925
73d58118 4926 if (bfq_tot_busy_queues(bfqd) == 0)
aee69d78
PV
4927 goto exit;
4928
4929 /*
4930 * Force device to serve one request at a time if
4931 * strict_guarantees is true. Forcing this service scheme is
4932 * currently the ONLY way to guarantee that the request
4933 * service order enforced by the scheduler is respected by a
4934 * queueing device. Otherwise the device is free even to make
4935 * some unlucky request wait for as long as the device
4936 * wishes.
4937 *
f06678af 4938 * Of course, serving one request at a time may cause loss of
aee69d78
PV
4939 * throughput.
4940 */
4941 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
4942 goto exit;
4943
4944 bfqq = bfq_select_queue(bfqd);
4945 if (!bfqq)
4946 goto exit;
4947
4948 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
4949
4950 if (rq) {
4951inc_in_driver_start_rq:
4952 bfqd->rq_in_driver++;
4953start_rq:
4954 rq->rq_flags |= RQF_STARTED;
4955 }
4956exit:
4957 return rq;
4958}
4959
8060c47b 4960#ifdef CONFIG_BFQ_CGROUP_DEBUG
9b25bd03
PV
4961static void bfq_update_dispatch_stats(struct request_queue *q,
4962 struct request *rq,
4963 struct bfq_queue *in_serv_queue,
4964 bool idle_timer_disabled)
4965{
4966 struct bfq_queue *bfqq = rq ? RQ_BFQQ(rq) : NULL;
aee69d78 4967
24bfd19b 4968 if (!idle_timer_disabled && !bfqq)
9b25bd03 4969 return;
24bfd19b
PV
4970
4971 /*
4972 * rq and bfqq are guaranteed to exist until this function
4973 * ends, for the following reasons. First, rq can be
4974 * dispatched to the device, and then can be completed and
4975 * freed, only after this function ends. Second, rq cannot be
4976 * merged (and thus freed because of a merge) any longer,
4977 * because it has already started. Thus rq cannot be freed
4978 * before this function ends, and, since rq has a reference to
4979 * bfqq, the same guarantee holds for bfqq too.
4980 *
4981 * In addition, the following queue lock guarantees that
4982 * bfqq_group(bfqq) exists as well.
4983 */
0d945c1f 4984 spin_lock_irq(&q->queue_lock);
24bfd19b
PV
4985 if (idle_timer_disabled)
4986 /*
4987 * Since the idle timer has been disabled,
4988 * in_serv_queue contained some request when
4989 * __bfq_dispatch_request was invoked above, which
4990 * implies that rq was picked exactly from
4991 * in_serv_queue. Thus in_serv_queue == bfqq, and is
4992 * therefore guaranteed to exist because of the above
4993 * arguments.
4994 */
4995 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
4996 if (bfqq) {
4997 struct bfq_group *bfqg = bfqq_group(bfqq);
4998
4999 bfqg_stats_update_avg_queue_size(bfqg);
5000 bfqg_stats_set_start_empty_time(bfqg);
5001 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
5002 }
0d945c1f 5003 spin_unlock_irq(&q->queue_lock);
9b25bd03
PV
5004}
5005#else
5006static inline void bfq_update_dispatch_stats(struct request_queue *q,
5007 struct request *rq,
5008 struct bfq_queue *in_serv_queue,
5009 bool idle_timer_disabled) {}
8060c47b 5010#endif /* CONFIG_BFQ_CGROUP_DEBUG */
24bfd19b 5011
9b25bd03
PV
5012static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
5013{
5014 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
5015 struct request *rq;
5016 struct bfq_queue *in_serv_queue;
5017 bool waiting_rq, idle_timer_disabled;
5018
5019 spin_lock_irq(&bfqd->lock);
5020
5021 in_serv_queue = bfqd->in_service_queue;
5022 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
5023
5024 rq = __bfq_dispatch_request(hctx);
5025
5026 idle_timer_disabled =
5027 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
5028
5029 spin_unlock_irq(&bfqd->lock);
5030
5031 bfq_update_dispatch_stats(hctx->queue, rq, in_serv_queue,
5032 idle_timer_disabled);
5033
aee69d78
PV
5034 return rq;
5035}
5036
5037/*
5038 * Task holds one reference to the queue, dropped when task exits. Each rq
5039 * in-flight on this queue also holds a reference, dropped when rq is freed.
5040 *
5041 * Scheduler lock must be held here. Recall not to use bfqq after calling
5042 * this function on it.
5043 */
ea25da48 5044void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 5045{
3f758e84
PV
5046 struct bfq_queue *item;
5047 struct hlist_node *n;
e21b7a0b 5048 struct bfq_group *bfqg = bfqq_group(bfqq);
e21b7a0b 5049
aee69d78
PV
5050 if (bfqq->bfqd)
5051 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
5052 bfqq, bfqq->ref);
5053
5054 bfqq->ref--;
5055 if (bfqq->ref)
5056 return;
5057
99fead8d 5058 if (!hlist_unhashed(&bfqq->burst_list_node)) {
e1b2324d 5059 hlist_del_init(&bfqq->burst_list_node);
99fead8d
PV
5060 /*
5061 * Decrement also burst size after the removal, if the
5062 * process associated with bfqq is exiting, and thus
5063 * does not contribute to the burst any longer. This
5064 * decrement helps filter out false positives of large
5065 * bursts, when some short-lived process (often due to
5066 * the execution of commands by some service) happens
5067 * to start and exit while a complex application is
5068 * starting, and thus spawning several processes that
5069 * do I/O (and that *must not* be treated as a large
5070 * burst, see comments on bfq_handle_burst).
5071 *
5072 * In particular, the decrement is performed only if:
5073 * 1) bfqq is not a merged queue, because, if it is,
5074 * then this free of bfqq is not triggered by the exit
5075 * of the process bfqq is associated with, but exactly
5076 * by the fact that bfqq has just been merged.
5077 * 2) burst_size is greater than 0, to handle
5078 * unbalanced decrements. Unbalanced decrements may
5079 * happen in te following case: bfqq is inserted into
5080 * the current burst list--without incrementing
5081 * bust_size--because of a split, but the current
5082 * burst list is not the burst list bfqq belonged to
5083 * (see comments on the case of a split in
5084 * bfq_set_request).
5085 */
5086 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
5087 bfqq->bfqd->burst_size--;
7cb04004 5088 }
e21b7a0b 5089
3f758e84
PV
5090 /*
5091 * bfqq does not exist any longer, so it cannot be woken by
5092 * any other queue, and cannot wake any other queue. Then bfqq
5093 * must be removed from the woken list of its possible waker
5094 * queue, and all queues in the woken list of bfqq must stop
5095 * having a waker queue. Strictly speaking, these updates
5096 * should be performed when bfqq remains with no I/O source
5097 * attached to it, which happens before bfqq gets freed. In
5098 * particular, this happens when the last process associated
5099 * with bfqq exits or gets associated with a different
5100 * queue. However, both events lead to bfqq being freed soon,
5101 * and dangling references would come out only after bfqq gets
5102 * freed. So these updates are done here, as a simple and safe
5103 * way to handle all cases.
5104 */
5105 /* remove bfqq from woken list */
5106 if (!hlist_unhashed(&bfqq->woken_list_node))
5107 hlist_del_init(&bfqq->woken_list_node);
5108
5109 /* reset waker for all queues in woken list */
5110 hlist_for_each_entry_safe(item, n, &bfqq->woken_list,
5111 woken_list_node) {
5112 item->waker_bfqq = NULL;
3f758e84
PV
5113 hlist_del_init(&item->woken_list_node);
5114 }
5115
08d383a7
PV
5116 if (bfqq->bfqd && bfqq->bfqd->last_completed_rq_bfqq == bfqq)
5117 bfqq->bfqd->last_completed_rq_bfqq = NULL;
5118
aee69d78 5119 kmem_cache_free(bfq_pool, bfqq);
8f9bebc3 5120 bfqg_and_blkg_put(bfqg);
aee69d78
PV
5121}
5122
430a67f9
PV
5123static void bfq_put_stable_ref(struct bfq_queue *bfqq)
5124{
5125 bfqq->stable_ref--;
5126 bfq_put_queue(bfqq);
5127}
5128
36eca894
AA
5129static void bfq_put_cooperator(struct bfq_queue *bfqq)
5130{
5131 struct bfq_queue *__bfqq, *next;
5132
5133 /*
5134 * If this queue was scheduled to merge with another queue, be
5135 * sure to drop the reference taken on that queue (and others in
5136 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
5137 */
5138 __bfqq = bfqq->new_bfqq;
5139 while (__bfqq) {
5140 if (__bfqq == bfqq)
5141 break;
5142 next = __bfqq->new_bfqq;
5143 bfq_put_queue(__bfqq);
5144 __bfqq = next;
5145 }
5146}
5147
aee69d78
PV
5148static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
5149{
5150 if (bfqq == bfqd->in_service_queue) {
3726112e 5151 __bfq_bfqq_expire(bfqd, bfqq, BFQQE_BUDGET_TIMEOUT);
aee69d78
PV
5152 bfq_schedule_dispatch(bfqd);
5153 }
5154
5155 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
5156
36eca894
AA
5157 bfq_put_cooperator(bfqq);
5158
478de338 5159 bfq_release_process_ref(bfqd, bfqq);
aee69d78
PV
5160}
5161
5162static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
5163{
5164 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
5165 struct bfq_data *bfqd;
5166
5167 if (bfqq)
5168 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
5169
5170 if (bfqq && bfqd) {
5171 unsigned long flags;
5172
5173 spin_lock_irqsave(&bfqd->lock, flags);
dbc3117d 5174 bfqq->bic = NULL;
aee69d78
PV
5175 bfq_exit_bfqq(bfqd, bfqq);
5176 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 5177 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
5178 }
5179}
5180
5181static void bfq_exit_icq(struct io_cq *icq)
5182{
5183 struct bfq_io_cq *bic = icq_to_bic(icq);
5184
430a67f9
PV
5185 if (bic->stable_merge_bfqq) {
5186 struct bfq_data *bfqd = bic->stable_merge_bfqq->bfqd;
5187
5188 /*
5189 * bfqd is NULL if scheduler already exited, and in
5190 * that case this is the last time bfqq is accessed.
5191 */
5192 if (bfqd) {
5193 unsigned long flags;
5194
5195 spin_lock_irqsave(&bfqd->lock, flags);
5196 bfq_put_stable_ref(bic->stable_merge_bfqq);
5197 spin_unlock_irqrestore(&bfqd->lock, flags);
5198 } else {
5199 bfq_put_stable_ref(bic->stable_merge_bfqq);
5200 }
5201 }
5202
aee69d78
PV
5203 bfq_exit_icq_bfqq(bic, true);
5204 bfq_exit_icq_bfqq(bic, false);
5205}
5206
5207/*
5208 * Update the entity prio values; note that the new values will not
5209 * be used until the next (re)activation.
5210 */
5211static void
5212bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
5213{
5214 struct task_struct *tsk = current;
5215 int ioprio_class;
5216 struct bfq_data *bfqd = bfqq->bfqd;
5217
5218 if (!bfqd)
5219 return;
5220
5221 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5222 switch (ioprio_class) {
5223 default:
d51cfc53
YY
5224 pr_err("bdi %s: bfq: bad prio class %d\n",
5225 bdi_dev_name(bfqq->bfqd->queue->backing_dev_info),
5226 ioprio_class);
df561f66 5227 fallthrough;
aee69d78
PV
5228 case IOPRIO_CLASS_NONE:
5229 /*
5230 * No prio set, inherit CPU scheduling settings.
5231 */
5232 bfqq->new_ioprio = task_nice_ioprio(tsk);
5233 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
5234 break;
5235 case IOPRIO_CLASS_RT:
5236 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5237 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
5238 break;
5239 case IOPRIO_CLASS_BE:
5240 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5241 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
5242 break;
5243 case IOPRIO_CLASS_IDLE:
5244 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
5245 bfqq->new_ioprio = 7;
aee69d78
PV
5246 break;
5247 }
5248
5249 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
5250 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
5251 bfqq->new_ioprio);
5252 bfqq->new_ioprio = IOPRIO_BE_NR;
5253 }
5254
5255 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3c337690
PV
5256 bfq_log_bfqq(bfqd, bfqq, "new_ioprio %d new_weight %d",
5257 bfqq->new_ioprio, bfqq->entity.new_weight);
aee69d78
PV
5258 bfqq->entity.prio_changed = 1;
5259}
5260
ea25da48
PV
5261static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5262 struct bio *bio, bool is_sync,
430a67f9
PV
5263 struct bfq_io_cq *bic,
5264 bool respawn);
ea25da48 5265
aee69d78
PV
5266static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
5267{
5268 struct bfq_data *bfqd = bic_to_bfqd(bic);
5269 struct bfq_queue *bfqq;
5270 int ioprio = bic->icq.ioc->ioprio;
5271
5272 /*
5273 * This condition may trigger on a newly created bic, be sure to
5274 * drop the lock before returning.
5275 */
5276 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
5277 return;
5278
5279 bic->ioprio = ioprio;
5280
5281 bfqq = bic_to_bfqq(bic, false);
5282 if (bfqq) {
478de338 5283 bfq_release_process_ref(bfqd, bfqq);
430a67f9 5284 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic, true);
aee69d78
PV
5285 bic_set_bfqq(bic, bfqq, false);
5286 }
5287
5288 bfqq = bic_to_bfqq(bic, true);
5289 if (bfqq)
5290 bfq_set_next_ioprio_data(bfqq, bic);
5291}
5292
5293static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5294 struct bfq_io_cq *bic, pid_t pid, int is_sync)
5295{
eb2fd80f
PV
5296 u64 now_ns = ktime_get_ns();
5297
aee69d78
PV
5298 RB_CLEAR_NODE(&bfqq->entity.rb_node);
5299 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 5300 INIT_HLIST_NODE(&bfqq->burst_list_node);
13a857a4
PV
5301 INIT_HLIST_NODE(&bfqq->woken_list_node);
5302 INIT_HLIST_HEAD(&bfqq->woken_list);
aee69d78
PV
5303
5304 bfqq->ref = 0;
5305 bfqq->bfqd = bfqd;
5306
5307 if (bic)
5308 bfq_set_next_ioprio_data(bfqq, bic);
5309
5310 if (is_sync) {
d5be3fef
PV
5311 /*
5312 * No need to mark as has_short_ttime if in
5313 * idle_class, because no device idling is performed
5314 * for queues in idle class
5315 */
aee69d78 5316 if (!bfq_class_idle(bfqq))
d5be3fef
PV
5317 /* tentatively mark as has_short_ttime */
5318 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 5319 bfq_mark_bfqq_sync(bfqq);
e1b2324d 5320 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
5321 } else
5322 bfq_clear_bfqq_sync(bfqq);
5323
5324 /* set end request to minus infinity from now */
eb2fd80f
PV
5325 bfqq->ttime.last_end_request = now_ns + 1;
5326
430a67f9
PV
5327 bfqq->creation_time = jiffies;
5328
eb2fd80f 5329 bfqq->io_start_time = now_ns;
aee69d78
PV
5330
5331 bfq_mark_bfqq_IO_bound(bfqq);
5332
5333 bfqq->pid = pid;
5334
5335 /* Tentative initial value to trade off between thr and lat */
54b60456 5336 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 5337 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 5338
44e44a1b 5339 bfqq->wr_coeff = 1;
36eca894 5340 bfqq->last_wr_start_finish = jiffies;
77b7dcea 5341 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 5342 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
5343
5344 /*
a34b0244
PV
5345 * To not forget the possibly high bandwidth consumed by a
5346 * process/queue in the recent past,
5347 * bfq_bfqq_softrt_next_start() returns a value at least equal
5348 * to the current value of bfqq->soft_rt_next_start (see
5349 * comments on bfq_bfqq_softrt_next_start). Set
5350 * soft_rt_next_start to now, to mean that bfqq has consumed
5351 * no bandwidth so far.
77b7dcea 5352 */
a34b0244 5353 bfqq->soft_rt_next_start = jiffies;
44e44a1b 5354
aee69d78
PV
5355 /* first request is almost certainly seeky */
5356 bfqq->seek_history = 1;
5357}
5358
5359static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 5360 struct bfq_group *bfqg,
aee69d78
PV
5361 int ioprio_class, int ioprio)
5362{
5363 switch (ioprio_class) {
5364 case IOPRIO_CLASS_RT:
e21b7a0b 5365 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
5366 case IOPRIO_CLASS_NONE:
5367 ioprio = IOPRIO_NORM;
df561f66 5368 fallthrough;
aee69d78 5369 case IOPRIO_CLASS_BE:
e21b7a0b 5370 return &bfqg->async_bfqq[1][ioprio];
aee69d78 5371 case IOPRIO_CLASS_IDLE:
e21b7a0b 5372 return &bfqg->async_idle_bfqq;
aee69d78
PV
5373 default:
5374 return NULL;
5375 }
5376}
5377
430a67f9
PV
5378static struct bfq_queue *
5379bfq_do_early_stable_merge(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5380 struct bfq_io_cq *bic,
5381 struct bfq_queue *last_bfqq_created)
5382{
5383 struct bfq_queue *new_bfqq =
5384 bfq_setup_merge(bfqq, last_bfqq_created);
5385
5386 if (!new_bfqq)
5387 return bfqq;
5388
5389 if (new_bfqq->bic)
5390 new_bfqq->bic->stably_merged = true;
5391 bic->stably_merged = true;
5392
5393 /*
5394 * Reusing merge functions. This implies that
5395 * bfqq->bic must be set too, for
5396 * bfq_merge_bfqqs to correctly save bfqq's
5397 * state before killing it.
5398 */
5399 bfqq->bic = bic;
5400 bfq_merge_bfqqs(bfqd, bic, bfqq, new_bfqq);
5401
5402 return new_bfqq;
5403}
5404
5405/*
5406 * Many throughput-sensitive workloads are made of several parallel
5407 * I/O flows, with all flows generated by the same application, or
5408 * more generically by the same task (e.g., system boot). The most
5409 * counterproductive action with these workloads is plugging I/O
5410 * dispatch when one of the bfq_queues associated with these flows
5411 * remains temporarily empty.
5412 *
5413 * To avoid this plugging, BFQ has been using a burst-handling
5414 * mechanism for years now. This mechanism has proven effective for
5415 * throughput, and not detrimental for service guarantees. The
5416 * following function pushes this mechanism a little bit further,
5417 * basing on the following two facts.
5418 *
5419 * First, all the I/O flows of a the same application or task
5420 * contribute to the execution/completion of that common application
5421 * or task. So the performance figures that matter are total
5422 * throughput of the flows and task-wide I/O latency. In particular,
5423 * these flows do not need to be protected from each other, in terms
5424 * of individual bandwidth or latency.
5425 *
5426 * Second, the above fact holds regardless of the number of flows.
5427 *
5428 * Putting these two facts together, this commits merges stably the
5429 * bfq_queues associated with these I/O flows, i.e., with the
5430 * processes that generate these IO/ flows, regardless of how many the
5431 * involved processes are.
5432 *
5433 * To decide whether a set of bfq_queues is actually associated with
5434 * the I/O flows of a common application or task, and to merge these
5435 * queues stably, this function operates as follows: given a bfq_queue,
5436 * say Q2, currently being created, and the last bfq_queue, say Q1,
5437 * created before Q2, Q2 is merged stably with Q1 if
5438 * - very little time has elapsed since when Q1 was created
5439 * - Q2 has the same ioprio as Q1
5440 * - Q2 belongs to the same group as Q1
5441 *
5442 * Merging bfq_queues also reduces scheduling overhead. A fio test
5443 * with ten random readers on /dev/nullb shows a throughput boost of
5444 * 40%, with a quadcore. Since BFQ's execution time amounts to ~50% of
5445 * the total per-request processing time, the above throughput boost
5446 * implies that BFQ's overhead is reduced by more than 50%.
5447 *
5448 * This new mechanism most certainly obsoletes the current
5449 * burst-handling heuristics. We keep those heuristics for the moment.
5450 */
5451static struct bfq_queue *bfq_do_or_sched_stable_merge(struct bfq_data *bfqd,
5452 struct bfq_queue *bfqq,
5453 struct bfq_io_cq *bic)
5454{
5455 struct bfq_queue **source_bfqq = bfqq->entity.parent ?
5456 &bfqq->entity.parent->last_bfqq_created :
5457 &bfqd->last_bfqq_created;
5458
5459 struct bfq_queue *last_bfqq_created = *source_bfqq;
5460
5461 /*
5462 * If last_bfqq_created has not been set yet, then init it. If
5463 * it has been set already, but too long ago, then move it
5464 * forward to bfqq. Finally, move also if bfqq belongs to a
5465 * different group than last_bfqq_created, or if bfqq has a
5466 * different ioprio or ioprio_class. If none of these
5467 * conditions holds true, then try an early stable merge or
5468 * schedule a delayed stable merge.
5469 *
5470 * A delayed merge is scheduled (instead of performing an
5471 * early merge), in case bfqq might soon prove to be more
5472 * throughput-beneficial if not merged. Currently this is
5473 * possible only if bfqd is rotational with no queueing. For
5474 * such a drive, not merging bfqq is better for throughput if
5475 * bfqq happens to contain sequential I/O. So, we wait a
5476 * little bit for enough I/O to flow through bfqq. After that,
5477 * if such an I/O is sequential, then the merge is
5478 * canceled. Otherwise the merge is finally performed.
5479 */
5480 if (!last_bfqq_created ||
5481 time_before(last_bfqq_created->creation_time +
5482 bfqd->bfq_burst_interval,
5483 bfqq->creation_time) ||
5484 bfqq->entity.parent != last_bfqq_created->entity.parent ||
5485 bfqq->ioprio != last_bfqq_created->ioprio ||
5486 bfqq->ioprio_class != last_bfqq_created->ioprio_class)
5487 *source_bfqq = bfqq;
5488 else if (time_after_eq(last_bfqq_created->creation_time +
5489 bfqd->bfq_burst_interval,
5490 bfqq->creation_time)) {
5491 if (likely(bfqd->nonrot_with_queueing))
5492 /*
5493 * With this type of drive, leaving
5494 * bfqq alone may provide no
5495 * throughput benefits compared with
5496 * merging bfqq. So merge bfqq now.
5497 */
5498 bfqq = bfq_do_early_stable_merge(bfqd, bfqq,
5499 bic,
5500 last_bfqq_created);
5501 else { /* schedule tentative stable merge */
5502 /*
5503 * get reference on last_bfqq_created,
5504 * to prevent it from being freed,
5505 * until we decide whether to merge
5506 */
5507 last_bfqq_created->ref++;
5508 /*
5509 * need to keep track of stable refs, to
5510 * compute process refs correctly
5511 */
5512 last_bfqq_created->stable_ref++;
5513 /*
5514 * Record the bfqq to merge to.
5515 */
5516 bic->stable_merge_bfqq = last_bfqq_created;
5517 }
5518 }
5519
5520 return bfqq;
5521}
5522
5523
aee69d78
PV
5524static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
5525 struct bio *bio, bool is_sync,
430a67f9
PV
5526 struct bfq_io_cq *bic,
5527 bool respawn)
aee69d78
PV
5528{
5529 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
5530 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
5531 struct bfq_queue **async_bfqq = NULL;
5532 struct bfq_queue *bfqq;
e21b7a0b 5533 struct bfq_group *bfqg;
aee69d78
PV
5534
5535 rcu_read_lock();
5536
0fe061b9 5537 bfqg = bfq_find_set_group(bfqd, __bio_blkcg(bio));
e21b7a0b
AA
5538 if (!bfqg) {
5539 bfqq = &bfqd->oom_bfqq;
5540 goto out;
5541 }
5542
aee69d78 5543 if (!is_sync) {
e21b7a0b 5544 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
5545 ioprio);
5546 bfqq = *async_bfqq;
5547 if (bfqq)
5548 goto out;
5549 }
5550
5551 bfqq = kmem_cache_alloc_node(bfq_pool,
5552 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
5553 bfqd->queue->node);
5554
5555 if (bfqq) {
5556 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
5557 is_sync);
e21b7a0b 5558 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
5559 bfq_log_bfqq(bfqd, bfqq, "allocated");
5560 } else {
5561 bfqq = &bfqd->oom_bfqq;
5562 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
5563 goto out;
5564 }
5565
5566 /*
5567 * Pin the queue now that it's allocated, scheduler exit will
5568 * prune it.
5569 */
5570 if (async_bfqq) {
e21b7a0b
AA
5571 bfqq->ref++; /*
5572 * Extra group reference, w.r.t. sync
5573 * queue. This extra reference is removed
5574 * only if bfqq->bfqg disappears, to
5575 * guarantee that this queue is not freed
5576 * until its group goes away.
5577 */
5578 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
5579 bfqq, bfqq->ref);
5580 *async_bfqq = bfqq;
5581 }
5582
5583out:
5584 bfqq->ref++; /* get a process reference to this queue */
430a67f9
PV
5585
5586 if (bfqq != &bfqd->oom_bfqq && is_sync && !respawn)
5587 bfqq = bfq_do_or_sched_stable_merge(bfqd, bfqq, bic);
5588
aee69d78
PV
5589 rcu_read_unlock();
5590 return bfqq;
5591}
5592
5593static void bfq_update_io_thinktime(struct bfq_data *bfqd,
5594 struct bfq_queue *bfqq)
5595{
5596 struct bfq_ttime *ttime = &bfqq->ttime;
7684fbde 5597 u64 elapsed;
aee69d78 5598
7684fbde
JK
5599 /*
5600 * We are really interested in how long it takes for the queue to
5601 * become busy when there is no outstanding IO for this queue. So
5602 * ignore cases when the bfq queue has already IO queued.
5603 */
5604 if (bfqq->dispatched || bfq_bfqq_busy(bfqq))
5605 return;
5606 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
aee69d78
PV
5607 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
5608
28c6def0 5609 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
aee69d78
PV
5610 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
5611 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
5612 ttime->ttime_samples);
5613}
5614
5615static void
5616bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5617 struct request *rq)
5618{
aee69d78 5619 bfqq->seek_history <<= 1;
d87447d8 5620 bfqq->seek_history |= BFQ_RQ_SEEKY(bfqd, bfqq->last_request_pos, rq);
7074f076
PV
5621
5622 if (bfqq->wr_coeff > 1 &&
5623 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
d1f600fa
PV
5624 BFQQ_TOTALLY_SEEKY(bfqq)) {
5625 if (time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
5626 bfq_wr_duration(bfqd))) {
5627 /*
5628 * In soft_rt weight raising with the
5629 * interactive-weight-raising period
5630 * elapsed (so no switch back to
5631 * interactive weight raising).
5632 */
5633 bfq_bfqq_end_wr(bfqq);
5634 } else { /*
5635 * stopping soft_rt weight raising
5636 * while still in interactive period,
5637 * switch back to interactive weight
5638 * raising
5639 */
5640 switch_back_to_interactive_wr(bfqq, bfqd);
5641 bfqq->entity.prio_changed = 1;
5642 }
5643 }
aee69d78
PV
5644}
5645
d5be3fef
PV
5646static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
5647 struct bfq_queue *bfqq,
5648 struct bfq_io_cq *bic)
aee69d78 5649{
766d6141 5650 bool has_short_ttime = true, state_changed;
aee69d78 5651
d5be3fef
PV
5652 /*
5653 * No need to update has_short_ttime if bfqq is async or in
5654 * idle io prio class, or if bfq_slice_idle is zero, because
5655 * no device idling is performed for bfqq in this case.
5656 */
5657 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
5658 bfqd->bfq_slice_idle == 0)
aee69d78
PV
5659 return;
5660
36eca894
AA
5661 /* Idle window just restored, statistics are meaningless. */
5662 if (time_is_after_eq_jiffies(bfqq->split_time +
5663 bfqd->bfq_wr_min_idle_time))
5664 return;
5665
d5be3fef 5666 /* Think time is infinite if no process is linked to
b5f74eca
PV
5667 * bfqq. Otherwise check average think time to decide whether
5668 * to mark as has_short_ttime. To this goal, compare average
5669 * think time with half the I/O-plugging timeout.
d5be3fef 5670 */
aee69d78 5671 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef 5672 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
b5f74eca 5673 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle>>1))
d5be3fef
PV
5674 has_short_ttime = false;
5675
766d6141 5676 state_changed = has_short_ttime != bfq_bfqq_has_short_ttime(bfqq);
aee69d78 5677
d5be3fef
PV
5678 if (has_short_ttime)
5679 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 5680 else
d5be3fef 5681 bfq_clear_bfqq_has_short_ttime(bfqq);
766d6141
PV
5682
5683 /*
5684 * Until the base value for the total service time gets
5685 * finally computed for bfqq, the inject limit does depend on
5686 * the think-time state (short|long). In particular, the limit
5687 * is 0 or 1 if the think time is deemed, respectively, as
5688 * short or long (details in the comments in
5689 * bfq_update_inject_limit()). Accordingly, the next
5690 * instructions reset the inject limit if the think-time state
5691 * has changed and the above base value is still to be
5692 * computed.
5693 *
5694 * However, the reset is performed only if more than 100 ms
5695 * have elapsed since the last update of the inject limit, or
5696 * (inclusive) if the change is from short to long think
5697 * time. The reason for this waiting is as follows.
5698 *
5699 * bfqq may have a long think time because of a
5700 * synchronization with some other queue, i.e., because the
5701 * I/O of some other queue may need to be completed for bfqq
13a857a4
PV
5702 * to receive new I/O. Details in the comments on the choice
5703 * of the queue for injection in bfq_select_queue().
766d6141 5704 *
13a857a4
PV
5705 * As stressed in those comments, if such a synchronization is
5706 * actually in place, then, without injection on bfqq, the
5707 * blocking I/O cannot happen to served while bfqq is in
5708 * service. As a consequence, if bfqq is granted
5709 * I/O-dispatch-plugging, then bfqq remains empty, and no I/O
5710 * is dispatched, until the idle timeout fires. This is likely
5711 * to result in lower bandwidth and higher latencies for bfqq,
5712 * and in a severe loss of total throughput.
766d6141
PV
5713 *
5714 * On the opposite end, a non-zero inject limit may allow the
5715 * I/O that blocks bfqq to be executed soon, and therefore
13a857a4
PV
5716 * bfqq to receive new I/O soon.
5717 *
5718 * But, if the blocking gets actually eliminated, then the
5719 * next think-time sample for bfqq may be very low. This in
5720 * turn may cause bfqq's think time to be deemed
5721 * short. Without the 100 ms barrier, this new state change
5722 * would cause the body of the next if to be executed
766d6141
PV
5723 * immediately. But this would set to 0 the inject
5724 * limit. Without injection, the blocking I/O would cause the
5725 * think time of bfqq to become long again, and therefore the
5726 * inject limit to be raised again, and so on. The only effect
5727 * of such a steady oscillation between the two think-time
5728 * states would be to prevent effective injection on bfqq.
5729 *
5730 * In contrast, if the inject limit is not reset during such a
5731 * long time interval as 100 ms, then the number of short
5732 * think time samples can grow significantly before the reset
13a857a4
PV
5733 * is performed. As a consequence, the think time state can
5734 * become stable before the reset. Therefore there will be no
5735 * state change when the 100 ms elapse, and no reset of the
5736 * inject limit. The inject limit remains steadily equal to 1
5737 * both during and after the 100 ms. So injection can be
766d6141
PV
5738 * performed at all times, and throughput gets boosted.
5739 *
5740 * An inject limit equal to 1 is however in conflict, in
5741 * general, with the fact that the think time of bfqq is
5742 * short, because injection may be likely to delay bfqq's I/O
5743 * (as explained in the comments in
5744 * bfq_update_inject_limit()). But this does not happen in
5745 * this special case, because bfqq's low think time is due to
5746 * an effective handling of a synchronization, through
5747 * injection. In this special case, bfqq's I/O does not get
5748 * delayed by injection; on the contrary, bfqq's I/O is
5749 * brought forward, because it is not blocked for
5750 * milliseconds.
5751 *
13a857a4
PV
5752 * In addition, serving the blocking I/O much sooner, and much
5753 * more frequently than once per I/O-plugging timeout, makes
5754 * it much quicker to detect a waker queue (the concept of
5755 * waker queue is defined in the comments in
5756 * bfq_add_request()). This makes it possible to start sooner
5757 * to boost throughput more effectively, by injecting the I/O
5758 * of the waker queue unconditionally on every
5759 * bfq_dispatch_request().
5760 *
5761 * One last, important benefit of not resetting the inject
5762 * limit before 100 ms is that, during this time interval, the
5763 * base value for the total service time is likely to get
5764 * finally computed for bfqq, freeing the inject limit from
5765 * its relation with the think time.
766d6141
PV
5766 */
5767 if (state_changed && bfqq->last_serv_time_ns == 0 &&
5768 (time_is_before_eq_jiffies(bfqq->decrease_time_jif +
5769 msecs_to_jiffies(100)) ||
5770 !has_short_ttime))
5771 bfq_reset_inject_limit(bfqd, bfqq);
aee69d78
PV
5772}
5773
5774/*
5775 * Called when a new fs request (rq) is added to bfqq. Check if there's
5776 * something we should do about it.
5777 */
5778static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
5779 struct request *rq)
5780{
aee69d78
PV
5781 if (rq->cmd_flags & REQ_META)
5782 bfqq->meta_pending++;
5783
aee69d78
PV
5784 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
5785
5786 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
5787 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
5788 blk_rq_sectors(rq) < 32;
5789 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
5790
5791 /*
ac8b0cb4
PV
5792 * There is just this request queued: if
5793 * - the request is small, and
5794 * - we are idling to boost throughput, and
5795 * - the queue is not to be expired,
5796 * then just exit.
aee69d78
PV
5797 *
5798 * In this way, if the device is being idled to wait
5799 * for a new request from the in-service queue, we
5800 * avoid unplugging the device and committing the
ac8b0cb4
PV
5801 * device to serve just a small request. In contrast
5802 * we wait for the block layer to decide when to
5803 * unplug the device: hopefully, new requests will be
5804 * merged to this one quickly, then the device will be
5805 * unplugged and larger requests will be dispatched.
aee69d78 5806 */
ac8b0cb4
PV
5807 if (small_req && idling_boosts_thr_without_issues(bfqd, bfqq) &&
5808 !budget_timeout)
aee69d78
PV
5809 return;
5810
5811 /*
ac8b0cb4
PV
5812 * A large enough request arrived, or idling is being
5813 * performed to preserve service guarantees, or
5814 * finally the queue is to be expired: in all these
5815 * cases disk idling is to be stopped, so clear
5816 * wait_request flag and reset timer.
aee69d78
PV
5817 */
5818 bfq_clear_bfqq_wait_request(bfqq);
5819 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
5820
5821 /*
5822 * The queue is not empty, because a new request just
5823 * arrived. Hence we can safely expire the queue, in
5824 * case of budget timeout, without risking that the
5825 * timestamps of the queue are not updated correctly.
5826 * See [1] for more details.
5827 */
5828 if (budget_timeout)
5829 bfq_bfqq_expire(bfqd, bfqq, false,
5830 BFQQE_BUDGET_TIMEOUT);
5831 }
5832}
5833
24bfd19b
PV
5834/* returns true if it causes the idle timer to be disabled */
5835static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
aee69d78 5836{
36eca894 5837 struct bfq_queue *bfqq = RQ_BFQQ(rq),
430a67f9
PV
5838 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true,
5839 RQ_BIC(rq));
24bfd19b 5840 bool waiting, idle_timer_disabled = false;
36eca894
AA
5841
5842 if (new_bfqq) {
36eca894
AA
5843 /*
5844 * Release the request's reference to the old bfqq
5845 * and make sure one is taken to the shared queue.
5846 */
5847 new_bfqq->allocated++;
5848 bfqq->allocated--;
5849 new_bfqq->ref++;
5850 /*
5851 * If the bic associated with the process
5852 * issuing this request still points to bfqq
5853 * (and thus has not been already redirected
5854 * to new_bfqq or even some other bfq_queue),
5855 * then complete the merge and redirect it to
5856 * new_bfqq.
5857 */
5858 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
5859 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
5860 bfqq, new_bfqq);
894df937
PV
5861
5862 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
5863 /*
5864 * rq is about to be enqueued into new_bfqq,
5865 * release rq reference on bfqq
5866 */
5867 bfq_put_queue(bfqq);
5868 rq->elv.priv[1] = new_bfqq;
5869 bfqq = new_bfqq;
5870 }
aee69d78 5871
a3f9bce3
PV
5872 bfq_update_io_thinktime(bfqd, bfqq);
5873 bfq_update_has_short_ttime(bfqd, bfqq, RQ_BIC(rq));
5874 bfq_update_io_seektime(bfqd, bfqq, rq);
5875
24bfd19b 5876 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
aee69d78 5877 bfq_add_request(rq);
24bfd19b 5878 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
aee69d78
PV
5879
5880 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
5881 list_add_tail(&rq->queuelist, &bfqq->fifo);
5882
5883 bfq_rq_enqueued(bfqd, bfqq, rq);
24bfd19b
PV
5884
5885 return idle_timer_disabled;
aee69d78
PV
5886}
5887
8060c47b 5888#ifdef CONFIG_BFQ_CGROUP_DEBUG
9b25bd03
PV
5889static void bfq_update_insert_stats(struct request_queue *q,
5890 struct bfq_queue *bfqq,
5891 bool idle_timer_disabled,
5892 unsigned int cmd_flags)
5893{
5894 if (!bfqq)
5895 return;
5896
5897 /*
5898 * bfqq still exists, because it can disappear only after
5899 * either it is merged with another queue, or the process it
5900 * is associated with exits. But both actions must be taken by
5901 * the same process currently executing this flow of
5902 * instructions.
5903 *
5904 * In addition, the following queue lock guarantees that
5905 * bfqq_group(bfqq) exists as well.
5906 */
0d945c1f 5907 spin_lock_irq(&q->queue_lock);
9b25bd03
PV
5908 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
5909 if (idle_timer_disabled)
5910 bfqg_stats_update_idle_time(bfqq_group(bfqq));
0d945c1f 5911 spin_unlock_irq(&q->queue_lock);
9b25bd03
PV
5912}
5913#else
5914static inline void bfq_update_insert_stats(struct request_queue *q,
5915 struct bfq_queue *bfqq,
5916 bool idle_timer_disabled,
5917 unsigned int cmd_flags) {}
8060c47b 5918#endif /* CONFIG_BFQ_CGROUP_DEBUG */
9b25bd03 5919
aee69d78
PV
5920static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
5921 bool at_head)
5922{
5923 struct request_queue *q = hctx->queue;
5924 struct bfq_data *bfqd = q->elevator->elevator_data;
18e5a57d 5925 struct bfq_queue *bfqq;
24bfd19b
PV
5926 bool idle_timer_disabled = false;
5927 unsigned int cmd_flags;
aee69d78 5928
fd41e603
TH
5929#ifdef CONFIG_BFQ_GROUP_IOSCHED
5930 if (!cgroup_subsys_on_dfl(io_cgrp_subsys) && rq->bio)
5931 bfqg_stats_update_legacy_io(q, rq);
5932#endif
aee69d78
PV
5933 spin_lock_irq(&bfqd->lock);
5934 if (blk_mq_sched_try_insert_merge(q, rq)) {
5935 spin_unlock_irq(&bfqd->lock);
5936 return;
5937 }
5938
5939 spin_unlock_irq(&bfqd->lock);
5940
b357e4a6 5941 trace_block_rq_insert(rq);
aee69d78
PV
5942
5943 spin_lock_irq(&bfqd->lock);
18e5a57d 5944 bfqq = bfq_init_rq(rq);
7cc4ffc5
PV
5945
5946 /*
5947 * Reqs with at_head or passthrough flags set are to be put
5948 * directly into dispatch list. Additional case for putting rq
5949 * directly into the dispatch queue: the only active
5950 * bfq_queues are bfqq and either its waker bfq_queue or one
5951 * of its woken bfq_queues. The rationale behind this
5952 * additional condition is as follows:
5953 * - consider a bfq_queue, say Q1, detected as a waker of
5954 * another bfq_queue, say Q2
5955 * - by definition of a waker, Q1 blocks the I/O of Q2, i.e.,
5956 * some I/O of Q1 needs to be completed for new I/O of Q2
5957 * to arrive. A notable example of waker is journald
5958 * - so, Q1 and Q2 are in any respect the queues of two
5959 * cooperating processes (or of two cooperating sets of
5960 * processes): the goal of Q1's I/O is doing what needs to
5961 * be done so that new Q2's I/O can finally be
5962 * issued. Therefore, if the service of Q1's I/O is delayed,
5963 * then Q2's I/O is delayed too. Conversely, if Q2's I/O is
5964 * delayed, the goal of Q1's I/O is hindered.
5965 * - as a consequence, if some I/O of Q1/Q2 arrives while
5966 * Q2/Q1 is the only queue in service, there is absolutely
5967 * no point in delaying the service of such an I/O. The
5968 * only possible result is a throughput loss
5969 * - so, when the above condition holds, the best option is to
5970 * have the new I/O dispatched as soon as possible
5971 * - the most effective and efficient way to attain the above
5972 * goal is to put the new I/O directly in the dispatch
5973 * list
5974 * - as an additional restriction, Q1 and Q2 must be the only
5975 * busy queues for this commit to put the I/O of Q2/Q1 in
5976 * the dispatch list. This is necessary, because, if also
5977 * other queues are waiting for service, then putting new
5978 * I/O directly in the dispatch list may evidently cause a
5979 * violation of service guarantees for the other queues
5980 */
5981 if (!bfqq ||
5982 (bfqq != bfqd->in_service_queue &&
5983 bfqd->in_service_queue != NULL &&
5984 bfq_tot_busy_queues(bfqd) == 1 + bfq_bfqq_busy(bfqq) &&
5985 (bfqq->waker_bfqq == bfqd->in_service_queue ||
7687b38a 5986 bfqd->in_service_queue->waker_bfqq == bfqq)) || at_head) {
aee69d78
PV
5987 if (at_head)
5988 list_add(&rq->queuelist, &bfqd->dispatch);
5989 else
5990 list_add_tail(&rq->queuelist, &bfqd->dispatch);
fd03177c 5991 } else {
24bfd19b 5992 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
614822f8
LM
5993 /*
5994 * Update bfqq, because, if a queue merge has occurred
5995 * in __bfq_insert_request, then rq has been
5996 * redirected into a new queue.
5997 */
5998 bfqq = RQ_BFQQ(rq);
aee69d78
PV
5999
6000 if (rq_mergeable(rq)) {
6001 elv_rqhash_add(q, rq);
6002 if (!q->last_merge)
6003 q->last_merge = rq;
6004 }
6005 }
6006
24bfd19b
PV
6007 /*
6008 * Cache cmd_flags before releasing scheduler lock, because rq
6009 * may disappear afterwards (for example, because of a request
6010 * merge).
6011 */
6012 cmd_flags = rq->cmd_flags;
9b25bd03 6013
6fa3e8d3 6014 spin_unlock_irq(&bfqd->lock);
24bfd19b 6015
9b25bd03
PV
6016 bfq_update_insert_stats(q, bfqq, idle_timer_disabled,
6017 cmd_flags);
aee69d78
PV
6018}
6019
6020static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
6021 struct list_head *list, bool at_head)
6022{
6023 while (!list_empty(list)) {
6024 struct request *rq;
6025
6026 rq = list_first_entry(list, struct request, queuelist);
6027 list_del_init(&rq->queuelist);
6028 bfq_insert_request(hctx, rq, at_head);
6029 }
6030}
6031
6032static void bfq_update_hw_tag(struct bfq_data *bfqd)
6033{
b3c34981
PV
6034 struct bfq_queue *bfqq = bfqd->in_service_queue;
6035
aee69d78
PV
6036 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
6037 bfqd->rq_in_driver);
6038
6039 if (bfqd->hw_tag == 1)
6040 return;
6041
6042 /*
6043 * This sample is valid if the number of outstanding requests
6044 * is large enough to allow a queueing behavior. Note that the
6045 * sum is not exact, as it's not taking into account deactivated
6046 * requests.
6047 */
a3c92560 6048 if (bfqd->rq_in_driver + bfqd->queued <= BFQ_HW_QUEUE_THRESHOLD)
aee69d78
PV
6049 return;
6050
b3c34981
PV
6051 /*
6052 * If active queue hasn't enough requests and can idle, bfq might not
6053 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
6054 * case
6055 */
6056 if (bfqq && bfq_bfqq_has_short_ttime(bfqq) &&
6057 bfqq->dispatched + bfqq->queued[0] + bfqq->queued[1] <
6058 BFQ_HW_QUEUE_THRESHOLD &&
6059 bfqd->rq_in_driver < BFQ_HW_QUEUE_THRESHOLD)
6060 return;
6061
aee69d78
PV
6062 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
6063 return;
6064
6065 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
6066 bfqd->max_rq_in_driver = 0;
6067 bfqd->hw_tag_samples = 0;
8cacc5ab
PV
6068
6069 bfqd->nonrot_with_queueing =
6070 blk_queue_nonrot(bfqd->queue) && bfqd->hw_tag;
aee69d78
PV
6071}
6072
6073static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
6074{
ab0e43e9
PV
6075 u64 now_ns;
6076 u32 delta_us;
6077
aee69d78
PV
6078 bfq_update_hw_tag(bfqd);
6079
6080 bfqd->rq_in_driver--;
6081 bfqq->dispatched--;
6082
44e44a1b
PV
6083 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
6084 /*
6085 * Set budget_timeout (which we overload to store the
6086 * time at which the queue remains with no backlog and
6087 * no outstanding request; used by the weight-raising
6088 * mechanism).
6089 */
6090 bfqq->budget_timeout = jiffies;
1de0c4cd 6091
0471559c 6092 bfq_weights_tree_remove(bfqd, bfqq);
44e44a1b
PV
6093 }
6094
ab0e43e9
PV
6095 now_ns = ktime_get_ns();
6096
6097 bfqq->ttime.last_end_request = now_ns;
6098
6099 /*
6100 * Using us instead of ns, to get a reasonable precision in
6101 * computing rate in next check.
6102 */
6103 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
6104
6105 /*
6106 * If the request took rather long to complete, and, according
6107 * to the maximum request size recorded, this completion latency
6108 * implies that the request was certainly served at a very low
6109 * rate (less than 1M sectors/sec), then the whole observation
6110 * interval that lasts up to this time instant cannot be a
6111 * valid time interval for computing a new peak rate. Invoke
6112 * bfq_update_rate_reset to have the following three steps
6113 * taken:
6114 * - close the observation interval at the last (previous)
6115 * request dispatch or completion
6116 * - compute rate, if possible, for that observation interval
6117 * - reset to zero samples, which will trigger a proper
6118 * re-initialization of the observation interval on next
6119 * dispatch
6120 */
6121 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
6122 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
6123 1UL<<(BFQ_RATE_SHIFT - 10))
6124 bfq_update_rate_reset(bfqd, NULL);
6125 bfqd->last_completion = now_ns;
85686d0d
PV
6126 /*
6127 * Shared queues are likely to receive I/O at a high
6128 * rate. This may deceptively let them be considered as wakers
6129 * of other queues. But a false waker will unjustly steal
6130 * bandwidth to its supposedly woken queue. So considering
6131 * also shared queues in the waking mechanism may cause more
6132 * control troubles than throughput benefits. Then do not set
6133 * last_completed_rq_bfqq to bfqq if bfqq is a shared queue.
6134 */
6135 if (!bfq_bfqq_coop(bfqq))
6136 bfqd->last_completed_rq_bfqq = bfqq;
aee69d78 6137
77b7dcea
PV
6138 /*
6139 * If we are waiting to discover whether the request pattern
6140 * of the task associated with the queue is actually
6141 * isochronous, and both requisites for this condition to hold
6142 * are now satisfied, then compute soft_rt_next_start (see the
6143 * comments on the function bfq_bfqq_softrt_next_start()). We
20cd3245
PV
6144 * do not compute soft_rt_next_start if bfqq is in interactive
6145 * weight raising (see the comments in bfq_bfqq_expire() for
6146 * an explanation). We schedule this delayed update when bfqq
6147 * expires, if it still has in-flight requests.
77b7dcea
PV
6148 */
6149 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
20cd3245
PV
6150 RB_EMPTY_ROOT(&bfqq->sort_list) &&
6151 bfqq->wr_coeff != bfqd->bfq_wr_coeff)
77b7dcea
PV
6152 bfqq->soft_rt_next_start =
6153 bfq_bfqq_softrt_next_start(bfqd, bfqq);
6154
aee69d78
PV
6155 /*
6156 * If this is the in-service queue, check if it needs to be expired,
6157 * or if we want to idle in case it has no pending requests.
6158 */
6159 if (bfqd->in_service_queue == bfqq) {
4420b095
PV
6160 if (bfq_bfqq_must_idle(bfqq)) {
6161 if (bfqq->dispatched == 0)
6162 bfq_arm_slice_timer(bfqd);
6163 /*
6164 * If we get here, we do not expire bfqq, even
6165 * if bfqq was in budget timeout or had no
6166 * more requests (as controlled in the next
6167 * conditional instructions). The reason for
6168 * not expiring bfqq is as follows.
6169 *
6170 * Here bfqq->dispatched > 0 holds, but
6171 * bfq_bfqq_must_idle() returned true. This
6172 * implies that, even if no request arrives
6173 * for bfqq before bfqq->dispatched reaches 0,
6174 * bfqq will, however, not be expired on the
6175 * completion event that causes bfqq->dispatch
6176 * to reach zero. In contrast, on this event,
6177 * bfqq will start enjoying device idling
6178 * (I/O-dispatch plugging).
6179 *
6180 * But, if we expired bfqq here, bfqq would
6181 * not have the chance to enjoy device idling
6182 * when bfqq->dispatched finally reaches
6183 * zero. This would expose bfqq to violation
6184 * of its reserved service guarantees.
6185 */
aee69d78
PV
6186 return;
6187 } else if (bfq_may_expire_for_budg_timeout(bfqq))
6188 bfq_bfqq_expire(bfqd, bfqq, false,
6189 BFQQE_BUDGET_TIMEOUT);
6190 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
6191 (bfqq->dispatched == 0 ||
277a4a9b 6192 !bfq_better_to_idle(bfqq)))
aee69d78
PV
6193 bfq_bfqq_expire(bfqd, bfqq, false,
6194 BFQQE_NO_MORE_REQUESTS);
6195 }
3f7cb4f4
HT
6196
6197 if (!bfqd->rq_in_driver)
6198 bfq_schedule_dispatch(bfqd);
aee69d78
PV
6199}
6200
a7877390 6201static void bfq_finish_requeue_request_body(struct bfq_queue *bfqq)
aee69d78
PV
6202{
6203 bfqq->allocated--;
6204
6205 bfq_put_queue(bfqq);
6206}
6207
2341d662
PV
6208/*
6209 * The processes associated with bfqq may happen to generate their
6210 * cumulative I/O at a lower rate than the rate at which the device
6211 * could serve the same I/O. This is rather probable, e.g., if only
6212 * one process is associated with bfqq and the device is an SSD. It
6213 * results in bfqq becoming often empty while in service. In this
6214 * respect, if BFQ is allowed to switch to another queue when bfqq
6215 * remains empty, then the device goes on being fed with I/O requests,
6216 * and the throughput is not affected. In contrast, if BFQ is not
6217 * allowed to switch to another queue---because bfqq is sync and
6218 * I/O-dispatch needs to be plugged while bfqq is temporarily
6219 * empty---then, during the service of bfqq, there will be frequent
6220 * "service holes", i.e., time intervals during which bfqq gets empty
6221 * and the device can only consume the I/O already queued in its
6222 * hardware queues. During service holes, the device may even get to
6223 * remaining idle. In the end, during the service of bfqq, the device
6224 * is driven at a lower speed than the one it can reach with the kind
6225 * of I/O flowing through bfqq.
6226 *
6227 * To counter this loss of throughput, BFQ implements a "request
6228 * injection mechanism", which tries to fill the above service holes
6229 * with I/O requests taken from other queues. The hard part in this
6230 * mechanism is finding the right amount of I/O to inject, so as to
6231 * both boost throughput and not break bfqq's bandwidth and latency
6232 * guarantees. In this respect, the mechanism maintains a per-queue
6233 * inject limit, computed as below. While bfqq is empty, the injection
6234 * mechanism dispatches extra I/O requests only until the total number
6235 * of I/O requests in flight---i.e., already dispatched but not yet
6236 * completed---remains lower than this limit.
6237 *
6238 * A first definition comes in handy to introduce the algorithm by
6239 * which the inject limit is computed. We define as first request for
6240 * bfqq, an I/O request for bfqq that arrives while bfqq is in
6241 * service, and causes bfqq to switch from empty to non-empty. The
6242 * algorithm updates the limit as a function of the effect of
6243 * injection on the service times of only the first requests of
6244 * bfqq. The reason for this restriction is that these are the
6245 * requests whose service time is affected most, because they are the
6246 * first to arrive after injection possibly occurred.
6247 *
6248 * To evaluate the effect of injection, the algorithm measures the
6249 * "total service time" of first requests. We define as total service
6250 * time of an I/O request, the time that elapses since when the
6251 * request is enqueued into bfqq, to when it is completed. This
6252 * quantity allows the whole effect of injection to be measured. It is
6253 * easy to see why. Suppose that some requests of other queues are
6254 * actually injected while bfqq is empty, and that a new request R
6255 * then arrives for bfqq. If the device does start to serve all or
6256 * part of the injected requests during the service hole, then,
6257 * because of this extra service, it may delay the next invocation of
6258 * the dispatch hook of BFQ. Then, even after R gets eventually
6259 * dispatched, the device may delay the actual service of R if it is
6260 * still busy serving the extra requests, or if it decides to serve,
6261 * before R, some extra request still present in its queues. As a
6262 * conclusion, the cumulative extra delay caused by injection can be
6263 * easily evaluated by just comparing the total service time of first
6264 * requests with and without injection.
6265 *
6266 * The limit-update algorithm works as follows. On the arrival of a
6267 * first request of bfqq, the algorithm measures the total time of the
6268 * request only if one of the three cases below holds, and, for each
6269 * case, it updates the limit as described below:
6270 *
6271 * (1) If there is no in-flight request. This gives a baseline for the
6272 * total service time of the requests of bfqq. If the baseline has
6273 * not been computed yet, then, after computing it, the limit is
6274 * set to 1, to start boosting throughput, and to prepare the
6275 * ground for the next case. If the baseline has already been
6276 * computed, then it is updated, in case it results to be lower
6277 * than the previous value.
6278 *
6279 * (2) If the limit is higher than 0 and there are in-flight
6280 * requests. By comparing the total service time in this case with
6281 * the above baseline, it is possible to know at which extent the
6282 * current value of the limit is inflating the total service
6283 * time. If the inflation is below a certain threshold, then bfqq
6284 * is assumed to be suffering from no perceivable loss of its
6285 * service guarantees, and the limit is even tentatively
6286 * increased. If the inflation is above the threshold, then the
6287 * limit is decreased. Due to the lack of any hysteresis, this
6288 * logic makes the limit oscillate even in steady workload
6289 * conditions. Yet we opted for it, because it is fast in reaching
6290 * the best value for the limit, as a function of the current I/O
6291 * workload. To reduce oscillations, this step is disabled for a
6292 * short time interval after the limit happens to be decreased.
6293 *
6294 * (3) Periodically, after resetting the limit, to make sure that the
6295 * limit eventually drops in case the workload changes. This is
6296 * needed because, after the limit has gone safely up for a
6297 * certain workload, it is impossible to guess whether the
6298 * baseline total service time may have changed, without measuring
6299 * it again without injection. A more effective version of this
6300 * step might be to just sample the baseline, by interrupting
6301 * injection only once, and then to reset/lower the limit only if
6302 * the total service time with the current limit does happen to be
6303 * too large.
6304 *
6305 * More details on each step are provided in the comments on the
6306 * pieces of code that implement these steps: the branch handling the
6307 * transition from empty to non empty in bfq_add_request(), the branch
6308 * handling injection in bfq_select_queue(), and the function
6309 * bfq_choose_bfqq_for_injection(). These comments also explain some
6310 * exceptions, made by the injection mechanism in some special cases.
6311 */
6312static void bfq_update_inject_limit(struct bfq_data *bfqd,
6313 struct bfq_queue *bfqq)
6314{
6315 u64 tot_time_ns = ktime_get_ns() - bfqd->last_empty_occupied_ns;
6316 unsigned int old_limit = bfqq->inject_limit;
6317
23ed570a 6318 if (bfqq->last_serv_time_ns > 0 && bfqd->rqs_injected) {
2341d662
PV
6319 u64 threshold = (bfqq->last_serv_time_ns * 3)>>1;
6320
6321 if (tot_time_ns >= threshold && old_limit > 0) {
6322 bfqq->inject_limit--;
6323 bfqq->decrease_time_jif = jiffies;
6324 } else if (tot_time_ns < threshold &&
c1e0a182 6325 old_limit <= bfqd->max_rq_in_driver)
2341d662
PV
6326 bfqq->inject_limit++;
6327 }
6328
6329 /*
6330 * Either we still have to compute the base value for the
6331 * total service time, and there seem to be the right
6332 * conditions to do it, or we can lower the last base value
6333 * computed.
db599f9e
PV
6334 *
6335 * NOTE: (bfqd->rq_in_driver == 1) means that there is no I/O
6336 * request in flight, because this function is in the code
6337 * path that handles the completion of a request of bfqq, and,
6338 * in particular, this function is executed before
6339 * bfqd->rq_in_driver is decremented in such a code path.
2341d662 6340 */
db599f9e 6341 if ((bfqq->last_serv_time_ns == 0 && bfqd->rq_in_driver == 1) ||
2341d662 6342 tot_time_ns < bfqq->last_serv_time_ns) {
58494c98
PV
6343 if (bfqq->last_serv_time_ns == 0) {
6344 /*
6345 * Now we certainly have a base value: make sure we
6346 * start trying injection.
6347 */
6348 bfqq->inject_limit = max_t(unsigned int, 1, old_limit);
6349 }
2341d662 6350 bfqq->last_serv_time_ns = tot_time_ns;
24792ad0
PV
6351 } else if (!bfqd->rqs_injected && bfqd->rq_in_driver == 1)
6352 /*
6353 * No I/O injected and no request still in service in
6354 * the drive: these are the exact conditions for
6355 * computing the base value of the total service time
6356 * for bfqq. So let's update this value, because it is
6357 * rather variable. For example, it varies if the size
6358 * or the spatial locality of the I/O requests in bfqq
6359 * change.
6360 */
6361 bfqq->last_serv_time_ns = tot_time_ns;
6362
2341d662
PV
6363
6364 /* update complete, not waiting for any request completion any longer */
6365 bfqd->waited_rq = NULL;
23ed570a 6366 bfqd->rqs_injected = false;
2341d662
PV
6367}
6368
a7877390
PV
6369/*
6370 * Handle either a requeue or a finish for rq. The things to do are
6371 * the same in both cases: all references to rq are to be dropped. In
6372 * particular, rq is considered completed from the point of view of
6373 * the scheduler.
6374 */
6375static void bfq_finish_requeue_request(struct request *rq)
aee69d78 6376{
a7877390 6377 struct bfq_queue *bfqq = RQ_BFQQ(rq);
5bbf4e5a
CH
6378 struct bfq_data *bfqd;
6379
a7877390
PV
6380 /*
6381 * rq either is not associated with any icq, or is an already
6382 * requeued request that has not (yet) been re-inserted into
6383 * a bfq_queue.
6384 */
6385 if (!rq->elv.icq || !bfqq)
5bbf4e5a
CH
6386 return;
6387
5bbf4e5a 6388 bfqd = bfqq->bfqd;
aee69d78 6389
e21b7a0b
AA
6390 if (rq->rq_flags & RQF_STARTED)
6391 bfqg_stats_update_completion(bfqq_group(bfqq),
522a7775
OS
6392 rq->start_time_ns,
6393 rq->io_start_time_ns,
e21b7a0b 6394 rq->cmd_flags);
aee69d78
PV
6395
6396 if (likely(rq->rq_flags & RQF_STARTED)) {
6397 unsigned long flags;
6398
6399 spin_lock_irqsave(&bfqd->lock, flags);
6400
2341d662
PV
6401 if (rq == bfqd->waited_rq)
6402 bfq_update_inject_limit(bfqd, bfqq);
6403
aee69d78 6404 bfq_completed_request(bfqq, bfqd);
a7877390 6405 bfq_finish_requeue_request_body(bfqq);
aee69d78 6406
6fa3e8d3 6407 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
6408 } else {
6409 /*
6410 * Request rq may be still/already in the scheduler,
a7877390
PV
6411 * in which case we need to remove it (this should
6412 * never happen in case of requeue). And we cannot
aee69d78
PV
6413 * defer such a check and removal, to avoid
6414 * inconsistencies in the time interval from the end
6415 * of this function to the start of the deferred work.
6416 * This situation seems to occur only in process
6417 * context, as a consequence of a merge. In the
6418 * current version of the code, this implies that the
6419 * lock is held.
6420 */
6421
614822f8 6422 if (!RB_EMPTY_NODE(&rq->rb_node)) {
7b9e9361 6423 bfq_remove_request(rq->q, rq);
614822f8
LM
6424 bfqg_stats_update_io_remove(bfqq_group(bfqq),
6425 rq->cmd_flags);
6426 }
a7877390 6427 bfq_finish_requeue_request_body(bfqq);
aee69d78
PV
6428 }
6429
a7877390
PV
6430 /*
6431 * Reset private fields. In case of a requeue, this allows
6432 * this function to correctly do nothing if it is spuriously
6433 * invoked again on this same request (see the check at the
6434 * beginning of the function). Probably, a better general
6435 * design would be to prevent blk-mq from invoking the requeue
6436 * or finish hooks of an elevator, for a request that is not
6437 * referred by that elevator.
6438 *
6439 * Resetting the following fields would break the
6440 * request-insertion logic if rq is re-inserted into a bfq
6441 * internal queue, without a re-preparation. Here we assume
6442 * that re-insertions of requeued requests, without
6443 * re-preparation, can happen only for pass_through or at_head
6444 * requests (which are not re-inserted into bfq internal
6445 * queues).
6446 */
aee69d78
PV
6447 rq->elv.priv[0] = NULL;
6448 rq->elv.priv[1] = NULL;
6449}
6450
36eca894 6451/*
c92bddee
PV
6452 * Removes the association between the current task and bfqq, assuming
6453 * that bic points to the bfq iocontext of the task.
36eca894
AA
6454 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
6455 * was the last process referring to that bfqq.
6456 */
6457static struct bfq_queue *
6458bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
6459{
6460 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
6461
6462 if (bfqq_process_refs(bfqq) == 1) {
6463 bfqq->pid = current->pid;
6464 bfq_clear_bfqq_coop(bfqq);
6465 bfq_clear_bfqq_split_coop(bfqq);
6466 return bfqq;
6467 }
6468
6469 bic_set_bfqq(bic, NULL, 1);
6470
6471 bfq_put_cooperator(bfqq);
6472
478de338 6473 bfq_release_process_ref(bfqq->bfqd, bfqq);
36eca894
AA
6474 return NULL;
6475}
6476
6477static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
6478 struct bfq_io_cq *bic,
6479 struct bio *bio,
6480 bool split, bool is_sync,
6481 bool *new_queue)
6482{
6483 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
6484
6485 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
6486 return bfqq;
6487
6488 if (new_queue)
6489 *new_queue = true;
6490
6491 if (bfqq)
6492 bfq_put_queue(bfqq);
430a67f9 6493 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic, split);
36eca894
AA
6494
6495 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
6496 if (split && is_sync) {
6497 if ((bic->was_in_burst_list && bfqd->large_burst) ||
6498 bic->saved_in_large_burst)
6499 bfq_mark_bfqq_in_large_burst(bfqq);
6500 else {
6501 bfq_clear_bfqq_in_large_burst(bfqq);
6502 if (bic->was_in_burst_list)
99fead8d
PV
6503 /*
6504 * If bfqq was in the current
6505 * burst list before being
6506 * merged, then we have to add
6507 * it back. And we do not need
6508 * to increase burst_size, as
6509 * we did not decrement
6510 * burst_size when we removed
6511 * bfqq from the burst list as
6512 * a consequence of a merge
6513 * (see comments in
6514 * bfq_put_queue). In this
6515 * respect, it would be rather
6516 * costly to know whether the
6517 * current burst list is still
6518 * the same burst list from
6519 * which bfqq was removed on
6520 * the merge. To avoid this
6521 * cost, if bfqq was in a
6522 * burst list, then we add
6523 * bfqq to the current burst
6524 * list without any further
6525 * check. This can cause
6526 * inappropriate insertions,
6527 * but rarely enough to not
6528 * harm the detection of large
6529 * bursts significantly.
6530 */
e1b2324d
AA
6531 hlist_add_head(&bfqq->burst_list_node,
6532 &bfqd->burst_list);
6533 }
36eca894 6534 bfqq->split_time = jiffies;
e1b2324d 6535 }
36eca894
AA
6536
6537 return bfqq;
6538}
6539
aee69d78 6540/*
18e5a57d
PV
6541 * Only reset private fields. The actual request preparation will be
6542 * performed by bfq_init_rq, when rq is either inserted or merged. See
6543 * comments on bfq_init_rq for the reason behind this delayed
6544 * preparation.
aee69d78 6545 */
5d9c305b 6546static void bfq_prepare_request(struct request *rq)
18e5a57d
PV
6547{
6548 /*
6549 * Regardless of whether we have an icq attached, we have to
6550 * clear the scheduler pointers, as they might point to
6551 * previously allocated bic/bfqq structs.
6552 */
6553 rq->elv.priv[0] = rq->elv.priv[1] = NULL;
6554}
6555
6556/*
6557 * If needed, init rq, allocate bfq data structures associated with
6558 * rq, and increment reference counters in the destination bfq_queue
6559 * for rq. Return the destination bfq_queue for rq, or NULL is rq is
6560 * not associated with any bfq_queue.
6561 *
6562 * This function is invoked by the functions that perform rq insertion
6563 * or merging. One may have expected the above preparation operations
6564 * to be performed in bfq_prepare_request, and not delayed to when rq
6565 * is inserted or merged. The rationale behind this delayed
6566 * preparation is that, after the prepare_request hook is invoked for
6567 * rq, rq may still be transformed into a request with no icq, i.e., a
6568 * request not associated with any queue. No bfq hook is invoked to
636b8fe8 6569 * signal this transformation. As a consequence, should these
18e5a57d
PV
6570 * preparation operations be performed when the prepare_request hook
6571 * is invoked, and should rq be transformed one moment later, bfq
6572 * would end up in an inconsistent state, because it would have
6573 * incremented some queue counters for an rq destined to
6574 * transformation, without any chance to correctly lower these
6575 * counters back. In contrast, no transformation can still happen for
6576 * rq after rq has been inserted or merged. So, it is safe to execute
6577 * these preparation operations when rq is finally inserted or merged.
6578 */
6579static struct bfq_queue *bfq_init_rq(struct request *rq)
aee69d78 6580{
5bbf4e5a 6581 struct request_queue *q = rq->q;
18e5a57d 6582 struct bio *bio = rq->bio;
aee69d78 6583 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 6584 struct bfq_io_cq *bic;
aee69d78
PV
6585 const int is_sync = rq_is_sync(rq);
6586 struct bfq_queue *bfqq;
36eca894 6587 bool new_queue = false;
13c931bd 6588 bool bfqq_already_existing = false, split = false;
aee69d78 6589
18e5a57d
PV
6590 if (unlikely(!rq->elv.icq))
6591 return NULL;
6592
72961c4e 6593 /*
18e5a57d
PV
6594 * Assuming that elv.priv[1] is set only if everything is set
6595 * for this rq. This holds true, because this function is
6596 * invoked only for insertion or merging, and, after such
6597 * events, a request cannot be manipulated any longer before
6598 * being removed from bfq.
72961c4e 6599 */
18e5a57d
PV
6600 if (rq->elv.priv[1])
6601 return rq->elv.priv[1];
72961c4e 6602
9f210738 6603 bic = icq_to_bic(rq->elv.icq);
aee69d78 6604
8c9ff1ad
CIK
6605 bfq_check_ioprio_change(bic, bio);
6606
e21b7a0b
AA
6607 bfq_bic_update_cgroup(bic, bio);
6608
36eca894
AA
6609 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
6610 &new_queue);
6611
6612 if (likely(!new_queue)) {
6613 /* If the queue was seeky for too long, break it apart. */
430a67f9
PV
6614 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq) &&
6615 !bic->stably_merged) {
8ef3fc3a 6616 struct bfq_queue *old_bfqq = bfqq;
e1b2324d
AA
6617
6618 /* Update bic before losing reference to bfqq */
6619 if (bfq_bfqq_in_large_burst(bfqq))
6620 bic->saved_in_large_burst = true;
6621
36eca894 6622 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 6623 split = true;
36eca894 6624
8ef3fc3a 6625 if (!bfqq) {
36eca894
AA
6626 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
6627 true, is_sync,
6628 NULL);
8ef3fc3a
PV
6629 bfqq->waker_bfqq = old_bfqq->waker_bfqq;
6630 bfqq->tentative_waker_bfqq = NULL;
6631
6632 /*
6633 * If the waker queue disappears, then
6634 * new_bfqq->waker_bfqq must be
6635 * reset. So insert new_bfqq into the
6636 * woken_list of the waker. See
6637 * bfq_check_waker for details.
6638 */
6639 if (bfqq->waker_bfqq)
6640 hlist_add_head(&bfqq->woken_list_node,
6641 &bfqq->waker_bfqq->woken_list);
6642 } else
13c931bd 6643 bfqq_already_existing = true;
36eca894 6644 }
aee69d78
PV
6645 }
6646
6647 bfqq->allocated++;
6648 bfqq->ref++;
6649 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
6650 rq, bfqq, bfqq->ref);
6651
6652 rq->elv.priv[0] = bic;
6653 rq->elv.priv[1] = bfqq;
6654
36eca894
AA
6655 /*
6656 * If a bfq_queue has only one process reference, it is owned
6657 * by only this bic: we can then set bfqq->bic = bic. in
6658 * addition, if the queue has also just been split, we have to
6659 * resume its state.
6660 */
6661 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
6662 bfqq->bic = bic;
6fa3e8d3 6663 if (split) {
36eca894
AA
6664 /*
6665 * The queue has just been split from a shared
6666 * queue: restore the idle window and the
6667 * possible weight raising period.
6668 */
13c931bd
PV
6669 bfq_bfqq_resume_state(bfqq, bfqd, bic,
6670 bfqq_already_existing);
36eca894
AA
6671 }
6672 }
6673
84a74689
PV
6674 /*
6675 * Consider bfqq as possibly belonging to a burst of newly
6676 * created queues only if:
6677 * 1) A burst is actually happening (bfqd->burst_size > 0)
6678 * or
6679 * 2) There is no other active queue. In fact, if, in
6680 * contrast, there are active queues not belonging to the
6681 * possible burst bfqq may belong to, then there is no gain
6682 * in considering bfqq as belonging to a burst, and
6683 * therefore in not weight-raising bfqq. See comments on
6684 * bfq_handle_burst().
6685 *
6686 * This filtering also helps eliminating false positives,
6687 * occurring when bfqq does not belong to an actual large
6688 * burst, but some background task (e.g., a service) happens
6689 * to trigger the creation of new queues very close to when
6690 * bfqq and its possible companion queues are created. See
6691 * comments on bfq_handle_burst() for further details also on
6692 * this issue.
6693 */
6694 if (unlikely(bfq_bfqq_just_created(bfqq) &&
6695 (bfqd->burst_size > 0 ||
6696 bfq_tot_busy_queues(bfqd) == 0)))
e1b2324d
AA
6697 bfq_handle_burst(bfqd, bfqq);
6698
18e5a57d 6699 return bfqq;
aee69d78
PV
6700}
6701
2f95fa5c
ZL
6702static void
6703bfq_idle_slice_timer_body(struct bfq_data *bfqd, struct bfq_queue *bfqq)
aee69d78 6704{
aee69d78
PV
6705 enum bfqq_expiration reason;
6706 unsigned long flags;
6707
6708 spin_lock_irqsave(&bfqd->lock, flags);
aee69d78 6709
2f95fa5c
ZL
6710 /*
6711 * Considering that bfqq may be in race, we should firstly check
6712 * whether bfqq is in service before doing something on it. If
6713 * the bfqq in race is not in service, it has already been expired
6714 * through __bfq_bfqq_expire func and its wait_request flags has
6715 * been cleared in __bfq_bfqd_reset_in_service func.
6716 */
aee69d78
PV
6717 if (bfqq != bfqd->in_service_queue) {
6718 spin_unlock_irqrestore(&bfqd->lock, flags);
6719 return;
6720 }
6721
2f95fa5c
ZL
6722 bfq_clear_bfqq_wait_request(bfqq);
6723
aee69d78
PV
6724 if (bfq_bfqq_budget_timeout(bfqq))
6725 /*
6726 * Also here the queue can be safely expired
6727 * for budget timeout without wasting
6728 * guarantees
6729 */
6730 reason = BFQQE_BUDGET_TIMEOUT;
6731 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
6732 /*
6733 * The queue may not be empty upon timer expiration,
6734 * because we may not disable the timer when the
6735 * first request of the in-service queue arrives
6736 * during disk idling.
6737 */
6738 reason = BFQQE_TOO_IDLE;
6739 else
6740 goto schedule_dispatch;
6741
6742 bfq_bfqq_expire(bfqd, bfqq, true, reason);
6743
6744schedule_dispatch:
6fa3e8d3 6745 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
6746 bfq_schedule_dispatch(bfqd);
6747}
6748
6749/*
6750 * Handler of the expiration of the timer running if the in-service queue
6751 * is idling inside its time slice.
6752 */
6753static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
6754{
6755 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
6756 idle_slice_timer);
6757 struct bfq_queue *bfqq = bfqd->in_service_queue;
6758
6759 /*
6760 * Theoretical race here: the in-service queue can be NULL or
6761 * different from the queue that was idling if a new request
6762 * arrives for the current queue and there is a full dispatch
6763 * cycle that changes the in-service queue. This can hardly
6764 * happen, but in the worst case we just expire a queue too
6765 * early.
6766 */
6767 if (bfqq)
2f95fa5c 6768 bfq_idle_slice_timer_body(bfqd, bfqq);
aee69d78
PV
6769
6770 return HRTIMER_NORESTART;
6771}
6772
6773static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
6774 struct bfq_queue **bfqq_ptr)
6775{
6776 struct bfq_queue *bfqq = *bfqq_ptr;
6777
6778 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
6779 if (bfqq) {
e21b7a0b
AA
6780 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
6781
aee69d78
PV
6782 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
6783 bfqq, bfqq->ref);
6784 bfq_put_queue(bfqq);
6785 *bfqq_ptr = NULL;
6786 }
6787}
6788
6789/*
e21b7a0b
AA
6790 * Release all the bfqg references to its async queues. If we are
6791 * deallocating the group these queues may still contain requests, so
6792 * we reparent them to the root cgroup (i.e., the only one that will
6793 * exist for sure until all the requests on a device are gone).
aee69d78 6794 */
ea25da48 6795void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
6796{
6797 int i, j;
6798
6799 for (i = 0; i < 2; i++)
6800 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 6801 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 6802
e21b7a0b 6803 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
6804}
6805
f0635b8a
JA
6806/*
6807 * See the comments on bfq_limit_depth for the purpose of
483b7bf2 6808 * the depths set in the function. Return minimum shallow depth we'll use.
f0635b8a 6809 */
483b7bf2
JA
6810static unsigned int bfq_update_depths(struct bfq_data *bfqd,
6811 struct sbitmap_queue *bt)
f0635b8a 6812{
483b7bf2
JA
6813 unsigned int i, j, min_shallow = UINT_MAX;
6814
f0635b8a
JA
6815 /*
6816 * In-word depths if no bfq_queue is being weight-raised:
6817 * leaving 25% of tags only for sync reads.
6818 *
6819 * In next formulas, right-shift the value
bd7d4ef6
JA
6820 * (1U<<bt->sb.shift), instead of computing directly
6821 * (1U<<(bt->sb.shift - something)), to be robust against
6822 * any possible value of bt->sb.shift, without having to
f0635b8a
JA
6823 * limit 'something'.
6824 */
6825 /* no more than 50% of tags for async I/O */
388c705b 6826 bfqd->word_depths[0][0] = max((1U << bt->sb.shift) >> 1, 1U);
f0635b8a
JA
6827 /*
6828 * no more than 75% of tags for sync writes (25% extra tags
6829 * w.r.t. async I/O, to prevent async I/O from starving sync
6830 * writes)
6831 */
388c705b 6832 bfqd->word_depths[0][1] = max(((1U << bt->sb.shift) * 3) >> 2, 1U);
f0635b8a
JA
6833
6834 /*
6835 * In-word depths in case some bfq_queue is being weight-
6836 * raised: leaving ~63% of tags for sync reads. This is the
6837 * highest percentage for which, in our tests, application
6838 * start-up times didn't suffer from any regression due to tag
6839 * shortage.
6840 */
6841 /* no more than ~18% of tags for async I/O */
388c705b 6842 bfqd->word_depths[1][0] = max(((1U << bt->sb.shift) * 3) >> 4, 1U);
f0635b8a 6843 /* no more than ~37% of tags for sync writes (~20% extra tags) */
388c705b 6844 bfqd->word_depths[1][1] = max(((1U << bt->sb.shift) * 6) >> 4, 1U);
483b7bf2
JA
6845
6846 for (i = 0; i < 2; i++)
6847 for (j = 0; j < 2; j++)
6848 min_shallow = min(min_shallow, bfqd->word_depths[i][j]);
6849
6850 return min_shallow;
f0635b8a
JA
6851}
6852
77f1e0a5 6853static void bfq_depth_updated(struct blk_mq_hw_ctx *hctx)
f0635b8a
JA
6854{
6855 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
6856 struct blk_mq_tags *tags = hctx->sched_tags;
483b7bf2 6857 unsigned int min_shallow;
f0635b8a 6858
222a5ae0
JG
6859 min_shallow = bfq_update_depths(bfqd, tags->bitmap_tags);
6860 sbitmap_queue_min_shallow_depth(tags->bitmap_tags, min_shallow);
77f1e0a5
JA
6861}
6862
6863static int bfq_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int index)
6864{
6865 bfq_depth_updated(hctx);
f0635b8a
JA
6866 return 0;
6867}
6868
aee69d78
PV
6869static void bfq_exit_queue(struct elevator_queue *e)
6870{
6871 struct bfq_data *bfqd = e->elevator_data;
6872 struct bfq_queue *bfqq, *n;
6873
6874 hrtimer_cancel(&bfqd->idle_slice_timer);
6875
6876 spin_lock_irq(&bfqd->lock);
6877 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 6878 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
6879 spin_unlock_irq(&bfqd->lock);
6880
6881 hrtimer_cancel(&bfqd->idle_slice_timer);
6882
0d52af59
PV
6883 /* release oom-queue reference to root group */
6884 bfqg_and_blkg_put(bfqd->root_group);
6885
4d8340d0 6886#ifdef CONFIG_BFQ_GROUP_IOSCHED
e21b7a0b
AA
6887 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
6888#else
6889 spin_lock_irq(&bfqd->lock);
6890 bfq_put_async_queues(bfqd, bfqd->root_group);
6891 kfree(bfqd->root_group);
6892 spin_unlock_irq(&bfqd->lock);
6893#endif
6894
aee69d78
PV
6895 kfree(bfqd);
6896}
6897
e21b7a0b
AA
6898static void bfq_init_root_group(struct bfq_group *root_group,
6899 struct bfq_data *bfqd)
6900{
6901 int i;
6902
6903#ifdef CONFIG_BFQ_GROUP_IOSCHED
6904 root_group->entity.parent = NULL;
6905 root_group->my_entity = NULL;
6906 root_group->bfqd = bfqd;
6907#endif
36eca894 6908 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
6909 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
6910 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
6911 root_group->sched_data.bfq_class_idle_last_service = jiffies;
6912}
6913
aee69d78
PV
6914static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
6915{
6916 struct bfq_data *bfqd;
6917 struct elevator_queue *eq;
aee69d78
PV
6918
6919 eq = elevator_alloc(q, e);
6920 if (!eq)
6921 return -ENOMEM;
6922
6923 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
6924 if (!bfqd) {
6925 kobject_put(&eq->kobj);
6926 return -ENOMEM;
6927 }
6928 eq->elevator_data = bfqd;
6929
0d945c1f 6930 spin_lock_irq(&q->queue_lock);
e21b7a0b 6931 q->elevator = eq;
0d945c1f 6932 spin_unlock_irq(&q->queue_lock);
e21b7a0b 6933
aee69d78
PV
6934 /*
6935 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
6936 * Grab a permanent reference to it, so that the normal code flow
6937 * will not attempt to free it.
6938 */
6939 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
6940 bfqd->oom_bfqq.ref++;
6941 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
6942 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
6943 bfqd->oom_bfqq.entity.new_weight =
6944 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
6945
6946 /* oom_bfqq does not participate to bursts */
6947 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
6948
aee69d78
PV
6949 /*
6950 * Trigger weight initialization, according to ioprio, at the
6951 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
6952 * class won't be changed any more.
6953 */
6954 bfqd->oom_bfqq.entity.prio_changed = 1;
6955
6956 bfqd->queue = q;
6957
e21b7a0b 6958 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
6959
6960 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
6961 HRTIMER_MODE_REL);
6962 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
6963
fb53ac6c 6964 bfqd->queue_weights_tree = RB_ROOT_CACHED;
ba7aeae5 6965 bfqd->num_groups_with_pending_reqs = 0;
1de0c4cd 6966
aee69d78
PV
6967 INIT_LIST_HEAD(&bfqd->active_list);
6968 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 6969 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
6970
6971 bfqd->hw_tag = -1;
8cacc5ab 6972 bfqd->nonrot_with_queueing = blk_queue_nonrot(bfqd->queue);
aee69d78
PV
6973
6974 bfqd->bfq_max_budget = bfq_default_max_budget;
6975
6976 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
6977 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
6978 bfqd->bfq_back_max = bfq_back_max;
6979 bfqd->bfq_back_penalty = bfq_back_penalty;
6980 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
6981 bfqd->bfq_timeout = bfq_timeout;
6982
e1b2324d
AA
6983 bfqd->bfq_large_burst_thresh = 8;
6984 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
6985
44e44a1b
PV
6986 bfqd->low_latency = true;
6987
6988 /*
6989 * Trade-off between responsiveness and fairness.
6990 */
6991 bfqd->bfq_wr_coeff = 30;
77b7dcea 6992 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
6993 bfqd->bfq_wr_max_time = 0;
6994 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
6995 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
6996 bfqd->bfq_wr_max_softrt_rate = 7000; /*
6997 * Approximate rate required
6998 * to playback or record a
6999 * high-definition compressed
7000 * video.
7001 */
cfd69712 7002 bfqd->wr_busy_queues = 0;
44e44a1b
PV
7003
7004 /*
e24f1c24
PV
7005 * Begin by assuming, optimistically, that the device peak
7006 * rate is equal to 2/3 of the highest reference rate.
44e44a1b 7007 */
e24f1c24
PV
7008 bfqd->rate_dur_prod = ref_rate[blk_queue_nonrot(bfqd->queue)] *
7009 ref_wr_duration[blk_queue_nonrot(bfqd->queue)];
7010 bfqd->peak_rate = ref_rate[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
44e44a1b 7011
aee69d78 7012 spin_lock_init(&bfqd->lock);
aee69d78 7013
e21b7a0b
AA
7014 /*
7015 * The invocation of the next bfq_create_group_hierarchy
7016 * function is the head of a chain of function calls
7017 * (bfq_create_group_hierarchy->blkcg_activate_policy->
7018 * blk_mq_freeze_queue) that may lead to the invocation of the
7019 * has_work hook function. For this reason,
7020 * bfq_create_group_hierarchy is invoked only after all
7021 * scheduler data has been initialized, apart from the fields
7022 * that can be initialized only after invoking
7023 * bfq_create_group_hierarchy. This, in particular, enables
7024 * has_work to correctly return false. Of course, to avoid
7025 * other inconsistencies, the blk-mq stack must then refrain
7026 * from invoking further scheduler hooks before this init
7027 * function is finished.
7028 */
7029 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
7030 if (!bfqd->root_group)
7031 goto out_free;
7032 bfq_init_root_group(bfqd->root_group, bfqd);
7033 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
7034
b5dc5d4d 7035 wbt_disable_default(q);
aee69d78 7036 return 0;
e21b7a0b
AA
7037
7038out_free:
7039 kfree(bfqd);
7040 kobject_put(&eq->kobj);
7041 return -ENOMEM;
aee69d78
PV
7042}
7043
7044static void bfq_slab_kill(void)
7045{
7046 kmem_cache_destroy(bfq_pool);
7047}
7048
7049static int __init bfq_slab_setup(void)
7050{
7051 bfq_pool = KMEM_CACHE(bfq_queue, 0);
7052 if (!bfq_pool)
7053 return -ENOMEM;
7054 return 0;
7055}
7056
7057static ssize_t bfq_var_show(unsigned int var, char *page)
7058{
7059 return sprintf(page, "%u\n", var);
7060}
7061
2f79136b 7062static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
7063{
7064 unsigned long new_val;
7065 int ret = kstrtoul(page, 10, &new_val);
7066
2f79136b
BVA
7067 if (ret)
7068 return ret;
7069 *var = new_val;
7070 return 0;
aee69d78
PV
7071}
7072
7073#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
7074static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7075{ \
7076 struct bfq_data *bfqd = e->elevator_data; \
7077 u64 __data = __VAR; \
7078 if (__CONV == 1) \
7079 __data = jiffies_to_msecs(__data); \
7080 else if (__CONV == 2) \
7081 __data = div_u64(__data, NSEC_PER_MSEC); \
7082 return bfq_var_show(__data, (page)); \
7083}
7084SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
7085SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
7086SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
7087SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
7088SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
7089SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
7090SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
7091SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 7092SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
7093#undef SHOW_FUNCTION
7094
7095#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
7096static ssize_t __FUNC(struct elevator_queue *e, char *page) \
7097{ \
7098 struct bfq_data *bfqd = e->elevator_data; \
7099 u64 __data = __VAR; \
7100 __data = div_u64(__data, NSEC_PER_USEC); \
7101 return bfq_var_show(__data, (page)); \
7102}
7103USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
7104#undef USEC_SHOW_FUNCTION
7105
7106#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
7107static ssize_t \
7108__FUNC(struct elevator_queue *e, const char *page, size_t count) \
7109{ \
7110 struct bfq_data *bfqd = e->elevator_data; \
1530486c 7111 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
7112 int ret; \
7113 \
7114 ret = bfq_var_store(&__data, (page)); \
7115 if (ret) \
7116 return ret; \
1530486c
BVA
7117 if (__data < __min) \
7118 __data = __min; \
7119 else if (__data > __max) \
7120 __data = __max; \
aee69d78
PV
7121 if (__CONV == 1) \
7122 *(__PTR) = msecs_to_jiffies(__data); \
7123 else if (__CONV == 2) \
7124 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
7125 else \
7126 *(__PTR) = __data; \
235f8da1 7127 return count; \
aee69d78
PV
7128}
7129STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
7130 INT_MAX, 2);
7131STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
7132 INT_MAX, 2);
7133STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
7134STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
7135 INT_MAX, 0);
7136STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
7137#undef STORE_FUNCTION
7138
7139#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
7140static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
7141{ \
7142 struct bfq_data *bfqd = e->elevator_data; \
1530486c 7143 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
7144 int ret; \
7145 \
7146 ret = bfq_var_store(&__data, (page)); \
7147 if (ret) \
7148 return ret; \
1530486c
BVA
7149 if (__data < __min) \
7150 __data = __min; \
7151 else if (__data > __max) \
7152 __data = __max; \
aee69d78 7153 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 7154 return count; \
aee69d78
PV
7155}
7156USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
7157 UINT_MAX);
7158#undef USEC_STORE_FUNCTION
7159
aee69d78
PV
7160static ssize_t bfq_max_budget_store(struct elevator_queue *e,
7161 const char *page, size_t count)
7162{
7163 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
7164 unsigned long __data;
7165 int ret;
235f8da1 7166
2f79136b
BVA
7167 ret = bfq_var_store(&__data, (page));
7168 if (ret)
7169 return ret;
aee69d78
PV
7170
7171 if (__data == 0)
ab0e43e9 7172 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
7173 else {
7174 if (__data > INT_MAX)
7175 __data = INT_MAX;
7176 bfqd->bfq_max_budget = __data;
7177 }
7178
7179 bfqd->bfq_user_max_budget = __data;
7180
235f8da1 7181 return count;
aee69d78
PV
7182}
7183
7184/*
7185 * Leaving this name to preserve name compatibility with cfq
7186 * parameters, but this timeout is used for both sync and async.
7187 */
7188static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
7189 const char *page, size_t count)
7190{
7191 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
7192 unsigned long __data;
7193 int ret;
235f8da1 7194
2f79136b
BVA
7195 ret = bfq_var_store(&__data, (page));
7196 if (ret)
7197 return ret;
aee69d78
PV
7198
7199 if (__data < 1)
7200 __data = 1;
7201 else if (__data > INT_MAX)
7202 __data = INT_MAX;
7203
7204 bfqd->bfq_timeout = msecs_to_jiffies(__data);
7205 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 7206 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 7207
235f8da1 7208 return count;
aee69d78
PV
7209}
7210
7211static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
7212 const char *page, size_t count)
7213{
7214 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
7215 unsigned long __data;
7216 int ret;
235f8da1 7217
2f79136b
BVA
7218 ret = bfq_var_store(&__data, (page));
7219 if (ret)
7220 return ret;
aee69d78
PV
7221
7222 if (__data > 1)
7223 __data = 1;
7224 if (!bfqd->strict_guarantees && __data == 1
7225 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
7226 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
7227
7228 bfqd->strict_guarantees = __data;
7229
235f8da1 7230 return count;
aee69d78
PV
7231}
7232
44e44a1b
PV
7233static ssize_t bfq_low_latency_store(struct elevator_queue *e,
7234 const char *page, size_t count)
7235{
7236 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
7237 unsigned long __data;
7238 int ret;
235f8da1 7239
2f79136b
BVA
7240 ret = bfq_var_store(&__data, (page));
7241 if (ret)
7242 return ret;
44e44a1b
PV
7243
7244 if (__data > 1)
7245 __data = 1;
7246 if (__data == 0 && bfqd->low_latency != 0)
7247 bfq_end_wr(bfqd);
7248 bfqd->low_latency = __data;
7249
235f8da1 7250 return count;
44e44a1b
PV
7251}
7252
aee69d78
PV
7253#define BFQ_ATTR(name) \
7254 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
7255
7256static struct elv_fs_entry bfq_attrs[] = {
7257 BFQ_ATTR(fifo_expire_sync),
7258 BFQ_ATTR(fifo_expire_async),
7259 BFQ_ATTR(back_seek_max),
7260 BFQ_ATTR(back_seek_penalty),
7261 BFQ_ATTR(slice_idle),
7262 BFQ_ATTR(slice_idle_us),
7263 BFQ_ATTR(max_budget),
7264 BFQ_ATTR(timeout_sync),
7265 BFQ_ATTR(strict_guarantees),
44e44a1b 7266 BFQ_ATTR(low_latency),
aee69d78
PV
7267 __ATTR_NULL
7268};
7269
7270static struct elevator_type iosched_bfq_mq = {
f9cd4bfe 7271 .ops = {
a52a69ea 7272 .limit_depth = bfq_limit_depth,
5bbf4e5a 7273 .prepare_request = bfq_prepare_request,
a7877390
PV
7274 .requeue_request = bfq_finish_requeue_request,
7275 .finish_request = bfq_finish_requeue_request,
aee69d78
PV
7276 .exit_icq = bfq_exit_icq,
7277 .insert_requests = bfq_insert_requests,
7278 .dispatch_request = bfq_dispatch_request,
7279 .next_request = elv_rb_latter_request,
7280 .former_request = elv_rb_former_request,
7281 .allow_merge = bfq_allow_bio_merge,
7282 .bio_merge = bfq_bio_merge,
7283 .request_merge = bfq_request_merge,
7284 .requests_merged = bfq_requests_merged,
7285 .request_merged = bfq_request_merged,
7286 .has_work = bfq_has_work,
77f1e0a5 7287 .depth_updated = bfq_depth_updated,
f0635b8a 7288 .init_hctx = bfq_init_hctx,
aee69d78
PV
7289 .init_sched = bfq_init_queue,
7290 .exit_sched = bfq_exit_queue,
7291 },
7292
aee69d78
PV
7293 .icq_size = sizeof(struct bfq_io_cq),
7294 .icq_align = __alignof__(struct bfq_io_cq),
7295 .elevator_attrs = bfq_attrs,
7296 .elevator_name = "bfq",
7297 .elevator_owner = THIS_MODULE,
7298};
26b4cf24 7299MODULE_ALIAS("bfq-iosched");
aee69d78
PV
7300
7301static int __init bfq_init(void)
7302{
7303 int ret;
7304
e21b7a0b
AA
7305#ifdef CONFIG_BFQ_GROUP_IOSCHED
7306 ret = blkcg_policy_register(&blkcg_policy_bfq);
7307 if (ret)
7308 return ret;
7309#endif
7310
aee69d78
PV
7311 ret = -ENOMEM;
7312 if (bfq_slab_setup())
7313 goto err_pol_unreg;
7314
44e44a1b
PV
7315 /*
7316 * Times to load large popular applications for the typical
7317 * systems installed on the reference devices (see the
e24f1c24
PV
7318 * comments before the definition of the next
7319 * array). Actually, we use slightly lower values, as the
44e44a1b
PV
7320 * estimated peak rate tends to be smaller than the actual
7321 * peak rate. The reason for this last fact is that estimates
7322 * are computed over much shorter time intervals than the long
7323 * intervals typically used for benchmarking. Why? First, to
7324 * adapt more quickly to variations. Second, because an I/O
7325 * scheduler cannot rely on a peak-rate-evaluation workload to
7326 * be run for a long time.
7327 */
e24f1c24
PV
7328 ref_wr_duration[0] = msecs_to_jiffies(7000); /* actually 8 sec */
7329 ref_wr_duration[1] = msecs_to_jiffies(2500); /* actually 3 sec */
44e44a1b 7330
aee69d78
PV
7331 ret = elv_register(&iosched_bfq_mq);
7332 if (ret)
37dcd657 7333 goto slab_kill;
aee69d78
PV
7334
7335 return 0;
7336
37dcd657 7337slab_kill:
7338 bfq_slab_kill();
aee69d78 7339err_pol_unreg:
e21b7a0b
AA
7340#ifdef CONFIG_BFQ_GROUP_IOSCHED
7341 blkcg_policy_unregister(&blkcg_policy_bfq);
7342#endif
aee69d78
PV
7343 return ret;
7344}
7345
7346static void __exit bfq_exit(void)
7347{
7348 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
7349#ifdef CONFIG_BFQ_GROUP_IOSCHED
7350 blkcg_policy_unregister(&blkcg_policy_bfq);
7351#endif
aee69d78
PV
7352 bfq_slab_kill();
7353}
7354
7355module_init(bfq_init);
7356module_exit(bfq_exit);
7357
7358MODULE_AUTHOR("Paolo Valente");
7359MODULE_LICENSE("GPL");
7360MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");