block, bfq: remove superfluous check in queue-merging setup
[linux-block.git] / block / bfq-iosched.c
CommitLineData
aee69d78
PV
1/*
2 * Budget Fair Queueing (BFQ) I/O scheduler.
3 *
4 * Based on ideas and code from CFQ:
5 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
6 *
7 * Copyright (C) 2008 Fabio Checconi <fabio@gandalf.sssup.it>
8 * Paolo Valente <paolo.valente@unimore.it>
9 *
10 * Copyright (C) 2010 Paolo Valente <paolo.valente@unimore.it>
11 * Arianna Avanzini <avanzini@google.com>
12 *
13 * Copyright (C) 2017 Paolo Valente <paolo.valente@linaro.org>
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License as
17 * published by the Free Software Foundation; either version 2 of the
18 * License, or (at your option) any later version.
19 *
20 * This program is distributed in the hope that it will be useful,
21 * but WITHOUT ANY WARRANTY; without even the implied warranty of
22 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
23 * General Public License for more details.
24 *
25 * BFQ is a proportional-share I/O scheduler, with some extra
26 * low-latency capabilities. BFQ also supports full hierarchical
27 * scheduling through cgroups. Next paragraphs provide an introduction
28 * on BFQ inner workings. Details on BFQ benefits, usage and
29 * limitations can be found in Documentation/block/bfq-iosched.txt.
30 *
31 * BFQ is a proportional-share storage-I/O scheduling algorithm based
32 * on the slice-by-slice service scheme of CFQ. But BFQ assigns
33 * budgets, measured in number of sectors, to processes instead of
34 * time slices. The device is not granted to the in-service process
35 * for a given time slice, but until it has exhausted its assigned
36 * budget. This change from the time to the service domain enables BFQ
37 * to distribute the device throughput among processes as desired,
38 * without any distortion due to throughput fluctuations, or to device
39 * internal queueing. BFQ uses an ad hoc internal scheduler, called
40 * B-WF2Q+, to schedule processes according to their budgets. More
41 * precisely, BFQ schedules queues associated with processes. Each
42 * process/queue is assigned a user-configurable weight, and B-WF2Q+
43 * guarantees that each queue receives a fraction of the throughput
44 * proportional to its weight. Thanks to the accurate policy of
45 * B-WF2Q+, BFQ can afford to assign high budgets to I/O-bound
46 * processes issuing sequential requests (to boost the throughput),
47 * and yet guarantee a low latency to interactive and soft real-time
48 * applications.
49 *
50 * In particular, to provide these low-latency guarantees, BFQ
51 * explicitly privileges the I/O of two classes of time-sensitive
52 * applications: interactive and soft real-time. This feature enables
53 * BFQ to provide applications in these classes with a very low
54 * latency. Finally, BFQ also features additional heuristics for
55 * preserving both a low latency and a high throughput on NCQ-capable,
56 * rotational or flash-based devices, and to get the job done quickly
57 * for applications consisting in many I/O-bound processes.
58 *
43c1b3d6
PV
59 * NOTE: if the main or only goal, with a given device, is to achieve
60 * the maximum-possible throughput at all times, then do switch off
61 * all low-latency heuristics for that device, by setting low_latency
62 * to 0.
63 *
aee69d78
PV
64 * BFQ is described in [1], where also a reference to the initial, more
65 * theoretical paper on BFQ can be found. The interested reader can find
66 * in the latter paper full details on the main algorithm, as well as
67 * formulas of the guarantees and formal proofs of all the properties.
68 * With respect to the version of BFQ presented in these papers, this
69 * implementation adds a few more heuristics, such as the one that
70 * guarantees a low latency to soft real-time applications, and a
71 * hierarchical extension based on H-WF2Q+.
72 *
73 * B-WF2Q+ is based on WF2Q+, which is described in [2], together with
74 * H-WF2Q+, while the augmented tree used here to implement B-WF2Q+
75 * with O(log N) complexity derives from the one introduced with EEVDF
76 * in [3].
77 *
78 * [1] P. Valente, A. Avanzini, "Evolution of the BFQ Storage I/O
79 * Scheduler", Proceedings of the First Workshop on Mobile System
80 * Technologies (MST-2015), May 2015.
81 * http://algogroup.unimore.it/people/paolo/disk_sched/mst-2015.pdf
82 *
83 * [2] Jon C.R. Bennett and H. Zhang, "Hierarchical Packet Fair Queueing
84 * Algorithms", IEEE/ACM Transactions on Networking, 5(5):675-689,
85 * Oct 1997.
86 *
87 * http://www.cs.cmu.edu/~hzhang/papers/TON-97-Oct.ps.gz
88 *
89 * [3] I. Stoica and H. Abdel-Wahab, "Earliest Eligible Virtual Deadline
90 * First: A Flexible and Accurate Mechanism for Proportional Share
91 * Resource Allocation", technical report.
92 *
93 * http://www.cs.berkeley.edu/~istoica/papers/eevdf-tr-95.pdf
94 */
95#include <linux/module.h>
96#include <linux/slab.h>
97#include <linux/blkdev.h>
e21b7a0b 98#include <linux/cgroup.h>
aee69d78
PV
99#include <linux/elevator.h>
100#include <linux/ktime.h>
101#include <linux/rbtree.h>
102#include <linux/ioprio.h>
103#include <linux/sbitmap.h>
104#include <linux/delay.h>
105
106#include "blk.h"
107#include "blk-mq.h"
108#include "blk-mq-tag.h"
109#include "blk-mq-sched.h"
ea25da48 110#include "bfq-iosched.h"
b5dc5d4d 111#include "blk-wbt.h"
aee69d78 112
ea25da48
PV
113#define BFQ_BFQQ_FNS(name) \
114void bfq_mark_bfqq_##name(struct bfq_queue *bfqq) \
115{ \
116 __set_bit(BFQQF_##name, &(bfqq)->flags); \
117} \
118void bfq_clear_bfqq_##name(struct bfq_queue *bfqq) \
119{ \
120 __clear_bit(BFQQF_##name, &(bfqq)->flags); \
121} \
122int bfq_bfqq_##name(const struct bfq_queue *bfqq) \
123{ \
124 return test_bit(BFQQF_##name, &(bfqq)->flags); \
44e44a1b
PV
125}
126
ea25da48
PV
127BFQ_BFQQ_FNS(just_created);
128BFQ_BFQQ_FNS(busy);
129BFQ_BFQQ_FNS(wait_request);
130BFQ_BFQQ_FNS(non_blocking_wait_rq);
131BFQ_BFQQ_FNS(fifo_expire);
d5be3fef 132BFQ_BFQQ_FNS(has_short_ttime);
ea25da48
PV
133BFQ_BFQQ_FNS(sync);
134BFQ_BFQQ_FNS(IO_bound);
135BFQ_BFQQ_FNS(in_large_burst);
136BFQ_BFQQ_FNS(coop);
137BFQ_BFQQ_FNS(split_coop);
138BFQ_BFQQ_FNS(softrt_update);
139#undef BFQ_BFQQ_FNS \
aee69d78 140
ea25da48
PV
141/* Expiration time of sync (0) and async (1) requests, in ns. */
142static const u64 bfq_fifo_expire[2] = { NSEC_PER_SEC / 4, NSEC_PER_SEC / 8 };
aee69d78 143
ea25da48
PV
144/* Maximum backwards seek (magic number lifted from CFQ), in KiB. */
145static const int bfq_back_max = 16 * 1024;
aee69d78 146
ea25da48
PV
147/* Penalty of a backwards seek, in number of sectors. */
148static const int bfq_back_penalty = 2;
e21b7a0b 149
ea25da48
PV
150/* Idling period duration, in ns. */
151static u64 bfq_slice_idle = NSEC_PER_SEC / 125;
aee69d78 152
ea25da48
PV
153/* Minimum number of assigned budgets for which stats are safe to compute. */
154static const int bfq_stats_min_budgets = 194;
aee69d78 155
ea25da48
PV
156/* Default maximum budget values, in sectors and number of requests. */
157static const int bfq_default_max_budget = 16 * 1024;
e21b7a0b 158
ea25da48
PV
159/*
160 * Async to sync throughput distribution is controlled as follows:
161 * when an async request is served, the entity is charged the number
162 * of sectors of the request, multiplied by the factor below
163 */
164static const int bfq_async_charge_factor = 10;
aee69d78 165
ea25da48
PV
166/* Default timeout values, in jiffies, approximating CFQ defaults. */
167const int bfq_timeout = HZ / 8;
aee69d78 168
7b8fa3b9
PV
169/*
170 * Time limit for merging (see comments in bfq_setup_cooperator). Set
171 * to the slowest value that, in our tests, proved to be effective in
172 * removing false positives, while not causing true positives to miss
173 * queue merging.
174 *
175 * As can be deduced from the low time limit below, queue merging, if
176 * successful, happens at the very beggining of the I/O of the involved
177 * cooperating processes, as a consequence of the arrival of the very
178 * first requests from each cooperator. After that, there is very
179 * little chance to find cooperators.
180 */
181static const unsigned long bfq_merge_time_limit = HZ/10;
182
ea25da48 183static struct kmem_cache *bfq_pool;
e21b7a0b 184
ea25da48
PV
185/* Below this threshold (in ns), we consider thinktime immediate. */
186#define BFQ_MIN_TT (2 * NSEC_PER_MSEC)
e21b7a0b 187
ea25da48
PV
188/* hw_tag detection: parallel requests threshold and min samples needed. */
189#define BFQ_HW_QUEUE_THRESHOLD 4
190#define BFQ_HW_QUEUE_SAMPLES 32
aee69d78 191
ea25da48
PV
192#define BFQQ_SEEK_THR (sector_t)(8 * 100)
193#define BFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
194#define BFQQ_CLOSE_THR (sector_t)(8 * 1024)
f0ba5ea2 195#define BFQQ_SEEKY(bfqq) (hweight32(bfqq->seek_history) > 19)
aee69d78 196
ea25da48
PV
197/* Min number of samples required to perform peak-rate update */
198#define BFQ_RATE_MIN_SAMPLES 32
199/* Min observation time interval required to perform a peak-rate update (ns) */
200#define BFQ_RATE_MIN_INTERVAL (300*NSEC_PER_MSEC)
201/* Target observation time interval for a peak-rate update (ns) */
202#define BFQ_RATE_REF_INTERVAL NSEC_PER_SEC
aee69d78 203
ea25da48
PV
204/* Shift used for peak rate fixed precision calculations. */
205#define BFQ_RATE_SHIFT 16
aee69d78 206
ea25da48
PV
207/*
208 * By default, BFQ computes the duration of the weight raising for
209 * interactive applications automatically, using the following formula:
210 * duration = (R / r) * T, where r is the peak rate of the device, and
211 * R and T are two reference parameters.
212 * In particular, R is the peak rate of the reference device (see below),
213 * and T is a reference time: given the systems that are likely to be
214 * installed on the reference device according to its speed class, T is
215 * about the maximum time needed, under BFQ and while reading two files in
216 * parallel, to load typical large applications on these systems.
217 * In practice, the slower/faster the device at hand is, the more/less it
218 * takes to load applications with respect to the reference device.
219 * Accordingly, the longer/shorter BFQ grants weight raising to interactive
220 * applications.
221 *
222 * BFQ uses four different reference pairs (R, T), depending on:
223 * . whether the device is rotational or non-rotational;
224 * . whether the device is slow, such as old or portable HDDs, as well as
225 * SD cards, or fast, such as newer HDDs and SSDs.
226 *
227 * The device's speed class is dynamically (re)detected in
228 * bfq_update_peak_rate() every time the estimated peak rate is updated.
229 *
230 * In the following definitions, R_slow[0]/R_fast[0] and
231 * T_slow[0]/T_fast[0] are the reference values for a slow/fast
232 * rotational device, whereas R_slow[1]/R_fast[1] and
233 * T_slow[1]/T_fast[1] are the reference values for a slow/fast
234 * non-rotational device. Finally, device_speed_thresh are the
235 * thresholds used to switch between speed classes. The reference
236 * rates are not the actual peak rates of the devices used as a
237 * reference, but slightly lower values. The reason for using these
238 * slightly lower values is that the peak-rate estimator tends to
239 * yield slightly lower values than the actual peak rate (it can yield
240 * the actual peak rate only if there is only one process doing I/O,
241 * and the process does sequential I/O).
242 *
243 * Both the reference peak rates and the thresholds are measured in
244 * sectors/usec, left-shifted by BFQ_RATE_SHIFT.
245 */
246static int R_slow[2] = {1000, 10700};
247static int R_fast[2] = {14000, 33000};
248/*
249 * To improve readability, a conversion function is used to initialize the
250 * following arrays, which entails that they can be initialized only in a
251 * function.
252 */
253static int T_slow[2];
254static int T_fast[2];
255static int device_speed_thresh[2];
aee69d78 256
12cd3a2f 257#define RQ_BIC(rq) icq_to_bic((rq)->elv.priv[0])
ea25da48 258#define RQ_BFQQ(rq) ((rq)->elv.priv[1])
aee69d78 259
ea25da48 260struct bfq_queue *bic_to_bfqq(struct bfq_io_cq *bic, bool is_sync)
e21b7a0b 261{
ea25da48 262 return bic->bfqq[is_sync];
aee69d78
PV
263}
264
ea25da48 265void bic_set_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq, bool is_sync)
aee69d78 266{
ea25da48 267 bic->bfqq[is_sync] = bfqq;
aee69d78
PV
268}
269
ea25da48 270struct bfq_data *bic_to_bfqd(struct bfq_io_cq *bic)
aee69d78 271{
ea25da48 272 return bic->icq.q->elevator->elevator_data;
e21b7a0b 273}
aee69d78 274
ea25da48
PV
275/**
276 * icq_to_bic - convert iocontext queue structure to bfq_io_cq.
277 * @icq: the iocontext queue.
278 */
279static struct bfq_io_cq *icq_to_bic(struct io_cq *icq)
e21b7a0b 280{
ea25da48
PV
281 /* bic->icq is the first member, %NULL will convert to %NULL */
282 return container_of(icq, struct bfq_io_cq, icq);
e21b7a0b 283}
aee69d78 284
ea25da48
PV
285/**
286 * bfq_bic_lookup - search into @ioc a bic associated to @bfqd.
287 * @bfqd: the lookup key.
288 * @ioc: the io_context of the process doing I/O.
289 * @q: the request queue.
290 */
291static struct bfq_io_cq *bfq_bic_lookup(struct bfq_data *bfqd,
292 struct io_context *ioc,
293 struct request_queue *q)
e21b7a0b 294{
ea25da48
PV
295 if (ioc) {
296 unsigned long flags;
297 struct bfq_io_cq *icq;
aee69d78 298
ea25da48
PV
299 spin_lock_irqsave(q->queue_lock, flags);
300 icq = icq_to_bic(ioc_lookup_icq(ioc, q));
301 spin_unlock_irqrestore(q->queue_lock, flags);
aee69d78 302
ea25da48 303 return icq;
e21b7a0b 304 }
e21b7a0b 305
ea25da48 306 return NULL;
aee69d78
PV
307}
308
ea25da48
PV
309/*
310 * Scheduler run of queue, if there are requests pending and no one in the
311 * driver that will restart queueing.
312 */
313void bfq_schedule_dispatch(struct bfq_data *bfqd)
aee69d78 314{
ea25da48
PV
315 if (bfqd->queued != 0) {
316 bfq_log(bfqd, "schedule dispatch");
317 blk_mq_run_hw_queues(bfqd->queue, true);
e21b7a0b 318 }
aee69d78
PV
319}
320
321#define bfq_class_idle(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
322#define bfq_class_rt(bfqq) ((bfqq)->ioprio_class == IOPRIO_CLASS_RT)
323
324#define bfq_sample_valid(samples) ((samples) > 80)
325
aee69d78
PV
326/*
327 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
328 * We choose the request that is closesr to the head right now. Distance
329 * behind the head is penalized and only allowed to a certain extent.
330 */
331static struct request *bfq_choose_req(struct bfq_data *bfqd,
332 struct request *rq1,
333 struct request *rq2,
334 sector_t last)
335{
336 sector_t s1, s2, d1 = 0, d2 = 0;
337 unsigned long back_max;
338#define BFQ_RQ1_WRAP 0x01 /* request 1 wraps */
339#define BFQ_RQ2_WRAP 0x02 /* request 2 wraps */
340 unsigned int wrap = 0; /* bit mask: requests behind the disk head? */
341
342 if (!rq1 || rq1 == rq2)
343 return rq2;
344 if (!rq2)
345 return rq1;
346
347 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
348 return rq1;
349 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
350 return rq2;
351 if ((rq1->cmd_flags & REQ_META) && !(rq2->cmd_flags & REQ_META))
352 return rq1;
353 else if ((rq2->cmd_flags & REQ_META) && !(rq1->cmd_flags & REQ_META))
354 return rq2;
355
356 s1 = blk_rq_pos(rq1);
357 s2 = blk_rq_pos(rq2);
358
359 /*
360 * By definition, 1KiB is 2 sectors.
361 */
362 back_max = bfqd->bfq_back_max * 2;
363
364 /*
365 * Strict one way elevator _except_ in the case where we allow
366 * short backward seeks which are biased as twice the cost of a
367 * similar forward seek.
368 */
369 if (s1 >= last)
370 d1 = s1 - last;
371 else if (s1 + back_max >= last)
372 d1 = (last - s1) * bfqd->bfq_back_penalty;
373 else
374 wrap |= BFQ_RQ1_WRAP;
375
376 if (s2 >= last)
377 d2 = s2 - last;
378 else if (s2 + back_max >= last)
379 d2 = (last - s2) * bfqd->bfq_back_penalty;
380 else
381 wrap |= BFQ_RQ2_WRAP;
382
383 /* Found required data */
384
385 /*
386 * By doing switch() on the bit mask "wrap" we avoid having to
387 * check two variables for all permutations: --> faster!
388 */
389 switch (wrap) {
390 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
391 if (d1 < d2)
392 return rq1;
393 else if (d2 < d1)
394 return rq2;
395
396 if (s1 >= s2)
397 return rq1;
398 else
399 return rq2;
400
401 case BFQ_RQ2_WRAP:
402 return rq1;
403 case BFQ_RQ1_WRAP:
404 return rq2;
405 case BFQ_RQ1_WRAP|BFQ_RQ2_WRAP: /* both rqs wrapped */
406 default:
407 /*
408 * Since both rqs are wrapped,
409 * start with the one that's further behind head
410 * (--> only *one* back seek required),
411 * since back seek takes more time than forward.
412 */
413 if (s1 <= s2)
414 return rq1;
415 else
416 return rq2;
417 }
418}
419
36eca894
AA
420static struct bfq_queue *
421bfq_rq_pos_tree_lookup(struct bfq_data *bfqd, struct rb_root *root,
422 sector_t sector, struct rb_node **ret_parent,
423 struct rb_node ***rb_link)
424{
425 struct rb_node **p, *parent;
426 struct bfq_queue *bfqq = NULL;
427
428 parent = NULL;
429 p = &root->rb_node;
430 while (*p) {
431 struct rb_node **n;
432
433 parent = *p;
434 bfqq = rb_entry(parent, struct bfq_queue, pos_node);
435
436 /*
437 * Sort strictly based on sector. Smallest to the left,
438 * largest to the right.
439 */
440 if (sector > blk_rq_pos(bfqq->next_rq))
441 n = &(*p)->rb_right;
442 else if (sector < blk_rq_pos(bfqq->next_rq))
443 n = &(*p)->rb_left;
444 else
445 break;
446 p = n;
447 bfqq = NULL;
448 }
449
450 *ret_parent = parent;
451 if (rb_link)
452 *rb_link = p;
453
454 bfq_log(bfqd, "rq_pos_tree_lookup %llu: returning %d",
455 (unsigned long long)sector,
456 bfqq ? bfqq->pid : 0);
457
458 return bfqq;
459}
460
7b8fa3b9
PV
461static bool bfq_too_late_for_merging(struct bfq_queue *bfqq)
462{
463 return bfqq->service_from_backlogged > 0 &&
464 time_is_before_jiffies(bfqq->first_IO_time +
465 bfq_merge_time_limit);
466}
467
ea25da48 468void bfq_pos_tree_add_move(struct bfq_data *bfqd, struct bfq_queue *bfqq)
36eca894
AA
469{
470 struct rb_node **p, *parent;
471 struct bfq_queue *__bfqq;
472
473 if (bfqq->pos_root) {
474 rb_erase(&bfqq->pos_node, bfqq->pos_root);
475 bfqq->pos_root = NULL;
476 }
477
7b8fa3b9
PV
478 /*
479 * bfqq cannot be merged any longer (see comments in
480 * bfq_setup_cooperator): no point in adding bfqq into the
481 * position tree.
482 */
483 if (bfq_too_late_for_merging(bfqq))
484 return;
485
36eca894
AA
486 if (bfq_class_idle(bfqq))
487 return;
488 if (!bfqq->next_rq)
489 return;
490
491 bfqq->pos_root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
492 __bfqq = bfq_rq_pos_tree_lookup(bfqd, bfqq->pos_root,
493 blk_rq_pos(bfqq->next_rq), &parent, &p);
494 if (!__bfqq) {
495 rb_link_node(&bfqq->pos_node, parent, p);
496 rb_insert_color(&bfqq->pos_node, bfqq->pos_root);
497 } else
498 bfqq->pos_root = NULL;
499}
500
1de0c4cd
AA
501/*
502 * Tell whether there are active queues or groups with differentiated weights.
503 */
504static bool bfq_differentiated_weights(struct bfq_data *bfqd)
505{
506 /*
507 * For weights to differ, at least one of the trees must contain
508 * at least two nodes.
509 */
510 return (!RB_EMPTY_ROOT(&bfqd->queue_weights_tree) &&
511 (bfqd->queue_weights_tree.rb_node->rb_left ||
512 bfqd->queue_weights_tree.rb_node->rb_right)
513#ifdef CONFIG_BFQ_GROUP_IOSCHED
514 ) ||
515 (!RB_EMPTY_ROOT(&bfqd->group_weights_tree) &&
516 (bfqd->group_weights_tree.rb_node->rb_left ||
517 bfqd->group_weights_tree.rb_node->rb_right)
518#endif
519 );
520}
521
522/*
523 * The following function returns true if every queue must receive the
524 * same share of the throughput (this condition is used when deciding
525 * whether idling may be disabled, see the comments in the function
526 * bfq_bfqq_may_idle()).
527 *
528 * Such a scenario occurs when:
529 * 1) all active queues have the same weight,
530 * 2) all active groups at the same level in the groups tree have the same
531 * weight,
532 * 3) all active groups at the same level in the groups tree have the same
533 * number of children.
534 *
535 * Unfortunately, keeping the necessary state for evaluating exactly the
536 * above symmetry conditions would be quite complex and time-consuming.
537 * Therefore this function evaluates, instead, the following stronger
538 * sub-conditions, for which it is much easier to maintain the needed
539 * state:
540 * 1) all active queues have the same weight,
541 * 2) all active groups have the same weight,
542 * 3) all active groups have at most one active child each.
543 * In particular, the last two conditions are always true if hierarchical
544 * support and the cgroups interface are not enabled, thus no state needs
545 * to be maintained in this case.
546 */
547static bool bfq_symmetric_scenario(struct bfq_data *bfqd)
548{
549 return !bfq_differentiated_weights(bfqd);
550}
551
552/*
553 * If the weight-counter tree passed as input contains no counter for
554 * the weight of the input entity, then add that counter; otherwise just
555 * increment the existing counter.
556 *
557 * Note that weight-counter trees contain few nodes in mostly symmetric
558 * scenarios. For example, if all queues have the same weight, then the
559 * weight-counter tree for the queues may contain at most one node.
560 * This holds even if low_latency is on, because weight-raised queues
561 * are not inserted in the tree.
562 * In most scenarios, the rate at which nodes are created/destroyed
563 * should be low too.
564 */
ea25da48
PV
565void bfq_weights_tree_add(struct bfq_data *bfqd, struct bfq_entity *entity,
566 struct rb_root *root)
1de0c4cd
AA
567{
568 struct rb_node **new = &(root->rb_node), *parent = NULL;
569
570 /*
571 * Do not insert if the entity is already associated with a
572 * counter, which happens if:
573 * 1) the entity is associated with a queue,
574 * 2) a request arrival has caused the queue to become both
575 * non-weight-raised, and hence change its weight, and
576 * backlogged; in this respect, each of the two events
577 * causes an invocation of this function,
578 * 3) this is the invocation of this function caused by the
579 * second event. This second invocation is actually useless,
580 * and we handle this fact by exiting immediately. More
581 * efficient or clearer solutions might possibly be adopted.
582 */
583 if (entity->weight_counter)
584 return;
585
586 while (*new) {
587 struct bfq_weight_counter *__counter = container_of(*new,
588 struct bfq_weight_counter,
589 weights_node);
590 parent = *new;
591
592 if (entity->weight == __counter->weight) {
593 entity->weight_counter = __counter;
594 goto inc_counter;
595 }
596 if (entity->weight < __counter->weight)
597 new = &((*new)->rb_left);
598 else
599 new = &((*new)->rb_right);
600 }
601
602 entity->weight_counter = kzalloc(sizeof(struct bfq_weight_counter),
603 GFP_ATOMIC);
604
605 /*
606 * In the unlucky event of an allocation failure, we just
607 * exit. This will cause the weight of entity to not be
608 * considered in bfq_differentiated_weights, which, in its
609 * turn, causes the scenario to be deemed wrongly symmetric in
610 * case entity's weight would have been the only weight making
611 * the scenario asymmetric. On the bright side, no unbalance
612 * will however occur when entity becomes inactive again (the
613 * invocation of this function is triggered by an activation
614 * of entity). In fact, bfq_weights_tree_remove does nothing
615 * if !entity->weight_counter.
616 */
617 if (unlikely(!entity->weight_counter))
618 return;
619
620 entity->weight_counter->weight = entity->weight;
621 rb_link_node(&entity->weight_counter->weights_node, parent, new);
622 rb_insert_color(&entity->weight_counter->weights_node, root);
623
624inc_counter:
625 entity->weight_counter->num_active++;
626}
627
628/*
629 * Decrement the weight counter associated with the entity, and, if the
630 * counter reaches 0, remove the counter from the tree.
631 * See the comments to the function bfq_weights_tree_add() for considerations
632 * about overhead.
633 */
ea25da48
PV
634void bfq_weights_tree_remove(struct bfq_data *bfqd, struct bfq_entity *entity,
635 struct rb_root *root)
1de0c4cd
AA
636{
637 if (!entity->weight_counter)
638 return;
639
640 entity->weight_counter->num_active--;
641 if (entity->weight_counter->num_active > 0)
642 goto reset_entity_pointer;
643
644 rb_erase(&entity->weight_counter->weights_node, root);
645 kfree(entity->weight_counter);
646
647reset_entity_pointer:
648 entity->weight_counter = NULL;
649}
650
aee69d78
PV
651/*
652 * Return expired entry, or NULL to just start from scratch in rbtree.
653 */
654static struct request *bfq_check_fifo(struct bfq_queue *bfqq,
655 struct request *last)
656{
657 struct request *rq;
658
659 if (bfq_bfqq_fifo_expire(bfqq))
660 return NULL;
661
662 bfq_mark_bfqq_fifo_expire(bfqq);
663
664 rq = rq_entry_fifo(bfqq->fifo.next);
665
666 if (rq == last || ktime_get_ns() < rq->fifo_time)
667 return NULL;
668
669 bfq_log_bfqq(bfqq->bfqd, bfqq, "check_fifo: returned %p", rq);
670 return rq;
671}
672
673static struct request *bfq_find_next_rq(struct bfq_data *bfqd,
674 struct bfq_queue *bfqq,
675 struct request *last)
676{
677 struct rb_node *rbnext = rb_next(&last->rb_node);
678 struct rb_node *rbprev = rb_prev(&last->rb_node);
679 struct request *next, *prev = NULL;
680
681 /* Follow expired path, else get first next available. */
682 next = bfq_check_fifo(bfqq, last);
683 if (next)
684 return next;
685
686 if (rbprev)
687 prev = rb_entry_rq(rbprev);
688
689 if (rbnext)
690 next = rb_entry_rq(rbnext);
691 else {
692 rbnext = rb_first(&bfqq->sort_list);
693 if (rbnext && rbnext != &last->rb_node)
694 next = rb_entry_rq(rbnext);
695 }
696
697 return bfq_choose_req(bfqd, next, prev, blk_rq_pos(last));
698}
699
c074170e 700/* see the definition of bfq_async_charge_factor for details */
aee69d78
PV
701static unsigned long bfq_serv_to_charge(struct request *rq,
702 struct bfq_queue *bfqq)
703{
44e44a1b 704 if (bfq_bfqq_sync(bfqq) || bfqq->wr_coeff > 1)
c074170e
PV
705 return blk_rq_sectors(rq);
706
cfd69712
PV
707 /*
708 * If there are no weight-raised queues, then amplify service
709 * by just the async charge factor; otherwise amplify service
710 * by twice the async charge factor, to further reduce latency
711 * for weight-raised queues.
712 */
713 if (bfqq->bfqd->wr_busy_queues == 0)
714 return blk_rq_sectors(rq) * bfq_async_charge_factor;
715
716 return blk_rq_sectors(rq) * 2 * bfq_async_charge_factor;
aee69d78
PV
717}
718
719/**
720 * bfq_updated_next_req - update the queue after a new next_rq selection.
721 * @bfqd: the device data the queue belongs to.
722 * @bfqq: the queue to update.
723 *
724 * If the first request of a queue changes we make sure that the queue
725 * has enough budget to serve at least its first request (if the
726 * request has grown). We do this because if the queue has not enough
727 * budget for its first request, it has to go through two dispatch
728 * rounds to actually get it dispatched.
729 */
730static void bfq_updated_next_req(struct bfq_data *bfqd,
731 struct bfq_queue *bfqq)
732{
733 struct bfq_entity *entity = &bfqq->entity;
734 struct request *next_rq = bfqq->next_rq;
735 unsigned long new_budget;
736
737 if (!next_rq)
738 return;
739
740 if (bfqq == bfqd->in_service_queue)
741 /*
742 * In order not to break guarantees, budgets cannot be
743 * changed after an entity has been selected.
744 */
745 return;
746
747 new_budget = max_t(unsigned long, bfqq->max_budget,
748 bfq_serv_to_charge(next_rq, bfqq));
749 if (entity->budget != new_budget) {
750 entity->budget = new_budget;
751 bfq_log_bfqq(bfqd, bfqq, "updated next rq: new budget %lu",
752 new_budget);
80294c3b 753 bfq_requeue_bfqq(bfqd, bfqq, false);
aee69d78
PV
754 }
755}
756
3e2bdd6d
PV
757static unsigned int bfq_wr_duration(struct bfq_data *bfqd)
758{
759 u64 dur;
760
761 if (bfqd->bfq_wr_max_time > 0)
762 return bfqd->bfq_wr_max_time;
763
764 dur = bfqd->RT_prod;
765 do_div(dur, bfqd->peak_rate);
766
767 /*
768 * Limit duration between 3 and 13 seconds. Tests show that
769 * higher values than 13 seconds often yield the opposite of
770 * the desired result, i.e., worsen responsiveness by letting
771 * non-interactive and non-soft-real-time applications
772 * preserve weight raising for a too long time interval.
773 *
774 * On the other end, lower values than 3 seconds make it
775 * difficult for most interactive tasks to complete their jobs
776 * before weight-raising finishes.
777 */
778 if (dur > msecs_to_jiffies(13000))
779 dur = msecs_to_jiffies(13000);
780 else if (dur < msecs_to_jiffies(3000))
781 dur = msecs_to_jiffies(3000);
782
783 return dur;
784}
785
786/* switch back from soft real-time to interactive weight raising */
787static void switch_back_to_interactive_wr(struct bfq_queue *bfqq,
788 struct bfq_data *bfqd)
789{
790 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
791 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
792 bfqq->last_wr_start_finish = bfqq->wr_start_at_switch_to_srt;
793}
794
36eca894 795static void
13c931bd
PV
796bfq_bfqq_resume_state(struct bfq_queue *bfqq, struct bfq_data *bfqd,
797 struct bfq_io_cq *bic, bool bfq_already_existing)
36eca894 798{
13c931bd
PV
799 unsigned int old_wr_coeff = bfqq->wr_coeff;
800 bool busy = bfq_already_existing && bfq_bfqq_busy(bfqq);
801
d5be3fef
PV
802 if (bic->saved_has_short_ttime)
803 bfq_mark_bfqq_has_short_ttime(bfqq);
36eca894 804 else
d5be3fef 805 bfq_clear_bfqq_has_short_ttime(bfqq);
36eca894
AA
806
807 if (bic->saved_IO_bound)
808 bfq_mark_bfqq_IO_bound(bfqq);
809 else
810 bfq_clear_bfqq_IO_bound(bfqq);
811
812 bfqq->ttime = bic->saved_ttime;
813 bfqq->wr_coeff = bic->saved_wr_coeff;
814 bfqq->wr_start_at_switch_to_srt = bic->saved_wr_start_at_switch_to_srt;
815 bfqq->last_wr_start_finish = bic->saved_last_wr_start_finish;
816 bfqq->wr_cur_max_time = bic->saved_wr_cur_max_time;
817
e1b2324d 818 if (bfqq->wr_coeff > 1 && (bfq_bfqq_in_large_burst(bfqq) ||
36eca894 819 time_is_before_jiffies(bfqq->last_wr_start_finish +
e1b2324d 820 bfqq->wr_cur_max_time))) {
3e2bdd6d
PV
821 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
822 !bfq_bfqq_in_large_burst(bfqq) &&
823 time_is_after_eq_jiffies(bfqq->wr_start_at_switch_to_srt +
824 bfq_wr_duration(bfqd))) {
825 switch_back_to_interactive_wr(bfqq, bfqd);
826 } else {
827 bfqq->wr_coeff = 1;
828 bfq_log_bfqq(bfqq->bfqd, bfqq,
829 "resume state: switching off wr");
830 }
36eca894
AA
831 }
832
833 /* make sure weight will be updated, however we got here */
834 bfqq->entity.prio_changed = 1;
13c931bd
PV
835
836 if (likely(!busy))
837 return;
838
839 if (old_wr_coeff == 1 && bfqq->wr_coeff > 1)
840 bfqd->wr_busy_queues++;
841 else if (old_wr_coeff > 1 && bfqq->wr_coeff == 1)
842 bfqd->wr_busy_queues--;
36eca894
AA
843}
844
845static int bfqq_process_refs(struct bfq_queue *bfqq)
846{
847 return bfqq->ref - bfqq->allocated - bfqq->entity.on_st;
848}
849
e1b2324d
AA
850/* Empty burst list and add just bfqq (see comments on bfq_handle_burst) */
851static void bfq_reset_burst_list(struct bfq_data *bfqd, struct bfq_queue *bfqq)
852{
853 struct bfq_queue *item;
854 struct hlist_node *n;
855
856 hlist_for_each_entry_safe(item, n, &bfqd->burst_list, burst_list_node)
857 hlist_del_init(&item->burst_list_node);
858 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
859 bfqd->burst_size = 1;
860 bfqd->burst_parent_entity = bfqq->entity.parent;
861}
862
863/* Add bfqq to the list of queues in current burst (see bfq_handle_burst) */
864static void bfq_add_to_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
865{
866 /* Increment burst size to take into account also bfqq */
867 bfqd->burst_size++;
868
869 if (bfqd->burst_size == bfqd->bfq_large_burst_thresh) {
870 struct bfq_queue *pos, *bfqq_item;
871 struct hlist_node *n;
872
873 /*
874 * Enough queues have been activated shortly after each
875 * other to consider this burst as large.
876 */
877 bfqd->large_burst = true;
878
879 /*
880 * We can now mark all queues in the burst list as
881 * belonging to a large burst.
882 */
883 hlist_for_each_entry(bfqq_item, &bfqd->burst_list,
884 burst_list_node)
885 bfq_mark_bfqq_in_large_burst(bfqq_item);
886 bfq_mark_bfqq_in_large_burst(bfqq);
887
888 /*
889 * From now on, and until the current burst finishes, any
890 * new queue being activated shortly after the last queue
891 * was inserted in the burst can be immediately marked as
892 * belonging to a large burst. So the burst list is not
893 * needed any more. Remove it.
894 */
895 hlist_for_each_entry_safe(pos, n, &bfqd->burst_list,
896 burst_list_node)
897 hlist_del_init(&pos->burst_list_node);
898 } else /*
899 * Burst not yet large: add bfqq to the burst list. Do
900 * not increment the ref counter for bfqq, because bfqq
901 * is removed from the burst list before freeing bfqq
902 * in put_queue.
903 */
904 hlist_add_head(&bfqq->burst_list_node, &bfqd->burst_list);
905}
906
907/*
908 * If many queues belonging to the same group happen to be created
909 * shortly after each other, then the processes associated with these
910 * queues have typically a common goal. In particular, bursts of queue
911 * creations are usually caused by services or applications that spawn
912 * many parallel threads/processes. Examples are systemd during boot,
913 * or git grep. To help these processes get their job done as soon as
914 * possible, it is usually better to not grant either weight-raising
915 * or device idling to their queues.
916 *
917 * In this comment we describe, firstly, the reasons why this fact
918 * holds, and, secondly, the next function, which implements the main
919 * steps needed to properly mark these queues so that they can then be
920 * treated in a different way.
921 *
922 * The above services or applications benefit mostly from a high
923 * throughput: the quicker the requests of the activated queues are
924 * cumulatively served, the sooner the target job of these queues gets
925 * completed. As a consequence, weight-raising any of these queues,
926 * which also implies idling the device for it, is almost always
927 * counterproductive. In most cases it just lowers throughput.
928 *
929 * On the other hand, a burst of queue creations may be caused also by
930 * the start of an application that does not consist of a lot of
931 * parallel I/O-bound threads. In fact, with a complex application,
932 * several short processes may need to be executed to start-up the
933 * application. In this respect, to start an application as quickly as
934 * possible, the best thing to do is in any case to privilege the I/O
935 * related to the application with respect to all other
936 * I/O. Therefore, the best strategy to start as quickly as possible
937 * an application that causes a burst of queue creations is to
938 * weight-raise all the queues created during the burst. This is the
939 * exact opposite of the best strategy for the other type of bursts.
940 *
941 * In the end, to take the best action for each of the two cases, the
942 * two types of bursts need to be distinguished. Fortunately, this
943 * seems relatively easy, by looking at the sizes of the bursts. In
944 * particular, we found a threshold such that only bursts with a
945 * larger size than that threshold are apparently caused by
946 * services or commands such as systemd or git grep. For brevity,
947 * hereafter we call just 'large' these bursts. BFQ *does not*
948 * weight-raise queues whose creation occurs in a large burst. In
949 * addition, for each of these queues BFQ performs or does not perform
950 * idling depending on which choice boosts the throughput more. The
951 * exact choice depends on the device and request pattern at
952 * hand.
953 *
954 * Unfortunately, false positives may occur while an interactive task
955 * is starting (e.g., an application is being started). The
956 * consequence is that the queues associated with the task do not
957 * enjoy weight raising as expected. Fortunately these false positives
958 * are very rare. They typically occur if some service happens to
959 * start doing I/O exactly when the interactive task starts.
960 *
961 * Turning back to the next function, it implements all the steps
962 * needed to detect the occurrence of a large burst and to properly
963 * mark all the queues belonging to it (so that they can then be
964 * treated in a different way). This goal is achieved by maintaining a
965 * "burst list" that holds, temporarily, the queues that belong to the
966 * burst in progress. The list is then used to mark these queues as
967 * belonging to a large burst if the burst does become large. The main
968 * steps are the following.
969 *
970 * . when the very first queue is created, the queue is inserted into the
971 * list (as it could be the first queue in a possible burst)
972 *
973 * . if the current burst has not yet become large, and a queue Q that does
974 * not yet belong to the burst is activated shortly after the last time
975 * at which a new queue entered the burst list, then the function appends
976 * Q to the burst list
977 *
978 * . if, as a consequence of the previous step, the burst size reaches
979 * the large-burst threshold, then
980 *
981 * . all the queues in the burst list are marked as belonging to a
982 * large burst
983 *
984 * . the burst list is deleted; in fact, the burst list already served
985 * its purpose (keeping temporarily track of the queues in a burst,
986 * so as to be able to mark them as belonging to a large burst in the
987 * previous sub-step), and now is not needed any more
988 *
989 * . the device enters a large-burst mode
990 *
991 * . if a queue Q that does not belong to the burst is created while
992 * the device is in large-burst mode and shortly after the last time
993 * at which a queue either entered the burst list or was marked as
994 * belonging to the current large burst, then Q is immediately marked
995 * as belonging to a large burst.
996 *
997 * . if a queue Q that does not belong to the burst is created a while
998 * later, i.e., not shortly after, than the last time at which a queue
999 * either entered the burst list or was marked as belonging to the
1000 * current large burst, then the current burst is deemed as finished and:
1001 *
1002 * . the large-burst mode is reset if set
1003 *
1004 * . the burst list is emptied
1005 *
1006 * . Q is inserted in the burst list, as Q may be the first queue
1007 * in a possible new burst (then the burst list contains just Q
1008 * after this step).
1009 */
1010static void bfq_handle_burst(struct bfq_data *bfqd, struct bfq_queue *bfqq)
1011{
1012 /*
1013 * If bfqq is already in the burst list or is part of a large
1014 * burst, or finally has just been split, then there is
1015 * nothing else to do.
1016 */
1017 if (!hlist_unhashed(&bfqq->burst_list_node) ||
1018 bfq_bfqq_in_large_burst(bfqq) ||
1019 time_is_after_eq_jiffies(bfqq->split_time +
1020 msecs_to_jiffies(10)))
1021 return;
1022
1023 /*
1024 * If bfqq's creation happens late enough, or bfqq belongs to
1025 * a different group than the burst group, then the current
1026 * burst is finished, and related data structures must be
1027 * reset.
1028 *
1029 * In this respect, consider the special case where bfqq is
1030 * the very first queue created after BFQ is selected for this
1031 * device. In this case, last_ins_in_burst and
1032 * burst_parent_entity are not yet significant when we get
1033 * here. But it is easy to verify that, whether or not the
1034 * following condition is true, bfqq will end up being
1035 * inserted into the burst list. In particular the list will
1036 * happen to contain only bfqq. And this is exactly what has
1037 * to happen, as bfqq may be the first queue of the first
1038 * burst.
1039 */
1040 if (time_is_before_jiffies(bfqd->last_ins_in_burst +
1041 bfqd->bfq_burst_interval) ||
1042 bfqq->entity.parent != bfqd->burst_parent_entity) {
1043 bfqd->large_burst = false;
1044 bfq_reset_burst_list(bfqd, bfqq);
1045 goto end;
1046 }
1047
1048 /*
1049 * If we get here, then bfqq is being activated shortly after the
1050 * last queue. So, if the current burst is also large, we can mark
1051 * bfqq as belonging to this large burst immediately.
1052 */
1053 if (bfqd->large_burst) {
1054 bfq_mark_bfqq_in_large_burst(bfqq);
1055 goto end;
1056 }
1057
1058 /*
1059 * If we get here, then a large-burst state has not yet been
1060 * reached, but bfqq is being activated shortly after the last
1061 * queue. Then we add bfqq to the burst.
1062 */
1063 bfq_add_to_burst(bfqd, bfqq);
1064end:
1065 /*
1066 * At this point, bfqq either has been added to the current
1067 * burst or has caused the current burst to terminate and a
1068 * possible new burst to start. In particular, in the second
1069 * case, bfqq has become the first queue in the possible new
1070 * burst. In both cases last_ins_in_burst needs to be moved
1071 * forward.
1072 */
1073 bfqd->last_ins_in_burst = jiffies;
1074}
1075
aee69d78
PV
1076static int bfq_bfqq_budget_left(struct bfq_queue *bfqq)
1077{
1078 struct bfq_entity *entity = &bfqq->entity;
1079
1080 return entity->budget - entity->service;
1081}
1082
1083/*
1084 * If enough samples have been computed, return the current max budget
1085 * stored in bfqd, which is dynamically updated according to the
1086 * estimated disk peak rate; otherwise return the default max budget
1087 */
1088static int bfq_max_budget(struct bfq_data *bfqd)
1089{
1090 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1091 return bfq_default_max_budget;
1092 else
1093 return bfqd->bfq_max_budget;
1094}
1095
1096/*
1097 * Return min budget, which is a fraction of the current or default
1098 * max budget (trying with 1/32)
1099 */
1100static int bfq_min_budget(struct bfq_data *bfqd)
1101{
1102 if (bfqd->budgets_assigned < bfq_stats_min_budgets)
1103 return bfq_default_max_budget / 32;
1104 else
1105 return bfqd->bfq_max_budget / 32;
1106}
1107
aee69d78
PV
1108/*
1109 * The next function, invoked after the input queue bfqq switches from
1110 * idle to busy, updates the budget of bfqq. The function also tells
1111 * whether the in-service queue should be expired, by returning
1112 * true. The purpose of expiring the in-service queue is to give bfqq
1113 * the chance to possibly preempt the in-service queue, and the reason
44e44a1b
PV
1114 * for preempting the in-service queue is to achieve one of the two
1115 * goals below.
aee69d78 1116 *
44e44a1b
PV
1117 * 1. Guarantee to bfqq its reserved bandwidth even if bfqq has
1118 * expired because it has remained idle. In particular, bfqq may have
1119 * expired for one of the following two reasons:
aee69d78
PV
1120 *
1121 * - BFQQE_NO_MORE_REQUESTS bfqq did not enjoy any device idling
1122 * and did not make it to issue a new request before its last
1123 * request was served;
1124 *
1125 * - BFQQE_TOO_IDLE bfqq did enjoy device idling, but did not issue
1126 * a new request before the expiration of the idling-time.
1127 *
1128 * Even if bfqq has expired for one of the above reasons, the process
1129 * associated with the queue may be however issuing requests greedily,
1130 * and thus be sensitive to the bandwidth it receives (bfqq may have
1131 * remained idle for other reasons: CPU high load, bfqq not enjoying
1132 * idling, I/O throttling somewhere in the path from the process to
1133 * the I/O scheduler, ...). But if, after every expiration for one of
1134 * the above two reasons, bfqq has to wait for the service of at least
1135 * one full budget of another queue before being served again, then
1136 * bfqq is likely to get a much lower bandwidth or resource time than
1137 * its reserved ones. To address this issue, two countermeasures need
1138 * to be taken.
1139 *
1140 * First, the budget and the timestamps of bfqq need to be updated in
1141 * a special way on bfqq reactivation: they need to be updated as if
1142 * bfqq did not remain idle and did not expire. In fact, if they are
1143 * computed as if bfqq expired and remained idle until reactivation,
1144 * then the process associated with bfqq is treated as if, instead of
1145 * being greedy, it stopped issuing requests when bfqq remained idle,
1146 * and restarts issuing requests only on this reactivation. In other
1147 * words, the scheduler does not help the process recover the "service
1148 * hole" between bfqq expiration and reactivation. As a consequence,
1149 * the process receives a lower bandwidth than its reserved one. In
1150 * contrast, to recover this hole, the budget must be updated as if
1151 * bfqq was not expired at all before this reactivation, i.e., it must
1152 * be set to the value of the remaining budget when bfqq was
1153 * expired. Along the same line, timestamps need to be assigned the
1154 * value they had the last time bfqq was selected for service, i.e.,
1155 * before last expiration. Thus timestamps need to be back-shifted
1156 * with respect to their normal computation (see [1] for more details
1157 * on this tricky aspect).
1158 *
1159 * Secondly, to allow the process to recover the hole, the in-service
1160 * queue must be expired too, to give bfqq the chance to preempt it
1161 * immediately. In fact, if bfqq has to wait for a full budget of the
1162 * in-service queue to be completed, then it may become impossible to
1163 * let the process recover the hole, even if the back-shifted
1164 * timestamps of bfqq are lower than those of the in-service queue. If
1165 * this happens for most or all of the holes, then the process may not
1166 * receive its reserved bandwidth. In this respect, it is worth noting
1167 * that, being the service of outstanding requests unpreemptible, a
1168 * little fraction of the holes may however be unrecoverable, thereby
1169 * causing a little loss of bandwidth.
1170 *
1171 * The last important point is detecting whether bfqq does need this
1172 * bandwidth recovery. In this respect, the next function deems the
1173 * process associated with bfqq greedy, and thus allows it to recover
1174 * the hole, if: 1) the process is waiting for the arrival of a new
1175 * request (which implies that bfqq expired for one of the above two
1176 * reasons), and 2) such a request has arrived soon. The first
1177 * condition is controlled through the flag non_blocking_wait_rq,
1178 * while the second through the flag arrived_in_time. If both
1179 * conditions hold, then the function computes the budget in the
1180 * above-described special way, and signals that the in-service queue
1181 * should be expired. Timestamp back-shifting is done later in
1182 * __bfq_activate_entity.
44e44a1b
PV
1183 *
1184 * 2. Reduce latency. Even if timestamps are not backshifted to let
1185 * the process associated with bfqq recover a service hole, bfqq may
1186 * however happen to have, after being (re)activated, a lower finish
1187 * timestamp than the in-service queue. That is, the next budget of
1188 * bfqq may have to be completed before the one of the in-service
1189 * queue. If this is the case, then preempting the in-service queue
1190 * allows this goal to be achieved, apart from the unpreemptible,
1191 * outstanding requests mentioned above.
1192 *
1193 * Unfortunately, regardless of which of the above two goals one wants
1194 * to achieve, service trees need first to be updated to know whether
1195 * the in-service queue must be preempted. To have service trees
1196 * correctly updated, the in-service queue must be expired and
1197 * rescheduled, and bfqq must be scheduled too. This is one of the
1198 * most costly operations (in future versions, the scheduling
1199 * mechanism may be re-designed in such a way to make it possible to
1200 * know whether preemption is needed without needing to update service
1201 * trees). In addition, queue preemptions almost always cause random
1202 * I/O, and thus loss of throughput. Because of these facts, the next
1203 * function adopts the following simple scheme to avoid both costly
1204 * operations and too frequent preemptions: it requests the expiration
1205 * of the in-service queue (unconditionally) only for queues that need
1206 * to recover a hole, or that either are weight-raised or deserve to
1207 * be weight-raised.
aee69d78
PV
1208 */
1209static bool bfq_bfqq_update_budg_for_activation(struct bfq_data *bfqd,
1210 struct bfq_queue *bfqq,
44e44a1b
PV
1211 bool arrived_in_time,
1212 bool wr_or_deserves_wr)
aee69d78
PV
1213{
1214 struct bfq_entity *entity = &bfqq->entity;
1215
1216 if (bfq_bfqq_non_blocking_wait_rq(bfqq) && arrived_in_time) {
1217 /*
1218 * We do not clear the flag non_blocking_wait_rq here, as
1219 * the latter is used in bfq_activate_bfqq to signal
1220 * that timestamps need to be back-shifted (and is
1221 * cleared right after).
1222 */
1223
1224 /*
1225 * In next assignment we rely on that either
1226 * entity->service or entity->budget are not updated
1227 * on expiration if bfqq is empty (see
1228 * __bfq_bfqq_recalc_budget). Thus both quantities
1229 * remain unchanged after such an expiration, and the
1230 * following statement therefore assigns to
1231 * entity->budget the remaining budget on such an
1232 * expiration. For clarity, entity->service is not
1233 * updated on expiration in any case, and, in normal
1234 * operation, is reset only when bfqq is selected for
1235 * service (see bfq_get_next_queue).
1236 */
1237 entity->budget = min_t(unsigned long,
1238 bfq_bfqq_budget_left(bfqq),
1239 bfqq->max_budget);
1240
1241 return true;
1242 }
1243
1244 entity->budget = max_t(unsigned long, bfqq->max_budget,
1245 bfq_serv_to_charge(bfqq->next_rq, bfqq));
1246 bfq_clear_bfqq_non_blocking_wait_rq(bfqq);
44e44a1b
PV
1247 return wr_or_deserves_wr;
1248}
1249
4baa8bb1
PV
1250/*
1251 * Return the farthest future time instant according to jiffies
1252 * macros.
1253 */
1254static unsigned long bfq_greatest_from_now(void)
1255{
1256 return jiffies + MAX_JIFFY_OFFSET;
1257}
1258
1259/*
1260 * Return the farthest past time instant according to jiffies
1261 * macros.
1262 */
1263static unsigned long bfq_smallest_from_now(void)
1264{
1265 return jiffies - MAX_JIFFY_OFFSET;
1266}
1267
44e44a1b
PV
1268static void bfq_update_bfqq_wr_on_rq_arrival(struct bfq_data *bfqd,
1269 struct bfq_queue *bfqq,
1270 unsigned int old_wr_coeff,
1271 bool wr_or_deserves_wr,
77b7dcea 1272 bool interactive,
e1b2324d 1273 bool in_burst,
77b7dcea 1274 bool soft_rt)
44e44a1b
PV
1275{
1276 if (old_wr_coeff == 1 && wr_or_deserves_wr) {
1277 /* start a weight-raising period */
77b7dcea
PV
1278 if (interactive) {
1279 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1280 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1281 } else {
4baa8bb1
PV
1282 /*
1283 * No interactive weight raising in progress
1284 * here: assign minus infinity to
1285 * wr_start_at_switch_to_srt, to make sure
1286 * that, at the end of the soft-real-time
1287 * weight raising periods that is starting
1288 * now, no interactive weight-raising period
1289 * may be wrongly considered as still in
1290 * progress (and thus actually started by
1291 * mistake).
1292 */
1293 bfqq->wr_start_at_switch_to_srt =
1294 bfq_smallest_from_now();
77b7dcea
PV
1295 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1296 BFQ_SOFTRT_WEIGHT_FACTOR;
1297 bfqq->wr_cur_max_time =
1298 bfqd->bfq_wr_rt_max_time;
1299 }
44e44a1b
PV
1300
1301 /*
1302 * If needed, further reduce budget to make sure it is
1303 * close to bfqq's backlog, so as to reduce the
1304 * scheduling-error component due to a too large
1305 * budget. Do not care about throughput consequences,
1306 * but only about latency. Finally, do not assign a
1307 * too small budget either, to avoid increasing
1308 * latency by causing too frequent expirations.
1309 */
1310 bfqq->entity.budget = min_t(unsigned long,
1311 bfqq->entity.budget,
1312 2 * bfq_min_budget(bfqd));
1313 } else if (old_wr_coeff > 1) {
77b7dcea
PV
1314 if (interactive) { /* update wr coeff and duration */
1315 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1316 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
e1b2324d
AA
1317 } else if (in_burst)
1318 bfqq->wr_coeff = 1;
1319 else if (soft_rt) {
77b7dcea
PV
1320 /*
1321 * The application is now or still meeting the
1322 * requirements for being deemed soft rt. We
1323 * can then correctly and safely (re)charge
1324 * the weight-raising duration for the
1325 * application with the weight-raising
1326 * duration for soft rt applications.
1327 *
1328 * In particular, doing this recharge now, i.e.,
1329 * before the weight-raising period for the
1330 * application finishes, reduces the probability
1331 * of the following negative scenario:
1332 * 1) the weight of a soft rt application is
1333 * raised at startup (as for any newly
1334 * created application),
1335 * 2) since the application is not interactive,
1336 * at a certain time weight-raising is
1337 * stopped for the application,
1338 * 3) at that time the application happens to
1339 * still have pending requests, and hence
1340 * is destined to not have a chance to be
1341 * deemed soft rt before these requests are
1342 * completed (see the comments to the
1343 * function bfq_bfqq_softrt_next_start()
1344 * for details on soft rt detection),
1345 * 4) these pending requests experience a high
1346 * latency because the application is not
1347 * weight-raised while they are pending.
1348 */
1349 if (bfqq->wr_cur_max_time !=
1350 bfqd->bfq_wr_rt_max_time) {
1351 bfqq->wr_start_at_switch_to_srt =
1352 bfqq->last_wr_start_finish;
1353
1354 bfqq->wr_cur_max_time =
1355 bfqd->bfq_wr_rt_max_time;
1356 bfqq->wr_coeff = bfqd->bfq_wr_coeff *
1357 BFQ_SOFTRT_WEIGHT_FACTOR;
1358 }
1359 bfqq->last_wr_start_finish = jiffies;
1360 }
44e44a1b
PV
1361 }
1362}
1363
1364static bool bfq_bfqq_idle_for_long_time(struct bfq_data *bfqd,
1365 struct bfq_queue *bfqq)
1366{
1367 return bfqq->dispatched == 0 &&
1368 time_is_before_jiffies(
1369 bfqq->budget_timeout +
1370 bfqd->bfq_wr_min_idle_time);
aee69d78
PV
1371}
1372
1373static void bfq_bfqq_handle_idle_busy_switch(struct bfq_data *bfqd,
1374 struct bfq_queue *bfqq,
44e44a1b
PV
1375 int old_wr_coeff,
1376 struct request *rq,
1377 bool *interactive)
aee69d78 1378{
e1b2324d
AA
1379 bool soft_rt, in_burst, wr_or_deserves_wr,
1380 bfqq_wants_to_preempt,
44e44a1b 1381 idle_for_long_time = bfq_bfqq_idle_for_long_time(bfqd, bfqq),
aee69d78
PV
1382 /*
1383 * See the comments on
1384 * bfq_bfqq_update_budg_for_activation for
1385 * details on the usage of the next variable.
1386 */
1387 arrived_in_time = ktime_get_ns() <=
1388 bfqq->ttime.last_end_request +
1389 bfqd->bfq_slice_idle * 3;
1390
e21b7a0b 1391
aee69d78 1392 /*
44e44a1b
PV
1393 * bfqq deserves to be weight-raised if:
1394 * - it is sync,
e1b2324d 1395 * - it does not belong to a large burst,
36eca894
AA
1396 * - it has been idle for enough time or is soft real-time,
1397 * - is linked to a bfq_io_cq (it is not shared in any sense).
44e44a1b 1398 */
e1b2324d 1399 in_burst = bfq_bfqq_in_large_burst(bfqq);
77b7dcea 1400 soft_rt = bfqd->bfq_wr_max_softrt_rate > 0 &&
e1b2324d 1401 !in_burst &&
77b7dcea 1402 time_is_before_jiffies(bfqq->soft_rt_next_start);
e1b2324d 1403 *interactive = !in_burst && idle_for_long_time;
44e44a1b
PV
1404 wr_or_deserves_wr = bfqd->low_latency &&
1405 (bfqq->wr_coeff > 1 ||
36eca894
AA
1406 (bfq_bfqq_sync(bfqq) &&
1407 bfqq->bic && (*interactive || soft_rt)));
44e44a1b
PV
1408
1409 /*
1410 * Using the last flag, update budget and check whether bfqq
1411 * may want to preempt the in-service queue.
aee69d78
PV
1412 */
1413 bfqq_wants_to_preempt =
1414 bfq_bfqq_update_budg_for_activation(bfqd, bfqq,
44e44a1b
PV
1415 arrived_in_time,
1416 wr_or_deserves_wr);
aee69d78 1417
e1b2324d
AA
1418 /*
1419 * If bfqq happened to be activated in a burst, but has been
1420 * idle for much more than an interactive queue, then we
1421 * assume that, in the overall I/O initiated in the burst, the
1422 * I/O associated with bfqq is finished. So bfqq does not need
1423 * to be treated as a queue belonging to a burst
1424 * anymore. Accordingly, we reset bfqq's in_large_burst flag
1425 * if set, and remove bfqq from the burst list if it's
1426 * there. We do not decrement burst_size, because the fact
1427 * that bfqq does not need to belong to the burst list any
1428 * more does not invalidate the fact that bfqq was created in
1429 * a burst.
1430 */
1431 if (likely(!bfq_bfqq_just_created(bfqq)) &&
1432 idle_for_long_time &&
1433 time_is_before_jiffies(
1434 bfqq->budget_timeout +
1435 msecs_to_jiffies(10000))) {
1436 hlist_del_init(&bfqq->burst_list_node);
1437 bfq_clear_bfqq_in_large_burst(bfqq);
1438 }
1439
1440 bfq_clear_bfqq_just_created(bfqq);
1441
1442
aee69d78
PV
1443 if (!bfq_bfqq_IO_bound(bfqq)) {
1444 if (arrived_in_time) {
1445 bfqq->requests_within_timer++;
1446 if (bfqq->requests_within_timer >=
1447 bfqd->bfq_requests_within_timer)
1448 bfq_mark_bfqq_IO_bound(bfqq);
1449 } else
1450 bfqq->requests_within_timer = 0;
1451 }
1452
44e44a1b 1453 if (bfqd->low_latency) {
36eca894
AA
1454 if (unlikely(time_is_after_jiffies(bfqq->split_time)))
1455 /* wraparound */
1456 bfqq->split_time =
1457 jiffies - bfqd->bfq_wr_min_idle_time - 1;
1458
1459 if (time_is_before_jiffies(bfqq->split_time +
1460 bfqd->bfq_wr_min_idle_time)) {
1461 bfq_update_bfqq_wr_on_rq_arrival(bfqd, bfqq,
1462 old_wr_coeff,
1463 wr_or_deserves_wr,
1464 *interactive,
e1b2324d 1465 in_burst,
36eca894
AA
1466 soft_rt);
1467
1468 if (old_wr_coeff != bfqq->wr_coeff)
1469 bfqq->entity.prio_changed = 1;
1470 }
44e44a1b
PV
1471 }
1472
77b7dcea
PV
1473 bfqq->last_idle_bklogged = jiffies;
1474 bfqq->service_from_backlogged = 0;
1475 bfq_clear_bfqq_softrt_update(bfqq);
1476
aee69d78
PV
1477 bfq_add_bfqq_busy(bfqd, bfqq);
1478
1479 /*
1480 * Expire in-service queue only if preemption may be needed
1481 * for guarantees. In this respect, the function
1482 * next_queue_may_preempt just checks a simple, necessary
1483 * condition, and not a sufficient condition based on
1484 * timestamps. In fact, for the latter condition to be
1485 * evaluated, timestamps would need first to be updated, and
1486 * this operation is quite costly (see the comments on the
1487 * function bfq_bfqq_update_budg_for_activation).
1488 */
1489 if (bfqd->in_service_queue && bfqq_wants_to_preempt &&
77b7dcea 1490 bfqd->in_service_queue->wr_coeff < bfqq->wr_coeff &&
aee69d78
PV
1491 next_queue_may_preempt(bfqd))
1492 bfq_bfqq_expire(bfqd, bfqd->in_service_queue,
1493 false, BFQQE_PREEMPTED);
1494}
1495
1496static void bfq_add_request(struct request *rq)
1497{
1498 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1499 struct bfq_data *bfqd = bfqq->bfqd;
1500 struct request *next_rq, *prev;
44e44a1b
PV
1501 unsigned int old_wr_coeff = bfqq->wr_coeff;
1502 bool interactive = false;
aee69d78
PV
1503
1504 bfq_log_bfqq(bfqd, bfqq, "add_request %d", rq_is_sync(rq));
1505 bfqq->queued[rq_is_sync(rq)]++;
1506 bfqd->queued++;
1507
1508 elv_rb_add(&bfqq->sort_list, rq);
1509
1510 /*
1511 * Check if this request is a better next-serve candidate.
1512 */
1513 prev = bfqq->next_rq;
1514 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, rq, bfqd->last_position);
1515 bfqq->next_rq = next_rq;
1516
36eca894
AA
1517 /*
1518 * Adjust priority tree position, if next_rq changes.
1519 */
1520 if (prev != bfqq->next_rq)
1521 bfq_pos_tree_add_move(bfqd, bfqq);
1522
aee69d78 1523 if (!bfq_bfqq_busy(bfqq)) /* switching to busy ... */
44e44a1b
PV
1524 bfq_bfqq_handle_idle_busy_switch(bfqd, bfqq, old_wr_coeff,
1525 rq, &interactive);
1526 else {
1527 if (bfqd->low_latency && old_wr_coeff == 1 && !rq_is_sync(rq) &&
1528 time_is_before_jiffies(
1529 bfqq->last_wr_start_finish +
1530 bfqd->bfq_wr_min_inter_arr_async)) {
1531 bfqq->wr_coeff = bfqd->bfq_wr_coeff;
1532 bfqq->wr_cur_max_time = bfq_wr_duration(bfqd);
1533
cfd69712 1534 bfqd->wr_busy_queues++;
44e44a1b
PV
1535 bfqq->entity.prio_changed = 1;
1536 }
1537 if (prev != bfqq->next_rq)
1538 bfq_updated_next_req(bfqd, bfqq);
1539 }
1540
1541 /*
1542 * Assign jiffies to last_wr_start_finish in the following
1543 * cases:
1544 *
1545 * . if bfqq is not going to be weight-raised, because, for
1546 * non weight-raised queues, last_wr_start_finish stores the
1547 * arrival time of the last request; as of now, this piece
1548 * of information is used only for deciding whether to
1549 * weight-raise async queues
1550 *
1551 * . if bfqq is not weight-raised, because, if bfqq is now
1552 * switching to weight-raised, then last_wr_start_finish
1553 * stores the time when weight-raising starts
1554 *
1555 * . if bfqq is interactive, because, regardless of whether
1556 * bfqq is currently weight-raised, the weight-raising
1557 * period must start or restart (this case is considered
1558 * separately because it is not detected by the above
1559 * conditions, if bfqq is already weight-raised)
77b7dcea
PV
1560 *
1561 * last_wr_start_finish has to be updated also if bfqq is soft
1562 * real-time, because the weight-raising period is constantly
1563 * restarted on idle-to-busy transitions for these queues, but
1564 * this is already done in bfq_bfqq_handle_idle_busy_switch if
1565 * needed.
44e44a1b
PV
1566 */
1567 if (bfqd->low_latency &&
1568 (old_wr_coeff == 1 || bfqq->wr_coeff == 1 || interactive))
1569 bfqq->last_wr_start_finish = jiffies;
aee69d78
PV
1570}
1571
1572static struct request *bfq_find_rq_fmerge(struct bfq_data *bfqd,
1573 struct bio *bio,
1574 struct request_queue *q)
1575{
1576 struct bfq_queue *bfqq = bfqd->bio_bfqq;
1577
1578
1579 if (bfqq)
1580 return elv_rb_find(&bfqq->sort_list, bio_end_sector(bio));
1581
1582 return NULL;
1583}
1584
ab0e43e9
PV
1585static sector_t get_sdist(sector_t last_pos, struct request *rq)
1586{
1587 if (last_pos)
1588 return abs(blk_rq_pos(rq) - last_pos);
1589
1590 return 0;
1591}
1592
aee69d78
PV
1593#if 0 /* Still not clear if we can do without next two functions */
1594static void bfq_activate_request(struct request_queue *q, struct request *rq)
1595{
1596 struct bfq_data *bfqd = q->elevator->elevator_data;
1597
1598 bfqd->rq_in_driver++;
aee69d78
PV
1599}
1600
1601static void bfq_deactivate_request(struct request_queue *q, struct request *rq)
1602{
1603 struct bfq_data *bfqd = q->elevator->elevator_data;
1604
1605 bfqd->rq_in_driver--;
1606}
1607#endif
1608
1609static void bfq_remove_request(struct request_queue *q,
1610 struct request *rq)
1611{
1612 struct bfq_queue *bfqq = RQ_BFQQ(rq);
1613 struct bfq_data *bfqd = bfqq->bfqd;
1614 const int sync = rq_is_sync(rq);
1615
1616 if (bfqq->next_rq == rq) {
1617 bfqq->next_rq = bfq_find_next_rq(bfqd, bfqq, rq);
1618 bfq_updated_next_req(bfqd, bfqq);
1619 }
1620
1621 if (rq->queuelist.prev != &rq->queuelist)
1622 list_del_init(&rq->queuelist);
1623 bfqq->queued[sync]--;
1624 bfqd->queued--;
1625 elv_rb_del(&bfqq->sort_list, rq);
1626
1627 elv_rqhash_del(q, rq);
1628 if (q->last_merge == rq)
1629 q->last_merge = NULL;
1630
1631 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
1632 bfqq->next_rq = NULL;
1633
1634 if (bfq_bfqq_busy(bfqq) && bfqq != bfqd->in_service_queue) {
e21b7a0b 1635 bfq_del_bfqq_busy(bfqd, bfqq, false);
aee69d78
PV
1636 /*
1637 * bfqq emptied. In normal operation, when
1638 * bfqq is empty, bfqq->entity.service and
1639 * bfqq->entity.budget must contain,
1640 * respectively, the service received and the
1641 * budget used last time bfqq emptied. These
1642 * facts do not hold in this case, as at least
1643 * this last removal occurred while bfqq is
1644 * not in service. To avoid inconsistencies,
1645 * reset both bfqq->entity.service and
1646 * bfqq->entity.budget, if bfqq has still a
1647 * process that may issue I/O requests to it.
1648 */
1649 bfqq->entity.budget = bfqq->entity.service = 0;
1650 }
36eca894
AA
1651
1652 /*
1653 * Remove queue from request-position tree as it is empty.
1654 */
1655 if (bfqq->pos_root) {
1656 rb_erase(&bfqq->pos_node, bfqq->pos_root);
1657 bfqq->pos_root = NULL;
1658 }
05e90283
PV
1659 } else {
1660 bfq_pos_tree_add_move(bfqd, bfqq);
aee69d78
PV
1661 }
1662
1663 if (rq->cmd_flags & REQ_META)
1664 bfqq->meta_pending--;
e21b7a0b 1665
aee69d78
PV
1666}
1667
1668static bool bfq_bio_merge(struct blk_mq_hw_ctx *hctx, struct bio *bio)
1669{
1670 struct request_queue *q = hctx->queue;
1671 struct bfq_data *bfqd = q->elevator->elevator_data;
1672 struct request *free = NULL;
1673 /*
1674 * bfq_bic_lookup grabs the queue_lock: invoke it now and
1675 * store its return value for later use, to avoid nesting
1676 * queue_lock inside the bfqd->lock. We assume that the bic
1677 * returned by bfq_bic_lookup does not go away before
1678 * bfqd->lock is taken.
1679 */
1680 struct bfq_io_cq *bic = bfq_bic_lookup(bfqd, current->io_context, q);
1681 bool ret;
1682
1683 spin_lock_irq(&bfqd->lock);
1684
1685 if (bic)
1686 bfqd->bio_bfqq = bic_to_bfqq(bic, op_is_sync(bio->bi_opf));
1687 else
1688 bfqd->bio_bfqq = NULL;
1689 bfqd->bio_bic = bic;
1690
1691 ret = blk_mq_sched_try_merge(q, bio, &free);
1692
1693 if (free)
1694 blk_mq_free_request(free);
1695 spin_unlock_irq(&bfqd->lock);
1696
1697 return ret;
1698}
1699
1700static int bfq_request_merge(struct request_queue *q, struct request **req,
1701 struct bio *bio)
1702{
1703 struct bfq_data *bfqd = q->elevator->elevator_data;
1704 struct request *__rq;
1705
1706 __rq = bfq_find_rq_fmerge(bfqd, bio, q);
1707 if (__rq && elv_bio_merge_ok(__rq, bio)) {
1708 *req = __rq;
1709 return ELEVATOR_FRONT_MERGE;
1710 }
1711
1712 return ELEVATOR_NO_MERGE;
1713}
1714
1715static void bfq_request_merged(struct request_queue *q, struct request *req,
1716 enum elv_merge type)
1717{
1718 if (type == ELEVATOR_FRONT_MERGE &&
1719 rb_prev(&req->rb_node) &&
1720 blk_rq_pos(req) <
1721 blk_rq_pos(container_of(rb_prev(&req->rb_node),
1722 struct request, rb_node))) {
1723 struct bfq_queue *bfqq = RQ_BFQQ(req);
1724 struct bfq_data *bfqd = bfqq->bfqd;
1725 struct request *prev, *next_rq;
1726
1727 /* Reposition request in its sort_list */
1728 elv_rb_del(&bfqq->sort_list, req);
1729 elv_rb_add(&bfqq->sort_list, req);
1730
1731 /* Choose next request to be served for bfqq */
1732 prev = bfqq->next_rq;
1733 next_rq = bfq_choose_req(bfqd, bfqq->next_rq, req,
1734 bfqd->last_position);
1735 bfqq->next_rq = next_rq;
1736 /*
36eca894
AA
1737 * If next_rq changes, update both the queue's budget to
1738 * fit the new request and the queue's position in its
1739 * rq_pos_tree.
aee69d78 1740 */
36eca894 1741 if (prev != bfqq->next_rq) {
aee69d78 1742 bfq_updated_next_req(bfqd, bfqq);
36eca894
AA
1743 bfq_pos_tree_add_move(bfqd, bfqq);
1744 }
aee69d78
PV
1745 }
1746}
1747
1748static void bfq_requests_merged(struct request_queue *q, struct request *rq,
1749 struct request *next)
1750{
1751 struct bfq_queue *bfqq = RQ_BFQQ(rq), *next_bfqq = RQ_BFQQ(next);
1752
1753 if (!RB_EMPTY_NODE(&rq->rb_node))
e21b7a0b 1754 goto end;
aee69d78
PV
1755 spin_lock_irq(&bfqq->bfqd->lock);
1756
1757 /*
1758 * If next and rq belong to the same bfq_queue and next is older
1759 * than rq, then reposition rq in the fifo (by substituting next
1760 * with rq). Otherwise, if next and rq belong to different
1761 * bfq_queues, never reposition rq: in fact, we would have to
1762 * reposition it with respect to next's position in its own fifo,
1763 * which would most certainly be too expensive with respect to
1764 * the benefits.
1765 */
1766 if (bfqq == next_bfqq &&
1767 !list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
1768 next->fifo_time < rq->fifo_time) {
1769 list_del_init(&rq->queuelist);
1770 list_replace_init(&next->queuelist, &rq->queuelist);
1771 rq->fifo_time = next->fifo_time;
1772 }
1773
1774 if (bfqq->next_rq == next)
1775 bfqq->next_rq = rq;
1776
1777 bfq_remove_request(q, next);
614822f8 1778 bfqg_stats_update_io_remove(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1779
1780 spin_unlock_irq(&bfqq->bfqd->lock);
e21b7a0b
AA
1781end:
1782 bfqg_stats_update_io_merged(bfqq_group(bfqq), next->cmd_flags);
aee69d78
PV
1783}
1784
44e44a1b
PV
1785/* Must be called with bfqq != NULL */
1786static void bfq_bfqq_end_wr(struct bfq_queue *bfqq)
1787{
cfd69712
PV
1788 if (bfq_bfqq_busy(bfqq))
1789 bfqq->bfqd->wr_busy_queues--;
44e44a1b
PV
1790 bfqq->wr_coeff = 1;
1791 bfqq->wr_cur_max_time = 0;
77b7dcea 1792 bfqq->last_wr_start_finish = jiffies;
44e44a1b
PV
1793 /*
1794 * Trigger a weight change on the next invocation of
1795 * __bfq_entity_update_weight_prio.
1796 */
1797 bfqq->entity.prio_changed = 1;
1798}
1799
ea25da48
PV
1800void bfq_end_wr_async_queues(struct bfq_data *bfqd,
1801 struct bfq_group *bfqg)
44e44a1b
PV
1802{
1803 int i, j;
1804
1805 for (i = 0; i < 2; i++)
1806 for (j = 0; j < IOPRIO_BE_NR; j++)
1807 if (bfqg->async_bfqq[i][j])
1808 bfq_bfqq_end_wr(bfqg->async_bfqq[i][j]);
1809 if (bfqg->async_idle_bfqq)
1810 bfq_bfqq_end_wr(bfqg->async_idle_bfqq);
1811}
1812
1813static void bfq_end_wr(struct bfq_data *bfqd)
1814{
1815 struct bfq_queue *bfqq;
1816
1817 spin_lock_irq(&bfqd->lock);
1818
1819 list_for_each_entry(bfqq, &bfqd->active_list, bfqq_list)
1820 bfq_bfqq_end_wr(bfqq);
1821 list_for_each_entry(bfqq, &bfqd->idle_list, bfqq_list)
1822 bfq_bfqq_end_wr(bfqq);
1823 bfq_end_wr_async(bfqd);
1824
1825 spin_unlock_irq(&bfqd->lock);
1826}
1827
36eca894
AA
1828static sector_t bfq_io_struct_pos(void *io_struct, bool request)
1829{
1830 if (request)
1831 return blk_rq_pos(io_struct);
1832 else
1833 return ((struct bio *)io_struct)->bi_iter.bi_sector;
1834}
1835
1836static int bfq_rq_close_to_sector(void *io_struct, bool request,
1837 sector_t sector)
1838{
1839 return abs(bfq_io_struct_pos(io_struct, request) - sector) <=
1840 BFQQ_CLOSE_THR;
1841}
1842
1843static struct bfq_queue *bfqq_find_close(struct bfq_data *bfqd,
1844 struct bfq_queue *bfqq,
1845 sector_t sector)
1846{
1847 struct rb_root *root = &bfq_bfqq_to_bfqg(bfqq)->rq_pos_tree;
1848 struct rb_node *parent, *node;
1849 struct bfq_queue *__bfqq;
1850
1851 if (RB_EMPTY_ROOT(root))
1852 return NULL;
1853
1854 /*
1855 * First, if we find a request starting at the end of the last
1856 * request, choose it.
1857 */
1858 __bfqq = bfq_rq_pos_tree_lookup(bfqd, root, sector, &parent, NULL);
1859 if (__bfqq)
1860 return __bfqq;
1861
1862 /*
1863 * If the exact sector wasn't found, the parent of the NULL leaf
1864 * will contain the closest sector (rq_pos_tree sorted by
1865 * next_request position).
1866 */
1867 __bfqq = rb_entry(parent, struct bfq_queue, pos_node);
1868 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1869 return __bfqq;
1870
1871 if (blk_rq_pos(__bfqq->next_rq) < sector)
1872 node = rb_next(&__bfqq->pos_node);
1873 else
1874 node = rb_prev(&__bfqq->pos_node);
1875 if (!node)
1876 return NULL;
1877
1878 __bfqq = rb_entry(node, struct bfq_queue, pos_node);
1879 if (bfq_rq_close_to_sector(__bfqq->next_rq, true, sector))
1880 return __bfqq;
1881
1882 return NULL;
1883}
1884
1885static struct bfq_queue *bfq_find_close_cooperator(struct bfq_data *bfqd,
1886 struct bfq_queue *cur_bfqq,
1887 sector_t sector)
1888{
1889 struct bfq_queue *bfqq;
1890
1891 /*
1892 * We shall notice if some of the queues are cooperating,
1893 * e.g., working closely on the same area of the device. In
1894 * that case, we can group them together and: 1) don't waste
1895 * time idling, and 2) serve the union of their requests in
1896 * the best possible order for throughput.
1897 */
1898 bfqq = bfqq_find_close(bfqd, cur_bfqq, sector);
1899 if (!bfqq || bfqq == cur_bfqq)
1900 return NULL;
1901
1902 return bfqq;
1903}
1904
1905static struct bfq_queue *
1906bfq_setup_merge(struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
1907{
1908 int process_refs, new_process_refs;
1909 struct bfq_queue *__bfqq;
1910
1911 /*
1912 * If there are no process references on the new_bfqq, then it is
1913 * unsafe to follow the ->new_bfqq chain as other bfqq's in the chain
1914 * may have dropped their last reference (not just their last process
1915 * reference).
1916 */
1917 if (!bfqq_process_refs(new_bfqq))
1918 return NULL;
1919
1920 /* Avoid a circular list and skip interim queue merges. */
1921 while ((__bfqq = new_bfqq->new_bfqq)) {
1922 if (__bfqq == bfqq)
1923 return NULL;
1924 new_bfqq = __bfqq;
1925 }
1926
1927 process_refs = bfqq_process_refs(bfqq);
1928 new_process_refs = bfqq_process_refs(new_bfqq);
1929 /*
1930 * If the process for the bfqq has gone away, there is no
1931 * sense in merging the queues.
1932 */
1933 if (process_refs == 0 || new_process_refs == 0)
1934 return NULL;
1935
1936 bfq_log_bfqq(bfqq->bfqd, bfqq, "scheduling merge with queue %d",
1937 new_bfqq->pid);
1938
1939 /*
1940 * Merging is just a redirection: the requests of the process
1941 * owning one of the two queues are redirected to the other queue.
1942 * The latter queue, in its turn, is set as shared if this is the
1943 * first time that the requests of some process are redirected to
1944 * it.
1945 *
6fa3e8d3
PV
1946 * We redirect bfqq to new_bfqq and not the opposite, because
1947 * we are in the context of the process owning bfqq, thus we
1948 * have the io_cq of this process. So we can immediately
1949 * configure this io_cq to redirect the requests of the
1950 * process to new_bfqq. In contrast, the io_cq of new_bfqq is
1951 * not available any more (new_bfqq->bic == NULL).
36eca894 1952 *
6fa3e8d3
PV
1953 * Anyway, even in case new_bfqq coincides with the in-service
1954 * queue, redirecting requests the in-service queue is the
1955 * best option, as we feed the in-service queue with new
1956 * requests close to the last request served and, by doing so,
1957 * are likely to increase the throughput.
36eca894
AA
1958 */
1959 bfqq->new_bfqq = new_bfqq;
1960 new_bfqq->ref += process_refs;
1961 return new_bfqq;
1962}
1963
1964static bool bfq_may_be_close_cooperator(struct bfq_queue *bfqq,
1965 struct bfq_queue *new_bfqq)
1966{
7b8fa3b9
PV
1967 if (bfq_too_late_for_merging(new_bfqq))
1968 return false;
1969
36eca894
AA
1970 if (bfq_class_idle(bfqq) || bfq_class_idle(new_bfqq) ||
1971 (bfqq->ioprio_class != new_bfqq->ioprio_class))
1972 return false;
1973
1974 /*
1975 * If either of the queues has already been detected as seeky,
1976 * then merging it with the other queue is unlikely to lead to
1977 * sequential I/O.
1978 */
1979 if (BFQQ_SEEKY(bfqq) || BFQQ_SEEKY(new_bfqq))
1980 return false;
1981
1982 /*
1983 * Interleaved I/O is known to be done by (some) applications
1984 * only for reads, so it does not make sense to merge async
1985 * queues.
1986 */
1987 if (!bfq_bfqq_sync(bfqq) || !bfq_bfqq_sync(new_bfqq))
1988 return false;
1989
1990 return true;
1991}
1992
36eca894
AA
1993/*
1994 * Attempt to schedule a merge of bfqq with the currently in-service
1995 * queue or with a close queue among the scheduled queues. Return
1996 * NULL if no merge was scheduled, a pointer to the shared bfq_queue
1997 * structure otherwise.
1998 *
1999 * The OOM queue is not allowed to participate to cooperation: in fact, since
2000 * the requests temporarily redirected to the OOM queue could be redirected
2001 * again to dedicated queues at any time, the state needed to correctly
2002 * handle merging with the OOM queue would be quite complex and expensive
2003 * to maintain. Besides, in such a critical condition as an out of memory,
2004 * the benefits of queue merging may be little relevant, or even negligible.
2005 *
36eca894
AA
2006 * WARNING: queue merging may impair fairness among non-weight raised
2007 * queues, for at least two reasons: 1) the original weight of a
2008 * merged queue may change during the merged state, 2) even being the
2009 * weight the same, a merged queue may be bloated with many more
2010 * requests than the ones produced by its originally-associated
2011 * process.
2012 */
2013static struct bfq_queue *
2014bfq_setup_cooperator(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2015 void *io_struct, bool request)
2016{
2017 struct bfq_queue *in_service_bfqq, *new_bfqq;
2018
7b8fa3b9
PV
2019 /*
2020 * Prevent bfqq from being merged if it has been created too
2021 * long ago. The idea is that true cooperating processes, and
2022 * thus their associated bfq_queues, are supposed to be
2023 * created shortly after each other. This is the case, e.g.,
2024 * for KVM/QEMU and dump I/O threads. Basing on this
2025 * assumption, the following filtering greatly reduces the
2026 * probability that two non-cooperating processes, which just
2027 * happen to do close I/O for some short time interval, have
2028 * their queues merged by mistake.
2029 */
2030 if (bfq_too_late_for_merging(bfqq))
2031 return NULL;
2032
36eca894
AA
2033 if (bfqq->new_bfqq)
2034 return bfqq->new_bfqq;
2035
4403e4e4 2036 if (!io_struct || unlikely(bfqq == &bfqd->oom_bfqq))
36eca894
AA
2037 return NULL;
2038
2039 /* If there is only one backlogged queue, don't search. */
2040 if (bfqd->busy_queues == 1)
2041 return NULL;
2042
2043 in_service_bfqq = bfqd->in_service_queue;
2044
4403e4e4
AR
2045 if (in_service_bfqq && in_service_bfqq != bfqq &&
2046 likely(in_service_bfqq != &bfqd->oom_bfqq) &&
2047 bfq_rq_close_to_sector(io_struct, request, bfqd->last_position) &&
36eca894
AA
2048 bfqq->entity.parent == in_service_bfqq->entity.parent &&
2049 bfq_may_be_close_cooperator(bfqq, in_service_bfqq)) {
2050 new_bfqq = bfq_setup_merge(bfqq, in_service_bfqq);
2051 if (new_bfqq)
2052 return new_bfqq;
2053 }
2054 /*
2055 * Check whether there is a cooperator among currently scheduled
2056 * queues. The only thing we need is that the bio/request is not
2057 * NULL, as we need it to establish whether a cooperator exists.
2058 */
36eca894
AA
2059 new_bfqq = bfq_find_close_cooperator(bfqd, bfqq,
2060 bfq_io_struct_pos(io_struct, request));
2061
4403e4e4 2062 if (new_bfqq && likely(new_bfqq != &bfqd->oom_bfqq) &&
36eca894
AA
2063 bfq_may_be_close_cooperator(bfqq, new_bfqq))
2064 return bfq_setup_merge(bfqq, new_bfqq);
2065
2066 return NULL;
2067}
2068
2069static void bfq_bfqq_save_state(struct bfq_queue *bfqq)
2070{
2071 struct bfq_io_cq *bic = bfqq->bic;
2072
2073 /*
2074 * If !bfqq->bic, the queue is already shared or its requests
2075 * have already been redirected to a shared queue; both idle window
2076 * and weight raising state have already been saved. Do nothing.
2077 */
2078 if (!bic)
2079 return;
2080
2081 bic->saved_ttime = bfqq->ttime;
d5be3fef 2082 bic->saved_has_short_ttime = bfq_bfqq_has_short_ttime(bfqq);
36eca894 2083 bic->saved_IO_bound = bfq_bfqq_IO_bound(bfqq);
e1b2324d
AA
2084 bic->saved_in_large_burst = bfq_bfqq_in_large_burst(bfqq);
2085 bic->was_in_burst_list = !hlist_unhashed(&bfqq->burst_list_node);
894df937 2086 if (unlikely(bfq_bfqq_just_created(bfqq) &&
1be6e8a9
AR
2087 !bfq_bfqq_in_large_burst(bfqq) &&
2088 bfqq->bfqd->low_latency)) {
894df937
PV
2089 /*
2090 * bfqq being merged right after being created: bfqq
2091 * would have deserved interactive weight raising, but
2092 * did not make it to be set in a weight-raised state,
2093 * because of this early merge. Store directly the
2094 * weight-raising state that would have been assigned
2095 * to bfqq, so that to avoid that bfqq unjustly fails
2096 * to enjoy weight raising if split soon.
2097 */
2098 bic->saved_wr_coeff = bfqq->bfqd->bfq_wr_coeff;
2099 bic->saved_wr_cur_max_time = bfq_wr_duration(bfqq->bfqd);
2100 bic->saved_last_wr_start_finish = jiffies;
2101 } else {
2102 bic->saved_wr_coeff = bfqq->wr_coeff;
2103 bic->saved_wr_start_at_switch_to_srt =
2104 bfqq->wr_start_at_switch_to_srt;
2105 bic->saved_last_wr_start_finish = bfqq->last_wr_start_finish;
2106 bic->saved_wr_cur_max_time = bfqq->wr_cur_max_time;
2107 }
36eca894
AA
2108}
2109
36eca894
AA
2110static void
2111bfq_merge_bfqqs(struct bfq_data *bfqd, struct bfq_io_cq *bic,
2112 struct bfq_queue *bfqq, struct bfq_queue *new_bfqq)
2113{
2114 bfq_log_bfqq(bfqd, bfqq, "merging with queue %lu",
2115 (unsigned long)new_bfqq->pid);
2116 /* Save weight raising and idle window of the merged queues */
2117 bfq_bfqq_save_state(bfqq);
2118 bfq_bfqq_save_state(new_bfqq);
2119 if (bfq_bfqq_IO_bound(bfqq))
2120 bfq_mark_bfqq_IO_bound(new_bfqq);
2121 bfq_clear_bfqq_IO_bound(bfqq);
2122
2123 /*
2124 * If bfqq is weight-raised, then let new_bfqq inherit
2125 * weight-raising. To reduce false positives, neglect the case
2126 * where bfqq has just been created, but has not yet made it
2127 * to be weight-raised (which may happen because EQM may merge
2128 * bfqq even before bfq_add_request is executed for the first
e1b2324d
AA
2129 * time for bfqq). Handling this case would however be very
2130 * easy, thanks to the flag just_created.
36eca894
AA
2131 */
2132 if (new_bfqq->wr_coeff == 1 && bfqq->wr_coeff > 1) {
2133 new_bfqq->wr_coeff = bfqq->wr_coeff;
2134 new_bfqq->wr_cur_max_time = bfqq->wr_cur_max_time;
2135 new_bfqq->last_wr_start_finish = bfqq->last_wr_start_finish;
2136 new_bfqq->wr_start_at_switch_to_srt =
2137 bfqq->wr_start_at_switch_to_srt;
2138 if (bfq_bfqq_busy(new_bfqq))
2139 bfqd->wr_busy_queues++;
2140 new_bfqq->entity.prio_changed = 1;
2141 }
2142
2143 if (bfqq->wr_coeff > 1) { /* bfqq has given its wr to new_bfqq */
2144 bfqq->wr_coeff = 1;
2145 bfqq->entity.prio_changed = 1;
2146 if (bfq_bfqq_busy(bfqq))
2147 bfqd->wr_busy_queues--;
2148 }
2149
2150 bfq_log_bfqq(bfqd, new_bfqq, "merge_bfqqs: wr_busy %d",
2151 bfqd->wr_busy_queues);
2152
36eca894
AA
2153 /*
2154 * Merge queues (that is, let bic redirect its requests to new_bfqq)
2155 */
2156 bic_set_bfqq(bic, new_bfqq, 1);
2157 bfq_mark_bfqq_coop(new_bfqq);
2158 /*
2159 * new_bfqq now belongs to at least two bics (it is a shared queue):
2160 * set new_bfqq->bic to NULL. bfqq either:
2161 * - does not belong to any bic any more, and hence bfqq->bic must
2162 * be set to NULL, or
2163 * - is a queue whose owning bics have already been redirected to a
2164 * different queue, hence the queue is destined to not belong to
2165 * any bic soon and bfqq->bic is already NULL (therefore the next
2166 * assignment causes no harm).
2167 */
2168 new_bfqq->bic = NULL;
2169 bfqq->bic = NULL;
2170 /* release process reference to bfqq */
2171 bfq_put_queue(bfqq);
2172}
2173
aee69d78
PV
2174static bool bfq_allow_bio_merge(struct request_queue *q, struct request *rq,
2175 struct bio *bio)
2176{
2177 struct bfq_data *bfqd = q->elevator->elevator_data;
2178 bool is_sync = op_is_sync(bio->bi_opf);
36eca894 2179 struct bfq_queue *bfqq = bfqd->bio_bfqq, *new_bfqq;
aee69d78
PV
2180
2181 /*
2182 * Disallow merge of a sync bio into an async request.
2183 */
2184 if (is_sync && !rq_is_sync(rq))
2185 return false;
2186
2187 /*
2188 * Lookup the bfqq that this bio will be queued with. Allow
2189 * merge only if rq is queued there.
2190 */
2191 if (!bfqq)
2192 return false;
2193
36eca894
AA
2194 /*
2195 * We take advantage of this function to perform an early merge
2196 * of the queues of possible cooperating processes.
2197 */
2198 new_bfqq = bfq_setup_cooperator(bfqd, bfqq, bio, false);
2199 if (new_bfqq) {
2200 /*
2201 * bic still points to bfqq, then it has not yet been
2202 * redirected to some other bfq_queue, and a queue
2203 * merge beween bfqq and new_bfqq can be safely
2204 * fulfillled, i.e., bic can be redirected to new_bfqq
2205 * and bfqq can be put.
2206 */
2207 bfq_merge_bfqqs(bfqd, bfqd->bio_bic, bfqq,
2208 new_bfqq);
2209 /*
2210 * If we get here, bio will be queued into new_queue,
2211 * so use new_bfqq to decide whether bio and rq can be
2212 * merged.
2213 */
2214 bfqq = new_bfqq;
2215
2216 /*
2217 * Change also bqfd->bio_bfqq, as
2218 * bfqd->bio_bic now points to new_bfqq, and
2219 * this function may be invoked again (and then may
2220 * use again bqfd->bio_bfqq).
2221 */
2222 bfqd->bio_bfqq = bfqq;
2223 }
2224
aee69d78
PV
2225 return bfqq == RQ_BFQQ(rq);
2226}
2227
44e44a1b
PV
2228/*
2229 * Set the maximum time for the in-service queue to consume its
2230 * budget. This prevents seeky processes from lowering the throughput.
2231 * In practice, a time-slice service scheme is used with seeky
2232 * processes.
2233 */
2234static void bfq_set_budget_timeout(struct bfq_data *bfqd,
2235 struct bfq_queue *bfqq)
2236{
77b7dcea
PV
2237 unsigned int timeout_coeff;
2238
2239 if (bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time)
2240 timeout_coeff = 1;
2241 else
2242 timeout_coeff = bfqq->entity.weight / bfqq->entity.orig_weight;
2243
44e44a1b
PV
2244 bfqd->last_budget_start = ktime_get();
2245
2246 bfqq->budget_timeout = jiffies +
77b7dcea 2247 bfqd->bfq_timeout * timeout_coeff;
44e44a1b
PV
2248}
2249
aee69d78
PV
2250static void __bfq_set_in_service_queue(struct bfq_data *bfqd,
2251 struct bfq_queue *bfqq)
2252{
2253 if (bfqq) {
aee69d78
PV
2254 bfq_clear_bfqq_fifo_expire(bfqq);
2255
2256 bfqd->budgets_assigned = (bfqd->budgets_assigned * 7 + 256) / 8;
2257
77b7dcea
PV
2258 if (time_is_before_jiffies(bfqq->last_wr_start_finish) &&
2259 bfqq->wr_coeff > 1 &&
2260 bfqq->wr_cur_max_time == bfqd->bfq_wr_rt_max_time &&
2261 time_is_before_jiffies(bfqq->budget_timeout)) {
2262 /*
2263 * For soft real-time queues, move the start
2264 * of the weight-raising period forward by the
2265 * time the queue has not received any
2266 * service. Otherwise, a relatively long
2267 * service delay is likely to cause the
2268 * weight-raising period of the queue to end,
2269 * because of the short duration of the
2270 * weight-raising period of a soft real-time
2271 * queue. It is worth noting that this move
2272 * is not so dangerous for the other queues,
2273 * because soft real-time queues are not
2274 * greedy.
2275 *
2276 * To not add a further variable, we use the
2277 * overloaded field budget_timeout to
2278 * determine for how long the queue has not
2279 * received service, i.e., how much time has
2280 * elapsed since the queue expired. However,
2281 * this is a little imprecise, because
2282 * budget_timeout is set to jiffies if bfqq
2283 * not only expires, but also remains with no
2284 * request.
2285 */
2286 if (time_after(bfqq->budget_timeout,
2287 bfqq->last_wr_start_finish))
2288 bfqq->last_wr_start_finish +=
2289 jiffies - bfqq->budget_timeout;
2290 else
2291 bfqq->last_wr_start_finish = jiffies;
2292 }
2293
44e44a1b 2294 bfq_set_budget_timeout(bfqd, bfqq);
aee69d78
PV
2295 bfq_log_bfqq(bfqd, bfqq,
2296 "set_in_service_queue, cur-budget = %d",
2297 bfqq->entity.budget);
2298 }
2299
2300 bfqd->in_service_queue = bfqq;
2301}
2302
2303/*
2304 * Get and set a new queue for service.
2305 */
2306static struct bfq_queue *bfq_set_in_service_queue(struct bfq_data *bfqd)
2307{
2308 struct bfq_queue *bfqq = bfq_get_next_queue(bfqd);
2309
2310 __bfq_set_in_service_queue(bfqd, bfqq);
2311 return bfqq;
2312}
2313
aee69d78
PV
2314static void bfq_arm_slice_timer(struct bfq_data *bfqd)
2315{
2316 struct bfq_queue *bfqq = bfqd->in_service_queue;
aee69d78
PV
2317 u32 sl;
2318
aee69d78
PV
2319 bfq_mark_bfqq_wait_request(bfqq);
2320
2321 /*
2322 * We don't want to idle for seeks, but we do want to allow
2323 * fair distribution of slice time for a process doing back-to-back
2324 * seeks. So allow a little bit of time for him to submit a new rq.
2325 */
2326 sl = bfqd->bfq_slice_idle;
2327 /*
1de0c4cd
AA
2328 * Unless the queue is being weight-raised or the scenario is
2329 * asymmetric, grant only minimum idle time if the queue
2330 * is seeky. A long idling is preserved for a weight-raised
2331 * queue, or, more in general, in an asymmetric scenario,
2332 * because a long idling is needed for guaranteeing to a queue
2333 * its reserved share of the throughput (in particular, it is
2334 * needed if the queue has a higher weight than some other
2335 * queue).
aee69d78 2336 */
1de0c4cd
AA
2337 if (BFQQ_SEEKY(bfqq) && bfqq->wr_coeff == 1 &&
2338 bfq_symmetric_scenario(bfqd))
aee69d78
PV
2339 sl = min_t(u64, sl, BFQ_MIN_TT);
2340
2341 bfqd->last_idling_start = ktime_get();
2342 hrtimer_start(&bfqd->idle_slice_timer, ns_to_ktime(sl),
2343 HRTIMER_MODE_REL);
e21b7a0b 2344 bfqg_stats_set_start_idle_time(bfqq_group(bfqq));
aee69d78
PV
2345}
2346
ab0e43e9
PV
2347/*
2348 * In autotuning mode, max_budget is dynamically recomputed as the
2349 * amount of sectors transferred in timeout at the estimated peak
2350 * rate. This enables BFQ to utilize a full timeslice with a full
2351 * budget, even if the in-service queue is served at peak rate. And
2352 * this maximises throughput with sequential workloads.
2353 */
2354static unsigned long bfq_calc_max_budget(struct bfq_data *bfqd)
2355{
2356 return (u64)bfqd->peak_rate * USEC_PER_MSEC *
2357 jiffies_to_msecs(bfqd->bfq_timeout)>>BFQ_RATE_SHIFT;
2358}
2359
44e44a1b
PV
2360/*
2361 * Update parameters related to throughput and responsiveness, as a
2362 * function of the estimated peak rate. See comments on
2363 * bfq_calc_max_budget(), and on T_slow and T_fast arrays.
2364 */
2365static void update_thr_responsiveness_params(struct bfq_data *bfqd)
2366{
2367 int dev_type = blk_queue_nonrot(bfqd->queue);
2368
2369 if (bfqd->bfq_user_max_budget == 0)
2370 bfqd->bfq_max_budget =
2371 bfq_calc_max_budget(bfqd);
2372
2373 if (bfqd->device_speed == BFQ_BFQD_FAST &&
2374 bfqd->peak_rate < device_speed_thresh[dev_type]) {
2375 bfqd->device_speed = BFQ_BFQD_SLOW;
2376 bfqd->RT_prod = R_slow[dev_type] *
2377 T_slow[dev_type];
2378 } else if (bfqd->device_speed == BFQ_BFQD_SLOW &&
2379 bfqd->peak_rate > device_speed_thresh[dev_type]) {
2380 bfqd->device_speed = BFQ_BFQD_FAST;
2381 bfqd->RT_prod = R_fast[dev_type] *
2382 T_fast[dev_type];
2383 }
2384
2385 bfq_log(bfqd,
2386"dev_type %s dev_speed_class = %s (%llu sects/sec), thresh %llu setcs/sec",
2387 dev_type == 0 ? "ROT" : "NONROT",
2388 bfqd->device_speed == BFQ_BFQD_FAST ? "FAST" : "SLOW",
2389 bfqd->device_speed == BFQ_BFQD_FAST ?
2390 (USEC_PER_SEC*(u64)R_fast[dev_type])>>BFQ_RATE_SHIFT :
2391 (USEC_PER_SEC*(u64)R_slow[dev_type])>>BFQ_RATE_SHIFT,
2392 (USEC_PER_SEC*(u64)device_speed_thresh[dev_type])>>
2393 BFQ_RATE_SHIFT);
2394}
2395
ab0e43e9
PV
2396static void bfq_reset_rate_computation(struct bfq_data *bfqd,
2397 struct request *rq)
2398{
2399 if (rq != NULL) { /* new rq dispatch now, reset accordingly */
2400 bfqd->last_dispatch = bfqd->first_dispatch = ktime_get_ns();
2401 bfqd->peak_rate_samples = 1;
2402 bfqd->sequential_samples = 0;
2403 bfqd->tot_sectors_dispatched = bfqd->last_rq_max_size =
2404 blk_rq_sectors(rq);
2405 } else /* no new rq dispatched, just reset the number of samples */
2406 bfqd->peak_rate_samples = 0; /* full re-init on next disp. */
2407
2408 bfq_log(bfqd,
2409 "reset_rate_computation at end, sample %u/%u tot_sects %llu",
2410 bfqd->peak_rate_samples, bfqd->sequential_samples,
2411 bfqd->tot_sectors_dispatched);
2412}
2413
2414static void bfq_update_rate_reset(struct bfq_data *bfqd, struct request *rq)
2415{
2416 u32 rate, weight, divisor;
2417
2418 /*
2419 * For the convergence property to hold (see comments on
2420 * bfq_update_peak_rate()) and for the assessment to be
2421 * reliable, a minimum number of samples must be present, and
2422 * a minimum amount of time must have elapsed. If not so, do
2423 * not compute new rate. Just reset parameters, to get ready
2424 * for a new evaluation attempt.
2425 */
2426 if (bfqd->peak_rate_samples < BFQ_RATE_MIN_SAMPLES ||
2427 bfqd->delta_from_first < BFQ_RATE_MIN_INTERVAL)
2428 goto reset_computation;
2429
2430 /*
2431 * If a new request completion has occurred after last
2432 * dispatch, then, to approximate the rate at which requests
2433 * have been served by the device, it is more precise to
2434 * extend the observation interval to the last completion.
2435 */
2436 bfqd->delta_from_first =
2437 max_t(u64, bfqd->delta_from_first,
2438 bfqd->last_completion - bfqd->first_dispatch);
2439
2440 /*
2441 * Rate computed in sects/usec, and not sects/nsec, for
2442 * precision issues.
2443 */
2444 rate = div64_ul(bfqd->tot_sectors_dispatched<<BFQ_RATE_SHIFT,
2445 div_u64(bfqd->delta_from_first, NSEC_PER_USEC));
2446
2447 /*
2448 * Peak rate not updated if:
2449 * - the percentage of sequential dispatches is below 3/4 of the
2450 * total, and rate is below the current estimated peak rate
2451 * - rate is unreasonably high (> 20M sectors/sec)
2452 */
2453 if ((bfqd->sequential_samples < (3 * bfqd->peak_rate_samples)>>2 &&
2454 rate <= bfqd->peak_rate) ||
2455 rate > 20<<BFQ_RATE_SHIFT)
2456 goto reset_computation;
2457
2458 /*
2459 * We have to update the peak rate, at last! To this purpose,
2460 * we use a low-pass filter. We compute the smoothing constant
2461 * of the filter as a function of the 'weight' of the new
2462 * measured rate.
2463 *
2464 * As can be seen in next formulas, we define this weight as a
2465 * quantity proportional to how sequential the workload is,
2466 * and to how long the observation time interval is.
2467 *
2468 * The weight runs from 0 to 8. The maximum value of the
2469 * weight, 8, yields the minimum value for the smoothing
2470 * constant. At this minimum value for the smoothing constant,
2471 * the measured rate contributes for half of the next value of
2472 * the estimated peak rate.
2473 *
2474 * So, the first step is to compute the weight as a function
2475 * of how sequential the workload is. Note that the weight
2476 * cannot reach 9, because bfqd->sequential_samples cannot
2477 * become equal to bfqd->peak_rate_samples, which, in its
2478 * turn, holds true because bfqd->sequential_samples is not
2479 * incremented for the first sample.
2480 */
2481 weight = (9 * bfqd->sequential_samples) / bfqd->peak_rate_samples;
2482
2483 /*
2484 * Second step: further refine the weight as a function of the
2485 * duration of the observation interval.
2486 */
2487 weight = min_t(u32, 8,
2488 div_u64(weight * bfqd->delta_from_first,
2489 BFQ_RATE_REF_INTERVAL));
2490
2491 /*
2492 * Divisor ranging from 10, for minimum weight, to 2, for
2493 * maximum weight.
2494 */
2495 divisor = 10 - weight;
2496
2497 /*
2498 * Finally, update peak rate:
2499 *
2500 * peak_rate = peak_rate * (divisor-1) / divisor + rate / divisor
2501 */
2502 bfqd->peak_rate *= divisor-1;
2503 bfqd->peak_rate /= divisor;
2504 rate /= divisor; /* smoothing constant alpha = 1/divisor */
2505
2506 bfqd->peak_rate += rate;
44e44a1b 2507 update_thr_responsiveness_params(bfqd);
ab0e43e9
PV
2508
2509reset_computation:
2510 bfq_reset_rate_computation(bfqd, rq);
2511}
2512
2513/*
2514 * Update the read/write peak rate (the main quantity used for
2515 * auto-tuning, see update_thr_responsiveness_params()).
2516 *
2517 * It is not trivial to estimate the peak rate (correctly): because of
2518 * the presence of sw and hw queues between the scheduler and the
2519 * device components that finally serve I/O requests, it is hard to
2520 * say exactly when a given dispatched request is served inside the
2521 * device, and for how long. As a consequence, it is hard to know
2522 * precisely at what rate a given set of requests is actually served
2523 * by the device.
2524 *
2525 * On the opposite end, the dispatch time of any request is trivially
2526 * available, and, from this piece of information, the "dispatch rate"
2527 * of requests can be immediately computed. So, the idea in the next
2528 * function is to use what is known, namely request dispatch times
2529 * (plus, when useful, request completion times), to estimate what is
2530 * unknown, namely in-device request service rate.
2531 *
2532 * The main issue is that, because of the above facts, the rate at
2533 * which a certain set of requests is dispatched over a certain time
2534 * interval can vary greatly with respect to the rate at which the
2535 * same requests are then served. But, since the size of any
2536 * intermediate queue is limited, and the service scheme is lossless
2537 * (no request is silently dropped), the following obvious convergence
2538 * property holds: the number of requests dispatched MUST become
2539 * closer and closer to the number of requests completed as the
2540 * observation interval grows. This is the key property used in
2541 * the next function to estimate the peak service rate as a function
2542 * of the observed dispatch rate. The function assumes to be invoked
2543 * on every request dispatch.
2544 */
2545static void bfq_update_peak_rate(struct bfq_data *bfqd, struct request *rq)
2546{
2547 u64 now_ns = ktime_get_ns();
2548
2549 if (bfqd->peak_rate_samples == 0) { /* first dispatch */
2550 bfq_log(bfqd, "update_peak_rate: goto reset, samples %d",
2551 bfqd->peak_rate_samples);
2552 bfq_reset_rate_computation(bfqd, rq);
2553 goto update_last_values; /* will add one sample */
2554 }
2555
2556 /*
2557 * Device idle for very long: the observation interval lasting
2558 * up to this dispatch cannot be a valid observation interval
2559 * for computing a new peak rate (similarly to the late-
2560 * completion event in bfq_completed_request()). Go to
2561 * update_rate_and_reset to have the following three steps
2562 * taken:
2563 * - close the observation interval at the last (previous)
2564 * request dispatch or completion
2565 * - compute rate, if possible, for that observation interval
2566 * - start a new observation interval with this dispatch
2567 */
2568 if (now_ns - bfqd->last_dispatch > 100*NSEC_PER_MSEC &&
2569 bfqd->rq_in_driver == 0)
2570 goto update_rate_and_reset;
2571
2572 /* Update sampling information */
2573 bfqd->peak_rate_samples++;
2574
2575 if ((bfqd->rq_in_driver > 0 ||
2576 now_ns - bfqd->last_completion < BFQ_MIN_TT)
2577 && get_sdist(bfqd->last_position, rq) < BFQQ_SEEK_THR)
2578 bfqd->sequential_samples++;
2579
2580 bfqd->tot_sectors_dispatched += blk_rq_sectors(rq);
2581
2582 /* Reset max observed rq size every 32 dispatches */
2583 if (likely(bfqd->peak_rate_samples % 32))
2584 bfqd->last_rq_max_size =
2585 max_t(u32, blk_rq_sectors(rq), bfqd->last_rq_max_size);
2586 else
2587 bfqd->last_rq_max_size = blk_rq_sectors(rq);
2588
2589 bfqd->delta_from_first = now_ns - bfqd->first_dispatch;
2590
2591 /* Target observation interval not yet reached, go on sampling */
2592 if (bfqd->delta_from_first < BFQ_RATE_REF_INTERVAL)
2593 goto update_last_values;
2594
2595update_rate_and_reset:
2596 bfq_update_rate_reset(bfqd, rq);
2597update_last_values:
2598 bfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
2599 bfqd->last_dispatch = now_ns;
2600}
2601
aee69d78
PV
2602/*
2603 * Remove request from internal lists.
2604 */
2605static void bfq_dispatch_remove(struct request_queue *q, struct request *rq)
2606{
2607 struct bfq_queue *bfqq = RQ_BFQQ(rq);
2608
2609 /*
2610 * For consistency, the next instruction should have been
2611 * executed after removing the request from the queue and
2612 * dispatching it. We execute instead this instruction before
2613 * bfq_remove_request() (and hence introduce a temporary
2614 * inconsistency), for efficiency. In fact, should this
2615 * dispatch occur for a non in-service bfqq, this anticipated
2616 * increment prevents two counters related to bfqq->dispatched
2617 * from risking to be, first, uselessly decremented, and then
2618 * incremented again when the (new) value of bfqq->dispatched
2619 * happens to be taken into account.
2620 */
2621 bfqq->dispatched++;
ab0e43e9 2622 bfq_update_peak_rate(q->elevator->elevator_data, rq);
aee69d78
PV
2623
2624 bfq_remove_request(q, rq);
2625}
2626
2627static void __bfq_bfqq_expire(struct bfq_data *bfqd, struct bfq_queue *bfqq)
2628{
36eca894
AA
2629 /*
2630 * If this bfqq is shared between multiple processes, check
2631 * to make sure that those processes are still issuing I/Os
2632 * within the mean seek distance. If not, it may be time to
2633 * break the queues apart again.
2634 */
2635 if (bfq_bfqq_coop(bfqq) && BFQQ_SEEKY(bfqq))
2636 bfq_mark_bfqq_split_coop(bfqq);
2637
44e44a1b
PV
2638 if (RB_EMPTY_ROOT(&bfqq->sort_list)) {
2639 if (bfqq->dispatched == 0)
2640 /*
2641 * Overloading budget_timeout field to store
2642 * the time at which the queue remains with no
2643 * backlog and no outstanding request; used by
2644 * the weight-raising mechanism.
2645 */
2646 bfqq->budget_timeout = jiffies;
2647
e21b7a0b 2648 bfq_del_bfqq_busy(bfqd, bfqq, true);
36eca894 2649 } else {
80294c3b 2650 bfq_requeue_bfqq(bfqd, bfqq, true);
36eca894
AA
2651 /*
2652 * Resort priority tree of potential close cooperators.
2653 */
2654 bfq_pos_tree_add_move(bfqd, bfqq);
2655 }
e21b7a0b
AA
2656
2657 /*
2658 * All in-service entities must have been properly deactivated
2659 * or requeued before executing the next function, which
2660 * resets all in-service entites as no more in service.
2661 */
2662 __bfq_bfqd_reset_in_service(bfqd);
aee69d78
PV
2663}
2664
2665/**
2666 * __bfq_bfqq_recalc_budget - try to adapt the budget to the @bfqq behavior.
2667 * @bfqd: device data.
2668 * @bfqq: queue to update.
2669 * @reason: reason for expiration.
2670 *
2671 * Handle the feedback on @bfqq budget at queue expiration.
2672 * See the body for detailed comments.
2673 */
2674static void __bfq_bfqq_recalc_budget(struct bfq_data *bfqd,
2675 struct bfq_queue *bfqq,
2676 enum bfqq_expiration reason)
2677{
2678 struct request *next_rq;
2679 int budget, min_budget;
2680
aee69d78
PV
2681 min_budget = bfq_min_budget(bfqd);
2682
44e44a1b
PV
2683 if (bfqq->wr_coeff == 1)
2684 budget = bfqq->max_budget;
2685 else /*
2686 * Use a constant, low budget for weight-raised queues,
2687 * to help achieve a low latency. Keep it slightly higher
2688 * than the minimum possible budget, to cause a little
2689 * bit fewer expirations.
2690 */
2691 budget = 2 * min_budget;
2692
aee69d78
PV
2693 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last budg %d, budg left %d",
2694 bfqq->entity.budget, bfq_bfqq_budget_left(bfqq));
2695 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: last max_budg %d, min budg %d",
2696 budget, bfq_min_budget(bfqd));
2697 bfq_log_bfqq(bfqd, bfqq, "recalc_budg: sync %d, seeky %d",
2698 bfq_bfqq_sync(bfqq), BFQQ_SEEKY(bfqd->in_service_queue));
2699
44e44a1b 2700 if (bfq_bfqq_sync(bfqq) && bfqq->wr_coeff == 1) {
aee69d78
PV
2701 switch (reason) {
2702 /*
2703 * Caveat: in all the following cases we trade latency
2704 * for throughput.
2705 */
2706 case BFQQE_TOO_IDLE:
54b60456
PV
2707 /*
2708 * This is the only case where we may reduce
2709 * the budget: if there is no request of the
2710 * process still waiting for completion, then
2711 * we assume (tentatively) that the timer has
2712 * expired because the batch of requests of
2713 * the process could have been served with a
2714 * smaller budget. Hence, betting that
2715 * process will behave in the same way when it
2716 * becomes backlogged again, we reduce its
2717 * next budget. As long as we guess right,
2718 * this budget cut reduces the latency
2719 * experienced by the process.
2720 *
2721 * However, if there are still outstanding
2722 * requests, then the process may have not yet
2723 * issued its next request just because it is
2724 * still waiting for the completion of some of
2725 * the still outstanding ones. So in this
2726 * subcase we do not reduce its budget, on the
2727 * contrary we increase it to possibly boost
2728 * the throughput, as discussed in the
2729 * comments to the BUDGET_TIMEOUT case.
2730 */
2731 if (bfqq->dispatched > 0) /* still outstanding reqs */
2732 budget = min(budget * 2, bfqd->bfq_max_budget);
2733 else {
2734 if (budget > 5 * min_budget)
2735 budget -= 4 * min_budget;
2736 else
2737 budget = min_budget;
2738 }
aee69d78
PV
2739 break;
2740 case BFQQE_BUDGET_TIMEOUT:
54b60456
PV
2741 /*
2742 * We double the budget here because it gives
2743 * the chance to boost the throughput if this
2744 * is not a seeky process (and has bumped into
2745 * this timeout because of, e.g., ZBR).
2746 */
2747 budget = min(budget * 2, bfqd->bfq_max_budget);
aee69d78
PV
2748 break;
2749 case BFQQE_BUDGET_EXHAUSTED:
2750 /*
2751 * The process still has backlog, and did not
2752 * let either the budget timeout or the disk
2753 * idling timeout expire. Hence it is not
2754 * seeky, has a short thinktime and may be
2755 * happy with a higher budget too. So
2756 * definitely increase the budget of this good
2757 * candidate to boost the disk throughput.
2758 */
54b60456 2759 budget = min(budget * 4, bfqd->bfq_max_budget);
aee69d78
PV
2760 break;
2761 case BFQQE_NO_MORE_REQUESTS:
2762 /*
2763 * For queues that expire for this reason, it
2764 * is particularly important to keep the
2765 * budget close to the actual service they
2766 * need. Doing so reduces the timestamp
2767 * misalignment problem described in the
2768 * comments in the body of
2769 * __bfq_activate_entity. In fact, suppose
2770 * that a queue systematically expires for
2771 * BFQQE_NO_MORE_REQUESTS and presents a
2772 * new request in time to enjoy timestamp
2773 * back-shifting. The larger the budget of the
2774 * queue is with respect to the service the
2775 * queue actually requests in each service
2776 * slot, the more times the queue can be
2777 * reactivated with the same virtual finish
2778 * time. It follows that, even if this finish
2779 * time is pushed to the system virtual time
2780 * to reduce the consequent timestamp
2781 * misalignment, the queue unjustly enjoys for
2782 * many re-activations a lower finish time
2783 * than all newly activated queues.
2784 *
2785 * The service needed by bfqq is measured
2786 * quite precisely by bfqq->entity.service.
2787 * Since bfqq does not enjoy device idling,
2788 * bfqq->entity.service is equal to the number
2789 * of sectors that the process associated with
2790 * bfqq requested to read/write before waiting
2791 * for request completions, or blocking for
2792 * other reasons.
2793 */
2794 budget = max_t(int, bfqq->entity.service, min_budget);
2795 break;
2796 default:
2797 return;
2798 }
44e44a1b 2799 } else if (!bfq_bfqq_sync(bfqq)) {
aee69d78
PV
2800 /*
2801 * Async queues get always the maximum possible
2802 * budget, as for them we do not care about latency
2803 * (in addition, their ability to dispatch is limited
2804 * by the charging factor).
2805 */
2806 budget = bfqd->bfq_max_budget;
2807 }
2808
2809 bfqq->max_budget = budget;
2810
2811 if (bfqd->budgets_assigned >= bfq_stats_min_budgets &&
2812 !bfqd->bfq_user_max_budget)
2813 bfqq->max_budget = min(bfqq->max_budget, bfqd->bfq_max_budget);
2814
2815 /*
2816 * If there is still backlog, then assign a new budget, making
2817 * sure that it is large enough for the next request. Since
2818 * the finish time of bfqq must be kept in sync with the
2819 * budget, be sure to call __bfq_bfqq_expire() *after* this
2820 * update.
2821 *
2822 * If there is no backlog, then no need to update the budget;
2823 * it will be updated on the arrival of a new request.
2824 */
2825 next_rq = bfqq->next_rq;
2826 if (next_rq)
2827 bfqq->entity.budget = max_t(unsigned long, bfqq->max_budget,
2828 bfq_serv_to_charge(next_rq, bfqq));
2829
2830 bfq_log_bfqq(bfqd, bfqq, "head sect: %u, new budget %d",
2831 next_rq ? blk_rq_sectors(next_rq) : 0,
2832 bfqq->entity.budget);
2833}
2834
aee69d78 2835/*
ab0e43e9
PV
2836 * Return true if the process associated with bfqq is "slow". The slow
2837 * flag is used, in addition to the budget timeout, to reduce the
2838 * amount of service provided to seeky processes, and thus reduce
2839 * their chances to lower the throughput. More details in the comments
2840 * on the function bfq_bfqq_expire().
2841 *
2842 * An important observation is in order: as discussed in the comments
2843 * on the function bfq_update_peak_rate(), with devices with internal
2844 * queues, it is hard if ever possible to know when and for how long
2845 * an I/O request is processed by the device (apart from the trivial
2846 * I/O pattern where a new request is dispatched only after the
2847 * previous one has been completed). This makes it hard to evaluate
2848 * the real rate at which the I/O requests of each bfq_queue are
2849 * served. In fact, for an I/O scheduler like BFQ, serving a
2850 * bfq_queue means just dispatching its requests during its service
2851 * slot (i.e., until the budget of the queue is exhausted, or the
2852 * queue remains idle, or, finally, a timeout fires). But, during the
2853 * service slot of a bfq_queue, around 100 ms at most, the device may
2854 * be even still processing requests of bfq_queues served in previous
2855 * service slots. On the opposite end, the requests of the in-service
2856 * bfq_queue may be completed after the service slot of the queue
2857 * finishes.
2858 *
2859 * Anyway, unless more sophisticated solutions are used
2860 * (where possible), the sum of the sizes of the requests dispatched
2861 * during the service slot of a bfq_queue is probably the only
2862 * approximation available for the service received by the bfq_queue
2863 * during its service slot. And this sum is the quantity used in this
2864 * function to evaluate the I/O speed of a process.
aee69d78 2865 */
ab0e43e9
PV
2866static bool bfq_bfqq_is_slow(struct bfq_data *bfqd, struct bfq_queue *bfqq,
2867 bool compensate, enum bfqq_expiration reason,
2868 unsigned long *delta_ms)
aee69d78 2869{
ab0e43e9
PV
2870 ktime_t delta_ktime;
2871 u32 delta_usecs;
2872 bool slow = BFQQ_SEEKY(bfqq); /* if delta too short, use seekyness */
aee69d78 2873
ab0e43e9 2874 if (!bfq_bfqq_sync(bfqq))
aee69d78
PV
2875 return false;
2876
2877 if (compensate)
ab0e43e9 2878 delta_ktime = bfqd->last_idling_start;
aee69d78 2879 else
ab0e43e9
PV
2880 delta_ktime = ktime_get();
2881 delta_ktime = ktime_sub(delta_ktime, bfqd->last_budget_start);
2882 delta_usecs = ktime_to_us(delta_ktime);
aee69d78
PV
2883
2884 /* don't use too short time intervals */
ab0e43e9
PV
2885 if (delta_usecs < 1000) {
2886 if (blk_queue_nonrot(bfqd->queue))
2887 /*
2888 * give same worst-case guarantees as idling
2889 * for seeky
2890 */
2891 *delta_ms = BFQ_MIN_TT / NSEC_PER_MSEC;
2892 else /* charge at least one seek */
2893 *delta_ms = bfq_slice_idle / NSEC_PER_MSEC;
2894
2895 return slow;
2896 }
aee69d78 2897
ab0e43e9 2898 *delta_ms = delta_usecs / USEC_PER_MSEC;
aee69d78
PV
2899
2900 /*
ab0e43e9
PV
2901 * Use only long (> 20ms) intervals to filter out excessive
2902 * spikes in service rate estimation.
aee69d78 2903 */
ab0e43e9
PV
2904 if (delta_usecs > 20000) {
2905 /*
2906 * Caveat for rotational devices: processes doing I/O
2907 * in the slower disk zones tend to be slow(er) even
2908 * if not seeky. In this respect, the estimated peak
2909 * rate is likely to be an average over the disk
2910 * surface. Accordingly, to not be too harsh with
2911 * unlucky processes, a process is deemed slow only if
2912 * its rate has been lower than half of the estimated
2913 * peak rate.
2914 */
2915 slow = bfqq->entity.service < bfqd->bfq_max_budget / 2;
aee69d78
PV
2916 }
2917
ab0e43e9 2918 bfq_log_bfqq(bfqd, bfqq, "bfq_bfqq_is_slow: slow %d", slow);
aee69d78 2919
ab0e43e9 2920 return slow;
aee69d78
PV
2921}
2922
77b7dcea
PV
2923/*
2924 * To be deemed as soft real-time, an application must meet two
2925 * requirements. First, the application must not require an average
2926 * bandwidth higher than the approximate bandwidth required to playback or
2927 * record a compressed high-definition video.
2928 * The next function is invoked on the completion of the last request of a
2929 * batch, to compute the next-start time instant, soft_rt_next_start, such
2930 * that, if the next request of the application does not arrive before
2931 * soft_rt_next_start, then the above requirement on the bandwidth is met.
2932 *
2933 * The second requirement is that the request pattern of the application is
2934 * isochronous, i.e., that, after issuing a request or a batch of requests,
2935 * the application stops issuing new requests until all its pending requests
2936 * have been completed. After that, the application may issue a new batch,
2937 * and so on.
2938 * For this reason the next function is invoked to compute
2939 * soft_rt_next_start only for applications that meet this requirement,
2940 * whereas soft_rt_next_start is set to infinity for applications that do
2941 * not.
2942 *
2943 * Unfortunately, even a greedy application may happen to behave in an
2944 * isochronous way if the CPU load is high. In fact, the application may
2945 * stop issuing requests while the CPUs are busy serving other processes,
2946 * then restart, then stop again for a while, and so on. In addition, if
2947 * the disk achieves a low enough throughput with the request pattern
2948 * issued by the application (e.g., because the request pattern is random
2949 * and/or the device is slow), then the application may meet the above
2950 * bandwidth requirement too. To prevent such a greedy application to be
2951 * deemed as soft real-time, a further rule is used in the computation of
2952 * soft_rt_next_start: soft_rt_next_start must be higher than the current
2953 * time plus the maximum time for which the arrival of a request is waited
2954 * for when a sync queue becomes idle, namely bfqd->bfq_slice_idle.
2955 * This filters out greedy applications, as the latter issue instead their
2956 * next request as soon as possible after the last one has been completed
2957 * (in contrast, when a batch of requests is completed, a soft real-time
2958 * application spends some time processing data).
2959 *
2960 * Unfortunately, the last filter may easily generate false positives if
2961 * only bfqd->bfq_slice_idle is used as a reference time interval and one
2962 * or both the following cases occur:
2963 * 1) HZ is so low that the duration of a jiffy is comparable to or higher
2964 * than bfqd->bfq_slice_idle. This happens, e.g., on slow devices with
2965 * HZ=100.
2966 * 2) jiffies, instead of increasing at a constant rate, may stop increasing
2967 * for a while, then suddenly 'jump' by several units to recover the lost
2968 * increments. This seems to happen, e.g., inside virtual machines.
2969 * To address this issue, we do not use as a reference time interval just
2970 * bfqd->bfq_slice_idle, but bfqd->bfq_slice_idle plus a few jiffies. In
2971 * particular we add the minimum number of jiffies for which the filter
2972 * seems to be quite precise also in embedded systems and KVM/QEMU virtual
2973 * machines.
2974 */
2975static unsigned long bfq_bfqq_softrt_next_start(struct bfq_data *bfqd,
2976 struct bfq_queue *bfqq)
2977{
2978 return max(bfqq->last_idle_bklogged +
2979 HZ * bfqq->service_from_backlogged /
2980 bfqd->bfq_wr_max_softrt_rate,
2981 jiffies + nsecs_to_jiffies(bfqq->bfqd->bfq_slice_idle) + 4);
2982}
2983
aee69d78
PV
2984/**
2985 * bfq_bfqq_expire - expire a queue.
2986 * @bfqd: device owning the queue.
2987 * @bfqq: the queue to expire.
2988 * @compensate: if true, compensate for the time spent idling.
2989 * @reason: the reason causing the expiration.
2990 *
c074170e
PV
2991 * If the process associated with bfqq does slow I/O (e.g., because it
2992 * issues random requests), we charge bfqq with the time it has been
2993 * in service instead of the service it has received (see
2994 * bfq_bfqq_charge_time for details on how this goal is achieved). As
2995 * a consequence, bfqq will typically get higher timestamps upon
2996 * reactivation, and hence it will be rescheduled as if it had
2997 * received more service than what it has actually received. In the
2998 * end, bfqq receives less service in proportion to how slowly its
2999 * associated process consumes its budgets (and hence how seriously it
3000 * tends to lower the throughput). In addition, this time-charging
3001 * strategy guarantees time fairness among slow processes. In
3002 * contrast, if the process associated with bfqq is not slow, we
3003 * charge bfqq exactly with the service it has received.
aee69d78 3004 *
c074170e
PV
3005 * Charging time to the first type of queues and the exact service to
3006 * the other has the effect of using the WF2Q+ policy to schedule the
3007 * former on a timeslice basis, without violating service domain
3008 * guarantees among the latter.
aee69d78 3009 */
ea25da48
PV
3010void bfq_bfqq_expire(struct bfq_data *bfqd,
3011 struct bfq_queue *bfqq,
3012 bool compensate,
3013 enum bfqq_expiration reason)
aee69d78
PV
3014{
3015 bool slow;
ab0e43e9
PV
3016 unsigned long delta = 0;
3017 struct bfq_entity *entity = &bfqq->entity;
aee69d78
PV
3018 int ref;
3019
3020 /*
ab0e43e9 3021 * Check whether the process is slow (see bfq_bfqq_is_slow).
aee69d78 3022 */
ab0e43e9 3023 slow = bfq_bfqq_is_slow(bfqd, bfqq, compensate, reason, &delta);
aee69d78
PV
3024
3025 /*
c074170e
PV
3026 * As above explained, charge slow (typically seeky) and
3027 * timed-out queues with the time and not the service
3028 * received, to favor sequential workloads.
3029 *
3030 * Processes doing I/O in the slower disk zones will tend to
3031 * be slow(er) even if not seeky. Therefore, since the
3032 * estimated peak rate is actually an average over the disk
3033 * surface, these processes may timeout just for bad luck. To
3034 * avoid punishing them, do not charge time to processes that
3035 * succeeded in consuming at least 2/3 of their budget. This
3036 * allows BFQ to preserve enough elasticity to still perform
3037 * bandwidth, and not time, distribution with little unlucky
3038 * or quasi-sequential processes.
aee69d78 3039 */
44e44a1b
PV
3040 if (bfqq->wr_coeff == 1 &&
3041 (slow ||
3042 (reason == BFQQE_BUDGET_TIMEOUT &&
3043 bfq_bfqq_budget_left(bfqq) >= entity->budget / 3)))
c074170e 3044 bfq_bfqq_charge_time(bfqd, bfqq, delta);
aee69d78
PV
3045
3046 if (reason == BFQQE_TOO_IDLE &&
ab0e43e9 3047 entity->service <= 2 * entity->budget / 10)
aee69d78
PV
3048 bfq_clear_bfqq_IO_bound(bfqq);
3049
44e44a1b
PV
3050 if (bfqd->low_latency && bfqq->wr_coeff == 1)
3051 bfqq->last_wr_start_finish = jiffies;
3052
77b7dcea
PV
3053 if (bfqd->low_latency && bfqd->bfq_wr_max_softrt_rate > 0 &&
3054 RB_EMPTY_ROOT(&bfqq->sort_list)) {
3055 /*
3056 * If we get here, and there are no outstanding
3057 * requests, then the request pattern is isochronous
3058 * (see the comments on the function
3059 * bfq_bfqq_softrt_next_start()). Thus we can compute
3060 * soft_rt_next_start. If, instead, the queue still
3061 * has outstanding requests, then we have to wait for
3062 * the completion of all the outstanding requests to
3063 * discover whether the request pattern is actually
3064 * isochronous.
3065 */
3066 if (bfqq->dispatched == 0)
3067 bfqq->soft_rt_next_start =
3068 bfq_bfqq_softrt_next_start(bfqd, bfqq);
3069 else {
3070 /*
3071 * The application is still waiting for the
3072 * completion of one or more requests:
3073 * prevent it from possibly being incorrectly
3074 * deemed as soft real-time by setting its
3075 * soft_rt_next_start to infinity. In fact,
3076 * without this assignment, the application
3077 * would be incorrectly deemed as soft
3078 * real-time if:
3079 * 1) it issued a new request before the
3080 * completion of all its in-flight
3081 * requests, and
3082 * 2) at that time, its soft_rt_next_start
3083 * happened to be in the past.
3084 */
3085 bfqq->soft_rt_next_start =
3086 bfq_greatest_from_now();
3087 /*
3088 * Schedule an update of soft_rt_next_start to when
3089 * the task may be discovered to be isochronous.
3090 */
3091 bfq_mark_bfqq_softrt_update(bfqq);
3092 }
3093 }
3094
aee69d78 3095 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
3096 "expire (%d, slow %d, num_disp %d, short_ttime %d)", reason,
3097 slow, bfqq->dispatched, bfq_bfqq_has_short_ttime(bfqq));
aee69d78
PV
3098
3099 /*
3100 * Increase, decrease or leave budget unchanged according to
3101 * reason.
3102 */
3103 __bfq_bfqq_recalc_budget(bfqd, bfqq, reason);
3104 ref = bfqq->ref;
3105 __bfq_bfqq_expire(bfqd, bfqq);
3106
3107 /* mark bfqq as waiting a request only if a bic still points to it */
3108 if (ref > 1 && !bfq_bfqq_busy(bfqq) &&
3109 reason != BFQQE_BUDGET_TIMEOUT &&
3110 reason != BFQQE_BUDGET_EXHAUSTED)
3111 bfq_mark_bfqq_non_blocking_wait_rq(bfqq);
3112}
3113
3114/*
3115 * Budget timeout is not implemented through a dedicated timer, but
3116 * just checked on request arrivals and completions, as well as on
3117 * idle timer expirations.
3118 */
3119static bool bfq_bfqq_budget_timeout(struct bfq_queue *bfqq)
3120{
44e44a1b 3121 return time_is_before_eq_jiffies(bfqq->budget_timeout);
aee69d78
PV
3122}
3123
3124/*
3125 * If we expire a queue that is actively waiting (i.e., with the
3126 * device idled) for the arrival of a new request, then we may incur
3127 * the timestamp misalignment problem described in the body of the
3128 * function __bfq_activate_entity. Hence we return true only if this
3129 * condition does not hold, or if the queue is slow enough to deserve
3130 * only to be kicked off for preserving a high throughput.
3131 */
3132static bool bfq_may_expire_for_budg_timeout(struct bfq_queue *bfqq)
3133{
3134 bfq_log_bfqq(bfqq->bfqd, bfqq,
3135 "may_budget_timeout: wait_request %d left %d timeout %d",
3136 bfq_bfqq_wait_request(bfqq),
3137 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3,
3138 bfq_bfqq_budget_timeout(bfqq));
3139
3140 return (!bfq_bfqq_wait_request(bfqq) ||
3141 bfq_bfqq_budget_left(bfqq) >= bfqq->entity.budget / 3)
3142 &&
3143 bfq_bfqq_budget_timeout(bfqq);
3144}
3145
3146/*
3147 * For a queue that becomes empty, device idling is allowed only if
44e44a1b
PV
3148 * this function returns true for the queue. As a consequence, since
3149 * device idling plays a critical role in both throughput boosting and
3150 * service guarantees, the return value of this function plays a
3151 * critical role in both these aspects as well.
3152 *
3153 * In a nutshell, this function returns true only if idling is
3154 * beneficial for throughput or, even if detrimental for throughput,
3155 * idling is however necessary to preserve service guarantees (low
3156 * latency, desired throughput distribution, ...). In particular, on
3157 * NCQ-capable devices, this function tries to return false, so as to
3158 * help keep the drives' internal queues full, whenever this helps the
3159 * device boost the throughput without causing any service-guarantee
3160 * issue.
3161 *
3162 * In more detail, the return value of this function is obtained by,
3163 * first, computing a number of boolean variables that take into
3164 * account throughput and service-guarantee issues, and, then,
3165 * combining these variables in a logical expression. Most of the
3166 * issues taken into account are not trivial. We discuss these issues
3167 * individually while introducing the variables.
aee69d78
PV
3168 */
3169static bool bfq_bfqq_may_idle(struct bfq_queue *bfqq)
3170{
3171 struct bfq_data *bfqd = bfqq->bfqd;
edaf9428
PV
3172 bool rot_without_queueing =
3173 !blk_queue_nonrot(bfqd->queue) && !bfqd->hw_tag,
3174 bfqq_sequential_and_IO_bound,
3175 idling_boosts_thr, idling_boosts_thr_without_issues,
e1b2324d 3176 idling_needed_for_service_guarantees,
cfd69712 3177 asymmetric_scenario;
aee69d78
PV
3178
3179 if (bfqd->strict_guarantees)
3180 return true;
3181
d5be3fef
PV
3182 /*
3183 * Idling is performed only if slice_idle > 0. In addition, we
3184 * do not idle if
3185 * (a) bfqq is async
3186 * (b) bfqq is in the idle io prio class: in this case we do
3187 * not idle because we want to minimize the bandwidth that
3188 * queues in this class can steal to higher-priority queues
3189 */
3190 if (bfqd->bfq_slice_idle == 0 || !bfq_bfqq_sync(bfqq) ||
3191 bfq_class_idle(bfqq))
3192 return false;
3193
edaf9428
PV
3194 bfqq_sequential_and_IO_bound = !BFQQ_SEEKY(bfqq) &&
3195 bfq_bfqq_IO_bound(bfqq) && bfq_bfqq_has_short_ttime(bfqq);
3196
aee69d78 3197 /*
44e44a1b
PV
3198 * The next variable takes into account the cases where idling
3199 * boosts the throughput.
3200 *
e01eff01
PV
3201 * The value of the variable is computed considering, first, that
3202 * idling is virtually always beneficial for the throughput if:
edaf9428
PV
3203 * (a) the device is not NCQ-capable and rotational, or
3204 * (b) regardless of the presence of NCQ, the device is rotational and
3205 * the request pattern for bfqq is I/O-bound and sequential, or
3206 * (c) regardless of whether it is rotational, the device is
3207 * not NCQ-capable and the request pattern for bfqq is
3208 * I/O-bound and sequential.
bf2b79e7
PV
3209 *
3210 * Secondly, and in contrast to the above item (b), idling an
3211 * NCQ-capable flash-based device would not boost the
e01eff01 3212 * throughput even with sequential I/O; rather it would lower
bf2b79e7
PV
3213 * the throughput in proportion to how fast the device
3214 * is. Accordingly, the next variable is true if any of the
edaf9428
PV
3215 * above conditions (a), (b) or (c) is true, and, in
3216 * particular, happens to be false if bfqd is an NCQ-capable
3217 * flash-based device.
aee69d78 3218 */
edaf9428
PV
3219 idling_boosts_thr = rot_without_queueing ||
3220 ((!blk_queue_nonrot(bfqd->queue) || !bfqd->hw_tag) &&
3221 bfqq_sequential_and_IO_bound);
aee69d78 3222
cfd69712
PV
3223 /*
3224 * The value of the next variable,
3225 * idling_boosts_thr_without_issues, is equal to that of
3226 * idling_boosts_thr, unless a special case holds. In this
3227 * special case, described below, idling may cause problems to
3228 * weight-raised queues.
3229 *
3230 * When the request pool is saturated (e.g., in the presence
3231 * of write hogs), if the processes associated with
3232 * non-weight-raised queues ask for requests at a lower rate,
3233 * then processes associated with weight-raised queues have a
3234 * higher probability to get a request from the pool
3235 * immediately (or at least soon) when they need one. Thus
3236 * they have a higher probability to actually get a fraction
3237 * of the device throughput proportional to their high
3238 * weight. This is especially true with NCQ-capable drives,
3239 * which enqueue several requests in advance, and further
3240 * reorder internally-queued requests.
3241 *
3242 * For this reason, we force to false the value of
3243 * idling_boosts_thr_without_issues if there are weight-raised
3244 * busy queues. In this case, and if bfqq is not weight-raised,
3245 * this guarantees that the device is not idled for bfqq (if,
3246 * instead, bfqq is weight-raised, then idling will be
3247 * guaranteed by another variable, see below). Combined with
3248 * the timestamping rules of BFQ (see [1] for details), this
3249 * behavior causes bfqq, and hence any sync non-weight-raised
3250 * queue, to get a lower number of requests served, and thus
3251 * to ask for a lower number of requests from the request
3252 * pool, before the busy weight-raised queues get served
3253 * again. This often mitigates starvation problems in the
3254 * presence of heavy write workloads and NCQ, thereby
3255 * guaranteeing a higher application and system responsiveness
3256 * in these hostile scenarios.
3257 */
3258 idling_boosts_thr_without_issues = idling_boosts_thr &&
3259 bfqd->wr_busy_queues == 0;
3260
aee69d78 3261 /*
bf2b79e7
PV
3262 * There is then a case where idling must be performed not
3263 * for throughput concerns, but to preserve service
3264 * guarantees.
3265 *
3266 * To introduce this case, we can note that allowing the drive
3267 * to enqueue more than one request at a time, and hence
44e44a1b 3268 * delegating de facto final scheduling decisions to the
bf2b79e7 3269 * drive's internal scheduler, entails loss of control on the
44e44a1b 3270 * actual request service order. In particular, the critical
bf2b79e7 3271 * situation is when requests from different processes happen
44e44a1b
PV
3272 * to be present, at the same time, in the internal queue(s)
3273 * of the drive. In such a situation, the drive, by deciding
3274 * the service order of the internally-queued requests, does
3275 * determine also the actual throughput distribution among
3276 * these processes. But the drive typically has no notion or
3277 * concern about per-process throughput distribution, and
3278 * makes its decisions only on a per-request basis. Therefore,
3279 * the service distribution enforced by the drive's internal
3280 * scheduler is likely to coincide with the desired
3281 * device-throughput distribution only in a completely
bf2b79e7
PV
3282 * symmetric scenario where:
3283 * (i) each of these processes must get the same throughput as
3284 * the others;
3285 * (ii) all these processes have the same I/O pattern
3286 (either sequential or random).
3287 * In fact, in such a scenario, the drive will tend to treat
3288 * the requests of each of these processes in about the same
3289 * way as the requests of the others, and thus to provide
3290 * each of these processes with about the same throughput
3291 * (which is exactly the desired throughput distribution). In
3292 * contrast, in any asymmetric scenario, device idling is
3293 * certainly needed to guarantee that bfqq receives its
3294 * assigned fraction of the device throughput (see [1] for
3295 * details).
3296 *
3297 * We address this issue by controlling, actually, only the
3298 * symmetry sub-condition (i), i.e., provided that
3299 * sub-condition (i) holds, idling is not performed,
3300 * regardless of whether sub-condition (ii) holds. In other
3301 * words, only if sub-condition (i) holds, then idling is
3302 * allowed, and the device tends to be prevented from queueing
3303 * many requests, possibly of several processes. The reason
3304 * for not controlling also sub-condition (ii) is that we
3305 * exploit preemption to preserve guarantees in case of
3306 * symmetric scenarios, even if (ii) does not hold, as
3307 * explained in the next two paragraphs.
3308 *
3309 * Even if a queue, say Q, is expired when it remains idle, Q
3310 * can still preempt the new in-service queue if the next
3311 * request of Q arrives soon (see the comments on
3312 * bfq_bfqq_update_budg_for_activation). If all queues and
3313 * groups have the same weight, this form of preemption,
3314 * combined with the hole-recovery heuristic described in the
3315 * comments on function bfq_bfqq_update_budg_for_activation,
3316 * are enough to preserve a correct bandwidth distribution in
3317 * the mid term, even without idling. In fact, even if not
3318 * idling allows the internal queues of the device to contain
3319 * many requests, and thus to reorder requests, we can rather
3320 * safely assume that the internal scheduler still preserves a
3321 * minimum of mid-term fairness. The motivation for using
3322 * preemption instead of idling is that, by not idling,
3323 * service guarantees are preserved without minimally
3324 * sacrificing throughput. In other words, both a high
3325 * throughput and its desired distribution are obtained.
3326 *
3327 * More precisely, this preemption-based, idleless approach
3328 * provides fairness in terms of IOPS, and not sectors per
3329 * second. This can be seen with a simple example. Suppose
3330 * that there are two queues with the same weight, but that
3331 * the first queue receives requests of 8 sectors, while the
3332 * second queue receives requests of 1024 sectors. In
3333 * addition, suppose that each of the two queues contains at
3334 * most one request at a time, which implies that each queue
3335 * always remains idle after it is served. Finally, after
3336 * remaining idle, each queue receives very quickly a new
3337 * request. It follows that the two queues are served
3338 * alternatively, preempting each other if needed. This
3339 * implies that, although both queues have the same weight,
3340 * the queue with large requests receives a service that is
3341 * 1024/8 times as high as the service received by the other
3342 * queue.
44e44a1b 3343 *
bf2b79e7
PV
3344 * On the other hand, device idling is performed, and thus
3345 * pure sector-domain guarantees are provided, for the
3346 * following queues, which are likely to need stronger
3347 * throughput guarantees: weight-raised queues, and queues
3348 * with a higher weight than other queues. When such queues
3349 * are active, sub-condition (i) is false, which triggers
3350 * device idling.
44e44a1b 3351 *
bf2b79e7
PV
3352 * According to the above considerations, the next variable is
3353 * true (only) if sub-condition (i) holds. To compute the
3354 * value of this variable, we not only use the return value of
3355 * the function bfq_symmetric_scenario(), but also check
3356 * whether bfqq is being weight-raised, because
3357 * bfq_symmetric_scenario() does not take into account also
3358 * weight-raised queues (see comments on
3359 * bfq_weights_tree_add()).
44e44a1b
PV
3360 *
3361 * As a side note, it is worth considering that the above
3362 * device-idling countermeasures may however fail in the
3363 * following unlucky scenario: if idling is (correctly)
bf2b79e7
PV
3364 * disabled in a time period during which all symmetry
3365 * sub-conditions hold, and hence the device is allowed to
44e44a1b
PV
3366 * enqueue many requests, but at some later point in time some
3367 * sub-condition stops to hold, then it may become impossible
3368 * to let requests be served in the desired order until all
3369 * the requests already queued in the device have been served.
3370 */
bf2b79e7
PV
3371 asymmetric_scenario = bfqq->wr_coeff > 1 ||
3372 !bfq_symmetric_scenario(bfqd);
44e44a1b 3373
e1b2324d
AA
3374 /*
3375 * Finally, there is a case where maximizing throughput is the
3376 * best choice even if it may cause unfairness toward
3377 * bfqq. Such a case is when bfqq became active in a burst of
3378 * queue activations. Queues that became active during a large
3379 * burst benefit only from throughput, as discussed in the
3380 * comments on bfq_handle_burst. Thus, if bfqq became active
3381 * in a burst and not idling the device maximizes throughput,
3382 * then the device must no be idled, because not idling the
3383 * device provides bfqq and all other queues in the burst with
3384 * maximum benefit. Combining this and the above case, we can
3385 * now establish when idling is actually needed to preserve
3386 * service guarantees.
3387 */
3388 idling_needed_for_service_guarantees =
3389 asymmetric_scenario && !bfq_bfqq_in_large_burst(bfqq);
3390
44e44a1b 3391 /*
d5be3fef
PV
3392 * We have now all the components we need to compute the
3393 * return value of the function, which is true only if idling
3394 * either boosts the throughput (without issues), or is
3395 * necessary to preserve service guarantees.
aee69d78 3396 */
d5be3fef
PV
3397 return idling_boosts_thr_without_issues ||
3398 idling_needed_for_service_guarantees;
aee69d78
PV
3399}
3400
3401/*
3402 * If the in-service queue is empty but the function bfq_bfqq_may_idle
3403 * returns true, then:
3404 * 1) the queue must remain in service and cannot be expired, and
3405 * 2) the device must be idled to wait for the possible arrival of a new
3406 * request for the queue.
3407 * See the comments on the function bfq_bfqq_may_idle for the reasons
3408 * why performing device idling is the best choice to boost the throughput
3409 * and preserve service guarantees when bfq_bfqq_may_idle itself
3410 * returns true.
3411 */
3412static bool bfq_bfqq_must_idle(struct bfq_queue *bfqq)
3413{
d5be3fef 3414 return RB_EMPTY_ROOT(&bfqq->sort_list) && bfq_bfqq_may_idle(bfqq);
aee69d78
PV
3415}
3416
3417/*
3418 * Select a queue for service. If we have a current queue in service,
3419 * check whether to continue servicing it, or retrieve and set a new one.
3420 */
3421static struct bfq_queue *bfq_select_queue(struct bfq_data *bfqd)
3422{
3423 struct bfq_queue *bfqq;
3424 struct request *next_rq;
3425 enum bfqq_expiration reason = BFQQE_BUDGET_TIMEOUT;
3426
3427 bfqq = bfqd->in_service_queue;
3428 if (!bfqq)
3429 goto new_queue;
3430
3431 bfq_log_bfqq(bfqd, bfqq, "select_queue: already in-service queue");
3432
3433 if (bfq_may_expire_for_budg_timeout(bfqq) &&
3434 !bfq_bfqq_wait_request(bfqq) &&
3435 !bfq_bfqq_must_idle(bfqq))
3436 goto expire;
3437
3438check_queue:
3439 /*
3440 * This loop is rarely executed more than once. Even when it
3441 * happens, it is much more convenient to re-execute this loop
3442 * than to return NULL and trigger a new dispatch to get a
3443 * request served.
3444 */
3445 next_rq = bfqq->next_rq;
3446 /*
3447 * If bfqq has requests queued and it has enough budget left to
3448 * serve them, keep the queue, otherwise expire it.
3449 */
3450 if (next_rq) {
3451 if (bfq_serv_to_charge(next_rq, bfqq) >
3452 bfq_bfqq_budget_left(bfqq)) {
3453 /*
3454 * Expire the queue for budget exhaustion,
3455 * which makes sure that the next budget is
3456 * enough to serve the next request, even if
3457 * it comes from the fifo expired path.
3458 */
3459 reason = BFQQE_BUDGET_EXHAUSTED;
3460 goto expire;
3461 } else {
3462 /*
3463 * The idle timer may be pending because we may
3464 * not disable disk idling even when a new request
3465 * arrives.
3466 */
3467 if (bfq_bfqq_wait_request(bfqq)) {
3468 /*
3469 * If we get here: 1) at least a new request
3470 * has arrived but we have not disabled the
3471 * timer because the request was too small,
3472 * 2) then the block layer has unplugged
3473 * the device, causing the dispatch to be
3474 * invoked.
3475 *
3476 * Since the device is unplugged, now the
3477 * requests are probably large enough to
3478 * provide a reasonable throughput.
3479 * So we disable idling.
3480 */
3481 bfq_clear_bfqq_wait_request(bfqq);
3482 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
3483 }
3484 goto keep_queue;
3485 }
3486 }
3487
3488 /*
3489 * No requests pending. However, if the in-service queue is idling
3490 * for a new request, or has requests waiting for a completion and
3491 * may idle after their completion, then keep it anyway.
3492 */
3493 if (bfq_bfqq_wait_request(bfqq) ||
3494 (bfqq->dispatched != 0 && bfq_bfqq_may_idle(bfqq))) {
3495 bfqq = NULL;
3496 goto keep_queue;
3497 }
3498
3499 reason = BFQQE_NO_MORE_REQUESTS;
3500expire:
3501 bfq_bfqq_expire(bfqd, bfqq, false, reason);
3502new_queue:
3503 bfqq = bfq_set_in_service_queue(bfqd);
3504 if (bfqq) {
3505 bfq_log_bfqq(bfqd, bfqq, "select_queue: checking new queue");
3506 goto check_queue;
3507 }
3508keep_queue:
3509 if (bfqq)
3510 bfq_log_bfqq(bfqd, bfqq, "select_queue: returned this queue");
3511 else
3512 bfq_log(bfqd, "select_queue: no queue returned");
3513
3514 return bfqq;
3515}
3516
44e44a1b
PV
3517static void bfq_update_wr_data(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3518{
3519 struct bfq_entity *entity = &bfqq->entity;
3520
3521 if (bfqq->wr_coeff > 1) { /* queue is being weight-raised */
3522 bfq_log_bfqq(bfqd, bfqq,
3523 "raising period dur %u/%u msec, old coeff %u, w %d(%d)",
3524 jiffies_to_msecs(jiffies - bfqq->last_wr_start_finish),
3525 jiffies_to_msecs(bfqq->wr_cur_max_time),
3526 bfqq->wr_coeff,
3527 bfqq->entity.weight, bfqq->entity.orig_weight);
3528
3529 if (entity->prio_changed)
3530 bfq_log_bfqq(bfqd, bfqq, "WARN: pending prio change");
3531
3532 /*
e1b2324d
AA
3533 * If the queue was activated in a burst, or too much
3534 * time has elapsed from the beginning of this
3535 * weight-raising period, then end weight raising.
44e44a1b 3536 */
e1b2324d
AA
3537 if (bfq_bfqq_in_large_burst(bfqq))
3538 bfq_bfqq_end_wr(bfqq);
3539 else if (time_is_before_jiffies(bfqq->last_wr_start_finish +
3540 bfqq->wr_cur_max_time)) {
77b7dcea
PV
3541 if (bfqq->wr_cur_max_time != bfqd->bfq_wr_rt_max_time ||
3542 time_is_before_jiffies(bfqq->wr_start_at_switch_to_srt +
e1b2324d 3543 bfq_wr_duration(bfqd)))
77b7dcea
PV
3544 bfq_bfqq_end_wr(bfqq);
3545 else {
3e2bdd6d 3546 switch_back_to_interactive_wr(bfqq, bfqd);
77b7dcea
PV
3547 bfqq->entity.prio_changed = 1;
3548 }
44e44a1b
PV
3549 }
3550 }
431b17f9
PV
3551 /*
3552 * To improve latency (for this or other queues), immediately
3553 * update weight both if it must be raised and if it must be
3554 * lowered. Since, entity may be on some active tree here, and
3555 * might have a pending change of its ioprio class, invoke
3556 * next function with the last parameter unset (see the
3557 * comments on the function).
3558 */
44e44a1b 3559 if ((entity->weight > entity->orig_weight) != (bfqq->wr_coeff > 1))
431b17f9
PV
3560 __bfq_entity_update_weight_prio(bfq_entity_service_tree(entity),
3561 entity, false);
44e44a1b
PV
3562}
3563
aee69d78
PV
3564/*
3565 * Dispatch next request from bfqq.
3566 */
3567static struct request *bfq_dispatch_rq_from_bfqq(struct bfq_data *bfqd,
3568 struct bfq_queue *bfqq)
3569{
3570 struct request *rq = bfqq->next_rq;
3571 unsigned long service_to_charge;
3572
3573 service_to_charge = bfq_serv_to_charge(rq, bfqq);
3574
3575 bfq_bfqq_served(bfqq, service_to_charge);
3576
3577 bfq_dispatch_remove(bfqd->queue, rq);
3578
44e44a1b
PV
3579 /*
3580 * If weight raising has to terminate for bfqq, then next
3581 * function causes an immediate update of bfqq's weight,
3582 * without waiting for next activation. As a consequence, on
3583 * expiration, bfqq will be timestamped as if has never been
3584 * weight-raised during this service slot, even if it has
3585 * received part or even most of the service as a
3586 * weight-raised queue. This inflates bfqq's timestamps, which
3587 * is beneficial, as bfqq is then more willing to leave the
3588 * device immediately to possible other weight-raised queues.
3589 */
3590 bfq_update_wr_data(bfqd, bfqq);
3591
aee69d78
PV
3592 /*
3593 * Expire bfqq, pretending that its budget expired, if bfqq
3594 * belongs to CLASS_IDLE and other queues are waiting for
3595 * service.
3596 */
3597 if (bfqd->busy_queues > 1 && bfq_class_idle(bfqq))
3598 goto expire;
3599
3600 return rq;
3601
3602expire:
3603 bfq_bfqq_expire(bfqd, bfqq, false, BFQQE_BUDGET_EXHAUSTED);
3604 return rq;
3605}
3606
3607static bool bfq_has_work(struct blk_mq_hw_ctx *hctx)
3608{
3609 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3610
3611 /*
3612 * Avoiding lock: a race on bfqd->busy_queues should cause at
3613 * most a call to dispatch for nothing
3614 */
3615 return !list_empty_careful(&bfqd->dispatch) ||
3616 bfqd->busy_queues > 0;
3617}
3618
3619static struct request *__bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3620{
3621 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3622 struct request *rq = NULL;
3623 struct bfq_queue *bfqq = NULL;
3624
3625 if (!list_empty(&bfqd->dispatch)) {
3626 rq = list_first_entry(&bfqd->dispatch, struct request,
3627 queuelist);
3628 list_del_init(&rq->queuelist);
3629
3630 bfqq = RQ_BFQQ(rq);
3631
3632 if (bfqq) {
3633 /*
3634 * Increment counters here, because this
3635 * dispatch does not follow the standard
3636 * dispatch flow (where counters are
3637 * incremented)
3638 */
3639 bfqq->dispatched++;
3640
3641 goto inc_in_driver_start_rq;
3642 }
3643
3644 /*
3645 * We exploit the put_rq_private hook to decrement
3646 * rq_in_driver, but put_rq_private will not be
3647 * invoked on this request. So, to avoid unbalance,
3648 * just start this request, without incrementing
3649 * rq_in_driver. As a negative consequence,
3650 * rq_in_driver is deceptively lower than it should be
3651 * while this request is in service. This may cause
3652 * bfq_schedule_dispatch to be invoked uselessly.
3653 *
3654 * As for implementing an exact solution, the
3655 * put_request hook, if defined, is probably invoked
3656 * also on this request. So, by exploiting this hook,
3657 * we could 1) increment rq_in_driver here, and 2)
3658 * decrement it in put_request. Such a solution would
3659 * let the value of the counter be always accurate,
3660 * but it would entail using an extra interface
3661 * function. This cost seems higher than the benefit,
3662 * being the frequency of non-elevator-private
3663 * requests very low.
3664 */
3665 goto start_rq;
3666 }
3667
3668 bfq_log(bfqd, "dispatch requests: %d busy queues", bfqd->busy_queues);
3669
3670 if (bfqd->busy_queues == 0)
3671 goto exit;
3672
3673 /*
3674 * Force device to serve one request at a time if
3675 * strict_guarantees is true. Forcing this service scheme is
3676 * currently the ONLY way to guarantee that the request
3677 * service order enforced by the scheduler is respected by a
3678 * queueing device. Otherwise the device is free even to make
3679 * some unlucky request wait for as long as the device
3680 * wishes.
3681 *
3682 * Of course, serving one request at at time may cause loss of
3683 * throughput.
3684 */
3685 if (bfqd->strict_guarantees && bfqd->rq_in_driver > 0)
3686 goto exit;
3687
3688 bfqq = bfq_select_queue(bfqd);
3689 if (!bfqq)
3690 goto exit;
3691
3692 rq = bfq_dispatch_rq_from_bfqq(bfqd, bfqq);
3693
3694 if (rq) {
3695inc_in_driver_start_rq:
3696 bfqd->rq_in_driver++;
3697start_rq:
3698 rq->rq_flags |= RQF_STARTED;
3699 }
3700exit:
3701 return rq;
3702}
3703
3704static struct request *bfq_dispatch_request(struct blk_mq_hw_ctx *hctx)
3705{
3706 struct bfq_data *bfqd = hctx->queue->elevator->elevator_data;
3707 struct request *rq;
a33801e8 3708#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b
PV
3709 struct bfq_queue *in_serv_queue, *bfqq;
3710 bool waiting_rq, idle_timer_disabled;
3711#endif
aee69d78
PV
3712
3713 spin_lock_irq(&bfqd->lock);
36eca894 3714
a33801e8 3715#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b
PV
3716 in_serv_queue = bfqd->in_service_queue;
3717 waiting_rq = in_serv_queue && bfq_bfqq_wait_request(in_serv_queue);
3718
aee69d78 3719 rq = __bfq_dispatch_request(hctx);
24bfd19b
PV
3720
3721 idle_timer_disabled =
3722 waiting_rq && !bfq_bfqq_wait_request(in_serv_queue);
3723
3724#else
3725 rq = __bfq_dispatch_request(hctx);
3726#endif
6fa3e8d3 3727 spin_unlock_irq(&bfqd->lock);
aee69d78 3728
a33801e8 3729#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b
PV
3730 bfqq = rq ? RQ_BFQQ(rq) : NULL;
3731 if (!idle_timer_disabled && !bfqq)
3732 return rq;
3733
3734 /*
3735 * rq and bfqq are guaranteed to exist until this function
3736 * ends, for the following reasons. First, rq can be
3737 * dispatched to the device, and then can be completed and
3738 * freed, only after this function ends. Second, rq cannot be
3739 * merged (and thus freed because of a merge) any longer,
3740 * because it has already started. Thus rq cannot be freed
3741 * before this function ends, and, since rq has a reference to
3742 * bfqq, the same guarantee holds for bfqq too.
3743 *
3744 * In addition, the following queue lock guarantees that
3745 * bfqq_group(bfqq) exists as well.
3746 */
3747 spin_lock_irq(hctx->queue->queue_lock);
3748 if (idle_timer_disabled)
3749 /*
3750 * Since the idle timer has been disabled,
3751 * in_serv_queue contained some request when
3752 * __bfq_dispatch_request was invoked above, which
3753 * implies that rq was picked exactly from
3754 * in_serv_queue. Thus in_serv_queue == bfqq, and is
3755 * therefore guaranteed to exist because of the above
3756 * arguments.
3757 */
3758 bfqg_stats_update_idle_time(bfqq_group(in_serv_queue));
3759 if (bfqq) {
3760 struct bfq_group *bfqg = bfqq_group(bfqq);
3761
3762 bfqg_stats_update_avg_queue_size(bfqg);
3763 bfqg_stats_set_start_empty_time(bfqg);
3764 bfqg_stats_update_io_remove(bfqg, rq->cmd_flags);
3765 }
3766 spin_unlock_irq(hctx->queue->queue_lock);
3767#endif
3768
aee69d78
PV
3769 return rq;
3770}
3771
3772/*
3773 * Task holds one reference to the queue, dropped when task exits. Each rq
3774 * in-flight on this queue also holds a reference, dropped when rq is freed.
3775 *
3776 * Scheduler lock must be held here. Recall not to use bfqq after calling
3777 * this function on it.
3778 */
ea25da48 3779void bfq_put_queue(struct bfq_queue *bfqq)
aee69d78 3780{
e21b7a0b
AA
3781#ifdef CONFIG_BFQ_GROUP_IOSCHED
3782 struct bfq_group *bfqg = bfqq_group(bfqq);
3783#endif
3784
aee69d78
PV
3785 if (bfqq->bfqd)
3786 bfq_log_bfqq(bfqq->bfqd, bfqq, "put_queue: %p %d",
3787 bfqq, bfqq->ref);
3788
3789 bfqq->ref--;
3790 if (bfqq->ref)
3791 return;
3792
99fead8d 3793 if (!hlist_unhashed(&bfqq->burst_list_node)) {
e1b2324d 3794 hlist_del_init(&bfqq->burst_list_node);
99fead8d
PV
3795 /*
3796 * Decrement also burst size after the removal, if the
3797 * process associated with bfqq is exiting, and thus
3798 * does not contribute to the burst any longer. This
3799 * decrement helps filter out false positives of large
3800 * bursts, when some short-lived process (often due to
3801 * the execution of commands by some service) happens
3802 * to start and exit while a complex application is
3803 * starting, and thus spawning several processes that
3804 * do I/O (and that *must not* be treated as a large
3805 * burst, see comments on bfq_handle_burst).
3806 *
3807 * In particular, the decrement is performed only if:
3808 * 1) bfqq is not a merged queue, because, if it is,
3809 * then this free of bfqq is not triggered by the exit
3810 * of the process bfqq is associated with, but exactly
3811 * by the fact that bfqq has just been merged.
3812 * 2) burst_size is greater than 0, to handle
3813 * unbalanced decrements. Unbalanced decrements may
3814 * happen in te following case: bfqq is inserted into
3815 * the current burst list--without incrementing
3816 * bust_size--because of a split, but the current
3817 * burst list is not the burst list bfqq belonged to
3818 * (see comments on the case of a split in
3819 * bfq_set_request).
3820 */
3821 if (bfqq->bic && bfqq->bfqd->burst_size > 0)
3822 bfqq->bfqd->burst_size--;
7cb04004 3823 }
e21b7a0b 3824
aee69d78 3825 kmem_cache_free(bfq_pool, bfqq);
e21b7a0b 3826#ifdef CONFIG_BFQ_GROUP_IOSCHED
8f9bebc3 3827 bfqg_and_blkg_put(bfqg);
e21b7a0b 3828#endif
aee69d78
PV
3829}
3830
36eca894
AA
3831static void bfq_put_cooperator(struct bfq_queue *bfqq)
3832{
3833 struct bfq_queue *__bfqq, *next;
3834
3835 /*
3836 * If this queue was scheduled to merge with another queue, be
3837 * sure to drop the reference taken on that queue (and others in
3838 * the merge chain). See bfq_setup_merge and bfq_merge_bfqqs.
3839 */
3840 __bfqq = bfqq->new_bfqq;
3841 while (__bfqq) {
3842 if (__bfqq == bfqq)
3843 break;
3844 next = __bfqq->new_bfqq;
3845 bfq_put_queue(__bfqq);
3846 __bfqq = next;
3847 }
3848}
3849
aee69d78
PV
3850static void bfq_exit_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq)
3851{
3852 if (bfqq == bfqd->in_service_queue) {
3853 __bfq_bfqq_expire(bfqd, bfqq);
3854 bfq_schedule_dispatch(bfqd);
3855 }
3856
3857 bfq_log_bfqq(bfqd, bfqq, "exit_bfqq: %p, %d", bfqq, bfqq->ref);
3858
36eca894
AA
3859 bfq_put_cooperator(bfqq);
3860
aee69d78
PV
3861 bfq_put_queue(bfqq); /* release process reference */
3862}
3863
3864static void bfq_exit_icq_bfqq(struct bfq_io_cq *bic, bool is_sync)
3865{
3866 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
3867 struct bfq_data *bfqd;
3868
3869 if (bfqq)
3870 bfqd = bfqq->bfqd; /* NULL if scheduler already exited */
3871
3872 if (bfqq && bfqd) {
3873 unsigned long flags;
3874
3875 spin_lock_irqsave(&bfqd->lock, flags);
3876 bfq_exit_bfqq(bfqd, bfqq);
3877 bic_set_bfqq(bic, NULL, is_sync);
6fa3e8d3 3878 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
3879 }
3880}
3881
3882static void bfq_exit_icq(struct io_cq *icq)
3883{
3884 struct bfq_io_cq *bic = icq_to_bic(icq);
3885
3886 bfq_exit_icq_bfqq(bic, true);
3887 bfq_exit_icq_bfqq(bic, false);
3888}
3889
3890/*
3891 * Update the entity prio values; note that the new values will not
3892 * be used until the next (re)activation.
3893 */
3894static void
3895bfq_set_next_ioprio_data(struct bfq_queue *bfqq, struct bfq_io_cq *bic)
3896{
3897 struct task_struct *tsk = current;
3898 int ioprio_class;
3899 struct bfq_data *bfqd = bfqq->bfqd;
3900
3901 if (!bfqd)
3902 return;
3903
3904 ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
3905 switch (ioprio_class) {
3906 default:
3907 dev_err(bfqq->bfqd->queue->backing_dev_info->dev,
3908 "bfq: bad prio class %d\n", ioprio_class);
fa393d1b 3909 /* fall through */
aee69d78
PV
3910 case IOPRIO_CLASS_NONE:
3911 /*
3912 * No prio set, inherit CPU scheduling settings.
3913 */
3914 bfqq->new_ioprio = task_nice_ioprio(tsk);
3915 bfqq->new_ioprio_class = task_nice_ioclass(tsk);
3916 break;
3917 case IOPRIO_CLASS_RT:
3918 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3919 bfqq->new_ioprio_class = IOPRIO_CLASS_RT;
3920 break;
3921 case IOPRIO_CLASS_BE:
3922 bfqq->new_ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
3923 bfqq->new_ioprio_class = IOPRIO_CLASS_BE;
3924 break;
3925 case IOPRIO_CLASS_IDLE:
3926 bfqq->new_ioprio_class = IOPRIO_CLASS_IDLE;
3927 bfqq->new_ioprio = 7;
aee69d78
PV
3928 break;
3929 }
3930
3931 if (bfqq->new_ioprio >= IOPRIO_BE_NR) {
3932 pr_crit("bfq_set_next_ioprio_data: new_ioprio %d\n",
3933 bfqq->new_ioprio);
3934 bfqq->new_ioprio = IOPRIO_BE_NR;
3935 }
3936
3937 bfqq->entity.new_weight = bfq_ioprio_to_weight(bfqq->new_ioprio);
3938 bfqq->entity.prio_changed = 1;
3939}
3940
ea25da48
PV
3941static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
3942 struct bio *bio, bool is_sync,
3943 struct bfq_io_cq *bic);
3944
aee69d78
PV
3945static void bfq_check_ioprio_change(struct bfq_io_cq *bic, struct bio *bio)
3946{
3947 struct bfq_data *bfqd = bic_to_bfqd(bic);
3948 struct bfq_queue *bfqq;
3949 int ioprio = bic->icq.ioc->ioprio;
3950
3951 /*
3952 * This condition may trigger on a newly created bic, be sure to
3953 * drop the lock before returning.
3954 */
3955 if (unlikely(!bfqd) || likely(bic->ioprio == ioprio))
3956 return;
3957
3958 bic->ioprio = ioprio;
3959
3960 bfqq = bic_to_bfqq(bic, false);
3961 if (bfqq) {
3962 /* release process reference on this queue */
3963 bfq_put_queue(bfqq);
3964 bfqq = bfq_get_queue(bfqd, bio, BLK_RW_ASYNC, bic);
3965 bic_set_bfqq(bic, bfqq, false);
3966 }
3967
3968 bfqq = bic_to_bfqq(bic, true);
3969 if (bfqq)
3970 bfq_set_next_ioprio_data(bfqq, bic);
3971}
3972
3973static void bfq_init_bfqq(struct bfq_data *bfqd, struct bfq_queue *bfqq,
3974 struct bfq_io_cq *bic, pid_t pid, int is_sync)
3975{
3976 RB_CLEAR_NODE(&bfqq->entity.rb_node);
3977 INIT_LIST_HEAD(&bfqq->fifo);
e1b2324d 3978 INIT_HLIST_NODE(&bfqq->burst_list_node);
aee69d78
PV
3979
3980 bfqq->ref = 0;
3981 bfqq->bfqd = bfqd;
3982
3983 if (bic)
3984 bfq_set_next_ioprio_data(bfqq, bic);
3985
3986 if (is_sync) {
d5be3fef
PV
3987 /*
3988 * No need to mark as has_short_ttime if in
3989 * idle_class, because no device idling is performed
3990 * for queues in idle class
3991 */
aee69d78 3992 if (!bfq_class_idle(bfqq))
d5be3fef
PV
3993 /* tentatively mark as has_short_ttime */
3994 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 3995 bfq_mark_bfqq_sync(bfqq);
e1b2324d 3996 bfq_mark_bfqq_just_created(bfqq);
aee69d78
PV
3997 } else
3998 bfq_clear_bfqq_sync(bfqq);
3999
4000 /* set end request to minus infinity from now */
4001 bfqq->ttime.last_end_request = ktime_get_ns() + 1;
4002
4003 bfq_mark_bfqq_IO_bound(bfqq);
4004
4005 bfqq->pid = pid;
4006
4007 /* Tentative initial value to trade off between thr and lat */
54b60456 4008 bfqq->max_budget = (2 * bfq_max_budget(bfqd)) / 3;
aee69d78 4009 bfqq->budget_timeout = bfq_smallest_from_now();
aee69d78 4010
44e44a1b 4011 bfqq->wr_coeff = 1;
36eca894 4012 bfqq->last_wr_start_finish = jiffies;
77b7dcea 4013 bfqq->wr_start_at_switch_to_srt = bfq_smallest_from_now();
36eca894 4014 bfqq->split_time = bfq_smallest_from_now();
77b7dcea
PV
4015
4016 /*
4017 * Set to the value for which bfqq will not be deemed as
4018 * soft rt when it becomes backlogged.
4019 */
4020 bfqq->soft_rt_next_start = bfq_greatest_from_now();
44e44a1b 4021
aee69d78
PV
4022 /* first request is almost certainly seeky */
4023 bfqq->seek_history = 1;
4024}
4025
4026static struct bfq_queue **bfq_async_queue_prio(struct bfq_data *bfqd,
e21b7a0b 4027 struct bfq_group *bfqg,
aee69d78
PV
4028 int ioprio_class, int ioprio)
4029{
4030 switch (ioprio_class) {
4031 case IOPRIO_CLASS_RT:
e21b7a0b 4032 return &bfqg->async_bfqq[0][ioprio];
aee69d78
PV
4033 case IOPRIO_CLASS_NONE:
4034 ioprio = IOPRIO_NORM;
4035 /* fall through */
4036 case IOPRIO_CLASS_BE:
e21b7a0b 4037 return &bfqg->async_bfqq[1][ioprio];
aee69d78 4038 case IOPRIO_CLASS_IDLE:
e21b7a0b 4039 return &bfqg->async_idle_bfqq;
aee69d78
PV
4040 default:
4041 return NULL;
4042 }
4043}
4044
4045static struct bfq_queue *bfq_get_queue(struct bfq_data *bfqd,
4046 struct bio *bio, bool is_sync,
4047 struct bfq_io_cq *bic)
4048{
4049 const int ioprio = IOPRIO_PRIO_DATA(bic->ioprio);
4050 const int ioprio_class = IOPRIO_PRIO_CLASS(bic->ioprio);
4051 struct bfq_queue **async_bfqq = NULL;
4052 struct bfq_queue *bfqq;
e21b7a0b 4053 struct bfq_group *bfqg;
aee69d78
PV
4054
4055 rcu_read_lock();
4056
e21b7a0b
AA
4057 bfqg = bfq_find_set_group(bfqd, bio_blkcg(bio));
4058 if (!bfqg) {
4059 bfqq = &bfqd->oom_bfqq;
4060 goto out;
4061 }
4062
aee69d78 4063 if (!is_sync) {
e21b7a0b 4064 async_bfqq = bfq_async_queue_prio(bfqd, bfqg, ioprio_class,
aee69d78
PV
4065 ioprio);
4066 bfqq = *async_bfqq;
4067 if (bfqq)
4068 goto out;
4069 }
4070
4071 bfqq = kmem_cache_alloc_node(bfq_pool,
4072 GFP_NOWAIT | __GFP_ZERO | __GFP_NOWARN,
4073 bfqd->queue->node);
4074
4075 if (bfqq) {
4076 bfq_init_bfqq(bfqd, bfqq, bic, current->pid,
4077 is_sync);
e21b7a0b 4078 bfq_init_entity(&bfqq->entity, bfqg);
aee69d78
PV
4079 bfq_log_bfqq(bfqd, bfqq, "allocated");
4080 } else {
4081 bfqq = &bfqd->oom_bfqq;
4082 bfq_log_bfqq(bfqd, bfqq, "using oom bfqq");
4083 goto out;
4084 }
4085
4086 /*
4087 * Pin the queue now that it's allocated, scheduler exit will
4088 * prune it.
4089 */
4090 if (async_bfqq) {
e21b7a0b
AA
4091 bfqq->ref++; /*
4092 * Extra group reference, w.r.t. sync
4093 * queue. This extra reference is removed
4094 * only if bfqq->bfqg disappears, to
4095 * guarantee that this queue is not freed
4096 * until its group goes away.
4097 */
4098 bfq_log_bfqq(bfqd, bfqq, "get_queue, bfqq not in async: %p, %d",
aee69d78
PV
4099 bfqq, bfqq->ref);
4100 *async_bfqq = bfqq;
4101 }
4102
4103out:
4104 bfqq->ref++; /* get a process reference to this queue */
4105 bfq_log_bfqq(bfqd, bfqq, "get_queue, at end: %p, %d", bfqq, bfqq->ref);
4106 rcu_read_unlock();
4107 return bfqq;
4108}
4109
4110static void bfq_update_io_thinktime(struct bfq_data *bfqd,
4111 struct bfq_queue *bfqq)
4112{
4113 struct bfq_ttime *ttime = &bfqq->ttime;
4114 u64 elapsed = ktime_get_ns() - bfqq->ttime.last_end_request;
4115
4116 elapsed = min_t(u64, elapsed, 2ULL * bfqd->bfq_slice_idle);
4117
4118 ttime->ttime_samples = (7*bfqq->ttime.ttime_samples + 256) / 8;
4119 ttime->ttime_total = div_u64(7*ttime->ttime_total + 256*elapsed, 8);
4120 ttime->ttime_mean = div64_ul(ttime->ttime_total + 128,
4121 ttime->ttime_samples);
4122}
4123
4124static void
4125bfq_update_io_seektime(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4126 struct request *rq)
4127{
aee69d78 4128 bfqq->seek_history <<= 1;
ab0e43e9
PV
4129 bfqq->seek_history |=
4130 get_sdist(bfqq->last_request_pos, rq) > BFQQ_SEEK_THR &&
aee69d78
PV
4131 (!blk_queue_nonrot(bfqd->queue) ||
4132 blk_rq_sectors(rq) < BFQQ_SECT_THR_NONROT);
4133}
4134
d5be3fef
PV
4135static void bfq_update_has_short_ttime(struct bfq_data *bfqd,
4136 struct bfq_queue *bfqq,
4137 struct bfq_io_cq *bic)
aee69d78 4138{
d5be3fef 4139 bool has_short_ttime = true;
aee69d78 4140
d5be3fef
PV
4141 /*
4142 * No need to update has_short_ttime if bfqq is async or in
4143 * idle io prio class, or if bfq_slice_idle is zero, because
4144 * no device idling is performed for bfqq in this case.
4145 */
4146 if (!bfq_bfqq_sync(bfqq) || bfq_class_idle(bfqq) ||
4147 bfqd->bfq_slice_idle == 0)
aee69d78
PV
4148 return;
4149
36eca894
AA
4150 /* Idle window just restored, statistics are meaningless. */
4151 if (time_is_after_eq_jiffies(bfqq->split_time +
4152 bfqd->bfq_wr_min_idle_time))
4153 return;
4154
d5be3fef
PV
4155 /* Think time is infinite if no process is linked to
4156 * bfqq. Otherwise check average think time to
4157 * decide whether to mark as has_short_ttime
4158 */
aee69d78 4159 if (atomic_read(&bic->icq.ioc->active_ref) == 0 ||
d5be3fef
PV
4160 (bfq_sample_valid(bfqq->ttime.ttime_samples) &&
4161 bfqq->ttime.ttime_mean > bfqd->bfq_slice_idle))
4162 has_short_ttime = false;
4163
4164 bfq_log_bfqq(bfqd, bfqq, "update_has_short_ttime: has_short_ttime %d",
4165 has_short_ttime);
aee69d78 4166
d5be3fef
PV
4167 if (has_short_ttime)
4168 bfq_mark_bfqq_has_short_ttime(bfqq);
aee69d78 4169 else
d5be3fef 4170 bfq_clear_bfqq_has_short_ttime(bfqq);
aee69d78
PV
4171}
4172
4173/*
4174 * Called when a new fs request (rq) is added to bfqq. Check if there's
4175 * something we should do about it.
4176 */
4177static void bfq_rq_enqueued(struct bfq_data *bfqd, struct bfq_queue *bfqq,
4178 struct request *rq)
4179{
4180 struct bfq_io_cq *bic = RQ_BIC(rq);
4181
4182 if (rq->cmd_flags & REQ_META)
4183 bfqq->meta_pending++;
4184
4185 bfq_update_io_thinktime(bfqd, bfqq);
d5be3fef 4186 bfq_update_has_short_ttime(bfqd, bfqq, bic);
aee69d78 4187 bfq_update_io_seektime(bfqd, bfqq, rq);
aee69d78
PV
4188
4189 bfq_log_bfqq(bfqd, bfqq,
d5be3fef
PV
4190 "rq_enqueued: has_short_ttime=%d (seeky %d)",
4191 bfq_bfqq_has_short_ttime(bfqq), BFQQ_SEEKY(bfqq));
aee69d78
PV
4192
4193 bfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
4194
4195 if (bfqq == bfqd->in_service_queue && bfq_bfqq_wait_request(bfqq)) {
4196 bool small_req = bfqq->queued[rq_is_sync(rq)] == 1 &&
4197 blk_rq_sectors(rq) < 32;
4198 bool budget_timeout = bfq_bfqq_budget_timeout(bfqq);
4199
4200 /*
4201 * There is just this request queued: if the request
4202 * is small and the queue is not to be expired, then
4203 * just exit.
4204 *
4205 * In this way, if the device is being idled to wait
4206 * for a new request from the in-service queue, we
4207 * avoid unplugging the device and committing the
4208 * device to serve just a small request. On the
4209 * contrary, we wait for the block layer to decide
4210 * when to unplug the device: hopefully, new requests
4211 * will be merged to this one quickly, then the device
4212 * will be unplugged and larger requests will be
4213 * dispatched.
4214 */
4215 if (small_req && !budget_timeout)
4216 return;
4217
4218 /*
4219 * A large enough request arrived, or the queue is to
4220 * be expired: in both cases disk idling is to be
4221 * stopped, so clear wait_request flag and reset
4222 * timer.
4223 */
4224 bfq_clear_bfqq_wait_request(bfqq);
4225 hrtimer_try_to_cancel(&bfqd->idle_slice_timer);
4226
4227 /*
4228 * The queue is not empty, because a new request just
4229 * arrived. Hence we can safely expire the queue, in
4230 * case of budget timeout, without risking that the
4231 * timestamps of the queue are not updated correctly.
4232 * See [1] for more details.
4233 */
4234 if (budget_timeout)
4235 bfq_bfqq_expire(bfqd, bfqq, false,
4236 BFQQE_BUDGET_TIMEOUT);
4237 }
4238}
4239
24bfd19b
PV
4240/* returns true if it causes the idle timer to be disabled */
4241static bool __bfq_insert_request(struct bfq_data *bfqd, struct request *rq)
aee69d78 4242{
36eca894
AA
4243 struct bfq_queue *bfqq = RQ_BFQQ(rq),
4244 *new_bfqq = bfq_setup_cooperator(bfqd, bfqq, rq, true);
24bfd19b 4245 bool waiting, idle_timer_disabled = false;
36eca894
AA
4246
4247 if (new_bfqq) {
4248 if (bic_to_bfqq(RQ_BIC(rq), 1) != bfqq)
4249 new_bfqq = bic_to_bfqq(RQ_BIC(rq), 1);
4250 /*
4251 * Release the request's reference to the old bfqq
4252 * and make sure one is taken to the shared queue.
4253 */
4254 new_bfqq->allocated++;
4255 bfqq->allocated--;
4256 new_bfqq->ref++;
4257 /*
4258 * If the bic associated with the process
4259 * issuing this request still points to bfqq
4260 * (and thus has not been already redirected
4261 * to new_bfqq or even some other bfq_queue),
4262 * then complete the merge and redirect it to
4263 * new_bfqq.
4264 */
4265 if (bic_to_bfqq(RQ_BIC(rq), 1) == bfqq)
4266 bfq_merge_bfqqs(bfqd, RQ_BIC(rq),
4267 bfqq, new_bfqq);
894df937
PV
4268
4269 bfq_clear_bfqq_just_created(bfqq);
36eca894
AA
4270 /*
4271 * rq is about to be enqueued into new_bfqq,
4272 * release rq reference on bfqq
4273 */
4274 bfq_put_queue(bfqq);
4275 rq->elv.priv[1] = new_bfqq;
4276 bfqq = new_bfqq;
4277 }
aee69d78 4278
24bfd19b 4279 waiting = bfqq && bfq_bfqq_wait_request(bfqq);
aee69d78 4280 bfq_add_request(rq);
24bfd19b 4281 idle_timer_disabled = waiting && !bfq_bfqq_wait_request(bfqq);
aee69d78
PV
4282
4283 rq->fifo_time = ktime_get_ns() + bfqd->bfq_fifo_expire[rq_is_sync(rq)];
4284 list_add_tail(&rq->queuelist, &bfqq->fifo);
4285
4286 bfq_rq_enqueued(bfqd, bfqq, rq);
24bfd19b
PV
4287
4288 return idle_timer_disabled;
aee69d78
PV
4289}
4290
4291static void bfq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
4292 bool at_head)
4293{
4294 struct request_queue *q = hctx->queue;
4295 struct bfq_data *bfqd = q->elevator->elevator_data;
a33801e8 4296#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
614822f8 4297 struct bfq_queue *bfqq = RQ_BFQQ(rq);
24bfd19b
PV
4298 bool idle_timer_disabled = false;
4299 unsigned int cmd_flags;
4300#endif
aee69d78
PV
4301
4302 spin_lock_irq(&bfqd->lock);
4303 if (blk_mq_sched_try_insert_merge(q, rq)) {
4304 spin_unlock_irq(&bfqd->lock);
4305 return;
4306 }
4307
4308 spin_unlock_irq(&bfqd->lock);
4309
4310 blk_mq_sched_request_inserted(rq);
4311
4312 spin_lock_irq(&bfqd->lock);
4313 if (at_head || blk_rq_is_passthrough(rq)) {
4314 if (at_head)
4315 list_add(&rq->queuelist, &bfqd->dispatch);
4316 else
4317 list_add_tail(&rq->queuelist, &bfqd->dispatch);
4318 } else {
a33801e8 4319#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b 4320 idle_timer_disabled = __bfq_insert_request(bfqd, rq);
614822f8
LM
4321 /*
4322 * Update bfqq, because, if a queue merge has occurred
4323 * in __bfq_insert_request, then rq has been
4324 * redirected into a new queue.
4325 */
4326 bfqq = RQ_BFQQ(rq);
24bfd19b
PV
4327#else
4328 __bfq_insert_request(bfqd, rq);
4329#endif
aee69d78
PV
4330
4331 if (rq_mergeable(rq)) {
4332 elv_rqhash_add(q, rq);
4333 if (!q->last_merge)
4334 q->last_merge = rq;
4335 }
4336 }
4337
a33801e8 4338#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b
PV
4339 /*
4340 * Cache cmd_flags before releasing scheduler lock, because rq
4341 * may disappear afterwards (for example, because of a request
4342 * merge).
4343 */
4344 cmd_flags = rq->cmd_flags;
4345#endif
6fa3e8d3 4346 spin_unlock_irq(&bfqd->lock);
24bfd19b 4347
a33801e8 4348#if defined(CONFIG_BFQ_GROUP_IOSCHED) && defined(CONFIG_DEBUG_BLK_CGROUP)
24bfd19b
PV
4349 if (!bfqq)
4350 return;
4351 /*
4352 * bfqq still exists, because it can disappear only after
4353 * either it is merged with another queue, or the process it
4354 * is associated with exits. But both actions must be taken by
4355 * the same process currently executing this flow of
4356 * instruction.
4357 *
4358 * In addition, the following queue lock guarantees that
4359 * bfqq_group(bfqq) exists as well.
4360 */
4361 spin_lock_irq(q->queue_lock);
4362 bfqg_stats_update_io_add(bfqq_group(bfqq), bfqq, cmd_flags);
4363 if (idle_timer_disabled)
4364 bfqg_stats_update_idle_time(bfqq_group(bfqq));
4365 spin_unlock_irq(q->queue_lock);
4366#endif
aee69d78
PV
4367}
4368
4369static void bfq_insert_requests(struct blk_mq_hw_ctx *hctx,
4370 struct list_head *list, bool at_head)
4371{
4372 while (!list_empty(list)) {
4373 struct request *rq;
4374
4375 rq = list_first_entry(list, struct request, queuelist);
4376 list_del_init(&rq->queuelist);
4377 bfq_insert_request(hctx, rq, at_head);
4378 }
4379}
4380
4381static void bfq_update_hw_tag(struct bfq_data *bfqd)
4382{
4383 bfqd->max_rq_in_driver = max_t(int, bfqd->max_rq_in_driver,
4384 bfqd->rq_in_driver);
4385
4386 if (bfqd->hw_tag == 1)
4387 return;
4388
4389 /*
4390 * This sample is valid if the number of outstanding requests
4391 * is large enough to allow a queueing behavior. Note that the
4392 * sum is not exact, as it's not taking into account deactivated
4393 * requests.
4394 */
4395 if (bfqd->rq_in_driver + bfqd->queued < BFQ_HW_QUEUE_THRESHOLD)
4396 return;
4397
4398 if (bfqd->hw_tag_samples++ < BFQ_HW_QUEUE_SAMPLES)
4399 return;
4400
4401 bfqd->hw_tag = bfqd->max_rq_in_driver > BFQ_HW_QUEUE_THRESHOLD;
4402 bfqd->max_rq_in_driver = 0;
4403 bfqd->hw_tag_samples = 0;
4404}
4405
4406static void bfq_completed_request(struct bfq_queue *bfqq, struct bfq_data *bfqd)
4407{
ab0e43e9
PV
4408 u64 now_ns;
4409 u32 delta_us;
4410
aee69d78
PV
4411 bfq_update_hw_tag(bfqd);
4412
4413 bfqd->rq_in_driver--;
4414 bfqq->dispatched--;
4415
44e44a1b
PV
4416 if (!bfqq->dispatched && !bfq_bfqq_busy(bfqq)) {
4417 /*
4418 * Set budget_timeout (which we overload to store the
4419 * time at which the queue remains with no backlog and
4420 * no outstanding request; used by the weight-raising
4421 * mechanism).
4422 */
4423 bfqq->budget_timeout = jiffies;
1de0c4cd
AA
4424
4425 bfq_weights_tree_remove(bfqd, &bfqq->entity,
4426 &bfqd->queue_weights_tree);
44e44a1b
PV
4427 }
4428
ab0e43e9
PV
4429 now_ns = ktime_get_ns();
4430
4431 bfqq->ttime.last_end_request = now_ns;
4432
4433 /*
4434 * Using us instead of ns, to get a reasonable precision in
4435 * computing rate in next check.
4436 */
4437 delta_us = div_u64(now_ns - bfqd->last_completion, NSEC_PER_USEC);
4438
4439 /*
4440 * If the request took rather long to complete, and, according
4441 * to the maximum request size recorded, this completion latency
4442 * implies that the request was certainly served at a very low
4443 * rate (less than 1M sectors/sec), then the whole observation
4444 * interval that lasts up to this time instant cannot be a
4445 * valid time interval for computing a new peak rate. Invoke
4446 * bfq_update_rate_reset to have the following three steps
4447 * taken:
4448 * - close the observation interval at the last (previous)
4449 * request dispatch or completion
4450 * - compute rate, if possible, for that observation interval
4451 * - reset to zero samples, which will trigger a proper
4452 * re-initialization of the observation interval on next
4453 * dispatch
4454 */
4455 if (delta_us > BFQ_MIN_TT/NSEC_PER_USEC &&
4456 (bfqd->last_rq_max_size<<BFQ_RATE_SHIFT)/delta_us <
4457 1UL<<(BFQ_RATE_SHIFT - 10))
4458 bfq_update_rate_reset(bfqd, NULL);
4459 bfqd->last_completion = now_ns;
aee69d78 4460
77b7dcea
PV
4461 /*
4462 * If we are waiting to discover whether the request pattern
4463 * of the task associated with the queue is actually
4464 * isochronous, and both requisites for this condition to hold
4465 * are now satisfied, then compute soft_rt_next_start (see the
4466 * comments on the function bfq_bfqq_softrt_next_start()). We
4467 * schedule this delayed check when bfqq expires, if it still
4468 * has in-flight requests.
4469 */
4470 if (bfq_bfqq_softrt_update(bfqq) && bfqq->dispatched == 0 &&
4471 RB_EMPTY_ROOT(&bfqq->sort_list))
4472 bfqq->soft_rt_next_start =
4473 bfq_bfqq_softrt_next_start(bfqd, bfqq);
4474
aee69d78
PV
4475 /*
4476 * If this is the in-service queue, check if it needs to be expired,
4477 * or if we want to idle in case it has no pending requests.
4478 */
4479 if (bfqd->in_service_queue == bfqq) {
44e44a1b 4480 if (bfqq->dispatched == 0 && bfq_bfqq_must_idle(bfqq)) {
aee69d78
PV
4481 bfq_arm_slice_timer(bfqd);
4482 return;
4483 } else if (bfq_may_expire_for_budg_timeout(bfqq))
4484 bfq_bfqq_expire(bfqd, bfqq, false,
4485 BFQQE_BUDGET_TIMEOUT);
4486 else if (RB_EMPTY_ROOT(&bfqq->sort_list) &&
4487 (bfqq->dispatched == 0 ||
4488 !bfq_bfqq_may_idle(bfqq)))
4489 bfq_bfqq_expire(bfqd, bfqq, false,
4490 BFQQE_NO_MORE_REQUESTS);
4491 }
3f7cb4f4
HT
4492
4493 if (!bfqd->rq_in_driver)
4494 bfq_schedule_dispatch(bfqd);
aee69d78
PV
4495}
4496
4497static void bfq_put_rq_priv_body(struct bfq_queue *bfqq)
4498{
4499 bfqq->allocated--;
4500
4501 bfq_put_queue(bfqq);
4502}
4503
7b9e9361 4504static void bfq_finish_request(struct request *rq)
aee69d78 4505{
5bbf4e5a
CH
4506 struct bfq_queue *bfqq;
4507 struct bfq_data *bfqd;
4508
4509 if (!rq->elv.icq)
4510 return;
4511
4512 bfqq = RQ_BFQQ(rq);
4513 bfqd = bfqq->bfqd;
aee69d78 4514
e21b7a0b
AA
4515 if (rq->rq_flags & RQF_STARTED)
4516 bfqg_stats_update_completion(bfqq_group(bfqq),
4517 rq_start_time_ns(rq),
4518 rq_io_start_time_ns(rq),
4519 rq->cmd_flags);
aee69d78
PV
4520
4521 if (likely(rq->rq_flags & RQF_STARTED)) {
4522 unsigned long flags;
4523
4524 spin_lock_irqsave(&bfqd->lock, flags);
4525
4526 bfq_completed_request(bfqq, bfqd);
4527 bfq_put_rq_priv_body(bfqq);
4528
6fa3e8d3 4529 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4530 } else {
4531 /*
4532 * Request rq may be still/already in the scheduler,
4533 * in which case we need to remove it. And we cannot
4534 * defer such a check and removal, to avoid
4535 * inconsistencies in the time interval from the end
4536 * of this function to the start of the deferred work.
4537 * This situation seems to occur only in process
4538 * context, as a consequence of a merge. In the
4539 * current version of the code, this implies that the
4540 * lock is held.
4541 */
4542
614822f8 4543 if (!RB_EMPTY_NODE(&rq->rb_node)) {
7b9e9361 4544 bfq_remove_request(rq->q, rq);
614822f8
LM
4545 bfqg_stats_update_io_remove(bfqq_group(bfqq),
4546 rq->cmd_flags);
4547 }
aee69d78
PV
4548 bfq_put_rq_priv_body(bfqq);
4549 }
4550
4551 rq->elv.priv[0] = NULL;
4552 rq->elv.priv[1] = NULL;
4553}
4554
36eca894
AA
4555/*
4556 * Returns NULL if a new bfqq should be allocated, or the old bfqq if this
4557 * was the last process referring to that bfqq.
4558 */
4559static struct bfq_queue *
4560bfq_split_bfqq(struct bfq_io_cq *bic, struct bfq_queue *bfqq)
4561{
4562 bfq_log_bfqq(bfqq->bfqd, bfqq, "splitting queue");
4563
4564 if (bfqq_process_refs(bfqq) == 1) {
4565 bfqq->pid = current->pid;
4566 bfq_clear_bfqq_coop(bfqq);
4567 bfq_clear_bfqq_split_coop(bfqq);
4568 return bfqq;
4569 }
4570
4571 bic_set_bfqq(bic, NULL, 1);
4572
4573 bfq_put_cooperator(bfqq);
4574
4575 bfq_put_queue(bfqq);
4576 return NULL;
4577}
4578
4579static struct bfq_queue *bfq_get_bfqq_handle_split(struct bfq_data *bfqd,
4580 struct bfq_io_cq *bic,
4581 struct bio *bio,
4582 bool split, bool is_sync,
4583 bool *new_queue)
4584{
4585 struct bfq_queue *bfqq = bic_to_bfqq(bic, is_sync);
4586
4587 if (likely(bfqq && bfqq != &bfqd->oom_bfqq))
4588 return bfqq;
4589
4590 if (new_queue)
4591 *new_queue = true;
4592
4593 if (bfqq)
4594 bfq_put_queue(bfqq);
4595 bfqq = bfq_get_queue(bfqd, bio, is_sync, bic);
4596
4597 bic_set_bfqq(bic, bfqq, is_sync);
e1b2324d
AA
4598 if (split && is_sync) {
4599 if ((bic->was_in_burst_list && bfqd->large_burst) ||
4600 bic->saved_in_large_burst)
4601 bfq_mark_bfqq_in_large_burst(bfqq);
4602 else {
4603 bfq_clear_bfqq_in_large_burst(bfqq);
4604 if (bic->was_in_burst_list)
99fead8d
PV
4605 /*
4606 * If bfqq was in the current
4607 * burst list before being
4608 * merged, then we have to add
4609 * it back. And we do not need
4610 * to increase burst_size, as
4611 * we did not decrement
4612 * burst_size when we removed
4613 * bfqq from the burst list as
4614 * a consequence of a merge
4615 * (see comments in
4616 * bfq_put_queue). In this
4617 * respect, it would be rather
4618 * costly to know whether the
4619 * current burst list is still
4620 * the same burst list from
4621 * which bfqq was removed on
4622 * the merge. To avoid this
4623 * cost, if bfqq was in a
4624 * burst list, then we add
4625 * bfqq to the current burst
4626 * list without any further
4627 * check. This can cause
4628 * inappropriate insertions,
4629 * but rarely enough to not
4630 * harm the detection of large
4631 * bursts significantly.
4632 */
e1b2324d
AA
4633 hlist_add_head(&bfqq->burst_list_node,
4634 &bfqd->burst_list);
4635 }
36eca894 4636 bfqq->split_time = jiffies;
e1b2324d 4637 }
36eca894
AA
4638
4639 return bfqq;
4640}
4641
aee69d78
PV
4642/*
4643 * Allocate bfq data structures associated with this request.
4644 */
5bbf4e5a 4645static void bfq_prepare_request(struct request *rq, struct bio *bio)
aee69d78 4646{
5bbf4e5a 4647 struct request_queue *q = rq->q;
aee69d78 4648 struct bfq_data *bfqd = q->elevator->elevator_data;
9f210738 4649 struct bfq_io_cq *bic;
aee69d78
PV
4650 const int is_sync = rq_is_sync(rq);
4651 struct bfq_queue *bfqq;
36eca894 4652 bool new_queue = false;
13c931bd 4653 bool bfqq_already_existing = false, split = false;
aee69d78 4654
9f210738 4655 if (!rq->elv.icq)
5bbf4e5a 4656 return;
9f210738 4657 bic = icq_to_bic(rq->elv.icq);
aee69d78 4658
9f210738 4659 spin_lock_irq(&bfqd->lock);
aee69d78 4660
8c9ff1ad
CIK
4661 bfq_check_ioprio_change(bic, bio);
4662
e21b7a0b
AA
4663 bfq_bic_update_cgroup(bic, bio);
4664
36eca894
AA
4665 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio, false, is_sync,
4666 &new_queue);
4667
4668 if (likely(!new_queue)) {
4669 /* If the queue was seeky for too long, break it apart. */
4670 if (bfq_bfqq_coop(bfqq) && bfq_bfqq_split_coop(bfqq)) {
4671 bfq_log_bfqq(bfqd, bfqq, "breaking apart bfqq");
e1b2324d
AA
4672
4673 /* Update bic before losing reference to bfqq */
4674 if (bfq_bfqq_in_large_burst(bfqq))
4675 bic->saved_in_large_burst = true;
4676
36eca894 4677 bfqq = bfq_split_bfqq(bic, bfqq);
6fa3e8d3 4678 split = true;
36eca894
AA
4679
4680 if (!bfqq)
4681 bfqq = bfq_get_bfqq_handle_split(bfqd, bic, bio,
4682 true, is_sync,
4683 NULL);
13c931bd
PV
4684 else
4685 bfqq_already_existing = true;
36eca894 4686 }
aee69d78
PV
4687 }
4688
4689 bfqq->allocated++;
4690 bfqq->ref++;
4691 bfq_log_bfqq(bfqd, bfqq, "get_request %p: bfqq %p, %d",
4692 rq, bfqq, bfqq->ref);
4693
4694 rq->elv.priv[0] = bic;
4695 rq->elv.priv[1] = bfqq;
4696
36eca894
AA
4697 /*
4698 * If a bfq_queue has only one process reference, it is owned
4699 * by only this bic: we can then set bfqq->bic = bic. in
4700 * addition, if the queue has also just been split, we have to
4701 * resume its state.
4702 */
4703 if (likely(bfqq != &bfqd->oom_bfqq) && bfqq_process_refs(bfqq) == 1) {
4704 bfqq->bic = bic;
6fa3e8d3 4705 if (split) {
36eca894
AA
4706 /*
4707 * The queue has just been split from a shared
4708 * queue: restore the idle window and the
4709 * possible weight raising period.
4710 */
13c931bd
PV
4711 bfq_bfqq_resume_state(bfqq, bfqd, bic,
4712 bfqq_already_existing);
36eca894
AA
4713 }
4714 }
4715
e1b2324d
AA
4716 if (unlikely(bfq_bfqq_just_created(bfqq)))
4717 bfq_handle_burst(bfqd, bfqq);
4718
6fa3e8d3 4719 spin_unlock_irq(&bfqd->lock);
aee69d78
PV
4720}
4721
4722static void bfq_idle_slice_timer_body(struct bfq_queue *bfqq)
4723{
4724 struct bfq_data *bfqd = bfqq->bfqd;
4725 enum bfqq_expiration reason;
4726 unsigned long flags;
4727
4728 spin_lock_irqsave(&bfqd->lock, flags);
4729 bfq_clear_bfqq_wait_request(bfqq);
4730
4731 if (bfqq != bfqd->in_service_queue) {
4732 spin_unlock_irqrestore(&bfqd->lock, flags);
4733 return;
4734 }
4735
4736 if (bfq_bfqq_budget_timeout(bfqq))
4737 /*
4738 * Also here the queue can be safely expired
4739 * for budget timeout without wasting
4740 * guarantees
4741 */
4742 reason = BFQQE_BUDGET_TIMEOUT;
4743 else if (bfqq->queued[0] == 0 && bfqq->queued[1] == 0)
4744 /*
4745 * The queue may not be empty upon timer expiration,
4746 * because we may not disable the timer when the
4747 * first request of the in-service queue arrives
4748 * during disk idling.
4749 */
4750 reason = BFQQE_TOO_IDLE;
4751 else
4752 goto schedule_dispatch;
4753
4754 bfq_bfqq_expire(bfqd, bfqq, true, reason);
4755
4756schedule_dispatch:
6fa3e8d3 4757 spin_unlock_irqrestore(&bfqd->lock, flags);
aee69d78
PV
4758 bfq_schedule_dispatch(bfqd);
4759}
4760
4761/*
4762 * Handler of the expiration of the timer running if the in-service queue
4763 * is idling inside its time slice.
4764 */
4765static enum hrtimer_restart bfq_idle_slice_timer(struct hrtimer *timer)
4766{
4767 struct bfq_data *bfqd = container_of(timer, struct bfq_data,
4768 idle_slice_timer);
4769 struct bfq_queue *bfqq = bfqd->in_service_queue;
4770
4771 /*
4772 * Theoretical race here: the in-service queue can be NULL or
4773 * different from the queue that was idling if a new request
4774 * arrives for the current queue and there is a full dispatch
4775 * cycle that changes the in-service queue. This can hardly
4776 * happen, but in the worst case we just expire a queue too
4777 * early.
4778 */
4779 if (bfqq)
4780 bfq_idle_slice_timer_body(bfqq);
4781
4782 return HRTIMER_NORESTART;
4783}
4784
4785static void __bfq_put_async_bfqq(struct bfq_data *bfqd,
4786 struct bfq_queue **bfqq_ptr)
4787{
4788 struct bfq_queue *bfqq = *bfqq_ptr;
4789
4790 bfq_log(bfqd, "put_async_bfqq: %p", bfqq);
4791 if (bfqq) {
e21b7a0b
AA
4792 bfq_bfqq_move(bfqd, bfqq, bfqd->root_group);
4793
aee69d78
PV
4794 bfq_log_bfqq(bfqd, bfqq, "put_async_bfqq: putting %p, %d",
4795 bfqq, bfqq->ref);
4796 bfq_put_queue(bfqq);
4797 *bfqq_ptr = NULL;
4798 }
4799}
4800
4801/*
e21b7a0b
AA
4802 * Release all the bfqg references to its async queues. If we are
4803 * deallocating the group these queues may still contain requests, so
4804 * we reparent them to the root cgroup (i.e., the only one that will
4805 * exist for sure until all the requests on a device are gone).
aee69d78 4806 */
ea25da48 4807void bfq_put_async_queues(struct bfq_data *bfqd, struct bfq_group *bfqg)
aee69d78
PV
4808{
4809 int i, j;
4810
4811 for (i = 0; i < 2; i++)
4812 for (j = 0; j < IOPRIO_BE_NR; j++)
e21b7a0b 4813 __bfq_put_async_bfqq(bfqd, &bfqg->async_bfqq[i][j]);
aee69d78 4814
e21b7a0b 4815 __bfq_put_async_bfqq(bfqd, &bfqg->async_idle_bfqq);
aee69d78
PV
4816}
4817
4818static void bfq_exit_queue(struct elevator_queue *e)
4819{
4820 struct bfq_data *bfqd = e->elevator_data;
4821 struct bfq_queue *bfqq, *n;
4822
4823 hrtimer_cancel(&bfqd->idle_slice_timer);
4824
4825 spin_lock_irq(&bfqd->lock);
4826 list_for_each_entry_safe(bfqq, n, &bfqd->idle_list, bfqq_list)
e21b7a0b 4827 bfq_deactivate_bfqq(bfqd, bfqq, false, false);
aee69d78
PV
4828 spin_unlock_irq(&bfqd->lock);
4829
4830 hrtimer_cancel(&bfqd->idle_slice_timer);
4831
e21b7a0b
AA
4832#ifdef CONFIG_BFQ_GROUP_IOSCHED
4833 blkcg_deactivate_policy(bfqd->queue, &blkcg_policy_bfq);
4834#else
4835 spin_lock_irq(&bfqd->lock);
4836 bfq_put_async_queues(bfqd, bfqd->root_group);
4837 kfree(bfqd->root_group);
4838 spin_unlock_irq(&bfqd->lock);
4839#endif
4840
aee69d78
PV
4841 kfree(bfqd);
4842}
4843
e21b7a0b
AA
4844static void bfq_init_root_group(struct bfq_group *root_group,
4845 struct bfq_data *bfqd)
4846{
4847 int i;
4848
4849#ifdef CONFIG_BFQ_GROUP_IOSCHED
4850 root_group->entity.parent = NULL;
4851 root_group->my_entity = NULL;
4852 root_group->bfqd = bfqd;
4853#endif
36eca894 4854 root_group->rq_pos_tree = RB_ROOT;
e21b7a0b
AA
4855 for (i = 0; i < BFQ_IOPRIO_CLASSES; i++)
4856 root_group->sched_data.service_tree[i] = BFQ_SERVICE_TREE_INIT;
4857 root_group->sched_data.bfq_class_idle_last_service = jiffies;
4858}
4859
aee69d78
PV
4860static int bfq_init_queue(struct request_queue *q, struct elevator_type *e)
4861{
4862 struct bfq_data *bfqd;
4863 struct elevator_queue *eq;
aee69d78
PV
4864
4865 eq = elevator_alloc(q, e);
4866 if (!eq)
4867 return -ENOMEM;
4868
4869 bfqd = kzalloc_node(sizeof(*bfqd), GFP_KERNEL, q->node);
4870 if (!bfqd) {
4871 kobject_put(&eq->kobj);
4872 return -ENOMEM;
4873 }
4874 eq->elevator_data = bfqd;
4875
e21b7a0b
AA
4876 spin_lock_irq(q->queue_lock);
4877 q->elevator = eq;
4878 spin_unlock_irq(q->queue_lock);
4879
aee69d78
PV
4880 /*
4881 * Our fallback bfqq if bfq_find_alloc_queue() runs into OOM issues.
4882 * Grab a permanent reference to it, so that the normal code flow
4883 * will not attempt to free it.
4884 */
4885 bfq_init_bfqq(bfqd, &bfqd->oom_bfqq, NULL, 1, 0);
4886 bfqd->oom_bfqq.ref++;
4887 bfqd->oom_bfqq.new_ioprio = BFQ_DEFAULT_QUEUE_IOPRIO;
4888 bfqd->oom_bfqq.new_ioprio_class = IOPRIO_CLASS_BE;
4889 bfqd->oom_bfqq.entity.new_weight =
4890 bfq_ioprio_to_weight(bfqd->oom_bfqq.new_ioprio);
e1b2324d
AA
4891
4892 /* oom_bfqq does not participate to bursts */
4893 bfq_clear_bfqq_just_created(&bfqd->oom_bfqq);
4894
aee69d78
PV
4895 /*
4896 * Trigger weight initialization, according to ioprio, at the
4897 * oom_bfqq's first activation. The oom_bfqq's ioprio and ioprio
4898 * class won't be changed any more.
4899 */
4900 bfqd->oom_bfqq.entity.prio_changed = 1;
4901
4902 bfqd->queue = q;
4903
e21b7a0b 4904 INIT_LIST_HEAD(&bfqd->dispatch);
aee69d78
PV
4905
4906 hrtimer_init(&bfqd->idle_slice_timer, CLOCK_MONOTONIC,
4907 HRTIMER_MODE_REL);
4908 bfqd->idle_slice_timer.function = bfq_idle_slice_timer;
4909
1de0c4cd
AA
4910 bfqd->queue_weights_tree = RB_ROOT;
4911 bfqd->group_weights_tree = RB_ROOT;
4912
aee69d78
PV
4913 INIT_LIST_HEAD(&bfqd->active_list);
4914 INIT_LIST_HEAD(&bfqd->idle_list);
e1b2324d 4915 INIT_HLIST_HEAD(&bfqd->burst_list);
aee69d78
PV
4916
4917 bfqd->hw_tag = -1;
4918
4919 bfqd->bfq_max_budget = bfq_default_max_budget;
4920
4921 bfqd->bfq_fifo_expire[0] = bfq_fifo_expire[0];
4922 bfqd->bfq_fifo_expire[1] = bfq_fifo_expire[1];
4923 bfqd->bfq_back_max = bfq_back_max;
4924 bfqd->bfq_back_penalty = bfq_back_penalty;
4925 bfqd->bfq_slice_idle = bfq_slice_idle;
aee69d78
PV
4926 bfqd->bfq_timeout = bfq_timeout;
4927
4928 bfqd->bfq_requests_within_timer = 120;
4929
e1b2324d
AA
4930 bfqd->bfq_large_burst_thresh = 8;
4931 bfqd->bfq_burst_interval = msecs_to_jiffies(180);
4932
44e44a1b
PV
4933 bfqd->low_latency = true;
4934
4935 /*
4936 * Trade-off between responsiveness and fairness.
4937 */
4938 bfqd->bfq_wr_coeff = 30;
77b7dcea 4939 bfqd->bfq_wr_rt_max_time = msecs_to_jiffies(300);
44e44a1b
PV
4940 bfqd->bfq_wr_max_time = 0;
4941 bfqd->bfq_wr_min_idle_time = msecs_to_jiffies(2000);
4942 bfqd->bfq_wr_min_inter_arr_async = msecs_to_jiffies(500);
77b7dcea
PV
4943 bfqd->bfq_wr_max_softrt_rate = 7000; /*
4944 * Approximate rate required
4945 * to playback or record a
4946 * high-definition compressed
4947 * video.
4948 */
cfd69712 4949 bfqd->wr_busy_queues = 0;
44e44a1b
PV
4950
4951 /*
4952 * Begin by assuming, optimistically, that the device is a
4953 * high-speed one, and that its peak rate is equal to 2/3 of
4954 * the highest reference rate.
4955 */
4956 bfqd->RT_prod = R_fast[blk_queue_nonrot(bfqd->queue)] *
4957 T_fast[blk_queue_nonrot(bfqd->queue)];
4958 bfqd->peak_rate = R_fast[blk_queue_nonrot(bfqd->queue)] * 2 / 3;
4959 bfqd->device_speed = BFQ_BFQD_FAST;
4960
aee69d78 4961 spin_lock_init(&bfqd->lock);
aee69d78 4962
e21b7a0b
AA
4963 /*
4964 * The invocation of the next bfq_create_group_hierarchy
4965 * function is the head of a chain of function calls
4966 * (bfq_create_group_hierarchy->blkcg_activate_policy->
4967 * blk_mq_freeze_queue) that may lead to the invocation of the
4968 * has_work hook function. For this reason,
4969 * bfq_create_group_hierarchy is invoked only after all
4970 * scheduler data has been initialized, apart from the fields
4971 * that can be initialized only after invoking
4972 * bfq_create_group_hierarchy. This, in particular, enables
4973 * has_work to correctly return false. Of course, to avoid
4974 * other inconsistencies, the blk-mq stack must then refrain
4975 * from invoking further scheduler hooks before this init
4976 * function is finished.
4977 */
4978 bfqd->root_group = bfq_create_group_hierarchy(bfqd, q->node);
4979 if (!bfqd->root_group)
4980 goto out_free;
4981 bfq_init_root_group(bfqd->root_group, bfqd);
4982 bfq_init_entity(&bfqd->oom_bfqq.entity, bfqd->root_group);
4983
b5dc5d4d 4984 wbt_disable_default(q);
aee69d78 4985 return 0;
e21b7a0b
AA
4986
4987out_free:
4988 kfree(bfqd);
4989 kobject_put(&eq->kobj);
4990 return -ENOMEM;
aee69d78
PV
4991}
4992
4993static void bfq_slab_kill(void)
4994{
4995 kmem_cache_destroy(bfq_pool);
4996}
4997
4998static int __init bfq_slab_setup(void)
4999{
5000 bfq_pool = KMEM_CACHE(bfq_queue, 0);
5001 if (!bfq_pool)
5002 return -ENOMEM;
5003 return 0;
5004}
5005
5006static ssize_t bfq_var_show(unsigned int var, char *page)
5007{
5008 return sprintf(page, "%u\n", var);
5009}
5010
2f79136b 5011static int bfq_var_store(unsigned long *var, const char *page)
aee69d78
PV
5012{
5013 unsigned long new_val;
5014 int ret = kstrtoul(page, 10, &new_val);
5015
2f79136b
BVA
5016 if (ret)
5017 return ret;
5018 *var = new_val;
5019 return 0;
aee69d78
PV
5020}
5021
5022#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
5023static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5024{ \
5025 struct bfq_data *bfqd = e->elevator_data; \
5026 u64 __data = __VAR; \
5027 if (__CONV == 1) \
5028 __data = jiffies_to_msecs(__data); \
5029 else if (__CONV == 2) \
5030 __data = div_u64(__data, NSEC_PER_MSEC); \
5031 return bfq_var_show(__data, (page)); \
5032}
5033SHOW_FUNCTION(bfq_fifo_expire_sync_show, bfqd->bfq_fifo_expire[1], 2);
5034SHOW_FUNCTION(bfq_fifo_expire_async_show, bfqd->bfq_fifo_expire[0], 2);
5035SHOW_FUNCTION(bfq_back_seek_max_show, bfqd->bfq_back_max, 0);
5036SHOW_FUNCTION(bfq_back_seek_penalty_show, bfqd->bfq_back_penalty, 0);
5037SHOW_FUNCTION(bfq_slice_idle_show, bfqd->bfq_slice_idle, 2);
5038SHOW_FUNCTION(bfq_max_budget_show, bfqd->bfq_user_max_budget, 0);
5039SHOW_FUNCTION(bfq_timeout_sync_show, bfqd->bfq_timeout, 1);
5040SHOW_FUNCTION(bfq_strict_guarantees_show, bfqd->strict_guarantees, 0);
44e44a1b 5041SHOW_FUNCTION(bfq_low_latency_show, bfqd->low_latency, 0);
aee69d78
PV
5042#undef SHOW_FUNCTION
5043
5044#define USEC_SHOW_FUNCTION(__FUNC, __VAR) \
5045static ssize_t __FUNC(struct elevator_queue *e, char *page) \
5046{ \
5047 struct bfq_data *bfqd = e->elevator_data; \
5048 u64 __data = __VAR; \
5049 __data = div_u64(__data, NSEC_PER_USEC); \
5050 return bfq_var_show(__data, (page)); \
5051}
5052USEC_SHOW_FUNCTION(bfq_slice_idle_us_show, bfqd->bfq_slice_idle);
5053#undef USEC_SHOW_FUNCTION
5054
5055#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
5056static ssize_t \
5057__FUNC(struct elevator_queue *e, const char *page, size_t count) \
5058{ \
5059 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5060 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5061 int ret; \
5062 \
5063 ret = bfq_var_store(&__data, (page)); \
5064 if (ret) \
5065 return ret; \
1530486c
BVA
5066 if (__data < __min) \
5067 __data = __min; \
5068 else if (__data > __max) \
5069 __data = __max; \
aee69d78
PV
5070 if (__CONV == 1) \
5071 *(__PTR) = msecs_to_jiffies(__data); \
5072 else if (__CONV == 2) \
5073 *(__PTR) = (u64)__data * NSEC_PER_MSEC; \
5074 else \
5075 *(__PTR) = __data; \
235f8da1 5076 return count; \
aee69d78
PV
5077}
5078STORE_FUNCTION(bfq_fifo_expire_sync_store, &bfqd->bfq_fifo_expire[1], 1,
5079 INT_MAX, 2);
5080STORE_FUNCTION(bfq_fifo_expire_async_store, &bfqd->bfq_fifo_expire[0], 1,
5081 INT_MAX, 2);
5082STORE_FUNCTION(bfq_back_seek_max_store, &bfqd->bfq_back_max, 0, INT_MAX, 0);
5083STORE_FUNCTION(bfq_back_seek_penalty_store, &bfqd->bfq_back_penalty, 1,
5084 INT_MAX, 0);
5085STORE_FUNCTION(bfq_slice_idle_store, &bfqd->bfq_slice_idle, 0, INT_MAX, 2);
5086#undef STORE_FUNCTION
5087
5088#define USEC_STORE_FUNCTION(__FUNC, __PTR, MIN, MAX) \
5089static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count)\
5090{ \
5091 struct bfq_data *bfqd = e->elevator_data; \
1530486c 5092 unsigned long __data, __min = (MIN), __max = (MAX); \
2f79136b
BVA
5093 int ret; \
5094 \
5095 ret = bfq_var_store(&__data, (page)); \
5096 if (ret) \
5097 return ret; \
1530486c
BVA
5098 if (__data < __min) \
5099 __data = __min; \
5100 else if (__data > __max) \
5101 __data = __max; \
aee69d78 5102 *(__PTR) = (u64)__data * NSEC_PER_USEC; \
235f8da1 5103 return count; \
aee69d78
PV
5104}
5105USEC_STORE_FUNCTION(bfq_slice_idle_us_store, &bfqd->bfq_slice_idle, 0,
5106 UINT_MAX);
5107#undef USEC_STORE_FUNCTION
5108
aee69d78
PV
5109static ssize_t bfq_max_budget_store(struct elevator_queue *e,
5110 const char *page, size_t count)
5111{
5112 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5113 unsigned long __data;
5114 int ret;
235f8da1 5115
2f79136b
BVA
5116 ret = bfq_var_store(&__data, (page));
5117 if (ret)
5118 return ret;
aee69d78
PV
5119
5120 if (__data == 0)
ab0e43e9 5121 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78
PV
5122 else {
5123 if (__data > INT_MAX)
5124 __data = INT_MAX;
5125 bfqd->bfq_max_budget = __data;
5126 }
5127
5128 bfqd->bfq_user_max_budget = __data;
5129
235f8da1 5130 return count;
aee69d78
PV
5131}
5132
5133/*
5134 * Leaving this name to preserve name compatibility with cfq
5135 * parameters, but this timeout is used for both sync and async.
5136 */
5137static ssize_t bfq_timeout_sync_store(struct elevator_queue *e,
5138 const char *page, size_t count)
5139{
5140 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5141 unsigned long __data;
5142 int ret;
235f8da1 5143
2f79136b
BVA
5144 ret = bfq_var_store(&__data, (page));
5145 if (ret)
5146 return ret;
aee69d78
PV
5147
5148 if (__data < 1)
5149 __data = 1;
5150 else if (__data > INT_MAX)
5151 __data = INT_MAX;
5152
5153 bfqd->bfq_timeout = msecs_to_jiffies(__data);
5154 if (bfqd->bfq_user_max_budget == 0)
ab0e43e9 5155 bfqd->bfq_max_budget = bfq_calc_max_budget(bfqd);
aee69d78 5156
235f8da1 5157 return count;
aee69d78
PV
5158}
5159
5160static ssize_t bfq_strict_guarantees_store(struct elevator_queue *e,
5161 const char *page, size_t count)
5162{
5163 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5164 unsigned long __data;
5165 int ret;
235f8da1 5166
2f79136b
BVA
5167 ret = bfq_var_store(&__data, (page));
5168 if (ret)
5169 return ret;
aee69d78
PV
5170
5171 if (__data > 1)
5172 __data = 1;
5173 if (!bfqd->strict_guarantees && __data == 1
5174 && bfqd->bfq_slice_idle < 8 * NSEC_PER_MSEC)
5175 bfqd->bfq_slice_idle = 8 * NSEC_PER_MSEC;
5176
5177 bfqd->strict_guarantees = __data;
5178
235f8da1 5179 return count;
aee69d78
PV
5180}
5181
44e44a1b
PV
5182static ssize_t bfq_low_latency_store(struct elevator_queue *e,
5183 const char *page, size_t count)
5184{
5185 struct bfq_data *bfqd = e->elevator_data;
2f79136b
BVA
5186 unsigned long __data;
5187 int ret;
235f8da1 5188
2f79136b
BVA
5189 ret = bfq_var_store(&__data, (page));
5190 if (ret)
5191 return ret;
44e44a1b
PV
5192
5193 if (__data > 1)
5194 __data = 1;
5195 if (__data == 0 && bfqd->low_latency != 0)
5196 bfq_end_wr(bfqd);
5197 bfqd->low_latency = __data;
5198
235f8da1 5199 return count;
44e44a1b
PV
5200}
5201
aee69d78
PV
5202#define BFQ_ATTR(name) \
5203 __ATTR(name, 0644, bfq_##name##_show, bfq_##name##_store)
5204
5205static struct elv_fs_entry bfq_attrs[] = {
5206 BFQ_ATTR(fifo_expire_sync),
5207 BFQ_ATTR(fifo_expire_async),
5208 BFQ_ATTR(back_seek_max),
5209 BFQ_ATTR(back_seek_penalty),
5210 BFQ_ATTR(slice_idle),
5211 BFQ_ATTR(slice_idle_us),
5212 BFQ_ATTR(max_budget),
5213 BFQ_ATTR(timeout_sync),
5214 BFQ_ATTR(strict_guarantees),
44e44a1b 5215 BFQ_ATTR(low_latency),
aee69d78
PV
5216 __ATTR_NULL
5217};
5218
5219static struct elevator_type iosched_bfq_mq = {
5220 .ops.mq = {
5bbf4e5a 5221 .prepare_request = bfq_prepare_request,
7b9e9361 5222 .finish_request = bfq_finish_request,
aee69d78
PV
5223 .exit_icq = bfq_exit_icq,
5224 .insert_requests = bfq_insert_requests,
5225 .dispatch_request = bfq_dispatch_request,
5226 .next_request = elv_rb_latter_request,
5227 .former_request = elv_rb_former_request,
5228 .allow_merge = bfq_allow_bio_merge,
5229 .bio_merge = bfq_bio_merge,
5230 .request_merge = bfq_request_merge,
5231 .requests_merged = bfq_requests_merged,
5232 .request_merged = bfq_request_merged,
5233 .has_work = bfq_has_work,
5234 .init_sched = bfq_init_queue,
5235 .exit_sched = bfq_exit_queue,
5236 },
5237
5238 .uses_mq = true,
5239 .icq_size = sizeof(struct bfq_io_cq),
5240 .icq_align = __alignof__(struct bfq_io_cq),
5241 .elevator_attrs = bfq_attrs,
5242 .elevator_name = "bfq",
5243 .elevator_owner = THIS_MODULE,
5244};
26b4cf24 5245MODULE_ALIAS("bfq-iosched");
aee69d78
PV
5246
5247static int __init bfq_init(void)
5248{
5249 int ret;
5250
e21b7a0b
AA
5251#ifdef CONFIG_BFQ_GROUP_IOSCHED
5252 ret = blkcg_policy_register(&blkcg_policy_bfq);
5253 if (ret)
5254 return ret;
5255#endif
5256
aee69d78
PV
5257 ret = -ENOMEM;
5258 if (bfq_slab_setup())
5259 goto err_pol_unreg;
5260
44e44a1b
PV
5261 /*
5262 * Times to load large popular applications for the typical
5263 * systems installed on the reference devices (see the
5264 * comments before the definitions of the next two
5265 * arrays). Actually, we use slightly slower values, as the
5266 * estimated peak rate tends to be smaller than the actual
5267 * peak rate. The reason for this last fact is that estimates
5268 * are computed over much shorter time intervals than the long
5269 * intervals typically used for benchmarking. Why? First, to
5270 * adapt more quickly to variations. Second, because an I/O
5271 * scheduler cannot rely on a peak-rate-evaluation workload to
5272 * be run for a long time.
5273 */
5274 T_slow[0] = msecs_to_jiffies(3500); /* actually 4 sec */
5275 T_slow[1] = msecs_to_jiffies(6000); /* actually 6.5 sec */
5276 T_fast[0] = msecs_to_jiffies(7000); /* actually 8 sec */
5277 T_fast[1] = msecs_to_jiffies(2500); /* actually 3 sec */
5278
5279 /*
5280 * Thresholds that determine the switch between speed classes
5281 * (see the comments before the definition of the array
5282 * device_speed_thresh). These thresholds are biased towards
5283 * transitions to the fast class. This is safer than the
5284 * opposite bias. In fact, a wrong transition to the slow
5285 * class results in short weight-raising periods, because the
5286 * speed of the device then tends to be higher that the
5287 * reference peak rate. On the opposite end, a wrong
5288 * transition to the fast class tends to increase
5289 * weight-raising periods, because of the opposite reason.
5290 */
5291 device_speed_thresh[0] = (4 * R_slow[0]) / 3;
5292 device_speed_thresh[1] = (4 * R_slow[1]) / 3;
5293
aee69d78
PV
5294 ret = elv_register(&iosched_bfq_mq);
5295 if (ret)
37dcd657 5296 goto slab_kill;
aee69d78
PV
5297
5298 return 0;
5299
37dcd657 5300slab_kill:
5301 bfq_slab_kill();
aee69d78 5302err_pol_unreg:
e21b7a0b
AA
5303#ifdef CONFIG_BFQ_GROUP_IOSCHED
5304 blkcg_policy_unregister(&blkcg_policy_bfq);
5305#endif
aee69d78
PV
5306 return ret;
5307}
5308
5309static void __exit bfq_exit(void)
5310{
5311 elv_unregister(&iosched_bfq_mq);
e21b7a0b
AA
5312#ifdef CONFIG_BFQ_GROUP_IOSCHED
5313 blkcg_policy_unregister(&blkcg_policy_bfq);
5314#endif
aee69d78
PV
5315 bfq_slab_kill();
5316}
5317
5318module_init(bfq_init);
5319module_exit(bfq_exit);
5320
5321MODULE_AUTHOR("Paolo Valente");
5322MODULE_LICENSE("GPL");
5323MODULE_DESCRIPTION("MQ Budget Fair Queueing I/O Scheduler");