Merge tag 'devprop-5.19-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael...
[linux-block.git] / arch / xtensa / kernel / process.c
CommitLineData
5a0015d6
CZ
1/*
2 * arch/xtensa/kernel/process.c
3 *
4 * Xtensa Processor version.
5 *
6 * This file is subject to the terms and conditions of the GNU General Public
7 * License. See the file "COPYING" in the main directory of this archive
8 * for more details.
9 *
10 * Copyright (C) 2001 - 2005 Tensilica Inc.
11 *
12 * Joe Taylor <joe@tensilica.com, joetylr@yahoo.com>
13 * Chris Zankel <chris@zankel.net>
14 * Marc Gauthier <marc@tensilica.com, marc@alumni.uwaterloo.ca>
15 * Kevin Chea
16 */
17
5a0015d6
CZ
18#include <linux/errno.h>
19#include <linux/sched.h>
b17b0153 20#include <linux/sched/debug.h>
29930025 21#include <linux/sched/task.h>
68db0cf1 22#include <linux/sched/task_stack.h>
5a0015d6
CZ
23#include <linux/kernel.h>
24#include <linux/mm.h>
25#include <linux/smp.h>
5a0015d6
CZ
26#include <linux/stddef.h>
27#include <linux/unistd.h>
28#include <linux/ptrace.h>
5a0015d6 29#include <linux/elf.h>
c91e02bd 30#include <linux/hw_breakpoint.h>
5a0015d6
CZ
31#include <linux/init.h>
32#include <linux/prctl.h>
33#include <linux/init_task.h>
34#include <linux/module.h>
35#include <linux/mqueue.h>
73089cbf 36#include <linux/fs.h>
5a0e3ad6 37#include <linux/slab.h>
11ad47a0 38#include <linux/rcupdate.h>
5a0015d6 39
7c0f6ba6 40#include <linux/uaccess.h>
5a0015d6
CZ
41#include <asm/io.h>
42#include <asm/processor.h>
43#include <asm/platform.h>
44#include <asm/mmu.h>
45#include <asm/irq.h>
60063497 46#include <linux/atomic.h>
0013a854 47#include <asm/asm-offsets.h>
173d6681 48#include <asm/regs.h>
c91e02bd 49#include <asm/hw_breakpoint.h>
11e969bc 50#include <asm/traps.h>
5a0015d6
CZ
51
52extern void ret_from_fork(void);
3306a726 53extern void ret_from_kernel_thread(void);
5a0015d6 54
47f3fc94
AB
55void (*pm_power_off)(void) = NULL;
56EXPORT_SYMBOL(pm_power_off);
57
5a0015d6 58
050e9baa 59#ifdef CONFIG_STACKPROTECTOR
40d1a07b
MF
60#include <linux/stackprotector.h>
61unsigned long __stack_chk_guard __read_mostly;
62EXPORT_SYMBOL(__stack_chk_guard);
63#endif
64
c658eac6
CZ
65#if XTENSA_HAVE_COPROCESSORS
66
11e969bc 67void local_coprocessors_flush_release_all(void)
c658eac6 68{
11e969bc
MF
69 struct thread_info **coprocessor_owner;
70 struct thread_info *unique_owner[XCHAL_CP_MAX];
71 int n = 0;
72 int i, j;
c658eac6 73
11e969bc
MF
74 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
75 xtensa_set_sr(XCHAL_CP_MASK, cpenable);
c658eac6 76
11e969bc
MF
77 for (i = 0; i < XCHAL_CP_MAX; i++) {
78 struct thread_info *ti = coprocessor_owner[i];
c658eac6 79
11e969bc
MF
80 if (ti) {
81 coprocessor_flush(ti, i);
c658eac6 82
11e969bc
MF
83 for (j = 0; j < n; j++)
84 if (unique_owner[j] == ti)
85 break;
86 if (j == n)
87 unique_owner[n++] = ti;
c658eac6 88
11e969bc 89 coprocessor_owner[i] = NULL;
c658eac6
CZ
90 }
91 }
11e969bc
MF
92 for (i = 0; i < n; i++) {
93 /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
94 smp_wmb();
95 unique_owner[i]->cpenable = 0;
96 }
97 xtensa_set_sr(0, cpenable);
98}
c658eac6 99
11e969bc
MF
100static void local_coprocessor_release_all(void *info)
101{
102 struct thread_info *ti = info;
103 struct thread_info **coprocessor_owner;
104 int i;
105
106 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
107
108 /* Walk through all cp owners and release it for the requested one. */
109
110 for (i = 0; i < XCHAL_CP_MAX; i++) {
111 if (coprocessor_owner[i] == ti)
112 coprocessor_owner[i] = NULL;
113 }
114 /* pairs with memw (1) in fast_coprocessor and memw in switch_to */
115 smp_wmb();
116 ti->cpenable = 0;
be38e4f2
MF
117 if (ti == current_thread_info())
118 xtensa_set_sr(0, cpenable);
11e969bc 119}
c658eac6 120
11e969bc
MF
121void coprocessor_release_all(struct thread_info *ti)
122{
123 if (ti->cpenable) {
124 /* pairs with memw (2) in fast_coprocessor */
125 smp_rmb();
126 smp_call_function_single(ti->cp_owner_cpu,
127 local_coprocessor_release_all,
128 ti, true);
129 }
c658eac6
CZ
130}
131
11e969bc 132static void local_coprocessor_flush_all(void *info)
c658eac6 133{
11e969bc
MF
134 struct thread_info *ti = info;
135 struct thread_info **coprocessor_owner;
136 unsigned long old_cpenable;
c658eac6
CZ
137 int i;
138
11e969bc
MF
139 coprocessor_owner = this_cpu_ptr(&exc_table)->coprocessor_owner;
140 old_cpenable = xtensa_xsr(ti->cpenable, cpenable);
c658eac6
CZ
141
142 for (i = 0; i < XCHAL_CP_MAX; i++) {
11e969bc 143 if (coprocessor_owner[i] == ti)
c658eac6 144 coprocessor_flush(ti, i);
c658eac6 145 }
cad6fade 146 xtensa_set_sr(old_cpenable, cpenable);
11e969bc
MF
147}
148
149void coprocessor_flush_all(struct thread_info *ti)
150{
151 if (ti->cpenable) {
152 /* pairs with memw (2) in fast_coprocessor */
153 smp_rmb();
154 smp_call_function_single(ti->cp_owner_cpu,
155 local_coprocessor_flush_all,
156 ti, true);
157 }
158}
159
160static void local_coprocessor_flush_release_all(void *info)
161{
162 local_coprocessor_flush_all(info);
163 local_coprocessor_release_all(info);
164}
c658eac6 165
11e969bc
MF
166void coprocessor_flush_release_all(struct thread_info *ti)
167{
168 if (ti->cpenable) {
169 /* pairs with memw (2) in fast_coprocessor */
170 smp_rmb();
171 smp_call_function_single(ti->cp_owner_cpu,
172 local_coprocessor_flush_release_all,
173 ti, true);
174 }
c658eac6
CZ
175}
176
177#endif
178
179
5a0015d6
CZ
180/*
181 * Powermanagement idle function, if any is provided by the platform.
182 */
f4e2e9a4 183void arch_cpu_idle(void)
5a0015d6 184{
f4e2e9a4 185 platform_idle();
5a0015d6
CZ
186}
187
188/*
c658eac6 189 * This is called when the thread calls exit().
5a0015d6 190 */
e6464694 191void exit_thread(struct task_struct *tsk)
5a0015d6 192{
c658eac6 193#if XTENSA_HAVE_COPROCESSORS
e6464694 194 coprocessor_release_all(task_thread_info(tsk));
c658eac6 195#endif
5a0015d6
CZ
196}
197
c658eac6
CZ
198/*
199 * Flush thread state. This is called when a thread does an execve()
200 * Note that we flush coprocessor registers for the case execve fails.
201 */
5a0015d6
CZ
202void flush_thread(void)
203{
c658eac6
CZ
204#if XTENSA_HAVE_COPROCESSORS
205 struct thread_info *ti = current_thread_info();
11e969bc 206 coprocessor_flush_release_all(ti);
c658eac6 207#endif
c91e02bd 208 flush_ptrace_hw_breakpoint(current);
c658eac6
CZ
209}
210
211/*
55ccf3fe
SS
212 * this gets called so that we can store coprocessor state into memory and
213 * copy the current task into the new thread.
c658eac6 214 */
55ccf3fe 215int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
c658eac6
CZ
216{
217#if XTENSA_HAVE_COPROCESSORS
55ccf3fe 218 coprocessor_flush_all(task_thread_info(src));
c658eac6 219#endif
55ccf3fe
SS
220 *dst = *src;
221 return 0;
5a0015d6
CZ
222}
223
224/*
225 * Copy thread.
226 *
3306a726
MF
227 * There are two modes in which this function is called:
228 * 1) Userspace thread creation,
229 * regs != NULL, usp_thread_fn is userspace stack pointer.
230 * It is expected to copy parent regs (in case CLONE_VM is not set
231 * in the clone_flags) and set up passed usp in the childregs.
232 * 2) Kernel thread creation,
233 * regs == NULL, usp_thread_fn is the function to run in the new thread
234 * and thread_fn_arg is its parameter.
235 * childregs are not used for the kernel threads.
236 *
5a0015d6
CZ
237 * The stack layout for the new thread looks like this:
238 *
3306a726 239 * +------------------------+
5a0015d6
CZ
240 * | childregs |
241 * +------------------------+ <- thread.sp = sp in dummy-frame
242 * | dummy-frame | (saved in dummy-frame spill-area)
243 * +------------------------+
244 *
3306a726
MF
245 * We create a dummy frame to return to either ret_from_fork or
246 * ret_from_kernel_thread:
247 * a0 points to ret_from_fork/ret_from_kernel_thread (simulating a call4)
5a0015d6 248 * sp points to itself (thread.sp)
3306a726
MF
249 * a2, a3 are unused for userspace threads,
250 * a2 points to thread_fn, a3 holds thread_fn arg for kernel threads.
5a0015d6
CZ
251 *
252 * Note: This is a pristine frame, so we don't need any spill region on top of
253 * childregs.
84ed3053
MG
254 *
255 * The fun part: if we're keeping the same VM (i.e. cloning a thread,
256 * not an entire process), we're normally given a new usp, and we CANNOT share
257 * any live address register windows. If we just copy those live frames over,
258 * the two threads (parent and child) will overflow the same frames onto the
259 * parent stack at different times, likely corrupting the parent stack (esp.
260 * if the parent returns from functions that called clone() and calls new
261 * ones, before the child overflows its now old copies of its parent windows).
262 * One solution is to spill windows to the parent stack, but that's fairly
263 * involved. Much simpler to just not copy those live frames across.
5a0015d6
CZ
264 */
265
714acdbd 266int copy_thread(unsigned long clone_flags, unsigned long usp_thread_fn,
c346b94f
AA
267 unsigned long thread_fn_arg, struct task_struct *p,
268 unsigned long tls)
5a0015d6 269{
3306a726 270 struct pt_regs *childregs = task_pt_regs(p);
5a0015d6 271
39070cb8
CZ
272#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
273 struct thread_info *ti;
274#endif
275
0b537257 276#if defined(__XTENSA_WINDOWED_ABI__)
5a0015d6 277 /* Create a call4 dummy-frame: a0 = 0, a1 = childregs. */
062b1c19
MF
278 SPILL_SLOT(childregs, 1) = (unsigned long)childregs;
279 SPILL_SLOT(childregs, 0) = 0;
5a0015d6 280
5a0015d6 281 p->thread.sp = (unsigned long)childregs;
0b537257
MF
282#elif defined(__XTENSA_CALL0_ABI__)
283 /* Reserve 16 bytes for the _switch_to stack frame. */
284 p->thread.sp = (unsigned long)childregs - 16;
285#else
286#error Unsupported Xtensa ABI
287#endif
c658eac6 288
4727dc20 289 if (!(p->flags & (PF_KTHREAD | PF_IO_WORKER))) {
3306a726
MF
290 struct pt_regs *regs = current_pt_regs();
291 unsigned long usp = usp_thread_fn ?
292 usp_thread_fn : regs->areg[1];
293
294 p->thread.ra = MAKE_RA_FOR_CALL(
295 (unsigned long)ret_from_fork, 0x1);
5a0015d6 296
3306a726 297 *childregs = *regs;
5a0015d6 298 childregs->areg[1] = usp;
3306a726 299 childregs->areg[2] = 0;
6ebe7da2
CZ
300
301 /* When sharing memory with the parent thread, the child
302 usually starts on a pristine stack, so we have to reset
303 windowbase, windowstart and wmask.
304 (Note that such a new thread is required to always create
305 an initial call4 frame)
306 The exception is vfork, where the new thread continues to
307 run on the parent's stack until it calls execve. This could
308 be a call8 or call12, which requires a legal stack frame
309 of the previous caller for the overflow handlers to work.
310 (Note that it's always legal to overflow live registers).
311 In this case, ensure to spill at least the stack pointer
312 of that frame. */
313
84ed3053 314 if (clone_flags & CLONE_VM) {
6ebe7da2
CZ
315 /* check that caller window is live and same stack */
316 int len = childregs->wmask & ~0xf;
317 if (regs->areg[1] == usp && len != 0) {
318 int callinc = (regs->areg[0] >> 30) & 3;
319 int caller_ars = XCHAL_NUM_AREGS - callinc * 4;
320 put_user(regs->areg[caller_ars+1],
321 (unsigned __user*)(usp - 12));
322 }
323 childregs->wmask = 1;
324 childregs->windowstart = 1;
325 childregs->windowbase = 0;
84ed3053 326 }
c50842df 327
5a0015d6 328 if (clone_flags & CLONE_SETTLS)
c346b94f 329 childregs->threadptr = tls;
5a0015d6 330 } else {
3306a726
MF
331 p->thread.ra = MAKE_RA_FOR_CALL(
332 (unsigned long)ret_from_kernel_thread, 1);
333
0b537257
MF
334 /* pass parameters to ret_from_kernel_thread: */
335#if defined(__XTENSA_WINDOWED_ABI__)
336 /*
337 * a2 = thread_fn, a3 = thread_fn arg.
338 * Window underflow will load registers from the
339 * spill slots on the stack on return from _switch_to.
3306a726 340 */
062b1c19 341 SPILL_SLOT(childregs, 2) = usp_thread_fn;
0b537257
MF
342 SPILL_SLOT(childregs, 3) = thread_fn_arg;
343#elif defined(__XTENSA_CALL0_ABI__)
344 /*
345 * a12 = thread_fn, a13 = thread_fn arg.
346 * _switch_to epilogue will load registers from the stack.
347 */
348 ((unsigned long *)p->thread.sp)[0] = usp_thread_fn;
349 ((unsigned long *)p->thread.sp)[1] = thread_fn_arg;
350#else
351#error Unsupported Xtensa ABI
352#endif
3306a726
MF
353
354 /* Childregs are only used when we're going to userspace
355 * in which case start_thread will set them up.
356 */
5a0015d6 357 }
c658eac6
CZ
358
359#if (XTENSA_HAVE_COPROCESSORS || XTENSA_HAVE_IO_PORTS)
360 ti = task_thread_info(p);
361 ti->cpenable = 0;
362#endif
363
c91e02bd
MF
364 clear_ptrace_hw_breakpoint(p);
365
5a0015d6
CZ
366 return 0;
367}
368
369
5a0015d6
CZ
370/*
371 * These bracket the sleeping functions..
372 */
373
42a20f86 374unsigned long __get_wchan(struct task_struct *p)
5a0015d6
CZ
375{
376 unsigned long sp, pc;
04fe6faf 377 unsigned long stack_page = (unsigned long) task_stack_page(p);
5a0015d6
CZ
378 int count = 0;
379
5a0015d6
CZ
380 sp = p->thread.sp;
381 pc = MAKE_PC_FROM_RA(p->thread.ra, p->thread.sp);
382
383 do {
384 if (sp < stack_page + sizeof(struct task_struct) ||
385 sp >= (stack_page + THREAD_SIZE) ||
386 pc == 0)
387 return 0;
388 if (!in_sched_functions(pc))
389 return pc;
390
391 /* Stack layout: sp-4: ra, sp-3: sp' */
392
d90b88fd
MF
393 pc = MAKE_PC_FROM_RA(SPILL_SLOT(sp, 0), sp);
394 sp = SPILL_SLOT(sp, 1);
5a0015d6
CZ
395 } while (count++ < 16);
396 return 0;
397}