WorkStruct: Pass the work_struct pointer instead of context data
[linux-2.6-block.git] / arch / x86_64 / kernel / time.c
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86-64/kernel/time.c
3 *
4 * "High Precision Event Timer" based timekeeping.
5 *
6 * Copyright (c) 1991,1992,1995 Linus Torvalds
7 * Copyright (c) 1994 Alan Modra
8 * Copyright (c) 1995 Markus Kuhn
9 * Copyright (c) 1996 Ingo Molnar
10 * Copyright (c) 1998 Andrea Arcangeli
2f82bde4 11 * Copyright (c) 2002,2006 Vojtech Pavlik
1da177e4
LT
12 * Copyright (c) 2003 Andi Kleen
13 * RTC support code taken from arch/i386/kernel/timers/time_hpet.c
14 */
15
16#include <linux/kernel.h>
17#include <linux/sched.h>
18#include <linux/interrupt.h>
19#include <linux/init.h>
20#include <linux/mc146818rtc.h>
1da177e4
LT
21#include <linux/time.h>
22#include <linux/ioport.h>
23#include <linux/module.h>
24#include <linux/device.h>
25#include <linux/sysdev.h>
26#include <linux/bcd.h>
a670fad0
VP
27#include <linux/notifier.h>
28#include <linux/cpu.h>
1da177e4 29#include <linux/kallsyms.h>
312df5f1 30#include <linux/acpi.h>
8d916406 31#ifdef CONFIG_ACPI
312df5f1 32#include <acpi/achware.h> /* for PM timer frequency */
0e5f61b0 33#include <acpi/acpi_bus.h>
8d916406 34#endif
1da177e4
LT
35#include <asm/8253pit.h>
36#include <asm/pgtable.h>
37#include <asm/vsyscall.h>
38#include <asm/timex.h>
39#include <asm/proto.h>
40#include <asm/hpet.h>
41#include <asm/sections.h>
42#include <linux/cpufreq.h>
43#include <linux/hpet.h>
1da177e4 44#include <asm/apic.h>
1da177e4 45
1da177e4
LT
46#ifdef CONFIG_CPU_FREQ
47static void cpufreq_delayed_get(void);
48#endif
49extern void i8254_timer_resume(void);
50extern int using_apic_timer;
51
a670fad0 52static char *timename = NULL;
e8b91777 53
1da177e4 54DEFINE_SPINLOCK(rtc_lock);
2ee60e17 55EXPORT_SYMBOL(rtc_lock);
1da177e4
LT
56DEFINE_SPINLOCK(i8253_lock);
57
73dea47f 58int nohpet __initdata = 0;
1da177e4
LT
59static int notsc __initdata = 0;
60
42211338
VP
61#define USEC_PER_TICK (USEC_PER_SEC / HZ)
62#define NSEC_PER_TICK (NSEC_PER_SEC / HZ)
63#define FSEC_PER_TICK (FSEC_PER_SEC / HZ)
64
65#define NS_SCALE 10 /* 2^10, carefully chosen */
66#define US_SCALE 32 /* 2^32, arbitralrily chosen */
67
1da177e4 68unsigned int cpu_khz; /* TSC clocks / usec, not used here */
2ee60e17 69EXPORT_SYMBOL(cpu_khz);
1da177e4
LT
70static unsigned long hpet_period; /* fsecs / HPET clock */
71unsigned long hpet_tick; /* HPET clocks / interrupt */
33042a9f 72int hpet_use_timer; /* Use counter of hpet for time keeping, otherwise PIT */
1da177e4
LT
73unsigned long vxtime_hz = PIT_TICK_RATE;
74int report_lost_ticks; /* command line option */
75unsigned long long monotonic_base;
76
77struct vxtime_data __vxtime __section_vxtime; /* for vsyscalls */
78
79volatile unsigned long __jiffies __section_jiffies = INITIAL_JIFFIES;
1da177e4
LT
80struct timespec __xtime __section_xtime;
81struct timezone __sys_tz __section_sys_tz;
82
1da177e4
LT
83/*
84 * do_gettimeoffset() returns microseconds since last timer interrupt was
85 * triggered by hardware. A memory read of HPET is slower than a register read
86 * of TSC, but much more reliable. It's also synchronized to the timer
87 * interrupt. Note that do_gettimeoffset() may return more than hpet_tick, if a
88 * timer interrupt has happened already, but vxtime.trigger wasn't updated yet.
89 * This is not a problem, because jiffies hasn't updated either. They are bound
90 * together by xtime_lock.
91 */
92
93static inline unsigned int do_gettimeoffset_tsc(void)
94{
95 unsigned long t;
96 unsigned long x;
c818a181 97 t = get_cycles_sync();
7351c0bf
AK
98 if (t < vxtime.last_tsc)
99 t = vxtime.last_tsc; /* hack */
42211338 100 x = ((t - vxtime.last_tsc) * vxtime.tsc_quot) >> US_SCALE;
1da177e4
LT
101 return x;
102}
103
104static inline unsigned int do_gettimeoffset_hpet(void)
105{
a3a00751 106 /* cap counter read to one tick to avoid inconsistencies */
107 unsigned long counter = hpet_readl(HPET_COUNTER) - vxtime.last;
42211338 108 return (min(counter,hpet_tick) * vxtime.quot) >> US_SCALE;
1da177e4
LT
109}
110
111unsigned int (*do_gettimeoffset)(void) = do_gettimeoffset_tsc;
112
113/*
114 * This version of gettimeofday() has microsecond resolution and better than
115 * microsecond precision, as we're using at least a 10 MHz (usually 14.31818
116 * MHz) HPET timer.
117 */
118
119void do_gettimeofday(struct timeval *tv)
120{
8ef38609 121 unsigned long seq;
1da177e4
LT
122 unsigned int sec, usec;
123
124 do {
125 seq = read_seqbegin(&xtime_lock);
126
127 sec = xtime.tv_sec;
42211338 128 usec = xtime.tv_nsec / NSEC_PER_USEC;
1da177e4
LT
129
130 /* i386 does some correction here to keep the clock
131 monotonous even when ntpd is fixing drift.
132 But they didn't work for me, there is a non monotonic
133 clock anyways with ntp.
134 I dropped all corrections now until a real solution can
135 be found. Note when you fix it here you need to do the same
136 in arch/x86_64/kernel/vsyscall.c and export all needed
137 variables in vmlinux.lds. -AK */
8ef38609 138 usec += do_gettimeoffset();
1da177e4
LT
139
140 } while (read_seqretry(&xtime_lock, seq));
141
42211338
VP
142 tv->tv_sec = sec + usec / USEC_PER_SEC;
143 tv->tv_usec = usec % USEC_PER_SEC;
1da177e4
LT
144}
145
146EXPORT_SYMBOL(do_gettimeofday);
147
148/*
149 * settimeofday() first undoes the correction that gettimeofday would do
150 * on the time, and then saves it. This is ugly, but has been like this for
151 * ages already.
152 */
153
154int do_settimeofday(struct timespec *tv)
155{
156 time_t wtm_sec, sec = tv->tv_sec;
157 long wtm_nsec, nsec = tv->tv_nsec;
158
159 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
160 return -EINVAL;
161
162 write_seqlock_irq(&xtime_lock);
163
8ef38609 164 nsec -= do_gettimeoffset() * NSEC_PER_USEC;
1da177e4
LT
165
166 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - sec);
167 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - nsec);
168
169 set_normalized_timespec(&xtime, sec, nsec);
170 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
171
b149ee22 172 ntp_clear();
1da177e4
LT
173
174 write_sequnlock_irq(&xtime_lock);
175 clock_was_set();
176 return 0;
177}
178
179EXPORT_SYMBOL(do_settimeofday);
180
181unsigned long profile_pc(struct pt_regs *regs)
182{
183 unsigned long pc = instruction_pointer(regs);
184
31679f38
AK
185 /* Assume the lock function has either no stack frame or a copy
186 of eflags from PUSHF
187 Eflags always has bits 22 and up cleared unlike kernel addresses. */
d5a26017 188 if (!user_mode(regs) && in_lock_functions(pc)) {
31679f38
AK
189 unsigned long *sp = (unsigned long *)regs->rsp;
190 if (sp[0] >> 22)
191 return sp[0];
192 if (sp[1] >> 22)
193 return sp[1];
1da177e4
LT
194 }
195 return pc;
196}
197EXPORT_SYMBOL(profile_pc);
198
199/*
200 * In order to set the CMOS clock precisely, set_rtc_mmss has to be called 500
201 * ms after the second nowtime has started, because when nowtime is written
202 * into the registers of the CMOS clock, it will jump to the next second
203 * precisely 500 ms later. Check the Motorola MC146818A or Dallas DS12887 data
204 * sheet for details.
205 */
206
207static void set_rtc_mmss(unsigned long nowtime)
208{
209 int real_seconds, real_minutes, cmos_minutes;
210 unsigned char control, freq_select;
211
212/*
213 * IRQs are disabled when we're called from the timer interrupt,
214 * no need for spin_lock_irqsave()
215 */
216
217 spin_lock(&rtc_lock);
218
219/*
220 * Tell the clock it's being set and stop it.
221 */
222
223 control = CMOS_READ(RTC_CONTROL);
224 CMOS_WRITE(control | RTC_SET, RTC_CONTROL);
225
226 freq_select = CMOS_READ(RTC_FREQ_SELECT);
227 CMOS_WRITE(freq_select | RTC_DIV_RESET2, RTC_FREQ_SELECT);
228
229 cmos_minutes = CMOS_READ(RTC_MINUTES);
230 BCD_TO_BIN(cmos_minutes);
231
232/*
233 * since we're only adjusting minutes and seconds, don't interfere with hour
234 * overflow. This avoids messing with unknown time zones but requires your RTC
235 * not to be off by more than 15 minutes. Since we're calling it only when
236 * our clock is externally synchronized using NTP, this shouldn't be a problem.
237 */
238
239 real_seconds = nowtime % 60;
240 real_minutes = nowtime / 60;
241 if (((abs(real_minutes - cmos_minutes) + 15) / 30) & 1)
242 real_minutes += 30; /* correct for half hour time zone */
243 real_minutes %= 60;
244
1da177e4
LT
245 if (abs(real_minutes - cmos_minutes) >= 30) {
246 printk(KERN_WARNING "time.c: can't update CMOS clock "
247 "from %d to %d\n", cmos_minutes, real_minutes);
28456ede 248 } else {
0b91317e
AK
249 BIN_TO_BCD(real_seconds);
250 BIN_TO_BCD(real_minutes);
1da177e4
LT
251 CMOS_WRITE(real_seconds, RTC_SECONDS);
252 CMOS_WRITE(real_minutes, RTC_MINUTES);
253 }
254
255/*
256 * The following flags have to be released exactly in this order, otherwise the
257 * DS12887 (popular MC146818A clone with integrated battery and quartz) will
258 * not reset the oscillator and will not update precisely 500 ms later. You
259 * won't find this mentioned in the Dallas Semiconductor data sheets, but who
260 * believes data sheets anyway ... -- Markus Kuhn
261 */
262
263 CMOS_WRITE(control, RTC_CONTROL);
264 CMOS_WRITE(freq_select, RTC_FREQ_SELECT);
265
266 spin_unlock(&rtc_lock);
267}
268
269
270/* monotonic_clock(): returns # of nanoseconds passed since time_init()
271 * Note: This function is required to return accurate
272 * time even in the absence of multiple timer ticks.
273 */
cbf9b4bb 274static inline unsigned long long cycles_2_ns(unsigned long long cyc);
1da177e4
LT
275unsigned long long monotonic_clock(void)
276{
277 unsigned long seq;
278 u32 last_offset, this_offset, offset;
279 unsigned long long base;
280
281 if (vxtime.mode == VXTIME_HPET) {
282 do {
283 seq = read_seqbegin(&xtime_lock);
284
285 last_offset = vxtime.last;
286 base = monotonic_base;
a3a00751 287 this_offset = hpet_readl(HPET_COUNTER);
1da177e4
LT
288 } while (read_seqretry(&xtime_lock, seq));
289 offset = (this_offset - last_offset);
42211338 290 offset *= NSEC_PER_TICK / hpet_tick;
0b91317e 291 } else {
1da177e4
LT
292 do {
293 seq = read_seqbegin(&xtime_lock);
294
295 last_offset = vxtime.last_tsc;
296 base = monotonic_base;
297 } while (read_seqretry(&xtime_lock, seq));
c818a181 298 this_offset = get_cycles_sync();
cbf9b4bb 299 offset = cycles_2_ns(this_offset - last_offset);
1da177e4 300 }
7351c0bf 301 return base + offset;
1da177e4
LT
302}
303EXPORT_SYMBOL(monotonic_clock);
304
7d12e780 305static noinline void handle_lost_ticks(int lost)
1da177e4 306{
7351c0bf
AK
307 static long lost_count;
308 static int warned;
309 if (report_lost_ticks) {
310 printk(KERN_WARNING "time.c: Lost %d timer tick(s)! ", lost);
7d12e780 311 print_symbol("rip %s)\n", get_irq_regs()->rip);
7351c0bf
AK
312 }
313
314 if (lost_count == 1000 && !warned) {
315 printk(KERN_WARNING "warning: many lost ticks.\n"
316 KERN_WARNING "Your time source seems to be instable or "
1da177e4 317 "some driver is hogging interupts\n");
7d12e780 318 print_symbol("rip %s\n", get_irq_regs()->rip);
7351c0bf
AK
319 if (vxtime.mode == VXTIME_TSC && vxtime.hpet_address) {
320 printk(KERN_WARNING "Falling back to HPET\n");
321 if (hpet_use_timer)
322 vxtime.last = hpet_readl(HPET_T0_CMP) -
323 hpet_tick;
324 else
325 vxtime.last = hpet_readl(HPET_COUNTER);
326 vxtime.mode = VXTIME_HPET;
327 do_gettimeoffset = do_gettimeoffset_hpet;
328 }
329 /* else should fall back to PIT, but code missing. */
330 warned = 1;
331 } else
332 lost_count++;
1da177e4
LT
333
334#ifdef CONFIG_CPU_FREQ
7351c0bf
AK
335 /* In some cases the CPU can change frequency without us noticing
336 Give cpufreq a change to catch up. */
337 if ((lost_count+1) % 25 == 0)
338 cpufreq_delayed_get();
1da177e4
LT
339#endif
340}
341
7d12e780 342void main_timer_handler(void)
1da177e4
LT
343{
344 static unsigned long rtc_update = 0;
345 unsigned long tsc;
9ede6b09 346 int delay = 0, offset = 0, lost = 0;
1da177e4
LT
347
348/*
349 * Here we are in the timer irq handler. We have irqs locally disabled (so we
350 * don't need spin_lock_irqsave()) but we don't know if the timer_bh is running
351 * on the other CPU, so we need a lock. We also need to lock the vsyscall
352 * variables, because both do_timer() and us change them -arca+vojtech
353 */
354
355 write_seqlock(&xtime_lock);
356
a3a00751 357 if (vxtime.hpet_address)
358 offset = hpet_readl(HPET_COUNTER);
359
360 if (hpet_use_timer) {
361 /* if we're using the hpet timer functionality,
362 * we can more accurately know the counter value
363 * when the timer interrupt occured.
364 */
1da177e4
LT
365 offset = hpet_readl(HPET_T0_CMP) - hpet_tick;
366 delay = hpet_readl(HPET_COUNTER) - offset;
9ede6b09 367 } else if (!pmtmr_ioport) {
1da177e4
LT
368 spin_lock(&i8253_lock);
369 outb_p(0x00, 0x43);
370 delay = inb_p(0x40);
371 delay |= inb(0x40) << 8;
372 spin_unlock(&i8253_lock);
373 delay = LATCH - 1 - delay;
374 }
375
c818a181 376 tsc = get_cycles_sync();
1da177e4
LT
377
378 if (vxtime.mode == VXTIME_HPET) {
379 if (offset - vxtime.last > hpet_tick) {
380 lost = (offset - vxtime.last) / hpet_tick - 1;
381 }
382
383 monotonic_base +=
42211338 384 (offset - vxtime.last) * NSEC_PER_TICK / hpet_tick;
1da177e4
LT
385
386 vxtime.last = offset;
312df5f1
AK
387#ifdef CONFIG_X86_PM_TIMER
388 } else if (vxtime.mode == VXTIME_PMTMR) {
389 lost = pmtimer_mark_offset();
390#endif
1da177e4
LT
391 } else {
392 offset = (((tsc - vxtime.last_tsc) *
42211338 393 vxtime.tsc_quot) >> US_SCALE) - USEC_PER_TICK;
1da177e4
LT
394
395 if (offset < 0)
396 offset = 0;
397
42211338
VP
398 if (offset > USEC_PER_TICK) {
399 lost = offset / USEC_PER_TICK;
400 offset %= USEC_PER_TICK;
1da177e4
LT
401 }
402
cbf9b4bb 403 monotonic_base += cycles_2_ns(tsc - vxtime.last_tsc);
1da177e4
LT
404
405 vxtime.last_tsc = tsc - vxtime.quot * delay / vxtime.tsc_quot;
406
407 if ((((tsc - vxtime.last_tsc) *
42211338 408 vxtime.tsc_quot) >> US_SCALE) < offset)
1da177e4 409 vxtime.last_tsc = tsc -
42211338 410 (((long) offset << US_SCALE) / vxtime.tsc_quot) - 1;
1da177e4
LT
411 }
412
3171a030 413 if (lost > 0)
7d12e780 414 handle_lost_ticks(lost);
3171a030
AN
415 else
416 lost = 0;
1da177e4
LT
417
418/*
419 * Do the timer stuff.
420 */
421
3171a030 422 do_timer(lost + 1);
1da177e4 423#ifndef CONFIG_SMP
7d12e780 424 update_process_times(user_mode(get_irq_regs()));
1da177e4
LT
425#endif
426
427/*
428 * In the SMP case we use the local APIC timer interrupt to do the profiling,
429 * except when we simulate SMP mode on a uniprocessor system, in that case we
430 * have to call the local interrupt handler.
431 */
432
1da177e4 433 if (!using_apic_timer)
7d12e780 434 smp_local_timer_interrupt();
1da177e4
LT
435
436/*
437 * If we have an externally synchronized Linux clock, then update CMOS clock
438 * accordingly every ~11 minutes. set_rtc_mmss() will be called in the jiffy
439 * closest to exactly 500 ms before the next second. If the update fails, we
440 * don't care, as it'll be updated on the next turn, and the problem (time way
441 * off) isn't likely to go away much sooner anyway.
442 */
443
b149ee22 444 if (ntp_synced() && xtime.tv_sec > rtc_update &&
1da177e4
LT
445 abs(xtime.tv_nsec - 500000000) <= tick_nsec / 2) {
446 set_rtc_mmss(xtime.tv_sec);
447 rtc_update = xtime.tv_sec + 660;
448 }
449
450 write_sequnlock(&xtime_lock);
73dea47f 451}
1da177e4 452
7d12e780 453static irqreturn_t timer_interrupt(int irq, void *dev_id)
73dea47f
AK
454{
455 if (apic_runs_main_timer > 1)
456 return IRQ_HANDLED;
7d12e780 457 main_timer_handler();
d25bf7e5
VP
458 if (using_apic_timer)
459 smp_send_timer_broadcast_ipi();
1da177e4
LT
460 return IRQ_HANDLED;
461}
462
68ed0040 463static unsigned int cyc2ns_scale __read_mostly;
1da177e4 464
dacb16b1 465static inline void set_cyc2ns_scale(unsigned long cpu_khz)
1da177e4 466{
42211338 467 cyc2ns_scale = (NSEC_PER_MSEC << NS_SCALE) / cpu_khz;
1da177e4
LT
468}
469
470static inline unsigned long long cycles_2_ns(unsigned long long cyc)
471{
42211338 472 return (cyc * cyc2ns_scale) >> NS_SCALE;
1da177e4
LT
473}
474
475unsigned long long sched_clock(void)
476{
477 unsigned long a = 0;
478
479#if 0
480 /* Don't do a HPET read here. Using TSC always is much faster
481 and HPET may not be mapped yet when the scheduler first runs.
482 Disadvantage is a small drift between CPUs in some configurations,
483 but that should be tolerable. */
484 if (__vxtime.mode == VXTIME_HPET)
42211338 485 return (hpet_readl(HPET_COUNTER) * vxtime.quot) >> US_SCALE;
1da177e4
LT
486#endif
487
488 /* Could do CPU core sync here. Opteron can execute rdtsc speculatively,
489 which means it is not completely exact and may not be monotonous between
490 CPUs. But the errors should be too small to matter for scheduling
491 purposes. */
492
493 rdtscll(a);
494 return cycles_2_ns(a);
495}
496
bdf2b1c9 497static unsigned long get_cmos_time(void)
1da177e4 498{
641f71f5 499 unsigned int year, mon, day, hour, min, sec;
1da177e4 500 unsigned long flags;
6954bee8 501 unsigned extyear = 0;
1da177e4 502
1da177e4
LT
503 spin_lock_irqsave(&rtc_lock, flags);
504
641f71f5
MM
505 do {
506 sec = CMOS_READ(RTC_SECONDS);
507 min = CMOS_READ(RTC_MINUTES);
508 hour = CMOS_READ(RTC_HOURS);
509 day = CMOS_READ(RTC_DAY_OF_MONTH);
510 mon = CMOS_READ(RTC_MONTH);
511 year = CMOS_READ(RTC_YEAR);
6954bee8 512#ifdef CONFIG_ACPI
641f71f5
MM
513 if (acpi_fadt.revision >= FADT2_REVISION_ID &&
514 acpi_fadt.century)
515 extyear = CMOS_READ(acpi_fadt.century);
6954bee8 516#endif
641f71f5 517 } while (sec != CMOS_READ(RTC_SECONDS));
6954bee8 518
1da177e4
LT
519 spin_unlock_irqrestore(&rtc_lock, flags);
520
0b91317e
AK
521 /*
522 * We know that x86-64 always uses BCD format, no need to check the
523 * config register.
7351c0bf 524 */
1da177e4 525
0b91317e
AK
526 BCD_TO_BIN(sec);
527 BCD_TO_BIN(min);
528 BCD_TO_BIN(hour);
529 BCD_TO_BIN(day);
530 BCD_TO_BIN(mon);
531 BCD_TO_BIN(year);
1da177e4 532
6954bee8
AK
533 if (extyear) {
534 BCD_TO_BIN(extyear);
535 year += extyear;
536 printk(KERN_INFO "Extended CMOS year: %d\n", extyear);
537 } else {
538 /*
539 * x86-64 systems only exists since 2002.
540 * This will work up to Dec 31, 2100
541 */
542 year += 2000;
543 }
1da177e4
LT
544
545 return mktime(year, mon, day, hour, min, sec);
546}
547
548#ifdef CONFIG_CPU_FREQ
549
550/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
551 changes.
552
553 RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
554 not that important because current Opteron setups do not support
555 scaling on SMP anyroads.
556
557 Should fix up last_tsc too. Currently gettimeofday in the
558 first tick after the change will be slightly wrong. */
559
560#include <linux/workqueue.h>
561
562static unsigned int cpufreq_delayed_issched = 0;
563static unsigned int cpufreq_init = 0;
564static struct work_struct cpufreq_delayed_get_work;
565
65f27f38 566static void handle_cpufreq_delayed_get(struct work_struct *v)
1da177e4
LT
567{
568 unsigned int cpu;
569 for_each_online_cpu(cpu) {
570 cpufreq_get(cpu);
571 }
572 cpufreq_delayed_issched = 0;
573}
574
575/* if we notice lost ticks, schedule a call to cpufreq_get() as it tries
576 * to verify the CPU frequency the timing core thinks the CPU is running
577 * at is still correct.
578 */
579static void cpufreq_delayed_get(void)
580{
581 static int warned;
582 if (cpufreq_init && !cpufreq_delayed_issched) {
583 cpufreq_delayed_issched = 1;
584 if (!warned) {
585 warned = 1;
7351c0bf
AK
586 printk(KERN_DEBUG
587 "Losing some ticks... checking if CPU frequency changed.\n");
1da177e4
LT
588 }
589 schedule_work(&cpufreq_delayed_get_work);
590 }
591}
592
593static unsigned int ref_freq = 0;
594static unsigned long loops_per_jiffy_ref = 0;
595
596static unsigned long cpu_khz_ref = 0;
597
598static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
599 void *data)
600{
601 struct cpufreq_freqs *freq = data;
602 unsigned long *lpj, dummy;
603
c29601e9
AK
604 if (cpu_has(&cpu_data[freq->cpu], X86_FEATURE_CONSTANT_TSC))
605 return 0;
606
1da177e4
LT
607 lpj = &dummy;
608 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
609#ifdef CONFIG_SMP
7351c0bf 610 lpj = &cpu_data[freq->cpu].loops_per_jiffy;
1da177e4 611#else
7351c0bf 612 lpj = &boot_cpu_data.loops_per_jiffy;
1da177e4
LT
613#endif
614
1da177e4
LT
615 if (!ref_freq) {
616 ref_freq = freq->old;
617 loops_per_jiffy_ref = *lpj;
618 cpu_khz_ref = cpu_khz;
619 }
620 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
621 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
622 (val == CPUFREQ_RESUMECHANGE)) {
623 *lpj =
624 cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
625
626 cpu_khz = cpufreq_scale(cpu_khz_ref, ref_freq, freq->new);
627 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
42211338 628 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
1da177e4
LT
629 }
630
dacb16b1 631 set_cyc2ns_scale(cpu_khz_ref);
1da177e4
LT
632
633 return 0;
634}
635
636static struct notifier_block time_cpufreq_notifier_block = {
637 .notifier_call = time_cpufreq_notifier
638};
639
640static int __init cpufreq_tsc(void)
641{
65f27f38 642 INIT_WORK(&cpufreq_delayed_get_work, handle_cpufreq_delayed_get);
1da177e4
LT
643 if (!cpufreq_register_notifier(&time_cpufreq_notifier_block,
644 CPUFREQ_TRANSITION_NOTIFIER))
645 cpufreq_init = 1;
646 return 0;
647}
648
649core_initcall(cpufreq_tsc);
650
651#endif
652
653/*
654 * calibrate_tsc() calibrates the processor TSC in a very simple way, comparing
655 * it to the HPET timer of known frequency.
656 */
657
658#define TICK_COUNT 100000000
659
660static unsigned int __init hpet_calibrate_tsc(void)
661{
662 int tsc_start, hpet_start;
663 int tsc_now, hpet_now;
664 unsigned long flags;
665
666 local_irq_save(flags);
667 local_irq_disable();
668
669 hpet_start = hpet_readl(HPET_COUNTER);
670 rdtscl(tsc_start);
671
672 do {
673 local_irq_disable();
674 hpet_now = hpet_readl(HPET_COUNTER);
c818a181 675 tsc_now = get_cycles_sync();
1da177e4
LT
676 local_irq_restore(flags);
677 } while ((tsc_now - tsc_start) < TICK_COUNT &&
678 (hpet_now - hpet_start) < TICK_COUNT);
679
680 return (tsc_now - tsc_start) * 1000000000L
681 / ((hpet_now - hpet_start) * hpet_period / 1000);
682}
683
684
685/*
686 * pit_calibrate_tsc() uses the speaker output (channel 2) of
687 * the PIT. This is better than using the timer interrupt output,
688 * because we can read the value of the speaker with just one inb(),
689 * where we need three i/o operations for the interrupt channel.
690 * We count how many ticks the TSC does in 50 ms.
691 */
692
693static unsigned int __init pit_calibrate_tsc(void)
694{
695 unsigned long start, end;
696 unsigned long flags;
697
698 spin_lock_irqsave(&i8253_lock, flags);
699
700 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
701
702 outb(0xb0, 0x43);
703 outb((PIT_TICK_RATE / (1000 / 50)) & 0xff, 0x42);
704 outb((PIT_TICK_RATE / (1000 / 50)) >> 8, 0x42);
c818a181 705 start = get_cycles_sync();
1da177e4 706 while ((inb(0x61) & 0x20) == 0);
c818a181 707 end = get_cycles_sync();
1da177e4
LT
708
709 spin_unlock_irqrestore(&i8253_lock, flags);
710
711 return (end - start) / 50;
712}
713
714#ifdef CONFIG_HPET
715static __init int late_hpet_init(void)
716{
717 struct hpet_data hd;
718 unsigned int ntimer;
719
720 if (!vxtime.hpet_address)
3d34ee68 721 return 0;
1da177e4
LT
722
723 memset(&hd, 0, sizeof (hd));
724
725 ntimer = hpet_readl(HPET_ID);
726 ntimer = (ntimer & HPET_ID_NUMBER) >> HPET_ID_NUMBER_SHIFT;
727 ntimer++;
728
729 /*
730 * Register with driver.
731 * Timer0 and Timer1 is used by platform.
732 */
733 hd.hd_phys_address = vxtime.hpet_address;
dd42b151 734 hd.hd_address = (void __iomem *)fix_to_virt(FIX_HPET_BASE);
1da177e4
LT
735 hd.hd_nirqs = ntimer;
736 hd.hd_flags = HPET_DATA_PLATFORM;
737 hpet_reserve_timer(&hd, 0);
738#ifdef CONFIG_HPET_EMULATE_RTC
739 hpet_reserve_timer(&hd, 1);
740#endif
741 hd.hd_irq[0] = HPET_LEGACY_8254;
742 hd.hd_irq[1] = HPET_LEGACY_RTC;
743 if (ntimer > 2) {
744 struct hpet *hpet;
745 struct hpet_timer *timer;
746 int i;
747
748 hpet = (struct hpet *) fix_to_virt(FIX_HPET_BASE);
7351c0bf
AK
749 timer = &hpet->hpet_timers[2];
750 for (i = 2; i < ntimer; timer++, i++)
1da177e4
LT
751 hd.hd_irq[i] = (timer->hpet_config &
752 Tn_INT_ROUTE_CNF_MASK) >>
753 Tn_INT_ROUTE_CNF_SHIFT;
754
755 }
756
757 hpet_alloc(&hd);
758 return 0;
759}
760fs_initcall(late_hpet_init);
761#endif
762
763static int hpet_timer_stop_set_go(unsigned long tick)
764{
765 unsigned int cfg;
766
767/*
768 * Stop the timers and reset the main counter.
769 */
770
771 cfg = hpet_readl(HPET_CFG);
772 cfg &= ~(HPET_CFG_ENABLE | HPET_CFG_LEGACY);
773 hpet_writel(cfg, HPET_CFG);
774 hpet_writel(0, HPET_COUNTER);
775 hpet_writel(0, HPET_COUNTER + 4);
776
777/*
778 * Set up timer 0, as periodic with first interrupt to happen at hpet_tick,
779 * and period also hpet_tick.
780 */
a3a00751 781 if (hpet_use_timer) {
782 hpet_writel(HPET_TN_ENABLE | HPET_TN_PERIODIC | HPET_TN_SETVAL |
1da177e4 783 HPET_TN_32BIT, HPET_T0_CFG);
b2df3ddb
VP
784 hpet_writel(hpet_tick, HPET_T0_CMP); /* next interrupt */
785 hpet_writel(hpet_tick, HPET_T0_CMP); /* period */
a3a00751 786 cfg |= HPET_CFG_LEGACY;
787 }
1da177e4
LT
788/*
789 * Go!
790 */
791
a3a00751 792 cfg |= HPET_CFG_ENABLE;
1da177e4
LT
793 hpet_writel(cfg, HPET_CFG);
794
795 return 0;
796}
797
798static int hpet_init(void)
799{
800 unsigned int id;
801
802 if (!vxtime.hpet_address)
803 return -1;
804 set_fixmap_nocache(FIX_HPET_BASE, vxtime.hpet_address);
805 __set_fixmap(VSYSCALL_HPET, vxtime.hpet_address, PAGE_KERNEL_VSYSCALL_NOCACHE);
806
807/*
808 * Read the period, compute tick and quotient.
809 */
810
811 id = hpet_readl(HPET_ID);
812
a3a00751 813 if (!(id & HPET_ID_VENDOR) || !(id & HPET_ID_NUMBER))
1da177e4
LT
814 return -1;
815
816 hpet_period = hpet_readl(HPET_PERIOD);
817 if (hpet_period < 100000 || hpet_period > 100000000)
818 return -1;
819
42211338 820 hpet_tick = (FSEC_PER_TICK + hpet_period / 2) / hpet_period;
1da177e4 821
a3a00751 822 hpet_use_timer = (id & HPET_ID_LEGSUP);
823
1da177e4
LT
824 return hpet_timer_stop_set_go(hpet_tick);
825}
826
827static int hpet_reenable(void)
828{
829 return hpet_timer_stop_set_go(hpet_tick);
830}
831
73dea47f
AK
832#define PIT_MODE 0x43
833#define PIT_CH0 0x40
834
835static void __init __pit_init(int val, u8 mode)
1da177e4
LT
836{
837 unsigned long flags;
838
839 spin_lock_irqsave(&i8253_lock, flags);
73dea47f
AK
840 outb_p(mode, PIT_MODE);
841 outb_p(val & 0xff, PIT_CH0); /* LSB */
842 outb_p(val >> 8, PIT_CH0); /* MSB */
1da177e4
LT
843 spin_unlock_irqrestore(&i8253_lock, flags);
844}
845
73dea47f
AK
846void __init pit_init(void)
847{
848 __pit_init(LATCH, 0x34); /* binary, mode 2, LSB/MSB, ch 0 */
849}
850
851void __init pit_stop_interrupt(void)
852{
853 __pit_init(0, 0x30); /* mode 0 */
854}
855
856void __init stop_timer_interrupt(void)
857{
858 char *name;
859 if (vxtime.hpet_address) {
860 name = "HPET";
861 hpet_timer_stop_set_go(0);
862 } else {
863 name = "PIT";
864 pit_stop_interrupt();
865 }
866 printk(KERN_INFO "timer: %s interrupt stopped.\n", name);
867}
868
1da177e4
LT
869int __init time_setup(char *str)
870{
871 report_lost_ticks = 1;
872 return 1;
873}
874
875static struct irqaction irq0 = {
b1e05aa2 876 timer_interrupt, IRQF_DISABLED, CPU_MASK_NONE, "timer", NULL, NULL
1da177e4
LT
877};
878
a670fad0
VP
879void __init time_init(void)
880{
1da177e4
LT
881 if (nohpet)
882 vxtime.hpet_address = 0;
883
884 xtime.tv_sec = get_cmos_time();
885 xtime.tv_nsec = 0;
886
887 set_normalized_timespec(&wall_to_monotonic,
888 -xtime.tv_sec, -xtime.tv_nsec);
889
a3a00751 890 if (!hpet_init())
42211338 891 vxtime_hz = (FSEC_PER_SEC + hpet_period / 2) / hpet_period;
68e18891
AK
892 else
893 vxtime.hpet_address = 0;
a3a00751 894
895 if (hpet_use_timer) {
b20367a6
JH
896 /* set tick_nsec to use the proper rate for HPET */
897 tick_nsec = TICK_NSEC_HPET;
1da177e4
LT
898 cpu_khz = hpet_calibrate_tsc();
899 timename = "HPET";
312df5f1 900#ifdef CONFIG_X86_PM_TIMER
fd495471 901 } else if (pmtmr_ioport && !vxtime.hpet_address) {
312df5f1
AK
902 vxtime_hz = PM_TIMER_FREQUENCY;
903 timename = "PM";
904 pit_init();
905 cpu_khz = pit_calibrate_tsc();
906#endif
1da177e4
LT
907 } else {
908 pit_init();
909 cpu_khz = pit_calibrate_tsc();
910 timename = "PIT";
911 }
912
e8b91777 913 vxtime.mode = VXTIME_TSC;
42211338
VP
914 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
915 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
c818a181 916 vxtime.last_tsc = get_cycles_sync();
dacb16b1 917 set_cyc2ns_scale(cpu_khz);
1da177e4
LT
918 setup_irq(0, &irq0);
919
a670fad0
VP
920#ifndef CONFIG_SMP
921 time_init_gtod();
922#endif
1da177e4
LT
923}
924
312df5f1
AK
925/*
926 * Make an educated guess if the TSC is trustworthy and synchronized
927 * over all CPUs.
928 */
396bd50f 929__cpuinit int unsynchronized_tsc(void)
312df5f1
AK
930{
931#ifdef CONFIG_SMP
f8bf3c65 932 if (apic_is_clustered_box())
312df5f1 933 return 1;
312df5f1 934#endif
0e5f61b0
AK
935 /* Most intel systems have synchronized TSCs except for
936 multi node systems */
937 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) {
938#ifdef CONFIG_ACPI
939 /* But TSC doesn't tick in C3 so don't use it there */
aa026ede 940 if (acpi_fadt.length > 0 && acpi_fadt.plvl3_lat < 1000)
0e5f61b0
AK
941 return 1;
942#endif
943 return 0;
944 }
945
312df5f1 946 /* Assume multi socket systems are not synchronized */
737c5c3b 947 return num_present_cpus() > 1;
312df5f1
AK
948}
949
a8ab26fe 950/*
e8b91777 951 * Decide what mode gettimeofday should use.
a8ab26fe 952 */
a670fad0 953void time_init_gtod(void)
1da177e4
LT
954{
955 char *timetype;
956
312df5f1 957 if (unsynchronized_tsc())
1da177e4 958 notsc = 1;
a670fad0 959
c08c8205
VP
960 if (cpu_has(&boot_cpu_data, X86_FEATURE_RDTSCP))
961 vgetcpu_mode = VGETCPU_RDTSCP;
962 else
963 vgetcpu_mode = VGETCPU_LSL;
964
1da177e4 965 if (vxtime.hpet_address && notsc) {
a3a00751 966 timetype = hpet_use_timer ? "HPET" : "PIT/HPET";
33042a9f
CM
967 if (hpet_use_timer)
968 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
969 else
970 vxtime.last = hpet_readl(HPET_COUNTER);
1da177e4
LT
971 vxtime.mode = VXTIME_HPET;
972 do_gettimeoffset = do_gettimeoffset_hpet;
312df5f1
AK
973#ifdef CONFIG_X86_PM_TIMER
974 /* Using PM for gettimeofday is quite slow, but we have no other
975 choice because the TSC is too unreliable on some systems. */
976 } else if (pmtmr_ioport && !vxtime.hpet_address && notsc) {
977 timetype = "PM";
978 do_gettimeoffset = do_gettimeoffset_pm;
979 vxtime.mode = VXTIME_PMTMR;
980 sysctl_vsyscall = 0;
981 printk(KERN_INFO "Disabling vsyscall due to use of PM timer\n");
982#endif
1da177e4 983 } else {
a3a00751 984 timetype = hpet_use_timer ? "HPET/TSC" : "PIT/TSC";
1da177e4
LT
985 vxtime.mode = VXTIME_TSC;
986 }
a670fad0
VP
987
988 printk(KERN_INFO "time.c: Using %ld.%06ld MHz WALL %s GTOD %s timer.\n",
989 vxtime_hz / 1000000, vxtime_hz % 1000000, timename, timetype);
990 printk(KERN_INFO "time.c: Detected %d.%03d MHz processor.\n",
991 cpu_khz / 1000, cpu_khz % 1000);
992 vxtime.quot = (USEC_PER_SEC << US_SCALE) / vxtime_hz;
993 vxtime.tsc_quot = (USEC_PER_MSEC << US_SCALE) / cpu_khz;
994 vxtime.last_tsc = get_cycles_sync();
995
996 set_cyc2ns_scale(cpu_khz);
1da177e4
LT
997}
998
999__setup("report_lost_ticks", time_setup);
1000
1001static long clock_cmos_diff;
1002static unsigned long sleep_start;
1003
0b91317e
AK
1004/*
1005 * sysfs support for the timer.
1006 */
1007
0b9c33a7 1008static int timer_suspend(struct sys_device *dev, pm_message_t state)
1da177e4
LT
1009{
1010 /*
1011 * Estimate time zone so that set_time can update the clock
1012 */
1013 long cmos_time = get_cmos_time();
1014
1015 clock_cmos_diff = -cmos_time;
1016 clock_cmos_diff += get_seconds();
1017 sleep_start = cmos_time;
1018 return 0;
1019}
1020
1021static int timer_resume(struct sys_device *dev)
1022{
1023 unsigned long flags;
1024 unsigned long sec;
1025 unsigned long ctime = get_cmos_time();
34464a5b 1026 long sleep_length = (ctime - sleep_start) * HZ;
1da177e4 1027
34464a5b
RW
1028 if (sleep_length < 0) {
1029 printk(KERN_WARNING "Time skew detected in timer resume!\n");
1030 /* The time after the resume must not be earlier than the time
1031 * before the suspend or some nasty things will happen
1032 */
1033 sleep_length = 0;
1034 ctime = sleep_start;
1035 }
1da177e4
LT
1036 if (vxtime.hpet_address)
1037 hpet_reenable();
1038 else
1039 i8254_timer_resume();
1040
1041 sec = ctime + clock_cmos_diff;
1042 write_seqlock_irqsave(&xtime_lock,flags);
1043 xtime.tv_sec = sec;
1044 xtime.tv_nsec = 0;
0dd2ea9a
SL
1045 if (vxtime.mode == VXTIME_HPET) {
1046 if (hpet_use_timer)
1047 vxtime.last = hpet_readl(HPET_T0_CMP) - hpet_tick;
1048 else
1049 vxtime.last = hpet_readl(HPET_COUNTER);
1050#ifdef CONFIG_X86_PM_TIMER
1051 } else if (vxtime.mode == VXTIME_PMTMR) {
1052 pmtimer_resume();
1053#endif
1054 } else
1055 vxtime.last_tsc = get_cycles_sync();
1da177e4
LT
1056 write_sequnlock_irqrestore(&xtime_lock,flags);
1057 jiffies += sleep_length;
0dd2ea9a 1058 monotonic_base += sleep_length * (NSEC_PER_SEC/HZ);
8446f1d3 1059 touch_softlockup_watchdog();
1da177e4
LT
1060 return 0;
1061}
1062
1063static struct sysdev_class timer_sysclass = {
1064 .resume = timer_resume,
1065 .suspend = timer_suspend,
1066 set_kset_name("timer"),
1067};
1068
1da177e4
LT
1069/* XXX this driverfs stuff should probably go elsewhere later -john */
1070static struct sys_device device_timer = {
1071 .id = 0,
1072 .cls = &timer_sysclass,
1073};
1074
1075static int time_init_device(void)
1076{
1077 int error = sysdev_class_register(&timer_sysclass);
1078 if (!error)
1079 error = sysdev_register(&device_timer);
1080 return error;
1081}
1082
1083device_initcall(time_init_device);
1084
1085#ifdef CONFIG_HPET_EMULATE_RTC
1086/* HPET in LegacyReplacement Mode eats up RTC interrupt line. When, HPET
1087 * is enabled, we support RTC interrupt functionality in software.
1088 * RTC has 3 kinds of interrupts:
1089 * 1) Update Interrupt - generate an interrupt, every sec, when RTC clock
1090 * is updated
1091 * 2) Alarm Interrupt - generate an interrupt at a specific time of day
1092 * 3) Periodic Interrupt - generate periodic interrupt, with frequencies
1093 * 2Hz-8192Hz (2Hz-64Hz for non-root user) (all freqs in powers of 2)
1094 * (1) and (2) above are implemented using polling at a frequency of
1095 * 64 Hz. The exact frequency is a tradeoff between accuracy and interrupt
1096 * overhead. (DEFAULT_RTC_INT_FREQ)
1097 * For (3), we use interrupts at 64Hz or user specified periodic
1098 * frequency, whichever is higher.
1099 */
1100#include <linux/rtc.h>
1101
1da177e4
LT
1102#define DEFAULT_RTC_INT_FREQ 64
1103#define RTC_NUM_INTS 1
1104
1105static unsigned long UIE_on;
1106static unsigned long prev_update_sec;
1107
1108static unsigned long AIE_on;
1109static struct rtc_time alarm_time;
1110
1111static unsigned long PIE_on;
1112static unsigned long PIE_freq = DEFAULT_RTC_INT_FREQ;
1113static unsigned long PIE_count;
1114
1115static unsigned long hpet_rtc_int_freq; /* RTC interrupt frequency */
7811fb8f 1116static unsigned int hpet_t1_cmp; /* cached comparator register */
1da177e4
LT
1117
1118int is_hpet_enabled(void)
1119{
1120 return vxtime.hpet_address != 0;
1121}
1122
1123/*
1124 * Timer 1 for RTC, we do not use periodic interrupt feature,
1125 * even if HPET supports periodic interrupts on Timer 1.
1126 * The reason being, to set up a periodic interrupt in HPET, we need to
1127 * stop the main counter. And if we do that everytime someone diables/enables
1128 * RTC, we will have adverse effect on main kernel timer running on Timer 0.
1129 * So, for the time being, simulate the periodic interrupt in software.
1130 *
1131 * hpet_rtc_timer_init() is called for the first time and during subsequent
1132 * interuppts reinit happens through hpet_rtc_timer_reinit().
1133 */
1134int hpet_rtc_timer_init(void)
1135{
1136 unsigned int cfg, cnt;
1137 unsigned long flags;
1138
1139 if (!is_hpet_enabled())
1140 return 0;
1141 /*
1142 * Set the counter 1 and enable the interrupts.
1143 */
1144 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1145 hpet_rtc_int_freq = PIE_freq;
1146 else
1147 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1148
1149 local_irq_save(flags);
1447c27d 1150
1da177e4
LT
1151 cnt = hpet_readl(HPET_COUNTER);
1152 cnt += ((hpet_tick*HZ)/hpet_rtc_int_freq);
1153 hpet_writel(cnt, HPET_T1_CMP);
7811fb8f 1154 hpet_t1_cmp = cnt;
1da177e4
LT
1155
1156 cfg = hpet_readl(HPET_T1_CFG);
5f819949
CL
1157 cfg &= ~HPET_TN_PERIODIC;
1158 cfg |= HPET_TN_ENABLE | HPET_TN_32BIT;
1da177e4
LT
1159 hpet_writel(cfg, HPET_T1_CFG);
1160
1447c27d
CL
1161 local_irq_restore(flags);
1162
1da177e4
LT
1163 return 1;
1164}
1165
1166static void hpet_rtc_timer_reinit(void)
1167{
1447c27d 1168 unsigned int cfg, cnt, ticks_per_int, lost_ints;
1da177e4 1169
f00c96f3
CL
1170 if (unlikely(!(PIE_on | AIE_on | UIE_on))) {
1171 cfg = hpet_readl(HPET_T1_CFG);
1172 cfg &= ~HPET_TN_ENABLE;
1173 hpet_writel(cfg, HPET_T1_CFG);
1da177e4 1174 return;
f00c96f3 1175 }
1da177e4
LT
1176
1177 if (PIE_on && (PIE_freq > DEFAULT_RTC_INT_FREQ))
1178 hpet_rtc_int_freq = PIE_freq;
1179 else
1180 hpet_rtc_int_freq = DEFAULT_RTC_INT_FREQ;
1181
1182 /* It is more accurate to use the comparator value than current count.*/
1447c27d
CL
1183 ticks_per_int = hpet_tick * HZ / hpet_rtc_int_freq;
1184 hpet_t1_cmp += ticks_per_int;
1185 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1186
1187 /*
1188 * If the interrupt handler was delayed too long, the write above tries
1189 * to schedule the next interrupt in the past and the hardware would
1190 * not interrupt until the counter had wrapped around.
1191 * So we have to check that the comparator wasn't set to a past time.
1192 */
1193 cnt = hpet_readl(HPET_COUNTER);
1194 if (unlikely((int)(cnt - hpet_t1_cmp) > 0)) {
1195 lost_ints = (cnt - hpet_t1_cmp) / ticks_per_int + 1;
1196 /* Make sure that, even with the time needed to execute
1197 * this code, the next scheduled interrupt has been moved
1198 * back to the future: */
1199 lost_ints++;
1200
1201 hpet_t1_cmp += lost_ints * ticks_per_int;
1202 hpet_writel(hpet_t1_cmp, HPET_T1_CMP);
1203
1204 if (PIE_on)
1205 PIE_count += lost_ints;
1206
1207 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1208 hpet_rtc_int_freq);
1209 }
1da177e4
LT
1210}
1211
1212/*
1213 * The functions below are called from rtc driver.
1214 * Return 0 if HPET is not being used.
1215 * Otherwise do the necessary changes and return 1.
1216 */
1217int hpet_mask_rtc_irq_bit(unsigned long bit_mask)
1218{
1219 if (!is_hpet_enabled())
1220 return 0;
1221
1222 if (bit_mask & RTC_UIE)
1223 UIE_on = 0;
1224 if (bit_mask & RTC_PIE)
1225 PIE_on = 0;
1226 if (bit_mask & RTC_AIE)
1227 AIE_on = 0;
1228
1229 return 1;
1230}
1231
1232int hpet_set_rtc_irq_bit(unsigned long bit_mask)
1233{
1234 int timer_init_reqd = 0;
1235
1236 if (!is_hpet_enabled())
1237 return 0;
1238
1239 if (!(PIE_on | AIE_on | UIE_on))
1240 timer_init_reqd = 1;
1241
1242 if (bit_mask & RTC_UIE) {
1243 UIE_on = 1;
1244 }
1245 if (bit_mask & RTC_PIE) {
1246 PIE_on = 1;
1247 PIE_count = 0;
1248 }
1249 if (bit_mask & RTC_AIE) {
1250 AIE_on = 1;
1251 }
1252
1253 if (timer_init_reqd)
1254 hpet_rtc_timer_init();
1255
1256 return 1;
1257}
1258
1259int hpet_set_alarm_time(unsigned char hrs, unsigned char min, unsigned char sec)
1260{
1261 if (!is_hpet_enabled())
1262 return 0;
1263
1264 alarm_time.tm_hour = hrs;
1265 alarm_time.tm_min = min;
1266 alarm_time.tm_sec = sec;
1267
1268 return 1;
1269}
1270
1271int hpet_set_periodic_freq(unsigned long freq)
1272{
1273 if (!is_hpet_enabled())
1274 return 0;
1275
1276 PIE_freq = freq;
1277 PIE_count = 0;
1278
1279 return 1;
1280}
1281
1282int hpet_rtc_dropped_irq(void)
1283{
1284 if (!is_hpet_enabled())
1285 return 0;
1286
1287 return 1;
1288}
1289
1290irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id, struct pt_regs *regs)
1291{
1292 struct rtc_time curr_time;
1293 unsigned long rtc_int_flag = 0;
1294 int call_rtc_interrupt = 0;
1295
1296 hpet_rtc_timer_reinit();
1297
1298 if (UIE_on | AIE_on) {
1299 rtc_get_rtc_time(&curr_time);
1300 }
1301 if (UIE_on) {
1302 if (curr_time.tm_sec != prev_update_sec) {
1303 /* Set update int info, call real rtc int routine */
1304 call_rtc_interrupt = 1;
1305 rtc_int_flag = RTC_UF;
1306 prev_update_sec = curr_time.tm_sec;
1307 }
1308 }
1309 if (PIE_on) {
1310 PIE_count++;
1311 if (PIE_count >= hpet_rtc_int_freq/PIE_freq) {
1312 /* Set periodic int info, call real rtc int routine */
1313 call_rtc_interrupt = 1;
1314 rtc_int_flag |= RTC_PF;
1315 PIE_count = 0;
1316 }
1317 }
1318 if (AIE_on) {
1319 if ((curr_time.tm_sec == alarm_time.tm_sec) &&
1320 (curr_time.tm_min == alarm_time.tm_min) &&
1321 (curr_time.tm_hour == alarm_time.tm_hour)) {
1322 /* Set alarm int info, call real rtc int routine */
1323 call_rtc_interrupt = 1;
1324 rtc_int_flag |= RTC_AF;
1325 }
1326 }
1327 if (call_rtc_interrupt) {
1328 rtc_int_flag |= (RTC_IRQF | (RTC_NUM_INTS << 8));
7d12e780 1329 rtc_interrupt(rtc_int_flag, dev_id);
1da177e4
LT
1330 }
1331 return IRQ_HANDLED;
1332}
1333#endif
1334
1da177e4
LT
1335static int __init nohpet_setup(char *s)
1336{
1337 nohpet = 1;
9b41046c 1338 return 1;
1da177e4
LT
1339}
1340
1341__setup("nohpet", nohpet_setup);
1342
7fd67843 1343int __init notsc_setup(char *s)
1da177e4
LT
1344{
1345 notsc = 1;
9b41046c 1346 return 1;
1da177e4
LT
1347}
1348
1349__setup("notsc", notsc_setup);