[PATCH] x86_64: Allow compilation on a 32bit biarch toolchain
[linux-2.6-block.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/config.h>
42#include <linux/init.h>
43
44#include <linux/mm.h>
45#include <linux/kernel_stat.h>
46#include <linux/smp_lock.h>
1da177e4
LT
47#include <linux/bootmem.h>
48#include <linux/thread_info.h>
49#include <linux/module.h>
50
51#include <linux/delay.h>
52#include <linux/mc146818rtc.h>
53#include <asm/mtrr.h>
54#include <asm/pgalloc.h>
55#include <asm/desc.h>
56#include <asm/kdebug.h>
57#include <asm/tlbflush.h>
58#include <asm/proto.h>
75152114 59#include <asm/nmi.h>
9cdd304b
AV
60#include <asm/irq.h>
61#include <asm/hw_irq.h>
1da177e4
LT
62
63/* Number of siblings per CPU package */
64int smp_num_siblings = 1;
65/* Package ID of each logical CPU */
6c231b7b 66u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
94605eff 67/* core ID of each logical CPU */
6c231b7b 68u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
1da177e4
LT
69
70/* Bitmask of currently online CPUs */
6c231b7b 71cpumask_t cpu_online_map __read_mostly;
1da177e4 72
a8ab26fe
AK
73EXPORT_SYMBOL(cpu_online_map);
74
75/*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
1da177e4
LT
79cpumask_t cpu_callin_map;
80cpumask_t cpu_callout_map;
a8ab26fe
AK
81
82cpumask_t cpu_possible_map;
83EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
84
85/* Per CPU bogomips and other parameters */
86struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87
a8ab26fe
AK
88/* Set when the idlers are all forked */
89int smp_threads_ready;
90
94605eff 91/* representing HT siblings of each logical CPU */
6c231b7b 92cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
94605eff
SS
93
94/* representing HT and core siblings of each logical CPU */
6c231b7b 95cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 96EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
97
98/*
99 * Trampoline 80x86 program as an array.
100 */
101
a8ab26fe
AK
102extern unsigned char trampoline_data[];
103extern unsigned char trampoline_end[];
1da177e4 104
76e4f660
AR
105/* State of each CPU */
106DEFINE_PER_CPU(int, cpu_state) = { 0 };
107
108/*
109 * Store all idle threads, this can be reused instead of creating
110 * a new thread. Also avoids complicated thread destroy functionality
111 * for idle threads.
112 */
113struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
114
115#define get_idle_for_cpu(x) (idle_thread_array[(x)])
116#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
117
1da177e4
LT
118/*
119 * Currently trivial. Write the real->protected mode
120 * bootstrap into the page concerned. The caller
121 * has made sure it's suitably aligned.
122 */
123
a8ab26fe 124static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
125{
126 void *tramp = __va(SMP_TRAMPOLINE_BASE);
127 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
128 return virt_to_phys(tramp);
129}
130
131/*
132 * The bootstrap kernel entry code has set these up. Save them for
133 * a given CPU
134 */
135
a8ab26fe 136static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
137{
138 struct cpuinfo_x86 *c = cpu_data + id;
139
140 *c = boot_cpu_data;
141 identify_cpu(c);
dda50e71 142 print_cpu_info(c);
1da177e4
LT
143}
144
145/*
dda50e71
AK
146 * New Funky TSC sync algorithm borrowed from IA64.
147 * Main advantage is that it doesn't reset the TSCs fully and
148 * in general looks more robust and it works better than my earlier
149 * attempts. I believe it was written by David Mosberger. Some minor
150 * adjustments for x86-64 by me -AK
1da177e4 151 *
dda50e71
AK
152 * Original comment reproduced below.
153 *
154 * Synchronize TSC of the current (slave) CPU with the TSC of the
155 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
156 * eliminate the possibility of unaccounted-for errors (such as
157 * getting a machine check in the middle of a calibration step). The
158 * basic idea is for the slave to ask the master what itc value it has
159 * and to read its own itc before and after the master responds. Each
160 * iteration gives us three timestamps:
161 *
162 * slave master
163 *
164 * t0 ---\
165 * ---\
166 * --->
167 * tm
168 * /---
169 * /---
170 * t1 <---
171 *
172 *
173 * The goal is to adjust the slave's TSC such that tm falls exactly
174 * half-way between t0 and t1. If we achieve this, the clocks are
175 * synchronized provided the interconnect between the slave and the
176 * master is symmetric. Even if the interconnect were asymmetric, we
177 * would still know that the synchronization error is smaller than the
178 * roundtrip latency (t0 - t1).
179 *
180 * When the interconnect is quiet and symmetric, this lets us
181 * synchronize the TSC to within one or two cycles. However, we can
182 * only *guarantee* that the synchronization is accurate to within a
183 * round-trip time, which is typically in the range of several hundred
184 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
185 * are usually almost perfectly synchronized, but we shouldn't assume
186 * that the accuracy is much better than half a micro second or so.
187 *
188 * [there are other errors like the latency of RDTSC and of the
189 * WRMSR. These can also account to hundreds of cycles. So it's
190 * probably worse. It claims 153 cycles error on a dual Opteron,
191 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
192 */
193
dda50e71
AK
194#define MASTER 0
195#define SLAVE (SMP_CACHE_BYTES/8)
196
197/* Intentionally don't use cpu_relax() while TSC synchronization
198 because we don't want to go into funky power save modi or cause
199 hypervisors to schedule us away. Going to sleep would likely affect
200 latency and low latency is the primary objective here. -AK */
201#define no_cpu_relax() barrier()
202
a8ab26fe 203static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
204static volatile __cpuinitdata unsigned long go[SLAVE + 1];
205static int notscsync __cpuinitdata;
206
207#undef DEBUG_TSC_SYNC
1da177e4 208
dda50e71
AK
209#define NUM_ROUNDS 64 /* magic value */
210#define NUM_ITERS 5 /* likewise */
1da177e4 211
dda50e71
AK
212/* Callback on boot CPU */
213static __cpuinit void sync_master(void *arg)
1da177e4 214{
dda50e71
AK
215 unsigned long flags, i;
216
dda50e71
AK
217 go[MASTER] = 0;
218
219 local_irq_save(flags);
220 {
221 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
222 while (!go[MASTER])
223 no_cpu_relax();
224 go[MASTER] = 0;
225 rdtscll(go[SLAVE]);
226 }
227 }
228 local_irq_restore(flags);
a8ab26fe 229}
1da177e4 230
a8ab26fe 231/*
dda50e71
AK
232 * Return the number of cycles by which our tsc differs from the tsc
233 * on the master (time-keeper) CPU. A positive number indicates our
234 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 235 */
dda50e71
AK
236static inline long
237get_delta(long *rt, long *master)
a8ab26fe 238{
dda50e71
AK
239 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
240 unsigned long tcenter, t0, t1, tm;
241 int i;
a8ab26fe 242
dda50e71
AK
243 for (i = 0; i < NUM_ITERS; ++i) {
244 rdtscll(t0);
245 go[MASTER] = 1;
246 while (!(tm = go[SLAVE]))
247 no_cpu_relax();
248 go[SLAVE] = 0;
249 rdtscll(t1);
250
251 if (t1 - t0 < best_t1 - best_t0)
252 best_t0 = t0, best_t1 = t1, best_tm = tm;
253 }
254
255 *rt = best_t1 - best_t0;
256 *master = best_tm - best_t0;
257
258 /* average best_t0 and best_t1 without overflow: */
259 tcenter = (best_t0/2 + best_t1/2);
260 if (best_t0 % 2 + best_t1 % 2 == 2)
261 ++tcenter;
262 return tcenter - best_tm;
1da177e4
LT
263}
264
3d483f47 265static __cpuinit void sync_tsc(unsigned int master)
1da177e4 266{
dda50e71
AK
267 int i, done = 0;
268 long delta, adj, adjust_latency = 0;
269 unsigned long flags, rt, master_time_stamp, bound;
44456d37 270#ifdef DEBUG_TSC_SYNC
dda50e71
AK
271 static struct syncdebug {
272 long rt; /* roundtrip time */
273 long master; /* master's timestamp */
274 long diff; /* difference between midpoint and master's timestamp */
275 long lat; /* estimate of tsc adjustment latency */
276 } t[NUM_ROUNDS] __cpuinitdata;
277#endif
278
3d483f47
EB
279 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
280 smp_processor_id(), master);
281
dda50e71
AK
282 go[MASTER] = 1;
283
3d483f47
EB
284 /* It is dangerous to broadcast IPI as cpus are coming up,
285 * as they may not be ready to accept them. So since
286 * we only need to send the ipi to the boot cpu direct
287 * the message, and avoid the race.
288 */
289 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
290
291 while (go[MASTER]) /* wait for master to be ready */
292 no_cpu_relax();
293
294 spin_lock_irqsave(&tsc_sync_lock, flags);
295 {
296 for (i = 0; i < NUM_ROUNDS; ++i) {
297 delta = get_delta(&rt, &master_time_stamp);
298 if (delta == 0) {
299 done = 1; /* let's lock on to this... */
300 bound = rt;
301 }
302
303 if (!done) {
304 unsigned long t;
305 if (i > 0) {
306 adjust_latency += -delta;
307 adj = -delta + adjust_latency/4;
308 } else
309 adj = -delta;
310
311 rdtscll(t);
312 wrmsrl(MSR_IA32_TSC, t + adj);
313 }
44456d37 314#ifdef DEBUG_TSC_SYNC
dda50e71
AK
315 t[i].rt = rt;
316 t[i].master = master_time_stamp;
317 t[i].diff = delta;
318 t[i].lat = adjust_latency/4;
319#endif
320 }
321 }
322 spin_unlock_irqrestore(&tsc_sync_lock, flags);
323
44456d37 324#ifdef DEBUG_TSC_SYNC
dda50e71
AK
325 for (i = 0; i < NUM_ROUNDS; ++i)
326 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
327 t[i].rt, t[i].master, t[i].diff, t[i].lat);
328#endif
329
330 printk(KERN_INFO
331 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
332 "maxerr %lu cycles)\n",
3d483f47 333 smp_processor_id(), master, delta, rt);
a8ab26fe 334}
1da177e4 335
dda50e71 336static void __cpuinit tsc_sync_wait(void)
a8ab26fe 337{
dda50e71 338 if (notscsync || !cpu_has_tsc)
a8ab26fe 339 return;
349188f6 340 sync_tsc(0);
a8ab26fe 341}
1da177e4 342
dda50e71 343static __init int notscsync_setup(char *s)
a8ab26fe 344{
dda50e71
AK
345 notscsync = 1;
346 return 0;
1da177e4 347}
dda50e71 348__setup("notscsync", notscsync_setup);
1da177e4 349
a8ab26fe 350static atomic_t init_deasserted __cpuinitdata;
1da177e4 351
a8ab26fe
AK
352/*
353 * Report back to the Boot Processor.
354 * Running on AP.
355 */
356void __cpuinit smp_callin(void)
1da177e4
LT
357{
358 int cpuid, phys_id;
359 unsigned long timeout;
360
361 /*
362 * If waken up by an INIT in an 82489DX configuration
363 * we may get here before an INIT-deassert IPI reaches
364 * our local APIC. We have to wait for the IPI or we'll
365 * lock up on an APIC access.
366 */
a8ab26fe
AK
367 while (!atomic_read(&init_deasserted))
368 cpu_relax();
1da177e4
LT
369
370 /*
371 * (This works even if the APIC is not enabled.)
372 */
373 phys_id = GET_APIC_ID(apic_read(APIC_ID));
374 cpuid = smp_processor_id();
375 if (cpu_isset(cpuid, cpu_callin_map)) {
376 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
377 phys_id, cpuid);
378 }
379 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
380
381 /*
382 * STARTUP IPIs are fragile beasts as they might sometimes
383 * trigger some glue motherboard logic. Complete APIC bus
384 * silence for 1 second, this overestimates the time the
385 * boot CPU is spending to send the up to 2 STARTUP IPIs
386 * by a factor of two. This should be enough.
387 */
388
389 /*
390 * Waiting 2s total for startup (udelay is not yet working)
391 */
392 timeout = jiffies + 2*HZ;
393 while (time_before(jiffies, timeout)) {
394 /*
395 * Has the boot CPU finished it's STARTUP sequence?
396 */
397 if (cpu_isset(cpuid, cpu_callout_map))
398 break;
a8ab26fe 399 cpu_relax();
1da177e4
LT
400 }
401
402 if (!time_before(jiffies, timeout)) {
403 panic("smp_callin: CPU%d started up but did not get a callout!\n",
404 cpuid);
405 }
406
407 /*
408 * the boot CPU has finished the init stage and is spinning
409 * on callin_map until we finish. We are free to set up this
410 * CPU, first the APIC. (this is probably redundant on most
411 * boards)
412 */
413
414 Dprintk("CALLIN, before setup_local_APIC().\n");
415 setup_local_APIC();
416
1da177e4
LT
417 /*
418 * Get our bogomips.
b4452218
AK
419 *
420 * Need to enable IRQs because it can take longer and then
421 * the NMI watchdog might kill us.
1da177e4 422 */
b4452218 423 local_irq_enable();
1da177e4 424 calibrate_delay();
b4452218 425 local_irq_disable();
1da177e4
LT
426 Dprintk("Stack at about %p\n",&cpuid);
427
428 disable_APIC_timer();
429
430 /*
431 * Save our processor parameters
432 */
433 smp_store_cpu_info(cpuid);
434
1da177e4
LT
435 /*
436 * Allow the master to continue.
437 */
438 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
439}
440
94605eff
SS
441/* representing cpus for which sibling maps can be computed */
442static cpumask_t cpu_sibling_setup_map;
443
cb0cd8d4
AR
444static inline void set_cpu_sibling_map(int cpu)
445{
446 int i;
94605eff
SS
447 struct cpuinfo_x86 *c = cpu_data;
448
449 cpu_set(cpu, cpu_sibling_setup_map);
cb0cd8d4
AR
450
451 if (smp_num_siblings > 1) {
94605eff
SS
452 for_each_cpu_mask(i, cpu_sibling_setup_map) {
453 if (phys_proc_id[cpu] == phys_proc_id[i] &&
454 cpu_core_id[cpu] == cpu_core_id[i]) {
cb0cd8d4
AR
455 cpu_set(i, cpu_sibling_map[cpu]);
456 cpu_set(cpu, cpu_sibling_map[i]);
94605eff
SS
457 cpu_set(i, cpu_core_map[cpu]);
458 cpu_set(cpu, cpu_core_map[i]);
cb0cd8d4
AR
459 }
460 }
461 } else {
462 cpu_set(cpu, cpu_sibling_map[cpu]);
463 }
464
94605eff 465 if (current_cpu_data.x86_max_cores == 1) {
cb0cd8d4 466 cpu_core_map[cpu] = cpu_sibling_map[cpu];
94605eff
SS
467 c[cpu].booted_cores = 1;
468 return;
469 }
470
471 for_each_cpu_mask(i, cpu_sibling_setup_map) {
472 if (phys_proc_id[cpu] == phys_proc_id[i]) {
473 cpu_set(i, cpu_core_map[cpu]);
474 cpu_set(cpu, cpu_core_map[i]);
475 /*
476 * Does this new cpu bringup a new core?
477 */
478 if (cpus_weight(cpu_sibling_map[cpu]) == 1) {
479 /*
480 * for each core in package, increment
481 * the booted_cores for this new cpu
482 */
483 if (first_cpu(cpu_sibling_map[i]) == i)
484 c[cpu].booted_cores++;
485 /*
486 * increment the core count for all
487 * the other cpus in this package
488 */
489 if (i != cpu)
490 c[i].booted_cores++;
491 } else if (i != cpu && !c[cpu].booted_cores)
492 c[cpu].booted_cores = c[i].booted_cores;
493 }
cb0cd8d4
AR
494 }
495}
496
1da177e4 497/*
a8ab26fe 498 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 499 */
a8ab26fe 500void __cpuinit start_secondary(void)
1da177e4
LT
501{
502 /*
503 * Dont put anything before smp_callin(), SMP
504 * booting is too fragile that we want to limit the
505 * things done here to the most necessary things.
506 */
507 cpu_init();
5bfb5d69 508 preempt_disable();
1da177e4
LT
509 smp_callin();
510
511 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
512 barrier();
513
1da177e4
LT
514 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
515 setup_secondary_APIC_clock();
516
a8ab26fe 517 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
518
519 if (nmi_watchdog == NMI_IO_APIC) {
520 disable_8259A_irq(0);
521 enable_NMI_through_LVT0(NULL);
522 enable_8259A_irq(0);
523 }
524
a8ab26fe 525 enable_APIC_timer();
1da177e4 526
cb0cd8d4
AR
527 /*
528 * The sibling maps must be set before turing the online map on for
529 * this cpu
530 */
531 set_cpu_sibling_map(smp_processor_id());
532
1eecd73c
AK
533 /*
534 * Wait for TSC sync to not schedule things before.
535 * We still process interrupts, which could see an inconsistent
536 * time in that window unfortunately.
537 * Do this here because TSC sync has global unprotected state.
538 */
539 tsc_sync_wait();
540
884d9e40
AR
541 /*
542 * We need to hold call_lock, so there is no inconsistency
543 * between the time smp_call_function() determines number of
544 * IPI receipients, and the time when the determination is made
545 * for which cpus receive the IPI in genapic_flat.c. Holding this
546 * lock helps us to not include this cpu in a currently in progress
547 * smp_call_function().
548 */
549 lock_ipi_call_lock();
550
1da177e4 551 /*
a8ab26fe 552 * Allow the master to continue.
1da177e4 553 */
1da177e4 554 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
555 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
556 unlock_ipi_call_lock();
557
1da177e4
LT
558 cpu_idle();
559}
560
a8ab26fe 561extern volatile unsigned long init_rsp;
1da177e4
LT
562extern void (*initial_code)(void);
563
44456d37 564#ifdef APIC_DEBUG
a8ab26fe 565static void inquire_remote_apic(int apicid)
1da177e4
LT
566{
567 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
568 char *names[] = { "ID", "VERSION", "SPIV" };
569 int timeout, status;
570
571 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
572
573 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
574 printk("... APIC #%d %s: ", apicid, names[i]);
575
576 /*
577 * Wait for idle.
578 */
579 apic_wait_icr_idle();
580
c1507eb2
AK
581 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
582 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
583
584 timeout = 0;
585 do {
586 udelay(100);
587 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
588 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
589
590 switch (status) {
591 case APIC_ICR_RR_VALID:
592 status = apic_read(APIC_RRR);
593 printk("%08x\n", status);
594 break;
595 default:
596 printk("failed\n");
597 }
598 }
599}
600#endif
601
a8ab26fe
AK
602/*
603 * Kick the secondary to wake up.
604 */
605static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
606{
607 unsigned long send_status = 0, accept_status = 0;
608 int maxlvt, timeout, num_starts, j;
609
610 Dprintk("Asserting INIT.\n");
611
612 /*
613 * Turn INIT on target chip
614 */
c1507eb2 615 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
616
617 /*
618 * Send IPI
619 */
c1507eb2 620 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
621 | APIC_DM_INIT);
622
623 Dprintk("Waiting for send to finish...\n");
624 timeout = 0;
625 do {
626 Dprintk("+");
627 udelay(100);
628 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
629 } while (send_status && (timeout++ < 1000));
630
631 mdelay(10);
632
633 Dprintk("Deasserting INIT.\n");
634
635 /* Target chip */
c1507eb2 636 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
637
638 /* Send IPI */
c1507eb2 639 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
640
641 Dprintk("Waiting for send to finish...\n");
642 timeout = 0;
643 do {
644 Dprintk("+");
645 udelay(100);
646 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
647 } while (send_status && (timeout++ < 1000));
648
f2ecfab9 649 mb();
1da177e4
LT
650 atomic_set(&init_deasserted, 1);
651
5a40b7c2 652 num_starts = 2;
1da177e4
LT
653
654 /*
655 * Run STARTUP IPI loop.
656 */
657 Dprintk("#startup loops: %d.\n", num_starts);
658
659 maxlvt = get_maxlvt();
660
661 for (j = 1; j <= num_starts; j++) {
662 Dprintk("Sending STARTUP #%d.\n",j);
663 apic_read_around(APIC_SPIV);
664 apic_write(APIC_ESR, 0);
665 apic_read(APIC_ESR);
666 Dprintk("After apic_write.\n");
667
668 /*
669 * STARTUP IPI
670 */
671
672 /* Target chip */
c1507eb2 673 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
674
675 /* Boot on the stack */
676 /* Kick the second */
c1507eb2 677 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
678
679 /*
680 * Give the other CPU some time to accept the IPI.
681 */
682 udelay(300);
683
684 Dprintk("Startup point 1.\n");
685
686 Dprintk("Waiting for send to finish...\n");
687 timeout = 0;
688 do {
689 Dprintk("+");
690 udelay(100);
691 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
692 } while (send_status && (timeout++ < 1000));
693
694 /*
695 * Give the other CPU some time to accept the IPI.
696 */
697 udelay(200);
698 /*
699 * Due to the Pentium erratum 3AP.
700 */
701 if (maxlvt > 3) {
702 apic_read_around(APIC_SPIV);
703 apic_write(APIC_ESR, 0);
704 }
705 accept_status = (apic_read(APIC_ESR) & 0xEF);
706 if (send_status || accept_status)
707 break;
708 }
709 Dprintk("After Startup.\n");
710
711 if (send_status)
712 printk(KERN_ERR "APIC never delivered???\n");
713 if (accept_status)
714 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
715
716 return (send_status | accept_status);
717}
718
76e4f660
AR
719struct create_idle {
720 struct task_struct *idle;
721 struct completion done;
722 int cpu;
723};
724
725void do_fork_idle(void *_c_idle)
726{
727 struct create_idle *c_idle = _c_idle;
728
729 c_idle->idle = fork_idle(c_idle->cpu);
730 complete(&c_idle->done);
731}
732
a8ab26fe
AK
733/*
734 * Boot one CPU.
735 */
736static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 737{
1da177e4 738 unsigned long boot_error;
a8ab26fe 739 int timeout;
1da177e4 740 unsigned long start_rip;
76e4f660
AR
741 struct create_idle c_idle = {
742 .cpu = cpu,
743 .done = COMPLETION_INITIALIZER(c_idle.done),
744 };
745 DECLARE_WORK(work, do_fork_idle, &c_idle);
746
747 c_idle.idle = get_idle_for_cpu(cpu);
748
749 if (c_idle.idle) {
750 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
751 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
752 init_idle(c_idle.idle, cpu);
753 goto do_rest;
754 }
755
1da177e4 756 /*
76e4f660
AR
757 * During cold boot process, keventd thread is not spun up yet.
758 * When we do cpu hot-add, we create idle threads on the fly, we should
759 * not acquire any attributes from the calling context. Hence the clean
760 * way to create kernel_threads() is to do that from keventd().
761 * We do the current_is_keventd() due to the fact that ACPI notifier
762 * was also queuing to keventd() and when the caller is already running
763 * in context of keventd(), we would end up with locking up the keventd
764 * thread.
1da177e4 765 */
76e4f660
AR
766 if (!keventd_up() || current_is_keventd())
767 work.func(work.data);
768 else {
769 schedule_work(&work);
770 wait_for_completion(&c_idle.done);
771 }
772
773 if (IS_ERR(c_idle.idle)) {
a8ab26fe 774 printk("failed fork for CPU %d\n", cpu);
76e4f660 775 return PTR_ERR(c_idle.idle);
a8ab26fe 776 }
1da177e4 777
76e4f660
AR
778 set_idle_for_cpu(cpu, c_idle.idle);
779
780do_rest:
781
782 cpu_pda[cpu].pcurrent = c_idle.idle;
1da177e4
LT
783
784 start_rip = setup_trampoline();
785
76e4f660 786 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
787 per_cpu(init_tss,cpu).rsp0 = init_rsp;
788 initial_code = start_secondary;
76e4f660 789 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
1da177e4 790
de04f322
AK
791 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
792 cpus_weight(cpu_present_map),
793 apicid);
1da177e4
LT
794
795 /*
796 * This grunge runs the startup process for
797 * the targeted processor.
798 */
799
800 atomic_set(&init_deasserted, 0);
801
802 Dprintk("Setting warm reset code and vector.\n");
803
804 CMOS_WRITE(0xa, 0xf);
805 local_flush_tlb();
806 Dprintk("1.\n");
807 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
808 Dprintk("2.\n");
809 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
810 Dprintk("3.\n");
811
812 /*
813 * Be paranoid about clearing APIC errors.
814 */
815 if (APIC_INTEGRATED(apic_version[apicid])) {
816 apic_read_around(APIC_SPIV);
817 apic_write(APIC_ESR, 0);
818 apic_read(APIC_ESR);
819 }
820
821 /*
822 * Status is now clean
823 */
824 boot_error = 0;
825
826 /*
827 * Starting actual IPI sequence...
828 */
a8ab26fe 829 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
830
831 if (!boot_error) {
832 /*
833 * allow APs to start initializing.
834 */
835 Dprintk("Before Callout %d.\n", cpu);
836 cpu_set(cpu, cpu_callout_map);
837 Dprintk("After Callout %d.\n", cpu);
838
839 /*
840 * Wait 5s total for a response
841 */
842 for (timeout = 0; timeout < 50000; timeout++) {
843 if (cpu_isset(cpu, cpu_callin_map))
844 break; /* It has booted */
845 udelay(100);
846 }
847
848 if (cpu_isset(cpu, cpu_callin_map)) {
849 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
850 Dprintk("CPU has booted.\n");
851 } else {
852 boot_error = 1;
853 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
854 == 0xA5)
855 /* trampoline started but...? */
856 printk("Stuck ??\n");
857 else
858 /* trampoline code not run */
859 printk("Not responding.\n");
44456d37 860#ifdef APIC_DEBUG
1da177e4
LT
861 inquire_remote_apic(apicid);
862#endif
863 }
864 }
865 if (boot_error) {
866 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
867 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
a8ab26fe
AK
868 cpu_clear(cpu, cpu_present_map);
869 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
870 x86_cpu_to_apicid[cpu] = BAD_APICID;
871 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 872 return -EIO;
1da177e4 873 }
a8ab26fe
AK
874
875 return 0;
1da177e4
LT
876}
877
a8ab26fe
AK
878cycles_t cacheflush_time;
879unsigned long cache_decay_ticks;
880
1da177e4 881/*
a8ab26fe 882 * Cleanup possible dangling ends...
1da177e4 883 */
a8ab26fe 884static __cpuinit void smp_cleanup_boot(void)
1da177e4 885{
a8ab26fe
AK
886 /*
887 * Paranoid: Set warm reset code and vector here back
888 * to default values.
889 */
890 CMOS_WRITE(0, 0xf);
1da177e4 891
a8ab26fe
AK
892 /*
893 * Reset trampoline flag
894 */
895 *((volatile int *) phys_to_virt(0x467)) = 0;
a8ab26fe
AK
896}
897
898/*
899 * Fall back to non SMP mode after errors.
900 *
901 * RED-PEN audit/test this more. I bet there is more state messed up here.
902 */
e6982c67 903static __init void disable_smp(void)
a8ab26fe
AK
904{
905 cpu_present_map = cpumask_of_cpu(0);
906 cpu_possible_map = cpumask_of_cpu(0);
907 if (smp_found_config)
908 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
909 else
910 phys_cpu_present_map = physid_mask_of_physid(0);
911 cpu_set(0, cpu_sibling_map[0]);
912 cpu_set(0, cpu_core_map[0]);
913}
914
61b1b2d0 915#ifdef CONFIG_HOTPLUG_CPU
420f8f68
AK
916
917int additional_cpus __initdata = -1;
918
61b1b2d0
AK
919/*
920 * cpu_possible_map should be static, it cannot change as cpu's
921 * are onlined, or offlined. The reason is per-cpu data-structures
922 * are allocated by some modules at init time, and dont expect to
923 * do this dynamically on cpu arrival/departure.
924 * cpu_present_map on the other hand can change dynamically.
925 * In case when cpu_hotplug is not compiled, then we resort to current
926 * behaviour, which is cpu_possible == cpu_present.
61b1b2d0 927 * - Ashok Raj
420f8f68
AK
928 *
929 * Three ways to find out the number of additional hotplug CPUs:
930 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
420f8f68 931 * - The user can overwrite it with additional_cpus=NUM
f62a91f6 932 * - Otherwise don't reserve additional CPUs.
420f8f68
AK
933 * We do this because additional CPUs waste a lot of memory.
934 * -AK
61b1b2d0 935 */
421c7ce6 936__init void prefill_possible_map(void)
61b1b2d0
AK
937{
938 int i;
420f8f68
AK
939 int possible;
940
941 if (additional_cpus == -1) {
f62a91f6 942 if (disabled_cpus > 0)
420f8f68 943 additional_cpus = disabled_cpus;
f62a91f6
AK
944 else
945 additional_cpus = 0;
420f8f68
AK
946 }
947 possible = num_processors + additional_cpus;
948 if (possible > NR_CPUS)
949 possible = NR_CPUS;
950
951 printk(KERN_INFO "SMP: Allowing %d CPUs, %d hotplug CPUs\n",
952 possible,
953 max_t(int, possible - num_processors, 0));
954
955 for (i = 0; i < possible; i++)
61b1b2d0
AK
956 cpu_set(i, cpu_possible_map);
957}
958#endif
959
a8ab26fe
AK
960/*
961 * Various sanity checks.
962 */
e6982c67 963static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 964{
1da177e4
LT
965 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
966 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
967 hard_smp_processor_id());
968 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
969 }
970
971 /*
972 * If we couldn't find an SMP configuration at boot time,
973 * get out of here now!
974 */
975 if (!smp_found_config) {
976 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 977 disable_smp();
1da177e4
LT
978 if (APIC_init_uniprocessor())
979 printk(KERN_NOTICE "Local APIC not detected."
980 " Using dummy APIC emulation.\n");
a8ab26fe 981 return -1;
1da177e4
LT
982 }
983
984 /*
985 * Should not be necessary because the MP table should list the boot
986 * CPU too, but we do it for the sake of robustness anyway.
987 */
988 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
989 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
990 boot_cpu_id);
991 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
992 }
993
994 /*
995 * If we couldn't find a local APIC, then get out of here now!
996 */
997 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
998 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
999 boot_cpu_id);
1000 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
1001 nr_ioapics = 0;
1002 return -1;
1da177e4
LT
1003 }
1004
1da177e4
LT
1005 /*
1006 * If SMP should be disabled, then really disable it!
1007 */
1008 if (!max_cpus) {
1da177e4 1009 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
1010 nr_ioapics = 0;
1011 return -1;
1da177e4
LT
1012 }
1013
a8ab26fe
AK
1014 return 0;
1015}
1da177e4 1016
a8ab26fe
AK
1017/*
1018 * Prepare for SMP bootup. The MP table or ACPI has been read
1019 * earlier. Just do some sanity checking here and enable APIC mode.
1020 */
e6982c67 1021void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 1022{
a8ab26fe
AK
1023 nmi_watchdog_default();
1024 current_cpu_data = boot_cpu_data;
1025 current_thread_info()->cpu = 0; /* needed? */
94605eff 1026 set_cpu_sibling_map(0);
1da177e4 1027
a8ab26fe
AK
1028 if (smp_sanity_check(max_cpus) < 0) {
1029 printk(KERN_INFO "SMP disabled\n");
1030 disable_smp();
1031 return;
1da177e4
LT
1032 }
1033
a8ab26fe 1034
1da177e4 1035 /*
a8ab26fe 1036 * Switch from PIC to APIC mode.
1da177e4 1037 */
a8ab26fe
AK
1038 connect_bsp_APIC();
1039 setup_local_APIC();
1da177e4 1040
a8ab26fe
AK
1041 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
1042 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1043 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
1044 /* Or can we switch back to PIC here? */
1da177e4 1045 }
1da177e4
LT
1046
1047 /*
a8ab26fe 1048 * Now start the IO-APICs
1da177e4
LT
1049 */
1050 if (!skip_ioapic_setup && nr_ioapics)
1051 setup_IO_APIC();
1052 else
1053 nr_ioapics = 0;
1054
1da177e4 1055 /*
a8ab26fe 1056 * Set up local APIC timer on boot CPU.
1da177e4 1057 */
1da177e4 1058
a8ab26fe 1059 setup_boot_APIC_clock();
1da177e4
LT
1060}
1061
a8ab26fe
AK
1062/*
1063 * Early setup to make printk work.
1064 */
1065void __init smp_prepare_boot_cpu(void)
1da177e4 1066{
a8ab26fe
AK
1067 int me = smp_processor_id();
1068 cpu_set(me, cpu_online_map);
1069 cpu_set(me, cpu_callout_map);
884d9e40 1070 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1071}
1072
a8ab26fe
AK
1073/*
1074 * Entry point to boot a CPU.
a8ab26fe
AK
1075 */
1076int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1077{
a8ab26fe
AK
1078 int err;
1079 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1080
a8ab26fe 1081 WARN_ON(irqs_disabled());
1da177e4 1082
a8ab26fe
AK
1083 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1084
1085 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1086 !physid_isset(apicid, phys_cpu_present_map)) {
1087 printk("__cpu_up: bad cpu %d\n", cpu);
1088 return -EINVAL;
1089 }
a8ab26fe 1090
76e4f660
AR
1091 /*
1092 * Already booted CPU?
1093 */
1094 if (cpu_isset(cpu, cpu_callin_map)) {
1095 Dprintk("do_boot_cpu %d Already started\n", cpu);
1096 return -ENOSYS;
1097 }
1098
884d9e40 1099 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1100 /* Boot it! */
1101 err = do_boot_cpu(cpu, apicid);
1102 if (err < 0) {
a8ab26fe
AK
1103 Dprintk("do_boot_cpu failed %d\n", err);
1104 return err;
1da177e4 1105 }
a8ab26fe 1106
1da177e4
LT
1107 /* Unleash the CPU! */
1108 Dprintk("waiting for cpu %d\n", cpu);
1109
1da177e4 1110 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1111 cpu_relax();
76e4f660
AR
1112 err = 0;
1113
1114 return err;
1da177e4
LT
1115}
1116
a8ab26fe
AK
1117/*
1118 * Finish the SMP boot.
1119 */
e6982c67 1120void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1121{
a8ab26fe
AK
1122 smp_cleanup_boot();
1123
1da177e4
LT
1124#ifdef CONFIG_X86_IO_APIC
1125 setup_ioapic_dest();
1126#endif
1da177e4 1127
a8ab26fe 1128 time_init_gtod();
75152114
AK
1129
1130 check_nmi_watchdog();
a8ab26fe 1131}
76e4f660
AR
1132
1133#ifdef CONFIG_HOTPLUG_CPU
1134
cb0cd8d4 1135static void remove_siblinginfo(int cpu)
76e4f660
AR
1136{
1137 int sibling;
94605eff 1138 struct cpuinfo_x86 *c = cpu_data;
76e4f660 1139
94605eff
SS
1140 for_each_cpu_mask(sibling, cpu_core_map[cpu]) {
1141 cpu_clear(cpu, cpu_core_map[sibling]);
1142 /*
1143 * last thread sibling in this cpu core going down
1144 */
1145 if (cpus_weight(cpu_sibling_map[cpu]) == 1)
1146 c[sibling].booted_cores--;
1147 }
1148
76e4f660
AR
1149 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1150 cpu_clear(cpu, cpu_sibling_map[sibling]);
76e4f660
AR
1151 cpus_clear(cpu_sibling_map[cpu]);
1152 cpus_clear(cpu_core_map[cpu]);
1153 phys_proc_id[cpu] = BAD_APICID;
1154 cpu_core_id[cpu] = BAD_APICID;
94605eff 1155 cpu_clear(cpu, cpu_sibling_setup_map);
76e4f660
AR
1156}
1157
1158void remove_cpu_from_maps(void)
1159{
1160 int cpu = smp_processor_id();
1161
1162 cpu_clear(cpu, cpu_callout_map);
1163 cpu_clear(cpu, cpu_callin_map);
1164 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1165}
1166
1167int __cpu_disable(void)
1168{
1169 int cpu = smp_processor_id();
1170
1171 /*
1172 * Perhaps use cpufreq to drop frequency, but that could go
1173 * into generic code.
1174 *
1175 * We won't take down the boot processor on i386 due to some
1176 * interrupts only being able to be serviced by the BSP.
1177 * Especially so if we're not using an IOAPIC -zwane
1178 */
1179 if (cpu == 0)
1180 return -EBUSY;
1181
5e9ef02e 1182 clear_local_APIC();
76e4f660
AR
1183
1184 /*
1185 * HACK:
1186 * Allow any queued timer interrupts to get serviced
1187 * This is only a temporary solution until we cleanup
1188 * fixup_irqs as we do for IA64.
1189 */
1190 local_irq_enable();
1191 mdelay(1);
1192
1193 local_irq_disable();
1194 remove_siblinginfo(cpu);
1195
1196 /* It's now safe to remove this processor from the online map */
1197 cpu_clear(cpu, cpu_online_map);
1198 remove_cpu_from_maps();
1199 fixup_irqs(cpu_online_map);
1200 return 0;
1201}
1202
1203void __cpu_die(unsigned int cpu)
1204{
1205 /* We don't do anything here: idle task is faking death itself. */
1206 unsigned int i;
1207
1208 for (i = 0; i < 10; i++) {
1209 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1210 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1211 printk ("CPU %d is now offline\n", cpu);
76e4f660 1212 return;
884d9e40 1213 }
ef6e5253 1214 msleep(100);
76e4f660
AR
1215 }
1216 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1217}
1218
420f8f68
AK
1219static __init int setup_additional_cpus(char *s)
1220{
1221 return get_option(&s, &additional_cpus);
1222}
1223__setup("additional_cpus=", setup_additional_cpus);
1224
76e4f660
AR
1225#else /* ... !CONFIG_HOTPLUG_CPU */
1226
1227int __cpu_disable(void)
1228{
1229 return -ENOSYS;
1230}
1231
1232void __cpu_die(unsigned int cpu)
1233{
1234 /* We said "no" in __cpu_disable */
1235 BUG();
1236}
1237#endif /* CONFIG_HOTPLUG_CPU */