[PATCH] x86-64: Use largest APIC number, not number of CPUs to decide on physflat...
[linux-2.6-block.git] / arch / x86_64 / kernel / smpboot.c
CommitLineData
1da177e4
LT
1/*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@redhat.com>
5 * (c) 1998, 1999, 2000 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
a8ab26fe 15 * This code is released under the GNU General Public License version 2
1da177e4
LT
16 *
17 * Fixes
18 * Felix Koop : NR_CPUS used properly
19 * Jose Renau : Handle single CPU case.
20 * Alan Cox : By repeated request 8) - Total BogoMIP report.
21 * Greg Wright : Fix for kernel stacks panic.
22 * Erich Boleyn : MP v1.4 and additional changes.
23 * Matthias Sattler : Changes for 2.1 kernel map.
24 * Michel Lespinasse : Changes for 2.1 kernel map.
25 * Michael Chastain : Change trampoline.S to gnu as.
26 * Alan Cox : Dumb bug: 'B' step PPro's are fine
27 * Ingo Molnar : Added APIC timers, based on code
28 * from Jose Renau
29 * Ingo Molnar : various cleanups and rewrites
30 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
31 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
32 * Andi Kleen : Changed for SMP boot into long mode.
a8ab26fe
AK
33 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
34 * Andi Kleen : Converted to new state machine.
35 * Various cleanups.
36 * Probably mostly hotplug CPU ready now.
76e4f660 37 * Ashok Raj : CPU hotplug support
1da177e4
LT
38 */
39
a8ab26fe 40
1da177e4
LT
41#include <linux/config.h>
42#include <linux/init.h>
43
44#include <linux/mm.h>
45#include <linux/kernel_stat.h>
46#include <linux/smp_lock.h>
47#include <linux/irq.h>
48#include <linux/bootmem.h>
49#include <linux/thread_info.h>
50#include <linux/module.h>
51
52#include <linux/delay.h>
53#include <linux/mc146818rtc.h>
54#include <asm/mtrr.h>
55#include <asm/pgalloc.h>
56#include <asm/desc.h>
57#include <asm/kdebug.h>
58#include <asm/tlbflush.h>
59#include <asm/proto.h>
75152114 60#include <asm/nmi.h>
1da177e4
LT
61
62/* Number of siblings per CPU package */
63int smp_num_siblings = 1;
64/* Package ID of each logical CPU */
6c231b7b
RT
65u8 phys_proc_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
66u8 cpu_core_id[NR_CPUS] __read_mostly = { [0 ... NR_CPUS-1] = BAD_APICID };
1da177e4 67EXPORT_SYMBOL(phys_proc_id);
3dd9d514 68EXPORT_SYMBOL(cpu_core_id);
1da177e4
LT
69
70/* Bitmask of currently online CPUs */
6c231b7b 71cpumask_t cpu_online_map __read_mostly;
1da177e4 72
a8ab26fe
AK
73EXPORT_SYMBOL(cpu_online_map);
74
75/*
76 * Private maps to synchronize booting between AP and BP.
77 * Probably not needed anymore, but it makes for easier debugging. -AK
78 */
1da177e4
LT
79cpumask_t cpu_callin_map;
80cpumask_t cpu_callout_map;
a8ab26fe
AK
81
82cpumask_t cpu_possible_map;
83EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
84
85/* Per CPU bogomips and other parameters */
86struct cpuinfo_x86 cpu_data[NR_CPUS] __cacheline_aligned;
87
a8ab26fe
AK
88/* Set when the idlers are all forked */
89int smp_threads_ready;
90
6c231b7b
RT
91cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
92cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
2df9fa36 93EXPORT_SYMBOL(cpu_core_map);
1da177e4
LT
94
95/*
96 * Trampoline 80x86 program as an array.
97 */
98
a8ab26fe
AK
99extern unsigned char trampoline_data[];
100extern unsigned char trampoline_end[];
1da177e4 101
76e4f660
AR
102/* State of each CPU */
103DEFINE_PER_CPU(int, cpu_state) = { 0 };
104
105/*
106 * Store all idle threads, this can be reused instead of creating
107 * a new thread. Also avoids complicated thread destroy functionality
108 * for idle threads.
109 */
110struct task_struct *idle_thread_array[NR_CPUS] __cpuinitdata ;
111
112#define get_idle_for_cpu(x) (idle_thread_array[(x)])
113#define set_idle_for_cpu(x,p) (idle_thread_array[(x)] = (p))
114
1da177e4
LT
115/*
116 * Currently trivial. Write the real->protected mode
117 * bootstrap into the page concerned. The caller
118 * has made sure it's suitably aligned.
119 */
120
a8ab26fe 121static unsigned long __cpuinit setup_trampoline(void)
1da177e4
LT
122{
123 void *tramp = __va(SMP_TRAMPOLINE_BASE);
124 memcpy(tramp, trampoline_data, trampoline_end - trampoline_data);
125 return virt_to_phys(tramp);
126}
127
128/*
129 * The bootstrap kernel entry code has set these up. Save them for
130 * a given CPU
131 */
132
a8ab26fe 133static void __cpuinit smp_store_cpu_info(int id)
1da177e4
LT
134{
135 struct cpuinfo_x86 *c = cpu_data + id;
136
137 *c = boot_cpu_data;
138 identify_cpu(c);
dda50e71 139 print_cpu_info(c);
1da177e4
LT
140}
141
142/*
dda50e71
AK
143 * New Funky TSC sync algorithm borrowed from IA64.
144 * Main advantage is that it doesn't reset the TSCs fully and
145 * in general looks more robust and it works better than my earlier
146 * attempts. I believe it was written by David Mosberger. Some minor
147 * adjustments for x86-64 by me -AK
1da177e4 148 *
dda50e71
AK
149 * Original comment reproduced below.
150 *
151 * Synchronize TSC of the current (slave) CPU with the TSC of the
152 * MASTER CPU (normally the time-keeper CPU). We use a closed loop to
153 * eliminate the possibility of unaccounted-for errors (such as
154 * getting a machine check in the middle of a calibration step). The
155 * basic idea is for the slave to ask the master what itc value it has
156 * and to read its own itc before and after the master responds. Each
157 * iteration gives us three timestamps:
158 *
159 * slave master
160 *
161 * t0 ---\
162 * ---\
163 * --->
164 * tm
165 * /---
166 * /---
167 * t1 <---
168 *
169 *
170 * The goal is to adjust the slave's TSC such that tm falls exactly
171 * half-way between t0 and t1. If we achieve this, the clocks are
172 * synchronized provided the interconnect between the slave and the
173 * master is symmetric. Even if the interconnect were asymmetric, we
174 * would still know that the synchronization error is smaller than the
175 * roundtrip latency (t0 - t1).
176 *
177 * When the interconnect is quiet and symmetric, this lets us
178 * synchronize the TSC to within one or two cycles. However, we can
179 * only *guarantee* that the synchronization is accurate to within a
180 * round-trip time, which is typically in the range of several hundred
181 * cycles (e.g., ~500 cycles). In practice, this means that the TSCs
182 * are usually almost perfectly synchronized, but we shouldn't assume
183 * that the accuracy is much better than half a micro second or so.
184 *
185 * [there are other errors like the latency of RDTSC and of the
186 * WRMSR. These can also account to hundreds of cycles. So it's
187 * probably worse. It claims 153 cycles error on a dual Opteron,
188 * but I suspect the numbers are actually somewhat worse -AK]
1da177e4
LT
189 */
190
dda50e71
AK
191#define MASTER 0
192#define SLAVE (SMP_CACHE_BYTES/8)
193
194/* Intentionally don't use cpu_relax() while TSC synchronization
195 because we don't want to go into funky power save modi or cause
196 hypervisors to schedule us away. Going to sleep would likely affect
197 latency and low latency is the primary objective here. -AK */
198#define no_cpu_relax() barrier()
199
a8ab26fe 200static __cpuinitdata DEFINE_SPINLOCK(tsc_sync_lock);
dda50e71
AK
201static volatile __cpuinitdata unsigned long go[SLAVE + 1];
202static int notscsync __cpuinitdata;
203
204#undef DEBUG_TSC_SYNC
1da177e4 205
dda50e71
AK
206#define NUM_ROUNDS 64 /* magic value */
207#define NUM_ITERS 5 /* likewise */
1da177e4 208
dda50e71
AK
209/* Callback on boot CPU */
210static __cpuinit void sync_master(void *arg)
1da177e4 211{
dda50e71
AK
212 unsigned long flags, i;
213
dda50e71
AK
214 go[MASTER] = 0;
215
216 local_irq_save(flags);
217 {
218 for (i = 0; i < NUM_ROUNDS*NUM_ITERS; ++i) {
219 while (!go[MASTER])
220 no_cpu_relax();
221 go[MASTER] = 0;
222 rdtscll(go[SLAVE]);
223 }
224 }
225 local_irq_restore(flags);
a8ab26fe 226}
1da177e4 227
a8ab26fe 228/*
dda50e71
AK
229 * Return the number of cycles by which our tsc differs from the tsc
230 * on the master (time-keeper) CPU. A positive number indicates our
231 * tsc is ahead of the master, negative that it is behind.
a8ab26fe 232 */
dda50e71
AK
233static inline long
234get_delta(long *rt, long *master)
a8ab26fe 235{
dda50e71
AK
236 unsigned long best_t0 = 0, best_t1 = ~0UL, best_tm = 0;
237 unsigned long tcenter, t0, t1, tm;
238 int i;
a8ab26fe 239
dda50e71
AK
240 for (i = 0; i < NUM_ITERS; ++i) {
241 rdtscll(t0);
242 go[MASTER] = 1;
243 while (!(tm = go[SLAVE]))
244 no_cpu_relax();
245 go[SLAVE] = 0;
246 rdtscll(t1);
247
248 if (t1 - t0 < best_t1 - best_t0)
249 best_t0 = t0, best_t1 = t1, best_tm = tm;
250 }
251
252 *rt = best_t1 - best_t0;
253 *master = best_tm - best_t0;
254
255 /* average best_t0 and best_t1 without overflow: */
256 tcenter = (best_t0/2 + best_t1/2);
257 if (best_t0 % 2 + best_t1 % 2 == 2)
258 ++tcenter;
259 return tcenter - best_tm;
1da177e4
LT
260}
261
3d483f47 262static __cpuinit void sync_tsc(unsigned int master)
1da177e4 263{
dda50e71
AK
264 int i, done = 0;
265 long delta, adj, adjust_latency = 0;
266 unsigned long flags, rt, master_time_stamp, bound;
44456d37 267#ifdef DEBUG_TSC_SYNC
dda50e71
AK
268 static struct syncdebug {
269 long rt; /* roundtrip time */
270 long master; /* master's timestamp */
271 long diff; /* difference between midpoint and master's timestamp */
272 long lat; /* estimate of tsc adjustment latency */
273 } t[NUM_ROUNDS] __cpuinitdata;
274#endif
275
3d483f47
EB
276 printk(KERN_INFO "CPU %d: Syncing TSC to CPU %u.\n",
277 smp_processor_id(), master);
278
dda50e71
AK
279 go[MASTER] = 1;
280
3d483f47
EB
281 /* It is dangerous to broadcast IPI as cpus are coming up,
282 * as they may not be ready to accept them. So since
283 * we only need to send the ipi to the boot cpu direct
284 * the message, and avoid the race.
285 */
286 smp_call_function_single(master, sync_master, NULL, 1, 0);
dda50e71
AK
287
288 while (go[MASTER]) /* wait for master to be ready */
289 no_cpu_relax();
290
291 spin_lock_irqsave(&tsc_sync_lock, flags);
292 {
293 for (i = 0; i < NUM_ROUNDS; ++i) {
294 delta = get_delta(&rt, &master_time_stamp);
295 if (delta == 0) {
296 done = 1; /* let's lock on to this... */
297 bound = rt;
298 }
299
300 if (!done) {
301 unsigned long t;
302 if (i > 0) {
303 adjust_latency += -delta;
304 adj = -delta + adjust_latency/4;
305 } else
306 adj = -delta;
307
308 rdtscll(t);
309 wrmsrl(MSR_IA32_TSC, t + adj);
310 }
44456d37 311#ifdef DEBUG_TSC_SYNC
dda50e71
AK
312 t[i].rt = rt;
313 t[i].master = master_time_stamp;
314 t[i].diff = delta;
315 t[i].lat = adjust_latency/4;
316#endif
317 }
318 }
319 spin_unlock_irqrestore(&tsc_sync_lock, flags);
320
44456d37 321#ifdef DEBUG_TSC_SYNC
dda50e71
AK
322 for (i = 0; i < NUM_ROUNDS; ++i)
323 printk("rt=%5ld master=%5ld diff=%5ld adjlat=%5ld\n",
324 t[i].rt, t[i].master, t[i].diff, t[i].lat);
325#endif
326
327 printk(KERN_INFO
328 "CPU %d: synchronized TSC with CPU %u (last diff %ld cycles, "
329 "maxerr %lu cycles)\n",
3d483f47 330 smp_processor_id(), master, delta, rt);
a8ab26fe 331}
1da177e4 332
dda50e71 333static void __cpuinit tsc_sync_wait(void)
a8ab26fe 334{
dda50e71 335 if (notscsync || !cpu_has_tsc)
a8ab26fe 336 return;
349188f6 337 sync_tsc(0);
a8ab26fe 338}
1da177e4 339
dda50e71 340static __init int notscsync_setup(char *s)
a8ab26fe 341{
dda50e71
AK
342 notscsync = 1;
343 return 0;
1da177e4 344}
dda50e71 345__setup("notscsync", notscsync_setup);
1da177e4 346
a8ab26fe 347static atomic_t init_deasserted __cpuinitdata;
1da177e4 348
a8ab26fe
AK
349/*
350 * Report back to the Boot Processor.
351 * Running on AP.
352 */
353void __cpuinit smp_callin(void)
1da177e4
LT
354{
355 int cpuid, phys_id;
356 unsigned long timeout;
357
358 /*
359 * If waken up by an INIT in an 82489DX configuration
360 * we may get here before an INIT-deassert IPI reaches
361 * our local APIC. We have to wait for the IPI or we'll
362 * lock up on an APIC access.
363 */
a8ab26fe
AK
364 while (!atomic_read(&init_deasserted))
365 cpu_relax();
1da177e4
LT
366
367 /*
368 * (This works even if the APIC is not enabled.)
369 */
370 phys_id = GET_APIC_ID(apic_read(APIC_ID));
371 cpuid = smp_processor_id();
372 if (cpu_isset(cpuid, cpu_callin_map)) {
373 panic("smp_callin: phys CPU#%d, CPU#%d already present??\n",
374 phys_id, cpuid);
375 }
376 Dprintk("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
377
378 /*
379 * STARTUP IPIs are fragile beasts as they might sometimes
380 * trigger some glue motherboard logic. Complete APIC bus
381 * silence for 1 second, this overestimates the time the
382 * boot CPU is spending to send the up to 2 STARTUP IPIs
383 * by a factor of two. This should be enough.
384 */
385
386 /*
387 * Waiting 2s total for startup (udelay is not yet working)
388 */
389 timeout = jiffies + 2*HZ;
390 while (time_before(jiffies, timeout)) {
391 /*
392 * Has the boot CPU finished it's STARTUP sequence?
393 */
394 if (cpu_isset(cpuid, cpu_callout_map))
395 break;
a8ab26fe 396 cpu_relax();
1da177e4
LT
397 }
398
399 if (!time_before(jiffies, timeout)) {
400 panic("smp_callin: CPU%d started up but did not get a callout!\n",
401 cpuid);
402 }
403
404 /*
405 * the boot CPU has finished the init stage and is spinning
406 * on callin_map until we finish. We are free to set up this
407 * CPU, first the APIC. (this is probably redundant on most
408 * boards)
409 */
410
411 Dprintk("CALLIN, before setup_local_APIC().\n");
412 setup_local_APIC();
413
1da177e4
LT
414 /*
415 * Get our bogomips.
416 */
417 calibrate_delay();
418 Dprintk("Stack at about %p\n",&cpuid);
419
420 disable_APIC_timer();
421
422 /*
423 * Save our processor parameters
424 */
425 smp_store_cpu_info(cpuid);
426
1da177e4
LT
427 /*
428 * Allow the master to continue.
429 */
430 cpu_set(cpuid, cpu_callin_map);
1da177e4
LT
431}
432
cb0cd8d4
AR
433static inline void set_cpu_sibling_map(int cpu)
434{
435 int i;
436
437 if (smp_num_siblings > 1) {
438 for_each_cpu(i) {
439 if (cpu_core_id[cpu] == cpu_core_id[i]) {
440 cpu_set(i, cpu_sibling_map[cpu]);
441 cpu_set(cpu, cpu_sibling_map[i]);
442 }
443 }
444 } else {
445 cpu_set(cpu, cpu_sibling_map[cpu]);
446 }
447
448 if (current_cpu_data.x86_num_cores > 1) {
449 for_each_cpu(i) {
450 if (phys_proc_id[cpu] == phys_proc_id[i]) {
451 cpu_set(i, cpu_core_map[cpu]);
452 cpu_set(cpu, cpu_core_map[i]);
453 }
454 }
455 } else {
456 cpu_core_map[cpu] = cpu_sibling_map[cpu];
457 }
458}
459
1da177e4 460/*
a8ab26fe 461 * Setup code on secondary processor (after comming out of the trampoline)
1da177e4 462 */
a8ab26fe 463void __cpuinit start_secondary(void)
1da177e4
LT
464{
465 /*
466 * Dont put anything before smp_callin(), SMP
467 * booting is too fragile that we want to limit the
468 * things done here to the most necessary things.
469 */
470 cpu_init();
471 smp_callin();
472
473 /* otherwise gcc will move up the smp_processor_id before the cpu_init */
474 barrier();
475
1da177e4
LT
476 Dprintk("cpu %d: setting up apic clock\n", smp_processor_id());
477 setup_secondary_APIC_clock();
478
a8ab26fe 479 Dprintk("cpu %d: enabling apic timer\n", smp_processor_id());
1da177e4
LT
480
481 if (nmi_watchdog == NMI_IO_APIC) {
482 disable_8259A_irq(0);
483 enable_NMI_through_LVT0(NULL);
484 enable_8259A_irq(0);
485 }
486
a8ab26fe 487 enable_APIC_timer();
1da177e4 488
cb0cd8d4
AR
489 /*
490 * The sibling maps must be set before turing the online map on for
491 * this cpu
492 */
493 set_cpu_sibling_map(smp_processor_id());
494
1eecd73c
AK
495 /*
496 * Wait for TSC sync to not schedule things before.
497 * We still process interrupts, which could see an inconsistent
498 * time in that window unfortunately.
499 * Do this here because TSC sync has global unprotected state.
500 */
501 tsc_sync_wait();
502
884d9e40
AR
503 /*
504 * We need to hold call_lock, so there is no inconsistency
505 * between the time smp_call_function() determines number of
506 * IPI receipients, and the time when the determination is made
507 * for which cpus receive the IPI in genapic_flat.c. Holding this
508 * lock helps us to not include this cpu in a currently in progress
509 * smp_call_function().
510 */
511 lock_ipi_call_lock();
512
1da177e4 513 /*
a8ab26fe 514 * Allow the master to continue.
1da177e4 515 */
1da177e4 516 cpu_set(smp_processor_id(), cpu_online_map);
884d9e40
AR
517 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
518 unlock_ipi_call_lock();
519
1da177e4
LT
520 cpu_idle();
521}
522
a8ab26fe 523extern volatile unsigned long init_rsp;
1da177e4
LT
524extern void (*initial_code)(void);
525
44456d37 526#ifdef APIC_DEBUG
a8ab26fe 527static void inquire_remote_apic(int apicid)
1da177e4
LT
528{
529 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
530 char *names[] = { "ID", "VERSION", "SPIV" };
531 int timeout, status;
532
533 printk(KERN_INFO "Inquiring remote APIC #%d...\n", apicid);
534
535 for (i = 0; i < sizeof(regs) / sizeof(*regs); i++) {
536 printk("... APIC #%d %s: ", apicid, names[i]);
537
538 /*
539 * Wait for idle.
540 */
541 apic_wait_icr_idle();
542
c1507eb2
AK
543 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(apicid));
544 apic_write(APIC_ICR, APIC_DM_REMRD | regs[i]);
1da177e4
LT
545
546 timeout = 0;
547 do {
548 udelay(100);
549 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
550 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
551
552 switch (status) {
553 case APIC_ICR_RR_VALID:
554 status = apic_read(APIC_RRR);
555 printk("%08x\n", status);
556 break;
557 default:
558 printk("failed\n");
559 }
560 }
561}
562#endif
563
a8ab26fe
AK
564/*
565 * Kick the secondary to wake up.
566 */
567static int __cpuinit wakeup_secondary_via_INIT(int phys_apicid, unsigned int start_rip)
1da177e4
LT
568{
569 unsigned long send_status = 0, accept_status = 0;
570 int maxlvt, timeout, num_starts, j;
571
572 Dprintk("Asserting INIT.\n");
573
574 /*
575 * Turn INIT on target chip
576 */
c1507eb2 577 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
578
579 /*
580 * Send IPI
581 */
c1507eb2 582 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_INT_ASSERT
1da177e4
LT
583 | APIC_DM_INIT);
584
585 Dprintk("Waiting for send to finish...\n");
586 timeout = 0;
587 do {
588 Dprintk("+");
589 udelay(100);
590 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
591 } while (send_status && (timeout++ < 1000));
592
593 mdelay(10);
594
595 Dprintk("Deasserting INIT.\n");
596
597 /* Target chip */
c1507eb2 598 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
599
600 /* Send IPI */
c1507eb2 601 apic_write(APIC_ICR, APIC_INT_LEVELTRIG | APIC_DM_INIT);
1da177e4
LT
602
603 Dprintk("Waiting for send to finish...\n");
604 timeout = 0;
605 do {
606 Dprintk("+");
607 udelay(100);
608 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
609 } while (send_status && (timeout++ < 1000));
610
611 atomic_set(&init_deasserted, 1);
612
5a40b7c2 613 num_starts = 2;
1da177e4
LT
614
615 /*
616 * Run STARTUP IPI loop.
617 */
618 Dprintk("#startup loops: %d.\n", num_starts);
619
620 maxlvt = get_maxlvt();
621
622 for (j = 1; j <= num_starts; j++) {
623 Dprintk("Sending STARTUP #%d.\n",j);
624 apic_read_around(APIC_SPIV);
625 apic_write(APIC_ESR, 0);
626 apic_read(APIC_ESR);
627 Dprintk("After apic_write.\n");
628
629 /*
630 * STARTUP IPI
631 */
632
633 /* Target chip */
c1507eb2 634 apic_write(APIC_ICR2, SET_APIC_DEST_FIELD(phys_apicid));
1da177e4
LT
635
636 /* Boot on the stack */
637 /* Kick the second */
c1507eb2 638 apic_write(APIC_ICR, APIC_DM_STARTUP | (start_rip >> 12));
1da177e4
LT
639
640 /*
641 * Give the other CPU some time to accept the IPI.
642 */
643 udelay(300);
644
645 Dprintk("Startup point 1.\n");
646
647 Dprintk("Waiting for send to finish...\n");
648 timeout = 0;
649 do {
650 Dprintk("+");
651 udelay(100);
652 send_status = apic_read(APIC_ICR) & APIC_ICR_BUSY;
653 } while (send_status && (timeout++ < 1000));
654
655 /*
656 * Give the other CPU some time to accept the IPI.
657 */
658 udelay(200);
659 /*
660 * Due to the Pentium erratum 3AP.
661 */
662 if (maxlvt > 3) {
663 apic_read_around(APIC_SPIV);
664 apic_write(APIC_ESR, 0);
665 }
666 accept_status = (apic_read(APIC_ESR) & 0xEF);
667 if (send_status || accept_status)
668 break;
669 }
670 Dprintk("After Startup.\n");
671
672 if (send_status)
673 printk(KERN_ERR "APIC never delivered???\n");
674 if (accept_status)
675 printk(KERN_ERR "APIC delivery error (%lx).\n", accept_status);
676
677 return (send_status | accept_status);
678}
679
76e4f660
AR
680struct create_idle {
681 struct task_struct *idle;
682 struct completion done;
683 int cpu;
684};
685
686void do_fork_idle(void *_c_idle)
687{
688 struct create_idle *c_idle = _c_idle;
689
690 c_idle->idle = fork_idle(c_idle->cpu);
691 complete(&c_idle->done);
692}
693
a8ab26fe
AK
694/*
695 * Boot one CPU.
696 */
697static int __cpuinit do_boot_cpu(int cpu, int apicid)
1da177e4 698{
1da177e4 699 unsigned long boot_error;
a8ab26fe 700 int timeout;
1da177e4 701 unsigned long start_rip;
76e4f660
AR
702 struct create_idle c_idle = {
703 .cpu = cpu,
704 .done = COMPLETION_INITIALIZER(c_idle.done),
705 };
706 DECLARE_WORK(work, do_fork_idle, &c_idle);
707
708 c_idle.idle = get_idle_for_cpu(cpu);
709
710 if (c_idle.idle) {
711 c_idle.idle->thread.rsp = (unsigned long) (((struct pt_regs *)
712 (THREAD_SIZE + (unsigned long) c_idle.idle->thread_info)) - 1);
713 init_idle(c_idle.idle, cpu);
714 goto do_rest;
715 }
716
1da177e4 717 /*
76e4f660
AR
718 * During cold boot process, keventd thread is not spun up yet.
719 * When we do cpu hot-add, we create idle threads on the fly, we should
720 * not acquire any attributes from the calling context. Hence the clean
721 * way to create kernel_threads() is to do that from keventd().
722 * We do the current_is_keventd() due to the fact that ACPI notifier
723 * was also queuing to keventd() and when the caller is already running
724 * in context of keventd(), we would end up with locking up the keventd
725 * thread.
1da177e4 726 */
76e4f660
AR
727 if (!keventd_up() || current_is_keventd())
728 work.func(work.data);
729 else {
730 schedule_work(&work);
731 wait_for_completion(&c_idle.done);
732 }
733
734 if (IS_ERR(c_idle.idle)) {
a8ab26fe 735 printk("failed fork for CPU %d\n", cpu);
76e4f660 736 return PTR_ERR(c_idle.idle);
a8ab26fe 737 }
1da177e4 738
76e4f660
AR
739 set_idle_for_cpu(cpu, c_idle.idle);
740
741do_rest:
742
743 cpu_pda[cpu].pcurrent = c_idle.idle;
1da177e4
LT
744
745 start_rip = setup_trampoline();
746
76e4f660 747 init_rsp = c_idle.idle->thread.rsp;
1da177e4
LT
748 per_cpu(init_tss,cpu).rsp0 = init_rsp;
749 initial_code = start_secondary;
76e4f660 750 clear_ti_thread_flag(c_idle.idle->thread_info, TIF_FORK);
1da177e4 751
de04f322
AK
752 printk(KERN_INFO "Booting processor %d/%d APIC 0x%x\n", cpu,
753 cpus_weight(cpu_present_map),
754 apicid);
1da177e4
LT
755
756 /*
757 * This grunge runs the startup process for
758 * the targeted processor.
759 */
760
761 atomic_set(&init_deasserted, 0);
762
763 Dprintk("Setting warm reset code and vector.\n");
764
765 CMOS_WRITE(0xa, 0xf);
766 local_flush_tlb();
767 Dprintk("1.\n");
768 *((volatile unsigned short *) phys_to_virt(0x469)) = start_rip >> 4;
769 Dprintk("2.\n");
770 *((volatile unsigned short *) phys_to_virt(0x467)) = start_rip & 0xf;
771 Dprintk("3.\n");
772
773 /*
774 * Be paranoid about clearing APIC errors.
775 */
776 if (APIC_INTEGRATED(apic_version[apicid])) {
777 apic_read_around(APIC_SPIV);
778 apic_write(APIC_ESR, 0);
779 apic_read(APIC_ESR);
780 }
781
782 /*
783 * Status is now clean
784 */
785 boot_error = 0;
786
787 /*
788 * Starting actual IPI sequence...
789 */
a8ab26fe 790 boot_error = wakeup_secondary_via_INIT(apicid, start_rip);
1da177e4
LT
791
792 if (!boot_error) {
793 /*
794 * allow APs to start initializing.
795 */
796 Dprintk("Before Callout %d.\n", cpu);
797 cpu_set(cpu, cpu_callout_map);
798 Dprintk("After Callout %d.\n", cpu);
799
800 /*
801 * Wait 5s total for a response
802 */
803 for (timeout = 0; timeout < 50000; timeout++) {
804 if (cpu_isset(cpu, cpu_callin_map))
805 break; /* It has booted */
806 udelay(100);
807 }
808
809 if (cpu_isset(cpu, cpu_callin_map)) {
810 /* number CPUs logically, starting from 1 (BSP is 0) */
1da177e4
LT
811 Dprintk("CPU has booted.\n");
812 } else {
813 boot_error = 1;
814 if (*((volatile unsigned char *)phys_to_virt(SMP_TRAMPOLINE_BASE))
815 == 0xA5)
816 /* trampoline started but...? */
817 printk("Stuck ??\n");
818 else
819 /* trampoline code not run */
820 printk("Not responding.\n");
44456d37 821#ifdef APIC_DEBUG
1da177e4
LT
822 inquire_remote_apic(apicid);
823#endif
824 }
825 }
826 if (boot_error) {
827 cpu_clear(cpu, cpu_callout_map); /* was set here (do_boot_cpu()) */
828 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
a8ab26fe
AK
829 cpu_clear(cpu, cpu_present_map);
830 cpu_clear(cpu, cpu_possible_map);
1da177e4
LT
831 x86_cpu_to_apicid[cpu] = BAD_APICID;
832 x86_cpu_to_log_apicid[cpu] = BAD_APICID;
a8ab26fe 833 return -EIO;
1da177e4 834 }
a8ab26fe
AK
835
836 return 0;
1da177e4
LT
837}
838
a8ab26fe
AK
839cycles_t cacheflush_time;
840unsigned long cache_decay_ticks;
841
1da177e4 842/*
a8ab26fe 843 * Cleanup possible dangling ends...
1da177e4 844 */
a8ab26fe 845static __cpuinit void smp_cleanup_boot(void)
1da177e4 846{
a8ab26fe
AK
847 /*
848 * Paranoid: Set warm reset code and vector here back
849 * to default values.
850 */
851 CMOS_WRITE(0, 0xf);
1da177e4 852
a8ab26fe
AK
853 /*
854 * Reset trampoline flag
855 */
856 *((volatile int *) phys_to_virt(0x467)) = 0;
1da177e4 857
a8ab26fe 858#ifndef CONFIG_HOTPLUG_CPU
1da177e4 859 /*
a8ab26fe
AK
860 * Free pages reserved for SMP bootup.
861 * When you add hotplug CPU support later remove this
862 * Note there is more work to be done for later CPU bootup.
1da177e4 863 */
1da177e4 864
a8ab26fe
AK
865 free_page((unsigned long) __va(PAGE_SIZE));
866 free_page((unsigned long) __va(SMP_TRAMPOLINE_BASE));
867#endif
868}
869
870/*
871 * Fall back to non SMP mode after errors.
872 *
873 * RED-PEN audit/test this more. I bet there is more state messed up here.
874 */
e6982c67 875static __init void disable_smp(void)
a8ab26fe
AK
876{
877 cpu_present_map = cpumask_of_cpu(0);
878 cpu_possible_map = cpumask_of_cpu(0);
879 if (smp_found_config)
880 phys_cpu_present_map = physid_mask_of_physid(boot_cpu_id);
881 else
882 phys_cpu_present_map = physid_mask_of_physid(0);
883 cpu_set(0, cpu_sibling_map[0]);
884 cpu_set(0, cpu_core_map[0]);
885}
886
61b1b2d0
AK
887#ifdef CONFIG_HOTPLUG_CPU
888/*
889 * cpu_possible_map should be static, it cannot change as cpu's
890 * are onlined, or offlined. The reason is per-cpu data-structures
891 * are allocated by some modules at init time, and dont expect to
892 * do this dynamically on cpu arrival/departure.
893 * cpu_present_map on the other hand can change dynamically.
894 * In case when cpu_hotplug is not compiled, then we resort to current
895 * behaviour, which is cpu_possible == cpu_present.
896 * If cpu-hotplug is supported, then we need to preallocate for all
897 * those NR_CPUS, hence cpu_possible_map represents entire NR_CPUS range.
898 * - Ashok Raj
899 */
900static void prefill_possible_map(void)
901{
902 int i;
903 for (i = 0; i < NR_CPUS; i++)
904 cpu_set(i, cpu_possible_map);
905}
906#endif
907
a8ab26fe
AK
908/*
909 * Various sanity checks.
910 */
e6982c67 911static int __init smp_sanity_check(unsigned max_cpus)
a8ab26fe 912{
1da177e4
LT
913 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
914 printk("weird, boot CPU (#%d) not listed by the BIOS.\n",
915 hard_smp_processor_id());
916 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
917 }
918
919 /*
920 * If we couldn't find an SMP configuration at boot time,
921 * get out of here now!
922 */
923 if (!smp_found_config) {
924 printk(KERN_NOTICE "SMP motherboard not detected.\n");
a8ab26fe 925 disable_smp();
1da177e4
LT
926 if (APIC_init_uniprocessor())
927 printk(KERN_NOTICE "Local APIC not detected."
928 " Using dummy APIC emulation.\n");
a8ab26fe 929 return -1;
1da177e4
LT
930 }
931
932 /*
933 * Should not be necessary because the MP table should list the boot
934 * CPU too, but we do it for the sake of robustness anyway.
935 */
936 if (!physid_isset(boot_cpu_id, phys_cpu_present_map)) {
937 printk(KERN_NOTICE "weird, boot CPU (#%d) not listed by the BIOS.\n",
938 boot_cpu_id);
939 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
940 }
941
942 /*
943 * If we couldn't find a local APIC, then get out of here now!
944 */
945 if (APIC_INTEGRATED(apic_version[boot_cpu_id]) && !cpu_has_apic) {
946 printk(KERN_ERR "BIOS bug, local APIC #%d not detected!...\n",
947 boot_cpu_id);
948 printk(KERN_ERR "... forcing use of dummy APIC emulation. (tell your hw vendor)\n");
a8ab26fe
AK
949 nr_ioapics = 0;
950 return -1;
1da177e4
LT
951 }
952
1da177e4
LT
953 /*
954 * If SMP should be disabled, then really disable it!
955 */
956 if (!max_cpus) {
1da177e4 957 printk(KERN_INFO "SMP mode deactivated, forcing use of dummy APIC emulation.\n");
a8ab26fe
AK
958 nr_ioapics = 0;
959 return -1;
1da177e4
LT
960 }
961
a8ab26fe
AK
962 return 0;
963}
1da177e4 964
a8ab26fe
AK
965/*
966 * Prepare for SMP bootup. The MP table or ACPI has been read
967 * earlier. Just do some sanity checking here and enable APIC mode.
968 */
e6982c67 969void __init smp_prepare_cpus(unsigned int max_cpus)
a8ab26fe 970{
a8ab26fe
AK
971 nmi_watchdog_default();
972 current_cpu_data = boot_cpu_data;
973 current_thread_info()->cpu = 0; /* needed? */
1da177e4 974
61b1b2d0
AK
975#ifdef CONFIG_HOTPLUG_CPU
976 prefill_possible_map();
977#endif
1da177e4 978
a8ab26fe
AK
979 if (smp_sanity_check(max_cpus) < 0) {
980 printk(KERN_INFO "SMP disabled\n");
981 disable_smp();
982 return;
1da177e4
LT
983 }
984
a8ab26fe 985
1da177e4 986 /*
a8ab26fe 987 * Switch from PIC to APIC mode.
1da177e4 988 */
a8ab26fe
AK
989 connect_bsp_APIC();
990 setup_local_APIC();
1da177e4 991
a8ab26fe
AK
992 if (GET_APIC_ID(apic_read(APIC_ID)) != boot_cpu_id) {
993 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
994 GET_APIC_ID(apic_read(APIC_ID)), boot_cpu_id);
995 /* Or can we switch back to PIC here? */
1da177e4 996 }
1da177e4
LT
997
998 /*
a8ab26fe 999 * Now start the IO-APICs
1da177e4
LT
1000 */
1001 if (!skip_ioapic_setup && nr_ioapics)
1002 setup_IO_APIC();
1003 else
1004 nr_ioapics = 0;
1005
1da177e4 1006 /*
a8ab26fe 1007 * Set up local APIC timer on boot CPU.
1da177e4 1008 */
1da177e4 1009
a8ab26fe 1010 setup_boot_APIC_clock();
1da177e4
LT
1011}
1012
a8ab26fe
AK
1013/*
1014 * Early setup to make printk work.
1015 */
1016void __init smp_prepare_boot_cpu(void)
1da177e4 1017{
a8ab26fe
AK
1018 int me = smp_processor_id();
1019 cpu_set(me, cpu_online_map);
1020 cpu_set(me, cpu_callout_map);
cb0cd8d4
AR
1021 cpu_set(0, cpu_sibling_map[0]);
1022 cpu_set(0, cpu_core_map[0]);
884d9e40 1023 per_cpu(cpu_state, me) = CPU_ONLINE;
1da177e4
LT
1024}
1025
a8ab26fe
AK
1026/*
1027 * Entry point to boot a CPU.
a8ab26fe
AK
1028 */
1029int __cpuinit __cpu_up(unsigned int cpu)
1da177e4 1030{
a8ab26fe
AK
1031 int err;
1032 int apicid = cpu_present_to_apicid(cpu);
1da177e4 1033
a8ab26fe 1034 WARN_ON(irqs_disabled());
1da177e4 1035
a8ab26fe
AK
1036 Dprintk("++++++++++++++++++++=_---CPU UP %u\n", cpu);
1037
1038 if (apicid == BAD_APICID || apicid == boot_cpu_id ||
1039 !physid_isset(apicid, phys_cpu_present_map)) {
1040 printk("__cpu_up: bad cpu %d\n", cpu);
1041 return -EINVAL;
1042 }
a8ab26fe 1043
76e4f660
AR
1044 /*
1045 * Already booted CPU?
1046 */
1047 if (cpu_isset(cpu, cpu_callin_map)) {
1048 Dprintk("do_boot_cpu %d Already started\n", cpu);
1049 return -ENOSYS;
1050 }
1051
884d9e40 1052 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
a8ab26fe
AK
1053 /* Boot it! */
1054 err = do_boot_cpu(cpu, apicid);
1055 if (err < 0) {
a8ab26fe
AK
1056 Dprintk("do_boot_cpu failed %d\n", err);
1057 return err;
1da177e4 1058 }
a8ab26fe 1059
1da177e4
LT
1060 /* Unleash the CPU! */
1061 Dprintk("waiting for cpu %d\n", cpu);
1062
1da177e4 1063 while (!cpu_isset(cpu, cpu_online_map))
a8ab26fe 1064 cpu_relax();
76e4f660
AR
1065 err = 0;
1066
1067 return err;
1da177e4
LT
1068}
1069
a8ab26fe
AK
1070/*
1071 * Finish the SMP boot.
1072 */
e6982c67 1073void __init smp_cpus_done(unsigned int max_cpus)
1da177e4 1074{
76e4f660 1075#ifndef CONFIG_HOTPLUG_CPU
a8ab26fe 1076 zap_low_mappings();
76e4f660 1077#endif
a8ab26fe
AK
1078 smp_cleanup_boot();
1079
1da177e4
LT
1080#ifdef CONFIG_X86_IO_APIC
1081 setup_ioapic_dest();
1082#endif
1da177e4 1083
a8ab26fe 1084 time_init_gtod();
75152114
AK
1085
1086 check_nmi_watchdog();
a8ab26fe 1087}
76e4f660
AR
1088
1089#ifdef CONFIG_HOTPLUG_CPU
1090
cb0cd8d4 1091static void remove_siblinginfo(int cpu)
76e4f660
AR
1092{
1093 int sibling;
1094
1095 for_each_cpu_mask(sibling, cpu_sibling_map[cpu])
1096 cpu_clear(cpu, cpu_sibling_map[sibling]);
1097 for_each_cpu_mask(sibling, cpu_core_map[cpu])
1098 cpu_clear(cpu, cpu_core_map[sibling]);
1099 cpus_clear(cpu_sibling_map[cpu]);
1100 cpus_clear(cpu_core_map[cpu]);
1101 phys_proc_id[cpu] = BAD_APICID;
1102 cpu_core_id[cpu] = BAD_APICID;
1103}
1104
1105void remove_cpu_from_maps(void)
1106{
1107 int cpu = smp_processor_id();
1108
1109 cpu_clear(cpu, cpu_callout_map);
1110 cpu_clear(cpu, cpu_callin_map);
1111 clear_bit(cpu, &cpu_initialized); /* was set by cpu_init() */
1112}
1113
1114int __cpu_disable(void)
1115{
1116 int cpu = smp_processor_id();
1117
1118 /*
1119 * Perhaps use cpufreq to drop frequency, but that could go
1120 * into generic code.
1121 *
1122 * We won't take down the boot processor on i386 due to some
1123 * interrupts only being able to be serviced by the BSP.
1124 * Especially so if we're not using an IOAPIC -zwane
1125 */
1126 if (cpu == 0)
1127 return -EBUSY;
1128
1129 disable_APIC_timer();
1130
1131 /*
1132 * HACK:
1133 * Allow any queued timer interrupts to get serviced
1134 * This is only a temporary solution until we cleanup
1135 * fixup_irqs as we do for IA64.
1136 */
1137 local_irq_enable();
1138 mdelay(1);
1139
1140 local_irq_disable();
1141 remove_siblinginfo(cpu);
1142
1143 /* It's now safe to remove this processor from the online map */
1144 cpu_clear(cpu, cpu_online_map);
1145 remove_cpu_from_maps();
1146 fixup_irqs(cpu_online_map);
1147 return 0;
1148}
1149
1150void __cpu_die(unsigned int cpu)
1151{
1152 /* We don't do anything here: idle task is faking death itself. */
1153 unsigned int i;
1154
1155 for (i = 0; i < 10; i++) {
1156 /* They ack this in play_dead by setting CPU_DEAD */
884d9e40
AR
1157 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1158 printk ("CPU %d is now offline\n", cpu);
76e4f660 1159 return;
884d9e40 1160 }
ef6e5253 1161 msleep(100);
76e4f660
AR
1162 }
1163 printk(KERN_ERR "CPU %u didn't die...\n", cpu);
1164}
1165
1166#else /* ... !CONFIG_HOTPLUG_CPU */
1167
1168int __cpu_disable(void)
1169{
1170 return -ENOSYS;
1171}
1172
1173void __cpu_die(unsigned int cpu)
1174{
1175 /* We said "no" in __cpu_disable */
1176 BUG();
1177}
1178#endif /* CONFIG_HOTPLUG_CPU */