[PATCH] x86-64: Extend bzImage protocol for relocatable bzImage
[linux-2.6-block.git] / arch / x86_64 / boot / setup.S
CommitLineData
1da177e4
LT
1/*
2 * setup.S Copyright (C) 1991, 1992 Linus Torvalds
3 *
4 * setup.s is responsible for getting the system data from the BIOS,
5 * and putting them into the appropriate places in system memory.
6 * both setup.s and system has been loaded by the bootblock.
7 *
8 * This code asks the bios for memory/disk/other parameters, and
9 * puts them in a "safe" place: 0x90000-0x901FF, ie where the
10 * boot-block used to be. It is then up to the protected mode
11 * system to read them from there before the area is overwritten
12 * for buffer-blocks.
13 *
14 * Move PS/2 aux init code to psaux.c
15 * (troyer@saifr00.cfsat.Honeywell.COM) 03Oct92
16 *
17 * some changes and additional features by Christoph Niemann,
18 * March 1993/June 1994 (Christoph.Niemann@linux.org)
19 *
20 * add APM BIOS checking by Stephen Rothwell, May 1994
21 * (sfr@canb.auug.org.au)
22 *
23 * High load stuff, initrd support and position independency
24 * by Hans Lermen & Werner Almesberger, February 1996
25 * <lermen@elserv.ffm.fgan.de>, <almesber@lrc.epfl.ch>
26 *
27 * Video handling moved to video.S by Martin Mares, March 1996
28 * <mj@k332.feld.cvut.cz>
29 *
30 * Extended memory detection scheme retwiddled by orc@pell.chi.il.us (david
31 * parsons) to avoid loadlin confusion, July 1997
32 *
33 * Transcribed from Intel (as86) -> AT&T (gas) by Chris Noe, May 1999.
34 * <stiker@northlink.com>
35 *
f4549448 36 * Fix to work around buggy BIOSes which don't use carry bit correctly
1da177e4
LT
37 * and/or report extended memory in CX/DX for e801h memory size detection
38 * call. As a result the kernel got wrong figures. The int15/e801h docs
39 * from Ralf Brown interrupt list seem to indicate AX/BX should be used
40 * anyway. So to avoid breaking many machines (presumably there was a reason
41 * to orginally use CX/DX instead of AX/BX), we do a kludge to see
42 * if CX/DX have been changed in the e801 call and if so use AX/BX .
43 * Michael Miller, April 2001 <michaelm@mjmm.org>
44 *
45 * Added long mode checking and SSE force. March 2003, Andi Kleen.
46 */
47
1da177e4 48#include <asm/segment.h>
63104eec 49#include <linux/utsrelease.h>
1da177e4
LT
50#include <linux/compile.h>
51#include <asm/boot.h>
52#include <asm/e820.h>
53#include <asm/page.h>
54
55/* Signature words to ensure LILO loaded us right */
56#define SIG1 0xAA55
57#define SIG2 0x5A5A
58
59INITSEG = DEF_INITSEG # 0x9000, we move boot here, out of the way
60SYSSEG = DEF_SYSSEG # 0x1000, system loaded at 0x10000 (65536).
61SETUPSEG = DEF_SETUPSEG # 0x9020, this is the current segment
62 # ... and the former contents of CS
63
64DELTA_INITSEG = SETUPSEG - INITSEG # 0x0020
65
66.code16
67.globl begtext, begdata, begbss, endtext, enddata, endbss
68
69.text
70begtext:
71.data
72begdata:
73.bss
74begbss:
75.text
76
77start:
78 jmp trampoline
79
80# This is the setup header, and it must start at %cs:2 (old 0x9020:2)
81
82 .ascii "HdrS" # header signature
8035d3ea 83 .word 0x0205 # header version number (>= 0x0105)
1da177e4
LT
84 # or else old loadlin-1.5 will fail)
85realmode_swtch: .word 0, 0 # default_switch, SETUPSEG
86start_sys_seg: .word SYSSEG
87 .word kernel_version # pointing to kernel version string
88 # above section of header is compatible
89 # with loadlin-1.5 (header v1.5). Don't
90 # change it.
91
92type_of_loader: .byte 0 # = 0, old one (LILO, Loadlin,
93 # Bootlin, SYSLX, bootsect...)
94 # See Documentation/i386/boot.txt for
95 # assigned ids
96
97# flags, unused bits must be zero (RFU) bit within loadflags
98loadflags:
99LOADED_HIGH = 1 # If set, the kernel is loaded high
100CAN_USE_HEAP = 0x80 # If set, the loader also has set
101 # heap_end_ptr to tell how much
102 # space behind setup.S can be used for
103 # heap purposes.
104 # Only the loader knows what is free
105#ifndef __BIG_KERNEL__
106 .byte 0
107#else
108 .byte LOADED_HIGH
109#endif
110
111setup_move_size: .word 0x8000 # size to move, when setup is not
112 # loaded at 0x90000. We will move setup
113 # to 0x90000 then just before jumping
114 # into the kernel. However, only the
115 # loader knows how much data behind
116 # us also needs to be loaded.
117
118code32_start: # here loaders can put a different
119 # start address for 32-bit code.
120#ifndef __BIG_KERNEL__
121 .long 0x1000 # 0x1000 = default for zImage
122#else
123 .long 0x100000 # 0x100000 = default for big kernel
124#endif
125
126ramdisk_image: .long 0 # address of loaded ramdisk image
127 # Here the loader puts the 32-bit
128 # address where it loaded the image.
129 # This only will be read by the kernel.
130
131ramdisk_size: .long 0 # its size in bytes
132
133bootsect_kludge:
134 .long 0 # obsolete
135
136heap_end_ptr: .word modelist+1024 # (Header version 0x0201 or later)
137 # space from here (exclusive) down to
138 # end of setup code can be used by setup
139 # for local heap purposes.
140
141pad1: .word 0
142cmd_line_ptr: .long 0 # (Header version 0x0202 or later)
143 # If nonzero, a 32-bit pointer
144 # to the kernel command line.
145 # The command line should be
146 # located between the start of
147 # setup and the end of low
148 # memory (0xa0000), or it may
149 # get overwritten before it
150 # gets read. If this field is
151 # used, there is no longer
152 # anything magical about the
153 # 0x90000 segment; the setup
154 # can be located anywhere in
155 # low memory 0x10000 or higher.
156
157ramdisk_max: .long 0xffffffff
8035d3ea
VG
158kernel_alignment: .long 0x200000 # physical addr alignment required for
159 # protected mode relocatable kernel
160#ifdef CONFIG_RELOCATABLE
161relocatable_kernel: .byte 1
162#else
163relocatable_kernel: .byte 0
164#endif
165pad2: .byte 0
166pad3: .word 0
167
1da177e4
LT
168trampoline: call start_of_setup
169 .align 16
170 # The offset at this point is 0x240
f9ba7053 171 .space (0xeff-0x240+1) # E820 & EDD space (ending at 0xeff)
1da177e4
LT
172# End of setup header #####################################################
173
174start_of_setup:
175# Bootlin depends on this being done early
176 movw $0x01500, %ax
177 movb $0x81, %dl
178 int $0x13
179
180#ifdef SAFE_RESET_DISK_CONTROLLER
181# Reset the disk controller.
182 movw $0x0000, %ax
183 movb $0x80, %dl
184 int $0x13
185#endif
186
187# Set %ds = %cs, we know that SETUPSEG = %cs at this point
188 movw %cs, %ax # aka SETUPSEG
189 movw %ax, %ds
190# Check signature at end of setup
191 cmpw $SIG1, setup_sig1
192 jne bad_sig
193
194 cmpw $SIG2, setup_sig2
195 jne bad_sig
196
197 jmp good_sig1
198
199# Routine to print asciiz string at ds:si
200prtstr:
201 lodsb
202 andb %al, %al
203 jz fin
204
205 call prtchr
206 jmp prtstr
207
208fin: ret
209
210# Space printing
211prtsp2: call prtspc # Print double space
212prtspc: movb $0x20, %al # Print single space (note: fall-thru)
213
214prtchr:
215 pushw %ax
216 pushw %cx
217 movw $0007,%bx
218 movw $0x01, %cx
219 movb $0x0e, %ah
220 int $0x10
221 popw %cx
222 popw %ax
223 ret
224
225beep: movb $0x07, %al
226 jmp prtchr
227
228no_sig_mess: .string "No setup signature found ..."
229
230good_sig1:
231 jmp good_sig
232
233# We now have to find the rest of the setup code/data
234bad_sig:
235 movw %cs, %ax # SETUPSEG
236 subw $DELTA_INITSEG, %ax # INITSEG
237 movw %ax, %ds
238 xorb %bh, %bh
239 movb (497), %bl # get setup sect from bootsect
240 subw $4, %bx # LILO loads 4 sectors of setup
241 shlw $8, %bx # convert to words (1sect=2^8 words)
242 movw %bx, %cx
243 shrw $3, %bx # convert to segment
244 addw $SYSSEG, %bx
245 movw %bx, %cs:start_sys_seg
246# Move rest of setup code/data to here
247 movw $2048, %di # four sectors loaded by LILO
248 subw %si, %si
249 movw %cs, %ax # aka SETUPSEG
250 movw %ax, %es
251 movw $SYSSEG, %ax
252 movw %ax, %ds
253 rep
254 movsw
255 movw %cs, %ax # aka SETUPSEG
256 movw %ax, %ds
257 cmpw $SIG1, setup_sig1
258 jne no_sig
259
260 cmpw $SIG2, setup_sig2
261 jne no_sig
262
263 jmp good_sig
264
265no_sig:
266 lea no_sig_mess, %si
267 call prtstr
268
269no_sig_loop:
270 jmp no_sig_loop
271
272good_sig:
273 movw %cs, %ax # aka SETUPSEG
274 subw $DELTA_INITSEG, %ax # aka INITSEG
275 movw %ax, %ds
276# Check if an old loader tries to load a big-kernel
277 testb $LOADED_HIGH, %cs:loadflags # Do we have a big kernel?
278 jz loader_ok # No, no danger for old loaders.
279
280 cmpb $0, %cs:type_of_loader # Do we have a loader that
281 # can deal with us?
282 jnz loader_ok # Yes, continue.
283
284 pushw %cs # No, we have an old loader,
285 popw %ds # die.
286 lea loader_panic_mess, %si
287 call prtstr
288
289 jmp no_sig_loop
290
291loader_panic_mess: .string "Wrong loader, giving up..."
292
293loader_ok:
294 /* check for long mode. */
295 /* we have to do this before the VESA setup, otherwise the user
296 can't see the error message. */
297
298 pushw %ds
299 movw %cs,%ax
300 movw %ax,%ds
301
302 /* minimum CPUID flags for x86-64 */
303 /* see http://www.x86-64.org/lists/discuss/msg02971.html */
304#define SSE_MASK ((1<<25)|(1<<26))
305#define REQUIRED_MASK1 ((1<<0)|(1<<3)|(1<<4)|(1<<5)|(1<<6)|(1<<8)|\
306 (1<<13)|(1<<15)|(1<<24))
307#define REQUIRED_MASK2 (1<<29)
308
309 pushfl /* standard way to check for cpuid */
310 popl %eax
311 movl %eax,%ebx
312 xorl $0x200000,%eax
313 pushl %eax
314 popfl
315 pushfl
316 popl %eax
317 cmpl %eax,%ebx
318 jz no_longmode /* cpu has no cpuid */
319 movl $0x0,%eax
320 cpuid
321 cmpl $0x1,%eax
322 jb no_longmode /* no cpuid 1 */
323 xor %di,%di
324 cmpl $0x68747541,%ebx /* AuthenticAMD */
325 jnz noamd
326 cmpl $0x69746e65,%edx
327 jnz noamd
328 cmpl $0x444d4163,%ecx
329 jnz noamd
330 mov $1,%di /* cpu is from AMD */
331noamd:
332 movl $0x1,%eax
333 cpuid
334 andl $REQUIRED_MASK1,%edx
335 xorl $REQUIRED_MASK1,%edx
336 jnz no_longmode
337 movl $0x80000000,%eax
338 cpuid
339 cmpl $0x80000001,%eax
340 jb no_longmode /* no extended cpuid */
341 movl $0x80000001,%eax
342 cpuid
343 andl $REQUIRED_MASK2,%edx
344 xorl $REQUIRED_MASK2,%edx
345 jnz no_longmode
346sse_test:
347 movl $1,%eax
348 cpuid
349 andl $SSE_MASK,%edx
350 cmpl $SSE_MASK,%edx
351 je sse_ok
352 test %di,%di
353 jz no_longmode /* only try to force SSE on AMD */
354 movl $0xc0010015,%ecx /* HWCR */
355 rdmsr
356 btr $15,%eax /* enable SSE */
357 wrmsr
358 xor %di,%di /* don't loop */
359 jmp sse_test /* try again */
360no_longmode:
361 call beep
362 lea long_mode_panic,%si
363 call prtstr
364no_longmode_loop:
365 jmp no_longmode_loop
366long_mode_panic:
367 .string "Your CPU does not support long mode. Use a 32bit distribution."
368 .byte 0
369
370sse_ok:
371 popw %ds
372
373# tell BIOS we want to go to long mode
374 movl $0xec00,%eax # declare target operating mode
375 movl $2,%ebx # long mode
376 int $0x15
377
378# Get memory size (extended mem, kB)
379
380 xorl %eax, %eax
381 movl %eax, (0x1e0)
382#ifndef STANDARD_MEMORY_BIOS_CALL
383 movb %al, (E820NR)
384# Try three different memory detection schemes. First, try
385# e820h, which lets us assemble a memory map, then try e801h,
386# which returns a 32-bit memory size, and finally 88h, which
387# returns 0-64m
388
389# method E820H:
390# the memory map from hell. e820h returns memory classified into
391# a whole bunch of different types, and allows memory holes and
392# everything. We scan through this memory map and build a list
393# of the first 32 memory areas, which we return at [E820MAP].
f4549448 394# This is documented at http://www.acpi.info/, in the ACPI 2.0 specification.
1da177e4
LT
395
396#define SMAP 0x534d4150
397
398meme820:
399 xorl %ebx, %ebx # continuation counter
400 movw $E820MAP, %di # point into the whitelist
401 # so we can have the bios
402 # directly write into it.
403
404jmpe820:
405 movl $0x0000e820, %eax # e820, upper word zeroed
406 movl $SMAP, %edx # ascii 'SMAP'
407 movl $20, %ecx # size of the e820rec
408 pushw %ds # data record.
409 popw %es
410 int $0x15 # make the call
411 jc bail820 # fall to e801 if it fails
412
413 cmpl $SMAP, %eax # check the return is `SMAP'
414 jne bail820 # fall to e801 if it fails
415
416# cmpl $1, 16(%di) # is this usable memory?
417# jne again820
418
419 # If this is usable memory, we save it by simply advancing %di by
420 # sizeof(e820rec).
421 #
422good820:
f9ba7053 423 movb (E820NR), %al # up to 128 entries
1da177e4 424 cmpb $E820MAX, %al
f9ba7053 425 jae bail820
1da177e4
LT
426
427 incb (E820NR)
428 movw %di, %ax
429 addw $20, %ax
430 movw %ax, %di
431again820:
432 cmpl $0, %ebx # check to see if
433 jne jmpe820 # %ebx is set to EOF
434bail820:
435
436
437# method E801H:
438# memory size is in 1k chunksizes, to avoid confusing loadlin.
439# we store the 0xe801 memory size in a completely different place,
440# because it will most likely be longer than 16 bits.
441# (use 1e0 because that's what Larry Augustine uses in his
442# alternative new memory detection scheme, and it's sensible
443# to write everything into the same place.)
444
445meme801:
446 stc # fix to work around buggy
f4549448 447 xorw %cx,%cx # BIOSes which don't clear/set
1da177e4
LT
448 xorw %dx,%dx # carry on pass/error of
449 # e801h memory size call
450 # or merely pass cx,dx though
451 # without changing them.
452 movw $0xe801, %ax
453 int $0x15
454 jc mem88
455
456 cmpw $0x0, %cx # Kludge to handle BIOSes
457 jne e801usecxdx # which report their extended
458 cmpw $0x0, %dx # memory in AX/BX rather than
459 jne e801usecxdx # CX/DX. The spec I have read
460 movw %ax, %cx # seems to indicate AX/BX
461 movw %bx, %dx # are more reasonable anyway...
462
463e801usecxdx:
464 andl $0xffff, %edx # clear sign extend
465 shll $6, %edx # and go from 64k to 1k chunks
466 movl %edx, (0x1e0) # store extended memory size
467 andl $0xffff, %ecx # clear sign extend
468 addl %ecx, (0x1e0) # and add lower memory into
469 # total size.
470
471# Ye Olde Traditional Methode. Returns the memory size (up to 16mb or
472# 64mb, depending on the bios) in ax.
473mem88:
474
475#endif
476 movb $0x88, %ah
477 int $0x15
478 movw %ax, (2)
479
480# Set the keyboard repeat rate to the max
481 movw $0x0305, %ax
482 xorw %bx, %bx
483 int $0x16
484
485# Check for video adapter and its parameters and allow the
486# user to browse video modes.
487 call video # NOTE: we need %ds pointing
488 # to bootsector
489
490# Get hd0 data...
491 xorw %ax, %ax
492 movw %ax, %ds
493 ldsw (4 * 0x41), %si
494 movw %cs, %ax # aka SETUPSEG
495 subw $DELTA_INITSEG, %ax # aka INITSEG
496 pushw %ax
497 movw %ax, %es
498 movw $0x0080, %di
499 movw $0x10, %cx
500 pushw %cx
501 cld
502 rep
503 movsb
504# Get hd1 data...
505 xorw %ax, %ax
506 movw %ax, %ds
507 ldsw (4 * 0x46), %si
508 popw %cx
509 popw %es
510 movw $0x0090, %di
511 rep
512 movsb
513# Check that there IS a hd1 :-)
514 movw $0x01500, %ax
515 movb $0x81, %dl
516 int $0x13
517 jc no_disk1
518
519 cmpb $3, %ah
520 je is_disk1
521
522no_disk1:
523 movw %cs, %ax # aka SETUPSEG
524 subw $DELTA_INITSEG, %ax # aka INITSEG
525 movw %ax, %es
526 movw $0x0090, %di
527 movw $0x10, %cx
528 xorw %ax, %ax
529 cld
530 rep
531 stosb
532is_disk1:
533
534# Check for PS/2 pointing device
535 movw %cs, %ax # aka SETUPSEG
536 subw $DELTA_INITSEG, %ax # aka INITSEG
537 movw %ax, %ds
606bd58d 538 movb $0, (0x1ff) # default is no pointing device
1da177e4
LT
539 int $0x11 # int 0x11: equipment list
540 testb $0x04, %al # check if mouse installed
541 jz no_psmouse
542
606bd58d 543 movb $0xAA, (0x1ff) # device present
1da177e4
LT
544no_psmouse:
545
546#include "../../i386/boot/edd.S"
547
548# Now we want to move to protected mode ...
549 cmpw $0, %cs:realmode_swtch
550 jz rmodeswtch_normal
551
552 lcall *%cs:realmode_swtch
553
554 jmp rmodeswtch_end
555
556rmodeswtch_normal:
557 pushw %cs
558 call default_switch
559
560rmodeswtch_end:
561# we get the code32 start address and modify the below 'jmpi'
562# (loader may have changed it)
563 movl %cs:code32_start, %eax
564 movl %eax, %cs:code32
565
566# Now we move the system to its rightful place ... but we check if we have a
567# big-kernel. In that case we *must* not move it ...
568 testb $LOADED_HIGH, %cs:loadflags
569 jz do_move0 # .. then we have a normal low
570 # loaded zImage
571 # .. or else we have a high
572 # loaded bzImage
573 jmp end_move # ... and we skip moving
574
575do_move0:
576 movw $0x100, %ax # start of destination segment
577 movw %cs, %bp # aka SETUPSEG
578 subw $DELTA_INITSEG, %bp # aka INITSEG
579 movw %cs:start_sys_seg, %bx # start of source segment
580 cld
581do_move:
582 movw %ax, %es # destination segment
583 incb %ah # instead of add ax,#0x100
584 movw %bx, %ds # source segment
585 addw $0x100, %bx
586 subw %di, %di
587 subw %si, %si
588 movw $0x800, %cx
589 rep
590 movsw
591 cmpw %bp, %bx # assume start_sys_seg > 0x200,
592 # so we will perhaps read one
593 # page more than needed, but
594 # never overwrite INITSEG
595 # because destination is a
596 # minimum one page below source
597 jb do_move
598
599end_move:
600# then we load the segment descriptors
601 movw %cs, %ax # aka SETUPSEG
602 movw %ax, %ds
603
604# Check whether we need to be downward compatible with version <=201
605 cmpl $0, cmd_line_ptr
606 jne end_move_self # loader uses version >=202 features
607 cmpb $0x20, type_of_loader
608 je end_move_self # bootsect loader, we know of it
609
610# Boot loader doesnt support boot protocol version 2.02.
611# If we have our code not at 0x90000, we need to move it there now.
612# We also then need to move the params behind it (commandline)
613# Because we would overwrite the code on the current IP, we move
614# it in two steps, jumping high after the first one.
615 movw %cs, %ax
616 cmpw $SETUPSEG, %ax
617 je end_move_self
618
619 cli # make sure we really have
620 # interrupts disabled !
621 # because after this the stack
622 # should not be used
623 subw $DELTA_INITSEG, %ax # aka INITSEG
624 movw %ss, %dx
625 cmpw %ax, %dx
626 jb move_self_1
627
628 addw $INITSEG, %dx
629 subw %ax, %dx # this will go into %ss after
630 # the move
631move_self_1:
632 movw %ax, %ds
633 movw $INITSEG, %ax # real INITSEG
634 movw %ax, %es
635 movw %cs:setup_move_size, %cx
636 std # we have to move up, so we use
637 # direction down because the
638 # areas may overlap
639 movw %cx, %di
640 decw %di
641 movw %di, %si
642 subw $move_self_here+0x200, %cx
643 rep
644 movsb
645 ljmp $SETUPSEG, $move_self_here
646
647move_self_here:
648 movw $move_self_here+0x200, %cx
649 rep
650 movsb
651 movw $SETUPSEG, %ax
652 movw %ax, %ds
653 movw %dx, %ss
654end_move_self: # now we are at the right place
655 lidt idt_48 # load idt with 0,0
656 xorl %eax, %eax # Compute gdt_base
657 movw %ds, %ax # (Convert %ds:gdt to a linear ptr)
658 shll $4, %eax
659 addl $gdt, %eax
660 movl %eax, (gdt_48+2)
661 lgdt gdt_48 # load gdt with whatever is
662 # appropriate
663
664# that was painless, now we enable a20
665 call empty_8042
666
667 movb $0xD1, %al # command write
668 outb %al, $0x64
669 call empty_8042
670
671 movb $0xDF, %al # A20 on
672 outb %al, $0x60
673 call empty_8042
674
675#
676# You must preserve the other bits here. Otherwise embarrasing things
677# like laptops powering off on boot happen. Corrected version by Kira
678# Brown from Linux 2.2
679#
680 inb $0x92, %al #
681 orb $02, %al # "fast A20" version
682 outb %al, $0x92 # some chips have only this
683
684# wait until a20 really *is* enabled; it can take a fair amount of
685# time on certain systems; Toshiba Tecras are known to have this
686# problem. The memory location used here (0x200) is the int 0x80
687# vector, which should be safe to use.
688
689 xorw %ax, %ax # segment 0x0000
690 movw %ax, %fs
691 decw %ax # segment 0xffff (HMA)
692 movw %ax, %gs
693a20_wait:
694 incw %ax # unused memory location <0xfff0
695 movw %ax, %fs:(0x200) # we use the "int 0x80" vector
696 cmpw %gs:(0x210), %ax # and its corresponding HMA addr
697 je a20_wait # loop until no longer aliased
698
699# make sure any possible coprocessor is properly reset..
700 xorw %ax, %ax
701 outb %al, $0xf0
702 call delay
703
704 outb %al, $0xf1
705 call delay
706
707# well, that went ok, I hope. Now we mask all interrupts - the rest
708# is done in init_IRQ().
709 movb $0xFF, %al # mask all interrupts for now
710 outb %al, $0xA1
711 call delay
712
713 movb $0xFB, %al # mask all irq's but irq2 which
714 outb %al, $0x21 # is cascaded
715
716# Well, that certainly wasn't fun :-(. Hopefully it works, and we don't
717# need no steenking BIOS anyway (except for the initial loading :-).
718# The BIOS-routine wants lots of unnecessary data, and it's less
719# "interesting" anyway. This is how REAL programmers do it.
720#
721# Well, now's the time to actually move into protected mode. To make
722# things as simple as possible, we do no register set-up or anything,
723# we let the gnu-compiled 32-bit programs do that. We just jump to
724# absolute address 0x1000 (or the loader supplied one),
725# in 32-bit protected mode.
726#
727# Note that the short jump isn't strictly needed, although there are
728# reasons why it might be a good idea. It won't hurt in any case.
729 movw $1, %ax # protected mode (PE) bit
730 lmsw %ax # This is it!
731 jmp flush_instr
732
733flush_instr:
734 xorw %bx, %bx # Flag to indicate a boot
735 xorl %esi, %esi # Pointer to real-mode code
736 movw %cs, %si
737 subw $DELTA_INITSEG, %si
738 shll $4, %esi # Convert to 32-bit pointer
739# NOTE: For high loaded big kernels we need a
740# jmpi 0x100000,__KERNEL_CS
741#
742# but we yet haven't reloaded the CS register, so the default size
743# of the target offset still is 16 bit.
f4549448 744# However, using an operand prefix (0x66), the CPU will properly
1da177e4
LT
745# take our 48 bit far pointer. (INTeL 80386 Programmer's Reference
746# Manual, Mixing 16-bit and 32-bit code, page 16-6)
747
748 .byte 0x66, 0xea # prefix + jmpi-opcode
749code32: .long 0x1000 # will be set to 0x100000
750 # for big kernels
751 .word __KERNEL_CS
752
753# Here's a bunch of information about your current kernel..
754kernel_version: .ascii UTS_RELEASE
755 .ascii " ("
756 .ascii LINUX_COMPILE_BY
757 .ascii "@"
758 .ascii LINUX_COMPILE_HOST
759 .ascii ") "
760 .ascii UTS_VERSION
761 .byte 0
762
763# This is the default real mode switch routine.
764# to be called just before protected mode transition
765default_switch:
766 cli # no interrupts allowed !
767 movb $0x80, %al # disable NMI for bootup
768 # sequence
769 outb %al, $0x70
770 lret
771
772
773# This routine checks that the keyboard command queue is empty
774# (after emptying the output buffers)
775#
776# Some machines have delusions that the keyboard buffer is always full
777# with no keyboard attached...
778#
779# If there is no keyboard controller, we will usually get 0xff
780# to all the reads. With each IO taking a microsecond and
781# a timeout of 100,000 iterations, this can take about half a
782# second ("delay" == outb to port 0x80). That should be ok,
783# and should also be plenty of time for a real keyboard controller
784# to empty.
785#
786
787empty_8042:
788 pushl %ecx
789 movl $100000, %ecx
790
791empty_8042_loop:
792 decl %ecx
793 jz empty_8042_end_loop
794
795 call delay
796
797 inb $0x64, %al # 8042 status port
798 testb $1, %al # output buffer?
799 jz no_output
800
801 call delay
802 inb $0x60, %al # read it
803 jmp empty_8042_loop
804
805no_output:
806 testb $2, %al # is input buffer full?
807 jnz empty_8042_loop # yes - loop
808empty_8042_end_loop:
809 popl %ecx
810 ret
811
812# Read the cmos clock. Return the seconds in al
813gettime:
814 pushw %cx
815 movb $0x02, %ah
816 int $0x1a
817 movb %dh, %al # %dh contains the seconds
818 andb $0x0f, %al
819 movb %dh, %ah
820 movb $0x04, %cl
821 shrb %cl, %ah
822 aad
823 popw %cx
824 ret
825
826# Delay is needed after doing I/O
827delay:
828 outb %al,$0x80
829 ret
830
831# Descriptor tables
832gdt:
833 .word 0, 0, 0, 0 # dummy
834
835 .word 0, 0, 0, 0 # unused
836
837 .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
838 .word 0 # base address = 0
839 .word 0x9A00 # code read/exec
840 .word 0x00CF # granularity = 4096, 386
841 # (+5th nibble of limit)
842
843 .word 0xFFFF # 4Gb - (0x100000*0x1000 = 4Gb)
844 .word 0 # base address = 0
845 .word 0x9200 # data read/write
846 .word 0x00CF # granularity = 4096, 386
847 # (+5th nibble of limit)
51d67a48 848gdt_end:
1da177e4
LT
849idt_48:
850 .word 0 # idt limit = 0
851 .word 0, 0 # idt base = 0L
852gdt_48:
51d67a48 853 .word gdt_end-gdt-1 # gdt limit
1da177e4
LT
854 .word 0, 0 # gdt base (filled in later)
855
856# Include video setup & detection code
857
858#include "video.S"
859
860# Setup signature -- must be last
861setup_sig1: .word SIG1
862setup_sig2: .word SIG2
863
864# After this point, there is some free space which is used by the video mode
865# handling code to store the temporary mode table (not used by the kernel).
866
867modelist:
868
869.text
870endtext:
871.data
872enddata:
873.bss
874endbss: