xen/debug: WARN_ON when identity PFN has no _PAGE_IOMAP flag set.
[linux-2.6-block.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
d2cb2145 45#include <linux/vmalloc.h>
44408ad7 46#include <linux/module.h>
5a0e3ad6 47#include <linux/gfp.h>
a9ce6bc1 48#include <linux/memblock.h>
2222e71b 49#include <linux/seq_file.h>
3b827c1b
JF
50
51#include <asm/pgtable.h>
52#include <asm/tlbflush.h>
5deb30d1 53#include <asm/fixmap.h>
3b827c1b 54#include <asm/mmu_context.h>
319f3ba5 55#include <asm/setup.h>
f4f97b3e 56#include <asm/paravirt.h>
7347b408 57#include <asm/e820.h>
cbcd79c2 58#include <asm/linkage.h>
08bbc9da 59#include <asm/page.h>
fef5ba79 60#include <asm/init.h>
41f2e477 61#include <asm/pat.h>
3b827c1b
JF
62
63#include <asm/xen/hypercall.h>
f4f97b3e 64#include <asm/xen/hypervisor.h>
3b827c1b 65
c0011dbf 66#include <xen/xen.h>
3b827c1b
JF
67#include <xen/page.h>
68#include <xen/interface/xen.h>
59151001 69#include <xen/interface/hvm/hvm_op.h>
319f3ba5 70#include <xen/interface/version.h>
c0011dbf 71#include <xen/interface/memory.h>
319f3ba5 72#include <xen/hvc-console.h>
3b827c1b 73
f4f97b3e 74#include "multicalls.h"
3b827c1b 75#include "mmu.h"
994025ca
JF
76#include "debugfs.h"
77
78#define MMU_UPDATE_HISTO 30
79
19001c8c
AN
80/*
81 * Protects atomic reservation decrease/increase against concurrent increases.
82 * Also protects non-atomic updates of current_pages and driver_pages, and
83 * balloon lists.
84 */
85DEFINE_SPINLOCK(xen_reservation_lock);
86
994025ca
JF
87#ifdef CONFIG_XEN_DEBUG_FS
88
89static struct {
90 u32 pgd_update;
91 u32 pgd_update_pinned;
92 u32 pgd_update_batched;
93
94 u32 pud_update;
95 u32 pud_update_pinned;
96 u32 pud_update_batched;
97
98 u32 pmd_update;
99 u32 pmd_update_pinned;
100 u32 pmd_update_batched;
101
102 u32 pte_update;
103 u32 pte_update_pinned;
104 u32 pte_update_batched;
105
106 u32 mmu_update;
107 u32 mmu_update_extended;
108 u32 mmu_update_histo[MMU_UPDATE_HISTO];
109
110 u32 prot_commit;
111 u32 prot_commit_batched;
112
113 u32 set_pte_at;
114 u32 set_pte_at_batched;
115 u32 set_pte_at_pinned;
116 u32 set_pte_at_current;
117 u32 set_pte_at_kernel;
118} mmu_stats;
119
120static u8 zero_stats;
121
122static inline void check_zero(void)
123{
124 if (unlikely(zero_stats)) {
125 memset(&mmu_stats, 0, sizeof(mmu_stats));
126 zero_stats = 0;
127 }
128}
129
130#define ADD_STATS(elem, val) \
131 do { check_zero(); mmu_stats.elem += (val); } while(0)
132
133#else /* !CONFIG_XEN_DEBUG_FS */
134
135#define ADD_STATS(elem, val) do { (void)(val); } while(0)
136
137#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 138
319f3ba5
JF
139
140/*
141 * Identity map, in addition to plain kernel map. This needs to be
142 * large enough to allocate page table pages to allocate the rest.
143 * Each page can map 2MB.
144 */
764f0138
JF
145#define LEVEL1_IDENT_ENTRIES (PTRS_PER_PTE * 4)
146static RESERVE_BRK_ARRAY(pte_t, level1_ident_pgt, LEVEL1_IDENT_ENTRIES);
319f3ba5
JF
147
148#ifdef CONFIG_X86_64
149/* l3 pud for userspace vsyscall mapping */
150static pud_t level3_user_vsyscall[PTRS_PER_PUD] __page_aligned_bss;
151#endif /* CONFIG_X86_64 */
152
153/*
154 * Note about cr3 (pagetable base) values:
155 *
156 * xen_cr3 contains the current logical cr3 value; it contains the
157 * last set cr3. This may not be the current effective cr3, because
158 * its update may be being lazily deferred. However, a vcpu looking
159 * at its own cr3 can use this value knowing that it everything will
160 * be self-consistent.
161 *
162 * xen_current_cr3 contains the actual vcpu cr3; it is set once the
163 * hypercall to set the vcpu cr3 is complete (so it may be a little
164 * out of date, but it will never be set early). If one vcpu is
165 * looking at another vcpu's cr3 value, it should use this variable.
166 */
167DEFINE_PER_CPU(unsigned long, xen_cr3); /* cr3 stored as physaddr */
168DEFINE_PER_CPU(unsigned long, xen_current_cr3); /* actual vcpu cr3 */
169
170
d6182fbf
JF
171/*
172 * Just beyond the highest usermode address. STACK_TOP_MAX has a
173 * redzone above it, so round it up to a PGD boundary.
174 */
175#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
176
9976b39b
JF
177unsigned long arbitrary_virt_to_mfn(void *vaddr)
178{
179 xmaddr_t maddr = arbitrary_virt_to_machine(vaddr);
180
181 return PFN_DOWN(maddr.maddr);
182}
183
ce803e70 184xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 185{
ce803e70 186 unsigned long address = (unsigned long)vaddr;
da7bfc50 187 unsigned int level;
9f32d21c
CL
188 pte_t *pte;
189 unsigned offset;
3b827c1b 190
9f32d21c
CL
191 /*
192 * if the PFN is in the linear mapped vaddr range, we can just use
193 * the (quick) virt_to_machine() p2m lookup
194 */
195 if (virt_addr_valid(vaddr))
196 return virt_to_machine(vaddr);
197
198 /* otherwise we have to do a (slower) full page-table walk */
3b827c1b 199
9f32d21c
CL
200 pte = lookup_address(address, &level);
201 BUG_ON(pte == NULL);
202 offset = address & ~PAGE_MASK;
ebd879e3 203 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b 204}
de23be5f 205EXPORT_SYMBOL_GPL(arbitrary_virt_to_machine);
3b827c1b
JF
206
207void make_lowmem_page_readonly(void *vaddr)
208{
209 pte_t *pte, ptev;
210 unsigned long address = (unsigned long)vaddr;
da7bfc50 211 unsigned int level;
3b827c1b 212
f0646e43 213 pte = lookup_address(address, &level);
fef5ba79
JF
214 if (pte == NULL)
215 return; /* vaddr missing */
3b827c1b
JF
216
217 ptev = pte_wrprotect(*pte);
218
219 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
220 BUG();
221}
222
223void make_lowmem_page_readwrite(void *vaddr)
224{
225 pte_t *pte, ptev;
226 unsigned long address = (unsigned long)vaddr;
da7bfc50 227 unsigned int level;
3b827c1b 228
f0646e43 229 pte = lookup_address(address, &level);
fef5ba79
JF
230 if (pte == NULL)
231 return; /* vaddr missing */
3b827c1b
JF
232
233 ptev = pte_mkwrite(*pte);
234
235 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
236 BUG();
237}
238
239
7708ad64 240static bool xen_page_pinned(void *ptr)
e2426cf8
JF
241{
242 struct page *page = virt_to_page(ptr);
243
244 return PagePinned(page);
245}
246
c0011dbf
JF
247static bool xen_iomap_pte(pte_t pte)
248{
7347b408 249 return pte_flags(pte) & _PAGE_IOMAP;
c0011dbf
JF
250}
251
eba3ff8b 252void xen_set_domain_pte(pte_t *ptep, pte_t pteval, unsigned domid)
c0011dbf
JF
253{
254 struct multicall_space mcs;
255 struct mmu_update *u;
256
257 mcs = xen_mc_entry(sizeof(*u));
258 u = mcs.args;
259
260 /* ptep might be kmapped when using 32-bit HIGHPTE */
261 u->ptr = arbitrary_virt_to_machine(ptep).maddr;
262 u->val = pte_val_ma(pteval);
263
eba3ff8b 264 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, domid);
c0011dbf
JF
265
266 xen_mc_issue(PARAVIRT_LAZY_MMU);
267}
eba3ff8b
JF
268EXPORT_SYMBOL_GPL(xen_set_domain_pte);
269
270static void xen_set_iomap_pte(pte_t *ptep, pte_t pteval)
271{
272 xen_set_domain_pte(ptep, pteval, DOMID_IO);
273}
c0011dbf 274
7708ad64 275static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 276{
d66bf8fc
JF
277 struct multicall_space mcs;
278 struct mmu_update *u;
3b827c1b 279
400d3494
JF
280 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
281
994025ca
JF
282 if (mcs.mc != NULL) {
283 ADD_STATS(mmu_update_extended, 1);
284 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
285
400d3494 286 mcs.mc->args[1]++;
994025ca
JF
287
288 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
289 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
290 else
291 ADD_STATS(mmu_update_histo[0], 1);
292 } else {
293 ADD_STATS(mmu_update, 1);
400d3494
JF
294 mcs = __xen_mc_entry(sizeof(*u));
295 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 296 ADD_STATS(mmu_update_histo[1], 1);
400d3494 297 }
d66bf8fc 298
d66bf8fc 299 u = mcs.args;
400d3494
JF
300 *u = *update;
301}
302
303void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
304{
305 struct mmu_update u;
306
307 preempt_disable();
308
309 xen_mc_batch();
310
ce803e70
JF
311 /* ptr may be ioremapped for 64-bit pagetable setup */
312 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 313 u.val = pmd_val_ma(val);
7708ad64 314 xen_extend_mmu_update(&u);
d66bf8fc 315
994025ca
JF
316 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
317
d66bf8fc
JF
318 xen_mc_issue(PARAVIRT_LAZY_MMU);
319
320 preempt_enable();
3b827c1b
JF
321}
322
e2426cf8
JF
323void xen_set_pmd(pmd_t *ptr, pmd_t val)
324{
994025ca
JF
325 ADD_STATS(pmd_update, 1);
326
e2426cf8
JF
327 /* If page is not pinned, we can just update the entry
328 directly */
7708ad64 329 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
330 *ptr = val;
331 return;
332 }
333
994025ca
JF
334 ADD_STATS(pmd_update_pinned, 1);
335
e2426cf8
JF
336 xen_set_pmd_hyper(ptr, val);
337}
338
3b827c1b
JF
339/*
340 * Associate a virtual page frame with a given physical page frame
341 * and protection flags for that frame.
342 */
343void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
344{
836fe2f2 345 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
346}
347
348void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
349 pte_t *ptep, pte_t pteval)
350{
c0011dbf
JF
351 if (xen_iomap_pte(pteval)) {
352 xen_set_iomap_pte(ptep, pteval);
353 goto out;
354 }
355
994025ca
JF
356 ADD_STATS(set_pte_at, 1);
357// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
358 ADD_STATS(set_pte_at_current, mm == current->mm);
359 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
360
d66bf8fc 361 if (mm == current->mm || mm == &init_mm) {
8965c1c0 362 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
363 struct multicall_space mcs;
364 mcs = xen_mc_entry(0);
365
366 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 367 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 368 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 369 goto out;
d66bf8fc
JF
370 } else
371 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 372 goto out;
d66bf8fc
JF
373 }
374 xen_set_pte(ptep, pteval);
2bd50036 375
2829b449 376out: return;
3b827c1b
JF
377}
378
f63c2f24
T
379pte_t xen_ptep_modify_prot_start(struct mm_struct *mm,
380 unsigned long addr, pte_t *ptep)
947a69c9 381{
e57778a1
JF
382 /* Just return the pte as-is. We preserve the bits on commit */
383 return *ptep;
384}
385
386void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
387 pte_t *ptep, pte_t pte)
388{
400d3494 389 struct mmu_update u;
e57778a1 390
400d3494 391 xen_mc_batch();
947a69c9 392
9f32d21c 393 u.ptr = arbitrary_virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
400d3494 394 u.val = pte_val_ma(pte);
7708ad64 395 xen_extend_mmu_update(&u);
947a69c9 396
994025ca
JF
397 ADD_STATS(prot_commit, 1);
398 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
399
e57778a1 400 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
401}
402
ebb9cfe2
JF
403/* Assume pteval_t is equivalent to all the other *val_t types. */
404static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 405{
ebb9cfe2 406 if (val & _PAGE_PRESENT) {
59438c9f 407 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 408 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 409 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 410 }
947a69c9 411
ebb9cfe2 412 return val;
947a69c9
JF
413}
414
ebb9cfe2 415static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 416{
ebb9cfe2 417 if (val & _PAGE_PRESENT) {
59438c9f 418 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 419 pteval_t flags = val & PTE_FLAGS_MASK;
fb38923e 420 unsigned long mfn;
cfd8951e 421
fb38923e
KRW
422 if (!xen_feature(XENFEAT_auto_translated_physmap))
423 mfn = get_phys_to_machine(pfn);
424 else
425 mfn = pfn;
cfd8951e
JF
426 /*
427 * If there's no mfn for the pfn, then just create an
428 * empty non-present pte. Unfortunately this loses
429 * information about the original pfn, so
430 * pte_mfn_to_pfn is asymmetric.
431 */
432 if (unlikely(mfn == INVALID_P2M_ENTRY)) {
433 mfn = 0;
434 flags = 0;
fb38923e
KRW
435 } else {
436 /*
437 * Paramount to do this test _after_ the
438 * INVALID_P2M_ENTRY as INVALID_P2M_ENTRY &
439 * IDENTITY_FRAME_BIT resolves to true.
440 */
441 mfn &= ~FOREIGN_FRAME_BIT;
442 if (mfn & IDENTITY_FRAME_BIT) {
443 mfn &= ~IDENTITY_FRAME_BIT;
444 flags |= _PAGE_IOMAP;
445 }
cfd8951e 446 }
cfd8951e 447 val = ((pteval_t)mfn << PAGE_SHIFT) | flags;
947a69c9
JF
448 }
449
ebb9cfe2 450 return val;
947a69c9
JF
451}
452
c0011dbf
JF
453static pteval_t iomap_pte(pteval_t val)
454{
455 if (val & _PAGE_PRESENT) {
456 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
457 pteval_t flags = val & PTE_FLAGS_MASK;
458
459 /* We assume the pte frame number is a MFN, so
460 just use it as-is. */
461 val = ((pteval_t)pfn << PAGE_SHIFT) | flags;
462 }
463
464 return val;
465}
466
ebb9cfe2 467pteval_t xen_pte_val(pte_t pte)
947a69c9 468{
41f2e477 469 pteval_t pteval = pte.pte;
c0011dbf 470
41f2e477
JF
471 /* If this is a WC pte, convert back from Xen WC to Linux WC */
472 if ((pteval & (_PAGE_PAT | _PAGE_PCD | _PAGE_PWT)) == _PAGE_PAT) {
473 WARN_ON(!pat_enabled);
474 pteval = (pteval & ~_PAGE_PAT) | _PAGE_PWT;
475 }
c0011dbf 476
41f2e477
JF
477 if (xen_initial_domain() && (pteval & _PAGE_IOMAP))
478 return pteval;
479
480 return pte_mfn_to_pfn(pteval);
947a69c9 481}
da5de7c2 482PV_CALLEE_SAVE_REGS_THUNK(xen_pte_val);
947a69c9 483
947a69c9
JF
484pgdval_t xen_pgd_val(pgd_t pgd)
485{
ebb9cfe2 486 return pte_mfn_to_pfn(pgd.pgd);
947a69c9 487}
da5de7c2 488PV_CALLEE_SAVE_REGS_THUNK(xen_pgd_val);
947a69c9 489
41f2e477
JF
490/*
491 * Xen's PAT setup is part of its ABI, though I assume entries 6 & 7
492 * are reserved for now, to correspond to the Intel-reserved PAT
493 * types.
494 *
495 * We expect Linux's PAT set as follows:
496 *
497 * Idx PTE flags Linux Xen Default
498 * 0 WB WB WB
499 * 1 PWT WC WT WT
500 * 2 PCD UC- UC- UC-
501 * 3 PCD PWT UC UC UC
502 * 4 PAT WB WC WB
503 * 5 PAT PWT WC WP WT
504 * 6 PAT PCD UC- UC UC-
505 * 7 PAT PCD PWT UC UC UC
506 */
507
508void xen_set_pat(u64 pat)
509{
510 /* We expect Linux to use a PAT setting of
511 * UC UC- WC WB (ignoring the PAT flag) */
512 WARN_ON(pat != 0x0007010600070106ull);
513}
514
947a69c9
JF
515pte_t xen_make_pte(pteval_t pte)
516{
7347b408
AN
517 phys_addr_t addr = (pte & PTE_PFN_MASK);
518
41f2e477
JF
519 /* If Linux is trying to set a WC pte, then map to the Xen WC.
520 * If _PAGE_PAT is set, then it probably means it is really
521 * _PAGE_PSE, so avoid fiddling with the PAT mapping and hope
522 * things work out OK...
523 *
524 * (We should never see kernel mappings with _PAGE_PSE set,
525 * but we could see hugetlbfs mappings, I think.).
526 */
527 if (pat_enabled && !WARN_ON(pte & _PAGE_PAT)) {
528 if ((pte & (_PAGE_PCD | _PAGE_PWT)) == _PAGE_PWT)
529 pte = (pte & ~(_PAGE_PCD | _PAGE_PWT)) | _PAGE_PAT;
530 }
531
7347b408
AN
532 /*
533 * Unprivileged domains are allowed to do IOMAPpings for
534 * PCI passthrough, but not map ISA space. The ISA
535 * mappings are just dummy local mappings to keep other
536 * parts of the kernel happy.
537 */
538 if (unlikely(pte & _PAGE_IOMAP) &&
539 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
c0011dbf 540 pte = iomap_pte(pte);
7347b408
AN
541 } else {
542 pte &= ~_PAGE_IOMAP;
c0011dbf 543 pte = pte_pfn_to_mfn(pte);
7347b408 544 }
c0011dbf 545
ebb9cfe2 546 return native_make_pte(pte);
947a69c9 547}
da5de7c2 548PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte);
947a69c9 549
fc25151d
KRW
550#ifdef CONFIG_XEN_DEBUG
551pte_t xen_make_pte_debug(pteval_t pte)
552{
553 phys_addr_t addr = (pte & PTE_PFN_MASK);
554 phys_addr_t other_addr;
555 bool io_page = false;
556 pte_t _pte;
557
558 if (pte & _PAGE_IOMAP)
559 io_page = true;
560
561 _pte = xen_make_pte(pte);
562
563 if (!addr)
564 return _pte;
565
566 if (io_page &&
567 (xen_initial_domain() || addr >= ISA_END_ADDRESS)) {
568 other_addr = pfn_to_mfn(addr >> PAGE_SHIFT) << PAGE_SHIFT;
569 WARN(addr != other_addr,
570 "0x%lx is using VM_IO, but it is 0x%lx!\n",
571 (unsigned long)addr, (unsigned long)other_addr);
572 } else {
573 pteval_t iomap_set = (_pte.pte & PTE_FLAGS_MASK) & _PAGE_IOMAP;
574 other_addr = (_pte.pte & PTE_PFN_MASK);
575 WARN((addr == other_addr) && (!io_page) && (!iomap_set),
576 "0x%lx is missing VM_IO (and wasn't fixed)!\n",
577 (unsigned long)addr);
578 }
579
580 return _pte;
581}
582PV_CALLEE_SAVE_REGS_THUNK(xen_make_pte_debug);
583#endif
584
947a69c9
JF
585pgd_t xen_make_pgd(pgdval_t pgd)
586{
ebb9cfe2
JF
587 pgd = pte_pfn_to_mfn(pgd);
588 return native_make_pgd(pgd);
947a69c9 589}
da5de7c2 590PV_CALLEE_SAVE_REGS_THUNK(xen_make_pgd);
947a69c9
JF
591
592pmdval_t xen_pmd_val(pmd_t pmd)
593{
ebb9cfe2 594 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 595}
da5de7c2 596PV_CALLEE_SAVE_REGS_THUNK(xen_pmd_val);
28499143 597
e2426cf8 598void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 599{
400d3494 600 struct mmu_update u;
f4f97b3e 601
d66bf8fc
JF
602 preempt_disable();
603
400d3494
JF
604 xen_mc_batch();
605
ce803e70
JF
606 /* ptr may be ioremapped for 64-bit pagetable setup */
607 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 608 u.val = pud_val_ma(val);
7708ad64 609 xen_extend_mmu_update(&u);
d66bf8fc 610
994025ca
JF
611 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
612
d66bf8fc
JF
613 xen_mc_issue(PARAVIRT_LAZY_MMU);
614
615 preempt_enable();
f4f97b3e
JF
616}
617
e2426cf8
JF
618void xen_set_pud(pud_t *ptr, pud_t val)
619{
994025ca
JF
620 ADD_STATS(pud_update, 1);
621
e2426cf8
JF
622 /* If page is not pinned, we can just update the entry
623 directly */
7708ad64 624 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
625 *ptr = val;
626 return;
627 }
628
994025ca
JF
629 ADD_STATS(pud_update_pinned, 1);
630
e2426cf8
JF
631 xen_set_pud_hyper(ptr, val);
632}
633
f4f97b3e
JF
634void xen_set_pte(pte_t *ptep, pte_t pte)
635{
c0011dbf
JF
636 if (xen_iomap_pte(pte)) {
637 xen_set_iomap_pte(ptep, pte);
638 return;
639 }
640
994025ca
JF
641 ADD_STATS(pte_update, 1);
642// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
643 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
644
f6e58732 645#ifdef CONFIG_X86_PAE
f4f97b3e
JF
646 ptep->pte_high = pte.pte_high;
647 smp_wmb();
648 ptep->pte_low = pte.pte_low;
f6e58732
JF
649#else
650 *ptep = pte;
651#endif
f4f97b3e
JF
652}
653
f6e58732 654#ifdef CONFIG_X86_PAE
3b827c1b
JF
655void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
656{
c0011dbf
JF
657 if (xen_iomap_pte(pte)) {
658 xen_set_iomap_pte(ptep, pte);
659 return;
660 }
661
f6e58732 662 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
663}
664
665void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
666{
667 ptep->pte_low = 0;
668 smp_wmb(); /* make sure low gets written first */
669 ptep->pte_high = 0;
670}
671
672void xen_pmd_clear(pmd_t *pmdp)
673{
e2426cf8 674 set_pmd(pmdp, __pmd(0));
3b827c1b 675}
f6e58732 676#endif /* CONFIG_X86_PAE */
3b827c1b 677
abf33038 678pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 679{
ebb9cfe2 680 pmd = pte_pfn_to_mfn(pmd);
947a69c9 681 return native_make_pmd(pmd);
3b827c1b 682}
da5de7c2 683PV_CALLEE_SAVE_REGS_THUNK(xen_make_pmd);
3b827c1b 684
f6e58732
JF
685#if PAGETABLE_LEVELS == 4
686pudval_t xen_pud_val(pud_t pud)
687{
688 return pte_mfn_to_pfn(pud.pud);
689}
da5de7c2 690PV_CALLEE_SAVE_REGS_THUNK(xen_pud_val);
f6e58732
JF
691
692pud_t xen_make_pud(pudval_t pud)
693{
694 pud = pte_pfn_to_mfn(pud);
695
696 return native_make_pud(pud);
697}
da5de7c2 698PV_CALLEE_SAVE_REGS_THUNK(xen_make_pud);
f6e58732 699
d6182fbf 700pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 701{
d6182fbf
JF
702 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
703 unsigned offset = pgd - pgd_page;
704 pgd_t *user_ptr = NULL;
f6e58732 705
d6182fbf
JF
706 if (offset < pgd_index(USER_LIMIT)) {
707 struct page *page = virt_to_page(pgd_page);
708 user_ptr = (pgd_t *)page->private;
709 if (user_ptr)
710 user_ptr += offset;
711 }
f6e58732 712
d6182fbf
JF
713 return user_ptr;
714}
715
716static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
717{
718 struct mmu_update u;
f6e58732
JF
719
720 u.ptr = virt_to_machine(ptr).maddr;
721 u.val = pgd_val_ma(val);
7708ad64 722 xen_extend_mmu_update(&u);
d6182fbf
JF
723}
724
725/*
726 * Raw hypercall-based set_pgd, intended for in early boot before
727 * there's a page structure. This implies:
728 * 1. The only existing pagetable is the kernel's
729 * 2. It is always pinned
730 * 3. It has no user pagetable attached to it
731 */
732void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
733{
734 preempt_disable();
735
736 xen_mc_batch();
737
738 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
739
740 xen_mc_issue(PARAVIRT_LAZY_MMU);
741
742 preempt_enable();
743}
744
745void xen_set_pgd(pgd_t *ptr, pgd_t val)
746{
d6182fbf
JF
747 pgd_t *user_ptr = xen_get_user_pgd(ptr);
748
994025ca
JF
749 ADD_STATS(pgd_update, 1);
750
f6e58732
JF
751 /* If page is not pinned, we can just update the entry
752 directly */
7708ad64 753 if (!xen_page_pinned(ptr)) {
f6e58732 754 *ptr = val;
d6182fbf 755 if (user_ptr) {
7708ad64 756 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
757 *user_ptr = val;
758 }
f6e58732
JF
759 return;
760 }
761
994025ca
JF
762 ADD_STATS(pgd_update_pinned, 1);
763 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
764
d6182fbf
JF
765 /* If it's pinned, then we can at least batch the kernel and
766 user updates together. */
767 xen_mc_batch();
768
769 __xen_set_pgd_hyper(ptr, val);
770 if (user_ptr)
771 __xen_set_pgd_hyper(user_ptr, val);
772
773 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
774}
775#endif /* PAGETABLE_LEVELS == 4 */
776
f4f97b3e 777/*
5deb30d1
JF
778 * (Yet another) pagetable walker. This one is intended for pinning a
779 * pagetable. This means that it walks a pagetable and calls the
780 * callback function on each page it finds making up the page table,
781 * at every level. It walks the entire pagetable, but it only bothers
782 * pinning pte pages which are below limit. In the normal case this
783 * will be STACK_TOP_MAX, but at boot we need to pin up to
784 * FIXADDR_TOP.
785 *
786 * For 32-bit the important bit is that we don't pin beyond there,
787 * because then we start getting into Xen's ptes.
788 *
789 * For 64-bit, we must skip the Xen hole in the middle of the address
790 * space, just after the big x86-64 virtual hole.
791 */
86bbc2c2
IC
792static int __xen_pgd_walk(struct mm_struct *mm, pgd_t *pgd,
793 int (*func)(struct mm_struct *mm, struct page *,
794 enum pt_level),
795 unsigned long limit)
3b827c1b 796{
f4f97b3e 797 int flush = 0;
5deb30d1
JF
798 unsigned hole_low, hole_high;
799 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
800 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 801
5deb30d1
JF
802 /* The limit is the last byte to be touched */
803 limit--;
804 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
805
806 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
807 return 0;
808
5deb30d1
JF
809 /*
810 * 64-bit has a great big hole in the middle of the address
811 * space, which contains the Xen mappings. On 32-bit these
812 * will end up making a zero-sized hole and so is a no-op.
813 */
d6182fbf 814 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
815 hole_high = pgd_index(PAGE_OFFSET);
816
817 pgdidx_limit = pgd_index(limit);
818#if PTRS_PER_PUD > 1
819 pudidx_limit = pud_index(limit);
820#else
821 pudidx_limit = 0;
822#endif
823#if PTRS_PER_PMD > 1
824 pmdidx_limit = pmd_index(limit);
825#else
826 pmdidx_limit = 0;
827#endif
828
5deb30d1 829 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 830 pud_t *pud;
3b827c1b 831
5deb30d1
JF
832 if (pgdidx >= hole_low && pgdidx < hole_high)
833 continue;
f4f97b3e 834
5deb30d1 835 if (!pgd_val(pgd[pgdidx]))
3b827c1b 836 continue;
f4f97b3e 837
5deb30d1 838 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
839
840 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 841 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 842
5deb30d1 843 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 844 pmd_t *pmd;
f4f97b3e 845
5deb30d1
JF
846 if (pgdidx == pgdidx_limit &&
847 pudidx > pudidx_limit)
848 goto out;
3b827c1b 849
5deb30d1 850 if (pud_none(pud[pudidx]))
3b827c1b 851 continue;
f4f97b3e 852
5deb30d1 853 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
854
855 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 856 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 857
5deb30d1
JF
858 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
859 struct page *pte;
860
861 if (pgdidx == pgdidx_limit &&
862 pudidx == pudidx_limit &&
863 pmdidx > pmdidx_limit)
864 goto out;
3b827c1b 865
5deb30d1 866 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
867 continue;
868
5deb30d1 869 pte = pmd_page(pmd[pmdidx]);
eefb47f6 870 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
871 }
872 }
873 }
11ad93e5 874
5deb30d1 875out:
11ad93e5
JF
876 /* Do the top level last, so that the callbacks can use it as
877 a cue to do final things like tlb flushes. */
eefb47f6 878 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
879
880 return flush;
3b827c1b
JF
881}
882
86bbc2c2
IC
883static int xen_pgd_walk(struct mm_struct *mm,
884 int (*func)(struct mm_struct *mm, struct page *,
885 enum pt_level),
886 unsigned long limit)
887{
888 return __xen_pgd_walk(mm, mm->pgd, func, limit);
889}
890
7708ad64
JF
891/* If we're using split pte locks, then take the page's lock and
892 return a pointer to it. Otherwise return NULL. */
eefb47f6 893static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
894{
895 spinlock_t *ptl = NULL;
896
f7d0b926 897#if USE_SPLIT_PTLOCKS
74260714 898 ptl = __pte_lockptr(page);
eefb47f6 899 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
900#endif
901
902 return ptl;
903}
904
7708ad64 905static void xen_pte_unlock(void *v)
74260714
JF
906{
907 spinlock_t *ptl = v;
908 spin_unlock(ptl);
909}
910
911static void xen_do_pin(unsigned level, unsigned long pfn)
912{
913 struct mmuext_op *op;
914 struct multicall_space mcs;
915
916 mcs = __xen_mc_entry(sizeof(*op));
917 op = mcs.args;
918 op->cmd = level;
919 op->arg1.mfn = pfn_to_mfn(pfn);
920 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
921}
922
eefb47f6
JF
923static int xen_pin_page(struct mm_struct *mm, struct page *page,
924 enum pt_level level)
f4f97b3e 925{
d60cd46b 926 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
927 int flush;
928
929 if (pgfl)
930 flush = 0; /* already pinned */
931 else if (PageHighMem(page))
932 /* kmaps need flushing if we found an unpinned
933 highpage */
934 flush = 1;
935 else {
936 void *pt = lowmem_page_address(page);
937 unsigned long pfn = page_to_pfn(page);
938 struct multicall_space mcs = __xen_mc_entry(0);
74260714 939 spinlock_t *ptl;
f4f97b3e
JF
940
941 flush = 0;
942
11ad93e5
JF
943 /*
944 * We need to hold the pagetable lock between the time
945 * we make the pagetable RO and when we actually pin
946 * it. If we don't, then other users may come in and
947 * attempt to update the pagetable by writing it,
948 * which will fail because the memory is RO but not
949 * pinned, so Xen won't do the trap'n'emulate.
950 *
951 * If we're using split pte locks, we can't hold the
952 * entire pagetable's worth of locks during the
953 * traverse, because we may wrap the preempt count (8
954 * bits). The solution is to mark RO and pin each PTE
955 * page while holding the lock. This means the number
956 * of locks we end up holding is never more than a
957 * batch size (~32 entries, at present).
958 *
959 * If we're not using split pte locks, we needn't pin
960 * the PTE pages independently, because we're
961 * protected by the overall pagetable lock.
962 */
74260714
JF
963 ptl = NULL;
964 if (level == PT_PTE)
eefb47f6 965 ptl = xen_pte_lock(page, mm);
74260714 966
f4f97b3e
JF
967 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
968 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
969 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
970
11ad93e5 971 if (ptl) {
74260714
JF
972 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
973
74260714
JF
974 /* Queue a deferred unlock for when this batch
975 is completed. */
7708ad64 976 xen_mc_callback(xen_pte_unlock, ptl);
74260714 977 }
f4f97b3e
JF
978 }
979
980 return flush;
981}
3b827c1b 982
f4f97b3e
JF
983/* This is called just after a mm has been created, but it has not
984 been used yet. We need to make sure that its pagetable is all
985 read-only, and can be pinned. */
eefb47f6 986static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 987{
f4f97b3e 988 xen_mc_batch();
3b827c1b 989
86bbc2c2 990 if (__xen_pgd_walk(mm, pgd, xen_pin_page, USER_LIMIT)) {
d05fdf31 991 /* re-enable interrupts for flushing */
f87e4cac 992 xen_mc_issue(0);
d05fdf31 993
f4f97b3e 994 kmap_flush_unused();
d05fdf31 995
f87e4cac
JF
996 xen_mc_batch();
997 }
f4f97b3e 998
d6182fbf
JF
999#ifdef CONFIG_X86_64
1000 {
1001 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1002
1003 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
1004
1005 if (user_pgd) {
eefb47f6 1006 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
f63c2f24
T
1007 xen_do_pin(MMUEXT_PIN_L4_TABLE,
1008 PFN_DOWN(__pa(user_pgd)));
d6182fbf
JF
1009 }
1010 }
1011#else /* CONFIG_X86_32 */
5deb30d1
JF
1012#ifdef CONFIG_X86_PAE
1013 /* Need to make sure unshared kernel PMD is pinnable */
47cb2ed9 1014 xen_pin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1015 PT_PMD);
5deb30d1 1016#endif
28499143 1017 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 1018#endif /* CONFIG_X86_64 */
f4f97b3e 1019 xen_mc_issue(0);
3b827c1b
JF
1020}
1021
eefb47f6
JF
1022static void xen_pgd_pin(struct mm_struct *mm)
1023{
1024 __xen_pgd_pin(mm, mm->pgd);
1025}
1026
0e91398f
JF
1027/*
1028 * On save, we need to pin all pagetables to make sure they get their
1029 * mfns turned into pfns. Search the list for any unpinned pgds and pin
1030 * them (unpinned pgds are not currently in use, probably because the
1031 * process is under construction or destruction).
eefb47f6
JF
1032 *
1033 * Expected to be called in stop_machine() ("equivalent to taking
1034 * every spinlock in the system"), so the locking doesn't really
1035 * matter all that much.
0e91398f
JF
1036 */
1037void xen_mm_pin_all(void)
1038{
1039 unsigned long flags;
1040 struct page *page;
74260714 1041
0e91398f 1042 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 1043
0e91398f
JF
1044 list_for_each_entry(page, &pgd_list, lru) {
1045 if (!PagePinned(page)) {
eefb47f6 1046 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1047 SetPageSavePinned(page);
1048 }
1049 }
1050
1051 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
1052}
1053
c1f2f09e
EH
1054/*
1055 * The init_mm pagetable is really pinned as soon as its created, but
1056 * that's before we have page structures to store the bits. So do all
1057 * the book-keeping now.
1058 */
eefb47f6
JF
1059static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
1060 enum pt_level level)
3b827c1b 1061{
f4f97b3e
JF
1062 SetPagePinned(page);
1063 return 0;
1064}
3b827c1b 1065
b96229b5 1066static void __init xen_mark_init_mm_pinned(void)
f4f97b3e 1067{
eefb47f6 1068 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 1069}
3b827c1b 1070
eefb47f6
JF
1071static int xen_unpin_page(struct mm_struct *mm, struct page *page,
1072 enum pt_level level)
f4f97b3e 1073{
d60cd46b 1074 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 1075
f4f97b3e
JF
1076 if (pgfl && !PageHighMem(page)) {
1077 void *pt = lowmem_page_address(page);
1078 unsigned long pfn = page_to_pfn(page);
74260714
JF
1079 spinlock_t *ptl = NULL;
1080 struct multicall_space mcs;
1081
11ad93e5
JF
1082 /*
1083 * Do the converse to pin_page. If we're using split
1084 * pte locks, we must be holding the lock for while
1085 * the pte page is unpinned but still RO to prevent
1086 * concurrent updates from seeing it in this
1087 * partially-pinned state.
1088 */
74260714 1089 if (level == PT_PTE) {
eefb47f6 1090 ptl = xen_pte_lock(page, mm);
74260714 1091
11ad93e5
JF
1092 if (ptl)
1093 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
1094 }
1095
1096 mcs = __xen_mc_entry(0);
f4f97b3e
JF
1097
1098 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
1099 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
1100 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
1101
1102 if (ptl) {
1103 /* unlock when batch completed */
7708ad64 1104 xen_mc_callback(xen_pte_unlock, ptl);
74260714 1105 }
f4f97b3e
JF
1106 }
1107
1108 return 0; /* never need to flush on unpin */
3b827c1b
JF
1109}
1110
f4f97b3e 1111/* Release a pagetables pages back as normal RW */
eefb47f6 1112static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 1113{
f4f97b3e
JF
1114 xen_mc_batch();
1115
74260714 1116 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 1117
d6182fbf
JF
1118#ifdef CONFIG_X86_64
1119 {
1120 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1121
1122 if (user_pgd) {
f63c2f24
T
1123 xen_do_pin(MMUEXT_UNPIN_TABLE,
1124 PFN_DOWN(__pa(user_pgd)));
eefb47f6 1125 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
1126 }
1127 }
1128#endif
1129
5deb30d1
JF
1130#ifdef CONFIG_X86_PAE
1131 /* Need to make sure unshared kernel PMD is unpinned */
47cb2ed9 1132 xen_unpin_page(mm, pgd_page(pgd[pgd_index(TASK_SIZE)]),
eefb47f6 1133 PT_PMD);
5deb30d1 1134#endif
d6182fbf 1135
86bbc2c2 1136 __xen_pgd_walk(mm, pgd, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
1137
1138 xen_mc_issue(0);
1139}
3b827c1b 1140
eefb47f6
JF
1141static void xen_pgd_unpin(struct mm_struct *mm)
1142{
1143 __xen_pgd_unpin(mm, mm->pgd);
1144}
1145
0e91398f
JF
1146/*
1147 * On resume, undo any pinning done at save, so that the rest of the
1148 * kernel doesn't see any unexpected pinned pagetables.
1149 */
1150void xen_mm_unpin_all(void)
1151{
1152 unsigned long flags;
1153 struct page *page;
1154
1155 spin_lock_irqsave(&pgd_lock, flags);
1156
1157 list_for_each_entry(page, &pgd_list, lru) {
1158 if (PageSavePinned(page)) {
1159 BUG_ON(!PagePinned(page));
eefb47f6 1160 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1161 ClearPageSavePinned(page);
1162 }
1163 }
1164
1165 spin_unlock_irqrestore(&pgd_lock, flags);
1166}
1167
3b827c1b
JF
1168void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1169{
f4f97b3e 1170 spin_lock(&next->page_table_lock);
eefb47f6 1171 xen_pgd_pin(next);
f4f97b3e 1172 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1173}
1174
1175void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1176{
f4f97b3e 1177 spin_lock(&mm->page_table_lock);
eefb47f6 1178 xen_pgd_pin(mm);
f4f97b3e 1179 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1180}
1181
3b827c1b 1182
f87e4cac
JF
1183#ifdef CONFIG_SMP
1184/* Another cpu may still have their %cr3 pointing at the pagetable, so
1185 we need to repoint it somewhere else before we can unpin it. */
1186static void drop_other_mm_ref(void *info)
1187{
1188 struct mm_struct *mm = info;
ce87b3d3 1189 struct mm_struct *active_mm;
3b827c1b 1190
9eb912d1 1191 active_mm = percpu_read(cpu_tlbstate.active_mm);
ce87b3d3
JF
1192
1193 if (active_mm == mm)
f87e4cac 1194 leave_mm(smp_processor_id());
9f79991d
JF
1195
1196 /* If this cpu still has a stale cr3 reference, then make sure
1197 it has been flushed. */
7fd7d83d 1198 if (percpu_read(xen_current_cr3) == __pa(mm->pgd))
9f79991d 1199 load_cr3(swapper_pg_dir);
f87e4cac 1200}
3b827c1b 1201
7708ad64 1202static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1203{
e4d98207 1204 cpumask_var_t mask;
9f79991d
JF
1205 unsigned cpu;
1206
f87e4cac
JF
1207 if (current->active_mm == mm) {
1208 if (current->mm == mm)
1209 load_cr3(swapper_pg_dir);
1210 else
1211 leave_mm(smp_processor_id());
9f79991d
JF
1212 }
1213
1214 /* Get the "official" set of cpus referring to our pagetable. */
e4d98207
MT
1215 if (!alloc_cpumask_var(&mask, GFP_ATOMIC)) {
1216 for_each_online_cpu(cpu) {
78f1c4d6 1217 if (!cpumask_test_cpu(cpu, mm_cpumask(mm))
e4d98207
MT
1218 && per_cpu(xen_current_cr3, cpu) != __pa(mm->pgd))
1219 continue;
1220 smp_call_function_single(cpu, drop_other_mm_ref, mm, 1);
1221 }
1222 return;
1223 }
78f1c4d6 1224 cpumask_copy(mask, mm_cpumask(mm));
9f79991d
JF
1225
1226 /* It's possible that a vcpu may have a stale reference to our
1227 cr3, because its in lazy mode, and it hasn't yet flushed
1228 its set of pending hypercalls yet. In this case, we can
1229 look at its actual current cr3 value, and force it to flush
1230 if needed. */
1231 for_each_online_cpu(cpu) {
1232 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
e4d98207 1233 cpumask_set_cpu(cpu, mask);
3b827c1b
JF
1234 }
1235
e4d98207
MT
1236 if (!cpumask_empty(mask))
1237 smp_call_function_many(mask, drop_other_mm_ref, mm, 1);
1238 free_cpumask_var(mask);
f87e4cac
JF
1239}
1240#else
7708ad64 1241static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1242{
1243 if (current->active_mm == mm)
1244 load_cr3(swapper_pg_dir);
1245}
1246#endif
1247
1248/*
1249 * While a process runs, Xen pins its pagetables, which means that the
1250 * hypervisor forces it to be read-only, and it controls all updates
1251 * to it. This means that all pagetable updates have to go via the
1252 * hypervisor, which is moderately expensive.
1253 *
1254 * Since we're pulling the pagetable down, we switch to use init_mm,
1255 * unpin old process pagetable and mark it all read-write, which
1256 * allows further operations on it to be simple memory accesses.
1257 *
1258 * The only subtle point is that another CPU may be still using the
1259 * pagetable because of lazy tlb flushing. This means we need need to
1260 * switch all CPUs off this pagetable before we can unpin it.
1261 */
1262void xen_exit_mmap(struct mm_struct *mm)
1263{
1264 get_cpu(); /* make sure we don't move around */
7708ad64 1265 xen_drop_mm_ref(mm);
f87e4cac 1266 put_cpu();
3b827c1b 1267
f120f13e 1268 spin_lock(&mm->page_table_lock);
df912ea4
JF
1269
1270 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1271 if (xen_page_pinned(mm->pgd))
eefb47f6 1272 xen_pgd_unpin(mm);
74260714 1273
f120f13e 1274 spin_unlock(&mm->page_table_lock);
3b827c1b 1275}
994025ca 1276
319f3ba5
JF
1277static __init void xen_pagetable_setup_start(pgd_t *base)
1278{
1279}
1280
f1d7062a
TG
1281static void xen_post_allocator_init(void);
1282
319f3ba5
JF
1283static __init void xen_pagetable_setup_done(pgd_t *base)
1284{
1285 xen_setup_shared_info();
f1d7062a 1286 xen_post_allocator_init();
319f3ba5
JF
1287}
1288
1289static void xen_write_cr2(unsigned long cr2)
1290{
1291 percpu_read(xen_vcpu)->arch.cr2 = cr2;
1292}
1293
1294static unsigned long xen_read_cr2(void)
1295{
1296 return percpu_read(xen_vcpu)->arch.cr2;
1297}
1298
1299unsigned long xen_read_cr2_direct(void)
1300{
1301 return percpu_read(xen_vcpu_info.arch.cr2);
1302}
1303
1304static void xen_flush_tlb(void)
1305{
1306 struct mmuext_op *op;
1307 struct multicall_space mcs;
1308
1309 preempt_disable();
1310
1311 mcs = xen_mc_entry(sizeof(*op));
1312
1313 op = mcs.args;
1314 op->cmd = MMUEXT_TLB_FLUSH_LOCAL;
1315 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1316
1317 xen_mc_issue(PARAVIRT_LAZY_MMU);
1318
1319 preempt_enable();
1320}
1321
1322static void xen_flush_tlb_single(unsigned long addr)
1323{
1324 struct mmuext_op *op;
1325 struct multicall_space mcs;
1326
1327 preempt_disable();
1328
1329 mcs = xen_mc_entry(sizeof(*op));
1330 op = mcs.args;
1331 op->cmd = MMUEXT_INVLPG_LOCAL;
1332 op->arg1.linear_addr = addr & PAGE_MASK;
1333 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1334
1335 xen_mc_issue(PARAVIRT_LAZY_MMU);
1336
1337 preempt_enable();
1338}
1339
1340static void xen_flush_tlb_others(const struct cpumask *cpus,
1341 struct mm_struct *mm, unsigned long va)
1342{
1343 struct {
1344 struct mmuext_op op;
1345 DECLARE_BITMAP(mask, NR_CPUS);
1346 } *args;
1347 struct multicall_space mcs;
1348
e3f8a74e
JF
1349 if (cpumask_empty(cpus))
1350 return; /* nothing to do */
319f3ba5
JF
1351
1352 mcs = xen_mc_entry(sizeof(*args));
1353 args = mcs.args;
1354 args->op.arg2.vcpumask = to_cpumask(args->mask);
1355
1356 /* Remove us, and any offline CPUS. */
1357 cpumask_and(to_cpumask(args->mask), cpus, cpu_online_mask);
1358 cpumask_clear_cpu(smp_processor_id(), to_cpumask(args->mask));
319f3ba5
JF
1359
1360 if (va == TLB_FLUSH_ALL) {
1361 args->op.cmd = MMUEXT_TLB_FLUSH_MULTI;
1362 } else {
1363 args->op.cmd = MMUEXT_INVLPG_MULTI;
1364 args->op.arg1.linear_addr = va;
1365 }
1366
1367 MULTI_mmuext_op(mcs.mc, &args->op, 1, NULL, DOMID_SELF);
1368
319f3ba5
JF
1369 xen_mc_issue(PARAVIRT_LAZY_MMU);
1370}
1371
1372static unsigned long xen_read_cr3(void)
1373{
1374 return percpu_read(xen_cr3);
1375}
1376
1377static void set_current_cr3(void *v)
1378{
1379 percpu_write(xen_current_cr3, (unsigned long)v);
1380}
1381
1382static void __xen_write_cr3(bool kernel, unsigned long cr3)
1383{
1384 struct mmuext_op *op;
1385 struct multicall_space mcs;
1386 unsigned long mfn;
1387
1388 if (cr3)
1389 mfn = pfn_to_mfn(PFN_DOWN(cr3));
1390 else
1391 mfn = 0;
1392
1393 WARN_ON(mfn == 0 && kernel);
1394
1395 mcs = __xen_mc_entry(sizeof(*op));
1396
1397 op = mcs.args;
1398 op->cmd = kernel ? MMUEXT_NEW_BASEPTR : MMUEXT_NEW_USER_BASEPTR;
1399 op->arg1.mfn = mfn;
1400
1401 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
1402
1403 if (kernel) {
1404 percpu_write(xen_cr3, cr3);
1405
1406 /* Update xen_current_cr3 once the batch has actually
1407 been submitted. */
1408 xen_mc_callback(set_current_cr3, (void *)cr3);
1409 }
1410}
1411
1412static void xen_write_cr3(unsigned long cr3)
1413{
1414 BUG_ON(preemptible());
1415
1416 xen_mc_batch(); /* disables interrupts */
1417
1418 /* Update while interrupts are disabled, so its atomic with
1419 respect to ipis */
1420 percpu_write(xen_cr3, cr3);
1421
1422 __xen_write_cr3(true, cr3);
1423
1424#ifdef CONFIG_X86_64
1425 {
1426 pgd_t *user_pgd = xen_get_user_pgd(__va(cr3));
1427 if (user_pgd)
1428 __xen_write_cr3(false, __pa(user_pgd));
1429 else
1430 __xen_write_cr3(false, 0);
1431 }
1432#endif
1433
1434 xen_mc_issue(PARAVIRT_LAZY_CPU); /* interrupts restored */
1435}
1436
1437static int xen_pgd_alloc(struct mm_struct *mm)
1438{
1439 pgd_t *pgd = mm->pgd;
1440 int ret = 0;
1441
1442 BUG_ON(PagePinned(virt_to_page(pgd)));
1443
1444#ifdef CONFIG_X86_64
1445 {
1446 struct page *page = virt_to_page(pgd);
1447 pgd_t *user_pgd;
1448
1449 BUG_ON(page->private != 0);
1450
1451 ret = -ENOMEM;
1452
1453 user_pgd = (pgd_t *)__get_free_page(GFP_KERNEL | __GFP_ZERO);
1454 page->private = (unsigned long)user_pgd;
1455
1456 if (user_pgd != NULL) {
1457 user_pgd[pgd_index(VSYSCALL_START)] =
1458 __pgd(__pa(level3_user_vsyscall) | _PAGE_TABLE);
1459 ret = 0;
1460 }
1461
1462 BUG_ON(PagePinned(virt_to_page(xen_get_user_pgd(pgd))));
1463 }
1464#endif
1465
1466 return ret;
1467}
1468
1469static void xen_pgd_free(struct mm_struct *mm, pgd_t *pgd)
1470{
1471#ifdef CONFIG_X86_64
1472 pgd_t *user_pgd = xen_get_user_pgd(pgd);
1473
1474 if (user_pgd)
1475 free_page((unsigned long)user_pgd);
1476#endif
1477}
1478
1f4f9315
JF
1479static __init pte_t mask_rw_pte(pte_t *ptep, pte_t pte)
1480{
fef5ba79
JF
1481 unsigned long pfn = pte_pfn(pte);
1482
1483#ifdef CONFIG_X86_32
1f4f9315
JF
1484 /* If there's an existing pte, then don't allow _PAGE_RW to be set */
1485 if (pte_val_ma(*ptep) & _PAGE_PRESENT)
1486 pte = __pte_ma(((pte_val_ma(*ptep) & _PAGE_RW) | ~_PAGE_RW) &
1487 pte_val_ma(pte));
fef5ba79
JF
1488#endif
1489
1490 /*
1491 * If the new pfn is within the range of the newly allocated
1492 * kernel pagetable, and it isn't being mapped into an
1493 * early_ioremap fixmap slot, make sure it is RO.
1494 */
1495 if (!is_early_ioremap_ptep(ptep) &&
1496 pfn >= e820_table_start && pfn < e820_table_end)
1497 pte = pte_wrprotect(pte);
1f4f9315
JF
1498
1499 return pte;
1500}
1501
1502/* Init-time set_pte while constructing initial pagetables, which
1503 doesn't allow RO pagetable pages to be remapped RW */
1504static __init void xen_set_pte_init(pte_t *ptep, pte_t pte)
1505{
1506 pte = mask_rw_pte(ptep, pte);
1507
1508 xen_set_pte(ptep, pte);
1509}
319f3ba5 1510
b96229b5
JF
1511static void pin_pagetable_pfn(unsigned cmd, unsigned long pfn)
1512{
1513 struct mmuext_op op;
1514 op.cmd = cmd;
1515 op.arg1.mfn = pfn_to_mfn(pfn);
1516 if (HYPERVISOR_mmuext_op(&op, 1, NULL, DOMID_SELF))
1517 BUG();
1518}
1519
319f3ba5
JF
1520/* Early in boot, while setting up the initial pagetable, assume
1521 everything is pinned. */
1522static __init void xen_alloc_pte_init(struct mm_struct *mm, unsigned long pfn)
1523{
b96229b5
JF
1524#ifdef CONFIG_FLATMEM
1525 BUG_ON(mem_map); /* should only be used early */
1526#endif
1527 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1528 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1529}
1530
1531/* Used for pmd and pud */
1532static __init void xen_alloc_pmd_init(struct mm_struct *mm, unsigned long pfn)
1533{
319f3ba5
JF
1534#ifdef CONFIG_FLATMEM
1535 BUG_ON(mem_map); /* should only be used early */
1536#endif
1537 make_lowmem_page_readonly(__va(PFN_PHYS(pfn)));
1538}
1539
1540/* Early release_pte assumes that all pts are pinned, since there's
1541 only init_mm and anything attached to that is pinned. */
b96229b5 1542static __init void xen_release_pte_init(unsigned long pfn)
319f3ba5 1543{
b96229b5 1544 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
319f3ba5
JF
1545 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1546}
1547
b96229b5 1548static __init void xen_release_pmd_init(unsigned long pfn)
319f3ba5 1549{
b96229b5 1550 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
319f3ba5
JF
1551}
1552
1553/* This needs to make sure the new pte page is pinned iff its being
1554 attached to a pinned pagetable. */
1555static void xen_alloc_ptpage(struct mm_struct *mm, unsigned long pfn, unsigned level)
1556{
1557 struct page *page = pfn_to_page(pfn);
1558
1559 if (PagePinned(virt_to_page(mm->pgd))) {
1560 SetPagePinned(page);
1561
319f3ba5
JF
1562 if (!PageHighMem(page)) {
1563 make_lowmem_page_readonly(__va(PFN_PHYS((unsigned long)pfn)));
1564 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1565 pin_pagetable_pfn(MMUEXT_PIN_L1_TABLE, pfn);
1566 } else {
1567 /* make sure there are no stray mappings of
1568 this page */
1569 kmap_flush_unused();
1570 }
1571 }
1572}
1573
1574static void xen_alloc_pte(struct mm_struct *mm, unsigned long pfn)
1575{
1576 xen_alloc_ptpage(mm, pfn, PT_PTE);
1577}
1578
1579static void xen_alloc_pmd(struct mm_struct *mm, unsigned long pfn)
1580{
1581 xen_alloc_ptpage(mm, pfn, PT_PMD);
1582}
1583
1584/* This should never happen until we're OK to use struct page */
1585static void xen_release_ptpage(unsigned long pfn, unsigned level)
1586{
1587 struct page *page = pfn_to_page(pfn);
1588
1589 if (PagePinned(page)) {
1590 if (!PageHighMem(page)) {
1591 if (level == PT_PTE && USE_SPLIT_PTLOCKS)
1592 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, pfn);
1593 make_lowmem_page_readwrite(__va(PFN_PHYS(pfn)));
1594 }
1595 ClearPagePinned(page);
1596 }
1597}
1598
1599static void xen_release_pte(unsigned long pfn)
1600{
1601 xen_release_ptpage(pfn, PT_PTE);
1602}
1603
1604static void xen_release_pmd(unsigned long pfn)
1605{
1606 xen_release_ptpage(pfn, PT_PMD);
1607}
1608
1609#if PAGETABLE_LEVELS == 4
1610static void xen_alloc_pud(struct mm_struct *mm, unsigned long pfn)
1611{
1612 xen_alloc_ptpage(mm, pfn, PT_PUD);
1613}
1614
1615static void xen_release_pud(unsigned long pfn)
1616{
1617 xen_release_ptpage(pfn, PT_PUD);
1618}
1619#endif
1620
1621void __init xen_reserve_top(void)
1622{
1623#ifdef CONFIG_X86_32
1624 unsigned long top = HYPERVISOR_VIRT_START;
1625 struct xen_platform_parameters pp;
1626
1627 if (HYPERVISOR_xen_version(XENVER_platform_parameters, &pp) == 0)
1628 top = pp.virt_start;
1629
1630 reserve_top_address(-top);
1631#endif /* CONFIG_X86_32 */
1632}
1633
1634/*
1635 * Like __va(), but returns address in the kernel mapping (which is
1636 * all we have until the physical memory mapping has been set up.
1637 */
1638static void *__ka(phys_addr_t paddr)
1639{
1640#ifdef CONFIG_X86_64
1641 return (void *)(paddr + __START_KERNEL_map);
1642#else
1643 return __va(paddr);
1644#endif
1645}
1646
1647/* Convert a machine address to physical address */
1648static unsigned long m2p(phys_addr_t maddr)
1649{
1650 phys_addr_t paddr;
1651
1652 maddr &= PTE_PFN_MASK;
1653 paddr = mfn_to_pfn(maddr >> PAGE_SHIFT) << PAGE_SHIFT;
1654
1655 return paddr;
1656}
1657
1658/* Convert a machine address to kernel virtual */
1659static void *m2v(phys_addr_t maddr)
1660{
1661 return __ka(m2p(maddr));
1662}
1663
4ec5387c 1664/* Set the page permissions on an identity-mapped pages */
319f3ba5
JF
1665static void set_page_prot(void *addr, pgprot_t prot)
1666{
1667 unsigned long pfn = __pa(addr) >> PAGE_SHIFT;
1668 pte_t pte = pfn_pte(pfn, prot);
1669
1670 if (HYPERVISOR_update_va_mapping((unsigned long)addr, pte, 0))
1671 BUG();
1672}
1673
1674static __init void xen_map_identity_early(pmd_t *pmd, unsigned long max_pfn)
1675{
1676 unsigned pmdidx, pteidx;
1677 unsigned ident_pte;
1678 unsigned long pfn;
1679
764f0138
JF
1680 level1_ident_pgt = extend_brk(sizeof(pte_t) * LEVEL1_IDENT_ENTRIES,
1681 PAGE_SIZE);
1682
319f3ba5
JF
1683 ident_pte = 0;
1684 pfn = 0;
1685 for (pmdidx = 0; pmdidx < PTRS_PER_PMD && pfn < max_pfn; pmdidx++) {
1686 pte_t *pte_page;
1687
1688 /* Reuse or allocate a page of ptes */
1689 if (pmd_present(pmd[pmdidx]))
1690 pte_page = m2v(pmd[pmdidx].pmd);
1691 else {
1692 /* Check for free pte pages */
764f0138 1693 if (ident_pte == LEVEL1_IDENT_ENTRIES)
319f3ba5
JF
1694 break;
1695
1696 pte_page = &level1_ident_pgt[ident_pte];
1697 ident_pte += PTRS_PER_PTE;
1698
1699 pmd[pmdidx] = __pmd(__pa(pte_page) | _PAGE_TABLE);
1700 }
1701
1702 /* Install mappings */
1703 for (pteidx = 0; pteidx < PTRS_PER_PTE; pteidx++, pfn++) {
1704 pte_t pte;
1705
1706 if (pfn > max_pfn_mapped)
1707 max_pfn_mapped = pfn;
1708
1709 if (!pte_none(pte_page[pteidx]))
1710 continue;
1711
1712 pte = pfn_pte(pfn, PAGE_KERNEL_EXEC);
1713 pte_page[pteidx] = pte;
1714 }
1715 }
1716
1717 for (pteidx = 0; pteidx < ident_pte; pteidx += PTRS_PER_PTE)
1718 set_page_prot(&level1_ident_pgt[pteidx], PAGE_KERNEL_RO);
1719
1720 set_page_prot(pmd, PAGE_KERNEL_RO);
1721}
1722
7e77506a
IC
1723void __init xen_setup_machphys_mapping(void)
1724{
1725 struct xen_machphys_mapping mapping;
1726 unsigned long machine_to_phys_nr_ents;
1727
1728 if (HYPERVISOR_memory_op(XENMEM_machphys_mapping, &mapping) == 0) {
1729 machine_to_phys_mapping = (unsigned long *)mapping.v_start;
1730 machine_to_phys_nr_ents = mapping.max_mfn + 1;
1731 } else {
1732 machine_to_phys_nr_ents = MACH2PHYS_NR_ENTRIES;
1733 }
1734 machine_to_phys_order = fls(machine_to_phys_nr_ents - 1);
1735}
1736
319f3ba5
JF
1737#ifdef CONFIG_X86_64
1738static void convert_pfn_mfn(void *v)
1739{
1740 pte_t *pte = v;
1741 int i;
1742
1743 /* All levels are converted the same way, so just treat them
1744 as ptes. */
1745 for (i = 0; i < PTRS_PER_PTE; i++)
1746 pte[i] = xen_make_pte(pte[i].pte);
1747}
1748
1749/*
1750 * Set up the inital kernel pagetable.
1751 *
1752 * We can construct this by grafting the Xen provided pagetable into
1753 * head_64.S's preconstructed pagetables. We copy the Xen L2's into
1754 * level2_ident_pgt, level2_kernel_pgt and level2_fixmap_pgt. This
1755 * means that only the kernel has a physical mapping to start with -
1756 * but that's enough to get __va working. We need to fill in the rest
1757 * of the physical mapping once some sort of allocator has been set
1758 * up.
1759 */
1760__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1761 unsigned long max_pfn)
1762{
1763 pud_t *l3;
1764 pmd_t *l2;
1765
1766 /* Zap identity mapping */
1767 init_level4_pgt[0] = __pgd(0);
1768
1769 /* Pre-constructed entries are in pfn, so convert to mfn */
1770 convert_pfn_mfn(init_level4_pgt);
1771 convert_pfn_mfn(level3_ident_pgt);
1772 convert_pfn_mfn(level3_kernel_pgt);
1773
1774 l3 = m2v(pgd[pgd_index(__START_KERNEL_map)].pgd);
1775 l2 = m2v(l3[pud_index(__START_KERNEL_map)].pud);
1776
1777 memcpy(level2_ident_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1778 memcpy(level2_kernel_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1779
1780 l3 = m2v(pgd[pgd_index(__START_KERNEL_map + PMD_SIZE)].pgd);
1781 l2 = m2v(l3[pud_index(__START_KERNEL_map + PMD_SIZE)].pud);
1782 memcpy(level2_fixmap_pgt, l2, sizeof(pmd_t) * PTRS_PER_PMD);
1783
1784 /* Set up identity map */
1785 xen_map_identity_early(level2_ident_pgt, max_pfn);
1786
1787 /* Make pagetable pieces RO */
1788 set_page_prot(init_level4_pgt, PAGE_KERNEL_RO);
1789 set_page_prot(level3_ident_pgt, PAGE_KERNEL_RO);
1790 set_page_prot(level3_kernel_pgt, PAGE_KERNEL_RO);
1791 set_page_prot(level3_user_vsyscall, PAGE_KERNEL_RO);
1792 set_page_prot(level2_kernel_pgt, PAGE_KERNEL_RO);
1793 set_page_prot(level2_fixmap_pgt, PAGE_KERNEL_RO);
1794
1795 /* Pin down new L4 */
1796 pin_pagetable_pfn(MMUEXT_PIN_L4_TABLE,
1797 PFN_DOWN(__pa_symbol(init_level4_pgt)));
1798
1799 /* Unpin Xen-provided one */
1800 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1801
1802 /* Switch over */
1803 pgd = init_level4_pgt;
1804
1805 /*
1806 * At this stage there can be no user pgd, and no page
1807 * structure to attach it to, so make sure we just set kernel
1808 * pgd.
1809 */
1810 xen_mc_batch();
1811 __xen_write_cr3(true, __pa(pgd));
1812 xen_mc_issue(PARAVIRT_LAZY_CPU);
1813
a9ce6bc1 1814 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
319f3ba5
JF
1815 __pa(xen_start_info->pt_base +
1816 xen_start_info->nr_pt_frames * PAGE_SIZE),
1817 "XEN PAGETABLES");
1818
1819 return pgd;
1820}
1821#else /* !CONFIG_X86_64 */
5b5c1af1
IC
1822static RESERVE_BRK_ARRAY(pmd_t, initial_kernel_pmd, PTRS_PER_PMD);
1823static RESERVE_BRK_ARRAY(pmd_t, swapper_kernel_pmd, PTRS_PER_PMD);
1824
1825static __init void xen_write_cr3_init(unsigned long cr3)
1826{
1827 unsigned long pfn = PFN_DOWN(__pa(swapper_pg_dir));
1828
1829 BUG_ON(read_cr3() != __pa(initial_page_table));
1830 BUG_ON(cr3 != __pa(swapper_pg_dir));
1831
1832 /*
1833 * We are switching to swapper_pg_dir for the first time (from
1834 * initial_page_table) and therefore need to mark that page
1835 * read-only and then pin it.
1836 *
1837 * Xen disallows sharing of kernel PMDs for PAE
1838 * guests. Therefore we must copy the kernel PMD from
1839 * initial_page_table into a new kernel PMD to be used in
1840 * swapper_pg_dir.
1841 */
1842 swapper_kernel_pmd =
1843 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
1844 memcpy(swapper_kernel_pmd, initial_kernel_pmd,
1845 sizeof(pmd_t) * PTRS_PER_PMD);
1846 swapper_pg_dir[KERNEL_PGD_BOUNDARY] =
1847 __pgd(__pa(swapper_kernel_pmd) | _PAGE_PRESENT);
1848 set_page_prot(swapper_kernel_pmd, PAGE_KERNEL_RO);
1849
1850 set_page_prot(swapper_pg_dir, PAGE_KERNEL_RO);
1851 xen_write_cr3(cr3);
1852 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE, pfn);
1853
1854 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE,
1855 PFN_DOWN(__pa(initial_page_table)));
1856 set_page_prot(initial_page_table, PAGE_KERNEL);
1857 set_page_prot(initial_kernel_pmd, PAGE_KERNEL);
1858
1859 pv_mmu_ops.write_cr3 = &xen_write_cr3;
1860}
319f3ba5
JF
1861
1862__init pgd_t *xen_setup_kernel_pagetable(pgd_t *pgd,
1863 unsigned long max_pfn)
1864{
1865 pmd_t *kernel_pmd;
1866
5b5c1af1
IC
1867 initial_kernel_pmd =
1868 extend_brk(sizeof(pmd_t) * PTRS_PER_PMD, PAGE_SIZE);
f0991802 1869
93dbda7c
JF
1870 max_pfn_mapped = PFN_DOWN(__pa(xen_start_info->pt_base) +
1871 xen_start_info->nr_pt_frames * PAGE_SIZE +
1872 512*1024);
319f3ba5
JF
1873
1874 kernel_pmd = m2v(pgd[KERNEL_PGD_BOUNDARY].pgd);
5b5c1af1 1875 memcpy(initial_kernel_pmd, kernel_pmd, sizeof(pmd_t) * PTRS_PER_PMD);
319f3ba5 1876
5b5c1af1 1877 xen_map_identity_early(initial_kernel_pmd, max_pfn);
319f3ba5 1878
5b5c1af1
IC
1879 memcpy(initial_page_table, pgd, sizeof(pgd_t) * PTRS_PER_PGD);
1880 initial_page_table[KERNEL_PGD_BOUNDARY] =
1881 __pgd(__pa(initial_kernel_pmd) | _PAGE_PRESENT);
319f3ba5 1882
5b5c1af1
IC
1883 set_page_prot(initial_kernel_pmd, PAGE_KERNEL_RO);
1884 set_page_prot(initial_page_table, PAGE_KERNEL_RO);
319f3ba5
JF
1885 set_page_prot(empty_zero_page, PAGE_KERNEL_RO);
1886
1887 pin_pagetable_pfn(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
1888
5b5c1af1
IC
1889 pin_pagetable_pfn(MMUEXT_PIN_L3_TABLE,
1890 PFN_DOWN(__pa(initial_page_table)));
1891 xen_write_cr3(__pa(initial_page_table));
319f3ba5 1892
a9ce6bc1 1893 memblock_x86_reserve_range(__pa(xen_start_info->pt_base),
33df4db0
JF
1894 __pa(xen_start_info->pt_base +
1895 xen_start_info->nr_pt_frames * PAGE_SIZE),
1896 "XEN PAGETABLES");
1897
5b5c1af1 1898 return initial_page_table;
319f3ba5
JF
1899}
1900#endif /* CONFIG_X86_64 */
1901
98511f35
JF
1902static unsigned char dummy_mapping[PAGE_SIZE] __page_aligned_bss;
1903
3b3809ac 1904static void xen_set_fixmap(unsigned idx, phys_addr_t phys, pgprot_t prot)
319f3ba5
JF
1905{
1906 pte_t pte;
1907
1908 phys >>= PAGE_SHIFT;
1909
1910 switch (idx) {
1911 case FIX_BTMAP_END ... FIX_BTMAP_BEGIN:
1912#ifdef CONFIG_X86_F00F_BUG
1913 case FIX_F00F_IDT:
1914#endif
1915#ifdef CONFIG_X86_32
1916 case FIX_WP_TEST:
1917 case FIX_VDSO:
1918# ifdef CONFIG_HIGHMEM
1919 case FIX_KMAP_BEGIN ... FIX_KMAP_END:
1920# endif
1921#else
1922 case VSYSCALL_LAST_PAGE ... VSYSCALL_FIRST_PAGE:
319f3ba5 1923#endif
3ecb1b7d
JF
1924 case FIX_TEXT_POKE0:
1925 case FIX_TEXT_POKE1:
1926 /* All local page mappings */
319f3ba5
JF
1927 pte = pfn_pte(phys, prot);
1928 break;
1929
98511f35
JF
1930#ifdef CONFIG_X86_LOCAL_APIC
1931 case FIX_APIC_BASE: /* maps dummy local APIC */
1932 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1933 break;
1934#endif
1935
1936#ifdef CONFIG_X86_IO_APIC
1937 case FIX_IO_APIC_BASE_0 ... FIX_IO_APIC_BASE_END:
1938 /*
1939 * We just don't map the IO APIC - all access is via
1940 * hypercalls. Keep the address in the pte for reference.
1941 */
1942 pte = pfn_pte(PFN_DOWN(__pa(dummy_mapping)), PAGE_KERNEL);
1943 break;
1944#endif
1945
c0011dbf
JF
1946 case FIX_PARAVIRT_BOOTMAP:
1947 /* This is an MFN, but it isn't an IO mapping from the
1948 IO domain */
319f3ba5
JF
1949 pte = mfn_pte(phys, prot);
1950 break;
c0011dbf
JF
1951
1952 default:
1953 /* By default, set_fixmap is used for hardware mappings */
1954 pte = mfn_pte(phys, __pgprot(pgprot_val(prot) | _PAGE_IOMAP));
1955 break;
319f3ba5
JF
1956 }
1957
1958 __native_set_fixmap(idx, pte);
1959
1960#ifdef CONFIG_X86_64
1961 /* Replicate changes to map the vsyscall page into the user
1962 pagetable vsyscall mapping. */
1963 if (idx >= VSYSCALL_LAST_PAGE && idx <= VSYSCALL_FIRST_PAGE) {
1964 unsigned long vaddr = __fix_to_virt(idx);
1965 set_pte_vaddr_pud(level3_user_vsyscall, vaddr, pte);
1966 }
1967#endif
1968}
1969
4ec5387c
JQ
1970__init void xen_ident_map_ISA(void)
1971{
1972 unsigned long pa;
1973
1974 /*
1975 * If we're dom0, then linear map the ISA machine addresses into
1976 * the kernel's address space.
1977 */
1978 if (!xen_initial_domain())
1979 return;
1980
1981 xen_raw_printk("Xen: setup ISA identity maps\n");
1982
1983 for (pa = ISA_START_ADDRESS; pa < ISA_END_ADDRESS; pa += PAGE_SIZE) {
1984 pte_t pte = mfn_pte(PFN_DOWN(pa), PAGE_KERNEL_IO);
1985
1986 if (HYPERVISOR_update_va_mapping(PAGE_OFFSET + pa, pte, 0))
1987 BUG();
1988 }
1989
1990 xen_flush_tlb();
1991}
1992
f1d7062a 1993static __init void xen_post_allocator_init(void)
319f3ba5 1994{
fc25151d
KRW
1995#ifdef CONFIG_XEN_DEBUG
1996 pv_mmu_ops.make_pte = PV_CALLEE_SAVE(xen_make_pte_debug);
1997#endif
319f3ba5
JF
1998 pv_mmu_ops.set_pte = xen_set_pte;
1999 pv_mmu_ops.set_pmd = xen_set_pmd;
2000 pv_mmu_ops.set_pud = xen_set_pud;
2001#if PAGETABLE_LEVELS == 4
2002 pv_mmu_ops.set_pgd = xen_set_pgd;
2003#endif
2004
2005 /* This will work as long as patching hasn't happened yet
2006 (which it hasn't) */
2007 pv_mmu_ops.alloc_pte = xen_alloc_pte;
2008 pv_mmu_ops.alloc_pmd = xen_alloc_pmd;
2009 pv_mmu_ops.release_pte = xen_release_pte;
2010 pv_mmu_ops.release_pmd = xen_release_pmd;
2011#if PAGETABLE_LEVELS == 4
2012 pv_mmu_ops.alloc_pud = xen_alloc_pud;
2013 pv_mmu_ops.release_pud = xen_release_pud;
2014#endif
2015
2016#ifdef CONFIG_X86_64
2017 SetPagePinned(virt_to_page(level3_user_vsyscall));
2018#endif
2019 xen_mark_init_mm_pinned();
2020}
2021
b407fc57
JF
2022static void xen_leave_lazy_mmu(void)
2023{
5caecb94 2024 preempt_disable();
b407fc57
JF
2025 xen_mc_flush();
2026 paravirt_leave_lazy_mmu();
5caecb94 2027 preempt_enable();
b407fc57 2028}
319f3ba5 2029
030cb6c0 2030static const struct pv_mmu_ops xen_mmu_ops __initdata = {
319f3ba5
JF
2031 .read_cr2 = xen_read_cr2,
2032 .write_cr2 = xen_write_cr2,
2033
2034 .read_cr3 = xen_read_cr3,
5b5c1af1
IC
2035#ifdef CONFIG_X86_32
2036 .write_cr3 = xen_write_cr3_init,
2037#else
319f3ba5 2038 .write_cr3 = xen_write_cr3,
5b5c1af1 2039#endif
319f3ba5
JF
2040
2041 .flush_tlb_user = xen_flush_tlb,
2042 .flush_tlb_kernel = xen_flush_tlb,
2043 .flush_tlb_single = xen_flush_tlb_single,
2044 .flush_tlb_others = xen_flush_tlb_others,
2045
2046 .pte_update = paravirt_nop,
2047 .pte_update_defer = paravirt_nop,
2048
2049 .pgd_alloc = xen_pgd_alloc,
2050 .pgd_free = xen_pgd_free,
2051
2052 .alloc_pte = xen_alloc_pte_init,
2053 .release_pte = xen_release_pte_init,
b96229b5 2054 .alloc_pmd = xen_alloc_pmd_init,
b96229b5 2055 .release_pmd = xen_release_pmd_init,
319f3ba5 2056
319f3ba5 2057 .set_pte = xen_set_pte_init,
319f3ba5
JF
2058 .set_pte_at = xen_set_pte_at,
2059 .set_pmd = xen_set_pmd_hyper,
2060
2061 .ptep_modify_prot_start = __ptep_modify_prot_start,
2062 .ptep_modify_prot_commit = __ptep_modify_prot_commit,
2063
da5de7c2
JF
2064 .pte_val = PV_CALLEE_SAVE(xen_pte_val),
2065 .pgd_val = PV_CALLEE_SAVE(xen_pgd_val),
319f3ba5 2066
da5de7c2
JF
2067 .make_pte = PV_CALLEE_SAVE(xen_make_pte),
2068 .make_pgd = PV_CALLEE_SAVE(xen_make_pgd),
319f3ba5
JF
2069
2070#ifdef CONFIG_X86_PAE
2071 .set_pte_atomic = xen_set_pte_atomic,
319f3ba5
JF
2072 .pte_clear = xen_pte_clear,
2073 .pmd_clear = xen_pmd_clear,
2074#endif /* CONFIG_X86_PAE */
2075 .set_pud = xen_set_pud_hyper,
2076
da5de7c2
JF
2077 .make_pmd = PV_CALLEE_SAVE(xen_make_pmd),
2078 .pmd_val = PV_CALLEE_SAVE(xen_pmd_val),
319f3ba5
JF
2079
2080#if PAGETABLE_LEVELS == 4
da5de7c2
JF
2081 .pud_val = PV_CALLEE_SAVE(xen_pud_val),
2082 .make_pud = PV_CALLEE_SAVE(xen_make_pud),
319f3ba5
JF
2083 .set_pgd = xen_set_pgd_hyper,
2084
b96229b5
JF
2085 .alloc_pud = xen_alloc_pmd_init,
2086 .release_pud = xen_release_pmd_init,
319f3ba5
JF
2087#endif /* PAGETABLE_LEVELS == 4 */
2088
2089 .activate_mm = xen_activate_mm,
2090 .dup_mmap = xen_dup_mmap,
2091 .exit_mmap = xen_exit_mmap,
2092
2093 .lazy_mode = {
2094 .enter = paravirt_enter_lazy_mmu,
b407fc57 2095 .leave = xen_leave_lazy_mmu,
319f3ba5
JF
2096 },
2097
2098 .set_fixmap = xen_set_fixmap,
2099};
2100
030cb6c0
TG
2101void __init xen_init_mmu_ops(void)
2102{
2103 x86_init.paging.pagetable_setup_start = xen_pagetable_setup_start;
2104 x86_init.paging.pagetable_setup_done = xen_pagetable_setup_done;
2105 pv_mmu_ops = xen_mmu_ops;
d2cb2145 2106
98511f35 2107 memset(dummy_mapping, 0xff, PAGE_SIZE);
030cb6c0 2108}
319f3ba5 2109
08bbc9da
AN
2110/* Protected by xen_reservation_lock. */
2111#define MAX_CONTIG_ORDER 9 /* 2MB */
2112static unsigned long discontig_frames[1<<MAX_CONTIG_ORDER];
2113
2114#define VOID_PTE (mfn_pte(0, __pgprot(0)))
2115static void xen_zap_pfn_range(unsigned long vaddr, unsigned int order,
2116 unsigned long *in_frames,
2117 unsigned long *out_frames)
2118{
2119 int i;
2120 struct multicall_space mcs;
2121
2122 xen_mc_batch();
2123 for (i = 0; i < (1UL<<order); i++, vaddr += PAGE_SIZE) {
2124 mcs = __xen_mc_entry(0);
2125
2126 if (in_frames)
2127 in_frames[i] = virt_to_mfn(vaddr);
2128
2129 MULTI_update_va_mapping(mcs.mc, vaddr, VOID_PTE, 0);
6eaa412f 2130 __set_phys_to_machine(virt_to_pfn(vaddr), INVALID_P2M_ENTRY);
08bbc9da
AN
2131
2132 if (out_frames)
2133 out_frames[i] = virt_to_pfn(vaddr);
2134 }
2135 xen_mc_issue(0);
2136}
2137
2138/*
2139 * Update the pfn-to-mfn mappings for a virtual address range, either to
2140 * point to an array of mfns, or contiguously from a single starting
2141 * mfn.
2142 */
2143static void xen_remap_exchanged_ptes(unsigned long vaddr, int order,
2144 unsigned long *mfns,
2145 unsigned long first_mfn)
2146{
2147 unsigned i, limit;
2148 unsigned long mfn;
2149
2150 xen_mc_batch();
2151
2152 limit = 1u << order;
2153 for (i = 0; i < limit; i++, vaddr += PAGE_SIZE) {
2154 struct multicall_space mcs;
2155 unsigned flags;
2156
2157 mcs = __xen_mc_entry(0);
2158 if (mfns)
2159 mfn = mfns[i];
2160 else
2161 mfn = first_mfn + i;
2162
2163 if (i < (limit - 1))
2164 flags = 0;
2165 else {
2166 if (order == 0)
2167 flags = UVMF_INVLPG | UVMF_ALL;
2168 else
2169 flags = UVMF_TLB_FLUSH | UVMF_ALL;
2170 }
2171
2172 MULTI_update_va_mapping(mcs.mc, vaddr,
2173 mfn_pte(mfn, PAGE_KERNEL), flags);
2174
2175 set_phys_to_machine(virt_to_pfn(vaddr), mfn);
2176 }
2177
2178 xen_mc_issue(0);
2179}
2180
2181/*
2182 * Perform the hypercall to exchange a region of our pfns to point to
2183 * memory with the required contiguous alignment. Takes the pfns as
2184 * input, and populates mfns as output.
2185 *
2186 * Returns a success code indicating whether the hypervisor was able to
2187 * satisfy the request or not.
2188 */
2189static int xen_exchange_memory(unsigned long extents_in, unsigned int order_in,
2190 unsigned long *pfns_in,
2191 unsigned long extents_out,
2192 unsigned int order_out,
2193 unsigned long *mfns_out,
2194 unsigned int address_bits)
2195{
2196 long rc;
2197 int success;
2198
2199 struct xen_memory_exchange exchange = {
2200 .in = {
2201 .nr_extents = extents_in,
2202 .extent_order = order_in,
2203 .extent_start = pfns_in,
2204 .domid = DOMID_SELF
2205 },
2206 .out = {
2207 .nr_extents = extents_out,
2208 .extent_order = order_out,
2209 .extent_start = mfns_out,
2210 .address_bits = address_bits,
2211 .domid = DOMID_SELF
2212 }
2213 };
2214
2215 BUG_ON(extents_in << order_in != extents_out << order_out);
2216
2217 rc = HYPERVISOR_memory_op(XENMEM_exchange, &exchange);
2218 success = (exchange.nr_exchanged == extents_in);
2219
2220 BUG_ON(!success && ((exchange.nr_exchanged != 0) || (rc == 0)));
2221 BUG_ON(success && (rc != 0));
2222
2223 return success;
2224}
2225
2226int xen_create_contiguous_region(unsigned long vstart, unsigned int order,
2227 unsigned int address_bits)
2228{
2229 unsigned long *in_frames = discontig_frames, out_frame;
2230 unsigned long flags;
2231 int success;
2232
2233 /*
2234 * Currently an auto-translated guest will not perform I/O, nor will
2235 * it require PAE page directories below 4GB. Therefore any calls to
2236 * this function are redundant and can be ignored.
2237 */
2238
2239 if (xen_feature(XENFEAT_auto_translated_physmap))
2240 return 0;
2241
2242 if (unlikely(order > MAX_CONTIG_ORDER))
2243 return -ENOMEM;
2244
2245 memset((void *) vstart, 0, PAGE_SIZE << order);
2246
08bbc9da
AN
2247 spin_lock_irqsave(&xen_reservation_lock, flags);
2248
2249 /* 1. Zap current PTEs, remembering MFNs. */
2250 xen_zap_pfn_range(vstart, order, in_frames, NULL);
2251
2252 /* 2. Get a new contiguous memory extent. */
2253 out_frame = virt_to_pfn(vstart);
2254 success = xen_exchange_memory(1UL << order, 0, in_frames,
2255 1, order, &out_frame,
2256 address_bits);
2257
2258 /* 3. Map the new extent in place of old pages. */
2259 if (success)
2260 xen_remap_exchanged_ptes(vstart, order, NULL, out_frame);
2261 else
2262 xen_remap_exchanged_ptes(vstart, order, in_frames, 0);
2263
2264 spin_unlock_irqrestore(&xen_reservation_lock, flags);
2265
2266 return success ? 0 : -ENOMEM;
2267}
2268EXPORT_SYMBOL_GPL(xen_create_contiguous_region);
2269
2270void xen_destroy_contiguous_region(unsigned long vstart, unsigned int order)
2271{
2272 unsigned long *out_frames = discontig_frames, in_frame;
2273 unsigned long flags;
2274 int success;
2275
2276 if (xen_feature(XENFEAT_auto_translated_physmap))
2277 return;
2278
2279 if (unlikely(order > MAX_CONTIG_ORDER))
2280 return;
2281
2282 memset((void *) vstart, 0, PAGE_SIZE << order);
2283
08bbc9da
AN
2284 spin_lock_irqsave(&xen_reservation_lock, flags);
2285
2286 /* 1. Find start MFN of contiguous extent. */
2287 in_frame = virt_to_mfn(vstart);
2288
2289 /* 2. Zap current PTEs. */
2290 xen_zap_pfn_range(vstart, order, NULL, out_frames);
2291
2292 /* 3. Do the exchange for non-contiguous MFNs. */
2293 success = xen_exchange_memory(1, order, &in_frame, 1UL << order,
2294 0, out_frames, 0);
2295
2296 /* 4. Map new pages in place of old pages. */
2297 if (success)
2298 xen_remap_exchanged_ptes(vstart, order, out_frames, 0);
2299 else
2300 xen_remap_exchanged_ptes(vstart, order, NULL, in_frame);
2301
2302 spin_unlock_irqrestore(&xen_reservation_lock, flags);
030cb6c0 2303}
08bbc9da 2304EXPORT_SYMBOL_GPL(xen_destroy_contiguous_region);
319f3ba5 2305
ca65f9fc 2306#ifdef CONFIG_XEN_PVHVM
59151001
SS
2307static void xen_hvm_exit_mmap(struct mm_struct *mm)
2308{
2309 struct xen_hvm_pagetable_dying a;
2310 int rc;
2311
2312 a.domid = DOMID_SELF;
2313 a.gpa = __pa(mm->pgd);
2314 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2315 WARN_ON_ONCE(rc < 0);
2316}
2317
2318static int is_pagetable_dying_supported(void)
2319{
2320 struct xen_hvm_pagetable_dying a;
2321 int rc = 0;
2322
2323 a.domid = DOMID_SELF;
2324 a.gpa = 0x00;
2325 rc = HYPERVISOR_hvm_op(HVMOP_pagetable_dying, &a);
2326 if (rc < 0) {
2327 printk(KERN_DEBUG "HVMOP_pagetable_dying not supported\n");
2328 return 0;
2329 }
2330 return 1;
2331}
2332
2333void __init xen_hvm_init_mmu_ops(void)
2334{
2335 if (is_pagetable_dying_supported())
2336 pv_mmu_ops.exit_mmap = xen_hvm_exit_mmap;
2337}
ca65f9fc 2338#endif
59151001 2339
de1ef206
IC
2340#define REMAP_BATCH_SIZE 16
2341
2342struct remap_data {
2343 unsigned long mfn;
2344 pgprot_t prot;
2345 struct mmu_update *mmu_update;
2346};
2347
2348static int remap_area_mfn_pte_fn(pte_t *ptep, pgtable_t token,
2349 unsigned long addr, void *data)
2350{
2351 struct remap_data *rmd = data;
2352 pte_t pte = pte_mkspecial(pfn_pte(rmd->mfn++, rmd->prot));
2353
2354 rmd->mmu_update->ptr = arbitrary_virt_to_machine(ptep).maddr;
2355 rmd->mmu_update->val = pte_val_ma(pte);
2356 rmd->mmu_update++;
2357
2358 return 0;
2359}
2360
2361int xen_remap_domain_mfn_range(struct vm_area_struct *vma,
2362 unsigned long addr,
2363 unsigned long mfn, int nr,
2364 pgprot_t prot, unsigned domid)
2365{
2366 struct remap_data rmd;
2367 struct mmu_update mmu_update[REMAP_BATCH_SIZE];
2368 int batch;
2369 unsigned long range;
2370 int err = 0;
2371
2372 prot = __pgprot(pgprot_val(prot) | _PAGE_IOMAP);
2373
e060e7af
SS
2374 BUG_ON(!((vma->vm_flags & (VM_PFNMAP | VM_RESERVED | VM_IO)) ==
2375 (VM_PFNMAP | VM_RESERVED | VM_IO)));
de1ef206
IC
2376
2377 rmd.mfn = mfn;
2378 rmd.prot = prot;
2379
2380 while (nr) {
2381 batch = min(REMAP_BATCH_SIZE, nr);
2382 range = (unsigned long)batch << PAGE_SHIFT;
2383
2384 rmd.mmu_update = mmu_update;
2385 err = apply_to_page_range(vma->vm_mm, addr, range,
2386 remap_area_mfn_pte_fn, &rmd);
2387 if (err)
2388 goto out;
2389
2390 err = -EFAULT;
2391 if (HYPERVISOR_mmu_update(mmu_update, batch, NULL, domid) < 0)
2392 goto out;
2393
2394 nr -= batch;
2395 addr += range;
2396 }
2397
2398 err = 0;
2399out:
2400
2401 flush_tlb_all();
2402
2403 return err;
2404}
2405EXPORT_SYMBOL_GPL(xen_remap_domain_mfn_range);
2406
994025ca
JF
2407#ifdef CONFIG_XEN_DEBUG_FS
2408
2222e71b
KRW
2409static int p2m_dump_open(struct inode *inode, struct file *filp)
2410{
2411 return single_open(filp, p2m_dump_show, NULL);
2412}
2413
2414static const struct file_operations p2m_dump_fops = {
2415 .open = p2m_dump_open,
2416 .read = seq_read,
2417 .llseek = seq_lseek,
2418 .release = single_release,
2419};
2420
994025ca
JF
2421static struct dentry *d_mmu_debug;
2422
2423static int __init xen_mmu_debugfs(void)
2424{
2425 struct dentry *d_xen = xen_init_debugfs();
2426
2427 if (d_xen == NULL)
2428 return -ENOMEM;
2429
2430 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
2431
2432 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
2433
2434 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
2435 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
2436 &mmu_stats.pgd_update_pinned);
2437 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
2438 &mmu_stats.pgd_update_pinned);
2439
2440 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
2441 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
2442 &mmu_stats.pud_update_pinned);
2443 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
2444 &mmu_stats.pud_update_pinned);
2445
2446 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
2447 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
2448 &mmu_stats.pmd_update_pinned);
2449 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
2450 &mmu_stats.pmd_update_pinned);
2451
2452 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
2453// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
2454// &mmu_stats.pte_update_pinned);
2455 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
2456 &mmu_stats.pte_update_pinned);
2457
2458 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
2459 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
2460 &mmu_stats.mmu_update_extended);
2461 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
2462 mmu_stats.mmu_update_histo, 20);
2463
2464 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
2465 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
2466 &mmu_stats.set_pte_at_batched);
2467 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
2468 &mmu_stats.set_pte_at_current);
2469 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
2470 &mmu_stats.set_pte_at_kernel);
2471
2472 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
2473 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
2474 &mmu_stats.prot_commit_batched);
2475
2222e71b 2476 debugfs_create_file("p2m", 0600, d_mmu_debug, NULL, &p2m_dump_fops);
994025ca
JF
2477 return 0;
2478}
2479fs_initcall(xen_mmu_debugfs);
2480
2481#endif /* CONFIG_XEN_DEBUG_FS */