mm: rewrite vmap layer
[linux-2.6-block.git] / arch / x86 / xen / mmu.c
CommitLineData
3b827c1b
JF
1/*
2 * Xen mmu operations
3 *
4 * This file contains the various mmu fetch and update operations.
5 * The most important job they must perform is the mapping between the
6 * domain's pfn and the overall machine mfns.
7 *
8 * Xen allows guests to directly update the pagetable, in a controlled
9 * fashion. In other words, the guest modifies the same pagetable
10 * that the CPU actually uses, which eliminates the overhead of having
11 * a separate shadow pagetable.
12 *
13 * In order to allow this, it falls on the guest domain to map its
14 * notion of a "physical" pfn - which is just a domain-local linear
15 * address - into a real "machine address" which the CPU's MMU can
16 * use.
17 *
18 * A pgd_t/pmd_t/pte_t will typically contain an mfn, and so can be
19 * inserted directly into the pagetable. When creating a new
20 * pte/pmd/pgd, it converts the passed pfn into an mfn. Conversely,
21 * when reading the content back with __(pgd|pmd|pte)_val, it converts
22 * the mfn back into a pfn.
23 *
24 * The other constraint is that all pages which make up a pagetable
25 * must be mapped read-only in the guest. This prevents uncontrolled
26 * guest updates to the pagetable. Xen strictly enforces this, and
27 * will disallow any pagetable update which will end up mapping a
28 * pagetable page RW, and will disallow using any writable page as a
29 * pagetable.
30 *
31 * Naively, when loading %cr3 with the base of a new pagetable, Xen
32 * would need to validate the whole pagetable before going on.
33 * Naturally, this is quite slow. The solution is to "pin" a
34 * pagetable, which enforces all the constraints on the pagetable even
35 * when it is not actively in use. This menas that Xen can be assured
36 * that it is still valid when you do load it into %cr3, and doesn't
37 * need to revalidate it.
38 *
39 * Jeremy Fitzhardinge <jeremy@xensource.com>, XenSource Inc, 2007
40 */
f120f13e 41#include <linux/sched.h>
f4f97b3e 42#include <linux/highmem.h>
994025ca 43#include <linux/debugfs.h>
3b827c1b 44#include <linux/bug.h>
3b827c1b
JF
45
46#include <asm/pgtable.h>
47#include <asm/tlbflush.h>
5deb30d1 48#include <asm/fixmap.h>
3b827c1b 49#include <asm/mmu_context.h>
f4f97b3e 50#include <asm/paravirt.h>
cbcd79c2 51#include <asm/linkage.h>
3b827c1b
JF
52
53#include <asm/xen/hypercall.h>
f4f97b3e 54#include <asm/xen/hypervisor.h>
3b827c1b
JF
55
56#include <xen/page.h>
57#include <xen/interface/xen.h>
58
f4f97b3e 59#include "multicalls.h"
3b827c1b 60#include "mmu.h"
994025ca
JF
61#include "debugfs.h"
62
63#define MMU_UPDATE_HISTO 30
64
65#ifdef CONFIG_XEN_DEBUG_FS
66
67static struct {
68 u32 pgd_update;
69 u32 pgd_update_pinned;
70 u32 pgd_update_batched;
71
72 u32 pud_update;
73 u32 pud_update_pinned;
74 u32 pud_update_batched;
75
76 u32 pmd_update;
77 u32 pmd_update_pinned;
78 u32 pmd_update_batched;
79
80 u32 pte_update;
81 u32 pte_update_pinned;
82 u32 pte_update_batched;
83
84 u32 mmu_update;
85 u32 mmu_update_extended;
86 u32 mmu_update_histo[MMU_UPDATE_HISTO];
87
88 u32 prot_commit;
89 u32 prot_commit_batched;
90
91 u32 set_pte_at;
92 u32 set_pte_at_batched;
93 u32 set_pte_at_pinned;
94 u32 set_pte_at_current;
95 u32 set_pte_at_kernel;
96} mmu_stats;
97
98static u8 zero_stats;
99
100static inline void check_zero(void)
101{
102 if (unlikely(zero_stats)) {
103 memset(&mmu_stats, 0, sizeof(mmu_stats));
104 zero_stats = 0;
105 }
106}
107
108#define ADD_STATS(elem, val) \
109 do { check_zero(); mmu_stats.elem += (val); } while(0)
110
111#else /* !CONFIG_XEN_DEBUG_FS */
112
113#define ADD_STATS(elem, val) do { (void)(val); } while(0)
114
115#endif /* CONFIG_XEN_DEBUG_FS */
3b827c1b 116
d6182fbf
JF
117/*
118 * Just beyond the highest usermode address. STACK_TOP_MAX has a
119 * redzone above it, so round it up to a PGD boundary.
120 */
121#define USER_LIMIT ((STACK_TOP_MAX + PGDIR_SIZE - 1) & PGDIR_MASK)
122
123
d451bb7a 124#define P2M_ENTRIES_PER_PAGE (PAGE_SIZE / sizeof(unsigned long))
cf0923ea 125#define TOP_ENTRIES (MAX_DOMAIN_PAGES / P2M_ENTRIES_PER_PAGE)
d451bb7a 126
cf0923ea 127/* Placeholder for holes in the address space */
cbcd79c2 128static unsigned long p2m_missing[P2M_ENTRIES_PER_PAGE] __page_aligned_data =
cf0923ea
JF
129 { [ 0 ... P2M_ENTRIES_PER_PAGE-1 ] = ~0UL };
130
131 /* Array of pointers to pages containing p2m entries */
cbcd79c2 132static unsigned long *p2m_top[TOP_ENTRIES] __page_aligned_data =
cf0923ea 133 { [ 0 ... TOP_ENTRIES - 1] = &p2m_missing[0] };
d451bb7a 134
d5edbc1f 135/* Arrays of p2m arrays expressed in mfns used for save/restore */
cbcd79c2 136static unsigned long p2m_top_mfn[TOP_ENTRIES] __page_aligned_bss;
d5edbc1f 137
cbcd79c2
JF
138static unsigned long p2m_top_mfn_list[TOP_ENTRIES / P2M_ENTRIES_PER_PAGE]
139 __page_aligned_bss;
d5edbc1f 140
d451bb7a
JF
141static inline unsigned p2m_top_index(unsigned long pfn)
142{
8006ec3e 143 BUG_ON(pfn >= MAX_DOMAIN_PAGES);
d451bb7a
JF
144 return pfn / P2M_ENTRIES_PER_PAGE;
145}
146
147static inline unsigned p2m_index(unsigned long pfn)
148{
149 return pfn % P2M_ENTRIES_PER_PAGE;
150}
151
d5edbc1f
JF
152/* Build the parallel p2m_top_mfn structures */
153void xen_setup_mfn_list_list(void)
154{
155 unsigned pfn, idx;
156
157 for(pfn = 0; pfn < MAX_DOMAIN_PAGES; pfn += P2M_ENTRIES_PER_PAGE) {
158 unsigned topidx = p2m_top_index(pfn);
159
160 p2m_top_mfn[topidx] = virt_to_mfn(p2m_top[topidx]);
161 }
162
163 for(idx = 0; idx < ARRAY_SIZE(p2m_top_mfn_list); idx++) {
164 unsigned topidx = idx * P2M_ENTRIES_PER_PAGE;
165 p2m_top_mfn_list[idx] = virt_to_mfn(&p2m_top_mfn[topidx]);
166 }
167
168 BUG_ON(HYPERVISOR_shared_info == &xen_dummy_shared_info);
169
170 HYPERVISOR_shared_info->arch.pfn_to_mfn_frame_list_list =
171 virt_to_mfn(p2m_top_mfn_list);
172 HYPERVISOR_shared_info->arch.max_pfn = xen_start_info->nr_pages;
173}
174
175/* Set up p2m_top to point to the domain-builder provided p2m pages */
d451bb7a
JF
176void __init xen_build_dynamic_phys_to_machine(void)
177{
d451bb7a 178 unsigned long *mfn_list = (unsigned long *)xen_start_info->mfn_list;
8006ec3e 179 unsigned long max_pfn = min(MAX_DOMAIN_PAGES, xen_start_info->nr_pages);
d5edbc1f 180 unsigned pfn;
d451bb7a 181
8006ec3e 182 for(pfn = 0; pfn < max_pfn; pfn += P2M_ENTRIES_PER_PAGE) {
d451bb7a
JF
183 unsigned topidx = p2m_top_index(pfn);
184
185 p2m_top[topidx] = &mfn_list[pfn];
186 }
187}
188
189unsigned long get_phys_to_machine(unsigned long pfn)
190{
191 unsigned topidx, idx;
192
8006ec3e
JF
193 if (unlikely(pfn >= MAX_DOMAIN_PAGES))
194 return INVALID_P2M_ENTRY;
195
d451bb7a 196 topidx = p2m_top_index(pfn);
d451bb7a
JF
197 idx = p2m_index(pfn);
198 return p2m_top[topidx][idx];
199}
15ce6005 200EXPORT_SYMBOL_GPL(get_phys_to_machine);
d451bb7a 201
d5edbc1f 202static void alloc_p2m(unsigned long **pp, unsigned long *mfnp)
d451bb7a
JF
203{
204 unsigned long *p;
205 unsigned i;
206
207 p = (void *)__get_free_page(GFP_KERNEL | __GFP_NOFAIL);
208 BUG_ON(p == NULL);
209
210 for(i = 0; i < P2M_ENTRIES_PER_PAGE; i++)
211 p[i] = INVALID_P2M_ENTRY;
212
cf0923ea 213 if (cmpxchg(pp, p2m_missing, p) != p2m_missing)
d451bb7a 214 free_page((unsigned long)p);
d5edbc1f
JF
215 else
216 *mfnp = virt_to_mfn(p);
d451bb7a
JF
217}
218
219void set_phys_to_machine(unsigned long pfn, unsigned long mfn)
220{
221 unsigned topidx, idx;
222
223 if (unlikely(xen_feature(XENFEAT_auto_translated_physmap))) {
224 BUG_ON(pfn != mfn && mfn != INVALID_P2M_ENTRY);
8006ec3e
JF
225 return;
226 }
227
228 if (unlikely(pfn >= MAX_DOMAIN_PAGES)) {
229 BUG_ON(mfn != INVALID_P2M_ENTRY);
d451bb7a
JF
230 return;
231 }
232
233 topidx = p2m_top_index(pfn);
cf0923ea 234 if (p2m_top[topidx] == p2m_missing) {
d451bb7a
JF
235 /* no need to allocate a page to store an invalid entry */
236 if (mfn == INVALID_P2M_ENTRY)
237 return;
d5edbc1f 238 alloc_p2m(&p2m_top[topidx], &p2m_top_mfn[topidx]);
d451bb7a
JF
239 }
240
241 idx = p2m_index(pfn);
242 p2m_top[topidx][idx] = mfn;
243}
244
ce803e70 245xmaddr_t arbitrary_virt_to_machine(void *vaddr)
3b827c1b 246{
ce803e70 247 unsigned long address = (unsigned long)vaddr;
da7bfc50 248 unsigned int level;
f0646e43 249 pte_t *pte = lookup_address(address, &level);
de067814 250 unsigned offset = address & ~PAGE_MASK;
3b827c1b
JF
251
252 BUG_ON(pte == NULL);
253
ebd879e3 254 return XMADDR(((phys_addr_t)pte_mfn(*pte) << PAGE_SHIFT) + offset);
3b827c1b
JF
255}
256
257void make_lowmem_page_readonly(void *vaddr)
258{
259 pte_t *pte, ptev;
260 unsigned long address = (unsigned long)vaddr;
da7bfc50 261 unsigned int level;
3b827c1b 262
f0646e43 263 pte = lookup_address(address, &level);
3b827c1b
JF
264 BUG_ON(pte == NULL);
265
266 ptev = pte_wrprotect(*pte);
267
268 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
269 BUG();
270}
271
272void make_lowmem_page_readwrite(void *vaddr)
273{
274 pte_t *pte, ptev;
275 unsigned long address = (unsigned long)vaddr;
da7bfc50 276 unsigned int level;
3b827c1b 277
f0646e43 278 pte = lookup_address(address, &level);
3b827c1b
JF
279 BUG_ON(pte == NULL);
280
281 ptev = pte_mkwrite(*pte);
282
283 if (HYPERVISOR_update_va_mapping(address, ptev, 0))
284 BUG();
285}
286
287
7708ad64 288static bool xen_page_pinned(void *ptr)
e2426cf8
JF
289{
290 struct page *page = virt_to_page(ptr);
291
292 return PagePinned(page);
293}
294
7708ad64 295static void xen_extend_mmu_update(const struct mmu_update *update)
3b827c1b 296{
d66bf8fc
JF
297 struct multicall_space mcs;
298 struct mmu_update *u;
3b827c1b 299
400d3494
JF
300 mcs = xen_mc_extend_args(__HYPERVISOR_mmu_update, sizeof(*u));
301
994025ca
JF
302 if (mcs.mc != NULL) {
303 ADD_STATS(mmu_update_extended, 1);
304 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], -1);
305
400d3494 306 mcs.mc->args[1]++;
994025ca
JF
307
308 if (mcs.mc->args[1] < MMU_UPDATE_HISTO)
309 ADD_STATS(mmu_update_histo[mcs.mc->args[1]], 1);
310 else
311 ADD_STATS(mmu_update_histo[0], 1);
312 } else {
313 ADD_STATS(mmu_update, 1);
400d3494
JF
314 mcs = __xen_mc_entry(sizeof(*u));
315 MULTI_mmu_update(mcs.mc, mcs.args, 1, NULL, DOMID_SELF);
994025ca 316 ADD_STATS(mmu_update_histo[1], 1);
400d3494 317 }
d66bf8fc 318
d66bf8fc 319 u = mcs.args;
400d3494
JF
320 *u = *update;
321}
322
323void xen_set_pmd_hyper(pmd_t *ptr, pmd_t val)
324{
325 struct mmu_update u;
326
327 preempt_disable();
328
329 xen_mc_batch();
330
ce803e70
JF
331 /* ptr may be ioremapped for 64-bit pagetable setup */
332 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 333 u.val = pmd_val_ma(val);
7708ad64 334 xen_extend_mmu_update(&u);
d66bf8fc 335
994025ca
JF
336 ADD_STATS(pmd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
337
d66bf8fc
JF
338 xen_mc_issue(PARAVIRT_LAZY_MMU);
339
340 preempt_enable();
3b827c1b
JF
341}
342
e2426cf8
JF
343void xen_set_pmd(pmd_t *ptr, pmd_t val)
344{
994025ca
JF
345 ADD_STATS(pmd_update, 1);
346
e2426cf8
JF
347 /* If page is not pinned, we can just update the entry
348 directly */
7708ad64 349 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
350 *ptr = val;
351 return;
352 }
353
994025ca
JF
354 ADD_STATS(pmd_update_pinned, 1);
355
e2426cf8
JF
356 xen_set_pmd_hyper(ptr, val);
357}
358
3b827c1b
JF
359/*
360 * Associate a virtual page frame with a given physical page frame
361 * and protection flags for that frame.
362 */
363void set_pte_mfn(unsigned long vaddr, unsigned long mfn, pgprot_t flags)
364{
836fe2f2 365 set_pte_vaddr(vaddr, mfn_pte(mfn, flags));
3b827c1b
JF
366}
367
368void xen_set_pte_at(struct mm_struct *mm, unsigned long addr,
369 pte_t *ptep, pte_t pteval)
370{
2bd50036
JF
371 /* updates to init_mm may be done without lock */
372 if (mm == &init_mm)
373 preempt_disable();
374
994025ca
JF
375 ADD_STATS(set_pte_at, 1);
376// ADD_STATS(set_pte_at_pinned, xen_page_pinned(ptep));
377 ADD_STATS(set_pte_at_current, mm == current->mm);
378 ADD_STATS(set_pte_at_kernel, mm == &init_mm);
379
d66bf8fc 380 if (mm == current->mm || mm == &init_mm) {
8965c1c0 381 if (paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU) {
d66bf8fc
JF
382 struct multicall_space mcs;
383 mcs = xen_mc_entry(0);
384
385 MULTI_update_va_mapping(mcs.mc, addr, pteval, 0);
994025ca 386 ADD_STATS(set_pte_at_batched, 1);
d66bf8fc 387 xen_mc_issue(PARAVIRT_LAZY_MMU);
2bd50036 388 goto out;
d66bf8fc
JF
389 } else
390 if (HYPERVISOR_update_va_mapping(addr, pteval, 0) == 0)
2bd50036 391 goto out;
d66bf8fc
JF
392 }
393 xen_set_pte(ptep, pteval);
2bd50036
JF
394
395out:
396 if (mm == &init_mm)
397 preempt_enable();
3b827c1b
JF
398}
399
e57778a1 400pte_t xen_ptep_modify_prot_start(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
947a69c9 401{
e57778a1
JF
402 /* Just return the pte as-is. We preserve the bits on commit */
403 return *ptep;
404}
405
406void xen_ptep_modify_prot_commit(struct mm_struct *mm, unsigned long addr,
407 pte_t *ptep, pte_t pte)
408{
400d3494 409 struct mmu_update u;
e57778a1 410
400d3494 411 xen_mc_batch();
947a69c9 412
400d3494
JF
413 u.ptr = virt_to_machine(ptep).maddr | MMU_PT_UPDATE_PRESERVE_AD;
414 u.val = pte_val_ma(pte);
7708ad64 415 xen_extend_mmu_update(&u);
947a69c9 416
994025ca
JF
417 ADD_STATS(prot_commit, 1);
418 ADD_STATS(prot_commit_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
419
e57778a1 420 xen_mc_issue(PARAVIRT_LAZY_MMU);
947a69c9
JF
421}
422
ebb9cfe2
JF
423/* Assume pteval_t is equivalent to all the other *val_t types. */
424static pteval_t pte_mfn_to_pfn(pteval_t val)
947a69c9 425{
ebb9cfe2 426 if (val & _PAGE_PRESENT) {
59438c9f 427 unsigned long mfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 428 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 429 val = ((pteval_t)mfn_to_pfn(mfn) << PAGE_SHIFT) | flags;
ebb9cfe2 430 }
947a69c9 431
ebb9cfe2 432 return val;
947a69c9
JF
433}
434
ebb9cfe2 435static pteval_t pte_pfn_to_mfn(pteval_t val)
947a69c9 436{
ebb9cfe2 437 if (val & _PAGE_PRESENT) {
59438c9f 438 unsigned long pfn = (val & PTE_PFN_MASK) >> PAGE_SHIFT;
77be1fab 439 pteval_t flags = val & PTE_FLAGS_MASK;
d8355aca 440 val = ((pteval_t)pfn_to_mfn(pfn) << PAGE_SHIFT) | flags;
947a69c9
JF
441 }
442
ebb9cfe2 443 return val;
947a69c9
JF
444}
445
ebb9cfe2 446pteval_t xen_pte_val(pte_t pte)
947a69c9 447{
ebb9cfe2 448 return pte_mfn_to_pfn(pte.pte);
947a69c9 449}
947a69c9 450
947a69c9
JF
451pgdval_t xen_pgd_val(pgd_t pgd)
452{
ebb9cfe2 453 return pte_mfn_to_pfn(pgd.pgd);
947a69c9
JF
454}
455
456pte_t xen_make_pte(pteval_t pte)
457{
ebb9cfe2
JF
458 pte = pte_pfn_to_mfn(pte);
459 return native_make_pte(pte);
947a69c9
JF
460}
461
462pgd_t xen_make_pgd(pgdval_t pgd)
463{
ebb9cfe2
JF
464 pgd = pte_pfn_to_mfn(pgd);
465 return native_make_pgd(pgd);
947a69c9
JF
466}
467
468pmdval_t xen_pmd_val(pmd_t pmd)
469{
ebb9cfe2 470 return pte_mfn_to_pfn(pmd.pmd);
947a69c9 471}
28499143 472
e2426cf8 473void xen_set_pud_hyper(pud_t *ptr, pud_t val)
f4f97b3e 474{
400d3494 475 struct mmu_update u;
f4f97b3e 476
d66bf8fc
JF
477 preempt_disable();
478
400d3494
JF
479 xen_mc_batch();
480
ce803e70
JF
481 /* ptr may be ioremapped for 64-bit pagetable setup */
482 u.ptr = arbitrary_virt_to_machine(ptr).maddr;
400d3494 483 u.val = pud_val_ma(val);
7708ad64 484 xen_extend_mmu_update(&u);
d66bf8fc 485
994025ca
JF
486 ADD_STATS(pud_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
487
d66bf8fc
JF
488 xen_mc_issue(PARAVIRT_LAZY_MMU);
489
490 preempt_enable();
f4f97b3e
JF
491}
492
e2426cf8
JF
493void xen_set_pud(pud_t *ptr, pud_t val)
494{
994025ca
JF
495 ADD_STATS(pud_update, 1);
496
e2426cf8
JF
497 /* If page is not pinned, we can just update the entry
498 directly */
7708ad64 499 if (!xen_page_pinned(ptr)) {
e2426cf8
JF
500 *ptr = val;
501 return;
502 }
503
994025ca
JF
504 ADD_STATS(pud_update_pinned, 1);
505
e2426cf8
JF
506 xen_set_pud_hyper(ptr, val);
507}
508
f4f97b3e
JF
509void xen_set_pte(pte_t *ptep, pte_t pte)
510{
994025ca
JF
511 ADD_STATS(pte_update, 1);
512// ADD_STATS(pte_update_pinned, xen_page_pinned(ptep));
513 ADD_STATS(pte_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
514
f6e58732 515#ifdef CONFIG_X86_PAE
f4f97b3e
JF
516 ptep->pte_high = pte.pte_high;
517 smp_wmb();
518 ptep->pte_low = pte.pte_low;
f6e58732
JF
519#else
520 *ptep = pte;
521#endif
f4f97b3e
JF
522}
523
f6e58732 524#ifdef CONFIG_X86_PAE
3b827c1b
JF
525void xen_set_pte_atomic(pte_t *ptep, pte_t pte)
526{
f6e58732 527 set_64bit((u64 *)ptep, native_pte_val(pte));
3b827c1b
JF
528}
529
530void xen_pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
531{
532 ptep->pte_low = 0;
533 smp_wmb(); /* make sure low gets written first */
534 ptep->pte_high = 0;
535}
536
537void xen_pmd_clear(pmd_t *pmdp)
538{
e2426cf8 539 set_pmd(pmdp, __pmd(0));
3b827c1b 540}
f6e58732 541#endif /* CONFIG_X86_PAE */
3b827c1b 542
abf33038 543pmd_t xen_make_pmd(pmdval_t pmd)
3b827c1b 544{
ebb9cfe2 545 pmd = pte_pfn_to_mfn(pmd);
947a69c9 546 return native_make_pmd(pmd);
3b827c1b 547}
3b827c1b 548
f6e58732
JF
549#if PAGETABLE_LEVELS == 4
550pudval_t xen_pud_val(pud_t pud)
551{
552 return pte_mfn_to_pfn(pud.pud);
553}
554
555pud_t xen_make_pud(pudval_t pud)
556{
557 pud = pte_pfn_to_mfn(pud);
558
559 return native_make_pud(pud);
560}
561
d6182fbf 562pgd_t *xen_get_user_pgd(pgd_t *pgd)
f6e58732 563{
d6182fbf
JF
564 pgd_t *pgd_page = (pgd_t *)(((unsigned long)pgd) & PAGE_MASK);
565 unsigned offset = pgd - pgd_page;
566 pgd_t *user_ptr = NULL;
f6e58732 567
d6182fbf
JF
568 if (offset < pgd_index(USER_LIMIT)) {
569 struct page *page = virt_to_page(pgd_page);
570 user_ptr = (pgd_t *)page->private;
571 if (user_ptr)
572 user_ptr += offset;
573 }
f6e58732 574
d6182fbf
JF
575 return user_ptr;
576}
577
578static void __xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
579{
580 struct mmu_update u;
f6e58732
JF
581
582 u.ptr = virt_to_machine(ptr).maddr;
583 u.val = pgd_val_ma(val);
7708ad64 584 xen_extend_mmu_update(&u);
d6182fbf
JF
585}
586
587/*
588 * Raw hypercall-based set_pgd, intended for in early boot before
589 * there's a page structure. This implies:
590 * 1. The only existing pagetable is the kernel's
591 * 2. It is always pinned
592 * 3. It has no user pagetable attached to it
593 */
594void __init xen_set_pgd_hyper(pgd_t *ptr, pgd_t val)
595{
596 preempt_disable();
597
598 xen_mc_batch();
599
600 __xen_set_pgd_hyper(ptr, val);
f6e58732
JF
601
602 xen_mc_issue(PARAVIRT_LAZY_MMU);
603
604 preempt_enable();
605}
606
607void xen_set_pgd(pgd_t *ptr, pgd_t val)
608{
d6182fbf
JF
609 pgd_t *user_ptr = xen_get_user_pgd(ptr);
610
994025ca
JF
611 ADD_STATS(pgd_update, 1);
612
f6e58732
JF
613 /* If page is not pinned, we can just update the entry
614 directly */
7708ad64 615 if (!xen_page_pinned(ptr)) {
f6e58732 616 *ptr = val;
d6182fbf 617 if (user_ptr) {
7708ad64 618 WARN_ON(xen_page_pinned(user_ptr));
d6182fbf
JF
619 *user_ptr = val;
620 }
f6e58732
JF
621 return;
622 }
623
994025ca
JF
624 ADD_STATS(pgd_update_pinned, 1);
625 ADD_STATS(pgd_update_batched, paravirt_get_lazy_mode() == PARAVIRT_LAZY_MMU);
626
d6182fbf
JF
627 /* If it's pinned, then we can at least batch the kernel and
628 user updates together. */
629 xen_mc_batch();
630
631 __xen_set_pgd_hyper(ptr, val);
632 if (user_ptr)
633 __xen_set_pgd_hyper(user_ptr, val);
634
635 xen_mc_issue(PARAVIRT_LAZY_MMU);
f6e58732
JF
636}
637#endif /* PAGETABLE_LEVELS == 4 */
638
f4f97b3e 639/*
5deb30d1
JF
640 * (Yet another) pagetable walker. This one is intended for pinning a
641 * pagetable. This means that it walks a pagetable and calls the
642 * callback function on each page it finds making up the page table,
643 * at every level. It walks the entire pagetable, but it only bothers
644 * pinning pte pages which are below limit. In the normal case this
645 * will be STACK_TOP_MAX, but at boot we need to pin up to
646 * FIXADDR_TOP.
647 *
648 * For 32-bit the important bit is that we don't pin beyond there,
649 * because then we start getting into Xen's ptes.
650 *
651 * For 64-bit, we must skip the Xen hole in the middle of the address
652 * space, just after the big x86-64 virtual hole.
653 */
eefb47f6
JF
654static int xen_pgd_walk(struct mm_struct *mm,
655 int (*func)(struct mm_struct *mm, struct page *,
656 enum pt_level),
7708ad64 657 unsigned long limit)
3b827c1b 658{
eefb47f6 659 pgd_t *pgd = mm->pgd;
f4f97b3e 660 int flush = 0;
5deb30d1
JF
661 unsigned hole_low, hole_high;
662 unsigned pgdidx_limit, pudidx_limit, pmdidx_limit;
663 unsigned pgdidx, pudidx, pmdidx;
f4f97b3e 664
5deb30d1
JF
665 /* The limit is the last byte to be touched */
666 limit--;
667 BUG_ON(limit >= FIXADDR_TOP);
3b827c1b
JF
668
669 if (xen_feature(XENFEAT_auto_translated_physmap))
f4f97b3e
JF
670 return 0;
671
5deb30d1
JF
672 /*
673 * 64-bit has a great big hole in the middle of the address
674 * space, which contains the Xen mappings. On 32-bit these
675 * will end up making a zero-sized hole and so is a no-op.
676 */
d6182fbf 677 hole_low = pgd_index(USER_LIMIT);
5deb30d1
JF
678 hole_high = pgd_index(PAGE_OFFSET);
679
680 pgdidx_limit = pgd_index(limit);
681#if PTRS_PER_PUD > 1
682 pudidx_limit = pud_index(limit);
683#else
684 pudidx_limit = 0;
685#endif
686#if PTRS_PER_PMD > 1
687 pmdidx_limit = pmd_index(limit);
688#else
689 pmdidx_limit = 0;
690#endif
691
5deb30d1 692 for (pgdidx = 0; pgdidx <= pgdidx_limit; pgdidx++) {
f4f97b3e 693 pud_t *pud;
3b827c1b 694
5deb30d1
JF
695 if (pgdidx >= hole_low && pgdidx < hole_high)
696 continue;
f4f97b3e 697
5deb30d1 698 if (!pgd_val(pgd[pgdidx]))
3b827c1b 699 continue;
f4f97b3e 700
5deb30d1 701 pud = pud_offset(&pgd[pgdidx], 0);
3b827c1b
JF
702
703 if (PTRS_PER_PUD > 1) /* not folded */
eefb47f6 704 flush |= (*func)(mm, virt_to_page(pud), PT_PUD);
f4f97b3e 705
5deb30d1 706 for (pudidx = 0; pudidx < PTRS_PER_PUD; pudidx++) {
f4f97b3e 707 pmd_t *pmd;
f4f97b3e 708
5deb30d1
JF
709 if (pgdidx == pgdidx_limit &&
710 pudidx > pudidx_limit)
711 goto out;
3b827c1b 712
5deb30d1 713 if (pud_none(pud[pudidx]))
3b827c1b 714 continue;
f4f97b3e 715
5deb30d1 716 pmd = pmd_offset(&pud[pudidx], 0);
3b827c1b
JF
717
718 if (PTRS_PER_PMD > 1) /* not folded */
eefb47f6 719 flush |= (*func)(mm, virt_to_page(pmd), PT_PMD);
f4f97b3e 720
5deb30d1
JF
721 for (pmdidx = 0; pmdidx < PTRS_PER_PMD; pmdidx++) {
722 struct page *pte;
723
724 if (pgdidx == pgdidx_limit &&
725 pudidx == pudidx_limit &&
726 pmdidx > pmdidx_limit)
727 goto out;
3b827c1b 728
5deb30d1 729 if (pmd_none(pmd[pmdidx]))
3b827c1b
JF
730 continue;
731
5deb30d1 732 pte = pmd_page(pmd[pmdidx]);
eefb47f6 733 flush |= (*func)(mm, pte, PT_PTE);
3b827c1b
JF
734 }
735 }
736 }
11ad93e5 737
5deb30d1 738out:
11ad93e5
JF
739 /* Do the top level last, so that the callbacks can use it as
740 a cue to do final things like tlb flushes. */
eefb47f6 741 flush |= (*func)(mm, virt_to_page(pgd), PT_PGD);
f4f97b3e
JF
742
743 return flush;
3b827c1b
JF
744}
745
7708ad64
JF
746/* If we're using split pte locks, then take the page's lock and
747 return a pointer to it. Otherwise return NULL. */
eefb47f6 748static spinlock_t *xen_pte_lock(struct page *page, struct mm_struct *mm)
74260714
JF
749{
750 spinlock_t *ptl = NULL;
751
f7d0b926 752#if USE_SPLIT_PTLOCKS
74260714 753 ptl = __pte_lockptr(page);
eefb47f6 754 spin_lock_nest_lock(ptl, &mm->page_table_lock);
74260714
JF
755#endif
756
757 return ptl;
758}
759
7708ad64 760static void xen_pte_unlock(void *v)
74260714
JF
761{
762 spinlock_t *ptl = v;
763 spin_unlock(ptl);
764}
765
766static void xen_do_pin(unsigned level, unsigned long pfn)
767{
768 struct mmuext_op *op;
769 struct multicall_space mcs;
770
771 mcs = __xen_mc_entry(sizeof(*op));
772 op = mcs.args;
773 op->cmd = level;
774 op->arg1.mfn = pfn_to_mfn(pfn);
775 MULTI_mmuext_op(mcs.mc, op, 1, NULL, DOMID_SELF);
776}
777
eefb47f6
JF
778static int xen_pin_page(struct mm_struct *mm, struct page *page,
779 enum pt_level level)
f4f97b3e 780{
d60cd46b 781 unsigned pgfl = TestSetPagePinned(page);
f4f97b3e
JF
782 int flush;
783
784 if (pgfl)
785 flush = 0; /* already pinned */
786 else if (PageHighMem(page))
787 /* kmaps need flushing if we found an unpinned
788 highpage */
789 flush = 1;
790 else {
791 void *pt = lowmem_page_address(page);
792 unsigned long pfn = page_to_pfn(page);
793 struct multicall_space mcs = __xen_mc_entry(0);
74260714 794 spinlock_t *ptl;
f4f97b3e
JF
795
796 flush = 0;
797
11ad93e5
JF
798 /*
799 * We need to hold the pagetable lock between the time
800 * we make the pagetable RO and when we actually pin
801 * it. If we don't, then other users may come in and
802 * attempt to update the pagetable by writing it,
803 * which will fail because the memory is RO but not
804 * pinned, so Xen won't do the trap'n'emulate.
805 *
806 * If we're using split pte locks, we can't hold the
807 * entire pagetable's worth of locks during the
808 * traverse, because we may wrap the preempt count (8
809 * bits). The solution is to mark RO and pin each PTE
810 * page while holding the lock. This means the number
811 * of locks we end up holding is never more than a
812 * batch size (~32 entries, at present).
813 *
814 * If we're not using split pte locks, we needn't pin
815 * the PTE pages independently, because we're
816 * protected by the overall pagetable lock.
817 */
74260714
JF
818 ptl = NULL;
819 if (level == PT_PTE)
eefb47f6 820 ptl = xen_pte_lock(page, mm);
74260714 821
f4f97b3e
JF
822 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
823 pfn_pte(pfn, PAGE_KERNEL_RO),
74260714
JF
824 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
825
11ad93e5 826 if (ptl) {
74260714
JF
827 xen_do_pin(MMUEXT_PIN_L1_TABLE, pfn);
828
74260714
JF
829 /* Queue a deferred unlock for when this batch
830 is completed. */
7708ad64 831 xen_mc_callback(xen_pte_unlock, ptl);
74260714 832 }
f4f97b3e
JF
833 }
834
835 return flush;
836}
3b827c1b 837
f4f97b3e
JF
838/* This is called just after a mm has been created, but it has not
839 been used yet. We need to make sure that its pagetable is all
840 read-only, and can be pinned. */
eefb47f6 841static void __xen_pgd_pin(struct mm_struct *mm, pgd_t *pgd)
3b827c1b 842{
f4f97b3e 843 xen_mc_batch();
3b827c1b 844
eefb47f6 845 if (xen_pgd_walk(mm, xen_pin_page, USER_LIMIT)) {
f87e4cac
JF
846 /* re-enable interrupts for kmap_flush_unused */
847 xen_mc_issue(0);
f4f97b3e 848 kmap_flush_unused();
db64fe02 849 vm_unmap_aliases();
f87e4cac
JF
850 xen_mc_batch();
851 }
f4f97b3e 852
d6182fbf
JF
853#ifdef CONFIG_X86_64
854 {
855 pgd_t *user_pgd = xen_get_user_pgd(pgd);
856
857 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(pgd)));
858
859 if (user_pgd) {
eefb47f6 860 xen_pin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
861 xen_do_pin(MMUEXT_PIN_L4_TABLE, PFN_DOWN(__pa(user_pgd)));
862 }
863 }
864#else /* CONFIG_X86_32 */
5deb30d1
JF
865#ifdef CONFIG_X86_PAE
866 /* Need to make sure unshared kernel PMD is pinnable */
eefb47f6
JF
867 xen_pin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
868 PT_PMD);
5deb30d1 869#endif
28499143 870 xen_do_pin(MMUEXT_PIN_L3_TABLE, PFN_DOWN(__pa(pgd)));
d6182fbf 871#endif /* CONFIG_X86_64 */
f4f97b3e 872 xen_mc_issue(0);
3b827c1b
JF
873}
874
eefb47f6
JF
875static void xen_pgd_pin(struct mm_struct *mm)
876{
877 __xen_pgd_pin(mm, mm->pgd);
878}
879
0e91398f
JF
880/*
881 * On save, we need to pin all pagetables to make sure they get their
882 * mfns turned into pfns. Search the list for any unpinned pgds and pin
883 * them (unpinned pgds are not currently in use, probably because the
884 * process is under construction or destruction).
eefb47f6
JF
885 *
886 * Expected to be called in stop_machine() ("equivalent to taking
887 * every spinlock in the system"), so the locking doesn't really
888 * matter all that much.
0e91398f
JF
889 */
890void xen_mm_pin_all(void)
891{
892 unsigned long flags;
893 struct page *page;
74260714 894
0e91398f 895 spin_lock_irqsave(&pgd_lock, flags);
f4f97b3e 896
0e91398f
JF
897 list_for_each_entry(page, &pgd_list, lru) {
898 if (!PagePinned(page)) {
eefb47f6 899 __xen_pgd_pin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
900 SetPageSavePinned(page);
901 }
902 }
903
904 spin_unlock_irqrestore(&pgd_lock, flags);
3b827c1b
JF
905}
906
c1f2f09e
EH
907/*
908 * The init_mm pagetable is really pinned as soon as its created, but
909 * that's before we have page structures to store the bits. So do all
910 * the book-keeping now.
911 */
eefb47f6
JF
912static __init int xen_mark_pinned(struct mm_struct *mm, struct page *page,
913 enum pt_level level)
3b827c1b 914{
f4f97b3e
JF
915 SetPagePinned(page);
916 return 0;
917}
3b827c1b 918
f4f97b3e
JF
919void __init xen_mark_init_mm_pinned(void)
920{
eefb47f6 921 xen_pgd_walk(&init_mm, xen_mark_pinned, FIXADDR_TOP);
f4f97b3e 922}
3b827c1b 923
eefb47f6
JF
924static int xen_unpin_page(struct mm_struct *mm, struct page *page,
925 enum pt_level level)
f4f97b3e 926{
d60cd46b 927 unsigned pgfl = TestClearPagePinned(page);
3b827c1b 928
f4f97b3e
JF
929 if (pgfl && !PageHighMem(page)) {
930 void *pt = lowmem_page_address(page);
931 unsigned long pfn = page_to_pfn(page);
74260714
JF
932 spinlock_t *ptl = NULL;
933 struct multicall_space mcs;
934
11ad93e5
JF
935 /*
936 * Do the converse to pin_page. If we're using split
937 * pte locks, we must be holding the lock for while
938 * the pte page is unpinned but still RO to prevent
939 * concurrent updates from seeing it in this
940 * partially-pinned state.
941 */
74260714 942 if (level == PT_PTE) {
eefb47f6 943 ptl = xen_pte_lock(page, mm);
74260714 944
11ad93e5
JF
945 if (ptl)
946 xen_do_pin(MMUEXT_UNPIN_TABLE, pfn);
74260714
JF
947 }
948
949 mcs = __xen_mc_entry(0);
f4f97b3e
JF
950
951 MULTI_update_va_mapping(mcs.mc, (unsigned long)pt,
952 pfn_pte(pfn, PAGE_KERNEL),
74260714
JF
953 level == PT_PGD ? UVMF_TLB_FLUSH : 0);
954
955 if (ptl) {
956 /* unlock when batch completed */
7708ad64 957 xen_mc_callback(xen_pte_unlock, ptl);
74260714 958 }
f4f97b3e
JF
959 }
960
961 return 0; /* never need to flush on unpin */
3b827c1b
JF
962}
963
f4f97b3e 964/* Release a pagetables pages back as normal RW */
eefb47f6 965static void __xen_pgd_unpin(struct mm_struct *mm, pgd_t *pgd)
f4f97b3e 966{
f4f97b3e
JF
967 xen_mc_batch();
968
74260714 969 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(pgd)));
f4f97b3e 970
d6182fbf
JF
971#ifdef CONFIG_X86_64
972 {
973 pgd_t *user_pgd = xen_get_user_pgd(pgd);
974
975 if (user_pgd) {
976 xen_do_pin(MMUEXT_UNPIN_TABLE, PFN_DOWN(__pa(user_pgd)));
eefb47f6 977 xen_unpin_page(mm, virt_to_page(user_pgd), PT_PGD);
d6182fbf
JF
978 }
979 }
980#endif
981
5deb30d1
JF
982#ifdef CONFIG_X86_PAE
983 /* Need to make sure unshared kernel PMD is unpinned */
eefb47f6
JF
984 xen_unpin_page(mm, virt_to_page(pgd_page(pgd[pgd_index(TASK_SIZE)])),
985 PT_PMD);
5deb30d1 986#endif
d6182fbf 987
eefb47f6 988 xen_pgd_walk(mm, xen_unpin_page, USER_LIMIT);
f4f97b3e
JF
989
990 xen_mc_issue(0);
991}
3b827c1b 992
eefb47f6
JF
993static void xen_pgd_unpin(struct mm_struct *mm)
994{
995 __xen_pgd_unpin(mm, mm->pgd);
996}
997
0e91398f
JF
998/*
999 * On resume, undo any pinning done at save, so that the rest of the
1000 * kernel doesn't see any unexpected pinned pagetables.
1001 */
1002void xen_mm_unpin_all(void)
1003{
1004 unsigned long flags;
1005 struct page *page;
1006
1007 spin_lock_irqsave(&pgd_lock, flags);
1008
1009 list_for_each_entry(page, &pgd_list, lru) {
1010 if (PageSavePinned(page)) {
1011 BUG_ON(!PagePinned(page));
eefb47f6 1012 __xen_pgd_unpin(&init_mm, (pgd_t *)page_address(page));
0e91398f
JF
1013 ClearPageSavePinned(page);
1014 }
1015 }
1016
1017 spin_unlock_irqrestore(&pgd_lock, flags);
1018}
1019
3b827c1b
JF
1020void xen_activate_mm(struct mm_struct *prev, struct mm_struct *next)
1021{
f4f97b3e 1022 spin_lock(&next->page_table_lock);
eefb47f6 1023 xen_pgd_pin(next);
f4f97b3e 1024 spin_unlock(&next->page_table_lock);
3b827c1b
JF
1025}
1026
1027void xen_dup_mmap(struct mm_struct *oldmm, struct mm_struct *mm)
1028{
f4f97b3e 1029 spin_lock(&mm->page_table_lock);
eefb47f6 1030 xen_pgd_pin(mm);
f4f97b3e 1031 spin_unlock(&mm->page_table_lock);
3b827c1b
JF
1032}
1033
3b827c1b 1034
f87e4cac
JF
1035#ifdef CONFIG_SMP
1036/* Another cpu may still have their %cr3 pointing at the pagetable, so
1037 we need to repoint it somewhere else before we can unpin it. */
1038static void drop_other_mm_ref(void *info)
1039{
1040 struct mm_struct *mm = info;
ce87b3d3 1041 struct mm_struct *active_mm;
3b827c1b 1042
ce87b3d3
JF
1043#ifdef CONFIG_X86_64
1044 active_mm = read_pda(active_mm);
1045#else
1046 active_mm = __get_cpu_var(cpu_tlbstate).active_mm;
1047#endif
1048
1049 if (active_mm == mm)
f87e4cac 1050 leave_mm(smp_processor_id());
9f79991d
JF
1051
1052 /* If this cpu still has a stale cr3 reference, then make sure
1053 it has been flushed. */
1054 if (x86_read_percpu(xen_current_cr3) == __pa(mm->pgd)) {
1055 load_cr3(swapper_pg_dir);
1056 arch_flush_lazy_cpu_mode();
1057 }
f87e4cac 1058}
3b827c1b 1059
7708ad64 1060static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac 1061{
9f79991d
JF
1062 cpumask_t mask;
1063 unsigned cpu;
1064
f87e4cac
JF
1065 if (current->active_mm == mm) {
1066 if (current->mm == mm)
1067 load_cr3(swapper_pg_dir);
1068 else
1069 leave_mm(smp_processor_id());
9f79991d
JF
1070 arch_flush_lazy_cpu_mode();
1071 }
1072
1073 /* Get the "official" set of cpus referring to our pagetable. */
1074 mask = mm->cpu_vm_mask;
1075
1076 /* It's possible that a vcpu may have a stale reference to our
1077 cr3, because its in lazy mode, and it hasn't yet flushed
1078 its set of pending hypercalls yet. In this case, we can
1079 look at its actual current cr3 value, and force it to flush
1080 if needed. */
1081 for_each_online_cpu(cpu) {
1082 if (per_cpu(xen_current_cr3, cpu) == __pa(mm->pgd))
1083 cpu_set(cpu, mask);
3b827c1b
JF
1084 }
1085
9f79991d 1086 if (!cpus_empty(mask))
3b16cf87 1087 smp_call_function_mask(mask, drop_other_mm_ref, mm, 1);
f87e4cac
JF
1088}
1089#else
7708ad64 1090static void xen_drop_mm_ref(struct mm_struct *mm)
f87e4cac
JF
1091{
1092 if (current->active_mm == mm)
1093 load_cr3(swapper_pg_dir);
1094}
1095#endif
1096
1097/*
1098 * While a process runs, Xen pins its pagetables, which means that the
1099 * hypervisor forces it to be read-only, and it controls all updates
1100 * to it. This means that all pagetable updates have to go via the
1101 * hypervisor, which is moderately expensive.
1102 *
1103 * Since we're pulling the pagetable down, we switch to use init_mm,
1104 * unpin old process pagetable and mark it all read-write, which
1105 * allows further operations on it to be simple memory accesses.
1106 *
1107 * The only subtle point is that another CPU may be still using the
1108 * pagetable because of lazy tlb flushing. This means we need need to
1109 * switch all CPUs off this pagetable before we can unpin it.
1110 */
1111void xen_exit_mmap(struct mm_struct *mm)
1112{
1113 get_cpu(); /* make sure we don't move around */
7708ad64 1114 xen_drop_mm_ref(mm);
f87e4cac 1115 put_cpu();
3b827c1b 1116
f120f13e 1117 spin_lock(&mm->page_table_lock);
df912ea4
JF
1118
1119 /* pgd may not be pinned in the error exit path of execve */
7708ad64 1120 if (xen_page_pinned(mm->pgd))
eefb47f6 1121 xen_pgd_unpin(mm);
74260714 1122
f120f13e 1123 spin_unlock(&mm->page_table_lock);
3b827c1b 1124}
994025ca
JF
1125
1126#ifdef CONFIG_XEN_DEBUG_FS
1127
1128static struct dentry *d_mmu_debug;
1129
1130static int __init xen_mmu_debugfs(void)
1131{
1132 struct dentry *d_xen = xen_init_debugfs();
1133
1134 if (d_xen == NULL)
1135 return -ENOMEM;
1136
1137 d_mmu_debug = debugfs_create_dir("mmu", d_xen);
1138
1139 debugfs_create_u8("zero_stats", 0644, d_mmu_debug, &zero_stats);
1140
1141 debugfs_create_u32("pgd_update", 0444, d_mmu_debug, &mmu_stats.pgd_update);
1142 debugfs_create_u32("pgd_update_pinned", 0444, d_mmu_debug,
1143 &mmu_stats.pgd_update_pinned);
1144 debugfs_create_u32("pgd_update_batched", 0444, d_mmu_debug,
1145 &mmu_stats.pgd_update_pinned);
1146
1147 debugfs_create_u32("pud_update", 0444, d_mmu_debug, &mmu_stats.pud_update);
1148 debugfs_create_u32("pud_update_pinned", 0444, d_mmu_debug,
1149 &mmu_stats.pud_update_pinned);
1150 debugfs_create_u32("pud_update_batched", 0444, d_mmu_debug,
1151 &mmu_stats.pud_update_pinned);
1152
1153 debugfs_create_u32("pmd_update", 0444, d_mmu_debug, &mmu_stats.pmd_update);
1154 debugfs_create_u32("pmd_update_pinned", 0444, d_mmu_debug,
1155 &mmu_stats.pmd_update_pinned);
1156 debugfs_create_u32("pmd_update_batched", 0444, d_mmu_debug,
1157 &mmu_stats.pmd_update_pinned);
1158
1159 debugfs_create_u32("pte_update", 0444, d_mmu_debug, &mmu_stats.pte_update);
1160// debugfs_create_u32("pte_update_pinned", 0444, d_mmu_debug,
1161// &mmu_stats.pte_update_pinned);
1162 debugfs_create_u32("pte_update_batched", 0444, d_mmu_debug,
1163 &mmu_stats.pte_update_pinned);
1164
1165 debugfs_create_u32("mmu_update", 0444, d_mmu_debug, &mmu_stats.mmu_update);
1166 debugfs_create_u32("mmu_update_extended", 0444, d_mmu_debug,
1167 &mmu_stats.mmu_update_extended);
1168 xen_debugfs_create_u32_array("mmu_update_histo", 0444, d_mmu_debug,
1169 mmu_stats.mmu_update_histo, 20);
1170
1171 debugfs_create_u32("set_pte_at", 0444, d_mmu_debug, &mmu_stats.set_pte_at);
1172 debugfs_create_u32("set_pte_at_batched", 0444, d_mmu_debug,
1173 &mmu_stats.set_pte_at_batched);
1174 debugfs_create_u32("set_pte_at_current", 0444, d_mmu_debug,
1175 &mmu_stats.set_pte_at_current);
1176 debugfs_create_u32("set_pte_at_kernel", 0444, d_mmu_debug,
1177 &mmu_stats.set_pte_at_kernel);
1178
1179 debugfs_create_u32("prot_commit", 0444, d_mmu_debug, &mmu_stats.prot_commit);
1180 debugfs_create_u32("prot_commit_batched", 0444, d_mmu_debug,
1181 &mmu_stats.prot_commit_batched);
1182
1183 return 0;
1184}
1185fs_initcall(xen_mmu_debugfs);
1186
1187#endif /* CONFIG_XEN_DEBUG_FS */