memblock: replace free_bootmem_late with memblock_free_late
[linux-2.6-block.git] / arch / x86 / platform / efi / quirks.c
CommitLineData
26d7f65f
MF
1#define pr_fmt(fmt) "efi: " fmt
2
eeb9db09
ST
3#include <linux/init.h>
4#include <linux/kernel.h>
5#include <linux/string.h>
6#include <linux/time.h>
7#include <linux/types.h>
8#include <linux/efi.h>
9#include <linux/slab.h>
10#include <linux/memblock.h>
11#include <linux/bootmem.h>
44be28e9 12#include <linux/acpi.h>
d394f2d9 13#include <linux/dmi.h>
5520b7e7
IM
14
15#include <asm/e820/api.h>
eeb9db09
ST
16#include <asm/efi.h>
17#include <asm/uv/uv.h>
2959c95d 18#include <asm/cpu_device_id.h>
3425d934 19#include <asm/reboot.h>
eeb9db09
ST
20
21#define EFI_MIN_RESERVE 5120
22
23#define EFI_DUMMY_GUID \
24 EFI_GUID(0x4424ac57, 0xbe4b, 0x47dd, 0x9e, 0x97, 0xed, 0x50, 0xf0, 0x9f, 0x92, 0xa9)
25
2959c95d
JK
26#define QUARK_CSH_SIGNATURE 0x5f435348 /* _CSH */
27#define QUARK_SECURITY_HEADER_SIZE 0x400
28
29/*
30 * Header prepended to the standard EFI capsule on Quark systems the are based
31 * on Intel firmware BSP.
32 * @csh_signature: Unique identifier to sanity check signed module
33 * presence ("_CSH").
34 * @version: Current version of CSH used. Should be one for Quark A0.
35 * @modulesize: Size of the entire module including the module header
36 * and payload.
37 * @security_version_number_index: Index of SVN to use for validation of signed
38 * module.
39 * @security_version_number: Used to prevent against roll back of modules.
40 * @rsvd_module_id: Currently unused for Clanton (Quark).
41 * @rsvd_module_vendor: Vendor Identifier. For Intel products value is
42 * 0x00008086.
43 * @rsvd_date: BCD representation of build date as yyyymmdd, where
44 * yyyy=4 digit year, mm=1-12, dd=1-31.
45 * @headersize: Total length of the header including including any
46 * padding optionally added by the signing tool.
47 * @hash_algo: What Hash is used in the module signing.
48 * @cryp_algo: What Crypto is used in the module signing.
49 * @keysize: Total length of the key data including including any
50 * padding optionally added by the signing tool.
51 * @signaturesize: Total length of the signature including including any
52 * padding optionally added by the signing tool.
53 * @rsvd_next_header: 32-bit pointer to the next Secure Boot Module in the
54 * chain, if there is a next header.
55 * @rsvd: Reserved, padding structure to required size.
56 *
57 * See also QuartSecurityHeader_t in
58 * Quark_EDKII_v1.2.1.1/QuarkPlatformPkg/Include/QuarkBootRom.h
59 * from https://downloadcenter.intel.com/download/23197/Intel-Quark-SoC-X1000-Board-Support-Package-BSP
60 */
61struct quark_security_header {
62 u32 csh_signature;
63 u32 version;
64 u32 modulesize;
65 u32 security_version_number_index;
66 u32 security_version_number;
67 u32 rsvd_module_id;
68 u32 rsvd_module_vendor;
69 u32 rsvd_date;
70 u32 headersize;
71 u32 hash_algo;
72 u32 cryp_algo;
73 u32 keysize;
74 u32 signaturesize;
75 u32 rsvd_next_header;
76 u32 rsvd[2];
77};
78
36b64976 79static const efi_char16_t efi_dummy_name[] = L"DUMMY";
eeb9db09
ST
80
81static bool efi_no_storage_paranoia;
82
83/*
84 * Some firmware implementations refuse to boot if there's insufficient
85 * space in the variable store. The implementation of garbage collection
86 * in some FW versions causes stale (deleted) variables to take up space
87 * longer than intended and space is only freed once the store becomes
88 * almost completely full.
89 *
90 * Enabling this option disables the space checks in
91 * efi_query_variable_store() and forces garbage collection.
92 *
93 * Only enable this option if deleting EFI variables does not free up
94 * space in your variable store, e.g. if despite deleting variables
95 * you're unable to create new ones.
96 */
97static int __init setup_storage_paranoia(char *arg)
98{
99 efi_no_storage_paranoia = true;
100 return 0;
101}
102early_param("efi_no_storage_paranoia", setup_storage_paranoia);
103
104/*
105 * Deleting the dummy variable which kicks off garbage collection
106*/
107void efi_delete_dummy_variable(void)
108{
5a58bc1b
SP
109 efi.set_variable_nonblocking((efi_char16_t *)efi_dummy_name,
110 &EFI_DUMMY_GUID,
111 EFI_VARIABLE_NON_VOLATILE |
112 EFI_VARIABLE_BOOTSERVICE_ACCESS |
113 EFI_VARIABLE_RUNTIME_ACCESS, 0, NULL);
eeb9db09
ST
114}
115
ca0e30dc
AB
116/*
117 * In the nonblocking case we do not attempt to perform garbage
118 * collection if we do not have enough free space. Rather, we do the
119 * bare minimum check and give up immediately if the available space
120 * is below EFI_MIN_RESERVE.
121 *
122 * This function is intended to be small and simple because it is
123 * invoked from crash handler paths.
124 */
125static efi_status_t
126query_variable_store_nonblocking(u32 attributes, unsigned long size)
127{
128 efi_status_t status;
129 u64 storage_size, remaining_size, max_size;
130
131 status = efi.query_variable_info_nonblocking(attributes, &storage_size,
132 &remaining_size,
133 &max_size);
134 if (status != EFI_SUCCESS)
135 return status;
136
137 if (remaining_size - size < EFI_MIN_RESERVE)
138 return EFI_OUT_OF_RESOURCES;
139
140 return EFI_SUCCESS;
141}
142
eeb9db09
ST
143/*
144 * Some firmware implementations refuse to boot if there's insufficient space
145 * in the variable store. Ensure that we never use more than a safe limit.
146 *
147 * Return EFI_SUCCESS if it is safe to write 'size' bytes to the variable
148 * store.
149 */
ca0e30dc
AB
150efi_status_t efi_query_variable_store(u32 attributes, unsigned long size,
151 bool nonblocking)
eeb9db09
ST
152{
153 efi_status_t status;
154 u64 storage_size, remaining_size, max_size;
155
156 if (!(attributes & EFI_VARIABLE_NON_VOLATILE))
157 return 0;
158
ca0e30dc
AB
159 if (nonblocking)
160 return query_variable_store_nonblocking(attributes, size);
161
eeb9db09
ST
162 status = efi.query_variable_info(attributes, &storage_size,
163 &remaining_size, &max_size);
164 if (status != EFI_SUCCESS)
165 return status;
166
167 /*
168 * We account for that by refusing the write if permitting it would
169 * reduce the available space to under 5KB. This figure was provided by
170 * Samsung, so should be safe.
171 */
172 if ((remaining_size - size < EFI_MIN_RESERVE) &&
173 !efi_no_storage_paranoia) {
174
175 /*
176 * Triggering garbage collection may require that the firmware
177 * generate a real EFI_OUT_OF_RESOURCES error. We can force
178 * that by attempting to use more space than is available.
179 */
180 unsigned long dummy_size = remaining_size + 1024;
9f66d8d7 181 void *dummy = kzalloc(dummy_size, GFP_KERNEL);
eeb9db09
ST
182
183 if (!dummy)
184 return EFI_OUT_OF_RESOURCES;
185
36b64976
AB
186 status = efi.set_variable((efi_char16_t *)efi_dummy_name,
187 &EFI_DUMMY_GUID,
eeb9db09
ST
188 EFI_VARIABLE_NON_VOLATILE |
189 EFI_VARIABLE_BOOTSERVICE_ACCESS |
190 EFI_VARIABLE_RUNTIME_ACCESS,
191 dummy_size, dummy);
192
193 if (status == EFI_SUCCESS) {
194 /*
195 * This should have failed, so if it didn't make sure
196 * that we delete it...
197 */
198 efi_delete_dummy_variable();
199 }
200
201 kfree(dummy);
202
203 /*
204 * The runtime code may now have triggered a garbage collection
205 * run, so check the variable info again
206 */
207 status = efi.query_variable_info(attributes, &storage_size,
208 &remaining_size, &max_size);
209
210 if (status != EFI_SUCCESS)
211 return status;
212
213 /*
214 * There still isn't enough room, so return an error
215 */
216 if (remaining_size - size < EFI_MIN_RESERVE)
217 return EFI_OUT_OF_RESOURCES;
218 }
219
220 return EFI_SUCCESS;
221}
222EXPORT_SYMBOL_GPL(efi_query_variable_store);
223
816e7612
MF
224/*
225 * The UEFI specification makes it clear that the operating system is
226 * free to do whatever it wants with boot services code after
227 * ExitBootServices() has been called. Ignoring this recommendation a
228 * significant bunch of EFI implementations continue calling into boot
229 * services code (SetVirtualAddressMap). In order to work around such
230 * buggy implementations we reserve boot services region during EFI
231 * init and make sure it stays executable. Then, after
232 * SetVirtualAddressMap(), it is discarded.
233 *
234 * However, some boot services regions contain data that is required
235 * by drivers, so we need to track which memory ranges can never be
236 * freed. This is done by tagging those regions with the
237 * EFI_MEMORY_RUNTIME attribute.
238 *
239 * Any driver that wants to mark a region as reserved must use
240 * efi_mem_reserve() which will insert a new EFI memory descriptor
241 * into efi.memmap (splitting existing regions if necessary) and tag
242 * it with EFI_MEMORY_RUNTIME.
243 */
244void __init efi_arch_mem_reserve(phys_addr_t addr, u64 size)
245{
246 phys_addr_t new_phys, new_size;
247 struct efi_mem_range mr;
248 efi_memory_desc_t md;
249 int num_entries;
250 void *new;
251
7e1550b8
AB
252 if (efi_mem_desc_lookup(addr, &md) ||
253 md.type != EFI_BOOT_SERVICES_DATA) {
816e7612
MF
254 pr_err("Failed to lookup EFI memory descriptor for %pa\n", &addr);
255 return;
256 }
257
258 if (addr + size > md.phys_addr + (md.num_pages << EFI_PAGE_SHIFT)) {
259 pr_err("Region spans EFI memory descriptors, %pa\n", &addr);
260 return;
261 }
262
6f6266a5
OS
263 /* No need to reserve regions that will never be freed. */
264 if (md.attribute & EFI_MEMORY_RUNTIME)
265 return;
266
92dc3350
MF
267 size += addr % EFI_PAGE_SIZE;
268 size = round_up(size, EFI_PAGE_SIZE);
269 addr = round_down(addr, EFI_PAGE_SIZE);
270
816e7612 271 mr.range.start = addr;
92dc3350 272 mr.range.end = addr + size - 1;
816e7612
MF
273 mr.attribute = md.attribute | EFI_MEMORY_RUNTIME;
274
275 num_entries = efi_memmap_split_count(&md, &mr.range);
276 num_entries += efi.memmap.nr_map;
277
278 new_size = efi.memmap.desc_size * num_entries;
279
20b1e22d 280 new_phys = efi_memmap_alloc(num_entries);
816e7612
MF
281 if (!new_phys) {
282 pr_err("Could not allocate boot services memmap\n");
283 return;
284 }
285
286 new = early_memremap(new_phys, new_size);
287 if (!new) {
288 pr_err("Failed to map new boot services memmap\n");
289 return;
290 }
291
292 efi_memmap_insert(&efi.memmap, new, &mr);
293 early_memunmap(new, new_size);
294
295 efi_memmap_install(new_phys, num_entries);
296}
297
452308de
MF
298/*
299 * Helper function for efi_reserve_boot_services() to figure out if we
300 * can free regions in efi_free_boot_services().
301 *
302 * Use this function to ensure we do not free regions owned by somebody
303 * else. We must only reserve (and then free) regions:
304 *
305 * - Not within any part of the kernel
09821ff1 306 * - Not the BIOS reserved area (E820_TYPE_RESERVED, E820_TYPE_NVS, etc)
452308de
MF
307 */
308static bool can_free_region(u64 start, u64 size)
309{
310 if (start + size > __pa_symbol(_text) && start <= __pa_symbol(_end))
311 return false;
312
09821ff1 313 if (!e820__mapped_all(start, start+size, E820_TYPE_RAM))
452308de
MF
314 return false;
315
316 return true;
317}
318
eeb9db09
ST
319void __init efi_reserve_boot_services(void)
320{
78ce248f 321 efi_memory_desc_t *md;
eeb9db09 322
78ce248f 323 for_each_efi_memory_desc(md) {
eeb9db09
ST
324 u64 start = md->phys_addr;
325 u64 size = md->num_pages << EFI_PAGE_SHIFT;
452308de 326 bool already_reserved;
eeb9db09
ST
327
328 if (md->type != EFI_BOOT_SERVICES_CODE &&
329 md->type != EFI_BOOT_SERVICES_DATA)
330 continue;
452308de
MF
331
332 already_reserved = memblock_is_region_reserved(start, size);
333
334 /*
335 * Because the following memblock_reserve() is paired
53ab85eb 336 * with memblock_free_late() for this region in
452308de
MF
337 * efi_free_boot_services(), we must be extremely
338 * careful not to reserve, and subsequently free,
339 * critical regions of memory (like the kernel image) or
340 * those regions that somebody else has already
341 * reserved.
342 *
343 * A good example of a critical region that must not be
344 * freed is page zero (first 4Kb of memory), which may
345 * contain boot services code/data but is marked
09821ff1 346 * E820_TYPE_RESERVED by trim_bios_range().
452308de
MF
347 */
348 if (!already_reserved) {
eeb9db09 349 memblock_reserve(start, size);
452308de
MF
350
351 /*
352 * If we are the first to reserve the region, no
353 * one else cares about it. We own it and can
354 * free it later.
355 */
356 if (can_free_region(start, size))
357 continue;
358 }
359
360 /*
361 * We don't own the region. We must not free it.
362 *
363 * Setting this bit for a boot services region really
364 * doesn't make sense as far as the firmware is
365 * concerned, but it does provide us with a way to tag
366 * those regions that must not be paired with
53ab85eb 367 * memblock_free_late().
452308de
MF
368 */
369 md->attribute |= EFI_MEMORY_RUNTIME;
eeb9db09
ST
370 }
371}
372
373void __init efi_free_boot_services(void)
374{
816e7612 375 phys_addr_t new_phys, new_size;
78ce248f 376 efi_memory_desc_t *md;
816e7612
MF
377 int num_entries = 0;
378 void *new, *new_md;
eeb9db09 379
78ce248f 380 for_each_efi_memory_desc(md) {
eeb9db09
ST
381 unsigned long long start = md->phys_addr;
382 unsigned long long size = md->num_pages << EFI_PAGE_SHIFT;
5bc653b7 383 size_t rm_size;
eeb9db09
ST
384
385 if (md->type != EFI_BOOT_SERVICES_CODE &&
816e7612
MF
386 md->type != EFI_BOOT_SERVICES_DATA) {
387 num_entries++;
eeb9db09 388 continue;
816e7612 389 }
eeb9db09 390
452308de 391 /* Do not free, someone else owns it: */
816e7612
MF
392 if (md->attribute & EFI_MEMORY_RUNTIME) {
393 num_entries++;
eeb9db09 394 continue;
816e7612 395 }
eeb9db09 396
5bc653b7
AL
397 /*
398 * Nasty quirk: if all sub-1MB memory is used for boot
399 * services, we can get here without having allocated the
400 * real mode trampoline. It's too late to hand boot services
401 * memory back to the memblock allocator, so instead
402 * try to manually allocate the trampoline if needed.
403 *
404 * I've seen this on a Dell XPS 13 9350 with firmware
405 * 1.4.4 with SGX enabled booting Linux via Fedora 24's
406 * grub2-efi on a hard disk. (And no, I don't know why
407 * this happened, but Linux should still try to boot rather
408 * panicing early.)
409 */
410 rm_size = real_mode_size_needed();
411 if (rm_size && (start + rm_size) < (1<<20) && size >= rm_size) {
412 set_real_mode_mem(start, rm_size);
413 start += rm_size;
414 size -= rm_size;
415 }
416
53ab85eb 417 memblock_free_late(start, size);
eeb9db09 418 }
816e7612 419
1ea34adb
JG
420 if (!num_entries)
421 return;
422
816e7612 423 new_size = efi.memmap.desc_size * num_entries;
20b1e22d 424 new_phys = efi_memmap_alloc(num_entries);
816e7612
MF
425 if (!new_phys) {
426 pr_err("Failed to allocate new EFI memmap\n");
427 return;
428 }
429
430 new = memremap(new_phys, new_size, MEMREMAP_WB);
431 if (!new) {
432 pr_err("Failed to map new EFI memmap\n");
433 return;
434 }
435
436 /*
437 * Build a new EFI memmap that excludes any boot services
438 * regions that are not tagged EFI_MEMORY_RUNTIME, since those
439 * regions have now been freed.
440 */
441 new_md = new;
442 for_each_efi_memory_desc(md) {
443 if (!(md->attribute & EFI_MEMORY_RUNTIME) &&
444 (md->type == EFI_BOOT_SERVICES_CODE ||
445 md->type == EFI_BOOT_SERVICES_DATA))
446 continue;
447
448 memcpy(new_md, md, efi.memmap.desc_size);
449 new_md += efi.memmap.desc_size;
450 }
451
452 memunmap(new);
453
454 if (efi_memmap_install(new_phys, num_entries)) {
455 pr_err("Could not install new EFI memmap\n");
456 return;
457 }
eeb9db09
ST
458}
459
460/*
461 * A number of config table entries get remapped to virtual addresses
462 * after entering EFI virtual mode. However, the kexec kernel requires
463 * their physical addresses therefore we pass them via setup_data and
464 * correct those entries to their respective physical addresses here.
465 *
466 * Currently only handles smbios which is necessary for some firmware
467 * implementation.
468 */
469int __init efi_reuse_config(u64 tables, int nr_tables)
470{
471 int i, sz, ret = 0;
472 void *p, *tablep;
473 struct efi_setup_data *data;
474
475 if (!efi_setup)
476 return 0;
477
478 if (!efi_enabled(EFI_64BIT))
479 return 0;
480
481 data = early_memremap(efi_setup, sizeof(*data));
482 if (!data) {
483 ret = -ENOMEM;
484 goto out;
485 }
486
487 if (!data->smbios)
488 goto out_memremap;
489
490 sz = sizeof(efi_config_table_64_t);
491
492 p = tablep = early_memremap(tables, nr_tables * sz);
493 if (!p) {
494 pr_err("Could not map Configuration table!\n");
495 ret = -ENOMEM;
496 goto out_memremap;
497 }
498
499 for (i = 0; i < efi.systab->nr_tables; i++) {
500 efi_guid_t guid;
501
502 guid = ((efi_config_table_64_t *)p)->guid;
503
504 if (!efi_guidcmp(guid, SMBIOS_TABLE_GUID))
505 ((efi_config_table_64_t *)p)->table = data->smbios;
506 p += sz;
507 }
98a716b6 508 early_memunmap(tablep, nr_tables * sz);
eeb9db09
ST
509
510out_memremap:
98a716b6 511 early_memunmap(data, sizeof(*data));
eeb9db09
ST
512out:
513 return ret;
514}
515
d394f2d9
AT
516static const struct dmi_system_id sgi_uv1_dmi[] = {
517 { NULL, "SGI UV1",
518 { DMI_MATCH(DMI_PRODUCT_NAME, "Stoutland Platform"),
519 DMI_MATCH(DMI_PRODUCT_VERSION, "1.0"),
520 DMI_MATCH(DMI_BIOS_VENDOR, "SGI.COM"),
521 }
522 },
523 { } /* NULL entry stops DMI scanning */
524};
525
eeb9db09
ST
526void __init efi_apply_memmap_quirks(void)
527{
528 /*
529 * Once setup is done earlier, unmap the EFI memory map on mismatched
530 * firmware/kernel architectures since there is no support for runtime
531 * services.
532 */
533 if (!efi_runtime_supported()) {
26d7f65f 534 pr_info("Setup done, disabling due to 32/64-bit mismatch\n");
9479c7ce 535 efi_memmap_unmap();
eeb9db09
ST
536 }
537
d394f2d9
AT
538 /* UV2+ BIOS has a fix for this issue. UV1 still needs the quirk. */
539 if (dmi_check_system(sgi_uv1_dmi))
eeb9db09
ST
540 set_bit(EFI_OLD_MEMMAP, &efi.flags);
541}
44be28e9
MF
542
543/*
544 * For most modern platforms the preferred method of powering off is via
545 * ACPI. However, there are some that are known to require the use of
546 * EFI runtime services and for which ACPI does not work at all.
547 *
548 * Using EFI is a last resort, to be used only if no other option
549 * exists.
550 */
551bool efi_reboot_required(void)
552{
553 if (!acpi_gbl_reduced_hardware)
554 return false;
555
556 efi_reboot_quirk_mode = EFI_RESET_WARM;
557 return true;
558}
559
560bool efi_poweroff_required(void)
561{
13737181 562 return acpi_gbl_reduced_hardware || acpi_no_s5;
44be28e9 563}
2959c95d
JK
564
565#ifdef CONFIG_EFI_CAPSULE_QUIRK_QUARK_CSH
566
567static int qrk_capsule_setup_info(struct capsule_info *cap_info, void **pkbuff,
568 size_t hdr_bytes)
569{
570 struct quark_security_header *csh = *pkbuff;
571
572 /* Only process data block that is larger than the security header */
573 if (hdr_bytes < sizeof(struct quark_security_header))
574 return 0;
575
576 if (csh->csh_signature != QUARK_CSH_SIGNATURE ||
577 csh->headersize != QUARK_SECURITY_HEADER_SIZE)
578 return 1;
579
580 /* Only process data block if EFI header is included */
581 if (hdr_bytes < QUARK_SECURITY_HEADER_SIZE +
582 sizeof(efi_capsule_header_t))
583 return 0;
584
585 pr_debug("Quark security header detected\n");
586
587 if (csh->rsvd_next_header != 0) {
588 pr_err("multiple Quark security headers not supported\n");
589 return -EINVAL;
590 }
591
592 *pkbuff += csh->headersize;
593 cap_info->total_size = csh->headersize;
594
595 /*
596 * Update the first page pointer to skip over the CSH header.
597 */
f24c4d47
AB
598 cap_info->phys[0] += csh->headersize;
599
600 /*
601 * cap_info->capsule should point at a virtual mapping of the entire
602 * capsule, starting at the capsule header. Our image has the Quark
603 * security header prepended, so we cannot rely on the default vmap()
604 * mapping created by the generic capsule code.
605 * Given that the Quark firmware does not appear to care about the
606 * virtual mapping, let's just point cap_info->capsule at our copy
607 * of the capsule header.
608 */
609 cap_info->capsule = &cap_info->header;
2959c95d
JK
610
611 return 1;
612}
613
614#define ICPU(family, model, quirk_handler) \
615 { X86_VENDOR_INTEL, family, model, X86_FEATURE_ANY, \
616 (unsigned long)&quirk_handler }
617
618static const struct x86_cpu_id efi_capsule_quirk_ids[] = {
619 ICPU(5, 9, qrk_capsule_setup_info), /* Intel Quark X1000 */
620 { }
621};
622
623int efi_capsule_setup_info(struct capsule_info *cap_info, void *kbuff,
624 size_t hdr_bytes)
625{
626 int (*quirk_handler)(struct capsule_info *, void **, size_t);
627 const struct x86_cpu_id *id;
628 int ret;
629
630 if (hdr_bytes < sizeof(efi_capsule_header_t))
631 return 0;
632
633 cap_info->total_size = 0;
634
635 id = x86_match_cpu(efi_capsule_quirk_ids);
636 if (id) {
637 /*
638 * The quirk handler is supposed to return
639 * - a value > 0 if the setup should continue, after advancing
640 * kbuff as needed
641 * - 0 if not enough hdr_bytes are available yet
642 * - a negative error code otherwise
643 */
644 quirk_handler = (typeof(quirk_handler))id->driver_data;
645 ret = quirk_handler(cap_info, &kbuff, hdr_bytes);
646 if (ret <= 0)
647 return ret;
648 }
649
650 memcpy(&cap_info->header, kbuff, sizeof(cap_info->header));
651
652 cap_info->total_size += cap_info->header.imagesize;
653
654 return __efi_capsule_setup_info(cap_info);
655}
656
657#endif
3425d934
SP
658
659/*
660 * If any access by any efi runtime service causes a page fault, then,
661 * 1. If it's efi_reset_system(), reboot through BIOS.
662 * 2. If any other efi runtime service, then
663 * a. Return error status to the efi caller process.
664 * b. Disable EFI Runtime Services forever and
665 * c. Freeze efi_rts_wq and schedule new process.
666 *
667 * @return: Returns, if the page fault is not handled. This function
668 * will never return if the page fault is handled successfully.
669 */
670void efi_recover_from_page_fault(unsigned long phys_addr)
671{
672 if (!IS_ENABLED(CONFIG_X86_64))
673 return;
674
675 /*
676 * Make sure that an efi runtime service caused the page fault.
677 * "efi_mm" cannot be used to check if the page fault had occurred
678 * in the firmware context because efi=old_map doesn't use efi_pgd.
679 */
680 if (efi_rts_work.efi_rts_id == NONE)
681 return;
682
683 /*
684 * Address range 0x0000 - 0x0fff is always mapped in the efi_pgd, so
685 * page faulting on these addresses isn't expected.
686 */
687 if (phys_addr >= 0x0000 && phys_addr <= 0x0fff)
688 return;
689
690 /*
691 * Print stack trace as it might be useful to know which EFI Runtime
692 * Service is buggy.
693 */
694 WARN(1, FW_BUG "Page fault caused by firmware at PA: 0x%lx\n",
695 phys_addr);
696
697 /*
698 * Buggy efi_reset_system() is handled differently from other EFI
699 * Runtime Services as it doesn't use efi_rts_wq. Although,
700 * native_machine_emergency_restart() says that machine_real_restart()
701 * could fail, it's better not to compilcate this fault handler
702 * because this case occurs *very* rarely and hence could be improved
703 * on a need by basis.
704 */
705 if (efi_rts_work.efi_rts_id == RESET_SYSTEM) {
706 pr_info("efi_reset_system() buggy! Reboot through BIOS\n");
707 machine_real_restart(MRR_BIOS);
708 return;
709 }
710
711 /*
712 * Before calling EFI Runtime Service, the kernel has switched the
713 * calling process to efi_mm. Hence, switch back to task_mm.
714 */
715 arch_efi_call_virt_teardown();
716
717 /* Signal error status to the efi caller process */
718 efi_rts_work.status = EFI_ABORTED;
719 complete(&efi_rts_work.efi_rts_comp);
720
721 clear_bit(EFI_RUNTIME_SERVICES, &efi.flags);
722 pr_info("Froze efi_rts_wq and disabled EFI Runtime Services\n");
723
724 /*
725 * Call schedule() in an infinite loop, so that any spurious wake ups
726 * will never run efi_rts_wq again.
727 */
728 for (;;) {
729 set_current_state(TASK_IDLE);
730 schedule();
731 }
732
733 return;
734}