x86/mm: Convert trivial cases of page table walk to 5-level paging
[linux-block.git] / arch / x86 / platform / efi / efi_64.c
CommitLineData
5b83683f
HY
1/*
2 * x86_64 specific EFI support functions
3 * Based on Extensible Firmware Interface Specification version 1.0
4 *
5 * Copyright (C) 2005-2008 Intel Co.
6 * Fenghua Yu <fenghua.yu@intel.com>
7 * Bibo Mao <bibo.mao@intel.com>
8 * Chandramouli Narayanan <mouli@linux.intel.com>
9 * Huang Ying <ying.huang@intel.com>
10 *
11 * Code to convert EFI to E820 map has been implemented in elilo bootloader
12 * based on a EFI patch by Edgar Hucek. Based on the E820 map, the page table
13 * is setup appropriately for EFI runtime code.
14 * - mouli 06/14/2007.
15 *
16 */
17
26d7f65f
MF
18#define pr_fmt(fmt) "efi: " fmt
19
5b83683f
HY
20#include <linux/kernel.h>
21#include <linux/init.h>
22#include <linux/mm.h>
23#include <linux/types.h>
24#include <linux/spinlock.h>
25#include <linux/bootmem.h>
26#include <linux/ioport.h>
cc3ae7b0 27#include <linux/init.h>
5ab788d7 28#include <linux/mc146818rtc.h>
5b83683f
HY
29#include <linux/efi.h>
30#include <linux/uaccess.h>
31#include <linux/io.h>
32#include <linux/reboot.h>
0d01ff25 33#include <linux/slab.h>
f6697df3 34#include <linux/ucs2_string.h>
5b83683f
HY
35
36#include <asm/setup.h>
37#include <asm/page.h>
38#include <asm/e820.h>
39#include <asm/pgtable.h>
40#include <asm/tlbflush.h>
5b83683f
HY
41#include <asm/proto.h>
42#include <asm/efi.h>
4de0d4a6 43#include <asm/cacheflush.h>
3819cd48 44#include <asm/fixmap.h>
d2f7cbe7 45#include <asm/realmode.h>
4f9dbcfc 46#include <asm/time.h>
67a9108e 47#include <asm/pgalloc.h>
5b83683f 48
d2f7cbe7
BP
49/*
50 * We allocate runtime services regions bottom-up, starting from -4G, i.e.
51 * 0xffff_ffff_0000_0000 and limit EFI VA mapping space to 64G.
52 */
8266e31e 53static u64 efi_va = EFI_VA_START;
d2f7cbe7 54
c9f2a9a6 55struct efi_scratch efi_scratch;
d2f7cbe7 56
9cd2b07c 57static void __init early_code_mapping_set_exec(int executable)
5b83683f
HY
58{
59 efi_memory_desc_t *md;
5b83683f 60
a2172e25
HY
61 if (!(__supported_pte_mask & _PAGE_NX))
62 return;
63
916f676f 64 /* Make EFI service code area executable */
78ce248f 65 for_each_efi_memory_desc(md) {
916f676f
MG
66 if (md->type == EFI_RUNTIME_SERVICES_CODE ||
67 md->type == EFI_BOOT_SERVICES_CODE)
9cd2b07c 68 efi_set_executable(md, executable);
5b83683f
HY
69 }
70}
71
744937b0 72pgd_t * __init efi_call_phys_prolog(void)
5b83683f
HY
73{
74 unsigned long vaddress;
744937b0
IM
75 pgd_t *save_pgd;
76
b8f2c21d
NZ
77 int pgd;
78 int n_pgds;
5b83683f 79
c9f2a9a6
MF
80 if (!efi_enabled(EFI_OLD_MEMMAP)) {
81 save_pgd = (pgd_t *)read_cr3();
82 write_cr3((unsigned long)efi_scratch.efi_pgt);
83 goto out;
84 }
d2f7cbe7 85
9cd2b07c 86 early_code_mapping_set_exec(1);
b8f2c21d
NZ
87
88 n_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT), PGDIR_SIZE);
20ebc15e 89 save_pgd = kmalloc_array(n_pgds, sizeof(*save_pgd), GFP_KERNEL);
b8f2c21d
NZ
90
91 for (pgd = 0; pgd < n_pgds; pgd++) {
92 save_pgd[pgd] = *pgd_offset_k(pgd * PGDIR_SIZE);
93 vaddress = (unsigned long)__va(pgd * PGDIR_SIZE);
94 set_pgd(pgd_offset_k(pgd * PGDIR_SIZE), *pgd_offset_k(vaddress));
95 }
c9f2a9a6 96out:
5b83683f 97 __flush_tlb_all();
744937b0
IM
98
99 return save_pgd;
5b83683f
HY
100}
101
744937b0 102void __init efi_call_phys_epilog(pgd_t *save_pgd)
5b83683f
HY
103{
104 /*
105 * After the lock is released, the original page table is restored.
106 */
744937b0
IM
107 int pgd_idx;
108 int nr_pgds;
d2f7cbe7 109
c9f2a9a6
MF
110 if (!efi_enabled(EFI_OLD_MEMMAP)) {
111 write_cr3((unsigned long)save_pgd);
112 __flush_tlb_all();
d2f7cbe7 113 return;
c9f2a9a6 114 }
d2f7cbe7 115
744937b0
IM
116 nr_pgds = DIV_ROUND_UP((max_pfn << PAGE_SHIFT) , PGDIR_SIZE);
117
118 for (pgd_idx = 0; pgd_idx < nr_pgds; pgd_idx++)
119 set_pgd(pgd_offset_k(pgd_idx * PGDIR_SIZE), save_pgd[pgd_idx]);
120
b8f2c21d 121 kfree(save_pgd);
744937b0 122
5b83683f 123 __flush_tlb_all();
9cd2b07c 124 early_code_mapping_set_exec(0);
5b83683f 125}
e1ad783b 126
67a9108e
MF
127static pgd_t *efi_pgd;
128
129/*
130 * We need our own copy of the higher levels of the page tables
131 * because we want to avoid inserting EFI region mappings (EFI_VA_END
132 * to EFI_VA_START) into the standard kernel page tables. Everything
133 * else can be shared, see efi_sync_low_kernel_mappings().
134 */
135int __init efi_alloc_page_tables(void)
136{
137 pgd_t *pgd;
138 pud_t *pud;
139 gfp_t gfp_mask;
140
141 if (efi_enabled(EFI_OLD_MEMMAP))
142 return 0;
143
f58f230a 144 gfp_mask = GFP_KERNEL | __GFP_NOTRACK | __GFP_ZERO;
67a9108e
MF
145 efi_pgd = (pgd_t *)__get_free_page(gfp_mask);
146 if (!efi_pgd)
147 return -ENOMEM;
148
149 pgd = efi_pgd + pgd_index(EFI_VA_END);
150
151 pud = pud_alloc_one(NULL, 0);
152 if (!pud) {
153 free_page((unsigned long)efi_pgd);
154 return -ENOMEM;
155 }
156
157 pgd_populate(NULL, pgd, pud);
158
159 return 0;
160}
161
d2f7cbe7
BP
162/*
163 * Add low kernel mappings for passing arguments to EFI functions.
164 */
165void efi_sync_low_kernel_mappings(void)
166{
67a9108e
MF
167 unsigned num_entries;
168 pgd_t *pgd_k, *pgd_efi;
e0c4f675 169 p4d_t *p4d_k, *p4d_efi;
67a9108e 170 pud_t *pud_k, *pud_efi;
d2f7cbe7
BP
171
172 if (efi_enabled(EFI_OLD_MEMMAP))
173 return;
174
67a9108e
MF
175 /*
176 * We can share all PGD entries apart from the one entry that
177 * covers the EFI runtime mapping space.
178 *
179 * Make sure the EFI runtime region mappings are guaranteed to
180 * only span a single PGD entry and that the entry also maps
181 * other important kernel regions.
182 */
183 BUILD_BUG_ON(pgd_index(EFI_VA_END) != pgd_index(MODULES_END));
184 BUILD_BUG_ON((EFI_VA_START & PGDIR_MASK) !=
185 (EFI_VA_END & PGDIR_MASK));
186
187 pgd_efi = efi_pgd + pgd_index(PAGE_OFFSET);
188 pgd_k = pgd_offset_k(PAGE_OFFSET);
189
190 num_entries = pgd_index(EFI_VA_END) - pgd_index(PAGE_OFFSET);
191 memcpy(pgd_efi, pgd_k, sizeof(pgd_t) * num_entries);
d2f7cbe7 192
67a9108e
MF
193 /*
194 * We share all the PUD entries apart from those that map the
195 * EFI regions. Copy around them.
196 */
197 BUILD_BUG_ON((EFI_VA_START & ~PUD_MASK) != 0);
198 BUILD_BUG_ON((EFI_VA_END & ~PUD_MASK) != 0);
199
200 pgd_efi = efi_pgd + pgd_index(EFI_VA_END);
e0c4f675
KS
201 p4d_efi = p4d_offset(pgd_efi, 0);
202 pud_efi = pud_offset(p4d_efi, 0);
67a9108e
MF
203
204 pgd_k = pgd_offset_k(EFI_VA_END);
e0c4f675
KS
205 p4d_k = p4d_offset(pgd_k, 0);
206 pud_k = pud_offset(p4d_k, 0);
67a9108e
MF
207
208 num_entries = pud_index(EFI_VA_END);
209 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
210
e0c4f675
KS
211 p4d_efi = p4d_offset(pgd_efi, EFI_VA_START);
212 pud_efi = pud_offset(p4d_efi, EFI_VA_START);
213 p4d_k = p4d_offset(pgd_k, EFI_VA_START);
214 pud_k = pud_offset(p4d_k, EFI_VA_START);
67a9108e
MF
215
216 num_entries = PTRS_PER_PUD - pud_index(EFI_VA_START);
217 memcpy(pud_efi, pud_k, sizeof(pud_t) * num_entries);
d2f7cbe7
BP
218}
219
f6697df3
MF
220/*
221 * Wrapper for slow_virt_to_phys() that handles NULL addresses.
222 */
223static inline phys_addr_t
224virt_to_phys_or_null_size(void *va, unsigned long size)
225{
226 bool bad_size;
227
228 if (!va)
229 return 0;
230
231 if (virt_addr_valid(va))
232 return virt_to_phys(va);
233
234 /*
235 * A fully aligned variable on the stack is guaranteed not to
236 * cross a page bounary. Try to catch strings on the stack by
237 * checking that 'size' is a power of two.
238 */
239 bad_size = size > PAGE_SIZE || !is_power_of_2(size);
240
241 WARN_ON(!IS_ALIGNED((unsigned long)va, size) || bad_size);
242
243 return slow_virt_to_phys(va);
244}
245
246#define virt_to_phys_or_null(addr) \
247 virt_to_phys_or_null_size((addr), sizeof(*(addr)))
248
4e78eb05 249int __init efi_setup_page_tables(unsigned long pa_memmap, unsigned num_pages)
d2f7cbe7 250{
edc3b912 251 unsigned long pfn, text;
4f9dbcfc 252 struct page *page;
994448f1 253 unsigned npages;
b7b898ae
BP
254 pgd_t *pgd;
255
256 if (efi_enabled(EFI_OLD_MEMMAP))
257 return 0;
258
67a9108e
MF
259 efi_scratch.efi_pgt = (pgd_t *)__pa(efi_pgd);
260 pgd = efi_pgd;
d2f7cbe7 261
b7b898ae
BP
262 /*
263 * It can happen that the physical address of new_memmap lands in memory
264 * which is not mapped in the EFI page table. Therefore we need to go
265 * and ident-map those pages containing the map before calling
266 * phys_efi_set_virtual_address_map().
267 */
edc3b912 268 pfn = pa_memmap >> PAGE_SHIFT;
15f003d2 269 if (kernel_map_pages_in_pgd(pgd, pfn, pa_memmap, num_pages, _PAGE_NX | _PAGE_RW)) {
b7b898ae
BP
270 pr_err("Error ident-mapping new memmap (0x%lx)!\n", pa_memmap);
271 return 1;
272 }
273
274 efi_scratch.use_pgd = true;
275
bf29bddf
JK
276 /*
277 * Certain firmware versions are way too sentimential and still believe
278 * they are exclusive and unquestionable owners of the first physical page,
279 * even though they explicitly mark it as EFI_CONVENTIONAL_MEMORY
280 * (but then write-access it later during SetVirtualAddressMap()).
281 *
282 * Create a 1:1 mapping for this page, to avoid triple faults during early
283 * boot with such firmware. We are free to hand this page to the BIOS,
284 * as trim_bios_range() will reserve the first page and isolate it away
285 * from memory allocators anyway.
286 */
287 if (kernel_map_pages_in_pgd(pgd, 0x0, 0x0, 1, _PAGE_RW)) {
288 pr_err("Failed to create 1:1 mapping for the first page!\n");
289 return 1;
290 }
291
4f9dbcfc
MF
292 /*
293 * When making calls to the firmware everything needs to be 1:1
294 * mapped and addressable with 32-bit pointers. Map the kernel
295 * text and allocate a new stack because we can't rely on the
296 * stack pointer being < 4GB.
297 */
12976670 298 if (!IS_ENABLED(CONFIG_EFI_MIXED) || efi_is_native())
994448f1 299 return 0;
4f9dbcfc
MF
300
301 page = alloc_page(GFP_KERNEL|__GFP_DMA32);
302 if (!page)
303 panic("Unable to allocate EFI runtime stack < 4GB\n");
304
305 efi_scratch.phys_stack = virt_to_phys(page_address(page));
306 efi_scratch.phys_stack += PAGE_SIZE; /* stack grows down */
307
2ad510dc 308 npages = (_etext - _text) >> PAGE_SHIFT;
4f9dbcfc 309 text = __pa(_text);
edc3b912 310 pfn = text >> PAGE_SHIFT;
4f9dbcfc 311
15f003d2 312 if (kernel_map_pages_in_pgd(pgd, pfn, text, npages, _PAGE_RW)) {
4f9dbcfc 313 pr_err("Failed to map kernel text 1:1\n");
994448f1 314 return 1;
4f9dbcfc 315 }
b7b898ae
BP
316
317 return 0;
318}
319
d2f7cbe7
BP
320static void __init __map_region(efi_memory_desc_t *md, u64 va)
321{
15f003d2 322 unsigned long flags = _PAGE_RW;
edc3b912 323 unsigned long pfn;
67a9108e 324 pgd_t *pgd = efi_pgd;
d2f7cbe7
BP
325
326 if (!(md->attribute & EFI_MEMORY_WB))
edc3b912 327 flags |= _PAGE_PCD;
d2f7cbe7 328
edc3b912
MF
329 pfn = md->phys_addr >> PAGE_SHIFT;
330 if (kernel_map_pages_in_pgd(pgd, pfn, va, md->num_pages, flags))
d2f7cbe7
BP
331 pr_warn("Error mapping PA 0x%llx -> VA 0x%llx!\n",
332 md->phys_addr, va);
333}
334
335void __init efi_map_region(efi_memory_desc_t *md)
336{
337 unsigned long size = md->num_pages << PAGE_SHIFT;
338 u64 pa = md->phys_addr;
339
340 if (efi_enabled(EFI_OLD_MEMMAP))
341 return old_map_region(md);
342
343 /*
344 * Make sure the 1:1 mappings are present as a catch-all for b0rked
345 * firmware which doesn't update all internal pointers after switching
346 * to virtual mode and would otherwise crap on us.
347 */
348 __map_region(md, md->phys_addr);
349
4f9dbcfc
MF
350 /*
351 * Enforce the 1:1 mapping as the default virtual address when
352 * booting in EFI mixed mode, because even though we may be
353 * running a 64-bit kernel, the firmware may only be 32-bit.
354 */
355 if (!efi_is_native () && IS_ENABLED(CONFIG_EFI_MIXED)) {
356 md->virt_addr = md->phys_addr;
357 return;
358 }
359
d2f7cbe7
BP
360 efi_va -= size;
361
362 /* Is PA 2M-aligned? */
363 if (!(pa & (PMD_SIZE - 1))) {
364 efi_va &= PMD_MASK;
365 } else {
366 u64 pa_offset = pa & (PMD_SIZE - 1);
367 u64 prev_va = efi_va;
368
369 /* get us the same offset within this 2M page */
370 efi_va = (efi_va & PMD_MASK) + pa_offset;
371
372 if (efi_va > prev_va)
373 efi_va -= PMD_SIZE;
374 }
375
376 if (efi_va < EFI_VA_END) {
377 pr_warn(FW_WARN "VA address range overflow!\n");
378 return;
379 }
380
381 /* Do the VA map */
382 __map_region(md, efi_va);
383 md->virt_addr = efi_va;
384}
385
3b266496
DY
386/*
387 * kexec kernel will use efi_map_region_fixed to map efi runtime memory ranges.
388 * md->virt_addr is the original virtual address which had been mapped in kexec
389 * 1st kernel.
390 */
391void __init efi_map_region_fixed(efi_memory_desc_t *md)
392{
0513fe1d 393 __map_region(md, md->phys_addr);
3b266496
DY
394 __map_region(md, md->virt_addr);
395}
396
e1ad783b 397void __iomem *__init efi_ioremap(unsigned long phys_addr, unsigned long size,
3e8fa263 398 u32 type, u64 attribute)
e1ad783b
KP
399{
400 unsigned long last_map_pfn;
401
402 if (type == EFI_MEMORY_MAPPED_IO)
403 return ioremap(phys_addr, size);
404
405 last_map_pfn = init_memory_mapping(phys_addr, phys_addr + size);
406 if ((last_map_pfn << PAGE_SHIFT) < phys_addr + size) {
407 unsigned long top = last_map_pfn << PAGE_SHIFT;
3e8fa263 408 efi_ioremap(top, size - (top - phys_addr), type, attribute);
e1ad783b
KP
409 }
410
3e8fa263
MF
411 if (!(attribute & EFI_MEMORY_WB))
412 efi_memory_uc((u64)(unsigned long)__va(phys_addr), size);
413
e1ad783b
KP
414 return (void __iomem *)__va(phys_addr);
415}
1fec0533
DY
416
417void __init parse_efi_setup(u64 phys_addr, u32 data_len)
418{
419 efi_setup = phys_addr + sizeof(struct setup_data);
1fec0533 420}
c55d016f 421
18141e89 422static int __init efi_update_mappings(efi_memory_desc_t *md, unsigned long pf)
c55d016f 423{
6d0cc887
SP
424 unsigned long pfn;
425 pgd_t *pgd = efi_pgd;
18141e89
SP
426 int err1, err2;
427
428 /* Update the 1:1 mapping */
429 pfn = md->phys_addr >> PAGE_SHIFT;
430 err1 = kernel_map_pages_in_pgd(pgd, pfn, md->phys_addr, md->num_pages, pf);
431 if (err1) {
432 pr_err("Error while updating 1:1 mapping PA 0x%llx -> VA 0x%llx!\n",
433 md->phys_addr, md->virt_addr);
434 }
435
436 err2 = kernel_map_pages_in_pgd(pgd, pfn, md->virt_addr, md->num_pages, pf);
437 if (err2) {
438 pr_err("Error while updating VA mapping PA 0x%llx -> VA 0x%llx!\n",
439 md->phys_addr, md->virt_addr);
440 }
441
442 return err1 || err2;
443}
444
445static int __init efi_update_mem_attr(struct mm_struct *mm, efi_memory_desc_t *md)
446{
447 unsigned long pf = 0;
448
449 if (md->attribute & EFI_MEMORY_XP)
450 pf |= _PAGE_NX;
451
452 if (!(md->attribute & EFI_MEMORY_RO))
453 pf |= _PAGE_RW;
454
455 return efi_update_mappings(md, pf);
456}
457
458void __init efi_runtime_update_mappings(void)
459{
6d0cc887 460 efi_memory_desc_t *md;
6d0cc887
SP
461
462 if (efi_enabled(EFI_OLD_MEMMAP)) {
463 if (__supported_pte_mask & _PAGE_NX)
464 runtime_code_page_mkexec();
465 return;
466 }
467
18141e89
SP
468 /*
469 * Use the EFI Memory Attribute Table for mapping permissions if it
470 * exists, since it is intended to supersede EFI_PROPERTIES_TABLE.
471 */
472 if (efi_enabled(EFI_MEM_ATTR)) {
473 efi_memattr_apply_permissions(NULL, efi_update_mem_attr);
474 return;
475 }
476
477 /*
478 * EFI_MEMORY_ATTRIBUTES_TABLE is intended to replace
479 * EFI_PROPERTIES_TABLE. So, use EFI_PROPERTIES_TABLE to update
480 * permissions only if EFI_MEMORY_ATTRIBUTES_TABLE is not
481 * published by the firmware. Even if we find a buggy implementation of
482 * EFI_MEMORY_ATTRIBUTES_TABLE, don't fall back to
483 * EFI_PROPERTIES_TABLE, because of the same reason.
484 */
485
6d0cc887 486 if (!efi_enabled(EFI_NX_PE_DATA))
c55d016f
BP
487 return;
488
78ce248f 489 for_each_efi_memory_desc(md) {
6d0cc887 490 unsigned long pf = 0;
6d0cc887
SP
491
492 if (!(md->attribute & EFI_MEMORY_RUNTIME))
493 continue;
494
495 if (!(md->attribute & EFI_MEMORY_WB))
496 pf |= _PAGE_PCD;
497
498 if ((md->attribute & EFI_MEMORY_XP) ||
499 (md->type == EFI_RUNTIME_SERVICES_DATA))
500 pf |= _PAGE_NX;
501
502 if (!(md->attribute & EFI_MEMORY_RO) &&
503 (md->type != EFI_RUNTIME_SERVICES_CODE))
504 pf |= _PAGE_RW;
505
18141e89 506 efi_update_mappings(md, pf);
6d0cc887 507 }
c55d016f 508}
11cc8512
BP
509
510void __init efi_dump_pagetable(void)
511{
512#ifdef CONFIG_EFI_PGT_DUMP
67a9108e 513 ptdump_walk_pgd_level(NULL, efi_pgd);
11cc8512
BP
514#endif
515}
994448f1 516
4f9dbcfc
MF
517#ifdef CONFIG_EFI_MIXED
518extern efi_status_t efi64_thunk(u32, ...);
519
520#define runtime_service32(func) \
521({ \
522 u32 table = (u32)(unsigned long)efi.systab; \
523 u32 *rt, *___f; \
524 \
525 rt = (u32 *)(table + offsetof(efi_system_table_32_t, runtime)); \
526 ___f = (u32 *)(*rt + offsetof(efi_runtime_services_32_t, func)); \
527 *___f; \
528})
529
530/*
531 * Switch to the EFI page tables early so that we can access the 1:1
532 * runtime services mappings which are not mapped in any other page
533 * tables. This function must be called before runtime_service32().
534 *
535 * Also, disable interrupts because the IDT points to 64-bit handlers,
536 * which aren't going to function correctly when we switch to 32-bit.
537 */
538#define efi_thunk(f, ...) \
539({ \
540 efi_status_t __s; \
21f86625
AT
541 unsigned long __flags; \
542 u32 __func; \
4f9dbcfc 543 \
21f86625
AT
544 local_irq_save(__flags); \
545 arch_efi_call_virt_setup(); \
4f9dbcfc 546 \
21f86625
AT
547 __func = runtime_service32(f); \
548 __s = efi64_thunk(__func, __VA_ARGS__); \
4f9dbcfc 549 \
21f86625
AT
550 arch_efi_call_virt_teardown(); \
551 local_irq_restore(__flags); \
4f9dbcfc
MF
552 \
553 __s; \
554})
555
556efi_status_t efi_thunk_set_virtual_address_map(
557 void *phys_set_virtual_address_map,
558 unsigned long memory_map_size,
559 unsigned long descriptor_size,
560 u32 descriptor_version,
561 efi_memory_desc_t *virtual_map)
562{
563 efi_status_t status;
564 unsigned long flags;
565 u32 func;
566
567 efi_sync_low_kernel_mappings();
568 local_irq_save(flags);
569
570 efi_scratch.prev_cr3 = read_cr3();
571 write_cr3((unsigned long)efi_scratch.efi_pgt);
572 __flush_tlb_all();
573
574 func = (u32)(unsigned long)phys_set_virtual_address_map;
575 status = efi64_thunk(func, memory_map_size, descriptor_size,
576 descriptor_version, virtual_map);
577
578 write_cr3(efi_scratch.prev_cr3);
579 __flush_tlb_all();
580 local_irq_restore(flags);
581
582 return status;
583}
584
585static efi_status_t efi_thunk_get_time(efi_time_t *tm, efi_time_cap_t *tc)
586{
587 efi_status_t status;
588 u32 phys_tm, phys_tc;
589
590 spin_lock(&rtc_lock);
591
f6697df3
MF
592 phys_tm = virt_to_phys_or_null(tm);
593 phys_tc = virt_to_phys_or_null(tc);
4f9dbcfc
MF
594
595 status = efi_thunk(get_time, phys_tm, phys_tc);
596
597 spin_unlock(&rtc_lock);
598
599 return status;
600}
601
602static efi_status_t efi_thunk_set_time(efi_time_t *tm)
603{
604 efi_status_t status;
605 u32 phys_tm;
606
607 spin_lock(&rtc_lock);
608
f6697df3 609 phys_tm = virt_to_phys_or_null(tm);
4f9dbcfc
MF
610
611 status = efi_thunk(set_time, phys_tm);
612
613 spin_unlock(&rtc_lock);
614
615 return status;
616}
617
618static efi_status_t
619efi_thunk_get_wakeup_time(efi_bool_t *enabled, efi_bool_t *pending,
620 efi_time_t *tm)
621{
622 efi_status_t status;
623 u32 phys_enabled, phys_pending, phys_tm;
624
625 spin_lock(&rtc_lock);
626
f6697df3
MF
627 phys_enabled = virt_to_phys_or_null(enabled);
628 phys_pending = virt_to_phys_or_null(pending);
629 phys_tm = virt_to_phys_or_null(tm);
4f9dbcfc
MF
630
631 status = efi_thunk(get_wakeup_time, phys_enabled,
632 phys_pending, phys_tm);
633
634 spin_unlock(&rtc_lock);
635
636 return status;
637}
638
639static efi_status_t
640efi_thunk_set_wakeup_time(efi_bool_t enabled, efi_time_t *tm)
641{
642 efi_status_t status;
643 u32 phys_tm;
644
645 spin_lock(&rtc_lock);
646
f6697df3 647 phys_tm = virt_to_phys_or_null(tm);
4f9dbcfc
MF
648
649 status = efi_thunk(set_wakeup_time, enabled, phys_tm);
650
651 spin_unlock(&rtc_lock);
652
653 return status;
654}
655
f6697df3
MF
656static unsigned long efi_name_size(efi_char16_t *name)
657{
658 return ucs2_strsize(name, EFI_VAR_NAME_LEN) + 1;
659}
4f9dbcfc
MF
660
661static efi_status_t
662efi_thunk_get_variable(efi_char16_t *name, efi_guid_t *vendor,
663 u32 *attr, unsigned long *data_size, void *data)
664{
665 efi_status_t status;
666 u32 phys_name, phys_vendor, phys_attr;
667 u32 phys_data_size, phys_data;
668
f6697df3
MF
669 phys_data_size = virt_to_phys_or_null(data_size);
670 phys_vendor = virt_to_phys_or_null(vendor);
671 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
672 phys_attr = virt_to_phys_or_null(attr);
673 phys_data = virt_to_phys_or_null_size(data, *data_size);
4f9dbcfc
MF
674
675 status = efi_thunk(get_variable, phys_name, phys_vendor,
676 phys_attr, phys_data_size, phys_data);
677
678 return status;
679}
680
681static efi_status_t
682efi_thunk_set_variable(efi_char16_t *name, efi_guid_t *vendor,
683 u32 attr, unsigned long data_size, void *data)
684{
685 u32 phys_name, phys_vendor, phys_data;
686 efi_status_t status;
687
f6697df3
MF
688 phys_name = virt_to_phys_or_null_size(name, efi_name_size(name));
689 phys_vendor = virt_to_phys_or_null(vendor);
690 phys_data = virt_to_phys_or_null_size(data, data_size);
4f9dbcfc
MF
691
692 /* If data_size is > sizeof(u32) we've got problems */
693 status = efi_thunk(set_variable, phys_name, phys_vendor,
694 attr, data_size, phys_data);
695
696 return status;
697}
698
699static efi_status_t
700efi_thunk_get_next_variable(unsigned long *name_size,
701 efi_char16_t *name,
702 efi_guid_t *vendor)
703{
704 efi_status_t status;
705 u32 phys_name_size, phys_name, phys_vendor;
706
f6697df3
MF
707 phys_name_size = virt_to_phys_or_null(name_size);
708 phys_vendor = virt_to_phys_or_null(vendor);
709 phys_name = virt_to_phys_or_null_size(name, *name_size);
4f9dbcfc
MF
710
711 status = efi_thunk(get_next_variable, phys_name_size,
712 phys_name, phys_vendor);
713
714 return status;
715}
716
717static efi_status_t
718efi_thunk_get_next_high_mono_count(u32 *count)
719{
720 efi_status_t status;
721 u32 phys_count;
722
f6697df3 723 phys_count = virt_to_phys_or_null(count);
4f9dbcfc
MF
724 status = efi_thunk(get_next_high_mono_count, phys_count);
725
726 return status;
727}
728
729static void
730efi_thunk_reset_system(int reset_type, efi_status_t status,
731 unsigned long data_size, efi_char16_t *data)
732{
733 u32 phys_data;
734
f6697df3 735 phys_data = virt_to_phys_or_null_size(data, data_size);
4f9dbcfc
MF
736
737 efi_thunk(reset_system, reset_type, status, data_size, phys_data);
738}
739
740static efi_status_t
741efi_thunk_update_capsule(efi_capsule_header_t **capsules,
742 unsigned long count, unsigned long sg_list)
743{
744 /*
745 * To properly support this function we would need to repackage
746 * 'capsules' because the firmware doesn't understand 64-bit
747 * pointers.
748 */
749 return EFI_UNSUPPORTED;
750}
751
752static efi_status_t
753efi_thunk_query_variable_info(u32 attr, u64 *storage_space,
754 u64 *remaining_space,
755 u64 *max_variable_size)
756{
757 efi_status_t status;
758 u32 phys_storage, phys_remaining, phys_max;
759
760 if (efi.runtime_version < EFI_2_00_SYSTEM_TABLE_REVISION)
761 return EFI_UNSUPPORTED;
762
f6697df3
MF
763 phys_storage = virt_to_phys_or_null(storage_space);
764 phys_remaining = virt_to_phys_or_null(remaining_space);
765 phys_max = virt_to_phys_or_null(max_variable_size);
4f9dbcfc 766
9a11040f 767 status = efi_thunk(query_variable_info, attr, phys_storage,
4f9dbcfc
MF
768 phys_remaining, phys_max);
769
770 return status;
771}
772
773static efi_status_t
774efi_thunk_query_capsule_caps(efi_capsule_header_t **capsules,
775 unsigned long count, u64 *max_size,
776 int *reset_type)
777{
778 /*
779 * To properly support this function we would need to repackage
780 * 'capsules' because the firmware doesn't understand 64-bit
781 * pointers.
782 */
783 return EFI_UNSUPPORTED;
784}
785
786void efi_thunk_runtime_setup(void)
787{
788 efi.get_time = efi_thunk_get_time;
789 efi.set_time = efi_thunk_set_time;
790 efi.get_wakeup_time = efi_thunk_get_wakeup_time;
791 efi.set_wakeup_time = efi_thunk_set_wakeup_time;
792 efi.get_variable = efi_thunk_get_variable;
793 efi.get_next_variable = efi_thunk_get_next_variable;
794 efi.set_variable = efi_thunk_set_variable;
795 efi.get_next_high_mono_count = efi_thunk_get_next_high_mono_count;
796 efi.reset_system = efi_thunk_reset_system;
797 efi.query_variable_info = efi_thunk_query_variable_info;
798 efi.update_capsule = efi_thunk_update_capsule;
799 efi.query_capsule_caps = efi_thunk_query_capsule_caps;
800}
801#endif /* CONFIG_EFI_MIXED */