Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-2.6-block.git] / arch / x86 / mm / mem_encrypt_identity.c
CommitLineData
1cd9c22f
KS
1/*
2 * AMD Memory Encryption Support
3 *
4 * Copyright (C) 2016 Advanced Micro Devices, Inc.
5 *
6 * Author: Tom Lendacky <thomas.lendacky@amd.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13#define DISABLE_BRANCH_PROFILING
14
aad98391
KS
15/*
16 * Since we're dealing with identity mappings, physical and virtual
17 * addresses are the same, so override these defines which are ultimately
18 * used by the headers in misc.h.
19 */
20#define __pa(x) ((unsigned long)(x))
21#define __va(x) ((void *)((unsigned long)(x)))
22
23/*
24 * Special hack: we have to be careful, because no indirections are
25 * allowed here, and paravirt_ops is a kind of one. As it will only run in
26 * baremetal anyway, we just keep it from happening. (This list needs to
27 * be extended when new paravirt and debugging variants are added.)
28 */
29#undef CONFIG_PARAVIRT
30#undef CONFIG_PARAVIRT_SPINLOCKS
31
32#include <linux/kernel.h>
1cd9c22f
KS
33#include <linux/mm.h>
34#include <linux/mem_encrypt.h>
35
36#include <asm/setup.h>
37#include <asm/sections.h>
38#include <asm/cmdline.h>
39
40#include "mm_internal.h"
41
42#define PGD_FLAGS _KERNPG_TABLE_NOENC
43#define P4D_FLAGS _KERNPG_TABLE_NOENC
44#define PUD_FLAGS _KERNPG_TABLE_NOENC
45#define PMD_FLAGS _KERNPG_TABLE_NOENC
46
47#define PMD_FLAGS_LARGE (__PAGE_KERNEL_LARGE_EXEC & ~_PAGE_GLOBAL)
48
49#define PMD_FLAGS_DEC PMD_FLAGS_LARGE
50#define PMD_FLAGS_DEC_WP ((PMD_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
51 (_PAGE_PAT | _PAGE_PWT))
52
53#define PMD_FLAGS_ENC (PMD_FLAGS_LARGE | _PAGE_ENC)
54
55#define PTE_FLAGS (__PAGE_KERNEL_EXEC & ~_PAGE_GLOBAL)
56
57#define PTE_FLAGS_DEC PTE_FLAGS
58#define PTE_FLAGS_DEC_WP ((PTE_FLAGS_DEC & ~_PAGE_CACHE_MASK) | \
59 (_PAGE_PAT | _PAGE_PWT))
60
61#define PTE_FLAGS_ENC (PTE_FLAGS | _PAGE_ENC)
62
63struct sme_populate_pgd_data {
64 void *pgtable_area;
65 pgd_t *pgd;
66
67 pmdval_t pmd_flags;
68 pteval_t pte_flags;
69 unsigned long paddr;
70
71 unsigned long vaddr;
72 unsigned long vaddr_end;
73};
74
75static char sme_cmdline_arg[] __initdata = "mem_encrypt";
76static char sme_cmdline_on[] __initdata = "on";
77static char sme_cmdline_off[] __initdata = "off";
78
79static void __init sme_clear_pgd(struct sme_populate_pgd_data *ppd)
80{
81 unsigned long pgd_start, pgd_end, pgd_size;
82 pgd_t *pgd_p;
83
84 pgd_start = ppd->vaddr & PGDIR_MASK;
85 pgd_end = ppd->vaddr_end & PGDIR_MASK;
86
87 pgd_size = (((pgd_end - pgd_start) / PGDIR_SIZE) + 1) * sizeof(pgd_t);
88
89 pgd_p = ppd->pgd + pgd_index(ppd->vaddr);
90
91 memset(pgd_p, 0, pgd_size);
92}
93
aad98391 94static pud_t __init *sme_prepare_pgd(struct sme_populate_pgd_data *ppd)
1cd9c22f 95{
aad98391
KS
96 pgd_t *pgd;
97 p4d_t *p4d;
98 pud_t *pud;
99 pmd_t *pmd;
100
101 pgd = ppd->pgd + pgd_index(ppd->vaddr);
102 if (pgd_none(*pgd)) {
103 p4d = ppd->pgtable_area;
104 memset(p4d, 0, sizeof(*p4d) * PTRS_PER_P4D);
105 ppd->pgtable_area += sizeof(*p4d) * PTRS_PER_P4D;
106 set_pgd(pgd, __pgd(PGD_FLAGS | __pa(p4d)));
1cd9c22f
KS
107 }
108
aad98391
KS
109 p4d = p4d_offset(pgd, ppd->vaddr);
110 if (p4d_none(*p4d)) {
111 pud = ppd->pgtable_area;
112 memset(pud, 0, sizeof(*pud) * PTRS_PER_PUD);
113 ppd->pgtable_area += sizeof(*pud) * PTRS_PER_PUD;
114 set_p4d(p4d, __p4d(P4D_FLAGS | __pa(pud)));
1cd9c22f
KS
115 }
116
aad98391
KS
117 pud = pud_offset(p4d, ppd->vaddr);
118 if (pud_none(*pud)) {
119 pmd = ppd->pgtable_area;
120 memset(pmd, 0, sizeof(*pmd) * PTRS_PER_PMD);
121 ppd->pgtable_area += sizeof(*pmd) * PTRS_PER_PMD;
122 set_pud(pud, __pud(PUD_FLAGS | __pa(pmd)));
1cd9c22f
KS
123 }
124
aad98391
KS
125 if (pud_large(*pud))
126 return NULL;
127
128 return pud;
1cd9c22f
KS
129}
130
131static void __init sme_populate_pgd_large(struct sme_populate_pgd_data *ppd)
132{
aad98391
KS
133 pud_t *pud;
134 pmd_t *pmd;
135
136 pud = sme_prepare_pgd(ppd);
137 if (!pud)
138 return;
1cd9c22f 139
aad98391
KS
140 pmd = pmd_offset(pud, ppd->vaddr);
141 if (pmd_large(*pmd))
1cd9c22f
KS
142 return;
143
aad98391 144 set_pmd(pmd, __pmd(ppd->paddr | ppd->pmd_flags));
1cd9c22f
KS
145}
146
147static void __init sme_populate_pgd(struct sme_populate_pgd_data *ppd)
148{
aad98391
KS
149 pud_t *pud;
150 pmd_t *pmd;
151 pte_t *pte;
1cd9c22f 152
aad98391
KS
153 pud = sme_prepare_pgd(ppd);
154 if (!pud)
1cd9c22f
KS
155 return;
156
aad98391
KS
157 pmd = pmd_offset(pud, ppd->vaddr);
158 if (pmd_none(*pmd)) {
159 pte = ppd->pgtable_area;
160 memset(pte, 0, sizeof(pte) * PTRS_PER_PTE);
161 ppd->pgtable_area += sizeof(pte) * PTRS_PER_PTE;
162 set_pmd(pmd, __pmd(PMD_FLAGS | __pa(pte)));
1cd9c22f
KS
163 }
164
aad98391
KS
165 if (pmd_large(*pmd))
166 return;
167
168 pte = pte_offset_map(pmd, ppd->vaddr);
169 if (pte_none(*pte))
170 set_pte(pte, __pte(ppd->paddr | ppd->pte_flags));
1cd9c22f
KS
171}
172
173static void __init __sme_map_range_pmd(struct sme_populate_pgd_data *ppd)
174{
175 while (ppd->vaddr < ppd->vaddr_end) {
176 sme_populate_pgd_large(ppd);
177
178 ppd->vaddr += PMD_PAGE_SIZE;
179 ppd->paddr += PMD_PAGE_SIZE;
180 }
181}
182
183static void __init __sme_map_range_pte(struct sme_populate_pgd_data *ppd)
184{
185 while (ppd->vaddr < ppd->vaddr_end) {
186 sme_populate_pgd(ppd);
187
188 ppd->vaddr += PAGE_SIZE;
189 ppd->paddr += PAGE_SIZE;
190 }
191}
192
193static void __init __sme_map_range(struct sme_populate_pgd_data *ppd,
194 pmdval_t pmd_flags, pteval_t pte_flags)
195{
196 unsigned long vaddr_end;
197
198 ppd->pmd_flags = pmd_flags;
199 ppd->pte_flags = pte_flags;
200
201 /* Save original end value since we modify the struct value */
202 vaddr_end = ppd->vaddr_end;
203
204 /* If start is not 2MB aligned, create PTE entries */
205 ppd->vaddr_end = ALIGN(ppd->vaddr, PMD_PAGE_SIZE);
206 __sme_map_range_pte(ppd);
207
208 /* Create PMD entries */
209 ppd->vaddr_end = vaddr_end & PMD_PAGE_MASK;
210 __sme_map_range_pmd(ppd);
211
212 /* If end is not 2MB aligned, create PTE entries */
213 ppd->vaddr_end = vaddr_end;
214 __sme_map_range_pte(ppd);
215}
216
217static void __init sme_map_range_encrypted(struct sme_populate_pgd_data *ppd)
218{
219 __sme_map_range(ppd, PMD_FLAGS_ENC, PTE_FLAGS_ENC);
220}
221
222static void __init sme_map_range_decrypted(struct sme_populate_pgd_data *ppd)
223{
224 __sme_map_range(ppd, PMD_FLAGS_DEC, PTE_FLAGS_DEC);
225}
226
227static void __init sme_map_range_decrypted_wp(struct sme_populate_pgd_data *ppd)
228{
229 __sme_map_range(ppd, PMD_FLAGS_DEC_WP, PTE_FLAGS_DEC_WP);
230}
231
232static unsigned long __init sme_pgtable_calc(unsigned long len)
233{
1070730c 234 unsigned long entries = 0, tables = 0;
1cd9c22f
KS
235
236 /*
237 * Perform a relatively simplistic calculation of the pagetable
238 * entries that are needed. Those mappings will be covered mostly
239 * by 2MB PMD entries so we can conservatively calculate the required
240 * number of P4D, PUD and PMD structures needed to perform the
241 * mappings. For mappings that are not 2MB aligned, PTE mappings
242 * would be needed for the start and end portion of the address range
243 * that fall outside of the 2MB alignment. This results in, at most,
244 * two extra pages to hold PTE entries for each range that is mapped.
245 * Incrementing the count for each covers the case where the addresses
246 * cross entries.
247 */
1cd9c22f 248
1070730c
KS
249 /* PGDIR_SIZE is equal to P4D_SIZE on 4-level machine. */
250 if (PTRS_PER_P4D > 1)
251 entries += (DIV_ROUND_UP(len, PGDIR_SIZE) + 1) * sizeof(p4d_t) * PTRS_PER_P4D;
252 entries += (DIV_ROUND_UP(len, P4D_SIZE) + 1) * sizeof(pud_t) * PTRS_PER_PUD;
253 entries += (DIV_ROUND_UP(len, PUD_SIZE) + 1) * sizeof(pmd_t) * PTRS_PER_PMD;
254 entries += 2 * sizeof(pte_t) * PTRS_PER_PTE;
1cd9c22f
KS
255
256 /*
257 * Now calculate the added pagetable structures needed to populate
258 * the new pagetables.
259 */
1cd9c22f 260
1070730c
KS
261 if (PTRS_PER_P4D > 1)
262 tables += DIV_ROUND_UP(entries, PGDIR_SIZE) * sizeof(p4d_t) * PTRS_PER_P4D;
263 tables += DIV_ROUND_UP(entries, P4D_SIZE) * sizeof(pud_t) * PTRS_PER_PUD;
264 tables += DIV_ROUND_UP(entries, PUD_SIZE) * sizeof(pmd_t) * PTRS_PER_PMD;
1cd9c22f 265
1070730c 266 return entries + tables;
1cd9c22f
KS
267}
268
ae8d1d00 269void __init sme_encrypt_kernel(struct boot_params *bp)
1cd9c22f
KS
270{
271 unsigned long workarea_start, workarea_end, workarea_len;
272 unsigned long execute_start, execute_end, execute_len;
273 unsigned long kernel_start, kernel_end, kernel_len;
274 unsigned long initrd_start, initrd_end, initrd_len;
275 struct sme_populate_pgd_data ppd;
276 unsigned long pgtable_area_len;
277 unsigned long decrypted_base;
278
279 if (!sme_active())
280 return;
281
282 /*
283 * Prepare for encrypting the kernel and initrd by building new
284 * pagetables with the necessary attributes needed to encrypt the
285 * kernel in place.
286 *
287 * One range of virtual addresses will map the memory occupied
288 * by the kernel and initrd as encrypted.
289 *
290 * Another range of virtual addresses will map the memory occupied
291 * by the kernel and initrd as decrypted and write-protected.
292 *
293 * The use of write-protect attribute will prevent any of the
294 * memory from being cached.
295 */
296
297 /* Physical addresses gives us the identity mapped virtual addresses */
298 kernel_start = __pa_symbol(_text);
299 kernel_end = ALIGN(__pa_symbol(_end), PMD_PAGE_SIZE);
300 kernel_len = kernel_end - kernel_start;
301
302 initrd_start = 0;
303 initrd_end = 0;
304 initrd_len = 0;
305#ifdef CONFIG_BLK_DEV_INITRD
306 initrd_len = (unsigned long)bp->hdr.ramdisk_size |
307 ((unsigned long)bp->ext_ramdisk_size << 32);
308 if (initrd_len) {
309 initrd_start = (unsigned long)bp->hdr.ramdisk_image |
310 ((unsigned long)bp->ext_ramdisk_image << 32);
311 initrd_end = PAGE_ALIGN(initrd_start + initrd_len);
312 initrd_len = initrd_end - initrd_start;
313 }
314#endif
315
316 /* Set the encryption workarea to be immediately after the kernel */
317 workarea_start = kernel_end;
318
319 /*
320 * Calculate required number of workarea bytes needed:
321 * executable encryption area size:
322 * stack page (PAGE_SIZE)
323 * encryption routine page (PAGE_SIZE)
324 * intermediate copy buffer (PMD_PAGE_SIZE)
325 * pagetable structures for the encryption of the kernel
326 * pagetable structures for workarea (in case not currently mapped)
327 */
328 execute_start = workarea_start;
329 execute_end = execute_start + (PAGE_SIZE * 2) + PMD_PAGE_SIZE;
330 execute_len = execute_end - execute_start;
331
332 /*
333 * One PGD for both encrypted and decrypted mappings and a set of
334 * PUDs and PMDs for each of the encrypted and decrypted mappings.
335 */
336 pgtable_area_len = sizeof(pgd_t) * PTRS_PER_PGD;
337 pgtable_area_len += sme_pgtable_calc(execute_end - kernel_start) * 2;
338 if (initrd_len)
339 pgtable_area_len += sme_pgtable_calc(initrd_len) * 2;
340
341 /* PUDs and PMDs needed in the current pagetables for the workarea */
342 pgtable_area_len += sme_pgtable_calc(execute_len + pgtable_area_len);
343
344 /*
345 * The total workarea includes the executable encryption area and
346 * the pagetable area. The start of the workarea is already 2MB
347 * aligned, align the end of the workarea on a 2MB boundary so that
348 * we don't try to create/allocate PTE entries from the workarea
349 * before it is mapped.
350 */
351 workarea_len = execute_len + pgtable_area_len;
352 workarea_end = ALIGN(workarea_start + workarea_len, PMD_PAGE_SIZE);
353
354 /*
355 * Set the address to the start of where newly created pagetable
356 * structures (PGDs, PUDs and PMDs) will be allocated. New pagetable
357 * structures are created when the workarea is added to the current
358 * pagetables and when the new encrypted and decrypted kernel
359 * mappings are populated.
360 */
361 ppd.pgtable_area = (void *)execute_end;
362
363 /*
364 * Make sure the current pagetable structure has entries for
365 * addressing the workarea.
366 */
367 ppd.pgd = (pgd_t *)native_read_cr3_pa();
368 ppd.paddr = workarea_start;
369 ppd.vaddr = workarea_start;
370 ppd.vaddr_end = workarea_end;
371 sme_map_range_decrypted(&ppd);
372
373 /* Flush the TLB - no globals so cr3 is enough */
374 native_write_cr3(__native_read_cr3());
375
376 /*
377 * A new pagetable structure is being built to allow for the kernel
378 * and initrd to be encrypted. It starts with an empty PGD that will
379 * then be populated with new PUDs and PMDs as the encrypted and
380 * decrypted kernel mappings are created.
381 */
382 ppd.pgd = ppd.pgtable_area;
383 memset(ppd.pgd, 0, sizeof(pgd_t) * PTRS_PER_PGD);
384 ppd.pgtable_area += sizeof(pgd_t) * PTRS_PER_PGD;
385
386 /*
387 * A different PGD index/entry must be used to get different
388 * pagetable entries for the decrypted mapping. Choose the next
389 * PGD index and convert it to a virtual address to be used as
390 * the base of the mapping.
391 */
392 decrypted_base = (pgd_index(workarea_end) + 1) & (PTRS_PER_PGD - 1);
393 if (initrd_len) {
394 unsigned long check_base;
395
396 check_base = (pgd_index(initrd_end) + 1) & (PTRS_PER_PGD - 1);
397 decrypted_base = max(decrypted_base, check_base);
398 }
399 decrypted_base <<= PGDIR_SHIFT;
400
401 /* Add encrypted kernel (identity) mappings */
402 ppd.paddr = kernel_start;
403 ppd.vaddr = kernel_start;
404 ppd.vaddr_end = kernel_end;
405 sme_map_range_encrypted(&ppd);
406
407 /* Add decrypted, write-protected kernel (non-identity) mappings */
408 ppd.paddr = kernel_start;
409 ppd.vaddr = kernel_start + decrypted_base;
410 ppd.vaddr_end = kernel_end + decrypted_base;
411 sme_map_range_decrypted_wp(&ppd);
412
413 if (initrd_len) {
414 /* Add encrypted initrd (identity) mappings */
415 ppd.paddr = initrd_start;
416 ppd.vaddr = initrd_start;
417 ppd.vaddr_end = initrd_end;
418 sme_map_range_encrypted(&ppd);
419 /*
420 * Add decrypted, write-protected initrd (non-identity) mappings
421 */
422 ppd.paddr = initrd_start;
423 ppd.vaddr = initrd_start + decrypted_base;
424 ppd.vaddr_end = initrd_end + decrypted_base;
425 sme_map_range_decrypted_wp(&ppd);
426 }
427
428 /* Add decrypted workarea mappings to both kernel mappings */
429 ppd.paddr = workarea_start;
430 ppd.vaddr = workarea_start;
431 ppd.vaddr_end = workarea_end;
432 sme_map_range_decrypted(&ppd);
433
434 ppd.paddr = workarea_start;
435 ppd.vaddr = workarea_start + decrypted_base;
436 ppd.vaddr_end = workarea_end + decrypted_base;
437 sme_map_range_decrypted(&ppd);
438
439 /* Perform the encryption */
440 sme_encrypt_execute(kernel_start, kernel_start + decrypted_base,
441 kernel_len, workarea_start, (unsigned long)ppd.pgd);
442
443 if (initrd_len)
444 sme_encrypt_execute(initrd_start, initrd_start + decrypted_base,
445 initrd_len, workarea_start,
446 (unsigned long)ppd.pgd);
447
448 /*
449 * At this point we are running encrypted. Remove the mappings for
450 * the decrypted areas - all that is needed for this is to remove
451 * the PGD entry/entries.
452 */
453 ppd.vaddr = kernel_start + decrypted_base;
454 ppd.vaddr_end = kernel_end + decrypted_base;
455 sme_clear_pgd(&ppd);
456
457 if (initrd_len) {
458 ppd.vaddr = initrd_start + decrypted_base;
459 ppd.vaddr_end = initrd_end + decrypted_base;
460 sme_clear_pgd(&ppd);
461 }
462
463 ppd.vaddr = workarea_start + decrypted_base;
464 ppd.vaddr_end = workarea_end + decrypted_base;
465 sme_clear_pgd(&ppd);
466
467 /* Flush the TLB - no globals so cr3 is enough */
468 native_write_cr3(__native_read_cr3());
469}
470
ae8d1d00 471void __init sme_enable(struct boot_params *bp)
1cd9c22f
KS
472{
473 const char *cmdline_ptr, *cmdline_arg, *cmdline_on, *cmdline_off;
474 unsigned int eax, ebx, ecx, edx;
475 unsigned long feature_mask;
476 bool active_by_default;
477 unsigned long me_mask;
478 char buffer[16];
479 u64 msr;
480
481 /* Check for the SME/SEV support leaf */
482 eax = 0x80000000;
483 ecx = 0;
484 native_cpuid(&eax, &ebx, &ecx, &edx);
485 if (eax < 0x8000001f)
486 return;
487
488#define AMD_SME_BIT BIT(0)
489#define AMD_SEV_BIT BIT(1)
490 /*
491 * Set the feature mask (SME or SEV) based on whether we are
492 * running under a hypervisor.
493 */
494 eax = 1;
495 ecx = 0;
496 native_cpuid(&eax, &ebx, &ecx, &edx);
497 feature_mask = (ecx & BIT(31)) ? AMD_SEV_BIT : AMD_SME_BIT;
498
499 /*
500 * Check for the SME/SEV feature:
501 * CPUID Fn8000_001F[EAX]
502 * - Bit 0 - Secure Memory Encryption support
503 * - Bit 1 - Secure Encrypted Virtualization support
504 * CPUID Fn8000_001F[EBX]
505 * - Bits 5:0 - Pagetable bit position used to indicate encryption
506 */
507 eax = 0x8000001f;
508 ecx = 0;
509 native_cpuid(&eax, &ebx, &ecx, &edx);
510 if (!(eax & feature_mask))
511 return;
512
513 me_mask = 1UL << (ebx & 0x3f);
514
515 /* Check if memory encryption is enabled */
516 if (feature_mask == AMD_SME_BIT) {
517 /* For SME, check the SYSCFG MSR */
518 msr = __rdmsr(MSR_K8_SYSCFG);
519 if (!(msr & MSR_K8_SYSCFG_MEM_ENCRYPT))
520 return;
521 } else {
522 /* For SEV, check the SEV MSR */
523 msr = __rdmsr(MSR_AMD64_SEV);
524 if (!(msr & MSR_AMD64_SEV_ENABLED))
525 return;
526
527 /* SEV state cannot be controlled by a command line option */
528 sme_me_mask = me_mask;
529 sev_enabled = true;
530 return;
531 }
532
533 /*
534 * Fixups have not been applied to phys_base yet and we're running
535 * identity mapped, so we must obtain the address to the SME command
536 * line argument data using rip-relative addressing.
537 */
538 asm ("lea sme_cmdline_arg(%%rip), %0"
539 : "=r" (cmdline_arg)
540 : "p" (sme_cmdline_arg));
541 asm ("lea sme_cmdline_on(%%rip), %0"
542 : "=r" (cmdline_on)
543 : "p" (sme_cmdline_on));
544 asm ("lea sme_cmdline_off(%%rip), %0"
545 : "=r" (cmdline_off)
546 : "p" (sme_cmdline_off));
547
548 if (IS_ENABLED(CONFIG_AMD_MEM_ENCRYPT_ACTIVE_BY_DEFAULT))
549 active_by_default = true;
550 else
551 active_by_default = false;
552
553 cmdline_ptr = (const char *)((u64)bp->hdr.cmd_line_ptr |
554 ((u64)bp->ext_cmd_line_ptr << 32));
555
556 cmdline_find_option(cmdline_ptr, cmdline_arg, buffer, sizeof(buffer));
557
558 if (!strncmp(buffer, cmdline_on, sizeof(buffer)))
559 sme_me_mask = me_mask;
560 else if (!strncmp(buffer, cmdline_off, sizeof(buffer)))
561 sme_me_mask = 0;
562 else
563 sme_me_mask = active_by_default ? me_mask : 0;
564}