x86/mm: Convert trivial cases of page table walk to 5-level paging
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473 6#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 7#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 8#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 9#include <linux/extable.h> /* search_exception_tables */
a2bcd473 10#include <linux/bootmem.h> /* max_low_pfn */
9326638c 11#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
56dd9470 16#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 17#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 18
019132ff 19#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
20#include <asm/traps.h> /* dotraplinkage, ... */
21#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 22#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
33cb5243 31/*
2d4a7167
IM
32 * Page fault error code bits:
33 *
34 * bit 0 == 0: no page found 1: protection fault
35 * bit 1 == 0: read access 1: write access
36 * bit 2 == 0: kernel-mode access 1: user-mode access
37 * bit 3 == 1: use of reserved bit detected
38 * bit 4 == 1: fault was an instruction fetch
b3ecd515 39 * bit 5 == 1: protection keys block access
33cb5243 40 */
2d4a7167
IM
41enum x86_pf_error_code {
42
43 PF_PROT = 1 << 0,
44 PF_WRITE = 1 << 1,
45 PF_USER = 1 << 2,
46 PF_RSVD = 1 << 3,
47 PF_INSTR = 1 << 4,
b3ecd515 48 PF_PK = 1 << 5,
2d4a7167 49};
66c58156 50
b814d41f 51/*
b319eed0
IM
52 * Returns 0 if mmiotrace is disabled, or if the fault is not
53 * handled by mmiotrace:
b814d41f 54 */
9326638c 55static nokprobe_inline int
62c9295f 56kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 57{
0fd0e3da
PP
58 if (unlikely(is_kmmio_active()))
59 if (kmmio_handler(regs, addr) == 1)
60 return -1;
0fd0e3da 61 return 0;
86069782
PP
62}
63
9326638c 64static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 65{
74a0b576
CH
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 69 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
1bd858a5 75
74a0b576 76 return ret;
33cb5243 77}
1bd858a5 78
1dc85be0 79/*
2d4a7167
IM
80 * Prefetch quirks:
81 *
82 * 32-bit mode:
83 *
84 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
85 * Check that here and ignore it.
1dc85be0 86 *
2d4a7167 87 * 64-bit mode:
1dc85be0 88 *
2d4a7167
IM
89 * Sometimes the CPU reports invalid exceptions on prefetch.
90 * Check that here and ignore it.
91 *
92 * Opcode checker based on code by Richard Brunner.
1dc85be0 93 */
107a0367
IM
94static inline int
95check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
96 unsigned char opcode, int *prefetch)
97{
98 unsigned char instr_hi = opcode & 0xf0;
99 unsigned char instr_lo = opcode & 0x0f;
100
101 switch (instr_hi) {
102 case 0x20:
103 case 0x30:
104 /*
105 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
106 * In X86_64 long mode, the CPU will signal invalid
107 * opcode if some of these prefixes are present so
108 * X86_64 will never get here anyway
109 */
110 return ((instr_lo & 7) == 0x6);
111#ifdef CONFIG_X86_64
112 case 0x40:
113 /*
114 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
115 * Need to figure out under what instruction mode the
116 * instruction was issued. Could check the LDT for lm,
117 * but for now it's good enough to assume that long
118 * mode only uses well known segments or kernel.
119 */
318f5a2a 120 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
121#endif
122 case 0x60:
123 /* 0x64 thru 0x67 are valid prefixes in all modes. */
124 return (instr_lo & 0xC) == 0x4;
125 case 0xF0:
126 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
127 return !instr_lo || (instr_lo>>1) == 1;
128 case 0x00:
129 /* Prefetch instruction is 0x0F0D or 0x0F18 */
130 if (probe_kernel_address(instr, opcode))
131 return 0;
132
133 *prefetch = (instr_lo == 0xF) &&
134 (opcode == 0x0D || opcode == 0x18);
135 return 0;
136 default:
137 return 0;
138 }
139}
140
2d4a7167
IM
141static int
142is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 143{
2d4a7167 144 unsigned char *max_instr;
ab2bf0c1 145 unsigned char *instr;
33cb5243 146 int prefetch = 0;
1da177e4 147
3085354d
IM
148 /*
149 * If it was a exec (instruction fetch) fault on NX page, then
150 * do not ignore the fault:
151 */
66c58156 152 if (error_code & PF_INSTR)
1da177e4 153 return 0;
1dc85be0 154
107a0367 155 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 156 max_instr = instr + 15;
1da177e4 157
d31bf07f 158 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
159 return 0;
160
107a0367 161 while (instr < max_instr) {
2d4a7167 162 unsigned char opcode;
1da177e4 163
ab2bf0c1 164 if (probe_kernel_address(instr, opcode))
33cb5243 165 break;
1da177e4 166
1da177e4
LT
167 instr++;
168
107a0367 169 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 170 break;
1da177e4
LT
171 }
172 return prefetch;
173}
174
019132ff
DH
175/*
176 * A protection key fault means that the PKRU value did not allow
177 * access to some PTE. Userspace can figure out what PKRU was
178 * from the XSAVE state, and this function fills out a field in
179 * siginfo so userspace can discover which protection key was set
180 * on the PTE.
181 *
182 * If we get here, we know that the hardware signaled a PF_PK
183 * fault and that there was a VMA once we got in the fault
184 * handler. It does *not* guarantee that the VMA we find here
185 * was the one that we faulted on.
186 *
187 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
188 * 2. T1 : set PKRU to deny access to pkey=4, touches page
189 * 3. T1 : faults...
190 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
191 * 5. T1 : enters fault handler, takes mmap_sem, etc...
192 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
193 * faulted on a pte with its pkey=4.
194 */
195static void fill_sig_info_pkey(int si_code, siginfo_t *info,
196 struct vm_area_struct *vma)
197{
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
212 if (!vma) {
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
222 info->si_pkey = vma_pkey(vma);
223}
224
2d4a7167
IM
225static void
226force_sig_info_fault(int si_signo, int si_code, unsigned long address,
7b2d0dba
DH
227 struct task_struct *tsk, struct vm_area_struct *vma,
228 int fault)
c4aba4a8 229{
f672b49b 230 unsigned lsb = 0;
c4aba4a8
HH
231 siginfo_t info;
232
2d4a7167
IM
233 info.si_signo = si_signo;
234 info.si_errno = 0;
235 info.si_code = si_code;
236 info.si_addr = (void __user *)address;
f672b49b
AK
237 if (fault & VM_FAULT_HWPOISON_LARGE)
238 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
239 if (fault & VM_FAULT_HWPOISON)
240 lsb = PAGE_SHIFT;
241 info.si_addr_lsb = lsb;
2d4a7167 242
019132ff
DH
243 fill_sig_info_pkey(si_code, &info, vma);
244
c4aba4a8
HH
245 force_sig_info(si_signo, &info, tsk);
246}
247
f2f13a85
IM
248DEFINE_SPINLOCK(pgd_lock);
249LIST_HEAD(pgd_list);
250
251#ifdef CONFIG_X86_32
252static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 253{
f2f13a85
IM
254 unsigned index = pgd_index(address);
255 pgd_t *pgd_k;
e0c4f675 256 p4d_t *p4d, *p4d_k;
f2f13a85
IM
257 pud_t *pud, *pud_k;
258 pmd_t *pmd, *pmd_k;
2d4a7167 259
f2f13a85
IM
260 pgd += index;
261 pgd_k = init_mm.pgd + index;
262
263 if (!pgd_present(*pgd_k))
264 return NULL;
265
266 /*
267 * set_pgd(pgd, *pgd_k); here would be useless on PAE
268 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 269 * set_p4d/set_pud.
f2f13a85 270 */
e0c4f675
KS
271 p4d = p4d_offset(pgd, address);
272 p4d_k = p4d_offset(pgd_k, address);
273 if (!p4d_present(*p4d_k))
274 return NULL;
275
276 pud = pud_offset(p4d, address);
277 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
278 if (!pud_present(*pud_k))
279 return NULL;
280
281 pmd = pmd_offset(pud, address);
282 pmd_k = pmd_offset(pud_k, address);
283 if (!pmd_present(*pmd_k))
284 return NULL;
285
b8bcfe99 286 if (!pmd_present(*pmd))
f2f13a85 287 set_pmd(pmd, *pmd_k);
b8bcfe99 288 else
f2f13a85 289 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
290
291 return pmd_k;
292}
293
294void vmalloc_sync_all(void)
295{
296 unsigned long address;
297
298 if (SHARED_KERNEL_PMD)
299 return;
300
301 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 302 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 303 address += PMD_SIZE) {
f2f13a85
IM
304 struct page *page;
305
a79e53d8 306 spin_lock(&pgd_lock);
f2f13a85 307 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 308 spinlock_t *pgt_lock;
f01f7c56 309 pmd_t *ret;
617d34d9 310
a79e53d8 311 /* the pgt_lock only for Xen */
617d34d9
JF
312 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
313
314 spin_lock(pgt_lock);
315 ret = vmalloc_sync_one(page_address(page), address);
316 spin_unlock(pgt_lock);
317
318 if (!ret)
f2f13a85
IM
319 break;
320 }
a79e53d8 321 spin_unlock(&pgd_lock);
f2f13a85
IM
322 }
323}
324
325/*
326 * 32-bit:
327 *
328 * Handle a fault on the vmalloc or module mapping area
329 */
9326638c 330static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
331{
332 unsigned long pgd_paddr;
333 pmd_t *pmd_k;
334 pte_t *pte_k;
335
336 /* Make sure we are in vmalloc area: */
337 if (!(address >= VMALLOC_START && address < VMALLOC_END))
338 return -1;
339
ebc8827f
FW
340 WARN_ON_ONCE(in_nmi());
341
f2f13a85
IM
342 /*
343 * Synchronize this task's top level page-table
344 * with the 'reference' page table.
345 *
346 * Do _not_ use "current" here. We might be inside
347 * an interrupt in the middle of a task switch..
348 */
349 pgd_paddr = read_cr3();
350 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
351 if (!pmd_k)
352 return -1;
353
f4eafd8b
TK
354 if (pmd_huge(*pmd_k))
355 return 0;
356
f2f13a85
IM
357 pte_k = pte_offset_kernel(pmd_k, address);
358 if (!pte_present(*pte_k))
359 return -1;
360
361 return 0;
362}
9326638c 363NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
364
365/*
366 * Did it hit the DOS screen memory VA from vm86 mode?
367 */
368static inline void
369check_v8086_mode(struct pt_regs *regs, unsigned long address,
370 struct task_struct *tsk)
371{
9fda6a06 372#ifdef CONFIG_VM86
f2f13a85
IM
373 unsigned long bit;
374
9fda6a06 375 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
376 return;
377
378 bit = (address - 0xA0000) >> PAGE_SHIFT;
379 if (bit < 32)
9fda6a06
BG
380 tsk->thread.vm86->screen_bitmap |= 1 << bit;
381#endif
33cb5243 382}
1da177e4 383
087975b0 384static bool low_pfn(unsigned long pfn)
1da177e4 385{
087975b0
AM
386 return pfn < max_low_pfn;
387}
1156e098 388
087975b0
AM
389static void dump_pagetable(unsigned long address)
390{
391 pgd_t *base = __va(read_cr3());
392 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
393 p4d_t *p4d;
394 pud_t *pud;
087975b0
AM
395 pmd_t *pmd;
396 pte_t *pte;
2d4a7167 397
1156e098 398#ifdef CONFIG_X86_PAE
087975b0
AM
399 printk("*pdpt = %016Lx ", pgd_val(*pgd));
400 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
401 goto out;
1156e098 402#endif
e0c4f675
KS
403 p4d = p4d_offset(pgd, address);
404 pud = pud_offset(p4d, address);
405 pmd = pmd_offset(pud, address);
087975b0 406 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
407
408 /*
409 * We must not directly access the pte in the highpte
410 * case if the page table is located in highmem.
411 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 412 * it's allocated already:
1156e098 413 */
087975b0
AM
414 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
415 goto out;
1156e098 416
087975b0
AM
417 pte = pte_offset_kernel(pmd, address);
418 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
419out:
1156e098 420 printk("\n");
f2f13a85
IM
421}
422
423#else /* CONFIG_X86_64: */
424
425void vmalloc_sync_all(void)
426{
5372e155 427 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
428}
429
430/*
431 * 64-bit:
432 *
433 * Handle a fault on the vmalloc area
f2f13a85 434 */
9326638c 435static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
436{
437 pgd_t *pgd, *pgd_ref;
438 pud_t *pud, *pud_ref;
439 pmd_t *pmd, *pmd_ref;
440 pte_t *pte, *pte_ref;
441
442 /* Make sure we are in vmalloc area: */
443 if (!(address >= VMALLOC_START && address < VMALLOC_END))
444 return -1;
445
ebc8827f
FW
446 WARN_ON_ONCE(in_nmi());
447
f2f13a85
IM
448 /*
449 * Copy kernel mappings over when needed. This can also
450 * happen within a race in page table update. In the later
451 * case just flush:
452 */
46aea387 453 pgd = (pgd_t *)__va(read_cr3()) + pgd_index(address);
f2f13a85
IM
454 pgd_ref = pgd_offset_k(address);
455 if (pgd_none(*pgd_ref))
456 return -1;
457
1160c277 458 if (pgd_none(*pgd)) {
f2f13a85 459 set_pgd(pgd, *pgd_ref);
1160c277
SK
460 arch_flush_lazy_mmu_mode();
461 } else {
f2f13a85 462 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 463 }
f2f13a85
IM
464
465 /*
466 * Below here mismatches are bugs because these lower tables
467 * are shared:
468 */
469
470 pud = pud_offset(pgd, address);
471 pud_ref = pud_offset(pgd_ref, address);
472 if (pud_none(*pud_ref))
473 return -1;
474
f4eafd8b 475 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
476 BUG();
477
f4eafd8b
TK
478 if (pud_huge(*pud))
479 return 0;
480
f2f13a85
IM
481 pmd = pmd_offset(pud, address);
482 pmd_ref = pmd_offset(pud_ref, address);
483 if (pmd_none(*pmd_ref))
484 return -1;
485
f4eafd8b 486 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
487 BUG();
488
f4eafd8b
TK
489 if (pmd_huge(*pmd))
490 return 0;
491
f2f13a85
IM
492 pte_ref = pte_offset_kernel(pmd_ref, address);
493 if (!pte_present(*pte_ref))
494 return -1;
495
496 pte = pte_offset_kernel(pmd, address);
497
498 /*
499 * Don't use pte_page here, because the mappings can point
500 * outside mem_map, and the NUMA hash lookup cannot handle
501 * that:
502 */
503 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
504 BUG();
505
506 return 0;
507}
9326638c 508NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 509
e05139f2 510#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 511static const char errata93_warning[] =
ad361c98
JP
512KERN_ERR
513"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
514"******* Working around it, but it may cause SEGVs or burn power.\n"
515"******* Please consider a BIOS update.\n"
516"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 517#endif
f2f13a85
IM
518
519/*
520 * No vm86 mode in 64-bit mode:
521 */
522static inline void
523check_v8086_mode(struct pt_regs *regs, unsigned long address,
524 struct task_struct *tsk)
525{
526}
527
528static int bad_address(void *p)
529{
530 unsigned long dummy;
531
532 return probe_kernel_address((unsigned long *)p, dummy);
533}
534
535static void dump_pagetable(unsigned long address)
536{
087975b0
AM
537 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
538 pgd_t *pgd = base + pgd_index(address);
e0c4f675 539 p4d_t *p4d;
1da177e4
LT
540 pud_t *pud;
541 pmd_t *pmd;
542 pte_t *pte;
543
2d4a7167
IM
544 if (bad_address(pgd))
545 goto bad;
546
d646bce4 547 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
548
549 if (!pgd_present(*pgd))
550 goto out;
1da177e4 551
e0c4f675
KS
552 p4d = p4d_offset(pgd, address);
553 if (bad_address(p4d))
554 goto bad;
555
556 printk("P4D %lx ", p4d_val(*p4d));
557 if (!p4d_present(*p4d) || p4d_large(*p4d))
558 goto out;
559
560 pud = pud_offset(p4d, address);
2d4a7167
IM
561 if (bad_address(pud))
562 goto bad;
563
1da177e4 564 printk("PUD %lx ", pud_val(*pud));
b5360222 565 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 566 goto out;
1da177e4
LT
567
568 pmd = pmd_offset(pud, address);
2d4a7167
IM
569 if (bad_address(pmd))
570 goto bad;
571
1da177e4 572 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
573 if (!pmd_present(*pmd) || pmd_large(*pmd))
574 goto out;
1da177e4
LT
575
576 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
577 if (bad_address(pte))
578 goto bad;
579
33cb5243 580 printk("PTE %lx", pte_val(*pte));
2d4a7167 581out:
1da177e4
LT
582 printk("\n");
583 return;
584bad:
585 printk("BAD\n");
8c938f9f
IM
586}
587
f2f13a85 588#endif /* CONFIG_X86_64 */
1da177e4 589
2d4a7167
IM
590/*
591 * Workaround for K8 erratum #93 & buggy BIOS.
592 *
593 * BIOS SMM functions are required to use a specific workaround
594 * to avoid corruption of the 64bit RIP register on C stepping K8.
595 *
596 * A lot of BIOS that didn't get tested properly miss this.
597 *
598 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
599 * Try to work around it here.
600 *
601 * Note we only handle faults in kernel here.
602 * Does nothing on 32-bit.
fdfe8aa8 603 */
33cb5243 604static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 605{
e05139f2
JB
606#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
607 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
608 || boot_cpu_data.x86 != 0xf)
609 return 0;
610
65ea5b03 611 if (address != regs->ip)
1da177e4 612 return 0;
2d4a7167 613
33cb5243 614 if ((address >> 32) != 0)
1da177e4 615 return 0;
2d4a7167 616
1da177e4 617 address |= 0xffffffffUL << 32;
33cb5243
HH
618 if ((address >= (u64)_stext && address <= (u64)_etext) ||
619 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 620 printk_once(errata93_warning);
65ea5b03 621 regs->ip = address;
1da177e4
LT
622 return 1;
623 }
fdfe8aa8 624#endif
1da177e4 625 return 0;
33cb5243 626}
1da177e4 627
35f3266f 628/*
2d4a7167
IM
629 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
630 * to illegal addresses >4GB.
631 *
632 * We catch this in the page fault handler because these addresses
633 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
634 * segment in LDT is compatibility mode.
635 */
636static int is_errata100(struct pt_regs *regs, unsigned long address)
637{
638#ifdef CONFIG_X86_64
2d4a7167 639 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
640 return 1;
641#endif
642 return 0;
643}
644
29caf2f9
HH
645static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
646{
647#ifdef CONFIG_X86_F00F_BUG
648 unsigned long nr;
2d4a7167 649
29caf2f9 650 /*
2d4a7167 651 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 652 */
e2604b49 653 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
654 nr = (address - idt_descr.address) >> 3;
655
656 if (nr == 6) {
657 do_invalid_op(regs, 0);
658 return 1;
659 }
660 }
661#endif
662 return 0;
663}
664
8f766149
IM
665static const char nx_warning[] = KERN_CRIT
666"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
667static const char smep_warning[] = KERN_CRIT
668"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 669
2d4a7167
IM
670static void
671show_fault_oops(struct pt_regs *regs, unsigned long error_code,
672 unsigned long address)
b3279c7f 673{
1156e098
HH
674 if (!oops_may_print())
675 return;
676
1156e098 677 if (error_code & PF_INSTR) {
93809be8 678 unsigned int level;
426e34cc
MF
679 pgd_t *pgd;
680 pte_t *pte;
2d4a7167 681
426e34cc
MF
682 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
683 pgd += pgd_index(address);
684
685 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 686
8f766149 687 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 688 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
689 if (pte && pte_present(*pte) && pte_exec(*pte) &&
690 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 691 (__read_cr4() & X86_CR4_SMEP))
eff50c34 692 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 693 }
1156e098 694
19f0dda9 695 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 696 if (address < PAGE_SIZE)
19f0dda9 697 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 698 else
19f0dda9 699 printk(KERN_CONT "paging request");
2d4a7167 700
f294a8ce 701 printk(KERN_CONT " at %p\n", (void *) address);
bb5e5ce5 702 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 703
b3279c7f
HH
704 dump_pagetable(address);
705}
706
2d4a7167
IM
707static noinline void
708pgtable_bad(struct pt_regs *regs, unsigned long error_code,
709 unsigned long address)
1da177e4 710{
2d4a7167
IM
711 struct task_struct *tsk;
712 unsigned long flags;
713 int sig;
714
715 flags = oops_begin();
716 tsk = current;
717 sig = SIGKILL;
1209140c 718
1da177e4 719 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 720 tsk->comm, address);
1da177e4 721 dump_pagetable(address);
2d4a7167
IM
722
723 tsk->thread.cr2 = address;
51e7dc70 724 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
725 tsk->thread.error_code = error_code;
726
22f5991c 727 if (__die("Bad pagetable", regs, error_code))
874d93d1 728 sig = 0;
2d4a7167 729
874d93d1 730 oops_end(flags, regs, sig);
1da177e4
LT
731}
732
2d4a7167
IM
733static noinline void
734no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 735 unsigned long address, int signal, int si_code)
92181f19
NP
736{
737 struct task_struct *tsk = current;
92181f19
NP
738 unsigned long flags;
739 int sig;
7b2d0dba
DH
740 /* No context means no VMA to pass down */
741 struct vm_area_struct *vma = NULL;
92181f19 742
2d4a7167 743 /* Are we prepared to handle this kernel fault? */
548acf19 744 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
745 /*
746 * Any interrupt that takes a fault gets the fixup. This makes
747 * the below recursive fault logic only apply to a faults from
748 * task context.
749 */
750 if (in_interrupt())
751 return;
752
753 /*
754 * Per the above we're !in_interrupt(), aka. task context.
755 *
756 * In this case we need to make sure we're not recursively
757 * faulting through the emulate_vsyscall() logic.
758 */
2a53ccbc 759 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 760 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
761 tsk->thread.error_code = error_code | PF_USER;
762 tsk->thread.cr2 = address;
763
764 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba
DH
765 force_sig_info_fault(signal, si_code, address,
766 tsk, vma, 0);
4fc34901 767 }
c026b359
PZ
768
769 /*
770 * Barring that, we can do the fixup and be happy.
771 */
92181f19 772 return;
4fc34901 773 }
92181f19 774
6271cfdf
AL
775#ifdef CONFIG_VMAP_STACK
776 /*
777 * Stack overflow? During boot, we can fault near the initial
778 * stack in the direct map, but that's not an overflow -- check
779 * that we're in vmalloc space to avoid this.
780 */
781 if (is_vmalloc_addr((void *)address) &&
782 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
783 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
784 register void *__sp asm("rsp");
785 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
786 /*
787 * We're likely to be running with very little stack space
788 * left. It's plausible that we'd hit this condition but
789 * double-fault even before we get this far, in which case
790 * we're fine: the double-fault handler will deal with it.
791 *
792 * We don't want to make it all the way into the oops code
793 * and then double-fault, though, because we're likely to
794 * break the console driver and lose most of the stack dump.
795 */
796 asm volatile ("movq %[stack], %%rsp\n\t"
797 "call handle_stack_overflow\n\t"
798 "1: jmp 1b"
799 : "+r" (__sp)
800 : "D" ("kernel stack overflow (page fault)"),
801 "S" (regs), "d" (address),
802 [stack] "rm" (stack));
803 unreachable();
804 }
805#endif
806
92181f19 807 /*
2d4a7167
IM
808 * 32-bit:
809 *
810 * Valid to do another page fault here, because if this fault
811 * had been triggered by is_prefetch fixup_exception would have
812 * handled it.
813 *
814 * 64-bit:
92181f19 815 *
2d4a7167 816 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
817 */
818 if (is_prefetch(regs, error_code, address))
819 return;
820
821 if (is_errata93(regs, address))
822 return;
823
824 /*
825 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 826 * terminate things with extreme prejudice:
92181f19 827 */
92181f19 828 flags = oops_begin();
92181f19
NP
829
830 show_fault_oops(regs, error_code, address);
831
a70857e4 832 if (task_stack_end_corrupted(tsk))
b0f4c4b3 833 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 834
1cc99544 835 tsk->thread.cr2 = address;
51e7dc70 836 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 837 tsk->thread.error_code = error_code;
92181f19 838
92181f19
NP
839 sig = SIGKILL;
840 if (__die("Oops", regs, error_code))
841 sig = 0;
2d4a7167 842
92181f19 843 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 844 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 845
92181f19 846 oops_end(flags, regs, sig);
92181f19
NP
847}
848
2d4a7167
IM
849/*
850 * Print out info about fatal segfaults, if the show_unhandled_signals
851 * sysctl is set:
852 */
853static inline void
854show_signal_msg(struct pt_regs *regs, unsigned long error_code,
855 unsigned long address, struct task_struct *tsk)
856{
857 if (!unhandled_signal(tsk, SIGSEGV))
858 return;
859
860 if (!printk_ratelimit())
861 return;
862
a1a08d1c 863 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
864 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
865 tsk->comm, task_pid_nr(tsk), address,
866 (void *)regs->ip, (void *)regs->sp, error_code);
867
868 print_vma_addr(KERN_CONT " in ", regs->ip);
869
870 printk(KERN_CONT "\n");
871}
872
873static void
874__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
875 unsigned long address, struct vm_area_struct *vma,
876 int si_code)
92181f19
NP
877{
878 struct task_struct *tsk = current;
879
880 /* User mode accesses just cause a SIGSEGV */
881 if (error_code & PF_USER) {
882 /*
2d4a7167 883 * It's possible to have interrupts off here:
92181f19
NP
884 */
885 local_irq_enable();
886
887 /*
888 * Valid to do another page fault here because this one came
2d4a7167 889 * from user space:
92181f19
NP
890 */
891 if (is_prefetch(regs, error_code, address))
892 return;
893
894 if (is_errata100(regs, address))
895 return;
896
3ae36655
AL
897#ifdef CONFIG_X86_64
898 /*
899 * Instruction fetch faults in the vsyscall page might need
900 * emulation.
901 */
902 if (unlikely((error_code & PF_INSTR) &&
f40c3300 903 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
904 if (emulate_vsyscall(regs, address))
905 return;
906 }
907#endif
dc4fac84
AL
908
909 /*
910 * To avoid leaking information about the kernel page table
911 * layout, pretend that user-mode accesses to kernel addresses
912 * are always protection faults.
913 */
914 if (address >= TASK_SIZE_MAX)
e575a86f 915 error_code |= PF_PROT;
3ae36655 916
e575a86f 917 if (likely(show_unhandled_signals))
2d4a7167
IM
918 show_signal_msg(regs, error_code, address, tsk);
919
2d4a7167 920 tsk->thread.cr2 = address;
e575a86f 921 tsk->thread.error_code = error_code;
51e7dc70 922 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 923
7b2d0dba 924 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
2d4a7167 925
92181f19
NP
926 return;
927 }
928
929 if (is_f00f_bug(regs, address))
930 return;
931
4fc34901 932 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
933}
934
2d4a7167
IM
935static noinline void
936bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 937 unsigned long address, struct vm_area_struct *vma)
92181f19 938{
7b2d0dba 939 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
92181f19
NP
940}
941
2d4a7167
IM
942static void
943__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 944 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
945{
946 struct mm_struct *mm = current->mm;
947
948 /*
949 * Something tried to access memory that isn't in our memory map..
950 * Fix it, but check if it's kernel or user first..
951 */
952 up_read(&mm->mmap_sem);
953
7b2d0dba 954 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
92181f19
NP
955}
956
2d4a7167
IM
957static noinline void
958bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 959{
7b2d0dba 960 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
961}
962
33a709b2
DH
963static inline bool bad_area_access_from_pkeys(unsigned long error_code,
964 struct vm_area_struct *vma)
965{
07f146f5
DH
966 /* This code is always called on the current mm */
967 bool foreign = false;
968
33a709b2
DH
969 if (!boot_cpu_has(X86_FEATURE_OSPKE))
970 return false;
971 if (error_code & PF_PK)
972 return true;
07f146f5 973 /* this checks permission keys on the VMA: */
d61172b4
DH
974 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
975 (error_code & PF_INSTR), foreign))
07f146f5 976 return true;
33a709b2 977 return false;
92181f19
NP
978}
979
2d4a7167
IM
980static noinline void
981bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 982 unsigned long address, struct vm_area_struct *vma)
92181f19 983{
019132ff
DH
984 /*
985 * This OSPKE check is not strictly necessary at runtime.
986 * But, doing it this way allows compiler optimizations
987 * if pkeys are compiled out.
988 */
33a709b2 989 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
990 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
991 else
992 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
993}
994
2d4a7167 995static void
a6e04aa9 996do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
7b2d0dba 997 struct vm_area_struct *vma, unsigned int fault)
92181f19
NP
998{
999 struct task_struct *tsk = current;
a6e04aa9 1000 int code = BUS_ADRERR;
92181f19 1001
2d4a7167 1002 /* Kernel mode? Handle exceptions or die: */
96054569 1003 if (!(error_code & PF_USER)) {
4fc34901 1004 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1005 return;
1006 }
2d4a7167 1007
cd1b68f0 1008 /* User-space => ok to do another page fault: */
92181f19
NP
1009 if (is_prefetch(regs, error_code, address))
1010 return;
2d4a7167
IM
1011
1012 tsk->thread.cr2 = address;
1013 tsk->thread.error_code = error_code;
51e7dc70 1014 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 1015
a6e04aa9 1016#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1017 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
1018 printk(KERN_ERR
1019 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1020 tsk->comm, tsk->pid, address);
1021 code = BUS_MCEERR_AR;
1022 }
1023#endif
7b2d0dba 1024 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
92181f19
NP
1025}
1026
3a13c4d7 1027static noinline void
2d4a7167 1028mm_fault_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
1029 unsigned long address, struct vm_area_struct *vma,
1030 unsigned int fault)
92181f19 1031{
3a13c4d7 1032 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
1033 no_context(regs, error_code, address, 0, 0);
1034 return;
b80ef10e 1035 }
b80ef10e 1036
2d4a7167 1037 if (fault & VM_FAULT_OOM) {
f8626854
AV
1038 /* Kernel mode? Handle exceptions or die: */
1039 if (!(error_code & PF_USER)) {
4fc34901
AL
1040 no_context(regs, error_code, address,
1041 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1042 return;
f8626854
AV
1043 }
1044
c2d23f91
DR
1045 /*
1046 * We ran out of memory, call the OOM killer, and return the
1047 * userspace (which will retry the fault, or kill us if we got
1048 * oom-killed):
1049 */
1050 pagefault_out_of_memory();
2d4a7167 1051 } else {
f672b49b
AK
1052 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1053 VM_FAULT_HWPOISON_LARGE))
7b2d0dba 1054 do_sigbus(regs, error_code, address, vma, fault);
33692f27 1055 else if (fault & VM_FAULT_SIGSEGV)
7b2d0dba 1056 bad_area_nosemaphore(regs, error_code, address, vma);
2d4a7167
IM
1057 else
1058 BUG();
1059 }
92181f19
NP
1060}
1061
d8b57bb7
TG
1062static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1063{
1064 if ((error_code & PF_WRITE) && !pte_write(*pte))
1065 return 0;
2d4a7167 1066
d8b57bb7
TG
1067 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1068 return 0;
b3ecd515
DH
1069 /*
1070 * Note: We do not do lazy flushing on protection key
1071 * changes, so no spurious fault will ever set PF_PK.
1072 */
1073 if ((error_code & PF_PK))
1074 return 1;
d8b57bb7
TG
1075
1076 return 1;
1077}
1078
5b727a3b 1079/*
2d4a7167
IM
1080 * Handle a spurious fault caused by a stale TLB entry.
1081 *
1082 * This allows us to lazily refresh the TLB when increasing the
1083 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1084 * eagerly is very expensive since that implies doing a full
1085 * cross-processor TLB flush, even if no stale TLB entries exist
1086 * on other processors.
1087 *
31668511
DV
1088 * Spurious faults may only occur if the TLB contains an entry with
1089 * fewer permission than the page table entry. Non-present (P = 0)
1090 * and reserved bit (R = 1) faults are never spurious.
1091 *
5b727a3b
JF
1092 * There are no security implications to leaving a stale TLB when
1093 * increasing the permissions on a page.
31668511
DV
1094 *
1095 * Returns non-zero if a spurious fault was handled, zero otherwise.
1096 *
1097 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1098 * (Optional Invalidation).
5b727a3b 1099 */
9326638c 1100static noinline int
2d4a7167 1101spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1102{
1103 pgd_t *pgd;
e0c4f675 1104 p4d_t *p4d;
5b727a3b
JF
1105 pud_t *pud;
1106 pmd_t *pmd;
1107 pte_t *pte;
3c3e5694 1108 int ret;
5b727a3b 1109
31668511
DV
1110 /*
1111 * Only writes to RO or instruction fetches from NX may cause
1112 * spurious faults.
1113 *
1114 * These could be from user or supervisor accesses but the TLB
1115 * is only lazily flushed after a kernel mapping protection
1116 * change, so user accesses are not expected to cause spurious
1117 * faults.
1118 */
1119 if (error_code != (PF_WRITE | PF_PROT)
1120 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
1121 return 0;
1122
1123 pgd = init_mm.pgd + pgd_index(address);
1124 if (!pgd_present(*pgd))
1125 return 0;
1126
e0c4f675
KS
1127 p4d = p4d_offset(pgd, address);
1128 if (!p4d_present(*p4d))
1129 return 0;
1130
1131 if (p4d_large(*p4d))
1132 return spurious_fault_check(error_code, (pte_t *) p4d);
1133
1134 pud = pud_offset(p4d, address);
5b727a3b
JF
1135 if (!pud_present(*pud))
1136 return 0;
1137
d8b57bb7
TG
1138 if (pud_large(*pud))
1139 return spurious_fault_check(error_code, (pte_t *) pud);
1140
5b727a3b
JF
1141 pmd = pmd_offset(pud, address);
1142 if (!pmd_present(*pmd))
1143 return 0;
1144
d8b57bb7
TG
1145 if (pmd_large(*pmd))
1146 return spurious_fault_check(error_code, (pte_t *) pmd);
1147
5b727a3b 1148 pte = pte_offset_kernel(pmd, address);
954f8571 1149 if (!pte_present(*pte))
5b727a3b
JF
1150 return 0;
1151
3c3e5694
SR
1152 ret = spurious_fault_check(error_code, pte);
1153 if (!ret)
1154 return 0;
1155
1156 /*
2d4a7167
IM
1157 * Make sure we have permissions in PMD.
1158 * If not, then there's a bug in the page tables:
3c3e5694
SR
1159 */
1160 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1161 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1162
3c3e5694 1163 return ret;
5b727a3b 1164}
9326638c 1165NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1166
abd4f750 1167int show_unhandled_signals = 1;
1da177e4 1168
2d4a7167 1169static inline int
68da336a 1170access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1171{
07f146f5
DH
1172 /* This is only called for the current mm, so: */
1173 bool foreign = false;
e8c6226d
DH
1174
1175 /*
1176 * Read or write was blocked by protection keys. This is
1177 * always an unconditional error and can never result in
1178 * a follow-up action to resolve the fault, like a COW.
1179 */
1180 if (error_code & PF_PK)
1181 return 1;
1182
07f146f5
DH
1183 /*
1184 * Make sure to check the VMA so that we do not perform
1185 * faults just to hit a PF_PK as soon as we fill in a
1186 * page.
1187 */
d61172b4
DH
1188 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1189 (error_code & PF_INSTR), foreign))
07f146f5 1190 return 1;
33a709b2 1191
68da336a 1192 if (error_code & PF_WRITE) {
2d4a7167 1193 /* write, present and write, not present: */
92181f19
NP
1194 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1195 return 1;
2d4a7167 1196 return 0;
92181f19
NP
1197 }
1198
2d4a7167
IM
1199 /* read, present: */
1200 if (unlikely(error_code & PF_PROT))
1201 return 1;
1202
1203 /* read, not present: */
1204 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1205 return 1;
1206
92181f19
NP
1207 return 0;
1208}
1209
0973a06c
HS
1210static int fault_in_kernel_space(unsigned long address)
1211{
d9517346 1212 return address >= TASK_SIZE_MAX;
0973a06c
HS
1213}
1214
40d3cd66
PA
1215static inline bool smap_violation(int error_code, struct pt_regs *regs)
1216{
4640c7ee
PA
1217 if (!IS_ENABLED(CONFIG_X86_SMAP))
1218 return false;
1219
1220 if (!static_cpu_has(X86_FEATURE_SMAP))
1221 return false;
1222
40d3cd66
PA
1223 if (error_code & PF_USER)
1224 return false;
1225
f39b6f0e 1226 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1227 return false;
1228
1229 return true;
1230}
1231
1da177e4
LT
1232/*
1233 * This routine handles page faults. It determines the address,
1234 * and the problem, and then passes it off to one of the appropriate
1235 * routines.
d4078e23
PZ
1236 *
1237 * This function must have noinline because both callers
1238 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1239 * guarantees there's a function trace entry.
1da177e4 1240 */
9326638c 1241static noinline void
0ac09f9f
JO
1242__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1243 unsigned long address)
1da177e4 1244{
2d4a7167 1245 struct vm_area_struct *vma;
1da177e4
LT
1246 struct task_struct *tsk;
1247 struct mm_struct *mm;
26178ec1 1248 int fault, major = 0;
759496ba 1249 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1250
a9ba9a3b
AV
1251 tsk = current;
1252 mm = tsk->mm;
2d4a7167 1253
f8561296
VN
1254 /*
1255 * Detect and handle instructions that would cause a page fault for
1256 * both a tracked kernel page and a userspace page.
1257 */
1258 if (kmemcheck_active(regs))
1259 kmemcheck_hide(regs);
5dfaf90f 1260 prefetchw(&mm->mmap_sem);
f8561296 1261
0fd0e3da 1262 if (unlikely(kmmio_fault(regs, address)))
86069782 1263 return;
1da177e4
LT
1264
1265 /*
1266 * We fault-in kernel-space virtual memory on-demand. The
1267 * 'reference' page table is init_mm.pgd.
1268 *
1269 * NOTE! We MUST NOT take any locks for this case. We may
1270 * be in an interrupt or a critical region, and should
1271 * only copy the information from the master page table,
1272 * nothing more.
1273 *
1274 * This verifies that the fault happens in kernel space
1275 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1276 * protection error (error_code & 9) == 0.
1da177e4 1277 */
0973a06c 1278 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1279 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1280 if (vmalloc_fault(address) >= 0)
1281 return;
1282
1283 if (kmemcheck_fault(regs, address, error_code))
1284 return;
1285 }
5b727a3b 1286
2d4a7167 1287 /* Can handle a stale RO->RW TLB: */
92181f19 1288 if (spurious_fault(error_code, address))
5b727a3b
JF
1289 return;
1290
2d4a7167 1291 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1292 if (kprobes_fault(regs))
9be260a6 1293 return;
f8c2ee22
HH
1294 /*
1295 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1296 * fault we could otherwise deadlock:
f8c2ee22 1297 */
7b2d0dba 1298 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1299
92181f19 1300 return;
f8c2ee22
HH
1301 }
1302
2d4a7167 1303 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1304 if (unlikely(kprobes_fault(regs)))
9be260a6 1305 return;
8c914cb7 1306
66c58156 1307 if (unlikely(error_code & PF_RSVD))
92181f19 1308 pgtable_bad(regs, error_code, address);
1da177e4 1309
4640c7ee 1310 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1311 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1312 return;
40d3cd66
PA
1313 }
1314
1da177e4 1315 /*
2d4a7167 1316 * If we're in an interrupt, have no user context or are running
70ffdb93 1317 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1318 */
70ffdb93 1319 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1320 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1321 return;
1322 }
1da177e4 1323
e00b12e6
PZ
1324 /*
1325 * It's safe to allow irq's after cr2 has been saved and the
1326 * vmalloc fault has been handled.
1327 *
1328 * User-mode registers count as a user access even for any
1329 * potential system fault or CPU buglet:
1330 */
f39b6f0e 1331 if (user_mode(regs)) {
e00b12e6
PZ
1332 local_irq_enable();
1333 error_code |= PF_USER;
1334 flags |= FAULT_FLAG_USER;
1335 } else {
1336 if (regs->flags & X86_EFLAGS_IF)
1337 local_irq_enable();
1338 }
1339
1340 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1341
759496ba
JW
1342 if (error_code & PF_WRITE)
1343 flags |= FAULT_FLAG_WRITE;
d61172b4
DH
1344 if (error_code & PF_INSTR)
1345 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1346
3a1dfe6e
IM
1347 /*
1348 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1349 * addresses in user space. All other faults represent errors in
1350 * the kernel and should generate an OOPS. Unfortunately, in the
1351 * case of an erroneous fault occurring in a code path which already
1352 * holds mmap_sem we will deadlock attempting to validate the fault
1353 * against the address space. Luckily the kernel only validly
1354 * references user space from well defined areas of code, which are
1355 * listed in the exceptions table.
1da177e4
LT
1356 *
1357 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1358 * the source reference check when there is a possibility of a
1359 * deadlock. Attempt to lock the address space, if we cannot we then
1360 * validate the source. If this is invalid we can skip the address
1361 * space check, thus avoiding the deadlock:
1da177e4 1362 */
92181f19 1363 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1364 if ((error_code & PF_USER) == 0 &&
92181f19 1365 !search_exception_tables(regs->ip)) {
7b2d0dba 1366 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1367 return;
1368 }
d065bd81 1369retry:
1da177e4 1370 down_read(&mm->mmap_sem);
01006074
PZ
1371 } else {
1372 /*
2d4a7167
IM
1373 * The above down_read_trylock() might have succeeded in
1374 * which case we'll have missed the might_sleep() from
1375 * down_read():
01006074
PZ
1376 */
1377 might_sleep();
1da177e4
LT
1378 }
1379
1380 vma = find_vma(mm, address);
92181f19
NP
1381 if (unlikely(!vma)) {
1382 bad_area(regs, error_code, address);
1383 return;
1384 }
1385 if (likely(vma->vm_start <= address))
1da177e4 1386 goto good_area;
92181f19
NP
1387 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1388 bad_area(regs, error_code, address);
1389 return;
1390 }
33cb5243 1391 if (error_code & PF_USER) {
6f4d368e
HH
1392 /*
1393 * Accessing the stack below %sp is always a bug.
1394 * The large cushion allows instructions like enter
2d4a7167 1395 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1396 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1397 */
92181f19
NP
1398 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1399 bad_area(regs, error_code, address);
1400 return;
1401 }
1da177e4 1402 }
92181f19
NP
1403 if (unlikely(expand_stack(vma, address))) {
1404 bad_area(regs, error_code, address);
1405 return;
1406 }
1407
1408 /*
1409 * Ok, we have a good vm_area for this memory access, so
1410 * we can handle it..
1411 */
1da177e4 1412good_area:
68da336a 1413 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1414 bad_area_access_error(regs, error_code, address, vma);
92181f19 1415 return;
1da177e4
LT
1416 }
1417
1418 /*
1419 * If for any reason at all we couldn't handle the fault,
1420 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1421 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1422 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1423 */
dcddffd4 1424 fault = handle_mm_fault(vma, address, flags);
26178ec1 1425 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1426
3a13c4d7 1427 /*
26178ec1
LT
1428 * If we need to retry the mmap_sem has already been released,
1429 * and if there is a fatal signal pending there is no guarantee
1430 * that we made any progress. Handle this case first.
3a13c4d7 1431 */
26178ec1
LT
1432 if (unlikely(fault & VM_FAULT_RETRY)) {
1433 /* Retry at most once */
1434 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1435 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1436 flags |= FAULT_FLAG_TRIED;
1437 if (!fatal_signal_pending(tsk))
1438 goto retry;
1439 }
1440
1441 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1442 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1443 return;
1444
1445 /* Not returning to user mode? Handle exceptions or die: */
1446 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1447 return;
26178ec1 1448 }
3a13c4d7 1449
26178ec1 1450 up_read(&mm->mmap_sem);
3a13c4d7 1451 if (unlikely(fault & VM_FAULT_ERROR)) {
7b2d0dba 1452 mm_fault_error(regs, error_code, address, vma, fault);
3a13c4d7 1453 return;
37b23e05
KM
1454 }
1455
d065bd81 1456 /*
26178ec1
LT
1457 * Major/minor page fault accounting. If any of the events
1458 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1459 */
26178ec1
LT
1460 if (major) {
1461 tsk->maj_flt++;
1462 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1463 } else {
1464 tsk->min_flt++;
1465 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1466 }
d729ab35 1467
8c938f9f 1468 check_v8086_mode(regs, address, tsk);
1da177e4 1469}
9326638c 1470NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1471
9326638c 1472dotraplinkage void notrace
6ba3c97a
FW
1473do_page_fault(struct pt_regs *regs, unsigned long error_code)
1474{
d4078e23 1475 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1476 enum ctx_state prev_state;
d4078e23
PZ
1477
1478 /*
1479 * We must have this function tagged with __kprobes, notrace and call
1480 * read_cr2() before calling anything else. To avoid calling any kind
1481 * of tracing machinery before we've observed the CR2 value.
1482 *
1483 * exception_{enter,exit}() contain all sorts of tracepoints.
1484 */
6c1e0256
FW
1485
1486 prev_state = exception_enter();
0ac09f9f 1487 __do_page_fault(regs, error_code, address);
6c1e0256 1488 exception_exit(prev_state);
6ba3c97a 1489}
9326638c 1490NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1491
d4078e23 1492#ifdef CONFIG_TRACING
9326638c
MH
1493static nokprobe_inline void
1494trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1495 unsigned long error_code)
d34603b0
SA
1496{
1497 if (user_mode(regs))
d4078e23 1498 trace_page_fault_user(address, regs, error_code);
d34603b0 1499 else
d4078e23 1500 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1501}
1502
9326638c 1503dotraplinkage void notrace
25c74b10
SA
1504trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1505{
0ac09f9f
JO
1506 /*
1507 * The exception_enter and tracepoint processing could
1508 * trigger another page faults (user space callchain
1509 * reading) and destroy the original cr2 value, so read
1510 * the faulting address now.
1511 */
1512 unsigned long address = read_cr2();
d4078e23 1513 enum ctx_state prev_state;
25c74b10
SA
1514
1515 prev_state = exception_enter();
d4078e23 1516 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1517 __do_page_fault(regs, error_code, address);
25c74b10
SA
1518 exception_exit(prev_state);
1519}
9326638c 1520NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1521#endif /* CONFIG_TRACING */