Merge remote-tracking branches 'asoc/topic/wm8753', 'asoc/topic/wm8770', 'asoc/topic...
[linux-block.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
a2bcd473 11#include <linux/bootmem.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 19
019132ff 20#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
21#include <asm/traps.h> /* dotraplinkage, ... */
22#include <asm/pgalloc.h> /* pgd_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
b814d41f 31/*
b319eed0
IM
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
b814d41f 34 */
9326638c 35static nokprobe_inline int
62c9295f 36kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 37{
0fd0e3da
PP
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
40 return -1;
0fd0e3da 41 return 0;
86069782
PP
42}
43
9326638c 44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 45{
74a0b576
CH
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 49 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
54 }
1bd858a5 55
74a0b576 56 return ret;
33cb5243 57}
1bd858a5 58
1dc85be0 59/*
2d4a7167
IM
60 * Prefetch quirks:
61 *
62 * 32-bit mode:
63 *
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
1dc85be0 66 *
2d4a7167 67 * 64-bit mode:
1dc85be0 68 *
2d4a7167
IM
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
71 *
72 * Opcode checker based on code by Richard Brunner.
1dc85be0 73 */
107a0367
IM
74static inline int
75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
77{
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
80
81 switch (instr_hi) {
82 case 0x20:
83 case 0x30:
84 /*
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
89 */
90 return ((instr_lo & 7) == 0x6);
91#ifdef CONFIG_X86_64
92 case 0x40:
93 /*
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
99 */
318f5a2a 100 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
101#endif
102 case 0x60:
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
105 case 0xF0:
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
108 case 0x00:
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
111 return 0;
112
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
115 return 0;
116 default:
117 return 0;
118 }
119}
120
2d4a7167
IM
121static int
122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 123{
2d4a7167 124 unsigned char *max_instr;
ab2bf0c1 125 unsigned char *instr;
33cb5243 126 int prefetch = 0;
1da177e4 127
3085354d
IM
128 /*
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
131 */
1067f030 132 if (error_code & X86_PF_INSTR)
1da177e4 133 return 0;
1dc85be0 134
107a0367 135 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 136 max_instr = instr + 15;
1da177e4 137
d31bf07f 138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
139 return 0;
140
107a0367 141 while (instr < max_instr) {
2d4a7167 142 unsigned char opcode;
1da177e4 143
ab2bf0c1 144 if (probe_kernel_address(instr, opcode))
33cb5243 145 break;
1da177e4 146
1da177e4
LT
147 instr++;
148
107a0367 149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 150 break;
1da177e4
LT
151 }
152 return prefetch;
153}
154
019132ff
DH
155/*
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
160 * on the PTE.
161 *
1067f030 162 * If we get here, we know that the hardware signaled a X86_PF_PK
019132ff
DH
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
166 *
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
169 * 3. T1 : faults...
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
174 */
beacd6f7
EB
175static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 u32 *pkey)
019132ff
DH
177{
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 return;
181
182 /* Fault not from Protection Keys: nothing to do */
beacd6f7 183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
019132ff
DH
184 return;
185 /*
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
1067f030 188 * do not. The X86_PF_PK handing happens after we have a
019132ff
DH
189 * valid VMA, so we should never reach this without a
190 * valid VMA.
191 */
a3c4fb7c 192 if (!pkey) {
019132ff
DH
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
194 info->si_pkey = 0;
195 return;
196 }
197 /*
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
201 */
a3c4fb7c 202 info->si_pkey = *pkey;
019132ff
DH
203}
204
2d4a7167
IM
205static void
206force_sig_info_fault(int si_signo, int si_code, unsigned long address,
a3c4fb7c 207 struct task_struct *tsk, u32 *pkey, int fault)
c4aba4a8 208{
f672b49b 209 unsigned lsb = 0;
c4aba4a8
HH
210 siginfo_t info;
211
2d4a7167
IM
212 info.si_signo = si_signo;
213 info.si_errno = 0;
214 info.si_code = si_code;
215 info.si_addr = (void __user *)address;
f672b49b
AK
216 if (fault & VM_FAULT_HWPOISON_LARGE)
217 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 if (fault & VM_FAULT_HWPOISON)
219 lsb = PAGE_SHIFT;
220 info.si_addr_lsb = lsb;
2d4a7167 221
beacd6f7 222 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
019132ff 223
c4aba4a8
HH
224 force_sig_info(si_signo, &info, tsk);
225}
226
f2f13a85
IM
227DEFINE_SPINLOCK(pgd_lock);
228LIST_HEAD(pgd_list);
229
230#ifdef CONFIG_X86_32
231static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 232{
f2f13a85
IM
233 unsigned index = pgd_index(address);
234 pgd_t *pgd_k;
e0c4f675 235 p4d_t *p4d, *p4d_k;
f2f13a85
IM
236 pud_t *pud, *pud_k;
237 pmd_t *pmd, *pmd_k;
2d4a7167 238
f2f13a85
IM
239 pgd += index;
240 pgd_k = init_mm.pgd + index;
241
242 if (!pgd_present(*pgd_k))
243 return NULL;
244
245 /*
246 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 248 * set_p4d/set_pud.
f2f13a85 249 */
e0c4f675
KS
250 p4d = p4d_offset(pgd, address);
251 p4d_k = p4d_offset(pgd_k, address);
252 if (!p4d_present(*p4d_k))
253 return NULL;
254
255 pud = pud_offset(p4d, address);
256 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
257 if (!pud_present(*pud_k))
258 return NULL;
259
260 pmd = pmd_offset(pud, address);
261 pmd_k = pmd_offset(pud_k, address);
262 if (!pmd_present(*pmd_k))
263 return NULL;
264
b8bcfe99 265 if (!pmd_present(*pmd))
f2f13a85 266 set_pmd(pmd, *pmd_k);
b8bcfe99 267 else
f2f13a85 268 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
269
270 return pmd_k;
271}
272
273void vmalloc_sync_all(void)
274{
275 unsigned long address;
276
277 if (SHARED_KERNEL_PMD)
278 return;
279
280 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 281 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 282 address += PMD_SIZE) {
f2f13a85
IM
283 struct page *page;
284
a79e53d8 285 spin_lock(&pgd_lock);
f2f13a85 286 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 287 spinlock_t *pgt_lock;
f01f7c56 288 pmd_t *ret;
617d34d9 289
a79e53d8 290 /* the pgt_lock only for Xen */
617d34d9
JF
291 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
292
293 spin_lock(pgt_lock);
294 ret = vmalloc_sync_one(page_address(page), address);
295 spin_unlock(pgt_lock);
296
297 if (!ret)
f2f13a85
IM
298 break;
299 }
a79e53d8 300 spin_unlock(&pgd_lock);
f2f13a85
IM
301 }
302}
303
304/*
305 * 32-bit:
306 *
307 * Handle a fault on the vmalloc or module mapping area
308 */
9326638c 309static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
310{
311 unsigned long pgd_paddr;
312 pmd_t *pmd_k;
313 pte_t *pte_k;
314
315 /* Make sure we are in vmalloc area: */
316 if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 return -1;
318
ebc8827f
FW
319 WARN_ON_ONCE(in_nmi());
320
f2f13a85
IM
321 /*
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
324 *
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
327 */
6c690ee1 328 pgd_paddr = read_cr3_pa();
f2f13a85
IM
329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 if (!pmd_k)
331 return -1;
332
18a95521 333 if (pmd_large(*pmd_k))
f4eafd8b
TK
334 return 0;
335
f2f13a85
IM
336 pte_k = pte_offset_kernel(pmd_k, address);
337 if (!pte_present(*pte_k))
338 return -1;
339
340 return 0;
341}
9326638c 342NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
343
344/*
345 * Did it hit the DOS screen memory VA from vm86 mode?
346 */
347static inline void
348check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
350{
9fda6a06 351#ifdef CONFIG_VM86
f2f13a85
IM
352 unsigned long bit;
353
9fda6a06 354 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
355 return;
356
357 bit = (address - 0xA0000) >> PAGE_SHIFT;
358 if (bit < 32)
9fda6a06
BG
359 tsk->thread.vm86->screen_bitmap |= 1 << bit;
360#endif
33cb5243 361}
1da177e4 362
087975b0 363static bool low_pfn(unsigned long pfn)
1da177e4 364{
087975b0
AM
365 return pfn < max_low_pfn;
366}
1156e098 367
087975b0
AM
368static void dump_pagetable(unsigned long address)
369{
6c690ee1 370 pgd_t *base = __va(read_cr3_pa());
087975b0 371 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
372 p4d_t *p4d;
373 pud_t *pud;
087975b0
AM
374 pmd_t *pmd;
375 pte_t *pte;
2d4a7167 376
1156e098 377#ifdef CONFIG_X86_PAE
39e48d9b 378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 goto out;
39e48d9b
JB
381#define pr_pde pr_cont
382#else
383#define pr_pde pr_info
1156e098 384#endif
e0c4f675
KS
385 p4d = p4d_offset(pgd, address);
386 pud = pud_offset(p4d, address);
387 pmd = pmd_offset(pud, address);
39e48d9b
JB
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389#undef pr_pde
1156e098
HH
390
391 /*
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 395 * it's allocated already:
1156e098 396 */
087975b0
AM
397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 goto out;
1156e098 399
087975b0 400 pte = pte_offset_kernel(pmd, address);
39e48d9b 401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 402out:
39e48d9b 403 pr_cont("\n");
f2f13a85
IM
404}
405
406#else /* CONFIG_X86_64: */
407
408void vmalloc_sync_all(void)
409{
5372e155 410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
411}
412
413/*
414 * 64-bit:
415 *
416 * Handle a fault on the vmalloc area
f2f13a85 417 */
9326638c 418static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
419{
420 pgd_t *pgd, *pgd_ref;
b50858ce 421 p4d_t *p4d, *p4d_ref;
f2f13a85
IM
422 pud_t *pud, *pud_ref;
423 pmd_t *pmd, *pmd_ref;
424 pte_t *pte, *pte_ref;
425
426 /* Make sure we are in vmalloc area: */
427 if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 return -1;
429
ebc8827f
FW
430 WARN_ON_ONCE(in_nmi());
431
f2f13a85
IM
432 /*
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
435 * case just flush:
436 */
6c690ee1 437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
f2f13a85
IM
438 pgd_ref = pgd_offset_k(address);
439 if (pgd_none(*pgd_ref))
440 return -1;
441
36b3a772
AL
442 if (CONFIG_PGTABLE_LEVELS > 4) {
443 if (pgd_none(*pgd)) {
444 set_pgd(pgd, *pgd_ref);
445 arch_flush_lazy_mmu_mode();
446 } else {
447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
448 }
1160c277 449 }
f2f13a85 450
b50858ce
KS
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d = p4d_offset(pgd, address);
453 p4d_ref = p4d_offset(pgd_ref, address);
454 if (p4d_none(*p4d_ref))
455 return -1;
456
36b3a772 457 if (p4d_none(*p4d) && CONFIG_PGTABLE_LEVELS == 4) {
b50858ce
KS
458 set_p4d(p4d, *p4d_ref);
459 arch_flush_lazy_mmu_mode();
460 } else {
461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
462 }
463
f2f13a85
IM
464 /*
465 * Below here mismatches are bugs because these lower tables
466 * are shared:
467 */
36b3a772 468 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
f2f13a85 469
b50858ce
KS
470 pud = pud_offset(p4d, address);
471 pud_ref = pud_offset(p4d_ref, address);
f2f13a85
IM
472 if (pud_none(*pud_ref))
473 return -1;
474
f4eafd8b 475 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
476 BUG();
477
18a95521 478 if (pud_large(*pud))
f4eafd8b
TK
479 return 0;
480
f2f13a85
IM
481 pmd = pmd_offset(pud, address);
482 pmd_ref = pmd_offset(pud_ref, address);
483 if (pmd_none(*pmd_ref))
484 return -1;
485
f4eafd8b 486 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
487 BUG();
488
18a95521 489 if (pmd_large(*pmd))
f4eafd8b
TK
490 return 0;
491
f2f13a85
IM
492 pte_ref = pte_offset_kernel(pmd_ref, address);
493 if (!pte_present(*pte_ref))
494 return -1;
495
496 pte = pte_offset_kernel(pmd, address);
497
498 /*
499 * Don't use pte_page here, because the mappings can point
500 * outside mem_map, and the NUMA hash lookup cannot handle
501 * that:
502 */
503 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
504 BUG();
505
506 return 0;
507}
9326638c 508NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 509
e05139f2 510#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 511static const char errata93_warning[] =
ad361c98
JP
512KERN_ERR
513"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
514"******* Working around it, but it may cause SEGVs or burn power.\n"
515"******* Please consider a BIOS update.\n"
516"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 517#endif
f2f13a85
IM
518
519/*
520 * No vm86 mode in 64-bit mode:
521 */
522static inline void
523check_v8086_mode(struct pt_regs *regs, unsigned long address,
524 struct task_struct *tsk)
525{
526}
527
528static int bad_address(void *p)
529{
530 unsigned long dummy;
531
532 return probe_kernel_address((unsigned long *)p, dummy);
533}
534
535static void dump_pagetable(unsigned long address)
536{
6c690ee1 537 pgd_t *base = __va(read_cr3_pa());
087975b0 538 pgd_t *pgd = base + pgd_index(address);
e0c4f675 539 p4d_t *p4d;
1da177e4
LT
540 pud_t *pud;
541 pmd_t *pmd;
542 pte_t *pte;
543
2d4a7167
IM
544 if (bad_address(pgd))
545 goto bad;
546
39e48d9b 547 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
548
549 if (!pgd_present(*pgd))
550 goto out;
1da177e4 551
e0c4f675
KS
552 p4d = p4d_offset(pgd, address);
553 if (bad_address(p4d))
554 goto bad;
555
39e48d9b 556 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
557 if (!p4d_present(*p4d) || p4d_large(*p4d))
558 goto out;
559
560 pud = pud_offset(p4d, address);
2d4a7167
IM
561 if (bad_address(pud))
562 goto bad;
563
39e48d9b 564 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 565 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 566 goto out;
1da177e4
LT
567
568 pmd = pmd_offset(pud, address);
2d4a7167
IM
569 if (bad_address(pmd))
570 goto bad;
571
39e48d9b 572 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
573 if (!pmd_present(*pmd) || pmd_large(*pmd))
574 goto out;
1da177e4
LT
575
576 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
577 if (bad_address(pte))
578 goto bad;
579
39e48d9b 580 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 581out:
39e48d9b 582 pr_cont("\n");
1da177e4
LT
583 return;
584bad:
39e48d9b 585 pr_info("BAD\n");
8c938f9f
IM
586}
587
f2f13a85 588#endif /* CONFIG_X86_64 */
1da177e4 589
2d4a7167
IM
590/*
591 * Workaround for K8 erratum #93 & buggy BIOS.
592 *
593 * BIOS SMM functions are required to use a specific workaround
594 * to avoid corruption of the 64bit RIP register on C stepping K8.
595 *
596 * A lot of BIOS that didn't get tested properly miss this.
597 *
598 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
599 * Try to work around it here.
600 *
601 * Note we only handle faults in kernel here.
602 * Does nothing on 32-bit.
fdfe8aa8 603 */
33cb5243 604static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 605{
e05139f2
JB
606#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
607 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
608 || boot_cpu_data.x86 != 0xf)
609 return 0;
610
65ea5b03 611 if (address != regs->ip)
1da177e4 612 return 0;
2d4a7167 613
33cb5243 614 if ((address >> 32) != 0)
1da177e4 615 return 0;
2d4a7167 616
1da177e4 617 address |= 0xffffffffUL << 32;
33cb5243
HH
618 if ((address >= (u64)_stext && address <= (u64)_etext) ||
619 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 620 printk_once(errata93_warning);
65ea5b03 621 regs->ip = address;
1da177e4
LT
622 return 1;
623 }
fdfe8aa8 624#endif
1da177e4 625 return 0;
33cb5243 626}
1da177e4 627
35f3266f 628/*
2d4a7167
IM
629 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
630 * to illegal addresses >4GB.
631 *
632 * We catch this in the page fault handler because these addresses
633 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
634 * segment in LDT is compatibility mode.
635 */
636static int is_errata100(struct pt_regs *regs, unsigned long address)
637{
638#ifdef CONFIG_X86_64
2d4a7167 639 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
640 return 1;
641#endif
642 return 0;
643}
644
29caf2f9
HH
645static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
646{
647#ifdef CONFIG_X86_F00F_BUG
648 unsigned long nr;
2d4a7167 649
29caf2f9 650 /*
2d4a7167 651 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 652 */
e2604b49 653 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
654 nr = (address - idt_descr.address) >> 3;
655
656 if (nr == 6) {
657 do_invalid_op(regs, 0);
658 return 1;
659 }
660 }
661#endif
662 return 0;
663}
664
8f766149
IM
665static const char nx_warning[] = KERN_CRIT
666"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
667static const char smep_warning[] = KERN_CRIT
668"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 669
2d4a7167
IM
670static void
671show_fault_oops(struct pt_regs *regs, unsigned long error_code,
672 unsigned long address)
b3279c7f 673{
1156e098
HH
674 if (!oops_may_print())
675 return;
676
1067f030 677 if (error_code & X86_PF_INSTR) {
93809be8 678 unsigned int level;
426e34cc
MF
679 pgd_t *pgd;
680 pte_t *pte;
2d4a7167 681
6c690ee1 682 pgd = __va(read_cr3_pa());
426e34cc
MF
683 pgd += pgd_index(address);
684
685 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 686
8f766149 687 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 688 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
689 if (pte && pte_present(*pte) && pte_exec(*pte) &&
690 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 691 (__read_cr4() & X86_CR4_SMEP))
eff50c34 692 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 693 }
1156e098 694
19f0dda9 695 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 696 if (address < PAGE_SIZE)
19f0dda9 697 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 698 else
19f0dda9 699 printk(KERN_CONT "paging request");
2d4a7167 700
328b4ed9 701 printk(KERN_CONT " at %px\n", (void *) address);
bb5e5ce5 702 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 703
b3279c7f
HH
704 dump_pagetable(address);
705}
706
2d4a7167
IM
707static noinline void
708pgtable_bad(struct pt_regs *regs, unsigned long error_code,
709 unsigned long address)
1da177e4 710{
2d4a7167
IM
711 struct task_struct *tsk;
712 unsigned long flags;
713 int sig;
714
715 flags = oops_begin();
716 tsk = current;
717 sig = SIGKILL;
1209140c 718
1da177e4 719 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 720 tsk->comm, address);
1da177e4 721 dump_pagetable(address);
2d4a7167
IM
722
723 tsk->thread.cr2 = address;
51e7dc70 724 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
725 tsk->thread.error_code = error_code;
726
22f5991c 727 if (__die("Bad pagetable", regs, error_code))
874d93d1 728 sig = 0;
2d4a7167 729
874d93d1 730 oops_end(flags, regs, sig);
1da177e4
LT
731}
732
2d4a7167
IM
733static noinline void
734no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 735 unsigned long address, int signal, int si_code)
92181f19
NP
736{
737 struct task_struct *tsk = current;
92181f19
NP
738 unsigned long flags;
739 int sig;
92181f19 740
2d4a7167 741 /* Are we prepared to handle this kernel fault? */
548acf19 742 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
743 /*
744 * Any interrupt that takes a fault gets the fixup. This makes
745 * the below recursive fault logic only apply to a faults from
746 * task context.
747 */
748 if (in_interrupt())
749 return;
750
751 /*
752 * Per the above we're !in_interrupt(), aka. task context.
753 *
754 * In this case we need to make sure we're not recursively
755 * faulting through the emulate_vsyscall() logic.
756 */
2a53ccbc 757 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 758 tsk->thread.trap_nr = X86_TRAP_PF;
1067f030 759 tsk->thread.error_code = error_code | X86_PF_USER;
4fc34901
AL
760 tsk->thread.cr2 = address;
761
762 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba 763 force_sig_info_fault(signal, si_code, address,
a3c4fb7c 764 tsk, NULL, 0);
4fc34901 765 }
c026b359
PZ
766
767 /*
768 * Barring that, we can do the fixup and be happy.
769 */
92181f19 770 return;
4fc34901 771 }
92181f19 772
6271cfdf
AL
773#ifdef CONFIG_VMAP_STACK
774 /*
775 * Stack overflow? During boot, we can fault near the initial
776 * stack in the direct map, but that's not an overflow -- check
777 * that we're in vmalloc space to avoid this.
778 */
779 if (is_vmalloc_addr((void *)address) &&
780 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
781 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
782 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
783 /*
784 * We're likely to be running with very little stack space
785 * left. It's plausible that we'd hit this condition but
786 * double-fault even before we get this far, in which case
787 * we're fine: the double-fault handler will deal with it.
788 *
789 * We don't want to make it all the way into the oops code
790 * and then double-fault, though, because we're likely to
791 * break the console driver and lose most of the stack dump.
792 */
793 asm volatile ("movq %[stack], %%rsp\n\t"
794 "call handle_stack_overflow\n\t"
795 "1: jmp 1b"
f5caf621 796 : ASM_CALL_CONSTRAINT
6271cfdf
AL
797 : "D" ("kernel stack overflow (page fault)"),
798 "S" (regs), "d" (address),
799 [stack] "rm" (stack));
800 unreachable();
801 }
802#endif
803
92181f19 804 /*
2d4a7167
IM
805 * 32-bit:
806 *
807 * Valid to do another page fault here, because if this fault
808 * had been triggered by is_prefetch fixup_exception would have
809 * handled it.
810 *
811 * 64-bit:
92181f19 812 *
2d4a7167 813 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
814 */
815 if (is_prefetch(regs, error_code, address))
816 return;
817
818 if (is_errata93(regs, address))
819 return;
820
821 /*
822 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 823 * terminate things with extreme prejudice:
92181f19 824 */
92181f19 825 flags = oops_begin();
92181f19
NP
826
827 show_fault_oops(regs, error_code, address);
828
a70857e4 829 if (task_stack_end_corrupted(tsk))
b0f4c4b3 830 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 831
1cc99544 832 tsk->thread.cr2 = address;
51e7dc70 833 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 834 tsk->thread.error_code = error_code;
92181f19 835
92181f19
NP
836 sig = SIGKILL;
837 if (__die("Oops", regs, error_code))
838 sig = 0;
2d4a7167 839
92181f19 840 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 841 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 842
92181f19 843 oops_end(flags, regs, sig);
92181f19
NP
844}
845
2d4a7167
IM
846/*
847 * Print out info about fatal segfaults, if the show_unhandled_signals
848 * sysctl is set:
849 */
850static inline void
851show_signal_msg(struct pt_regs *regs, unsigned long error_code,
852 unsigned long address, struct task_struct *tsk)
853{
854 if (!unhandled_signal(tsk, SIGSEGV))
855 return;
856
857 if (!printk_ratelimit())
858 return;
859
10a7e9d8 860 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
2d4a7167
IM
861 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
862 tsk->comm, task_pid_nr(tsk), address,
863 (void *)regs->ip, (void *)regs->sp, error_code);
864
865 print_vma_addr(KERN_CONT " in ", regs->ip);
866
867 printk(KERN_CONT "\n");
868}
869
870static void
871__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 872 unsigned long address, u32 *pkey, int si_code)
92181f19
NP
873{
874 struct task_struct *tsk = current;
875
876 /* User mode accesses just cause a SIGSEGV */
1067f030 877 if (error_code & X86_PF_USER) {
92181f19 878 /*
2d4a7167 879 * It's possible to have interrupts off here:
92181f19
NP
880 */
881 local_irq_enable();
882
883 /*
884 * Valid to do another page fault here because this one came
2d4a7167 885 * from user space:
92181f19
NP
886 */
887 if (is_prefetch(regs, error_code, address))
888 return;
889
890 if (is_errata100(regs, address))
891 return;
892
3ae36655
AL
893#ifdef CONFIG_X86_64
894 /*
895 * Instruction fetch faults in the vsyscall page might need
896 * emulation.
897 */
1067f030 898 if (unlikely((error_code & X86_PF_INSTR) &&
f40c3300 899 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
900 if (emulate_vsyscall(regs, address))
901 return;
902 }
903#endif
dc4fac84
AL
904
905 /*
906 * To avoid leaking information about the kernel page table
907 * layout, pretend that user-mode accesses to kernel addresses
908 * are always protection faults.
909 */
910 if (address >= TASK_SIZE_MAX)
1067f030 911 error_code |= X86_PF_PROT;
3ae36655 912
e575a86f 913 if (likely(show_unhandled_signals))
2d4a7167
IM
914 show_signal_msg(regs, error_code, address, tsk);
915
2d4a7167 916 tsk->thread.cr2 = address;
e575a86f 917 tsk->thread.error_code = error_code;
51e7dc70 918 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 919
a3c4fb7c 920 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
2d4a7167 921
92181f19
NP
922 return;
923 }
924
925 if (is_f00f_bug(regs, address))
926 return;
927
4fc34901 928 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
929}
930
2d4a7167
IM
931static noinline void
932bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 933 unsigned long address, u32 *pkey)
92181f19 934{
a3c4fb7c 935 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
92181f19
NP
936}
937
2d4a7167
IM
938static void
939__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 940 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
941{
942 struct mm_struct *mm = current->mm;
a3c4fb7c
LD
943 u32 pkey;
944
945 if (vma)
946 pkey = vma_pkey(vma);
92181f19
NP
947
948 /*
949 * Something tried to access memory that isn't in our memory map..
950 * Fix it, but check if it's kernel or user first..
951 */
952 up_read(&mm->mmap_sem);
953
a3c4fb7c
LD
954 __bad_area_nosemaphore(regs, error_code, address,
955 (vma) ? &pkey : NULL, si_code);
92181f19
NP
956}
957
2d4a7167
IM
958static noinline void
959bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 960{
7b2d0dba 961 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
962}
963
33a709b2
DH
964static inline bool bad_area_access_from_pkeys(unsigned long error_code,
965 struct vm_area_struct *vma)
966{
07f146f5
DH
967 /* This code is always called on the current mm */
968 bool foreign = false;
969
33a709b2
DH
970 if (!boot_cpu_has(X86_FEATURE_OSPKE))
971 return false;
1067f030 972 if (error_code & X86_PF_PK)
33a709b2 973 return true;
07f146f5 974 /* this checks permission keys on the VMA: */
1067f030
RN
975 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
976 (error_code & X86_PF_INSTR), foreign))
07f146f5 977 return true;
33a709b2 978 return false;
92181f19
NP
979}
980
2d4a7167
IM
981static noinline void
982bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 983 unsigned long address, struct vm_area_struct *vma)
92181f19 984{
019132ff
DH
985 /*
986 * This OSPKE check is not strictly necessary at runtime.
987 * But, doing it this way allows compiler optimizations
988 * if pkeys are compiled out.
989 */
33a709b2 990 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
991 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
992 else
993 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
994}
995
2d4a7167 996static void
a6e04aa9 997do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
a3c4fb7c 998 u32 *pkey, unsigned int fault)
92181f19
NP
999{
1000 struct task_struct *tsk = current;
a6e04aa9 1001 int code = BUS_ADRERR;
92181f19 1002
2d4a7167 1003 /* Kernel mode? Handle exceptions or die: */
1067f030 1004 if (!(error_code & X86_PF_USER)) {
4fc34901 1005 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1006 return;
1007 }
2d4a7167 1008
cd1b68f0 1009 /* User-space => ok to do another page fault: */
92181f19
NP
1010 if (is_prefetch(regs, error_code, address))
1011 return;
2d4a7167
IM
1012
1013 tsk->thread.cr2 = address;
1014 tsk->thread.error_code = error_code;
51e7dc70 1015 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 1016
a6e04aa9 1017#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1018 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
1019 printk(KERN_ERR
1020 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1021 tsk->comm, tsk->pid, address);
1022 code = BUS_MCEERR_AR;
1023 }
1024#endif
a3c4fb7c 1025 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
92181f19
NP
1026}
1027
3a13c4d7 1028static noinline void
2d4a7167 1029mm_fault_error(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 1030 unsigned long address, u32 *pkey, unsigned int fault)
92181f19 1031{
1067f030 1032 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
3a13c4d7
JW
1033 no_context(regs, error_code, address, 0, 0);
1034 return;
b80ef10e 1035 }
b80ef10e 1036
2d4a7167 1037 if (fault & VM_FAULT_OOM) {
f8626854 1038 /* Kernel mode? Handle exceptions or die: */
1067f030 1039 if (!(error_code & X86_PF_USER)) {
4fc34901
AL
1040 no_context(regs, error_code, address,
1041 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1042 return;
f8626854
AV
1043 }
1044
c2d23f91
DR
1045 /*
1046 * We ran out of memory, call the OOM killer, and return the
1047 * userspace (which will retry the fault, or kill us if we got
1048 * oom-killed):
1049 */
1050 pagefault_out_of_memory();
2d4a7167 1051 } else {
f672b49b
AK
1052 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1053 VM_FAULT_HWPOISON_LARGE))
a3c4fb7c 1054 do_sigbus(regs, error_code, address, pkey, fault);
33692f27 1055 else if (fault & VM_FAULT_SIGSEGV)
a3c4fb7c 1056 bad_area_nosemaphore(regs, error_code, address, pkey);
2d4a7167
IM
1057 else
1058 BUG();
1059 }
92181f19
NP
1060}
1061
d8b57bb7
TG
1062static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1063{
1067f030 1064 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
d8b57bb7 1065 return 0;
2d4a7167 1066
1067f030 1067 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
d8b57bb7 1068 return 0;
b3ecd515
DH
1069 /*
1070 * Note: We do not do lazy flushing on protection key
1067f030 1071 * changes, so no spurious fault will ever set X86_PF_PK.
b3ecd515 1072 */
1067f030 1073 if ((error_code & X86_PF_PK))
b3ecd515 1074 return 1;
d8b57bb7
TG
1075
1076 return 1;
1077}
1078
5b727a3b 1079/*
2d4a7167
IM
1080 * Handle a spurious fault caused by a stale TLB entry.
1081 *
1082 * This allows us to lazily refresh the TLB when increasing the
1083 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1084 * eagerly is very expensive since that implies doing a full
1085 * cross-processor TLB flush, even if no stale TLB entries exist
1086 * on other processors.
1087 *
31668511
DV
1088 * Spurious faults may only occur if the TLB contains an entry with
1089 * fewer permission than the page table entry. Non-present (P = 0)
1090 * and reserved bit (R = 1) faults are never spurious.
1091 *
5b727a3b
JF
1092 * There are no security implications to leaving a stale TLB when
1093 * increasing the permissions on a page.
31668511
DV
1094 *
1095 * Returns non-zero if a spurious fault was handled, zero otherwise.
1096 *
1097 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1098 * (Optional Invalidation).
5b727a3b 1099 */
9326638c 1100static noinline int
2d4a7167 1101spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1102{
1103 pgd_t *pgd;
e0c4f675 1104 p4d_t *p4d;
5b727a3b
JF
1105 pud_t *pud;
1106 pmd_t *pmd;
1107 pte_t *pte;
3c3e5694 1108 int ret;
5b727a3b 1109
31668511
DV
1110 /*
1111 * Only writes to RO or instruction fetches from NX may cause
1112 * spurious faults.
1113 *
1114 * These could be from user or supervisor accesses but the TLB
1115 * is only lazily flushed after a kernel mapping protection
1116 * change, so user accesses are not expected to cause spurious
1117 * faults.
1118 */
1067f030
RN
1119 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1120 error_code != (X86_PF_INSTR | X86_PF_PROT))
5b727a3b
JF
1121 return 0;
1122
1123 pgd = init_mm.pgd + pgd_index(address);
1124 if (!pgd_present(*pgd))
1125 return 0;
1126
e0c4f675
KS
1127 p4d = p4d_offset(pgd, address);
1128 if (!p4d_present(*p4d))
1129 return 0;
1130
1131 if (p4d_large(*p4d))
1132 return spurious_fault_check(error_code, (pte_t *) p4d);
1133
1134 pud = pud_offset(p4d, address);
5b727a3b
JF
1135 if (!pud_present(*pud))
1136 return 0;
1137
d8b57bb7
TG
1138 if (pud_large(*pud))
1139 return spurious_fault_check(error_code, (pte_t *) pud);
1140
5b727a3b
JF
1141 pmd = pmd_offset(pud, address);
1142 if (!pmd_present(*pmd))
1143 return 0;
1144
d8b57bb7
TG
1145 if (pmd_large(*pmd))
1146 return spurious_fault_check(error_code, (pte_t *) pmd);
1147
5b727a3b 1148 pte = pte_offset_kernel(pmd, address);
954f8571 1149 if (!pte_present(*pte))
5b727a3b
JF
1150 return 0;
1151
3c3e5694
SR
1152 ret = spurious_fault_check(error_code, pte);
1153 if (!ret)
1154 return 0;
1155
1156 /*
2d4a7167
IM
1157 * Make sure we have permissions in PMD.
1158 * If not, then there's a bug in the page tables:
3c3e5694
SR
1159 */
1160 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1161 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1162
3c3e5694 1163 return ret;
5b727a3b 1164}
9326638c 1165NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1166
abd4f750 1167int show_unhandled_signals = 1;
1da177e4 1168
2d4a7167 1169static inline int
68da336a 1170access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1171{
07f146f5
DH
1172 /* This is only called for the current mm, so: */
1173 bool foreign = false;
e8c6226d
DH
1174
1175 /*
1176 * Read or write was blocked by protection keys. This is
1177 * always an unconditional error and can never result in
1178 * a follow-up action to resolve the fault, like a COW.
1179 */
1067f030 1180 if (error_code & X86_PF_PK)
e8c6226d
DH
1181 return 1;
1182
07f146f5
DH
1183 /*
1184 * Make sure to check the VMA so that we do not perform
1067f030 1185 * faults just to hit a X86_PF_PK as soon as we fill in a
07f146f5
DH
1186 * page.
1187 */
1067f030
RN
1188 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1189 (error_code & X86_PF_INSTR), foreign))
07f146f5 1190 return 1;
33a709b2 1191
1067f030 1192 if (error_code & X86_PF_WRITE) {
2d4a7167 1193 /* write, present and write, not present: */
92181f19
NP
1194 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1195 return 1;
2d4a7167 1196 return 0;
92181f19
NP
1197 }
1198
2d4a7167 1199 /* read, present: */
1067f030 1200 if (unlikely(error_code & X86_PF_PROT))
2d4a7167
IM
1201 return 1;
1202
1203 /* read, not present: */
1204 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1205 return 1;
1206
92181f19
NP
1207 return 0;
1208}
1209
0973a06c
HS
1210static int fault_in_kernel_space(unsigned long address)
1211{
d9517346 1212 return address >= TASK_SIZE_MAX;
0973a06c
HS
1213}
1214
40d3cd66
PA
1215static inline bool smap_violation(int error_code, struct pt_regs *regs)
1216{
4640c7ee
PA
1217 if (!IS_ENABLED(CONFIG_X86_SMAP))
1218 return false;
1219
1220 if (!static_cpu_has(X86_FEATURE_SMAP))
1221 return false;
1222
1067f030 1223 if (error_code & X86_PF_USER)
40d3cd66
PA
1224 return false;
1225
f39b6f0e 1226 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1227 return false;
1228
1229 return true;
1230}
1231
1da177e4
LT
1232/*
1233 * This routine handles page faults. It determines the address,
1234 * and the problem, and then passes it off to one of the appropriate
1235 * routines.
1da177e4 1236 */
9326638c 1237static noinline void
0ac09f9f
JO
1238__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1239 unsigned long address)
1da177e4 1240{
2d4a7167 1241 struct vm_area_struct *vma;
1da177e4
LT
1242 struct task_struct *tsk;
1243 struct mm_struct *mm;
26178ec1 1244 int fault, major = 0;
759496ba 1245 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
a3c4fb7c 1246 u32 pkey;
1da177e4 1247
a9ba9a3b
AV
1248 tsk = current;
1249 mm = tsk->mm;
2d4a7167 1250
5dfaf90f 1251 prefetchw(&mm->mmap_sem);
f8561296 1252
0fd0e3da 1253 if (unlikely(kmmio_fault(regs, address)))
86069782 1254 return;
1da177e4
LT
1255
1256 /*
1257 * We fault-in kernel-space virtual memory on-demand. The
1258 * 'reference' page table is init_mm.pgd.
1259 *
1260 * NOTE! We MUST NOT take any locks for this case. We may
1261 * be in an interrupt or a critical region, and should
1262 * only copy the information from the master page table,
1263 * nothing more.
1264 *
1265 * This verifies that the fault happens in kernel space
1266 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1267 * protection error (error_code & 9) == 0.
1da177e4 1268 */
0973a06c 1269 if (unlikely(fault_in_kernel_space(address))) {
1067f030 1270 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
f8561296
VN
1271 if (vmalloc_fault(address) >= 0)
1272 return;
f8561296 1273 }
5b727a3b 1274
2d4a7167 1275 /* Can handle a stale RO->RW TLB: */
92181f19 1276 if (spurious_fault(error_code, address))
5b727a3b
JF
1277 return;
1278
2d4a7167 1279 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1280 if (kprobes_fault(regs))
9be260a6 1281 return;
f8c2ee22
HH
1282 /*
1283 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1284 * fault we could otherwise deadlock:
f8c2ee22 1285 */
7b2d0dba 1286 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1287
92181f19 1288 return;
f8c2ee22
HH
1289 }
1290
2d4a7167 1291 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1292 if (unlikely(kprobes_fault(regs)))
9be260a6 1293 return;
8c914cb7 1294
1067f030 1295 if (unlikely(error_code & X86_PF_RSVD))
92181f19 1296 pgtable_bad(regs, error_code, address);
1da177e4 1297
4640c7ee 1298 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1299 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1300 return;
40d3cd66
PA
1301 }
1302
1da177e4 1303 /*
2d4a7167 1304 * If we're in an interrupt, have no user context or are running
70ffdb93 1305 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1306 */
70ffdb93 1307 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1308 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1309 return;
1310 }
1da177e4 1311
e00b12e6
PZ
1312 /*
1313 * It's safe to allow irq's after cr2 has been saved and the
1314 * vmalloc fault has been handled.
1315 *
1316 * User-mode registers count as a user access even for any
1317 * potential system fault or CPU buglet:
1318 */
f39b6f0e 1319 if (user_mode(regs)) {
e00b12e6 1320 local_irq_enable();
1067f030 1321 error_code |= X86_PF_USER;
e00b12e6
PZ
1322 flags |= FAULT_FLAG_USER;
1323 } else {
1324 if (regs->flags & X86_EFLAGS_IF)
1325 local_irq_enable();
1326 }
1327
1328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1329
1067f030 1330 if (error_code & X86_PF_WRITE)
759496ba 1331 flags |= FAULT_FLAG_WRITE;
1067f030 1332 if (error_code & X86_PF_INSTR)
d61172b4 1333 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1334
3a1dfe6e
IM
1335 /*
1336 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1337 * addresses in user space. All other faults represent errors in
1338 * the kernel and should generate an OOPS. Unfortunately, in the
1339 * case of an erroneous fault occurring in a code path which already
1340 * holds mmap_sem we will deadlock attempting to validate the fault
1341 * against the address space. Luckily the kernel only validly
1342 * references user space from well defined areas of code, which are
1343 * listed in the exceptions table.
1da177e4
LT
1344 *
1345 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1346 * the source reference check when there is a possibility of a
1347 * deadlock. Attempt to lock the address space, if we cannot we then
1348 * validate the source. If this is invalid we can skip the address
1349 * space check, thus avoiding the deadlock:
1da177e4 1350 */
92181f19 1351 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1067f030 1352 if (!(error_code & X86_PF_USER) &&
92181f19 1353 !search_exception_tables(regs->ip)) {
7b2d0dba 1354 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1355 return;
1356 }
d065bd81 1357retry:
1da177e4 1358 down_read(&mm->mmap_sem);
01006074
PZ
1359 } else {
1360 /*
2d4a7167
IM
1361 * The above down_read_trylock() might have succeeded in
1362 * which case we'll have missed the might_sleep() from
1363 * down_read():
01006074
PZ
1364 */
1365 might_sleep();
1da177e4
LT
1366 }
1367
1368 vma = find_vma(mm, address);
92181f19
NP
1369 if (unlikely(!vma)) {
1370 bad_area(regs, error_code, address);
1371 return;
1372 }
1373 if (likely(vma->vm_start <= address))
1da177e4 1374 goto good_area;
92181f19
NP
1375 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1376 bad_area(regs, error_code, address);
1377 return;
1378 }
1067f030 1379 if (error_code & X86_PF_USER) {
6f4d368e
HH
1380 /*
1381 * Accessing the stack below %sp is always a bug.
1382 * The large cushion allows instructions like enter
2d4a7167 1383 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1384 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1385 */
92181f19
NP
1386 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1387 bad_area(regs, error_code, address);
1388 return;
1389 }
1da177e4 1390 }
92181f19
NP
1391 if (unlikely(expand_stack(vma, address))) {
1392 bad_area(regs, error_code, address);
1393 return;
1394 }
1395
1396 /*
1397 * Ok, we have a good vm_area for this memory access, so
1398 * we can handle it..
1399 */
1da177e4 1400good_area:
68da336a 1401 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1402 bad_area_access_error(regs, error_code, address, vma);
92181f19 1403 return;
1da177e4
LT
1404 }
1405
1406 /*
1407 * If for any reason at all we couldn't handle the fault,
1408 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1409 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1410 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
cb0631fd
VB
1411 *
1412 * Note that handle_userfault() may also release and reacquire mmap_sem
1413 * (and not return with VM_FAULT_RETRY), when returning to userland to
1414 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1415 * (potentially after handling any pending signal during the return to
1416 * userland). The return to userland is identified whenever
1417 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1418 * Thus we have to be careful about not touching vma after handling the
1419 * fault, so we read the pkey beforehand.
1da177e4 1420 */
cb0631fd 1421 pkey = vma_pkey(vma);
dcddffd4 1422 fault = handle_mm_fault(vma, address, flags);
26178ec1 1423 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1424
3a13c4d7 1425 /*
26178ec1
LT
1426 * If we need to retry the mmap_sem has already been released,
1427 * and if there is a fatal signal pending there is no guarantee
1428 * that we made any progress. Handle this case first.
3a13c4d7 1429 */
26178ec1
LT
1430 if (unlikely(fault & VM_FAULT_RETRY)) {
1431 /* Retry at most once */
1432 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1433 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1434 flags |= FAULT_FLAG_TRIED;
1435 if (!fatal_signal_pending(tsk))
1436 goto retry;
1437 }
1438
1439 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1440 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1441 return;
1442
1443 /* Not returning to user mode? Handle exceptions or die: */
1444 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1445 return;
26178ec1 1446 }
3a13c4d7 1447
26178ec1 1448 up_read(&mm->mmap_sem);
3a13c4d7 1449 if (unlikely(fault & VM_FAULT_ERROR)) {
a3c4fb7c 1450 mm_fault_error(regs, error_code, address, &pkey, fault);
3a13c4d7 1451 return;
37b23e05
KM
1452 }
1453
d065bd81 1454 /*
26178ec1
LT
1455 * Major/minor page fault accounting. If any of the events
1456 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1457 */
26178ec1
LT
1458 if (major) {
1459 tsk->maj_flt++;
1460 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1461 } else {
1462 tsk->min_flt++;
1463 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1464 }
d729ab35 1465
8c938f9f 1466 check_v8086_mode(regs, address, tsk);
1da177e4 1467}
9326638c 1468NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1469
9326638c
MH
1470static nokprobe_inline void
1471trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1472 unsigned long error_code)
d34603b0
SA
1473{
1474 if (user_mode(regs))
d4078e23 1475 trace_page_fault_user(address, regs, error_code);
d34603b0 1476 else
d4078e23 1477 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1478}
1479
11a7ffb0
TG
1480/*
1481 * We must have this function blacklisted from kprobes, tagged with notrace
1482 * and call read_cr2() before calling anything else. To avoid calling any
1483 * kind of tracing machinery before we've observed the CR2 value.
1484 *
1485 * exception_{enter,exit}() contains all sorts of tracepoints.
1486 */
9326638c 1487dotraplinkage void notrace
11a7ffb0 1488do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1489{
11a7ffb0 1490 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1491 enum ctx_state prev_state;
25c74b10
SA
1492
1493 prev_state = exception_enter();
80954747 1494 if (trace_pagefault_enabled())
11a7ffb0
TG
1495 trace_page_fault_entries(address, regs, error_code);
1496
0ac09f9f 1497 __do_page_fault(regs, error_code, address);
25c74b10
SA
1498 exception_exit(prev_state);
1499}
11a7ffb0 1500NOKPROBE_SYMBOL(do_page_fault);