signals, pkeys: Notify userspace about protection key faults
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/sched.h> /* test_thread_flag(), ... */
7#include <linux/kdebug.h> /* oops_begin/end, ... */
8#include <linux/module.h> /* search_exception_table */
9#include <linux/bootmem.h> /* max_low_pfn */
9326638c 10#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 11#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 12#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 13#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 14#include <linux/prefetch.h> /* prefetchw */
56dd9470 15#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 16#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 17
a2bcd473
IM
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
21#include <asm/fixmap.h> /* VSYSCALL_ADDR */
22#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 23#include <asm/vm86.h> /* struct vm86 */
1da177e4 24
d34603b0
SA
25#define CREATE_TRACE_POINTS
26#include <asm/trace/exceptions.h>
27
33cb5243 28/*
2d4a7167
IM
29 * Page fault error code bits:
30 *
31 * bit 0 == 0: no page found 1: protection fault
32 * bit 1 == 0: read access 1: write access
33 * bit 2 == 0: kernel-mode access 1: user-mode access
34 * bit 3 == 1: use of reserved bit detected
35 * bit 4 == 1: fault was an instruction fetch
b3ecd515 36 * bit 5 == 1: protection keys block access
33cb5243 37 */
2d4a7167
IM
38enum x86_pf_error_code {
39
40 PF_PROT = 1 << 0,
41 PF_WRITE = 1 << 1,
42 PF_USER = 1 << 2,
43 PF_RSVD = 1 << 3,
44 PF_INSTR = 1 << 4,
b3ecd515 45 PF_PK = 1 << 5,
2d4a7167 46};
66c58156 47
b814d41f 48/*
b319eed0
IM
49 * Returns 0 if mmiotrace is disabled, or if the fault is not
50 * handled by mmiotrace:
b814d41f 51 */
9326638c 52static nokprobe_inline int
62c9295f 53kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 54{
0fd0e3da
PP
55 if (unlikely(is_kmmio_active()))
56 if (kmmio_handler(regs, addr) == 1)
57 return -1;
0fd0e3da 58 return 0;
86069782
PP
59}
60
9326638c 61static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 62{
74a0b576
CH
63 int ret = 0;
64
65 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 66 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
67 preempt_disable();
68 if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 ret = 1;
70 preempt_enable();
71 }
1bd858a5 72
74a0b576 73 return ret;
33cb5243 74}
1bd858a5 75
1dc85be0 76/*
2d4a7167
IM
77 * Prefetch quirks:
78 *
79 * 32-bit mode:
80 *
81 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
82 * Check that here and ignore it.
1dc85be0 83 *
2d4a7167 84 * 64-bit mode:
1dc85be0 85 *
2d4a7167
IM
86 * Sometimes the CPU reports invalid exceptions on prefetch.
87 * Check that here and ignore it.
88 *
89 * Opcode checker based on code by Richard Brunner.
1dc85be0 90 */
107a0367
IM
91static inline int
92check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
93 unsigned char opcode, int *prefetch)
94{
95 unsigned char instr_hi = opcode & 0xf0;
96 unsigned char instr_lo = opcode & 0x0f;
97
98 switch (instr_hi) {
99 case 0x20:
100 case 0x30:
101 /*
102 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
103 * In X86_64 long mode, the CPU will signal invalid
104 * opcode if some of these prefixes are present so
105 * X86_64 will never get here anyway
106 */
107 return ((instr_lo & 7) == 0x6);
108#ifdef CONFIG_X86_64
109 case 0x40:
110 /*
111 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
112 * Need to figure out under what instruction mode the
113 * instruction was issued. Could check the LDT for lm,
114 * but for now it's good enough to assume that long
115 * mode only uses well known segments or kernel.
116 */
318f5a2a 117 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
118#endif
119 case 0x60:
120 /* 0x64 thru 0x67 are valid prefixes in all modes. */
121 return (instr_lo & 0xC) == 0x4;
122 case 0xF0:
123 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
124 return !instr_lo || (instr_lo>>1) == 1;
125 case 0x00:
126 /* Prefetch instruction is 0x0F0D or 0x0F18 */
127 if (probe_kernel_address(instr, opcode))
128 return 0;
129
130 *prefetch = (instr_lo == 0xF) &&
131 (opcode == 0x0D || opcode == 0x18);
132 return 0;
133 default:
134 return 0;
135 }
136}
137
2d4a7167
IM
138static int
139is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 140{
2d4a7167 141 unsigned char *max_instr;
ab2bf0c1 142 unsigned char *instr;
33cb5243 143 int prefetch = 0;
1da177e4 144
3085354d
IM
145 /*
146 * If it was a exec (instruction fetch) fault on NX page, then
147 * do not ignore the fault:
148 */
66c58156 149 if (error_code & PF_INSTR)
1da177e4 150 return 0;
1dc85be0 151
107a0367 152 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 153 max_instr = instr + 15;
1da177e4 154
d31bf07f 155 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
156 return 0;
157
107a0367 158 while (instr < max_instr) {
2d4a7167 159 unsigned char opcode;
1da177e4 160
ab2bf0c1 161 if (probe_kernel_address(instr, opcode))
33cb5243 162 break;
1da177e4 163
1da177e4
LT
164 instr++;
165
107a0367 166 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 167 break;
1da177e4
LT
168 }
169 return prefetch;
170}
171
2d4a7167
IM
172static void
173force_sig_info_fault(int si_signo, int si_code, unsigned long address,
7b2d0dba
DH
174 struct task_struct *tsk, struct vm_area_struct *vma,
175 int fault)
c4aba4a8 176{
f672b49b 177 unsigned lsb = 0;
c4aba4a8
HH
178 siginfo_t info;
179
2d4a7167
IM
180 info.si_signo = si_signo;
181 info.si_errno = 0;
182 info.si_code = si_code;
183 info.si_addr = (void __user *)address;
f672b49b
AK
184 if (fault & VM_FAULT_HWPOISON_LARGE)
185 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
186 if (fault & VM_FAULT_HWPOISON)
187 lsb = PAGE_SHIFT;
188 info.si_addr_lsb = lsb;
2d4a7167 189
c4aba4a8
HH
190 force_sig_info(si_signo, &info, tsk);
191}
192
f2f13a85
IM
193DEFINE_SPINLOCK(pgd_lock);
194LIST_HEAD(pgd_list);
195
196#ifdef CONFIG_X86_32
197static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 198{
f2f13a85
IM
199 unsigned index = pgd_index(address);
200 pgd_t *pgd_k;
201 pud_t *pud, *pud_k;
202 pmd_t *pmd, *pmd_k;
2d4a7167 203
f2f13a85
IM
204 pgd += index;
205 pgd_k = init_mm.pgd + index;
206
207 if (!pgd_present(*pgd_k))
208 return NULL;
209
210 /*
211 * set_pgd(pgd, *pgd_k); here would be useless on PAE
212 * and redundant with the set_pmd() on non-PAE. As would
213 * set_pud.
214 */
215 pud = pud_offset(pgd, address);
216 pud_k = pud_offset(pgd_k, address);
217 if (!pud_present(*pud_k))
218 return NULL;
219
220 pmd = pmd_offset(pud, address);
221 pmd_k = pmd_offset(pud_k, address);
222 if (!pmd_present(*pmd_k))
223 return NULL;
224
b8bcfe99 225 if (!pmd_present(*pmd))
f2f13a85 226 set_pmd(pmd, *pmd_k);
b8bcfe99 227 else
f2f13a85 228 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
229
230 return pmd_k;
231}
232
233void vmalloc_sync_all(void)
234{
235 unsigned long address;
236
237 if (SHARED_KERNEL_PMD)
238 return;
239
240 for (address = VMALLOC_START & PMD_MASK;
241 address >= TASK_SIZE && address < FIXADDR_TOP;
242 address += PMD_SIZE) {
f2f13a85
IM
243 struct page *page;
244
a79e53d8 245 spin_lock(&pgd_lock);
f2f13a85 246 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 247 spinlock_t *pgt_lock;
f01f7c56 248 pmd_t *ret;
617d34d9 249
a79e53d8 250 /* the pgt_lock only for Xen */
617d34d9
JF
251 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
252
253 spin_lock(pgt_lock);
254 ret = vmalloc_sync_one(page_address(page), address);
255 spin_unlock(pgt_lock);
256
257 if (!ret)
f2f13a85
IM
258 break;
259 }
a79e53d8 260 spin_unlock(&pgd_lock);
f2f13a85
IM
261 }
262}
263
264/*
265 * 32-bit:
266 *
267 * Handle a fault on the vmalloc or module mapping area
268 */
9326638c 269static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
270{
271 unsigned long pgd_paddr;
272 pmd_t *pmd_k;
273 pte_t *pte_k;
274
275 /* Make sure we are in vmalloc area: */
276 if (!(address >= VMALLOC_START && address < VMALLOC_END))
277 return -1;
278
ebc8827f
FW
279 WARN_ON_ONCE(in_nmi());
280
f2f13a85
IM
281 /*
282 * Synchronize this task's top level page-table
283 * with the 'reference' page table.
284 *
285 * Do _not_ use "current" here. We might be inside
286 * an interrupt in the middle of a task switch..
287 */
288 pgd_paddr = read_cr3();
289 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
290 if (!pmd_k)
291 return -1;
292
293 pte_k = pte_offset_kernel(pmd_k, address);
294 if (!pte_present(*pte_k))
295 return -1;
296
297 return 0;
298}
9326638c 299NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
300
301/*
302 * Did it hit the DOS screen memory VA from vm86 mode?
303 */
304static inline void
305check_v8086_mode(struct pt_regs *regs, unsigned long address,
306 struct task_struct *tsk)
307{
9fda6a06 308#ifdef CONFIG_VM86
f2f13a85
IM
309 unsigned long bit;
310
9fda6a06 311 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
312 return;
313
314 bit = (address - 0xA0000) >> PAGE_SHIFT;
315 if (bit < 32)
9fda6a06
BG
316 tsk->thread.vm86->screen_bitmap |= 1 << bit;
317#endif
33cb5243 318}
1da177e4 319
087975b0 320static bool low_pfn(unsigned long pfn)
1da177e4 321{
087975b0
AM
322 return pfn < max_low_pfn;
323}
1156e098 324
087975b0
AM
325static void dump_pagetable(unsigned long address)
326{
327 pgd_t *base = __va(read_cr3());
328 pgd_t *pgd = &base[pgd_index(address)];
329 pmd_t *pmd;
330 pte_t *pte;
2d4a7167 331
1156e098 332#ifdef CONFIG_X86_PAE
087975b0
AM
333 printk("*pdpt = %016Lx ", pgd_val(*pgd));
334 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
335 goto out;
1156e098 336#endif
087975b0
AM
337 pmd = pmd_offset(pud_offset(pgd, address), address);
338 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
339
340 /*
341 * We must not directly access the pte in the highpte
342 * case if the page table is located in highmem.
343 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 344 * it's allocated already:
1156e098 345 */
087975b0
AM
346 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
347 goto out;
1156e098 348
087975b0
AM
349 pte = pte_offset_kernel(pmd, address);
350 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
351out:
1156e098 352 printk("\n");
f2f13a85
IM
353}
354
355#else /* CONFIG_X86_64: */
356
357void vmalloc_sync_all(void)
358{
9661d5bc 359 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END, 0);
f2f13a85
IM
360}
361
362/*
363 * 64-bit:
364 *
365 * Handle a fault on the vmalloc area
366 *
367 * This assumes no large pages in there.
368 */
9326638c 369static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
370{
371 pgd_t *pgd, *pgd_ref;
372 pud_t *pud, *pud_ref;
373 pmd_t *pmd, *pmd_ref;
374 pte_t *pte, *pte_ref;
375
376 /* Make sure we are in vmalloc area: */
377 if (!(address >= VMALLOC_START && address < VMALLOC_END))
378 return -1;
379
ebc8827f
FW
380 WARN_ON_ONCE(in_nmi());
381
f2f13a85
IM
382 /*
383 * Copy kernel mappings over when needed. This can also
384 * happen within a race in page table update. In the later
385 * case just flush:
386 */
387 pgd = pgd_offset(current->active_mm, address);
388 pgd_ref = pgd_offset_k(address);
389 if (pgd_none(*pgd_ref))
390 return -1;
391
1160c277 392 if (pgd_none(*pgd)) {
f2f13a85 393 set_pgd(pgd, *pgd_ref);
1160c277
SK
394 arch_flush_lazy_mmu_mode();
395 } else {
f2f13a85 396 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 397 }
f2f13a85
IM
398
399 /*
400 * Below here mismatches are bugs because these lower tables
401 * are shared:
402 */
403
404 pud = pud_offset(pgd, address);
405 pud_ref = pud_offset(pgd_ref, address);
406 if (pud_none(*pud_ref))
407 return -1;
408
409 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
410 BUG();
411
412 pmd = pmd_offset(pud, address);
413 pmd_ref = pmd_offset(pud_ref, address);
414 if (pmd_none(*pmd_ref))
415 return -1;
416
417 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
418 BUG();
419
420 pte_ref = pte_offset_kernel(pmd_ref, address);
421 if (!pte_present(*pte_ref))
422 return -1;
423
424 pte = pte_offset_kernel(pmd, address);
425
426 /*
427 * Don't use pte_page here, because the mappings can point
428 * outside mem_map, and the NUMA hash lookup cannot handle
429 * that:
430 */
431 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
432 BUG();
433
434 return 0;
435}
9326638c 436NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 437
e05139f2 438#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 439static const char errata93_warning[] =
ad361c98
JP
440KERN_ERR
441"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
442"******* Working around it, but it may cause SEGVs or burn power.\n"
443"******* Please consider a BIOS update.\n"
444"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 445#endif
f2f13a85
IM
446
447/*
448 * No vm86 mode in 64-bit mode:
449 */
450static inline void
451check_v8086_mode(struct pt_regs *regs, unsigned long address,
452 struct task_struct *tsk)
453{
454}
455
456static int bad_address(void *p)
457{
458 unsigned long dummy;
459
460 return probe_kernel_address((unsigned long *)p, dummy);
461}
462
463static void dump_pagetable(unsigned long address)
464{
087975b0
AM
465 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
466 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
467 pud_t *pud;
468 pmd_t *pmd;
469 pte_t *pte;
470
2d4a7167
IM
471 if (bad_address(pgd))
472 goto bad;
473
d646bce4 474 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
475
476 if (!pgd_present(*pgd))
477 goto out;
1da177e4 478
d2ae5b5f 479 pud = pud_offset(pgd, address);
2d4a7167
IM
480 if (bad_address(pud))
481 goto bad;
482
1da177e4 483 printk("PUD %lx ", pud_val(*pud));
b5360222 484 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 485 goto out;
1da177e4
LT
486
487 pmd = pmd_offset(pud, address);
2d4a7167
IM
488 if (bad_address(pmd))
489 goto bad;
490
1da177e4 491 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
492 if (!pmd_present(*pmd) || pmd_large(*pmd))
493 goto out;
1da177e4
LT
494
495 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
496 if (bad_address(pte))
497 goto bad;
498
33cb5243 499 printk("PTE %lx", pte_val(*pte));
2d4a7167 500out:
1da177e4
LT
501 printk("\n");
502 return;
503bad:
504 printk("BAD\n");
8c938f9f
IM
505}
506
f2f13a85 507#endif /* CONFIG_X86_64 */
1da177e4 508
2d4a7167
IM
509/*
510 * Workaround for K8 erratum #93 & buggy BIOS.
511 *
512 * BIOS SMM functions are required to use a specific workaround
513 * to avoid corruption of the 64bit RIP register on C stepping K8.
514 *
515 * A lot of BIOS that didn't get tested properly miss this.
516 *
517 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
518 * Try to work around it here.
519 *
520 * Note we only handle faults in kernel here.
521 * Does nothing on 32-bit.
fdfe8aa8 522 */
33cb5243 523static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 524{
e05139f2
JB
525#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
526 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
527 || boot_cpu_data.x86 != 0xf)
528 return 0;
529
65ea5b03 530 if (address != regs->ip)
1da177e4 531 return 0;
2d4a7167 532
33cb5243 533 if ((address >> 32) != 0)
1da177e4 534 return 0;
2d4a7167 535
1da177e4 536 address |= 0xffffffffUL << 32;
33cb5243
HH
537 if ((address >= (u64)_stext && address <= (u64)_etext) ||
538 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 539 printk_once(errata93_warning);
65ea5b03 540 regs->ip = address;
1da177e4
LT
541 return 1;
542 }
fdfe8aa8 543#endif
1da177e4 544 return 0;
33cb5243 545}
1da177e4 546
35f3266f 547/*
2d4a7167
IM
548 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
549 * to illegal addresses >4GB.
550 *
551 * We catch this in the page fault handler because these addresses
552 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
553 * segment in LDT is compatibility mode.
554 */
555static int is_errata100(struct pt_regs *regs, unsigned long address)
556{
557#ifdef CONFIG_X86_64
2d4a7167 558 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
559 return 1;
560#endif
561 return 0;
562}
563
29caf2f9
HH
564static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
565{
566#ifdef CONFIG_X86_F00F_BUG
567 unsigned long nr;
2d4a7167 568
29caf2f9 569 /*
2d4a7167 570 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 571 */
e2604b49 572 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
573 nr = (address - idt_descr.address) >> 3;
574
575 if (nr == 6) {
576 do_invalid_op(regs, 0);
577 return 1;
578 }
579 }
580#endif
581 return 0;
582}
583
8f766149
IM
584static const char nx_warning[] = KERN_CRIT
585"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
586static const char smep_warning[] = KERN_CRIT
587"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 588
2d4a7167
IM
589static void
590show_fault_oops(struct pt_regs *regs, unsigned long error_code,
591 unsigned long address)
b3279c7f 592{
1156e098
HH
593 if (!oops_may_print())
594 return;
595
1156e098 596 if (error_code & PF_INSTR) {
93809be8 597 unsigned int level;
426e34cc
MF
598 pgd_t *pgd;
599 pte_t *pte;
2d4a7167 600
426e34cc
MF
601 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
602 pgd += pgd_index(address);
603
604 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 605
8f766149 606 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 607 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
608 if (pte && pte_present(*pte) && pte_exec(*pte) &&
609 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 610 (__read_cr4() & X86_CR4_SMEP))
eff50c34 611 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 612 }
1156e098 613
19f0dda9 614 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 615 if (address < PAGE_SIZE)
19f0dda9 616 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 617 else
19f0dda9 618 printk(KERN_CONT "paging request");
2d4a7167 619
f294a8ce 620 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 621 printk(KERN_ALERT "IP:");
5f01c988 622 printk_address(regs->ip);
2d4a7167 623
b3279c7f
HH
624 dump_pagetable(address);
625}
626
2d4a7167
IM
627static noinline void
628pgtable_bad(struct pt_regs *regs, unsigned long error_code,
629 unsigned long address)
1da177e4 630{
2d4a7167
IM
631 struct task_struct *tsk;
632 unsigned long flags;
633 int sig;
634
635 flags = oops_begin();
636 tsk = current;
637 sig = SIGKILL;
1209140c 638
1da177e4 639 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 640 tsk->comm, address);
1da177e4 641 dump_pagetable(address);
2d4a7167
IM
642
643 tsk->thread.cr2 = address;
51e7dc70 644 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
645 tsk->thread.error_code = error_code;
646
22f5991c 647 if (__die("Bad pagetable", regs, error_code))
874d93d1 648 sig = 0;
2d4a7167 649
874d93d1 650 oops_end(flags, regs, sig);
1da177e4
LT
651}
652
2d4a7167
IM
653static noinline void
654no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 655 unsigned long address, int signal, int si_code)
92181f19
NP
656{
657 struct task_struct *tsk = current;
92181f19
NP
658 unsigned long flags;
659 int sig;
7b2d0dba
DH
660 /* No context means no VMA to pass down */
661 struct vm_area_struct *vma = NULL;
92181f19 662
2d4a7167 663 /* Are we prepared to handle this kernel fault? */
4fc34901 664 if (fixup_exception(regs)) {
c026b359
PZ
665 /*
666 * Any interrupt that takes a fault gets the fixup. This makes
667 * the below recursive fault logic only apply to a faults from
668 * task context.
669 */
670 if (in_interrupt())
671 return;
672
673 /*
674 * Per the above we're !in_interrupt(), aka. task context.
675 *
676 * In this case we need to make sure we're not recursively
677 * faulting through the emulate_vsyscall() logic.
678 */
4fc34901 679 if (current_thread_info()->sig_on_uaccess_error && signal) {
51e7dc70 680 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
681 tsk->thread.error_code = error_code | PF_USER;
682 tsk->thread.cr2 = address;
683
684 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba
DH
685 force_sig_info_fault(signal, si_code, address,
686 tsk, vma, 0);
4fc34901 687 }
c026b359
PZ
688
689 /*
690 * Barring that, we can do the fixup and be happy.
691 */
92181f19 692 return;
4fc34901 693 }
92181f19
NP
694
695 /*
2d4a7167
IM
696 * 32-bit:
697 *
698 * Valid to do another page fault here, because if this fault
699 * had been triggered by is_prefetch fixup_exception would have
700 * handled it.
701 *
702 * 64-bit:
92181f19 703 *
2d4a7167 704 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
705 */
706 if (is_prefetch(regs, error_code, address))
707 return;
708
709 if (is_errata93(regs, address))
710 return;
711
712 /*
713 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 714 * terminate things with extreme prejudice:
92181f19 715 */
92181f19 716 flags = oops_begin();
92181f19
NP
717
718 show_fault_oops(regs, error_code, address);
719
a70857e4 720 if (task_stack_end_corrupted(tsk))
b0f4c4b3 721 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 722
1cc99544 723 tsk->thread.cr2 = address;
51e7dc70 724 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 725 tsk->thread.error_code = error_code;
92181f19 726
92181f19
NP
727 sig = SIGKILL;
728 if (__die("Oops", regs, error_code))
729 sig = 0;
2d4a7167 730
92181f19 731 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 732 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 733
92181f19 734 oops_end(flags, regs, sig);
92181f19
NP
735}
736
2d4a7167
IM
737/*
738 * Print out info about fatal segfaults, if the show_unhandled_signals
739 * sysctl is set:
740 */
741static inline void
742show_signal_msg(struct pt_regs *regs, unsigned long error_code,
743 unsigned long address, struct task_struct *tsk)
744{
745 if (!unhandled_signal(tsk, SIGSEGV))
746 return;
747
748 if (!printk_ratelimit())
749 return;
750
a1a08d1c 751 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
752 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
753 tsk->comm, task_pid_nr(tsk), address,
754 (void *)regs->ip, (void *)regs->sp, error_code);
755
756 print_vma_addr(KERN_CONT " in ", regs->ip);
757
758 printk(KERN_CONT "\n");
759}
760
761static void
762__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
763 unsigned long address, struct vm_area_struct *vma,
764 int si_code)
92181f19
NP
765{
766 struct task_struct *tsk = current;
767
768 /* User mode accesses just cause a SIGSEGV */
769 if (error_code & PF_USER) {
770 /*
2d4a7167 771 * It's possible to have interrupts off here:
92181f19
NP
772 */
773 local_irq_enable();
774
775 /*
776 * Valid to do another page fault here because this one came
2d4a7167 777 * from user space:
92181f19
NP
778 */
779 if (is_prefetch(regs, error_code, address))
780 return;
781
782 if (is_errata100(regs, address))
783 return;
784
3ae36655
AL
785#ifdef CONFIG_X86_64
786 /*
787 * Instruction fetch faults in the vsyscall page might need
788 * emulation.
789 */
790 if (unlikely((error_code & PF_INSTR) &&
f40c3300 791 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
792 if (emulate_vsyscall(regs, address))
793 return;
794 }
795#endif
e575a86f
KC
796 /* Kernel addresses are always protection faults: */
797 if (address >= TASK_SIZE)
798 error_code |= PF_PROT;
3ae36655 799
e575a86f 800 if (likely(show_unhandled_signals))
2d4a7167
IM
801 show_signal_msg(regs, error_code, address, tsk);
802
2d4a7167 803 tsk->thread.cr2 = address;
e575a86f 804 tsk->thread.error_code = error_code;
51e7dc70 805 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 806
7b2d0dba 807 force_sig_info_fault(SIGSEGV, si_code, address, tsk, vma, 0);
2d4a7167 808
92181f19
NP
809 return;
810 }
811
812 if (is_f00f_bug(regs, address))
813 return;
814
4fc34901 815 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
816}
817
2d4a7167
IM
818static noinline void
819bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 820 unsigned long address, struct vm_area_struct *vma)
92181f19 821{
7b2d0dba 822 __bad_area_nosemaphore(regs, error_code, address, vma, SEGV_MAPERR);
92181f19
NP
823}
824
2d4a7167
IM
825static void
826__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 827 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
828{
829 struct mm_struct *mm = current->mm;
830
831 /*
832 * Something tried to access memory that isn't in our memory map..
833 * Fix it, but check if it's kernel or user first..
834 */
835 up_read(&mm->mmap_sem);
836
7b2d0dba 837 __bad_area_nosemaphore(regs, error_code, address, vma, si_code);
92181f19
NP
838}
839
2d4a7167
IM
840static noinline void
841bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 842{
7b2d0dba 843 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
844}
845
2d4a7167
IM
846static noinline void
847bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 848 unsigned long address, struct vm_area_struct *vma)
92181f19 849{
7b2d0dba 850 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
851}
852
2d4a7167 853static void
a6e04aa9 854do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
7b2d0dba 855 struct vm_area_struct *vma, unsigned int fault)
92181f19
NP
856{
857 struct task_struct *tsk = current;
a6e04aa9 858 int code = BUS_ADRERR;
92181f19 859
2d4a7167 860 /* Kernel mode? Handle exceptions or die: */
96054569 861 if (!(error_code & PF_USER)) {
4fc34901 862 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
863 return;
864 }
2d4a7167 865
cd1b68f0 866 /* User-space => ok to do another page fault: */
92181f19
NP
867 if (is_prefetch(regs, error_code, address))
868 return;
2d4a7167
IM
869
870 tsk->thread.cr2 = address;
871 tsk->thread.error_code = error_code;
51e7dc70 872 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 873
a6e04aa9 874#ifdef CONFIG_MEMORY_FAILURE
f672b49b 875 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
876 printk(KERN_ERR
877 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
878 tsk->comm, tsk->pid, address);
879 code = BUS_MCEERR_AR;
880 }
881#endif
7b2d0dba 882 force_sig_info_fault(SIGBUS, code, address, tsk, vma, fault);
92181f19
NP
883}
884
3a13c4d7 885static noinline void
2d4a7167 886mm_fault_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba
DH
887 unsigned long address, struct vm_area_struct *vma,
888 unsigned int fault)
92181f19 889{
3a13c4d7 890 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
891 no_context(regs, error_code, address, 0, 0);
892 return;
b80ef10e 893 }
b80ef10e 894
2d4a7167 895 if (fault & VM_FAULT_OOM) {
f8626854
AV
896 /* Kernel mode? Handle exceptions or die: */
897 if (!(error_code & PF_USER)) {
4fc34901
AL
898 no_context(regs, error_code, address,
899 SIGSEGV, SEGV_MAPERR);
3a13c4d7 900 return;
f8626854
AV
901 }
902
c2d23f91
DR
903 /*
904 * We ran out of memory, call the OOM killer, and return the
905 * userspace (which will retry the fault, or kill us if we got
906 * oom-killed):
907 */
908 pagefault_out_of_memory();
2d4a7167 909 } else {
f672b49b
AK
910 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
911 VM_FAULT_HWPOISON_LARGE))
7b2d0dba 912 do_sigbus(regs, error_code, address, vma, fault);
33692f27 913 else if (fault & VM_FAULT_SIGSEGV)
7b2d0dba 914 bad_area_nosemaphore(regs, error_code, address, vma);
2d4a7167
IM
915 else
916 BUG();
917 }
92181f19
NP
918}
919
d8b57bb7
TG
920static int spurious_fault_check(unsigned long error_code, pte_t *pte)
921{
922 if ((error_code & PF_WRITE) && !pte_write(*pte))
923 return 0;
2d4a7167 924
d8b57bb7
TG
925 if ((error_code & PF_INSTR) && !pte_exec(*pte))
926 return 0;
b3ecd515
DH
927 /*
928 * Note: We do not do lazy flushing on protection key
929 * changes, so no spurious fault will ever set PF_PK.
930 */
931 if ((error_code & PF_PK))
932 return 1;
d8b57bb7
TG
933
934 return 1;
935}
936
5b727a3b 937/*
2d4a7167
IM
938 * Handle a spurious fault caused by a stale TLB entry.
939 *
940 * This allows us to lazily refresh the TLB when increasing the
941 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
942 * eagerly is very expensive since that implies doing a full
943 * cross-processor TLB flush, even if no stale TLB entries exist
944 * on other processors.
945 *
31668511
DV
946 * Spurious faults may only occur if the TLB contains an entry with
947 * fewer permission than the page table entry. Non-present (P = 0)
948 * and reserved bit (R = 1) faults are never spurious.
949 *
5b727a3b
JF
950 * There are no security implications to leaving a stale TLB when
951 * increasing the permissions on a page.
31668511
DV
952 *
953 * Returns non-zero if a spurious fault was handled, zero otherwise.
954 *
955 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
956 * (Optional Invalidation).
5b727a3b 957 */
9326638c 958static noinline int
2d4a7167 959spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
960{
961 pgd_t *pgd;
962 pud_t *pud;
963 pmd_t *pmd;
964 pte_t *pte;
3c3e5694 965 int ret;
5b727a3b 966
31668511
DV
967 /*
968 * Only writes to RO or instruction fetches from NX may cause
969 * spurious faults.
970 *
971 * These could be from user or supervisor accesses but the TLB
972 * is only lazily flushed after a kernel mapping protection
973 * change, so user accesses are not expected to cause spurious
974 * faults.
975 */
976 if (error_code != (PF_WRITE | PF_PROT)
977 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
978 return 0;
979
980 pgd = init_mm.pgd + pgd_index(address);
981 if (!pgd_present(*pgd))
982 return 0;
983
984 pud = pud_offset(pgd, address);
985 if (!pud_present(*pud))
986 return 0;
987
d8b57bb7
TG
988 if (pud_large(*pud))
989 return spurious_fault_check(error_code, (pte_t *) pud);
990
5b727a3b
JF
991 pmd = pmd_offset(pud, address);
992 if (!pmd_present(*pmd))
993 return 0;
994
d8b57bb7
TG
995 if (pmd_large(*pmd))
996 return spurious_fault_check(error_code, (pte_t *) pmd);
997
5b727a3b 998 pte = pte_offset_kernel(pmd, address);
954f8571 999 if (!pte_present(*pte))
5b727a3b
JF
1000 return 0;
1001
3c3e5694
SR
1002 ret = spurious_fault_check(error_code, pte);
1003 if (!ret)
1004 return 0;
1005
1006 /*
2d4a7167
IM
1007 * Make sure we have permissions in PMD.
1008 * If not, then there's a bug in the page tables:
3c3e5694
SR
1009 */
1010 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1011 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1012
3c3e5694 1013 return ret;
5b727a3b 1014}
9326638c 1015NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1016
abd4f750 1017int show_unhandled_signals = 1;
1da177e4 1018
2d4a7167 1019static inline int
68da336a 1020access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1021{
68da336a 1022 if (error_code & PF_WRITE) {
2d4a7167 1023 /* write, present and write, not present: */
92181f19
NP
1024 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1025 return 1;
2d4a7167 1026 return 0;
92181f19
NP
1027 }
1028
2d4a7167
IM
1029 /* read, present: */
1030 if (unlikely(error_code & PF_PROT))
1031 return 1;
1032
1033 /* read, not present: */
1034 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1035 return 1;
1036
92181f19
NP
1037 return 0;
1038}
1039
0973a06c
HS
1040static int fault_in_kernel_space(unsigned long address)
1041{
d9517346 1042 return address >= TASK_SIZE_MAX;
0973a06c
HS
1043}
1044
40d3cd66
PA
1045static inline bool smap_violation(int error_code, struct pt_regs *regs)
1046{
4640c7ee
PA
1047 if (!IS_ENABLED(CONFIG_X86_SMAP))
1048 return false;
1049
1050 if (!static_cpu_has(X86_FEATURE_SMAP))
1051 return false;
1052
40d3cd66
PA
1053 if (error_code & PF_USER)
1054 return false;
1055
f39b6f0e 1056 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1057 return false;
1058
1059 return true;
1060}
1061
1da177e4
LT
1062/*
1063 * This routine handles page faults. It determines the address,
1064 * and the problem, and then passes it off to one of the appropriate
1065 * routines.
d4078e23
PZ
1066 *
1067 * This function must have noinline because both callers
1068 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1069 * guarantees there's a function trace entry.
1da177e4 1070 */
9326638c 1071static noinline void
0ac09f9f
JO
1072__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1073 unsigned long address)
1da177e4 1074{
2d4a7167 1075 struct vm_area_struct *vma;
1da177e4
LT
1076 struct task_struct *tsk;
1077 struct mm_struct *mm;
26178ec1 1078 int fault, major = 0;
759496ba 1079 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1da177e4 1080
a9ba9a3b
AV
1081 tsk = current;
1082 mm = tsk->mm;
2d4a7167 1083
f8561296
VN
1084 /*
1085 * Detect and handle instructions that would cause a page fault for
1086 * both a tracked kernel page and a userspace page.
1087 */
1088 if (kmemcheck_active(regs))
1089 kmemcheck_hide(regs);
5dfaf90f 1090 prefetchw(&mm->mmap_sem);
f8561296 1091
0fd0e3da 1092 if (unlikely(kmmio_fault(regs, address)))
86069782 1093 return;
1da177e4
LT
1094
1095 /*
1096 * We fault-in kernel-space virtual memory on-demand. The
1097 * 'reference' page table is init_mm.pgd.
1098 *
1099 * NOTE! We MUST NOT take any locks for this case. We may
1100 * be in an interrupt or a critical region, and should
1101 * only copy the information from the master page table,
1102 * nothing more.
1103 *
1104 * This verifies that the fault happens in kernel space
1105 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1106 * protection error (error_code & 9) == 0.
1da177e4 1107 */
0973a06c 1108 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1109 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1110 if (vmalloc_fault(address) >= 0)
1111 return;
1112
1113 if (kmemcheck_fault(regs, address, error_code))
1114 return;
1115 }
5b727a3b 1116
2d4a7167 1117 /* Can handle a stale RO->RW TLB: */
92181f19 1118 if (spurious_fault(error_code, address))
5b727a3b
JF
1119 return;
1120
2d4a7167 1121 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1122 if (kprobes_fault(regs))
9be260a6 1123 return;
f8c2ee22
HH
1124 /*
1125 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1126 * fault we could otherwise deadlock:
f8c2ee22 1127 */
7b2d0dba 1128 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1129
92181f19 1130 return;
f8c2ee22
HH
1131 }
1132
2d4a7167 1133 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1134 if (unlikely(kprobes_fault(regs)))
9be260a6 1135 return;
8c914cb7 1136
66c58156 1137 if (unlikely(error_code & PF_RSVD))
92181f19 1138 pgtable_bad(regs, error_code, address);
1da177e4 1139
4640c7ee 1140 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1141 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1142 return;
40d3cd66
PA
1143 }
1144
1da177e4 1145 /*
2d4a7167 1146 * If we're in an interrupt, have no user context or are running
70ffdb93 1147 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1148 */
70ffdb93 1149 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1150 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1151 return;
1152 }
1da177e4 1153
e00b12e6
PZ
1154 /*
1155 * It's safe to allow irq's after cr2 has been saved and the
1156 * vmalloc fault has been handled.
1157 *
1158 * User-mode registers count as a user access even for any
1159 * potential system fault or CPU buglet:
1160 */
f39b6f0e 1161 if (user_mode(regs)) {
e00b12e6
PZ
1162 local_irq_enable();
1163 error_code |= PF_USER;
1164 flags |= FAULT_FLAG_USER;
1165 } else {
1166 if (regs->flags & X86_EFLAGS_IF)
1167 local_irq_enable();
1168 }
1169
1170 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1171
759496ba
JW
1172 if (error_code & PF_WRITE)
1173 flags |= FAULT_FLAG_WRITE;
1174
3a1dfe6e
IM
1175 /*
1176 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1177 * addresses in user space. All other faults represent errors in
1178 * the kernel and should generate an OOPS. Unfortunately, in the
1179 * case of an erroneous fault occurring in a code path which already
1180 * holds mmap_sem we will deadlock attempting to validate the fault
1181 * against the address space. Luckily the kernel only validly
1182 * references user space from well defined areas of code, which are
1183 * listed in the exceptions table.
1da177e4
LT
1184 *
1185 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1186 * the source reference check when there is a possibility of a
1187 * deadlock. Attempt to lock the address space, if we cannot we then
1188 * validate the source. If this is invalid we can skip the address
1189 * space check, thus avoiding the deadlock:
1da177e4 1190 */
92181f19 1191 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1192 if ((error_code & PF_USER) == 0 &&
92181f19 1193 !search_exception_tables(regs->ip)) {
7b2d0dba 1194 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1195 return;
1196 }
d065bd81 1197retry:
1da177e4 1198 down_read(&mm->mmap_sem);
01006074
PZ
1199 } else {
1200 /*
2d4a7167
IM
1201 * The above down_read_trylock() might have succeeded in
1202 * which case we'll have missed the might_sleep() from
1203 * down_read():
01006074
PZ
1204 */
1205 might_sleep();
1da177e4
LT
1206 }
1207
1208 vma = find_vma(mm, address);
92181f19
NP
1209 if (unlikely(!vma)) {
1210 bad_area(regs, error_code, address);
1211 return;
1212 }
1213 if (likely(vma->vm_start <= address))
1da177e4 1214 goto good_area;
92181f19
NP
1215 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1216 bad_area(regs, error_code, address);
1217 return;
1218 }
33cb5243 1219 if (error_code & PF_USER) {
6f4d368e
HH
1220 /*
1221 * Accessing the stack below %sp is always a bug.
1222 * The large cushion allows instructions like enter
2d4a7167 1223 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1224 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1225 */
92181f19
NP
1226 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1227 bad_area(regs, error_code, address);
1228 return;
1229 }
1da177e4 1230 }
92181f19
NP
1231 if (unlikely(expand_stack(vma, address))) {
1232 bad_area(regs, error_code, address);
1233 return;
1234 }
1235
1236 /*
1237 * Ok, we have a good vm_area for this memory access, so
1238 * we can handle it..
1239 */
1da177e4 1240good_area:
68da336a 1241 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1242 bad_area_access_error(regs, error_code, address, vma);
92181f19 1243 return;
1da177e4
LT
1244 }
1245
1246 /*
1247 * If for any reason at all we couldn't handle the fault,
1248 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1249 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1250 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1251 */
d065bd81 1252 fault = handle_mm_fault(mm, vma, address, flags);
26178ec1 1253 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1254
3a13c4d7 1255 /*
26178ec1
LT
1256 * If we need to retry the mmap_sem has already been released,
1257 * and if there is a fatal signal pending there is no guarantee
1258 * that we made any progress. Handle this case first.
3a13c4d7 1259 */
26178ec1
LT
1260 if (unlikely(fault & VM_FAULT_RETRY)) {
1261 /* Retry at most once */
1262 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1263 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1264 flags |= FAULT_FLAG_TRIED;
1265 if (!fatal_signal_pending(tsk))
1266 goto retry;
1267 }
1268
1269 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1270 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1271 return;
1272
1273 /* Not returning to user mode? Handle exceptions or die: */
1274 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1275 return;
26178ec1 1276 }
3a13c4d7 1277
26178ec1 1278 up_read(&mm->mmap_sem);
3a13c4d7 1279 if (unlikely(fault & VM_FAULT_ERROR)) {
7b2d0dba 1280 mm_fault_error(regs, error_code, address, vma, fault);
3a13c4d7 1281 return;
37b23e05
KM
1282 }
1283
d065bd81 1284 /*
26178ec1
LT
1285 * Major/minor page fault accounting. If any of the events
1286 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1287 */
26178ec1
LT
1288 if (major) {
1289 tsk->maj_flt++;
1290 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1291 } else {
1292 tsk->min_flt++;
1293 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1294 }
d729ab35 1295
8c938f9f 1296 check_v8086_mode(regs, address, tsk);
1da177e4 1297}
9326638c 1298NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1299
9326638c 1300dotraplinkage void notrace
6ba3c97a
FW
1301do_page_fault(struct pt_regs *regs, unsigned long error_code)
1302{
d4078e23 1303 unsigned long address = read_cr2(); /* Get the faulting address */
6c1e0256 1304 enum ctx_state prev_state;
d4078e23
PZ
1305
1306 /*
1307 * We must have this function tagged with __kprobes, notrace and call
1308 * read_cr2() before calling anything else. To avoid calling any kind
1309 * of tracing machinery before we've observed the CR2 value.
1310 *
1311 * exception_{enter,exit}() contain all sorts of tracepoints.
1312 */
6c1e0256
FW
1313
1314 prev_state = exception_enter();
0ac09f9f 1315 __do_page_fault(regs, error_code, address);
6c1e0256 1316 exception_exit(prev_state);
6ba3c97a 1317}
9326638c 1318NOKPROBE_SYMBOL(do_page_fault);
25c74b10 1319
d4078e23 1320#ifdef CONFIG_TRACING
9326638c
MH
1321static nokprobe_inline void
1322trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1323 unsigned long error_code)
d34603b0
SA
1324{
1325 if (user_mode(regs))
d4078e23 1326 trace_page_fault_user(address, regs, error_code);
d34603b0 1327 else
d4078e23 1328 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1329}
1330
9326638c 1331dotraplinkage void notrace
25c74b10
SA
1332trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1333{
0ac09f9f
JO
1334 /*
1335 * The exception_enter and tracepoint processing could
1336 * trigger another page faults (user space callchain
1337 * reading) and destroy the original cr2 value, so read
1338 * the faulting address now.
1339 */
1340 unsigned long address = read_cr2();
d4078e23 1341 enum ctx_state prev_state;
25c74b10
SA
1342
1343 prev_state = exception_enter();
d4078e23 1344 trace_page_fault_entries(address, regs, error_code);
0ac09f9f 1345 __do_page_fault(regs, error_code, address);
25c74b10
SA
1346 exception_exit(prev_state);
1347}
9326638c 1348NOKPROBE_SYMBOL(trace_do_page_fault);
d4078e23 1349#endif /* CONFIG_TRACING */