License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
a2bcd473 11#include <linux/bootmem.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 19
019132ff 20#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
21#include <asm/traps.h> /* dotraplinkage, ... */
22#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 23#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
f40c3300
AL
24#include <asm/fixmap.h> /* VSYSCALL_ADDR */
25#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 26#include <asm/vm86.h> /* struct vm86 */
019132ff 27#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 28
d34603b0
SA
29#define CREATE_TRACE_POINTS
30#include <asm/trace/exceptions.h>
31
33cb5243 32/*
2d4a7167
IM
33 * Page fault error code bits:
34 *
35 * bit 0 == 0: no page found 1: protection fault
36 * bit 1 == 0: read access 1: write access
37 * bit 2 == 0: kernel-mode access 1: user-mode access
38 * bit 3 == 1: use of reserved bit detected
39 * bit 4 == 1: fault was an instruction fetch
b3ecd515 40 * bit 5 == 1: protection keys block access
33cb5243 41 */
2d4a7167
IM
42enum x86_pf_error_code {
43
44 PF_PROT = 1 << 0,
45 PF_WRITE = 1 << 1,
46 PF_USER = 1 << 2,
47 PF_RSVD = 1 << 3,
48 PF_INSTR = 1 << 4,
b3ecd515 49 PF_PK = 1 << 5,
2d4a7167 50};
66c58156 51
b814d41f 52/*
b319eed0
IM
53 * Returns 0 if mmiotrace is disabled, or if the fault is not
54 * handled by mmiotrace:
b814d41f 55 */
9326638c 56static nokprobe_inline int
62c9295f 57kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 58{
0fd0e3da
PP
59 if (unlikely(is_kmmio_active()))
60 if (kmmio_handler(regs, addr) == 1)
61 return -1;
0fd0e3da 62 return 0;
86069782
PP
63}
64
9326638c 65static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 66{
74a0b576
CH
67 int ret = 0;
68
69 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 70 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
71 preempt_disable();
72 if (kprobe_running() && kprobe_fault_handler(regs, 14))
73 ret = 1;
74 preempt_enable();
75 }
1bd858a5 76
74a0b576 77 return ret;
33cb5243 78}
1bd858a5 79
1dc85be0 80/*
2d4a7167
IM
81 * Prefetch quirks:
82 *
83 * 32-bit mode:
84 *
85 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
86 * Check that here and ignore it.
1dc85be0 87 *
2d4a7167 88 * 64-bit mode:
1dc85be0 89 *
2d4a7167
IM
90 * Sometimes the CPU reports invalid exceptions on prefetch.
91 * Check that here and ignore it.
92 *
93 * Opcode checker based on code by Richard Brunner.
1dc85be0 94 */
107a0367
IM
95static inline int
96check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
97 unsigned char opcode, int *prefetch)
98{
99 unsigned char instr_hi = opcode & 0xf0;
100 unsigned char instr_lo = opcode & 0x0f;
101
102 switch (instr_hi) {
103 case 0x20:
104 case 0x30:
105 /*
106 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
107 * In X86_64 long mode, the CPU will signal invalid
108 * opcode if some of these prefixes are present so
109 * X86_64 will never get here anyway
110 */
111 return ((instr_lo & 7) == 0x6);
112#ifdef CONFIG_X86_64
113 case 0x40:
114 /*
115 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
116 * Need to figure out under what instruction mode the
117 * instruction was issued. Could check the LDT for lm,
118 * but for now it's good enough to assume that long
119 * mode only uses well known segments or kernel.
120 */
318f5a2a 121 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
122#endif
123 case 0x60:
124 /* 0x64 thru 0x67 are valid prefixes in all modes. */
125 return (instr_lo & 0xC) == 0x4;
126 case 0xF0:
127 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
128 return !instr_lo || (instr_lo>>1) == 1;
129 case 0x00:
130 /* Prefetch instruction is 0x0F0D or 0x0F18 */
131 if (probe_kernel_address(instr, opcode))
132 return 0;
133
134 *prefetch = (instr_lo == 0xF) &&
135 (opcode == 0x0D || opcode == 0x18);
136 return 0;
137 default:
138 return 0;
139 }
140}
141
2d4a7167
IM
142static int
143is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 144{
2d4a7167 145 unsigned char *max_instr;
ab2bf0c1 146 unsigned char *instr;
33cb5243 147 int prefetch = 0;
1da177e4 148
3085354d
IM
149 /*
150 * If it was a exec (instruction fetch) fault on NX page, then
151 * do not ignore the fault:
152 */
66c58156 153 if (error_code & PF_INSTR)
1da177e4 154 return 0;
1dc85be0 155
107a0367 156 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 157 max_instr = instr + 15;
1da177e4 158
d31bf07f 159 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
160 return 0;
161
107a0367 162 while (instr < max_instr) {
2d4a7167 163 unsigned char opcode;
1da177e4 164
ab2bf0c1 165 if (probe_kernel_address(instr, opcode))
33cb5243 166 break;
1da177e4 167
1da177e4
LT
168 instr++;
169
107a0367 170 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 171 break;
1da177e4
LT
172 }
173 return prefetch;
174}
175
019132ff
DH
176/*
177 * A protection key fault means that the PKRU value did not allow
178 * access to some PTE. Userspace can figure out what PKRU was
179 * from the XSAVE state, and this function fills out a field in
180 * siginfo so userspace can discover which protection key was set
181 * on the PTE.
182 *
183 * If we get here, we know that the hardware signaled a PF_PK
184 * fault and that there was a VMA once we got in the fault
185 * handler. It does *not* guarantee that the VMA we find here
186 * was the one that we faulted on.
187 *
188 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
189 * 2. T1 : set PKRU to deny access to pkey=4, touches page
190 * 3. T1 : faults...
191 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
192 * 5. T1 : enters fault handler, takes mmap_sem, etc...
193 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
194 * faulted on a pte with its pkey=4.
195 */
a3c4fb7c 196static void fill_sig_info_pkey(int si_code, siginfo_t *info, u32 *pkey)
019132ff
DH
197{
198 /* This is effectively an #ifdef */
199 if (!boot_cpu_has(X86_FEATURE_OSPKE))
200 return;
201
202 /* Fault not from Protection Keys: nothing to do */
203 if (si_code != SEGV_PKUERR)
204 return;
205 /*
206 * force_sig_info_fault() is called from a number of
207 * contexts, some of which have a VMA and some of which
208 * do not. The PF_PK handing happens after we have a
209 * valid VMA, so we should never reach this without a
210 * valid VMA.
211 */
a3c4fb7c 212 if (!pkey) {
019132ff
DH
213 WARN_ONCE(1, "PKU fault with no VMA passed in");
214 info->si_pkey = 0;
215 return;
216 }
217 /*
218 * si_pkey should be thought of as a strong hint, but not
219 * absolutely guranteed to be 100% accurate because of
220 * the race explained above.
221 */
a3c4fb7c 222 info->si_pkey = *pkey;
019132ff
DH
223}
224
2d4a7167
IM
225static void
226force_sig_info_fault(int si_signo, int si_code, unsigned long address,
a3c4fb7c 227 struct task_struct *tsk, u32 *pkey, int fault)
c4aba4a8 228{
f672b49b 229 unsigned lsb = 0;
c4aba4a8
HH
230 siginfo_t info;
231
2d4a7167
IM
232 info.si_signo = si_signo;
233 info.si_errno = 0;
234 info.si_code = si_code;
235 info.si_addr = (void __user *)address;
f672b49b
AK
236 if (fault & VM_FAULT_HWPOISON_LARGE)
237 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
238 if (fault & VM_FAULT_HWPOISON)
239 lsb = PAGE_SHIFT;
240 info.si_addr_lsb = lsb;
2d4a7167 241
a3c4fb7c 242 fill_sig_info_pkey(si_code, &info, pkey);
019132ff 243
c4aba4a8
HH
244 force_sig_info(si_signo, &info, tsk);
245}
246
f2f13a85
IM
247DEFINE_SPINLOCK(pgd_lock);
248LIST_HEAD(pgd_list);
249
250#ifdef CONFIG_X86_32
251static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 252{
f2f13a85
IM
253 unsigned index = pgd_index(address);
254 pgd_t *pgd_k;
e0c4f675 255 p4d_t *p4d, *p4d_k;
f2f13a85
IM
256 pud_t *pud, *pud_k;
257 pmd_t *pmd, *pmd_k;
2d4a7167 258
f2f13a85
IM
259 pgd += index;
260 pgd_k = init_mm.pgd + index;
261
262 if (!pgd_present(*pgd_k))
263 return NULL;
264
265 /*
266 * set_pgd(pgd, *pgd_k); here would be useless on PAE
267 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 268 * set_p4d/set_pud.
f2f13a85 269 */
e0c4f675
KS
270 p4d = p4d_offset(pgd, address);
271 p4d_k = p4d_offset(pgd_k, address);
272 if (!p4d_present(*p4d_k))
273 return NULL;
274
275 pud = pud_offset(p4d, address);
276 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
277 if (!pud_present(*pud_k))
278 return NULL;
279
280 pmd = pmd_offset(pud, address);
281 pmd_k = pmd_offset(pud_k, address);
282 if (!pmd_present(*pmd_k))
283 return NULL;
284
b8bcfe99 285 if (!pmd_present(*pmd))
f2f13a85 286 set_pmd(pmd, *pmd_k);
b8bcfe99 287 else
f2f13a85 288 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
289
290 return pmd_k;
291}
292
293void vmalloc_sync_all(void)
294{
295 unsigned long address;
296
297 if (SHARED_KERNEL_PMD)
298 return;
299
300 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 301 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 302 address += PMD_SIZE) {
f2f13a85
IM
303 struct page *page;
304
a79e53d8 305 spin_lock(&pgd_lock);
f2f13a85 306 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 307 spinlock_t *pgt_lock;
f01f7c56 308 pmd_t *ret;
617d34d9 309
a79e53d8 310 /* the pgt_lock only for Xen */
617d34d9
JF
311 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
312
313 spin_lock(pgt_lock);
314 ret = vmalloc_sync_one(page_address(page), address);
315 spin_unlock(pgt_lock);
316
317 if (!ret)
f2f13a85
IM
318 break;
319 }
a79e53d8 320 spin_unlock(&pgd_lock);
f2f13a85
IM
321 }
322}
323
324/*
325 * 32-bit:
326 *
327 * Handle a fault on the vmalloc or module mapping area
328 */
9326638c 329static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
330{
331 unsigned long pgd_paddr;
332 pmd_t *pmd_k;
333 pte_t *pte_k;
334
335 /* Make sure we are in vmalloc area: */
336 if (!(address >= VMALLOC_START && address < VMALLOC_END))
337 return -1;
338
ebc8827f
FW
339 WARN_ON_ONCE(in_nmi());
340
f2f13a85
IM
341 /*
342 * Synchronize this task's top level page-table
343 * with the 'reference' page table.
344 *
345 * Do _not_ use "current" here. We might be inside
346 * an interrupt in the middle of a task switch..
347 */
6c690ee1 348 pgd_paddr = read_cr3_pa();
f2f13a85
IM
349 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
350 if (!pmd_k)
351 return -1;
352
f4eafd8b
TK
353 if (pmd_huge(*pmd_k))
354 return 0;
355
f2f13a85
IM
356 pte_k = pte_offset_kernel(pmd_k, address);
357 if (!pte_present(*pte_k))
358 return -1;
359
360 return 0;
361}
9326638c 362NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
363
364/*
365 * Did it hit the DOS screen memory VA from vm86 mode?
366 */
367static inline void
368check_v8086_mode(struct pt_regs *regs, unsigned long address,
369 struct task_struct *tsk)
370{
9fda6a06 371#ifdef CONFIG_VM86
f2f13a85
IM
372 unsigned long bit;
373
9fda6a06 374 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
375 return;
376
377 bit = (address - 0xA0000) >> PAGE_SHIFT;
378 if (bit < 32)
9fda6a06
BG
379 tsk->thread.vm86->screen_bitmap |= 1 << bit;
380#endif
33cb5243 381}
1da177e4 382
087975b0 383static bool low_pfn(unsigned long pfn)
1da177e4 384{
087975b0
AM
385 return pfn < max_low_pfn;
386}
1156e098 387
087975b0
AM
388static void dump_pagetable(unsigned long address)
389{
6c690ee1 390 pgd_t *base = __va(read_cr3_pa());
087975b0 391 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
392 p4d_t *p4d;
393 pud_t *pud;
087975b0
AM
394 pmd_t *pmd;
395 pte_t *pte;
2d4a7167 396
1156e098 397#ifdef CONFIG_X86_PAE
39e48d9b 398 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
399 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
400 goto out;
39e48d9b
JB
401#define pr_pde pr_cont
402#else
403#define pr_pde pr_info
1156e098 404#endif
e0c4f675
KS
405 p4d = p4d_offset(pgd, address);
406 pud = pud_offset(p4d, address);
407 pmd = pmd_offset(pud, address);
39e48d9b
JB
408 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
409#undef pr_pde
1156e098
HH
410
411 /*
412 * We must not directly access the pte in the highpte
413 * case if the page table is located in highmem.
414 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 415 * it's allocated already:
1156e098 416 */
087975b0
AM
417 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
418 goto out;
1156e098 419
087975b0 420 pte = pte_offset_kernel(pmd, address);
39e48d9b 421 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 422out:
39e48d9b 423 pr_cont("\n");
f2f13a85
IM
424}
425
426#else /* CONFIG_X86_64: */
427
428void vmalloc_sync_all(void)
429{
5372e155 430 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
431}
432
433/*
434 * 64-bit:
435 *
436 * Handle a fault on the vmalloc area
f2f13a85 437 */
9326638c 438static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
439{
440 pgd_t *pgd, *pgd_ref;
b50858ce 441 p4d_t *p4d, *p4d_ref;
f2f13a85
IM
442 pud_t *pud, *pud_ref;
443 pmd_t *pmd, *pmd_ref;
444 pte_t *pte, *pte_ref;
445
446 /* Make sure we are in vmalloc area: */
447 if (!(address >= VMALLOC_START && address < VMALLOC_END))
448 return -1;
449
ebc8827f
FW
450 WARN_ON_ONCE(in_nmi());
451
f2f13a85
IM
452 /*
453 * Copy kernel mappings over when needed. This can also
454 * happen within a race in page table update. In the later
455 * case just flush:
456 */
6c690ee1 457 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
f2f13a85
IM
458 pgd_ref = pgd_offset_k(address);
459 if (pgd_none(*pgd_ref))
460 return -1;
461
1160c277 462 if (pgd_none(*pgd)) {
f2f13a85 463 set_pgd(pgd, *pgd_ref);
1160c277 464 arch_flush_lazy_mmu_mode();
b50858ce
KS
465 } else if (CONFIG_PGTABLE_LEVELS > 4) {
466 /*
467 * With folded p4d, pgd_none() is always false, so the pgd may
468 * point to an empty page table entry and pgd_page_vaddr()
469 * will return garbage.
470 *
471 * We will do the correct sanity check on the p4d level.
472 */
f2f13a85 473 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
1160c277 474 }
f2f13a85 475
b50858ce
KS
476 /* With 4-level paging, copying happens on the p4d level. */
477 p4d = p4d_offset(pgd, address);
478 p4d_ref = p4d_offset(pgd_ref, address);
479 if (p4d_none(*p4d_ref))
480 return -1;
481
482 if (p4d_none(*p4d)) {
483 set_p4d(p4d, *p4d_ref);
484 arch_flush_lazy_mmu_mode();
485 } else {
486 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_ref));
487 }
488
f2f13a85
IM
489 /*
490 * Below here mismatches are bugs because these lower tables
491 * are shared:
492 */
493
b50858ce
KS
494 pud = pud_offset(p4d, address);
495 pud_ref = pud_offset(p4d_ref, address);
f2f13a85
IM
496 if (pud_none(*pud_ref))
497 return -1;
498
f4eafd8b 499 if (pud_none(*pud) || pud_pfn(*pud) != pud_pfn(*pud_ref))
f2f13a85
IM
500 BUG();
501
f4eafd8b
TK
502 if (pud_huge(*pud))
503 return 0;
504
f2f13a85
IM
505 pmd = pmd_offset(pud, address);
506 pmd_ref = pmd_offset(pud_ref, address);
507 if (pmd_none(*pmd_ref))
508 return -1;
509
f4eafd8b 510 if (pmd_none(*pmd) || pmd_pfn(*pmd) != pmd_pfn(*pmd_ref))
f2f13a85
IM
511 BUG();
512
f4eafd8b
TK
513 if (pmd_huge(*pmd))
514 return 0;
515
f2f13a85
IM
516 pte_ref = pte_offset_kernel(pmd_ref, address);
517 if (!pte_present(*pte_ref))
518 return -1;
519
520 pte = pte_offset_kernel(pmd, address);
521
522 /*
523 * Don't use pte_page here, because the mappings can point
524 * outside mem_map, and the NUMA hash lookup cannot handle
525 * that:
526 */
527 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
528 BUG();
529
530 return 0;
531}
9326638c 532NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 533
e05139f2 534#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 535static const char errata93_warning[] =
ad361c98
JP
536KERN_ERR
537"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
538"******* Working around it, but it may cause SEGVs or burn power.\n"
539"******* Please consider a BIOS update.\n"
540"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 541#endif
f2f13a85
IM
542
543/*
544 * No vm86 mode in 64-bit mode:
545 */
546static inline void
547check_v8086_mode(struct pt_regs *regs, unsigned long address,
548 struct task_struct *tsk)
549{
550}
551
552static int bad_address(void *p)
553{
554 unsigned long dummy;
555
556 return probe_kernel_address((unsigned long *)p, dummy);
557}
558
559static void dump_pagetable(unsigned long address)
560{
6c690ee1 561 pgd_t *base = __va(read_cr3_pa());
087975b0 562 pgd_t *pgd = base + pgd_index(address);
e0c4f675 563 p4d_t *p4d;
1da177e4
LT
564 pud_t *pud;
565 pmd_t *pmd;
566 pte_t *pte;
567
2d4a7167
IM
568 if (bad_address(pgd))
569 goto bad;
570
39e48d9b 571 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
572
573 if (!pgd_present(*pgd))
574 goto out;
1da177e4 575
e0c4f675
KS
576 p4d = p4d_offset(pgd, address);
577 if (bad_address(p4d))
578 goto bad;
579
39e48d9b 580 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
581 if (!p4d_present(*p4d) || p4d_large(*p4d))
582 goto out;
583
584 pud = pud_offset(p4d, address);
2d4a7167
IM
585 if (bad_address(pud))
586 goto bad;
587
39e48d9b 588 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 589 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 590 goto out;
1da177e4
LT
591
592 pmd = pmd_offset(pud, address);
2d4a7167
IM
593 if (bad_address(pmd))
594 goto bad;
595
39e48d9b 596 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
597 if (!pmd_present(*pmd) || pmd_large(*pmd))
598 goto out;
1da177e4
LT
599
600 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
601 if (bad_address(pte))
602 goto bad;
603
39e48d9b 604 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 605out:
39e48d9b 606 pr_cont("\n");
1da177e4
LT
607 return;
608bad:
39e48d9b 609 pr_info("BAD\n");
8c938f9f
IM
610}
611
f2f13a85 612#endif /* CONFIG_X86_64 */
1da177e4 613
2d4a7167
IM
614/*
615 * Workaround for K8 erratum #93 & buggy BIOS.
616 *
617 * BIOS SMM functions are required to use a specific workaround
618 * to avoid corruption of the 64bit RIP register on C stepping K8.
619 *
620 * A lot of BIOS that didn't get tested properly miss this.
621 *
622 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
623 * Try to work around it here.
624 *
625 * Note we only handle faults in kernel here.
626 * Does nothing on 32-bit.
fdfe8aa8 627 */
33cb5243 628static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 629{
e05139f2
JB
630#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
631 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
632 || boot_cpu_data.x86 != 0xf)
633 return 0;
634
65ea5b03 635 if (address != regs->ip)
1da177e4 636 return 0;
2d4a7167 637
33cb5243 638 if ((address >> 32) != 0)
1da177e4 639 return 0;
2d4a7167 640
1da177e4 641 address |= 0xffffffffUL << 32;
33cb5243
HH
642 if ((address >= (u64)_stext && address <= (u64)_etext) ||
643 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 644 printk_once(errata93_warning);
65ea5b03 645 regs->ip = address;
1da177e4
LT
646 return 1;
647 }
fdfe8aa8 648#endif
1da177e4 649 return 0;
33cb5243 650}
1da177e4 651
35f3266f 652/*
2d4a7167
IM
653 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
654 * to illegal addresses >4GB.
655 *
656 * We catch this in the page fault handler because these addresses
657 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
658 * segment in LDT is compatibility mode.
659 */
660static int is_errata100(struct pt_regs *regs, unsigned long address)
661{
662#ifdef CONFIG_X86_64
2d4a7167 663 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
664 return 1;
665#endif
666 return 0;
667}
668
29caf2f9
HH
669static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
670{
671#ifdef CONFIG_X86_F00F_BUG
672 unsigned long nr;
2d4a7167 673
29caf2f9 674 /*
2d4a7167 675 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 676 */
e2604b49 677 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
678 nr = (address - idt_descr.address) >> 3;
679
680 if (nr == 6) {
681 do_invalid_op(regs, 0);
682 return 1;
683 }
684 }
685#endif
686 return 0;
687}
688
8f766149
IM
689static const char nx_warning[] = KERN_CRIT
690"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
eff50c34
JK
691static const char smep_warning[] = KERN_CRIT
692"unable to execute userspace code (SMEP?) (uid: %d)\n";
8f766149 693
2d4a7167
IM
694static void
695show_fault_oops(struct pt_regs *regs, unsigned long error_code,
696 unsigned long address)
b3279c7f 697{
1156e098
HH
698 if (!oops_may_print())
699 return;
700
1156e098 701 if (error_code & PF_INSTR) {
93809be8 702 unsigned int level;
426e34cc
MF
703 pgd_t *pgd;
704 pte_t *pte;
2d4a7167 705
6c690ee1 706 pgd = __va(read_cr3_pa());
426e34cc
MF
707 pgd += pgd_index(address);
708
709 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 710
8f766149 711 if (pte && pte_present(*pte) && !pte_exec(*pte))
078de5f7 712 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
713 if (pte && pte_present(*pte) && pte_exec(*pte) &&
714 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 715 (__read_cr4() & X86_CR4_SMEP))
eff50c34 716 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
1156e098 717 }
1156e098 718
19f0dda9 719 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 720 if (address < PAGE_SIZE)
19f0dda9 721 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 722 else
19f0dda9 723 printk(KERN_CONT "paging request");
2d4a7167 724
f294a8ce 725 printk(KERN_CONT " at %p\n", (void *) address);
bb5e5ce5 726 printk(KERN_ALERT "IP: %pS\n", (void *)regs->ip);
2d4a7167 727
b3279c7f
HH
728 dump_pagetable(address);
729}
730
2d4a7167
IM
731static noinline void
732pgtable_bad(struct pt_regs *regs, unsigned long error_code,
733 unsigned long address)
1da177e4 734{
2d4a7167
IM
735 struct task_struct *tsk;
736 unsigned long flags;
737 int sig;
738
739 flags = oops_begin();
740 tsk = current;
741 sig = SIGKILL;
1209140c 742
1da177e4 743 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 744 tsk->comm, address);
1da177e4 745 dump_pagetable(address);
2d4a7167
IM
746
747 tsk->thread.cr2 = address;
51e7dc70 748 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
749 tsk->thread.error_code = error_code;
750
22f5991c 751 if (__die("Bad pagetable", regs, error_code))
874d93d1 752 sig = 0;
2d4a7167 753
874d93d1 754 oops_end(flags, regs, sig);
1da177e4
LT
755}
756
2d4a7167
IM
757static noinline void
758no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 759 unsigned long address, int signal, int si_code)
92181f19
NP
760{
761 struct task_struct *tsk = current;
92181f19
NP
762 unsigned long flags;
763 int sig;
92181f19 764
2d4a7167 765 /* Are we prepared to handle this kernel fault? */
548acf19 766 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
767 /*
768 * Any interrupt that takes a fault gets the fixup. This makes
769 * the below recursive fault logic only apply to a faults from
770 * task context.
771 */
772 if (in_interrupt())
773 return;
774
775 /*
776 * Per the above we're !in_interrupt(), aka. task context.
777 *
778 * In this case we need to make sure we're not recursively
779 * faulting through the emulate_vsyscall() logic.
780 */
2a53ccbc 781 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 782 tsk->thread.trap_nr = X86_TRAP_PF;
4fc34901
AL
783 tsk->thread.error_code = error_code | PF_USER;
784 tsk->thread.cr2 = address;
785
786 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba 787 force_sig_info_fault(signal, si_code, address,
a3c4fb7c 788 tsk, NULL, 0);
4fc34901 789 }
c026b359
PZ
790
791 /*
792 * Barring that, we can do the fixup and be happy.
793 */
92181f19 794 return;
4fc34901 795 }
92181f19 796
6271cfdf
AL
797#ifdef CONFIG_VMAP_STACK
798 /*
799 * Stack overflow? During boot, we can fault near the initial
800 * stack in the direct map, but that's not an overflow -- check
801 * that we're in vmalloc space to avoid this.
802 */
803 if (is_vmalloc_addr((void *)address) &&
804 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
805 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
806 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
807 /*
808 * We're likely to be running with very little stack space
809 * left. It's plausible that we'd hit this condition but
810 * double-fault even before we get this far, in which case
811 * we're fine: the double-fault handler will deal with it.
812 *
813 * We don't want to make it all the way into the oops code
814 * and then double-fault, though, because we're likely to
815 * break the console driver and lose most of the stack dump.
816 */
817 asm volatile ("movq %[stack], %%rsp\n\t"
818 "call handle_stack_overflow\n\t"
819 "1: jmp 1b"
f5caf621 820 : ASM_CALL_CONSTRAINT
6271cfdf
AL
821 : "D" ("kernel stack overflow (page fault)"),
822 "S" (regs), "d" (address),
823 [stack] "rm" (stack));
824 unreachable();
825 }
826#endif
827
92181f19 828 /*
2d4a7167
IM
829 * 32-bit:
830 *
831 * Valid to do another page fault here, because if this fault
832 * had been triggered by is_prefetch fixup_exception would have
833 * handled it.
834 *
835 * 64-bit:
92181f19 836 *
2d4a7167 837 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
838 */
839 if (is_prefetch(regs, error_code, address))
840 return;
841
842 if (is_errata93(regs, address))
843 return;
844
845 /*
846 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 847 * terminate things with extreme prejudice:
92181f19 848 */
92181f19 849 flags = oops_begin();
92181f19
NP
850
851 show_fault_oops(regs, error_code, address);
852
a70857e4 853 if (task_stack_end_corrupted(tsk))
b0f4c4b3 854 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 855
1cc99544 856 tsk->thread.cr2 = address;
51e7dc70 857 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 858 tsk->thread.error_code = error_code;
92181f19 859
92181f19
NP
860 sig = SIGKILL;
861 if (__die("Oops", regs, error_code))
862 sig = 0;
2d4a7167 863
92181f19 864 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 865 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 866
92181f19 867 oops_end(flags, regs, sig);
92181f19
NP
868}
869
2d4a7167
IM
870/*
871 * Print out info about fatal segfaults, if the show_unhandled_signals
872 * sysctl is set:
873 */
874static inline void
875show_signal_msg(struct pt_regs *regs, unsigned long error_code,
876 unsigned long address, struct task_struct *tsk)
877{
878 if (!unhandled_signal(tsk, SIGSEGV))
879 return;
880
881 if (!printk_ratelimit())
882 return;
883
a1a08d1c 884 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
885 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
886 tsk->comm, task_pid_nr(tsk), address,
887 (void *)regs->ip, (void *)regs->sp, error_code);
888
889 print_vma_addr(KERN_CONT " in ", regs->ip);
890
891 printk(KERN_CONT "\n");
892}
893
894static void
895__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 896 unsigned long address, u32 *pkey, int si_code)
92181f19
NP
897{
898 struct task_struct *tsk = current;
899
900 /* User mode accesses just cause a SIGSEGV */
901 if (error_code & PF_USER) {
902 /*
2d4a7167 903 * It's possible to have interrupts off here:
92181f19
NP
904 */
905 local_irq_enable();
906
907 /*
908 * Valid to do another page fault here because this one came
2d4a7167 909 * from user space:
92181f19
NP
910 */
911 if (is_prefetch(regs, error_code, address))
912 return;
913
914 if (is_errata100(regs, address))
915 return;
916
3ae36655
AL
917#ifdef CONFIG_X86_64
918 /*
919 * Instruction fetch faults in the vsyscall page might need
920 * emulation.
921 */
922 if (unlikely((error_code & PF_INSTR) &&
f40c3300 923 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
924 if (emulate_vsyscall(regs, address))
925 return;
926 }
927#endif
dc4fac84
AL
928
929 /*
930 * To avoid leaking information about the kernel page table
931 * layout, pretend that user-mode accesses to kernel addresses
932 * are always protection faults.
933 */
934 if (address >= TASK_SIZE_MAX)
e575a86f 935 error_code |= PF_PROT;
3ae36655 936
e575a86f 937 if (likely(show_unhandled_signals))
2d4a7167
IM
938 show_signal_msg(regs, error_code, address, tsk);
939
2d4a7167 940 tsk->thread.cr2 = address;
e575a86f 941 tsk->thread.error_code = error_code;
51e7dc70 942 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 943
a3c4fb7c 944 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
2d4a7167 945
92181f19
NP
946 return;
947 }
948
949 if (is_f00f_bug(regs, address))
950 return;
951
4fc34901 952 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
953}
954
2d4a7167
IM
955static noinline void
956bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 957 unsigned long address, u32 *pkey)
92181f19 958{
a3c4fb7c 959 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
92181f19
NP
960}
961
2d4a7167
IM
962static void
963__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 964 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
965{
966 struct mm_struct *mm = current->mm;
a3c4fb7c
LD
967 u32 pkey;
968
969 if (vma)
970 pkey = vma_pkey(vma);
92181f19
NP
971
972 /*
973 * Something tried to access memory that isn't in our memory map..
974 * Fix it, but check if it's kernel or user first..
975 */
976 up_read(&mm->mmap_sem);
977
a3c4fb7c
LD
978 __bad_area_nosemaphore(regs, error_code, address,
979 (vma) ? &pkey : NULL, si_code);
92181f19
NP
980}
981
2d4a7167
IM
982static noinline void
983bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 984{
7b2d0dba 985 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
986}
987
33a709b2
DH
988static inline bool bad_area_access_from_pkeys(unsigned long error_code,
989 struct vm_area_struct *vma)
990{
07f146f5
DH
991 /* This code is always called on the current mm */
992 bool foreign = false;
993
33a709b2
DH
994 if (!boot_cpu_has(X86_FEATURE_OSPKE))
995 return false;
996 if (error_code & PF_PK)
997 return true;
07f146f5 998 /* this checks permission keys on the VMA: */
d61172b4
DH
999 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1000 (error_code & PF_INSTR), foreign))
07f146f5 1001 return true;
33a709b2 1002 return false;
92181f19
NP
1003}
1004
2d4a7167
IM
1005static noinline void
1006bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 1007 unsigned long address, struct vm_area_struct *vma)
92181f19 1008{
019132ff
DH
1009 /*
1010 * This OSPKE check is not strictly necessary at runtime.
1011 * But, doing it this way allows compiler optimizations
1012 * if pkeys are compiled out.
1013 */
33a709b2 1014 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
1015 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
1016 else
1017 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
1018}
1019
2d4a7167 1020static void
a6e04aa9 1021do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
a3c4fb7c 1022 u32 *pkey, unsigned int fault)
92181f19
NP
1023{
1024 struct task_struct *tsk = current;
a6e04aa9 1025 int code = BUS_ADRERR;
92181f19 1026
2d4a7167 1027 /* Kernel mode? Handle exceptions or die: */
96054569 1028 if (!(error_code & PF_USER)) {
4fc34901 1029 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
1030 return;
1031 }
2d4a7167 1032
cd1b68f0 1033 /* User-space => ok to do another page fault: */
92181f19
NP
1034 if (is_prefetch(regs, error_code, address))
1035 return;
2d4a7167
IM
1036
1037 tsk->thread.cr2 = address;
1038 tsk->thread.error_code = error_code;
51e7dc70 1039 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 1040
a6e04aa9 1041#ifdef CONFIG_MEMORY_FAILURE
f672b49b 1042 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
1043 printk(KERN_ERR
1044 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
1045 tsk->comm, tsk->pid, address);
1046 code = BUS_MCEERR_AR;
1047 }
1048#endif
a3c4fb7c 1049 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
92181f19
NP
1050}
1051
3a13c4d7 1052static noinline void
2d4a7167 1053mm_fault_error(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 1054 unsigned long address, u32 *pkey, unsigned int fault)
92181f19 1055{
3a13c4d7 1056 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
3a13c4d7
JW
1057 no_context(regs, error_code, address, 0, 0);
1058 return;
b80ef10e 1059 }
b80ef10e 1060
2d4a7167 1061 if (fault & VM_FAULT_OOM) {
f8626854
AV
1062 /* Kernel mode? Handle exceptions or die: */
1063 if (!(error_code & PF_USER)) {
4fc34901
AL
1064 no_context(regs, error_code, address,
1065 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1066 return;
f8626854
AV
1067 }
1068
c2d23f91
DR
1069 /*
1070 * We ran out of memory, call the OOM killer, and return the
1071 * userspace (which will retry the fault, or kill us if we got
1072 * oom-killed):
1073 */
1074 pagefault_out_of_memory();
2d4a7167 1075 } else {
f672b49b
AK
1076 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1077 VM_FAULT_HWPOISON_LARGE))
a3c4fb7c 1078 do_sigbus(regs, error_code, address, pkey, fault);
33692f27 1079 else if (fault & VM_FAULT_SIGSEGV)
a3c4fb7c 1080 bad_area_nosemaphore(regs, error_code, address, pkey);
2d4a7167
IM
1081 else
1082 BUG();
1083 }
92181f19
NP
1084}
1085
d8b57bb7
TG
1086static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1087{
1088 if ((error_code & PF_WRITE) && !pte_write(*pte))
1089 return 0;
2d4a7167 1090
d8b57bb7
TG
1091 if ((error_code & PF_INSTR) && !pte_exec(*pte))
1092 return 0;
b3ecd515
DH
1093 /*
1094 * Note: We do not do lazy flushing on protection key
1095 * changes, so no spurious fault will ever set PF_PK.
1096 */
1097 if ((error_code & PF_PK))
1098 return 1;
d8b57bb7
TG
1099
1100 return 1;
1101}
1102
5b727a3b 1103/*
2d4a7167
IM
1104 * Handle a spurious fault caused by a stale TLB entry.
1105 *
1106 * This allows us to lazily refresh the TLB when increasing the
1107 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1108 * eagerly is very expensive since that implies doing a full
1109 * cross-processor TLB flush, even if no stale TLB entries exist
1110 * on other processors.
1111 *
31668511
DV
1112 * Spurious faults may only occur if the TLB contains an entry with
1113 * fewer permission than the page table entry. Non-present (P = 0)
1114 * and reserved bit (R = 1) faults are never spurious.
1115 *
5b727a3b
JF
1116 * There are no security implications to leaving a stale TLB when
1117 * increasing the permissions on a page.
31668511
DV
1118 *
1119 * Returns non-zero if a spurious fault was handled, zero otherwise.
1120 *
1121 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1122 * (Optional Invalidation).
5b727a3b 1123 */
9326638c 1124static noinline int
2d4a7167 1125spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1126{
1127 pgd_t *pgd;
e0c4f675 1128 p4d_t *p4d;
5b727a3b
JF
1129 pud_t *pud;
1130 pmd_t *pmd;
1131 pte_t *pte;
3c3e5694 1132 int ret;
5b727a3b 1133
31668511
DV
1134 /*
1135 * Only writes to RO or instruction fetches from NX may cause
1136 * spurious faults.
1137 *
1138 * These could be from user or supervisor accesses but the TLB
1139 * is only lazily flushed after a kernel mapping protection
1140 * change, so user accesses are not expected to cause spurious
1141 * faults.
1142 */
1143 if (error_code != (PF_WRITE | PF_PROT)
1144 && error_code != (PF_INSTR | PF_PROT))
5b727a3b
JF
1145 return 0;
1146
1147 pgd = init_mm.pgd + pgd_index(address);
1148 if (!pgd_present(*pgd))
1149 return 0;
1150
e0c4f675
KS
1151 p4d = p4d_offset(pgd, address);
1152 if (!p4d_present(*p4d))
1153 return 0;
1154
1155 if (p4d_large(*p4d))
1156 return spurious_fault_check(error_code, (pte_t *) p4d);
1157
1158 pud = pud_offset(p4d, address);
5b727a3b
JF
1159 if (!pud_present(*pud))
1160 return 0;
1161
d8b57bb7
TG
1162 if (pud_large(*pud))
1163 return spurious_fault_check(error_code, (pte_t *) pud);
1164
5b727a3b
JF
1165 pmd = pmd_offset(pud, address);
1166 if (!pmd_present(*pmd))
1167 return 0;
1168
d8b57bb7
TG
1169 if (pmd_large(*pmd))
1170 return spurious_fault_check(error_code, (pte_t *) pmd);
1171
5b727a3b 1172 pte = pte_offset_kernel(pmd, address);
954f8571 1173 if (!pte_present(*pte))
5b727a3b
JF
1174 return 0;
1175
3c3e5694
SR
1176 ret = spurious_fault_check(error_code, pte);
1177 if (!ret)
1178 return 0;
1179
1180 /*
2d4a7167
IM
1181 * Make sure we have permissions in PMD.
1182 * If not, then there's a bug in the page tables:
3c3e5694
SR
1183 */
1184 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1185 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1186
3c3e5694 1187 return ret;
5b727a3b 1188}
9326638c 1189NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1190
abd4f750 1191int show_unhandled_signals = 1;
1da177e4 1192
2d4a7167 1193static inline int
68da336a 1194access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1195{
07f146f5
DH
1196 /* This is only called for the current mm, so: */
1197 bool foreign = false;
e8c6226d
DH
1198
1199 /*
1200 * Read or write was blocked by protection keys. This is
1201 * always an unconditional error and can never result in
1202 * a follow-up action to resolve the fault, like a COW.
1203 */
1204 if (error_code & PF_PK)
1205 return 1;
1206
07f146f5
DH
1207 /*
1208 * Make sure to check the VMA so that we do not perform
1209 * faults just to hit a PF_PK as soon as we fill in a
1210 * page.
1211 */
d61172b4
DH
1212 if (!arch_vma_access_permitted(vma, (error_code & PF_WRITE),
1213 (error_code & PF_INSTR), foreign))
07f146f5 1214 return 1;
33a709b2 1215
68da336a 1216 if (error_code & PF_WRITE) {
2d4a7167 1217 /* write, present and write, not present: */
92181f19
NP
1218 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1219 return 1;
2d4a7167 1220 return 0;
92181f19
NP
1221 }
1222
2d4a7167
IM
1223 /* read, present: */
1224 if (unlikely(error_code & PF_PROT))
1225 return 1;
1226
1227 /* read, not present: */
1228 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1229 return 1;
1230
92181f19
NP
1231 return 0;
1232}
1233
0973a06c
HS
1234static int fault_in_kernel_space(unsigned long address)
1235{
d9517346 1236 return address >= TASK_SIZE_MAX;
0973a06c
HS
1237}
1238
40d3cd66
PA
1239static inline bool smap_violation(int error_code, struct pt_regs *regs)
1240{
4640c7ee
PA
1241 if (!IS_ENABLED(CONFIG_X86_SMAP))
1242 return false;
1243
1244 if (!static_cpu_has(X86_FEATURE_SMAP))
1245 return false;
1246
40d3cd66
PA
1247 if (error_code & PF_USER)
1248 return false;
1249
f39b6f0e 1250 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1251 return false;
1252
1253 return true;
1254}
1255
1da177e4
LT
1256/*
1257 * This routine handles page faults. It determines the address,
1258 * and the problem, and then passes it off to one of the appropriate
1259 * routines.
1da177e4 1260 */
9326638c 1261static noinline void
0ac09f9f
JO
1262__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1263 unsigned long address)
1da177e4 1264{
2d4a7167 1265 struct vm_area_struct *vma;
1da177e4
LT
1266 struct task_struct *tsk;
1267 struct mm_struct *mm;
26178ec1 1268 int fault, major = 0;
759496ba 1269 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
a3c4fb7c 1270 u32 pkey;
1da177e4 1271
a9ba9a3b
AV
1272 tsk = current;
1273 mm = tsk->mm;
2d4a7167 1274
f8561296
VN
1275 /*
1276 * Detect and handle instructions that would cause a page fault for
1277 * both a tracked kernel page and a userspace page.
1278 */
1279 if (kmemcheck_active(regs))
1280 kmemcheck_hide(regs);
5dfaf90f 1281 prefetchw(&mm->mmap_sem);
f8561296 1282
0fd0e3da 1283 if (unlikely(kmmio_fault(regs, address)))
86069782 1284 return;
1da177e4
LT
1285
1286 /*
1287 * We fault-in kernel-space virtual memory on-demand. The
1288 * 'reference' page table is init_mm.pgd.
1289 *
1290 * NOTE! We MUST NOT take any locks for this case. We may
1291 * be in an interrupt or a critical region, and should
1292 * only copy the information from the master page table,
1293 * nothing more.
1294 *
1295 * This verifies that the fault happens in kernel space
1296 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1297 * protection error (error_code & 9) == 0.
1da177e4 1298 */
0973a06c 1299 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1300 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1301 if (vmalloc_fault(address) >= 0)
1302 return;
1303
1304 if (kmemcheck_fault(regs, address, error_code))
1305 return;
1306 }
5b727a3b 1307
2d4a7167 1308 /* Can handle a stale RO->RW TLB: */
92181f19 1309 if (spurious_fault(error_code, address))
5b727a3b
JF
1310 return;
1311
2d4a7167 1312 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1313 if (kprobes_fault(regs))
9be260a6 1314 return;
f8c2ee22
HH
1315 /*
1316 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1317 * fault we could otherwise deadlock:
f8c2ee22 1318 */
7b2d0dba 1319 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1320
92181f19 1321 return;
f8c2ee22
HH
1322 }
1323
2d4a7167 1324 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1325 if (unlikely(kprobes_fault(regs)))
9be260a6 1326 return;
8c914cb7 1327
66c58156 1328 if (unlikely(error_code & PF_RSVD))
92181f19 1329 pgtable_bad(regs, error_code, address);
1da177e4 1330
4640c7ee 1331 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1332 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1333 return;
40d3cd66
PA
1334 }
1335
1da177e4 1336 /*
2d4a7167 1337 * If we're in an interrupt, have no user context or are running
70ffdb93 1338 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1339 */
70ffdb93 1340 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1341 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1342 return;
1343 }
1da177e4 1344
e00b12e6
PZ
1345 /*
1346 * It's safe to allow irq's after cr2 has been saved and the
1347 * vmalloc fault has been handled.
1348 *
1349 * User-mode registers count as a user access even for any
1350 * potential system fault or CPU buglet:
1351 */
f39b6f0e 1352 if (user_mode(regs)) {
e00b12e6
PZ
1353 local_irq_enable();
1354 error_code |= PF_USER;
1355 flags |= FAULT_FLAG_USER;
1356 } else {
1357 if (regs->flags & X86_EFLAGS_IF)
1358 local_irq_enable();
1359 }
1360
1361 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1362
759496ba
JW
1363 if (error_code & PF_WRITE)
1364 flags |= FAULT_FLAG_WRITE;
d61172b4
DH
1365 if (error_code & PF_INSTR)
1366 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1367
3a1dfe6e
IM
1368 /*
1369 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1370 * addresses in user space. All other faults represent errors in
1371 * the kernel and should generate an OOPS. Unfortunately, in the
1372 * case of an erroneous fault occurring in a code path which already
1373 * holds mmap_sem we will deadlock attempting to validate the fault
1374 * against the address space. Luckily the kernel only validly
1375 * references user space from well defined areas of code, which are
1376 * listed in the exceptions table.
1da177e4
LT
1377 *
1378 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1379 * the source reference check when there is a possibility of a
1380 * deadlock. Attempt to lock the address space, if we cannot we then
1381 * validate the source. If this is invalid we can skip the address
1382 * space check, thus avoiding the deadlock:
1da177e4 1383 */
92181f19 1384 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1385 if ((error_code & PF_USER) == 0 &&
92181f19 1386 !search_exception_tables(regs->ip)) {
7b2d0dba 1387 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1388 return;
1389 }
d065bd81 1390retry:
1da177e4 1391 down_read(&mm->mmap_sem);
01006074
PZ
1392 } else {
1393 /*
2d4a7167
IM
1394 * The above down_read_trylock() might have succeeded in
1395 * which case we'll have missed the might_sleep() from
1396 * down_read():
01006074
PZ
1397 */
1398 might_sleep();
1da177e4
LT
1399 }
1400
1401 vma = find_vma(mm, address);
92181f19
NP
1402 if (unlikely(!vma)) {
1403 bad_area(regs, error_code, address);
1404 return;
1405 }
1406 if (likely(vma->vm_start <= address))
1da177e4 1407 goto good_area;
92181f19
NP
1408 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1409 bad_area(regs, error_code, address);
1410 return;
1411 }
33cb5243 1412 if (error_code & PF_USER) {
6f4d368e
HH
1413 /*
1414 * Accessing the stack below %sp is always a bug.
1415 * The large cushion allows instructions like enter
2d4a7167 1416 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1417 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1418 */
92181f19
NP
1419 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1420 bad_area(regs, error_code, address);
1421 return;
1422 }
1da177e4 1423 }
92181f19
NP
1424 if (unlikely(expand_stack(vma, address))) {
1425 bad_area(regs, error_code, address);
1426 return;
1427 }
1428
1429 /*
1430 * Ok, we have a good vm_area for this memory access, so
1431 * we can handle it..
1432 */
1da177e4 1433good_area:
68da336a 1434 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1435 bad_area_access_error(regs, error_code, address, vma);
92181f19 1436 return;
1da177e4
LT
1437 }
1438
1439 /*
1440 * If for any reason at all we couldn't handle the fault,
1441 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1442 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1443 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1da177e4 1444 */
dcddffd4 1445 fault = handle_mm_fault(vma, address, flags);
26178ec1 1446 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1447
3a13c4d7 1448 /*
26178ec1
LT
1449 * If we need to retry the mmap_sem has already been released,
1450 * and if there is a fatal signal pending there is no guarantee
1451 * that we made any progress. Handle this case first.
3a13c4d7 1452 */
26178ec1
LT
1453 if (unlikely(fault & VM_FAULT_RETRY)) {
1454 /* Retry at most once */
1455 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1456 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1457 flags |= FAULT_FLAG_TRIED;
1458 if (!fatal_signal_pending(tsk))
1459 goto retry;
1460 }
1461
1462 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1463 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1464 return;
1465
1466 /* Not returning to user mode? Handle exceptions or die: */
1467 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1468 return;
26178ec1 1469 }
3a13c4d7 1470
a3c4fb7c 1471 pkey = vma_pkey(vma);
26178ec1 1472 up_read(&mm->mmap_sem);
3a13c4d7 1473 if (unlikely(fault & VM_FAULT_ERROR)) {
a3c4fb7c 1474 mm_fault_error(regs, error_code, address, &pkey, fault);
3a13c4d7 1475 return;
37b23e05
KM
1476 }
1477
d065bd81 1478 /*
26178ec1
LT
1479 * Major/minor page fault accounting. If any of the events
1480 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1481 */
26178ec1
LT
1482 if (major) {
1483 tsk->maj_flt++;
1484 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1485 } else {
1486 tsk->min_flt++;
1487 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1488 }
d729ab35 1489
8c938f9f 1490 check_v8086_mode(regs, address, tsk);
1da177e4 1491}
9326638c 1492NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1493
9326638c
MH
1494static nokprobe_inline void
1495trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1496 unsigned long error_code)
d34603b0
SA
1497{
1498 if (user_mode(regs))
d4078e23 1499 trace_page_fault_user(address, regs, error_code);
d34603b0 1500 else
d4078e23 1501 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1502}
1503
11a7ffb0
TG
1504/*
1505 * We must have this function blacklisted from kprobes, tagged with notrace
1506 * and call read_cr2() before calling anything else. To avoid calling any
1507 * kind of tracing machinery before we've observed the CR2 value.
1508 *
1509 * exception_{enter,exit}() contains all sorts of tracepoints.
1510 */
9326638c 1511dotraplinkage void notrace
11a7ffb0 1512do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1513{
11a7ffb0 1514 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1515 enum ctx_state prev_state;
25c74b10
SA
1516
1517 prev_state = exception_enter();
80954747 1518 if (trace_pagefault_enabled())
11a7ffb0
TG
1519 trace_page_fault_entries(address, regs, error_code);
1520
0ac09f9f 1521 __do_page_fault(regs, error_code, address);
25c74b10
SA
1522 exception_exit(prev_state);
1523}
11a7ffb0 1524NOKPROBE_SYMBOL(do_page_fault);