Linux 3.1-rc8
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
1da177e4 1/*
1da177e4 2 * Copyright (C) 1995 Linus Torvalds
2d4a7167 3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 5 */
a2bcd473
IM
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 13#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 14#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 15#include <linux/prefetch.h> /* prefetchw */
2d4a7167 16
a2bcd473
IM
17#include <asm/traps.h> /* dotraplinkage, ... */
18#include <asm/pgalloc.h> /* pgd_*(), ... */
f8561296 19#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
cedf03bd 20#include <asm/vsyscall.h>
1da177e4 21
33cb5243 22/*
2d4a7167
IM
23 * Page fault error code bits:
24 *
25 * bit 0 == 0: no page found 1: protection fault
26 * bit 1 == 0: read access 1: write access
27 * bit 2 == 0: kernel-mode access 1: user-mode access
28 * bit 3 == 1: use of reserved bit detected
29 * bit 4 == 1: fault was an instruction fetch
33cb5243 30 */
2d4a7167
IM
31enum x86_pf_error_code {
32
33 PF_PROT = 1 << 0,
34 PF_WRITE = 1 << 1,
35 PF_USER = 1 << 2,
36 PF_RSVD = 1 << 3,
37 PF_INSTR = 1 << 4,
38};
66c58156 39
b814d41f 40/*
b319eed0
IM
41 * Returns 0 if mmiotrace is disabled, or if the fault is not
42 * handled by mmiotrace:
b814d41f 43 */
62c9295f
MH
44static inline int __kprobes
45kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 46{
0fd0e3da
PP
47 if (unlikely(is_kmmio_active()))
48 if (kmmio_handler(regs, addr) == 1)
49 return -1;
0fd0e3da 50 return 0;
86069782
PP
51}
52
62c9295f 53static inline int __kprobes notify_page_fault(struct pt_regs *regs)
1bd858a5 54{
74a0b576
CH
55 int ret = 0;
56
57 /* kprobe_running() needs smp_processor_id() */
b1801812 58 if (kprobes_built_in() && !user_mode_vm(regs)) {
74a0b576
CH
59 preempt_disable();
60 if (kprobe_running() && kprobe_fault_handler(regs, 14))
61 ret = 1;
62 preempt_enable();
63 }
1bd858a5 64
74a0b576 65 return ret;
33cb5243 66}
1bd858a5 67
1dc85be0 68/*
2d4a7167
IM
69 * Prefetch quirks:
70 *
71 * 32-bit mode:
72 *
73 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
74 * Check that here and ignore it.
1dc85be0 75 *
2d4a7167 76 * 64-bit mode:
1dc85be0 77 *
2d4a7167
IM
78 * Sometimes the CPU reports invalid exceptions on prefetch.
79 * Check that here and ignore it.
80 *
81 * Opcode checker based on code by Richard Brunner.
1dc85be0 82 */
107a0367
IM
83static inline int
84check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
85 unsigned char opcode, int *prefetch)
86{
87 unsigned char instr_hi = opcode & 0xf0;
88 unsigned char instr_lo = opcode & 0x0f;
89
90 switch (instr_hi) {
91 case 0x20:
92 case 0x30:
93 /*
94 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
95 * In X86_64 long mode, the CPU will signal invalid
96 * opcode if some of these prefixes are present so
97 * X86_64 will never get here anyway
98 */
99 return ((instr_lo & 7) == 0x6);
100#ifdef CONFIG_X86_64
101 case 0x40:
102 /*
103 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
104 * Need to figure out under what instruction mode the
105 * instruction was issued. Could check the LDT for lm,
106 * but for now it's good enough to assume that long
107 * mode only uses well known segments or kernel.
108 */
318f5a2a 109 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
110#endif
111 case 0x60:
112 /* 0x64 thru 0x67 are valid prefixes in all modes. */
113 return (instr_lo & 0xC) == 0x4;
114 case 0xF0:
115 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
116 return !instr_lo || (instr_lo>>1) == 1;
117 case 0x00:
118 /* Prefetch instruction is 0x0F0D or 0x0F18 */
119 if (probe_kernel_address(instr, opcode))
120 return 0;
121
122 *prefetch = (instr_lo == 0xF) &&
123 (opcode == 0x0D || opcode == 0x18);
124 return 0;
125 default:
126 return 0;
127 }
128}
129
2d4a7167
IM
130static int
131is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 132{
2d4a7167 133 unsigned char *max_instr;
ab2bf0c1 134 unsigned char *instr;
33cb5243 135 int prefetch = 0;
1da177e4 136
3085354d
IM
137 /*
138 * If it was a exec (instruction fetch) fault on NX page, then
139 * do not ignore the fault:
140 */
66c58156 141 if (error_code & PF_INSTR)
1da177e4 142 return 0;
1dc85be0 143
107a0367 144 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 145 max_instr = instr + 15;
1da177e4 146
76381fee 147 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
1da177e4
LT
148 return 0;
149
107a0367 150 while (instr < max_instr) {
2d4a7167 151 unsigned char opcode;
1da177e4 152
ab2bf0c1 153 if (probe_kernel_address(instr, opcode))
33cb5243 154 break;
1da177e4 155
1da177e4
LT
156 instr++;
157
107a0367 158 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 159 break;
1da177e4
LT
160 }
161 return prefetch;
162}
163
2d4a7167
IM
164static void
165force_sig_info_fault(int si_signo, int si_code, unsigned long address,
f672b49b 166 struct task_struct *tsk, int fault)
c4aba4a8 167{
f672b49b 168 unsigned lsb = 0;
c4aba4a8
HH
169 siginfo_t info;
170
2d4a7167
IM
171 info.si_signo = si_signo;
172 info.si_errno = 0;
173 info.si_code = si_code;
174 info.si_addr = (void __user *)address;
f672b49b
AK
175 if (fault & VM_FAULT_HWPOISON_LARGE)
176 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
177 if (fault & VM_FAULT_HWPOISON)
178 lsb = PAGE_SHIFT;
179 info.si_addr_lsb = lsb;
2d4a7167 180
c4aba4a8
HH
181 force_sig_info(si_signo, &info, tsk);
182}
183
f2f13a85
IM
184DEFINE_SPINLOCK(pgd_lock);
185LIST_HEAD(pgd_list);
186
187#ifdef CONFIG_X86_32
188static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 189{
f2f13a85
IM
190 unsigned index = pgd_index(address);
191 pgd_t *pgd_k;
192 pud_t *pud, *pud_k;
193 pmd_t *pmd, *pmd_k;
2d4a7167 194
f2f13a85
IM
195 pgd += index;
196 pgd_k = init_mm.pgd + index;
197
198 if (!pgd_present(*pgd_k))
199 return NULL;
200
201 /*
202 * set_pgd(pgd, *pgd_k); here would be useless on PAE
203 * and redundant with the set_pmd() on non-PAE. As would
204 * set_pud.
205 */
206 pud = pud_offset(pgd, address);
207 pud_k = pud_offset(pgd_k, address);
208 if (!pud_present(*pud_k))
209 return NULL;
210
211 pmd = pmd_offset(pud, address);
212 pmd_k = pmd_offset(pud_k, address);
213 if (!pmd_present(*pmd_k))
214 return NULL;
215
b8bcfe99 216 if (!pmd_present(*pmd))
f2f13a85 217 set_pmd(pmd, *pmd_k);
b8bcfe99 218 else
f2f13a85 219 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
220
221 return pmd_k;
222}
223
224void vmalloc_sync_all(void)
225{
226 unsigned long address;
227
228 if (SHARED_KERNEL_PMD)
229 return;
230
231 for (address = VMALLOC_START & PMD_MASK;
232 address >= TASK_SIZE && address < FIXADDR_TOP;
233 address += PMD_SIZE) {
f2f13a85
IM
234 struct page *page;
235
a79e53d8 236 spin_lock(&pgd_lock);
f2f13a85 237 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 238 spinlock_t *pgt_lock;
f01f7c56 239 pmd_t *ret;
617d34d9 240
a79e53d8 241 /* the pgt_lock only for Xen */
617d34d9
JF
242 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
243
244 spin_lock(pgt_lock);
245 ret = vmalloc_sync_one(page_address(page), address);
246 spin_unlock(pgt_lock);
247
248 if (!ret)
f2f13a85
IM
249 break;
250 }
a79e53d8 251 spin_unlock(&pgd_lock);
f2f13a85
IM
252 }
253}
254
255/*
256 * 32-bit:
257 *
258 * Handle a fault on the vmalloc or module mapping area
259 */
62c9295f 260static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
261{
262 unsigned long pgd_paddr;
263 pmd_t *pmd_k;
264 pte_t *pte_k;
265
266 /* Make sure we are in vmalloc area: */
267 if (!(address >= VMALLOC_START && address < VMALLOC_END))
268 return -1;
269
ebc8827f
FW
270 WARN_ON_ONCE(in_nmi());
271
f2f13a85
IM
272 /*
273 * Synchronize this task's top level page-table
274 * with the 'reference' page table.
275 *
276 * Do _not_ use "current" here. We might be inside
277 * an interrupt in the middle of a task switch..
278 */
279 pgd_paddr = read_cr3();
280 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
281 if (!pmd_k)
282 return -1;
283
284 pte_k = pte_offset_kernel(pmd_k, address);
285 if (!pte_present(*pte_k))
286 return -1;
287
288 return 0;
289}
290
291/*
292 * Did it hit the DOS screen memory VA from vm86 mode?
293 */
294static inline void
295check_v8086_mode(struct pt_regs *regs, unsigned long address,
296 struct task_struct *tsk)
297{
298 unsigned long bit;
299
300 if (!v8086_mode(regs))
301 return;
302
303 bit = (address - 0xA0000) >> PAGE_SHIFT;
304 if (bit < 32)
305 tsk->thread.screen_bitmap |= 1 << bit;
33cb5243 306}
1da177e4 307
087975b0 308static bool low_pfn(unsigned long pfn)
1da177e4 309{
087975b0
AM
310 return pfn < max_low_pfn;
311}
1156e098 312
087975b0
AM
313static void dump_pagetable(unsigned long address)
314{
315 pgd_t *base = __va(read_cr3());
316 pgd_t *pgd = &base[pgd_index(address)];
317 pmd_t *pmd;
318 pte_t *pte;
2d4a7167 319
1156e098 320#ifdef CONFIG_X86_PAE
087975b0
AM
321 printk("*pdpt = %016Lx ", pgd_val(*pgd));
322 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
323 goto out;
1156e098 324#endif
087975b0
AM
325 pmd = pmd_offset(pud_offset(pgd, address), address);
326 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
1156e098
HH
327
328 /*
329 * We must not directly access the pte in the highpte
330 * case if the page table is located in highmem.
331 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 332 * it's allocated already:
1156e098 333 */
087975b0
AM
334 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
335 goto out;
1156e098 336
087975b0
AM
337 pte = pte_offset_kernel(pmd, address);
338 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
339out:
1156e098 340 printk("\n");
f2f13a85
IM
341}
342
343#else /* CONFIG_X86_64: */
344
345void vmalloc_sync_all(void)
346{
6afb5157 347 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
348}
349
350/*
351 * 64-bit:
352 *
353 * Handle a fault on the vmalloc area
354 *
355 * This assumes no large pages in there.
356 */
62c9295f 357static noinline __kprobes int vmalloc_fault(unsigned long address)
f2f13a85
IM
358{
359 pgd_t *pgd, *pgd_ref;
360 pud_t *pud, *pud_ref;
361 pmd_t *pmd, *pmd_ref;
362 pte_t *pte, *pte_ref;
363
364 /* Make sure we are in vmalloc area: */
365 if (!(address >= VMALLOC_START && address < VMALLOC_END))
366 return -1;
367
ebc8827f
FW
368 WARN_ON_ONCE(in_nmi());
369
f2f13a85
IM
370 /*
371 * Copy kernel mappings over when needed. This can also
372 * happen within a race in page table update. In the later
373 * case just flush:
374 */
375 pgd = pgd_offset(current->active_mm, address);
376 pgd_ref = pgd_offset_k(address);
377 if (pgd_none(*pgd_ref))
378 return -1;
379
380 if (pgd_none(*pgd))
381 set_pgd(pgd, *pgd_ref);
382 else
383 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
384
385 /*
386 * Below here mismatches are bugs because these lower tables
387 * are shared:
388 */
389
390 pud = pud_offset(pgd, address);
391 pud_ref = pud_offset(pgd_ref, address);
392 if (pud_none(*pud_ref))
393 return -1;
394
395 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
396 BUG();
397
398 pmd = pmd_offset(pud, address);
399 pmd_ref = pmd_offset(pud_ref, address);
400 if (pmd_none(*pmd_ref))
401 return -1;
402
403 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
404 BUG();
405
406 pte_ref = pte_offset_kernel(pmd_ref, address);
407 if (!pte_present(*pte_ref))
408 return -1;
409
410 pte = pte_offset_kernel(pmd, address);
411
412 /*
413 * Don't use pte_page here, because the mappings can point
414 * outside mem_map, and the NUMA hash lookup cannot handle
415 * that:
416 */
417 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
418 BUG();
419
420 return 0;
421}
422
423static const char errata93_warning[] =
ad361c98
JP
424KERN_ERR
425"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
426"******* Working around it, but it may cause SEGVs or burn power.\n"
427"******* Please consider a BIOS update.\n"
428"******* Disabling USB legacy in the BIOS may also help.\n";
f2f13a85
IM
429
430/*
431 * No vm86 mode in 64-bit mode:
432 */
433static inline void
434check_v8086_mode(struct pt_regs *regs, unsigned long address,
435 struct task_struct *tsk)
436{
437}
438
439static int bad_address(void *p)
440{
441 unsigned long dummy;
442
443 return probe_kernel_address((unsigned long *)p, dummy);
444}
445
446static void dump_pagetable(unsigned long address)
447{
087975b0
AM
448 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
449 pgd_t *pgd = base + pgd_index(address);
1da177e4
LT
450 pud_t *pud;
451 pmd_t *pmd;
452 pte_t *pte;
453
2d4a7167
IM
454 if (bad_address(pgd))
455 goto bad;
456
d646bce4 457 printk("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
458
459 if (!pgd_present(*pgd))
460 goto out;
1da177e4 461
d2ae5b5f 462 pud = pud_offset(pgd, address);
2d4a7167
IM
463 if (bad_address(pud))
464 goto bad;
465
1da177e4 466 printk("PUD %lx ", pud_val(*pud));
b5360222 467 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 468 goto out;
1da177e4
LT
469
470 pmd = pmd_offset(pud, address);
2d4a7167
IM
471 if (bad_address(pmd))
472 goto bad;
473
1da177e4 474 printk("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
475 if (!pmd_present(*pmd) || pmd_large(*pmd))
476 goto out;
1da177e4
LT
477
478 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
479 if (bad_address(pte))
480 goto bad;
481
33cb5243 482 printk("PTE %lx", pte_val(*pte));
2d4a7167 483out:
1da177e4
LT
484 printk("\n");
485 return;
486bad:
487 printk("BAD\n");
8c938f9f
IM
488}
489
f2f13a85 490#endif /* CONFIG_X86_64 */
1da177e4 491
2d4a7167
IM
492/*
493 * Workaround for K8 erratum #93 & buggy BIOS.
494 *
495 * BIOS SMM functions are required to use a specific workaround
496 * to avoid corruption of the 64bit RIP register on C stepping K8.
497 *
498 * A lot of BIOS that didn't get tested properly miss this.
499 *
500 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
501 * Try to work around it here.
502 *
503 * Note we only handle faults in kernel here.
504 * Does nothing on 32-bit.
fdfe8aa8 505 */
33cb5243 506static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 507{
fdfe8aa8 508#ifdef CONFIG_X86_64
65ea5b03 509 if (address != regs->ip)
1da177e4 510 return 0;
2d4a7167 511
33cb5243 512 if ((address >> 32) != 0)
1da177e4 513 return 0;
2d4a7167 514
1da177e4 515 address |= 0xffffffffUL << 32;
33cb5243
HH
516 if ((address >= (u64)_stext && address <= (u64)_etext) ||
517 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 518 printk_once(errata93_warning);
65ea5b03 519 regs->ip = address;
1da177e4
LT
520 return 1;
521 }
fdfe8aa8 522#endif
1da177e4 523 return 0;
33cb5243 524}
1da177e4 525
35f3266f 526/*
2d4a7167
IM
527 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
528 * to illegal addresses >4GB.
529 *
530 * We catch this in the page fault handler because these addresses
531 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
532 * segment in LDT is compatibility mode.
533 */
534static int is_errata100(struct pt_regs *regs, unsigned long address)
535{
536#ifdef CONFIG_X86_64
2d4a7167 537 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
538 return 1;
539#endif
540 return 0;
541}
542
29caf2f9
HH
543static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
544{
545#ifdef CONFIG_X86_F00F_BUG
546 unsigned long nr;
2d4a7167 547
29caf2f9 548 /*
2d4a7167 549 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9
HH
550 */
551 if (boot_cpu_data.f00f_bug) {
552 nr = (address - idt_descr.address) >> 3;
553
554 if (nr == 6) {
555 do_invalid_op(regs, 0);
556 return 1;
557 }
558 }
559#endif
560 return 0;
561}
562
8f766149
IM
563static const char nx_warning[] = KERN_CRIT
564"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
565
2d4a7167
IM
566static void
567show_fault_oops(struct pt_regs *regs, unsigned long error_code,
568 unsigned long address)
b3279c7f 569{
1156e098
HH
570 if (!oops_may_print())
571 return;
572
1156e098 573 if (error_code & PF_INSTR) {
93809be8 574 unsigned int level;
2d4a7167 575
1156e098
HH
576 pte_t *pte = lookup_address(address, &level);
577
8f766149
IM
578 if (pte && pte_present(*pte) && !pte_exec(*pte))
579 printk(nx_warning, current_uid());
1156e098 580 }
1156e098 581
19f0dda9 582 printk(KERN_ALERT "BUG: unable to handle kernel ");
b3279c7f 583 if (address < PAGE_SIZE)
19f0dda9 584 printk(KERN_CONT "NULL pointer dereference");
b3279c7f 585 else
19f0dda9 586 printk(KERN_CONT "paging request");
2d4a7167 587
f294a8ce 588 printk(KERN_CONT " at %p\n", (void *) address);
19f0dda9 589 printk(KERN_ALERT "IP:");
b3279c7f 590 printk_address(regs->ip, 1);
2d4a7167 591
b3279c7f
HH
592 dump_pagetable(address);
593}
594
2d4a7167
IM
595static noinline void
596pgtable_bad(struct pt_regs *regs, unsigned long error_code,
597 unsigned long address)
1da177e4 598{
2d4a7167
IM
599 struct task_struct *tsk;
600 unsigned long flags;
601 int sig;
602
603 flags = oops_begin();
604 tsk = current;
605 sig = SIGKILL;
1209140c 606
1da177e4 607 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 608 tsk->comm, address);
1da177e4 609 dump_pagetable(address);
2d4a7167
IM
610
611 tsk->thread.cr2 = address;
612 tsk->thread.trap_no = 14;
613 tsk->thread.error_code = error_code;
614
22f5991c 615 if (__die("Bad pagetable", regs, error_code))
874d93d1 616 sig = 0;
2d4a7167 617
874d93d1 618 oops_end(flags, regs, sig);
1da177e4
LT
619}
620
2d4a7167
IM
621static noinline void
622no_context(struct pt_regs *regs, unsigned long error_code,
623 unsigned long address)
92181f19
NP
624{
625 struct task_struct *tsk = current;
19803078 626 unsigned long *stackend;
92181f19
NP
627 unsigned long flags;
628 int sig;
92181f19 629
2d4a7167 630 /* Are we prepared to handle this kernel fault? */
92181f19
NP
631 if (fixup_exception(regs))
632 return;
633
634 /*
2d4a7167
IM
635 * 32-bit:
636 *
637 * Valid to do another page fault here, because if this fault
638 * had been triggered by is_prefetch fixup_exception would have
639 * handled it.
640 *
641 * 64-bit:
92181f19 642 *
2d4a7167 643 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
644 */
645 if (is_prefetch(regs, error_code, address))
646 return;
647
648 if (is_errata93(regs, address))
649 return;
650
651 /*
652 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 653 * terminate things with extreme prejudice:
92181f19 654 */
92181f19 655 flags = oops_begin();
92181f19
NP
656
657 show_fault_oops(regs, error_code, address);
658
2d4a7167 659 stackend = end_of_stack(tsk);
0e7810be 660 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
19803078
IM
661 printk(KERN_ALERT "Thread overran stack, or stack corrupted\n");
662
1cc99544
IM
663 tsk->thread.cr2 = address;
664 tsk->thread.trap_no = 14;
665 tsk->thread.error_code = error_code;
92181f19 666
92181f19
NP
667 sig = SIGKILL;
668 if (__die("Oops", regs, error_code))
669 sig = 0;
2d4a7167 670
92181f19
NP
671 /* Executive summary in case the body of the oops scrolled away */
672 printk(KERN_EMERG "CR2: %016lx\n", address);
2d4a7167 673
92181f19 674 oops_end(flags, regs, sig);
92181f19
NP
675}
676
2d4a7167
IM
677/*
678 * Print out info about fatal segfaults, if the show_unhandled_signals
679 * sysctl is set:
680 */
681static inline void
682show_signal_msg(struct pt_regs *regs, unsigned long error_code,
683 unsigned long address, struct task_struct *tsk)
684{
685 if (!unhandled_signal(tsk, SIGSEGV))
686 return;
687
688 if (!printk_ratelimit())
689 return;
690
a1a08d1c 691 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
2d4a7167
IM
692 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
693 tsk->comm, task_pid_nr(tsk), address,
694 (void *)regs->ip, (void *)regs->sp, error_code);
695
696 print_vma_addr(KERN_CONT " in ", regs->ip);
697
698 printk(KERN_CONT "\n");
699}
700
701static void
702__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
703 unsigned long address, int si_code)
92181f19
NP
704{
705 struct task_struct *tsk = current;
706
707 /* User mode accesses just cause a SIGSEGV */
708 if (error_code & PF_USER) {
709 /*
2d4a7167 710 * It's possible to have interrupts off here:
92181f19
NP
711 */
712 local_irq_enable();
713
714 /*
715 * Valid to do another page fault here because this one came
2d4a7167 716 * from user space:
92181f19
NP
717 */
718 if (is_prefetch(regs, error_code, address))
719 return;
720
721 if (is_errata100(regs, address))
722 return;
723
3ae36655
AL
724#ifdef CONFIG_X86_64
725 /*
726 * Instruction fetch faults in the vsyscall page might need
727 * emulation.
728 */
729 if (unlikely((error_code & PF_INSTR) &&
730 ((address & ~0xfff) == VSYSCALL_START))) {
731 if (emulate_vsyscall(regs, address))
732 return;
733 }
734#endif
735
2d4a7167
IM
736 if (unlikely(show_unhandled_signals))
737 show_signal_msg(regs, error_code, address, tsk);
738
739 /* Kernel addresses are always protection faults: */
740 tsk->thread.cr2 = address;
741 tsk->thread.error_code = error_code | (address >= TASK_SIZE);
742 tsk->thread.trap_no = 14;
92181f19 743
f672b49b 744 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
2d4a7167 745
92181f19
NP
746 return;
747 }
748
749 if (is_f00f_bug(regs, address))
750 return;
751
752 no_context(regs, error_code, address);
753}
754
2d4a7167
IM
755static noinline void
756bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
757 unsigned long address)
92181f19
NP
758{
759 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
760}
761
2d4a7167
IM
762static void
763__bad_area(struct pt_regs *regs, unsigned long error_code,
764 unsigned long address, int si_code)
92181f19
NP
765{
766 struct mm_struct *mm = current->mm;
767
768 /*
769 * Something tried to access memory that isn't in our memory map..
770 * Fix it, but check if it's kernel or user first..
771 */
772 up_read(&mm->mmap_sem);
773
774 __bad_area_nosemaphore(regs, error_code, address, si_code);
775}
776
2d4a7167
IM
777static noinline void
778bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19
NP
779{
780 __bad_area(regs, error_code, address, SEGV_MAPERR);
781}
782
2d4a7167
IM
783static noinline void
784bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
785 unsigned long address)
92181f19
NP
786{
787 __bad_area(regs, error_code, address, SEGV_ACCERR);
788}
789
790/* TODO: fixup for "mm-invoke-oom-killer-from-page-fault.patch" */
2d4a7167
IM
791static void
792out_of_memory(struct pt_regs *regs, unsigned long error_code,
793 unsigned long address)
92181f19
NP
794{
795 /*
796 * We ran out of memory, call the OOM killer, and return the userspace
2d4a7167 797 * (which will retry the fault, or kill us if we got oom-killed):
92181f19
NP
798 */
799 up_read(&current->mm->mmap_sem);
2d4a7167 800
92181f19
NP
801 pagefault_out_of_memory();
802}
803
2d4a7167 804static void
a6e04aa9
AK
805do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
806 unsigned int fault)
92181f19
NP
807{
808 struct task_struct *tsk = current;
809 struct mm_struct *mm = tsk->mm;
a6e04aa9 810 int code = BUS_ADRERR;
92181f19
NP
811
812 up_read(&mm->mmap_sem);
813
2d4a7167 814 /* Kernel mode? Handle exceptions or die: */
96054569 815 if (!(error_code & PF_USER)) {
92181f19 816 no_context(regs, error_code, address);
96054569
LT
817 return;
818 }
2d4a7167 819
cd1b68f0 820 /* User-space => ok to do another page fault: */
92181f19
NP
821 if (is_prefetch(regs, error_code, address))
822 return;
2d4a7167
IM
823
824 tsk->thread.cr2 = address;
825 tsk->thread.error_code = error_code;
826 tsk->thread.trap_no = 14;
827
a6e04aa9 828#ifdef CONFIG_MEMORY_FAILURE
f672b49b 829 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
830 printk(KERN_ERR
831 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
832 tsk->comm, tsk->pid, address);
833 code = BUS_MCEERR_AR;
834 }
835#endif
f672b49b 836 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
92181f19
NP
837}
838
b80ef10e 839static noinline int
2d4a7167
IM
840mm_fault_error(struct pt_regs *regs, unsigned long error_code,
841 unsigned long address, unsigned int fault)
92181f19 842{
b80ef10e
KM
843 /*
844 * Pagefault was interrupted by SIGKILL. We have no reason to
845 * continue pagefault.
846 */
847 if (fatal_signal_pending(current)) {
848 if (!(fault & VM_FAULT_RETRY))
849 up_read(&current->mm->mmap_sem);
850 if (!(error_code & PF_USER))
851 no_context(regs, error_code, address);
852 return 1;
853 }
854 if (!(fault & VM_FAULT_ERROR))
855 return 0;
856
2d4a7167 857 if (fault & VM_FAULT_OOM) {
f8626854
AV
858 /* Kernel mode? Handle exceptions or die: */
859 if (!(error_code & PF_USER)) {
860 up_read(&current->mm->mmap_sem);
861 no_context(regs, error_code, address);
b80ef10e 862 return 1;
f8626854
AV
863 }
864
92181f19 865 out_of_memory(regs, error_code, address);
2d4a7167 866 } else {
f672b49b
AK
867 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
868 VM_FAULT_HWPOISON_LARGE))
a6e04aa9 869 do_sigbus(regs, error_code, address, fault);
2d4a7167
IM
870 else
871 BUG();
872 }
b80ef10e 873 return 1;
92181f19
NP
874}
875
d8b57bb7
TG
876static int spurious_fault_check(unsigned long error_code, pte_t *pte)
877{
878 if ((error_code & PF_WRITE) && !pte_write(*pte))
879 return 0;
2d4a7167 880
d8b57bb7
TG
881 if ((error_code & PF_INSTR) && !pte_exec(*pte))
882 return 0;
883
884 return 1;
885}
886
5b727a3b 887/*
2d4a7167
IM
888 * Handle a spurious fault caused by a stale TLB entry.
889 *
890 * This allows us to lazily refresh the TLB when increasing the
891 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
892 * eagerly is very expensive since that implies doing a full
893 * cross-processor TLB flush, even if no stale TLB entries exist
894 * on other processors.
895 *
5b727a3b
JF
896 * There are no security implications to leaving a stale TLB when
897 * increasing the permissions on a page.
898 */
62c9295f 899static noinline __kprobes int
2d4a7167 900spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
901{
902 pgd_t *pgd;
903 pud_t *pud;
904 pmd_t *pmd;
905 pte_t *pte;
3c3e5694 906 int ret;
5b727a3b
JF
907
908 /* Reserved-bit violation or user access to kernel space? */
909 if (error_code & (PF_USER | PF_RSVD))
910 return 0;
911
912 pgd = init_mm.pgd + pgd_index(address);
913 if (!pgd_present(*pgd))
914 return 0;
915
916 pud = pud_offset(pgd, address);
917 if (!pud_present(*pud))
918 return 0;
919
d8b57bb7
TG
920 if (pud_large(*pud))
921 return spurious_fault_check(error_code, (pte_t *) pud);
922
5b727a3b
JF
923 pmd = pmd_offset(pud, address);
924 if (!pmd_present(*pmd))
925 return 0;
926
d8b57bb7
TG
927 if (pmd_large(*pmd))
928 return spurious_fault_check(error_code, (pte_t *) pmd);
929
660a293e
SL
930 /*
931 * Note: don't use pte_present() here, since it returns true
932 * if the _PAGE_PROTNONE bit is set. However, this aliases the
933 * _PAGE_GLOBAL bit, which for kernel pages give false positives
934 * when CONFIG_DEBUG_PAGEALLOC is used.
935 */
5b727a3b 936 pte = pte_offset_kernel(pmd, address);
660a293e 937 if (!(pte_flags(*pte) & _PAGE_PRESENT))
5b727a3b
JF
938 return 0;
939
3c3e5694
SR
940 ret = spurious_fault_check(error_code, pte);
941 if (!ret)
942 return 0;
943
944 /*
2d4a7167
IM
945 * Make sure we have permissions in PMD.
946 * If not, then there's a bug in the page tables:
3c3e5694
SR
947 */
948 ret = spurious_fault_check(error_code, (pte_t *) pmd);
949 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 950
3c3e5694 951 return ret;
5b727a3b
JF
952}
953
abd4f750 954int show_unhandled_signals = 1;
1da177e4 955
2d4a7167 956static inline int
68da336a 957access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 958{
68da336a 959 if (error_code & PF_WRITE) {
2d4a7167 960 /* write, present and write, not present: */
92181f19
NP
961 if (unlikely(!(vma->vm_flags & VM_WRITE)))
962 return 1;
2d4a7167 963 return 0;
92181f19
NP
964 }
965
2d4a7167
IM
966 /* read, present: */
967 if (unlikely(error_code & PF_PROT))
968 return 1;
969
970 /* read, not present: */
971 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
972 return 1;
973
92181f19
NP
974 return 0;
975}
976
0973a06c
HS
977static int fault_in_kernel_space(unsigned long address)
978{
d9517346 979 return address >= TASK_SIZE_MAX;
0973a06c
HS
980}
981
1da177e4
LT
982/*
983 * This routine handles page faults. It determines the address,
984 * and the problem, and then passes it off to one of the appropriate
985 * routines.
1da177e4 986 */
c3731c68
IM
987dotraplinkage void __kprobes
988do_page_fault(struct pt_regs *regs, unsigned long error_code)
1da177e4 989{
2d4a7167 990 struct vm_area_struct *vma;
1da177e4 991 struct task_struct *tsk;
2d4a7167 992 unsigned long address;
1da177e4 993 struct mm_struct *mm;
f8c2ee22 994 int fault;
d065bd81 995 int write = error_code & PF_WRITE;
37b23e05 996 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
d065bd81 997 (write ? FAULT_FLAG_WRITE : 0);
1da177e4 998
a9ba9a3b
AV
999 tsk = current;
1000 mm = tsk->mm;
2d4a7167 1001
2d4a7167 1002 /* Get the faulting address: */
f51c9452 1003 address = read_cr2();
1da177e4 1004
f8561296
VN
1005 /*
1006 * Detect and handle instructions that would cause a page fault for
1007 * both a tracked kernel page and a userspace page.
1008 */
1009 if (kmemcheck_active(regs))
1010 kmemcheck_hide(regs);
5dfaf90f 1011 prefetchw(&mm->mmap_sem);
f8561296 1012
0fd0e3da 1013 if (unlikely(kmmio_fault(regs, address)))
86069782 1014 return;
1da177e4
LT
1015
1016 /*
1017 * We fault-in kernel-space virtual memory on-demand. The
1018 * 'reference' page table is init_mm.pgd.
1019 *
1020 * NOTE! We MUST NOT take any locks for this case. We may
1021 * be in an interrupt or a critical region, and should
1022 * only copy the information from the master page table,
1023 * nothing more.
1024 *
1025 * This verifies that the fault happens in kernel space
1026 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1027 * protection error (error_code & 9) == 0.
1da177e4 1028 */
0973a06c 1029 if (unlikely(fault_in_kernel_space(address))) {
f8561296
VN
1030 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1031 if (vmalloc_fault(address) >= 0)
1032 return;
1033
1034 if (kmemcheck_fault(regs, address, error_code))
1035 return;
1036 }
5b727a3b 1037
2d4a7167 1038 /* Can handle a stale RO->RW TLB: */
92181f19 1039 if (spurious_fault(error_code, address))
5b727a3b
JF
1040 return;
1041
2d4a7167 1042 /* kprobes don't want to hook the spurious faults: */
9be260a6
MH
1043 if (notify_page_fault(regs))
1044 return;
f8c2ee22
HH
1045 /*
1046 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1047 * fault we could otherwise deadlock:
f8c2ee22 1048 */
92181f19 1049 bad_area_nosemaphore(regs, error_code, address);
2d4a7167 1050
92181f19 1051 return;
f8c2ee22
HH
1052 }
1053
2d4a7167 1054 /* kprobes don't want to hook the spurious faults: */
f8a6b2b9 1055 if (unlikely(notify_page_fault(regs)))
9be260a6 1056 return;
f8c2ee22 1057 /*
891cffbd
LT
1058 * It's safe to allow irq's after cr2 has been saved and the
1059 * vmalloc fault has been handled.
1060 *
1061 * User-mode registers count as a user access even for any
2d4a7167 1062 * potential system fault or CPU buglet:
f8c2ee22 1063 */
891cffbd
LT
1064 if (user_mode_vm(regs)) {
1065 local_irq_enable();
1066 error_code |= PF_USER;
2d4a7167
IM
1067 } else {
1068 if (regs->flags & X86_EFLAGS_IF)
1069 local_irq_enable();
1070 }
8c914cb7 1071
66c58156 1072 if (unlikely(error_code & PF_RSVD))
92181f19 1073 pgtable_bad(regs, error_code, address);
1da177e4 1074
a8b0ca17 1075 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
7dd1fcc2 1076
1da177e4 1077 /*
2d4a7167
IM
1078 * If we're in an interrupt, have no user context or are running
1079 * in an atomic region then we must not take the fault:
1da177e4 1080 */
92181f19
NP
1081 if (unlikely(in_atomic() || !mm)) {
1082 bad_area_nosemaphore(regs, error_code, address);
1083 return;
1084 }
1da177e4 1085
3a1dfe6e
IM
1086 /*
1087 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1088 * addresses in user space. All other faults represent errors in
1089 * the kernel and should generate an OOPS. Unfortunately, in the
1090 * case of an erroneous fault occurring in a code path which already
1091 * holds mmap_sem we will deadlock attempting to validate the fault
1092 * against the address space. Luckily the kernel only validly
1093 * references user space from well defined areas of code, which are
1094 * listed in the exceptions table.
1da177e4
LT
1095 *
1096 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1097 * the source reference check when there is a possibility of a
1098 * deadlock. Attempt to lock the address space, if we cannot we then
1099 * validate the source. If this is invalid we can skip the address
1100 * space check, thus avoiding the deadlock:
1da177e4 1101 */
92181f19 1102 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
66c58156 1103 if ((error_code & PF_USER) == 0 &&
92181f19
NP
1104 !search_exception_tables(regs->ip)) {
1105 bad_area_nosemaphore(regs, error_code, address);
1106 return;
1107 }
d065bd81 1108retry:
1da177e4 1109 down_read(&mm->mmap_sem);
01006074
PZ
1110 } else {
1111 /*
2d4a7167
IM
1112 * The above down_read_trylock() might have succeeded in
1113 * which case we'll have missed the might_sleep() from
1114 * down_read():
01006074
PZ
1115 */
1116 might_sleep();
1da177e4
LT
1117 }
1118
1119 vma = find_vma(mm, address);
92181f19
NP
1120 if (unlikely(!vma)) {
1121 bad_area(regs, error_code, address);
1122 return;
1123 }
1124 if (likely(vma->vm_start <= address))
1da177e4 1125 goto good_area;
92181f19
NP
1126 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1127 bad_area(regs, error_code, address);
1128 return;
1129 }
33cb5243 1130 if (error_code & PF_USER) {
6f4d368e
HH
1131 /*
1132 * Accessing the stack below %sp is always a bug.
1133 * The large cushion allows instructions like enter
2d4a7167 1134 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1135 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1136 */
92181f19
NP
1137 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1138 bad_area(regs, error_code, address);
1139 return;
1140 }
1da177e4 1141 }
92181f19
NP
1142 if (unlikely(expand_stack(vma, address))) {
1143 bad_area(regs, error_code, address);
1144 return;
1145 }
1146
1147 /*
1148 * Ok, we have a good vm_area for this memory access, so
1149 * we can handle it..
1150 */
1da177e4 1151good_area:
68da336a 1152 if (unlikely(access_error(error_code, vma))) {
92181f19
NP
1153 bad_area_access_error(regs, error_code, address);
1154 return;
1da177e4
LT
1155 }
1156
1157 /*
1158 * If for any reason at all we couldn't handle the fault,
1159 * make sure we exit gracefully rather than endlessly redo
2d4a7167 1160 * the fault:
1da177e4 1161 */
d065bd81 1162 fault = handle_mm_fault(mm, vma, address, flags);
2d4a7167 1163
b80ef10e
KM
1164 if (unlikely(fault & (VM_FAULT_RETRY|VM_FAULT_ERROR))) {
1165 if (mm_fault_error(regs, error_code, address, fault))
1166 return;
37b23e05
KM
1167 }
1168
d065bd81
ML
1169 /*
1170 * Major/minor page fault accounting is only done on the
1171 * initial attempt. If we go through a retry, it is extremely
1172 * likely that the page will be found in page cache at that point.
1173 */
1174 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1175 if (fault & VM_FAULT_MAJOR) {
1176 tsk->maj_flt++;
a8b0ca17 1177 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
d065bd81
ML
1178 regs, address);
1179 } else {
1180 tsk->min_flt++;
a8b0ca17 1181 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
d065bd81
ML
1182 regs, address);
1183 }
1184 if (fault & VM_FAULT_RETRY) {
1185 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1186 * of starvation. */
1187 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1188 goto retry;
1189 }
ac17dc8e 1190 }
d729ab35 1191
8c938f9f
IM
1192 check_v8086_mode(regs, address, tsk);
1193
1da177e4 1194 up_read(&mm->mmap_sem);
1da177e4 1195}