x86/mm/init: Add helper for freeing kernel image pages
[linux-2.6-block.git] / arch / x86 / mm / fault.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4 2/*
1da177e4 3 * Copyright (C) 1995 Linus Torvalds
2d4a7167 4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
f8eeb2e6 5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
1da177e4 6 */
a2bcd473 7#include <linux/sched.h> /* test_thread_flag(), ... */
68db0cf1 8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
a2bcd473 9#include <linux/kdebug.h> /* oops_begin/end, ... */
4cdf8dbe 10#include <linux/extable.h> /* search_exception_tables */
a2bcd473 11#include <linux/bootmem.h> /* max_low_pfn */
9326638c 12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
a2bcd473 13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
cdd6c482 14#include <linux/perf_event.h> /* perf_sw_event */
f672b49b 15#include <linux/hugetlb.h> /* hstate_index_to_shift */
268bb0ce 16#include <linux/prefetch.h> /* prefetchw */
56dd9470 17#include <linux/context_tracking.h> /* exception_enter(), ... */
70ffdb93 18#include <linux/uaccess.h> /* faulthandler_disabled() */
2d4a7167 19
019132ff 20#include <asm/cpufeature.h> /* boot_cpu_has, ... */
a2bcd473
IM
21#include <asm/traps.h> /* dotraplinkage, ... */
22#include <asm/pgalloc.h> /* pgd_*(), ... */
f40c3300
AL
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
ba3e127e 25#include <asm/vm86.h> /* struct vm86 */
019132ff 26#include <asm/mmu_context.h> /* vma_pkey() */
1da177e4 27
d34603b0
SA
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
b814d41f 31/*
b319eed0
IM
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
b814d41f 34 */
9326638c 35static nokprobe_inline int
62c9295f 36kmmio_fault(struct pt_regs *regs, unsigned long addr)
86069782 37{
0fd0e3da
PP
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
40 return -1;
0fd0e3da 41 return 0;
86069782
PP
42}
43
9326638c 44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
1bd858a5 45{
74a0b576
CH
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
f39b6f0e 49 if (kprobes_built_in() && !user_mode(regs)) {
74a0b576
CH
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
54 }
1bd858a5 55
74a0b576 56 return ret;
33cb5243 57}
1bd858a5 58
1dc85be0 59/*
2d4a7167
IM
60 * Prefetch quirks:
61 *
62 * 32-bit mode:
63 *
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
1dc85be0 66 *
2d4a7167 67 * 64-bit mode:
1dc85be0 68 *
2d4a7167
IM
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
71 *
72 * Opcode checker based on code by Richard Brunner.
1dc85be0 73 */
107a0367
IM
74static inline int
75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
77{
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
80
81 switch (instr_hi) {
82 case 0x20:
83 case 0x30:
84 /*
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
89 */
90 return ((instr_lo & 7) == 0x6);
91#ifdef CONFIG_X86_64
92 case 0x40:
93 /*
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
99 */
318f5a2a 100 return (!user_mode(regs) || user_64bit_mode(regs));
107a0367
IM
101#endif
102 case 0x60:
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
105 case 0xF0:
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
108 case 0x00:
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
111 return 0;
112
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
115 return 0;
116 default:
117 return 0;
118 }
119}
120
2d4a7167
IM
121static int
122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
33cb5243 123{
2d4a7167 124 unsigned char *max_instr;
ab2bf0c1 125 unsigned char *instr;
33cb5243 126 int prefetch = 0;
1da177e4 127
3085354d
IM
128 /*
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
131 */
1067f030 132 if (error_code & X86_PF_INSTR)
1da177e4 133 return 0;
1dc85be0 134
107a0367 135 instr = (void *)convert_ip_to_linear(current, regs);
f1290ec9 136 max_instr = instr + 15;
1da177e4 137
d31bf07f 138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
1da177e4
LT
139 return 0;
140
107a0367 141 while (instr < max_instr) {
2d4a7167 142 unsigned char opcode;
1da177e4 143
ab2bf0c1 144 if (probe_kernel_address(instr, opcode))
33cb5243 145 break;
1da177e4 146
1da177e4
LT
147 instr++;
148
107a0367 149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
1da177e4 150 break;
1da177e4
LT
151 }
152 return prefetch;
153}
154
019132ff
DH
155/*
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
160 * on the PTE.
161 *
1067f030 162 * If we get here, we know that the hardware signaled a X86_PF_PK
019132ff
DH
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
166 *
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
169 * 3. T1 : faults...
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
174 */
beacd6f7
EB
175static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 u32 *pkey)
019132ff
DH
177{
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 return;
181
182 /* Fault not from Protection Keys: nothing to do */
beacd6f7 183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
019132ff
DH
184 return;
185 /*
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
1067f030 188 * do not. The X86_PF_PK handing happens after we have a
019132ff
DH
189 * valid VMA, so we should never reach this without a
190 * valid VMA.
191 */
a3c4fb7c 192 if (!pkey) {
019132ff
DH
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
194 info->si_pkey = 0;
195 return;
196 }
197 /*
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
201 */
a3c4fb7c 202 info->si_pkey = *pkey;
019132ff
DH
203}
204
2d4a7167
IM
205static void
206force_sig_info_fault(int si_signo, int si_code, unsigned long address,
a3c4fb7c 207 struct task_struct *tsk, u32 *pkey, int fault)
c4aba4a8 208{
f672b49b 209 unsigned lsb = 0;
c4aba4a8
HH
210 siginfo_t info;
211
3eb0f519 212 clear_siginfo(&info);
2d4a7167
IM
213 info.si_signo = si_signo;
214 info.si_errno = 0;
215 info.si_code = si_code;
216 info.si_addr = (void __user *)address;
f672b49b
AK
217 if (fault & VM_FAULT_HWPOISON_LARGE)
218 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
219 if (fault & VM_FAULT_HWPOISON)
220 lsb = PAGE_SHIFT;
221 info.si_addr_lsb = lsb;
2d4a7167 222
beacd6f7 223 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
019132ff 224
c4aba4a8
HH
225 force_sig_info(si_signo, &info, tsk);
226}
227
f2f13a85
IM
228DEFINE_SPINLOCK(pgd_lock);
229LIST_HEAD(pgd_list);
230
231#ifdef CONFIG_X86_32
232static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
33cb5243 233{
f2f13a85
IM
234 unsigned index = pgd_index(address);
235 pgd_t *pgd_k;
e0c4f675 236 p4d_t *p4d, *p4d_k;
f2f13a85
IM
237 pud_t *pud, *pud_k;
238 pmd_t *pmd, *pmd_k;
2d4a7167 239
f2f13a85
IM
240 pgd += index;
241 pgd_k = init_mm.pgd + index;
242
243 if (!pgd_present(*pgd_k))
244 return NULL;
245
246 /*
247 * set_pgd(pgd, *pgd_k); here would be useless on PAE
248 * and redundant with the set_pmd() on non-PAE. As would
e0c4f675 249 * set_p4d/set_pud.
f2f13a85 250 */
e0c4f675
KS
251 p4d = p4d_offset(pgd, address);
252 p4d_k = p4d_offset(pgd_k, address);
253 if (!p4d_present(*p4d_k))
254 return NULL;
255
256 pud = pud_offset(p4d, address);
257 pud_k = pud_offset(p4d_k, address);
f2f13a85
IM
258 if (!pud_present(*pud_k))
259 return NULL;
260
261 pmd = pmd_offset(pud, address);
262 pmd_k = pmd_offset(pud_k, address);
263 if (!pmd_present(*pmd_k))
264 return NULL;
265
b8bcfe99 266 if (!pmd_present(*pmd))
f2f13a85 267 set_pmd(pmd, *pmd_k);
b8bcfe99 268 else
f2f13a85 269 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
f2f13a85
IM
270
271 return pmd_k;
272}
273
274void vmalloc_sync_all(void)
275{
276 unsigned long address;
277
278 if (SHARED_KERNEL_PMD)
279 return;
280
281 for (address = VMALLOC_START & PMD_MASK;
dc4fac84 282 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
f2f13a85 283 address += PMD_SIZE) {
f2f13a85
IM
284 struct page *page;
285
a79e53d8 286 spin_lock(&pgd_lock);
f2f13a85 287 list_for_each_entry(page, &pgd_list, lru) {
617d34d9 288 spinlock_t *pgt_lock;
f01f7c56 289 pmd_t *ret;
617d34d9 290
a79e53d8 291 /* the pgt_lock only for Xen */
617d34d9
JF
292 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
293
294 spin_lock(pgt_lock);
295 ret = vmalloc_sync_one(page_address(page), address);
296 spin_unlock(pgt_lock);
297
298 if (!ret)
f2f13a85
IM
299 break;
300 }
a79e53d8 301 spin_unlock(&pgd_lock);
f2f13a85
IM
302 }
303}
304
305/*
306 * 32-bit:
307 *
308 * Handle a fault on the vmalloc or module mapping area
309 */
9326638c 310static noinline int vmalloc_fault(unsigned long address)
f2f13a85
IM
311{
312 unsigned long pgd_paddr;
313 pmd_t *pmd_k;
314 pte_t *pte_k;
315
316 /* Make sure we are in vmalloc area: */
317 if (!(address >= VMALLOC_START && address < VMALLOC_END))
318 return -1;
319
ebc8827f
FW
320 WARN_ON_ONCE(in_nmi());
321
f2f13a85
IM
322 /*
323 * Synchronize this task's top level page-table
324 * with the 'reference' page table.
325 *
326 * Do _not_ use "current" here. We might be inside
327 * an interrupt in the middle of a task switch..
328 */
6c690ee1 329 pgd_paddr = read_cr3_pa();
f2f13a85
IM
330 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
331 if (!pmd_k)
332 return -1;
333
18a95521 334 if (pmd_large(*pmd_k))
f4eafd8b
TK
335 return 0;
336
f2f13a85
IM
337 pte_k = pte_offset_kernel(pmd_k, address);
338 if (!pte_present(*pte_k))
339 return -1;
340
341 return 0;
342}
9326638c 343NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85
IM
344
345/*
346 * Did it hit the DOS screen memory VA from vm86 mode?
347 */
348static inline void
349check_v8086_mode(struct pt_regs *regs, unsigned long address,
350 struct task_struct *tsk)
351{
9fda6a06 352#ifdef CONFIG_VM86
f2f13a85
IM
353 unsigned long bit;
354
9fda6a06 355 if (!v8086_mode(regs) || !tsk->thread.vm86)
f2f13a85
IM
356 return;
357
358 bit = (address - 0xA0000) >> PAGE_SHIFT;
359 if (bit < 32)
9fda6a06
BG
360 tsk->thread.vm86->screen_bitmap |= 1 << bit;
361#endif
33cb5243 362}
1da177e4 363
087975b0 364static bool low_pfn(unsigned long pfn)
1da177e4 365{
087975b0
AM
366 return pfn < max_low_pfn;
367}
1156e098 368
087975b0
AM
369static void dump_pagetable(unsigned long address)
370{
6c690ee1 371 pgd_t *base = __va(read_cr3_pa());
087975b0 372 pgd_t *pgd = &base[pgd_index(address)];
e0c4f675
KS
373 p4d_t *p4d;
374 pud_t *pud;
087975b0
AM
375 pmd_t *pmd;
376 pte_t *pte;
2d4a7167 377
1156e098 378#ifdef CONFIG_X86_PAE
39e48d9b 379 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
087975b0
AM
380 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
381 goto out;
39e48d9b
JB
382#define pr_pde pr_cont
383#else
384#define pr_pde pr_info
1156e098 385#endif
e0c4f675
KS
386 p4d = p4d_offset(pgd, address);
387 pud = pud_offset(p4d, address);
388 pmd = pmd_offset(pud, address);
39e48d9b
JB
389 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
390#undef pr_pde
1156e098
HH
391
392 /*
393 * We must not directly access the pte in the highpte
394 * case if the page table is located in highmem.
395 * And let's rather not kmap-atomic the pte, just in case
2d4a7167 396 * it's allocated already:
1156e098 397 */
087975b0
AM
398 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
399 goto out;
1156e098 400
087975b0 401 pte = pte_offset_kernel(pmd, address);
39e48d9b 402 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
087975b0 403out:
39e48d9b 404 pr_cont("\n");
f2f13a85
IM
405}
406
407#else /* CONFIG_X86_64: */
408
409void vmalloc_sync_all(void)
410{
5372e155 411 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
f2f13a85
IM
412}
413
414/*
415 * 64-bit:
416 *
417 * Handle a fault on the vmalloc area
f2f13a85 418 */
9326638c 419static noinline int vmalloc_fault(unsigned long address)
f2f13a85 420{
565977a3
TK
421 pgd_t *pgd, *pgd_k;
422 p4d_t *p4d, *p4d_k;
423 pud_t *pud;
424 pmd_t *pmd;
425 pte_t *pte;
f2f13a85
IM
426
427 /* Make sure we are in vmalloc area: */
428 if (!(address >= VMALLOC_START && address < VMALLOC_END))
429 return -1;
430
ebc8827f
FW
431 WARN_ON_ONCE(in_nmi());
432
f2f13a85
IM
433 /*
434 * Copy kernel mappings over when needed. This can also
435 * happen within a race in page table update. In the later
436 * case just flush:
437 */
6c690ee1 438 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
565977a3
TK
439 pgd_k = pgd_offset_k(address);
440 if (pgd_none(*pgd_k))
f2f13a85
IM
441 return -1;
442
ed7588d5 443 if (pgtable_l5_enabled()) {
36b3a772 444 if (pgd_none(*pgd)) {
565977a3 445 set_pgd(pgd, *pgd_k);
36b3a772
AL
446 arch_flush_lazy_mmu_mode();
447 } else {
565977a3 448 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
36b3a772 449 }
1160c277 450 }
f2f13a85 451
b50858ce
KS
452 /* With 4-level paging, copying happens on the p4d level. */
453 p4d = p4d_offset(pgd, address);
565977a3
TK
454 p4d_k = p4d_offset(pgd_k, address);
455 if (p4d_none(*p4d_k))
b50858ce
KS
456 return -1;
457
ed7588d5 458 if (p4d_none(*p4d) && !pgtable_l5_enabled()) {
565977a3 459 set_p4d(p4d, *p4d_k);
b50858ce
KS
460 arch_flush_lazy_mmu_mode();
461 } else {
565977a3 462 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
b50858ce
KS
463 }
464
36b3a772 465 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
f2f13a85 466
b50858ce 467 pud = pud_offset(p4d, address);
565977a3 468 if (pud_none(*pud))
f2f13a85
IM
469 return -1;
470
18a95521 471 if (pud_large(*pud))
f4eafd8b
TK
472 return 0;
473
f2f13a85 474 pmd = pmd_offset(pud, address);
565977a3 475 if (pmd_none(*pmd))
f2f13a85
IM
476 return -1;
477
18a95521 478 if (pmd_large(*pmd))
f4eafd8b
TK
479 return 0;
480
f2f13a85 481 pte = pte_offset_kernel(pmd, address);
565977a3
TK
482 if (!pte_present(*pte))
483 return -1;
f2f13a85
IM
484
485 return 0;
486}
9326638c 487NOKPROBE_SYMBOL(vmalloc_fault);
f2f13a85 488
e05139f2 489#ifdef CONFIG_CPU_SUP_AMD
f2f13a85 490static const char errata93_warning[] =
ad361c98
JP
491KERN_ERR
492"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
493"******* Working around it, but it may cause SEGVs or burn power.\n"
494"******* Please consider a BIOS update.\n"
495"******* Disabling USB legacy in the BIOS may also help.\n";
e05139f2 496#endif
f2f13a85
IM
497
498/*
499 * No vm86 mode in 64-bit mode:
500 */
501static inline void
502check_v8086_mode(struct pt_regs *regs, unsigned long address,
503 struct task_struct *tsk)
504{
505}
506
507static int bad_address(void *p)
508{
509 unsigned long dummy;
510
511 return probe_kernel_address((unsigned long *)p, dummy);
512}
513
514static void dump_pagetable(unsigned long address)
515{
6c690ee1 516 pgd_t *base = __va(read_cr3_pa());
087975b0 517 pgd_t *pgd = base + pgd_index(address);
e0c4f675 518 p4d_t *p4d;
1da177e4
LT
519 pud_t *pud;
520 pmd_t *pmd;
521 pte_t *pte;
522
2d4a7167
IM
523 if (bad_address(pgd))
524 goto bad;
525
39e48d9b 526 pr_info("PGD %lx ", pgd_val(*pgd));
2d4a7167
IM
527
528 if (!pgd_present(*pgd))
529 goto out;
1da177e4 530
e0c4f675
KS
531 p4d = p4d_offset(pgd, address);
532 if (bad_address(p4d))
533 goto bad;
534
39e48d9b 535 pr_cont("P4D %lx ", p4d_val(*p4d));
e0c4f675
KS
536 if (!p4d_present(*p4d) || p4d_large(*p4d))
537 goto out;
538
539 pud = pud_offset(p4d, address);
2d4a7167
IM
540 if (bad_address(pud))
541 goto bad;
542
39e48d9b 543 pr_cont("PUD %lx ", pud_val(*pud));
b5360222 544 if (!pud_present(*pud) || pud_large(*pud))
2d4a7167 545 goto out;
1da177e4
LT
546
547 pmd = pmd_offset(pud, address);
2d4a7167
IM
548 if (bad_address(pmd))
549 goto bad;
550
39e48d9b 551 pr_cont("PMD %lx ", pmd_val(*pmd));
2d4a7167
IM
552 if (!pmd_present(*pmd) || pmd_large(*pmd))
553 goto out;
1da177e4
LT
554
555 pte = pte_offset_kernel(pmd, address);
2d4a7167
IM
556 if (bad_address(pte))
557 goto bad;
558
39e48d9b 559 pr_cont("PTE %lx", pte_val(*pte));
2d4a7167 560out:
39e48d9b 561 pr_cont("\n");
1da177e4
LT
562 return;
563bad:
39e48d9b 564 pr_info("BAD\n");
8c938f9f
IM
565}
566
f2f13a85 567#endif /* CONFIG_X86_64 */
1da177e4 568
2d4a7167
IM
569/*
570 * Workaround for K8 erratum #93 & buggy BIOS.
571 *
572 * BIOS SMM functions are required to use a specific workaround
573 * to avoid corruption of the 64bit RIP register on C stepping K8.
574 *
575 * A lot of BIOS that didn't get tested properly miss this.
576 *
577 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
578 * Try to work around it here.
579 *
580 * Note we only handle faults in kernel here.
581 * Does nothing on 32-bit.
fdfe8aa8 582 */
33cb5243 583static int is_errata93(struct pt_regs *regs, unsigned long address)
1da177e4 584{
e05139f2
JB
585#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
586 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
587 || boot_cpu_data.x86 != 0xf)
588 return 0;
589
65ea5b03 590 if (address != regs->ip)
1da177e4 591 return 0;
2d4a7167 592
33cb5243 593 if ((address >> 32) != 0)
1da177e4 594 return 0;
2d4a7167 595
1da177e4 596 address |= 0xffffffffUL << 32;
33cb5243
HH
597 if ((address >= (u64)_stext && address <= (u64)_etext) ||
598 (address >= MODULES_VADDR && address <= MODULES_END)) {
a454ab31 599 printk_once(errata93_warning);
65ea5b03 600 regs->ip = address;
1da177e4
LT
601 return 1;
602 }
fdfe8aa8 603#endif
1da177e4 604 return 0;
33cb5243 605}
1da177e4 606
35f3266f 607/*
2d4a7167
IM
608 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
609 * to illegal addresses >4GB.
610 *
611 * We catch this in the page fault handler because these addresses
612 * are not reachable. Just detect this case and return. Any code
35f3266f
HH
613 * segment in LDT is compatibility mode.
614 */
615static int is_errata100(struct pt_regs *regs, unsigned long address)
616{
617#ifdef CONFIG_X86_64
2d4a7167 618 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
35f3266f
HH
619 return 1;
620#endif
621 return 0;
622}
623
29caf2f9
HH
624static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
625{
626#ifdef CONFIG_X86_F00F_BUG
627 unsigned long nr;
2d4a7167 628
29caf2f9 629 /*
2d4a7167 630 * Pentium F0 0F C7 C8 bug workaround:
29caf2f9 631 */
e2604b49 632 if (boot_cpu_has_bug(X86_BUG_F00F)) {
29caf2f9
HH
633 nr = (address - idt_descr.address) >> 3;
634
635 if (nr == 6) {
636 do_invalid_op(regs, 0);
637 return 1;
638 }
639 }
640#endif
641 return 0;
642}
643
2d4a7167
IM
644static void
645show_fault_oops(struct pt_regs *regs, unsigned long error_code,
646 unsigned long address)
b3279c7f 647{
1156e098
HH
648 if (!oops_may_print())
649 return;
650
1067f030 651 if (error_code & X86_PF_INSTR) {
93809be8 652 unsigned int level;
426e34cc
MF
653 pgd_t *pgd;
654 pte_t *pte;
2d4a7167 655
6c690ee1 656 pgd = __va(read_cr3_pa());
426e34cc
MF
657 pgd += pgd_index(address);
658
659 pte = lookup_address_in_pgd(pgd, address, &level);
1156e098 660
8f766149 661 if (pte && pte_present(*pte) && !pte_exec(*pte))
d79d0d8a
DV
662 pr_crit("kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n",
663 from_kuid(&init_user_ns, current_uid()));
eff50c34
JK
664 if (pte && pte_present(*pte) && pte_exec(*pte) &&
665 (pgd_flags(*pgd) & _PAGE_USER) &&
1e02ce4c 666 (__read_cr4() & X86_CR4_SMEP))
d79d0d8a
DV
667 pr_crit("unable to execute userspace code (SMEP?) (uid: %d)\n",
668 from_kuid(&init_user_ns, current_uid()));
1156e098 669 }
1156e098 670
4188f063
DV
671 pr_alert("BUG: unable to handle kernel %s at %px\n",
672 address < PAGE_SIZE ? "NULL pointer dereference" : "paging request",
673 (void *)address);
2d4a7167 674
b3279c7f
HH
675 dump_pagetable(address);
676}
677
2d4a7167
IM
678static noinline void
679pgtable_bad(struct pt_regs *regs, unsigned long error_code,
680 unsigned long address)
1da177e4 681{
2d4a7167
IM
682 struct task_struct *tsk;
683 unsigned long flags;
684 int sig;
685
686 flags = oops_begin();
687 tsk = current;
688 sig = SIGKILL;
1209140c 689
1da177e4 690 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
92181f19 691 tsk->comm, address);
1da177e4 692 dump_pagetable(address);
2d4a7167
IM
693
694 tsk->thread.cr2 = address;
51e7dc70 695 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167
IM
696 tsk->thread.error_code = error_code;
697
22f5991c 698 if (__die("Bad pagetable", regs, error_code))
874d93d1 699 sig = 0;
2d4a7167 700
874d93d1 701 oops_end(flags, regs, sig);
1da177e4
LT
702}
703
2d4a7167
IM
704static noinline void
705no_context(struct pt_regs *regs, unsigned long error_code,
4fc34901 706 unsigned long address, int signal, int si_code)
92181f19
NP
707{
708 struct task_struct *tsk = current;
92181f19
NP
709 unsigned long flags;
710 int sig;
92181f19 711
2d4a7167 712 /* Are we prepared to handle this kernel fault? */
548acf19 713 if (fixup_exception(regs, X86_TRAP_PF)) {
c026b359
PZ
714 /*
715 * Any interrupt that takes a fault gets the fixup. This makes
716 * the below recursive fault logic only apply to a faults from
717 * task context.
718 */
719 if (in_interrupt())
720 return;
721
722 /*
723 * Per the above we're !in_interrupt(), aka. task context.
724 *
725 * In this case we need to make sure we're not recursively
726 * faulting through the emulate_vsyscall() logic.
727 */
2a53ccbc 728 if (current->thread.sig_on_uaccess_err && signal) {
51e7dc70 729 tsk->thread.trap_nr = X86_TRAP_PF;
1067f030 730 tsk->thread.error_code = error_code | X86_PF_USER;
4fc34901
AL
731 tsk->thread.cr2 = address;
732
733 /* XXX: hwpoison faults will set the wrong code. */
7b2d0dba 734 force_sig_info_fault(signal, si_code, address,
a3c4fb7c 735 tsk, NULL, 0);
4fc34901 736 }
c026b359
PZ
737
738 /*
739 * Barring that, we can do the fixup and be happy.
740 */
92181f19 741 return;
4fc34901 742 }
92181f19 743
6271cfdf
AL
744#ifdef CONFIG_VMAP_STACK
745 /*
746 * Stack overflow? During boot, we can fault near the initial
747 * stack in the direct map, but that's not an overflow -- check
748 * that we're in vmalloc space to avoid this.
749 */
750 if (is_vmalloc_addr((void *)address) &&
751 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
752 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
6271cfdf
AL
753 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
754 /*
755 * We're likely to be running with very little stack space
756 * left. It's plausible that we'd hit this condition but
757 * double-fault even before we get this far, in which case
758 * we're fine: the double-fault handler will deal with it.
759 *
760 * We don't want to make it all the way into the oops code
761 * and then double-fault, though, because we're likely to
762 * break the console driver and lose most of the stack dump.
763 */
764 asm volatile ("movq %[stack], %%rsp\n\t"
765 "call handle_stack_overflow\n\t"
766 "1: jmp 1b"
f5caf621 767 : ASM_CALL_CONSTRAINT
6271cfdf
AL
768 : "D" ("kernel stack overflow (page fault)"),
769 "S" (regs), "d" (address),
770 [stack] "rm" (stack));
771 unreachable();
772 }
773#endif
774
92181f19 775 /*
2d4a7167
IM
776 * 32-bit:
777 *
778 * Valid to do another page fault here, because if this fault
779 * had been triggered by is_prefetch fixup_exception would have
780 * handled it.
781 *
782 * 64-bit:
92181f19 783 *
2d4a7167 784 * Hall of shame of CPU/BIOS bugs.
92181f19
NP
785 */
786 if (is_prefetch(regs, error_code, address))
787 return;
788
789 if (is_errata93(regs, address))
790 return;
791
792 /*
793 * Oops. The kernel tried to access some bad page. We'll have to
2d4a7167 794 * terminate things with extreme prejudice:
92181f19 795 */
92181f19 796 flags = oops_begin();
92181f19
NP
797
798 show_fault_oops(regs, error_code, address);
799
a70857e4 800 if (task_stack_end_corrupted(tsk))
b0f4c4b3 801 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
19803078 802
1cc99544 803 tsk->thread.cr2 = address;
51e7dc70 804 tsk->thread.trap_nr = X86_TRAP_PF;
1cc99544 805 tsk->thread.error_code = error_code;
92181f19 806
92181f19
NP
807 sig = SIGKILL;
808 if (__die("Oops", regs, error_code))
809 sig = 0;
2d4a7167 810
92181f19 811 /* Executive summary in case the body of the oops scrolled away */
b0f4c4b3 812 printk(KERN_DEFAULT "CR2: %016lx\n", address);
2d4a7167 813
92181f19 814 oops_end(flags, regs, sig);
92181f19
NP
815}
816
2d4a7167
IM
817/*
818 * Print out info about fatal segfaults, if the show_unhandled_signals
819 * sysctl is set:
820 */
821static inline void
822show_signal_msg(struct pt_regs *regs, unsigned long error_code,
823 unsigned long address, struct task_struct *tsk)
824{
ba54d856
BP
825 const char *loglvl = task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG;
826
2d4a7167
IM
827 if (!unhandled_signal(tsk, SIGSEGV))
828 return;
829
830 if (!printk_ratelimit())
831 return;
832
10a7e9d8 833 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
ba54d856 834 loglvl, tsk->comm, task_pid_nr(tsk), address,
2d4a7167
IM
835 (void *)regs->ip, (void *)regs->sp, error_code);
836
837 print_vma_addr(KERN_CONT " in ", regs->ip);
838
839 printk(KERN_CONT "\n");
ba54d856
BP
840
841 show_opcodes((u8 *)regs->ip, loglvl);
2d4a7167
IM
842}
843
844static void
845__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 846 unsigned long address, u32 *pkey, int si_code)
92181f19
NP
847{
848 struct task_struct *tsk = current;
849
850 /* User mode accesses just cause a SIGSEGV */
1067f030 851 if (error_code & X86_PF_USER) {
92181f19 852 /*
2d4a7167 853 * It's possible to have interrupts off here:
92181f19
NP
854 */
855 local_irq_enable();
856
857 /*
858 * Valid to do another page fault here because this one came
2d4a7167 859 * from user space:
92181f19
NP
860 */
861 if (is_prefetch(regs, error_code, address))
862 return;
863
864 if (is_errata100(regs, address))
865 return;
866
3ae36655
AL
867#ifdef CONFIG_X86_64
868 /*
869 * Instruction fetch faults in the vsyscall page might need
870 * emulation.
871 */
1067f030 872 if (unlikely((error_code & X86_PF_INSTR) &&
f40c3300 873 ((address & ~0xfff) == VSYSCALL_ADDR))) {
3ae36655
AL
874 if (emulate_vsyscall(regs, address))
875 return;
876 }
877#endif
dc4fac84
AL
878
879 /*
880 * To avoid leaking information about the kernel page table
881 * layout, pretend that user-mode accesses to kernel addresses
882 * are always protection faults.
883 */
884 if (address >= TASK_SIZE_MAX)
1067f030 885 error_code |= X86_PF_PROT;
3ae36655 886
e575a86f 887 if (likely(show_unhandled_signals))
2d4a7167
IM
888 show_signal_msg(regs, error_code, address, tsk);
889
2d4a7167 890 tsk->thread.cr2 = address;
e575a86f 891 tsk->thread.error_code = error_code;
51e7dc70 892 tsk->thread.trap_nr = X86_TRAP_PF;
92181f19 893
a3c4fb7c 894 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
2d4a7167 895
92181f19
NP
896 return;
897 }
898
899 if (is_f00f_bug(regs, address))
900 return;
901
4fc34901 902 no_context(regs, error_code, address, SIGSEGV, si_code);
92181f19
NP
903}
904
2d4a7167
IM
905static noinline void
906bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 907 unsigned long address, u32 *pkey)
92181f19 908{
a3c4fb7c 909 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
92181f19
NP
910}
911
2d4a7167
IM
912static void
913__bad_area(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 914 unsigned long address, struct vm_area_struct *vma, int si_code)
92181f19
NP
915{
916 struct mm_struct *mm = current->mm;
a3c4fb7c
LD
917 u32 pkey;
918
919 if (vma)
920 pkey = vma_pkey(vma);
92181f19
NP
921
922 /*
923 * Something tried to access memory that isn't in our memory map..
924 * Fix it, but check if it's kernel or user first..
925 */
926 up_read(&mm->mmap_sem);
927
a3c4fb7c
LD
928 __bad_area_nosemaphore(regs, error_code, address,
929 (vma) ? &pkey : NULL, si_code);
92181f19
NP
930}
931
2d4a7167
IM
932static noinline void
933bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
92181f19 934{
7b2d0dba 935 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
92181f19
NP
936}
937
33a709b2
DH
938static inline bool bad_area_access_from_pkeys(unsigned long error_code,
939 struct vm_area_struct *vma)
940{
07f146f5
DH
941 /* This code is always called on the current mm */
942 bool foreign = false;
943
33a709b2
DH
944 if (!boot_cpu_has(X86_FEATURE_OSPKE))
945 return false;
1067f030 946 if (error_code & X86_PF_PK)
33a709b2 947 return true;
07f146f5 948 /* this checks permission keys on the VMA: */
1067f030
RN
949 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
950 (error_code & X86_PF_INSTR), foreign))
07f146f5 951 return true;
33a709b2 952 return false;
92181f19
NP
953}
954
2d4a7167
IM
955static noinline void
956bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
7b2d0dba 957 unsigned long address, struct vm_area_struct *vma)
92181f19 958{
019132ff
DH
959 /*
960 * This OSPKE check is not strictly necessary at runtime.
961 * But, doing it this way allows compiler optimizations
962 * if pkeys are compiled out.
963 */
33a709b2 964 if (bad_area_access_from_pkeys(error_code, vma))
019132ff
DH
965 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
966 else
967 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
92181f19
NP
968}
969
2d4a7167 970static void
a6e04aa9 971do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
a3c4fb7c 972 u32 *pkey, unsigned int fault)
92181f19
NP
973{
974 struct task_struct *tsk = current;
a6e04aa9 975 int code = BUS_ADRERR;
92181f19 976
2d4a7167 977 /* Kernel mode? Handle exceptions or die: */
1067f030 978 if (!(error_code & X86_PF_USER)) {
4fc34901 979 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
96054569
LT
980 return;
981 }
2d4a7167 982
cd1b68f0 983 /* User-space => ok to do another page fault: */
92181f19
NP
984 if (is_prefetch(regs, error_code, address))
985 return;
2d4a7167
IM
986
987 tsk->thread.cr2 = address;
988 tsk->thread.error_code = error_code;
51e7dc70 989 tsk->thread.trap_nr = X86_TRAP_PF;
2d4a7167 990
a6e04aa9 991#ifdef CONFIG_MEMORY_FAILURE
f672b49b 992 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
a6e04aa9
AK
993 printk(KERN_ERR
994 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
995 tsk->comm, tsk->pid, address);
996 code = BUS_MCEERR_AR;
997 }
998#endif
a3c4fb7c 999 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
92181f19
NP
1000}
1001
3a13c4d7 1002static noinline void
2d4a7167 1003mm_fault_error(struct pt_regs *regs, unsigned long error_code,
a3c4fb7c 1004 unsigned long address, u32 *pkey, unsigned int fault)
92181f19 1005{
1067f030 1006 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
3a13c4d7
JW
1007 no_context(regs, error_code, address, 0, 0);
1008 return;
b80ef10e 1009 }
b80ef10e 1010
2d4a7167 1011 if (fault & VM_FAULT_OOM) {
f8626854 1012 /* Kernel mode? Handle exceptions or die: */
1067f030 1013 if (!(error_code & X86_PF_USER)) {
4fc34901
AL
1014 no_context(regs, error_code, address,
1015 SIGSEGV, SEGV_MAPERR);
3a13c4d7 1016 return;
f8626854
AV
1017 }
1018
c2d23f91
DR
1019 /*
1020 * We ran out of memory, call the OOM killer, and return the
1021 * userspace (which will retry the fault, or kill us if we got
1022 * oom-killed):
1023 */
1024 pagefault_out_of_memory();
2d4a7167 1025 } else {
f672b49b
AK
1026 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1027 VM_FAULT_HWPOISON_LARGE))
a3c4fb7c 1028 do_sigbus(regs, error_code, address, pkey, fault);
33692f27 1029 else if (fault & VM_FAULT_SIGSEGV)
a3c4fb7c 1030 bad_area_nosemaphore(regs, error_code, address, pkey);
2d4a7167
IM
1031 else
1032 BUG();
1033 }
92181f19
NP
1034}
1035
d8b57bb7
TG
1036static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1037{
1067f030 1038 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
d8b57bb7 1039 return 0;
2d4a7167 1040
1067f030 1041 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
d8b57bb7 1042 return 0;
b3ecd515
DH
1043 /*
1044 * Note: We do not do lazy flushing on protection key
1067f030 1045 * changes, so no spurious fault will ever set X86_PF_PK.
b3ecd515 1046 */
1067f030 1047 if ((error_code & X86_PF_PK))
b3ecd515 1048 return 1;
d8b57bb7
TG
1049
1050 return 1;
1051}
1052
5b727a3b 1053/*
2d4a7167
IM
1054 * Handle a spurious fault caused by a stale TLB entry.
1055 *
1056 * This allows us to lazily refresh the TLB when increasing the
1057 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1058 * eagerly is very expensive since that implies doing a full
1059 * cross-processor TLB flush, even if no stale TLB entries exist
1060 * on other processors.
1061 *
31668511
DV
1062 * Spurious faults may only occur if the TLB contains an entry with
1063 * fewer permission than the page table entry. Non-present (P = 0)
1064 * and reserved bit (R = 1) faults are never spurious.
1065 *
5b727a3b
JF
1066 * There are no security implications to leaving a stale TLB when
1067 * increasing the permissions on a page.
31668511
DV
1068 *
1069 * Returns non-zero if a spurious fault was handled, zero otherwise.
1070 *
1071 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1072 * (Optional Invalidation).
5b727a3b 1073 */
9326638c 1074static noinline int
2d4a7167 1075spurious_fault(unsigned long error_code, unsigned long address)
5b727a3b
JF
1076{
1077 pgd_t *pgd;
e0c4f675 1078 p4d_t *p4d;
5b727a3b
JF
1079 pud_t *pud;
1080 pmd_t *pmd;
1081 pte_t *pte;
3c3e5694 1082 int ret;
5b727a3b 1083
31668511
DV
1084 /*
1085 * Only writes to RO or instruction fetches from NX may cause
1086 * spurious faults.
1087 *
1088 * These could be from user or supervisor accesses but the TLB
1089 * is only lazily flushed after a kernel mapping protection
1090 * change, so user accesses are not expected to cause spurious
1091 * faults.
1092 */
1067f030
RN
1093 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1094 error_code != (X86_PF_INSTR | X86_PF_PROT))
5b727a3b
JF
1095 return 0;
1096
1097 pgd = init_mm.pgd + pgd_index(address);
1098 if (!pgd_present(*pgd))
1099 return 0;
1100
e0c4f675
KS
1101 p4d = p4d_offset(pgd, address);
1102 if (!p4d_present(*p4d))
1103 return 0;
1104
1105 if (p4d_large(*p4d))
1106 return spurious_fault_check(error_code, (pte_t *) p4d);
1107
1108 pud = pud_offset(p4d, address);
5b727a3b
JF
1109 if (!pud_present(*pud))
1110 return 0;
1111
d8b57bb7
TG
1112 if (pud_large(*pud))
1113 return spurious_fault_check(error_code, (pte_t *) pud);
1114
5b727a3b
JF
1115 pmd = pmd_offset(pud, address);
1116 if (!pmd_present(*pmd))
1117 return 0;
1118
d8b57bb7
TG
1119 if (pmd_large(*pmd))
1120 return spurious_fault_check(error_code, (pte_t *) pmd);
1121
5b727a3b 1122 pte = pte_offset_kernel(pmd, address);
954f8571 1123 if (!pte_present(*pte))
5b727a3b
JF
1124 return 0;
1125
3c3e5694
SR
1126 ret = spurious_fault_check(error_code, pte);
1127 if (!ret)
1128 return 0;
1129
1130 /*
2d4a7167
IM
1131 * Make sure we have permissions in PMD.
1132 * If not, then there's a bug in the page tables:
3c3e5694
SR
1133 */
1134 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1135 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
2d4a7167 1136
3c3e5694 1137 return ret;
5b727a3b 1138}
9326638c 1139NOKPROBE_SYMBOL(spurious_fault);
5b727a3b 1140
abd4f750 1141int show_unhandled_signals = 1;
1da177e4 1142
2d4a7167 1143static inline int
68da336a 1144access_error(unsigned long error_code, struct vm_area_struct *vma)
92181f19 1145{
07f146f5
DH
1146 /* This is only called for the current mm, so: */
1147 bool foreign = false;
e8c6226d
DH
1148
1149 /*
1150 * Read or write was blocked by protection keys. This is
1151 * always an unconditional error and can never result in
1152 * a follow-up action to resolve the fault, like a COW.
1153 */
1067f030 1154 if (error_code & X86_PF_PK)
e8c6226d
DH
1155 return 1;
1156
07f146f5
DH
1157 /*
1158 * Make sure to check the VMA so that we do not perform
1067f030 1159 * faults just to hit a X86_PF_PK as soon as we fill in a
07f146f5
DH
1160 * page.
1161 */
1067f030
RN
1162 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1163 (error_code & X86_PF_INSTR), foreign))
07f146f5 1164 return 1;
33a709b2 1165
1067f030 1166 if (error_code & X86_PF_WRITE) {
2d4a7167 1167 /* write, present and write, not present: */
92181f19
NP
1168 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1169 return 1;
2d4a7167 1170 return 0;
92181f19
NP
1171 }
1172
2d4a7167 1173 /* read, present: */
1067f030 1174 if (unlikely(error_code & X86_PF_PROT))
2d4a7167
IM
1175 return 1;
1176
1177 /* read, not present: */
1178 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1179 return 1;
1180
92181f19
NP
1181 return 0;
1182}
1183
0973a06c
HS
1184static int fault_in_kernel_space(unsigned long address)
1185{
d9517346 1186 return address >= TASK_SIZE_MAX;
0973a06c
HS
1187}
1188
40d3cd66
PA
1189static inline bool smap_violation(int error_code, struct pt_regs *regs)
1190{
4640c7ee
PA
1191 if (!IS_ENABLED(CONFIG_X86_SMAP))
1192 return false;
1193
1194 if (!static_cpu_has(X86_FEATURE_SMAP))
1195 return false;
1196
1067f030 1197 if (error_code & X86_PF_USER)
40d3cd66
PA
1198 return false;
1199
f39b6f0e 1200 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
40d3cd66
PA
1201 return false;
1202
1203 return true;
1204}
1205
1da177e4
LT
1206/*
1207 * This routine handles page faults. It determines the address,
1208 * and the problem, and then passes it off to one of the appropriate
1209 * routines.
1da177e4 1210 */
9326638c 1211static noinline void
0ac09f9f
JO
1212__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1213 unsigned long address)
1da177e4 1214{
2d4a7167 1215 struct vm_area_struct *vma;
1da177e4
LT
1216 struct task_struct *tsk;
1217 struct mm_struct *mm;
26178ec1 1218 int fault, major = 0;
759496ba 1219 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
a3c4fb7c 1220 u32 pkey;
1da177e4 1221
a9ba9a3b
AV
1222 tsk = current;
1223 mm = tsk->mm;
2d4a7167 1224
5dfaf90f 1225 prefetchw(&mm->mmap_sem);
f8561296 1226
0fd0e3da 1227 if (unlikely(kmmio_fault(regs, address)))
86069782 1228 return;
1da177e4
LT
1229
1230 /*
1231 * We fault-in kernel-space virtual memory on-demand. The
1232 * 'reference' page table is init_mm.pgd.
1233 *
1234 * NOTE! We MUST NOT take any locks for this case. We may
1235 * be in an interrupt or a critical region, and should
1236 * only copy the information from the master page table,
1237 * nothing more.
1238 *
1239 * This verifies that the fault happens in kernel space
1240 * (error_code & 4) == 0, and that the fault was not a
8b1bde93 1241 * protection error (error_code & 9) == 0.
1da177e4 1242 */
0973a06c 1243 if (unlikely(fault_in_kernel_space(address))) {
1067f030 1244 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
f8561296
VN
1245 if (vmalloc_fault(address) >= 0)
1246 return;
f8561296 1247 }
5b727a3b 1248
2d4a7167 1249 /* Can handle a stale RO->RW TLB: */
92181f19 1250 if (spurious_fault(error_code, address))
5b727a3b
JF
1251 return;
1252
2d4a7167 1253 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1254 if (kprobes_fault(regs))
9be260a6 1255 return;
f8c2ee22
HH
1256 /*
1257 * Don't take the mm semaphore here. If we fixup a prefetch
2d4a7167 1258 * fault we could otherwise deadlock:
f8c2ee22 1259 */
7b2d0dba 1260 bad_area_nosemaphore(regs, error_code, address, NULL);
2d4a7167 1261
92181f19 1262 return;
f8c2ee22
HH
1263 }
1264
2d4a7167 1265 /* kprobes don't want to hook the spurious faults: */
e00b12e6 1266 if (unlikely(kprobes_fault(regs)))
9be260a6 1267 return;
8c914cb7 1268
1067f030 1269 if (unlikely(error_code & X86_PF_RSVD))
92181f19 1270 pgtable_bad(regs, error_code, address);
1da177e4 1271
4640c7ee 1272 if (unlikely(smap_violation(error_code, regs))) {
7b2d0dba 1273 bad_area_nosemaphore(regs, error_code, address, NULL);
4640c7ee 1274 return;
40d3cd66
PA
1275 }
1276
1da177e4 1277 /*
2d4a7167 1278 * If we're in an interrupt, have no user context or are running
70ffdb93 1279 * in a region with pagefaults disabled then we must not take the fault
1da177e4 1280 */
70ffdb93 1281 if (unlikely(faulthandler_disabled() || !mm)) {
7b2d0dba 1282 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1283 return;
1284 }
1da177e4 1285
e00b12e6
PZ
1286 /*
1287 * It's safe to allow irq's after cr2 has been saved and the
1288 * vmalloc fault has been handled.
1289 *
1290 * User-mode registers count as a user access even for any
1291 * potential system fault or CPU buglet:
1292 */
f39b6f0e 1293 if (user_mode(regs)) {
e00b12e6 1294 local_irq_enable();
1067f030 1295 error_code |= X86_PF_USER;
e00b12e6
PZ
1296 flags |= FAULT_FLAG_USER;
1297 } else {
1298 if (regs->flags & X86_EFLAGS_IF)
1299 local_irq_enable();
1300 }
1301
1302 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1303
1067f030 1304 if (error_code & X86_PF_WRITE)
759496ba 1305 flags |= FAULT_FLAG_WRITE;
1067f030 1306 if (error_code & X86_PF_INSTR)
d61172b4 1307 flags |= FAULT_FLAG_INSTRUCTION;
759496ba 1308
3a1dfe6e
IM
1309 /*
1310 * When running in the kernel we expect faults to occur only to
2d4a7167
IM
1311 * addresses in user space. All other faults represent errors in
1312 * the kernel and should generate an OOPS. Unfortunately, in the
1313 * case of an erroneous fault occurring in a code path which already
1314 * holds mmap_sem we will deadlock attempting to validate the fault
1315 * against the address space. Luckily the kernel only validly
1316 * references user space from well defined areas of code, which are
1317 * listed in the exceptions table.
1da177e4
LT
1318 *
1319 * As the vast majority of faults will be valid we will only perform
2d4a7167
IM
1320 * the source reference check when there is a possibility of a
1321 * deadlock. Attempt to lock the address space, if we cannot we then
1322 * validate the source. If this is invalid we can skip the address
1323 * space check, thus avoiding the deadlock:
1da177e4 1324 */
92181f19 1325 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1067f030 1326 if (!(error_code & X86_PF_USER) &&
92181f19 1327 !search_exception_tables(regs->ip)) {
7b2d0dba 1328 bad_area_nosemaphore(regs, error_code, address, NULL);
92181f19
NP
1329 return;
1330 }
d065bd81 1331retry:
1da177e4 1332 down_read(&mm->mmap_sem);
01006074
PZ
1333 } else {
1334 /*
2d4a7167
IM
1335 * The above down_read_trylock() might have succeeded in
1336 * which case we'll have missed the might_sleep() from
1337 * down_read():
01006074
PZ
1338 */
1339 might_sleep();
1da177e4
LT
1340 }
1341
1342 vma = find_vma(mm, address);
92181f19
NP
1343 if (unlikely(!vma)) {
1344 bad_area(regs, error_code, address);
1345 return;
1346 }
1347 if (likely(vma->vm_start <= address))
1da177e4 1348 goto good_area;
92181f19
NP
1349 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1350 bad_area(regs, error_code, address);
1351 return;
1352 }
1067f030 1353 if (error_code & X86_PF_USER) {
6f4d368e
HH
1354 /*
1355 * Accessing the stack below %sp is always a bug.
1356 * The large cushion allows instructions like enter
2d4a7167 1357 * and pusha to work. ("enter $65535, $31" pushes
6f4d368e 1358 * 32 pointers and then decrements %sp by 65535.)
03fdc2c2 1359 */
92181f19
NP
1360 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1361 bad_area(regs, error_code, address);
1362 return;
1363 }
1da177e4 1364 }
92181f19
NP
1365 if (unlikely(expand_stack(vma, address))) {
1366 bad_area(regs, error_code, address);
1367 return;
1368 }
1369
1370 /*
1371 * Ok, we have a good vm_area for this memory access, so
1372 * we can handle it..
1373 */
1da177e4 1374good_area:
68da336a 1375 if (unlikely(access_error(error_code, vma))) {
7b2d0dba 1376 bad_area_access_error(regs, error_code, address, vma);
92181f19 1377 return;
1da177e4
LT
1378 }
1379
1380 /*
1381 * If for any reason at all we couldn't handle the fault,
1382 * make sure we exit gracefully rather than endlessly redo
9a95f3cf
PC
1383 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1384 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
cb0631fd
VB
1385 *
1386 * Note that handle_userfault() may also release and reacquire mmap_sem
1387 * (and not return with VM_FAULT_RETRY), when returning to userland to
1388 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1389 * (potentially after handling any pending signal during the return to
1390 * userland). The return to userland is identified whenever
1391 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1392 * Thus we have to be careful about not touching vma after handling the
1393 * fault, so we read the pkey beforehand.
1da177e4 1394 */
cb0631fd 1395 pkey = vma_pkey(vma);
dcddffd4 1396 fault = handle_mm_fault(vma, address, flags);
26178ec1 1397 major |= fault & VM_FAULT_MAJOR;
2d4a7167 1398
3a13c4d7 1399 /*
26178ec1
LT
1400 * If we need to retry the mmap_sem has already been released,
1401 * and if there is a fatal signal pending there is no guarantee
1402 * that we made any progress. Handle this case first.
3a13c4d7 1403 */
26178ec1
LT
1404 if (unlikely(fault & VM_FAULT_RETRY)) {
1405 /* Retry at most once */
1406 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1407 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1408 flags |= FAULT_FLAG_TRIED;
1409 if (!fatal_signal_pending(tsk))
1410 goto retry;
1411 }
1412
1413 /* User mode? Just return to handle the fatal exception */
cf3c0a15 1414 if (flags & FAULT_FLAG_USER)
26178ec1
LT
1415 return;
1416
1417 /* Not returning to user mode? Handle exceptions or die: */
1418 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
3a13c4d7 1419 return;
26178ec1 1420 }
3a13c4d7 1421
26178ec1 1422 up_read(&mm->mmap_sem);
3a13c4d7 1423 if (unlikely(fault & VM_FAULT_ERROR)) {
a3c4fb7c 1424 mm_fault_error(regs, error_code, address, &pkey, fault);
3a13c4d7 1425 return;
37b23e05
KM
1426 }
1427
d065bd81 1428 /*
26178ec1
LT
1429 * Major/minor page fault accounting. If any of the events
1430 * returned VM_FAULT_MAJOR, we account it as a major fault.
d065bd81 1431 */
26178ec1
LT
1432 if (major) {
1433 tsk->maj_flt++;
1434 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1435 } else {
1436 tsk->min_flt++;
1437 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
ac17dc8e 1438 }
d729ab35 1439
8c938f9f 1440 check_v8086_mode(regs, address, tsk);
1da177e4 1441}
9326638c 1442NOKPROBE_SYMBOL(__do_page_fault);
6ba3c97a 1443
9326638c
MH
1444static nokprobe_inline void
1445trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1446 unsigned long error_code)
d34603b0
SA
1447{
1448 if (user_mode(regs))
d4078e23 1449 trace_page_fault_user(address, regs, error_code);
d34603b0 1450 else
d4078e23 1451 trace_page_fault_kernel(address, regs, error_code);
d34603b0
SA
1452}
1453
11a7ffb0
TG
1454/*
1455 * We must have this function blacklisted from kprobes, tagged with notrace
1456 * and call read_cr2() before calling anything else. To avoid calling any
1457 * kind of tracing machinery before we've observed the CR2 value.
1458 *
1459 * exception_{enter,exit}() contains all sorts of tracepoints.
1460 */
9326638c 1461dotraplinkage void notrace
11a7ffb0 1462do_page_fault(struct pt_regs *regs, unsigned long error_code)
25c74b10 1463{
11a7ffb0 1464 unsigned long address = read_cr2(); /* Get the faulting address */
d4078e23 1465 enum ctx_state prev_state;
25c74b10
SA
1466
1467 prev_state = exception_enter();
80954747 1468 if (trace_pagefault_enabled())
11a7ffb0
TG
1469 trace_page_fault_entries(address, regs, error_code);
1470
0ac09f9f 1471 __do_page_fault(regs, error_code, address);
25c74b10
SA
1472 exception_exit(prev_state);
1473}
11a7ffb0 1474NOKPROBE_SYMBOL(do_page_fault);