Commit | Line | Data |
---|---|---|
20c8ccb1 | 1 | // SPDX-License-Identifier: GPL-2.0-only |
043405e1 CO |
2 | /* |
3 | * Kernel-based Virtual Machine driver for Linux | |
4 | * | |
5 | * derived from drivers/kvm/kvm_main.c | |
6 | * | |
7 | * Copyright (C) 2006 Qumranet, Inc. | |
4d5c5d0f BAY |
8 | * Copyright (C) 2008 Qumranet, Inc. |
9 | * Copyright IBM Corporation, 2008 | |
9611c187 | 10 | * Copyright 2010 Red Hat, Inc. and/or its affiliates. |
043405e1 CO |
11 | * |
12 | * Authors: | |
13 | * Avi Kivity <avi@qumranet.com> | |
14 | * Yaniv Kamay <yaniv@qumranet.com> | |
4d5c5d0f BAY |
15 | * Amit Shah <amit.shah@qumranet.com> |
16 | * Ben-Ami Yassour <benami@il.ibm.com> | |
043405e1 | 17 | */ |
8d20bd63 | 18 | #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt |
043405e1 | 19 | |
edf88417 | 20 | #include <linux/kvm_host.h> |
313a3dc7 | 21 | #include "irq.h" |
88197e6a | 22 | #include "ioapic.h" |
1d737c8a | 23 | #include "mmu.h" |
7837699f | 24 | #include "i8254.h" |
37817f29 | 25 | #include "tss.h" |
5fdbf976 | 26 | #include "kvm_cache_regs.h" |
2f728d66 | 27 | #include "kvm_emulate.h" |
58ea7cf7 | 28 | #include "mmu/page_track.h" |
26eef70c | 29 | #include "x86.h" |
00b27a3e | 30 | #include "cpuid.h" |
474a5bb9 | 31 | #include "pmu.h" |
e83d5887 | 32 | #include "hyperv.h" |
8df14af4 | 33 | #include "lapic.h" |
23200b7a | 34 | #include "xen.h" |
b0b42197 | 35 | #include "smm.h" |
313a3dc7 | 36 | |
18068523 | 37 | #include <linux/clocksource.h> |
4d5c5d0f | 38 | #include <linux/interrupt.h> |
313a3dc7 CO |
39 | #include <linux/kvm.h> |
40 | #include <linux/fs.h> | |
41 | #include <linux/vmalloc.h> | |
1767e931 PG |
42 | #include <linux/export.h> |
43 | #include <linux/moduleparam.h> | |
0de10343 | 44 | #include <linux/mman.h> |
2bacc55c | 45 | #include <linux/highmem.h> |
19de40a8 | 46 | #include <linux/iommu.h> |
c8076604 | 47 | #include <linux/cpufreq.h> |
18863bdd | 48 | #include <linux/user-return-notifier.h> |
a983fb23 | 49 | #include <linux/srcu.h> |
5a0e3ad6 | 50 | #include <linux/slab.h> |
ff9d07a0 | 51 | #include <linux/perf_event.h> |
7bee342a | 52 | #include <linux/uaccess.h> |
af585b92 | 53 | #include <linux/hash.h> |
a1b60c1c | 54 | #include <linux/pci.h> |
16e8d74d MT |
55 | #include <linux/timekeeper_internal.h> |
56 | #include <linux/pvclock_gtod.h> | |
87276880 FW |
57 | #include <linux/kvm_irqfd.h> |
58 | #include <linux/irqbypass.h> | |
3905f9ad | 59 | #include <linux/sched/stat.h> |
0c5f81da | 60 | #include <linux/sched/isolation.h> |
d0ec49d4 | 61 | #include <linux/mem_encrypt.h> |
72c3c0fe | 62 | #include <linux/entry-kvm.h> |
7d62874f | 63 | #include <linux/suspend.h> |
4c8c3c7f | 64 | #include <linux/smp.h> |
3905f9ad | 65 | |
4c8c3c7f | 66 | #include <trace/events/ipi.h> |
aec51dc4 | 67 | #include <trace/events/kvm.h> |
2ed152af | 68 | |
24f1e32c | 69 | #include <asm/debugreg.h> |
d825ed0a | 70 | #include <asm/msr.h> |
a5f61300 | 71 | #include <asm/desc.h> |
890ca9ae | 72 | #include <asm/mce.h> |
784a4661 | 73 | #include <asm/pkru.h> |
f89e32e0 | 74 | #include <linux/kernel_stat.h> |
a0ff0611 TG |
75 | #include <asm/fpu/api.h> |
76 | #include <asm/fpu/xcr.h> | |
77 | #include <asm/fpu/xstate.h> | |
1d5f066e | 78 | #include <asm/pvclock.h> |
217fc9cf | 79 | #include <asm/div64.h> |
efc64404 | 80 | #include <asm/irq_remapping.h> |
b0c39dc6 | 81 | #include <asm/mshyperv.h> |
0092e434 | 82 | #include <asm/hypervisor.h> |
9715092f | 83 | #include <asm/tlbflush.h> |
bf8c55d8 | 84 | #include <asm/intel_pt.h> |
b3dc0695 | 85 | #include <asm/emulate_prefix.h> |
fe7e9488 | 86 | #include <asm/sgx.h> |
dd2cb348 | 87 | #include <clocksource/hyperv_timer.h> |
043405e1 | 88 | |
d1898b73 DH |
89 | #define CREATE_TRACE_POINTS |
90 | #include "trace.h" | |
91 | ||
313a3dc7 | 92 | #define MAX_IO_MSRS 256 |
938c8745 | 93 | |
40269c03 SC |
94 | /* |
95 | * Note, kvm_caps fields should *never* have default values, all fields must be | |
96 | * recomputed from scratch during vendor module load, e.g. to account for a | |
97 | * vendor module being reloaded with different module parameters. | |
98 | */ | |
555485bd | 99 | struct kvm_caps kvm_caps __read_mostly; |
938c8745 | 100 | EXPORT_SYMBOL_GPL(kvm_caps); |
890ca9ae | 101 | |
7974c064 SC |
102 | struct kvm_host_values kvm_host __read_mostly; |
103 | EXPORT_SYMBOL_GPL(kvm_host); | |
104 | ||
6e37ec88 SC |
105 | #define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e)) |
106 | ||
0f65dd70 | 107 | #define emul_to_vcpu(ctxt) \ |
c9b8b07c | 108 | ((struct kvm_vcpu *)(ctxt)->vcpu) |
0f65dd70 | 109 | |
50a37eb4 JR |
110 | /* EFER defaults: |
111 | * - enable syscall per default because its emulated by KVM | |
112 | * - enable LME and LMA per default on 64 bit KVM | |
113 | */ | |
114 | #ifdef CONFIG_X86_64 | |
1260edbe LJ |
115 | static |
116 | u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA)); | |
50a37eb4 | 117 | #else |
1260edbe | 118 | static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE); |
50a37eb4 | 119 | #endif |
313a3dc7 | 120 | |
0dbb1123 AK |
121 | #define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE) |
122 | ||
ba7bb663 DD |
123 | #define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE |
124 | ||
c519265f RK |
125 | #define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \ |
126 | KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) | |
37131313 | 127 | |
cb142eb7 | 128 | static void update_cr8_intercept(struct kvm_vcpu *vcpu); |
7460fb4a | 129 | static void process_nmi(struct kvm_vcpu *vcpu); |
6addfc42 | 130 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags); |
01643c51 KH |
131 | static void store_regs(struct kvm_vcpu *vcpu); |
132 | static int sync_regs(struct kvm_vcpu *vcpu); | |
d2f7d498 | 133 | static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu); |
674eea0f | 134 | |
6dba9403 ML |
135 | static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); |
136 | static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2); | |
137 | ||
3af4a9e6 | 138 | static DEFINE_MUTEX(vendor_module_lock); |
afaf0b2f | 139 | struct kvm_x86_ops kvm_x86_ops __read_mostly; |
97896d04 | 140 | |
9af5471b JB |
141 | #define KVM_X86_OP(func) \ |
142 | DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \ | |
143 | *(((struct kvm_x86_ops *)0)->func)); | |
e4fc23ba | 144 | #define KVM_X86_OP_OPTIONAL KVM_X86_OP |
5be2226f | 145 | #define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP |
9af5471b JB |
146 | #include <asm/kvm-x86-ops.h> |
147 | EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits); | |
148 | EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg); | |
9af5471b | 149 | |
893590c7 | 150 | static bool __read_mostly ignore_msrs = 0; |
26951ec8 | 151 | module_param(ignore_msrs, bool, 0644); |
ed85c068 | 152 | |
d855066f | 153 | bool __read_mostly report_ignored_msrs = true; |
26951ec8 | 154 | module_param(report_ignored_msrs, bool, 0644); |
d855066f | 155 | EXPORT_SYMBOL_GPL(report_ignored_msrs); |
fab0aa3b | 156 | |
4c27625b | 157 | unsigned int min_timer_period_us = 200; |
26951ec8 | 158 | module_param(min_timer_period_us, uint, 0644); |
9ed96e87 | 159 | |
630994b3 | 160 | static bool __read_mostly kvmclock_periodic_sync = true; |
26951ec8 | 161 | module_param(kvmclock_periodic_sync, bool, 0444); |
630994b3 | 162 | |
cc578287 | 163 | /* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */ |
893590c7 | 164 | static u32 __read_mostly tsc_tolerance_ppm = 250; |
26951ec8 | 165 | module_param(tsc_tolerance_ppm, uint, 0644); |
cc578287 | 166 | |
52004014 | 167 | static bool __read_mostly vector_hashing = true; |
26951ec8 | 168 | module_param(vector_hashing, bool, 0444); |
52004014 | 169 | |
c4ae60e4 | 170 | bool __read_mostly enable_vmware_backdoor = false; |
26951ec8 | 171 | module_param(enable_vmware_backdoor, bool, 0444); |
c4ae60e4 LA |
172 | EXPORT_SYMBOL_GPL(enable_vmware_backdoor); |
173 | ||
d500e1ed SC |
174 | /* |
175 | * Flags to manipulate forced emulation behavior (any non-zero value will | |
176 | * enable forced emulation). | |
177 | */ | |
178 | #define KVM_FEP_CLEAR_RFLAGS_RF BIT(1) | |
179 | static int __read_mostly force_emulation_prefix; | |
40aaa5b6 | 180 | module_param(force_emulation_prefix, int, 0644); |
6c86eedc | 181 | |
0c5f81da | 182 | int __read_mostly pi_inject_timer = -1; |
26951ec8 | 183 | module_param(pi_inject_timer, bint, 0644); |
0c5f81da | 184 | |
4732f244 LX |
185 | /* Enable/disable PMU virtualization */ |
186 | bool __read_mostly enable_pmu = true; | |
187 | EXPORT_SYMBOL_GPL(enable_pmu); | |
188 | module_param(enable_pmu, bool, 0444); | |
189 | ||
cb00a70b | 190 | bool __read_mostly eager_page_split = true; |
a3fe5dbd DM |
191 | module_param(eager_page_split, bool, 0644); |
192 | ||
6f0f2d5e | 193 | /* Enable/disable SMT_RSB bug mitigation */ |
944a8dad | 194 | static bool __read_mostly mitigate_smt_rsb; |
6f0f2d5e TL |
195 | module_param(mitigate_smt_rsb, bool, 0444); |
196 | ||
7e34fbd0 SC |
197 | /* |
198 | * Restoring the host value for MSRs that are only consumed when running in | |
199 | * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU | |
200 | * returns to userspace, i.e. the kernel can run with the guest's value. | |
201 | */ | |
202 | #define KVM_MAX_NR_USER_RETURN_MSRS 16 | |
18863bdd | 203 | |
7e34fbd0 | 204 | struct kvm_user_return_msrs { |
18863bdd AK |
205 | struct user_return_notifier urn; |
206 | bool registered; | |
7e34fbd0 | 207 | struct kvm_user_return_msr_values { |
2bf78fa7 SY |
208 | u64 host; |
209 | u64 curr; | |
7e34fbd0 | 210 | } values[KVM_MAX_NR_USER_RETURN_MSRS]; |
18863bdd AK |
211 | }; |
212 | ||
9cc39a5a SC |
213 | u32 __read_mostly kvm_nr_uret_msrs; |
214 | EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs); | |
215 | static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS]; | |
7e34fbd0 | 216 | static struct kvm_user_return_msrs __percpu *user_return_msrs; |
18863bdd | 217 | |
cfc48181 SC |
218 | #define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \ |
219 | | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \ | |
220 | | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \ | |
86aff7a4 | 221 | | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE) |
cfc48181 | 222 | |
b96e6506 | 223 | bool __read_mostly allow_smaller_maxphyaddr = 0; |
3edd6839 MG |
224 | EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr); |
225 | ||
fdf513e3 VK |
226 | bool __read_mostly enable_apicv = true; |
227 | EXPORT_SYMBOL_GPL(enable_apicv); | |
228 | ||
459074cf SC |
229 | bool __read_mostly enable_device_posted_irqs = true; |
230 | EXPORT_SYMBOL_GPL(enable_device_posted_irqs); | |
231 | ||
fcfe1bae JZ |
232 | const struct _kvm_stats_desc kvm_vm_stats_desc[] = { |
233 | KVM_GENERIC_VM_STATS(), | |
234 | STATS_DESC_COUNTER(VM, mmu_shadow_zapped), | |
235 | STATS_DESC_COUNTER(VM, mmu_pte_write), | |
236 | STATS_DESC_COUNTER(VM, mmu_pde_zapped), | |
237 | STATS_DESC_COUNTER(VM, mmu_flooded), | |
238 | STATS_DESC_COUNTER(VM, mmu_recycled), | |
239 | STATS_DESC_COUNTER(VM, mmu_cache_miss), | |
240 | STATS_DESC_ICOUNTER(VM, mmu_unsync), | |
71f51d2c MZ |
241 | STATS_DESC_ICOUNTER(VM, pages_4k), |
242 | STATS_DESC_ICOUNTER(VM, pages_2m), | |
243 | STATS_DESC_ICOUNTER(VM, pages_1g), | |
fcfe1bae | 244 | STATS_DESC_ICOUNTER(VM, nx_lpage_splits), |
ec1cf69c | 245 | STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size), |
bc9e9e67 | 246 | STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions) |
fcfe1bae | 247 | }; |
fcfe1bae JZ |
248 | |
249 | const struct kvm_stats_header kvm_vm_stats_header = { | |
250 | .name_size = KVM_STATS_NAME_SIZE, | |
251 | .num_desc = ARRAY_SIZE(kvm_vm_stats_desc), | |
252 | .id_offset = sizeof(struct kvm_stats_header), | |
253 | .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, | |
254 | .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + | |
255 | sizeof(kvm_vm_stats_desc), | |
256 | }; | |
257 | ||
ce55c049 JZ |
258 | const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = { |
259 | KVM_GENERIC_VCPU_STATS(), | |
1075d41e | 260 | STATS_DESC_COUNTER(VCPU, pf_taken), |
ce55c049 | 261 | STATS_DESC_COUNTER(VCPU, pf_fixed), |
1075d41e SC |
262 | STATS_DESC_COUNTER(VCPU, pf_emulate), |
263 | STATS_DESC_COUNTER(VCPU, pf_spurious), | |
264 | STATS_DESC_COUNTER(VCPU, pf_fast), | |
265 | STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created), | |
ce55c049 JZ |
266 | STATS_DESC_COUNTER(VCPU, pf_guest), |
267 | STATS_DESC_COUNTER(VCPU, tlb_flush), | |
268 | STATS_DESC_COUNTER(VCPU, invlpg), | |
269 | STATS_DESC_COUNTER(VCPU, exits), | |
270 | STATS_DESC_COUNTER(VCPU, io_exits), | |
271 | STATS_DESC_COUNTER(VCPU, mmio_exits), | |
272 | STATS_DESC_COUNTER(VCPU, signal_exits), | |
273 | STATS_DESC_COUNTER(VCPU, irq_window_exits), | |
274 | STATS_DESC_COUNTER(VCPU, nmi_window_exits), | |
275 | STATS_DESC_COUNTER(VCPU, l1d_flush), | |
276 | STATS_DESC_COUNTER(VCPU, halt_exits), | |
277 | STATS_DESC_COUNTER(VCPU, request_irq_exits), | |
278 | STATS_DESC_COUNTER(VCPU, irq_exits), | |
279 | STATS_DESC_COUNTER(VCPU, host_state_reload), | |
280 | STATS_DESC_COUNTER(VCPU, fpu_reload), | |
281 | STATS_DESC_COUNTER(VCPU, insn_emulation), | |
282 | STATS_DESC_COUNTER(VCPU, insn_emulation_fail), | |
283 | STATS_DESC_COUNTER(VCPU, hypercalls), | |
284 | STATS_DESC_COUNTER(VCPU, irq_injections), | |
285 | STATS_DESC_COUNTER(VCPU, nmi_injections), | |
286 | STATS_DESC_COUNTER(VCPU, req_event), | |
287 | STATS_DESC_COUNTER(VCPU, nested_run), | |
288 | STATS_DESC_COUNTER(VCPU, directed_yield_attempted), | |
289 | STATS_DESC_COUNTER(VCPU, directed_yield_successful), | |
6cd88243 PB |
290 | STATS_DESC_COUNTER(VCPU, preemption_reported), |
291 | STATS_DESC_COUNTER(VCPU, preemption_other), | |
63f4b210 | 292 | STATS_DESC_IBOOLEAN(VCPU, guest_mode), |
2f4073e0 | 293 | STATS_DESC_COUNTER(VCPU, notify_window_exits), |
ce55c049 | 294 | }; |
ce55c049 JZ |
295 | |
296 | const struct kvm_stats_header kvm_vcpu_stats_header = { | |
297 | .name_size = KVM_STATS_NAME_SIZE, | |
298 | .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc), | |
299 | .id_offset = sizeof(struct kvm_stats_header), | |
300 | .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE, | |
301 | .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE + | |
302 | sizeof(kvm_vcpu_stats_desc), | |
303 | }; | |
304 | ||
c9b8b07c SC |
305 | static struct kmem_cache *x86_emulator_cache; |
306 | ||
6abe9c13 | 307 | /* |
3adef903 SC |
308 | * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track |
309 | * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS, | |
310 | * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that | |
311 | * require host support, i.e. should be probed via RDMSR. emulated_msrs holds | |
312 | * MSRs that KVM emulates without strictly requiring host support. | |
313 | * msr_based_features holds MSRs that enumerate features, i.e. are effectively | |
314 | * CPUID leafs. Note, msr_based_features isn't mutually exclusive with | |
315 | * msrs_to_save and emulated_msrs. | |
6abe9c13 | 316 | */ |
3adef903 SC |
317 | |
318 | static const u32 msrs_to_save_base[] = { | |
319 | MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP, | |
320 | MSR_STAR, | |
321 | #ifdef CONFIG_X86_64 | |
322 | MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR, | |
323 | #endif | |
324 | MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA, | |
325 | MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX, | |
326 | MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL, | |
327 | MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH, | |
328 | MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK, | |
329 | MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B, | |
330 | MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B, | |
331 | MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B, | |
332 | MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B, | |
333 | MSR_IA32_UMWAIT_CONTROL, | |
334 | ||
335 | MSR_IA32_XFD, MSR_IA32_XFD_ERR, | |
336 | }; | |
337 | ||
338 | static const u32 msrs_to_save_pmu[] = { | |
339 | MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1, | |
340 | MSR_ARCH_PERFMON_FIXED_CTR0 + 2, | |
341 | MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS, | |
342 | MSR_CORE_PERF_GLOBAL_CTRL, | |
343 | MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG, | |
344 | ||
345 | /* This part of MSRs should match KVM_MAX_NR_INTEL_GP_COUNTERS. */ | |
346 | MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1, | |
347 | MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3, | |
348 | MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5, | |
349 | MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7, | |
350 | MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1, | |
351 | MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3, | |
352 | MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5, | |
353 | MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7, | |
354 | ||
355 | MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3, | |
356 | MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3, | |
357 | ||
358 | /* This part of MSRs should match KVM_MAX_NR_AMD_GP_COUNTERS. */ | |
359 | MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2, | |
360 | MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5, | |
361 | MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2, | |
362 | MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5, | |
363 | ||
364 | MSR_AMD64_PERF_CNTR_GLOBAL_CTL, | |
365 | MSR_AMD64_PERF_CNTR_GLOBAL_STATUS, | |
366 | MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR, | |
367 | }; | |
368 | ||
369 | static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) + | |
370 | ARRAY_SIZE(msrs_to_save_pmu)]; | |
371 | static unsigned num_msrs_to_save; | |
372 | ||
373 | static const u32 emulated_msrs_all[] = { | |
374 | MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK, | |
375 | MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW, | |
376 | ||
377 | #ifdef CONFIG_KVM_HYPERV | |
378 | HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL, | |
379 | HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC, | |
380 | HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY, | |
381 | HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2, | |
382 | HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL, | |
383 | HV_X64_MSR_RESET, | |
384 | HV_X64_MSR_VP_INDEX, | |
385 | HV_X64_MSR_VP_RUNTIME, | |
386 | HV_X64_MSR_SCONTROL, | |
387 | HV_X64_MSR_STIMER0_CONFIG, | |
388 | HV_X64_MSR_VP_ASSIST_PAGE, | |
389 | HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL, | |
390 | HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL, | |
391 | HV_X64_MSR_SYNDBG_OPTIONS, | |
392 | HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS, | |
393 | HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER, | |
394 | HV_X64_MSR_SYNDBG_PENDING_BUFFER, | |
395 | #endif | |
396 | ||
397 | MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME, | |
398 | MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK, | |
399 | ||
400 | MSR_IA32_TSC_ADJUST, | |
401 | MSR_IA32_TSC_DEADLINE, | |
402 | MSR_IA32_ARCH_CAPABILITIES, | |
403 | MSR_IA32_PERF_CAPABILITIES, | |
404 | MSR_IA32_MISC_ENABLE, | |
405 | MSR_IA32_MCG_STATUS, | |
406 | MSR_IA32_MCG_CTL, | |
407 | MSR_IA32_MCG_EXT_CTL, | |
408 | MSR_IA32_SMBASE, | |
409 | MSR_SMI_COUNT, | |
410 | MSR_PLATFORM_INFO, | |
411 | MSR_MISC_FEATURES_ENABLES, | |
412 | MSR_AMD64_VIRT_SPEC_CTRL, | |
413 | MSR_AMD64_TSC_RATIO, | |
414 | MSR_IA32_POWER_CTL, | |
415 | MSR_IA32_UCODE_REV, | |
416 | ||
417 | /* | |
418 | * KVM always supports the "true" VMX control MSRs, even if the host | |
419 | * does not. The VMX MSRs as a whole are considered "emulated" as KVM | |
420 | * doesn't strictly require them to exist in the host (ignoring that | |
421 | * KVM would refuse to load in the first place if the core set of MSRs | |
422 | * aren't supported). | |
423 | */ | |
424 | MSR_IA32_VMX_BASIC, | |
425 | MSR_IA32_VMX_TRUE_PINBASED_CTLS, | |
426 | MSR_IA32_VMX_TRUE_PROCBASED_CTLS, | |
427 | MSR_IA32_VMX_TRUE_EXIT_CTLS, | |
428 | MSR_IA32_VMX_TRUE_ENTRY_CTLS, | |
429 | MSR_IA32_VMX_MISC, | |
430 | MSR_IA32_VMX_CR0_FIXED0, | |
431 | MSR_IA32_VMX_CR4_FIXED0, | |
432 | MSR_IA32_VMX_VMCS_ENUM, | |
433 | MSR_IA32_VMX_PROCBASED_CTLS2, | |
434 | MSR_IA32_VMX_EPT_VPID_CAP, | |
435 | MSR_IA32_VMX_VMFUNC, | |
436 | ||
437 | MSR_K7_HWCR, | |
438 | MSR_KVM_POLL_CONTROL, | |
439 | }; | |
440 | ||
441 | static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)]; | |
442 | static unsigned num_emulated_msrs; | |
443 | ||
444 | /* | |
445 | * List of MSRs that control the existence of MSR-based features, i.e. MSRs | |
446 | * that are effectively CPUID leafs. VMX MSRs are also included in the set of | |
447 | * feature MSRs, but are handled separately to allow expedited lookups. | |
448 | */ | |
449 | static const u32 msr_based_features_all_except_vmx[] = { | |
450 | MSR_AMD64_DE_CFG, | |
451 | MSR_IA32_UCODE_REV, | |
452 | MSR_IA32_ARCH_CAPABILITIES, | |
453 | MSR_IA32_PERF_CAPABILITIES, | |
bc2ca368 | 454 | MSR_PLATFORM_INFO, |
3adef903 SC |
455 | }; |
456 | ||
457 | static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) + | |
458 | (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)]; | |
459 | static unsigned int num_msr_based_features; | |
460 | ||
461 | /* | |
462 | * All feature MSRs except uCode revID, which tracks the currently loaded uCode | |
463 | * patch, are immutable once the vCPU model is defined. | |
464 | */ | |
465 | static bool kvm_is_immutable_feature_msr(u32 msr) | |
6abe9c13 | 466 | { |
3adef903 | 467 | int i; |
6abe9c13 | 468 | |
3adef903 | 469 | if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR) |
cc4cb017 | 470 | return true; |
3adef903 SC |
471 | |
472 | for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) { | |
473 | if (msr == msr_based_features_all_except_vmx[i]) | |
474 | return msr != MSR_IA32_UCODE_REV; | |
475 | } | |
476 | ||
477 | return false; | |
478 | } | |
479 | ||
44dd0f57 | 480 | static bool kvm_is_advertised_msr(u32 msr_index) |
3adef903 SC |
481 | { |
482 | unsigned int i; | |
483 | ||
484 | for (i = 0; i < num_msrs_to_save; i++) { | |
485 | if (msrs_to_save[i] == msr_index) | |
486 | return true; | |
487 | } | |
488 | ||
44dd0f57 SC |
489 | for (i = 0; i < num_emulated_msrs; i++) { |
490 | if (emulated_msrs[i] == msr_index) | |
491 | return true; | |
492 | } | |
493 | ||
3adef903 SC |
494 | return false; |
495 | } | |
496 | ||
1cec2034 SC |
497 | typedef int (*msr_access_t)(struct kvm_vcpu *vcpu, u32 index, u64 *data, |
498 | bool host_initiated); | |
499 | ||
500 | static __always_inline int kvm_do_msr_access(struct kvm_vcpu *vcpu, u32 msr, | |
501 | u64 *data, bool host_initiated, | |
502 | enum kvm_msr_access rw, | |
503 | msr_access_t msr_access_fn) | |
6abe9c13 | 504 | { |
1cec2034 SC |
505 | const char *op = rw == MSR_TYPE_W ? "wrmsr" : "rdmsr"; |
506 | int ret; | |
6abe9c13 | 507 | |
1cec2034 SC |
508 | BUILD_BUG_ON(rw != MSR_TYPE_R && rw != MSR_TYPE_W); |
509 | ||
510 | /* | |
511 | * Zero the data on read failures to avoid leaking stack data to the | |
512 | * guest and/or userspace, e.g. if the failure is ignored below. | |
513 | */ | |
514 | ret = msr_access_fn(vcpu, msr, data, host_initiated); | |
515 | if (ret && rw == MSR_TYPE_R) | |
516 | *data = 0; | |
517 | ||
518 | if (ret != KVM_MSR_RET_UNSUPPORTED) | |
519 | return ret; | |
520 | ||
64a5d7a1 SC |
521 | /* |
522 | * Userspace is allowed to read MSRs, and write '0' to MSRs, that KVM | |
44dd0f57 | 523 | * advertises to userspace, even if an MSR isn't fully supported. |
64a5d7a1 SC |
524 | * Simply check that @data is '0', which covers both the write '0' case |
525 | * and all reads (in which case @data is zeroed on failure; see above). | |
526 | */ | |
44dd0f57 | 527 | if (host_initiated && !*data && kvm_is_advertised_msr(msr)) |
64a5d7a1 SC |
528 | return 0; |
529 | ||
1cec2034 | 530 | if (!ignore_msrs) { |
d383b314 | 531 | kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n", |
1cec2034 SC |
532 | op, msr, *data); |
533 | return ret; | |
6abe9c13 | 534 | } |
1cec2034 SC |
535 | |
536 | if (report_ignored_msrs) | |
537 | kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n", op, msr, *data); | |
538 | ||
539 | return 0; | |
6abe9c13 PX |
540 | } |
541 | ||
c9b8b07c SC |
542 | static struct kmem_cache *kvm_alloc_emulator_cache(void) |
543 | { | |
06add254 SC |
544 | unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src); |
545 | unsigned int size = sizeof(struct x86_emulate_ctxt); | |
546 | ||
547 | return kmem_cache_create_usercopy("x86_emulator", size, | |
c9b8b07c | 548 | __alignof__(struct x86_emulate_ctxt), |
06add254 SC |
549 | SLAB_ACCOUNT, useroffset, |
550 | size - useroffset, NULL); | |
c9b8b07c SC |
551 | } |
552 | ||
b6785def | 553 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt); |
d6aa1000 | 554 | |
af585b92 GN |
555 | static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu) |
556 | { | |
557 | int i; | |
dd03bcaa | 558 | for (i = 0; i < ASYNC_PF_PER_VCPU; i++) |
af585b92 GN |
559 | vcpu->arch.apf.gfns[i] = ~0; |
560 | } | |
561 | ||
18863bdd AK |
562 | static void kvm_on_user_return(struct user_return_notifier *urn) |
563 | { | |
564 | unsigned slot; | |
7e34fbd0 SC |
565 | struct kvm_user_return_msrs *msrs |
566 | = container_of(urn, struct kvm_user_return_msrs, urn); | |
567 | struct kvm_user_return_msr_values *values; | |
1650b4eb IA |
568 | unsigned long flags; |
569 | ||
570 | /* | |
571 | * Disabling irqs at this point since the following code could be | |
071f24ad | 572 | * interrupted and executed through kvm_arch_disable_virtualization_cpu() |
1650b4eb IA |
573 | */ |
574 | local_irq_save(flags); | |
7e34fbd0 SC |
575 | if (msrs->registered) { |
576 | msrs->registered = false; | |
1650b4eb IA |
577 | user_return_notifier_unregister(urn); |
578 | } | |
579 | local_irq_restore(flags); | |
9cc39a5a | 580 | for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) { |
7e34fbd0 | 581 | values = &msrs->values[slot]; |
2bf78fa7 | 582 | if (values->host != values->curr) { |
78255eb2 | 583 | wrmsrq(kvm_uret_msrs_list[slot], values->host); |
2bf78fa7 | 584 | values->curr = values->host; |
18863bdd AK |
585 | } |
586 | } | |
18863bdd AK |
587 | } |
588 | ||
e5fda4bb | 589 | static int kvm_probe_user_return_msr(u32 msr) |
5104d7ff SC |
590 | { |
591 | u64 val; | |
592 | int ret; | |
593 | ||
594 | preempt_disable(); | |
6fe22aba | 595 | ret = rdmsrq_safe(msr, &val); |
5104d7ff SC |
596 | if (ret) |
597 | goto out; | |
6fa17efe | 598 | ret = wrmsrq_safe(msr, val); |
5104d7ff SC |
599 | out: |
600 | preempt_enable(); | |
601 | return ret; | |
602 | } | |
5104d7ff | 603 | |
e5fda4bb | 604 | int kvm_add_user_return_msr(u32 msr) |
2bf78fa7 | 605 | { |
e5fda4bb SC |
606 | BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS); |
607 | ||
608 | if (kvm_probe_user_return_msr(msr)) | |
609 | return -1; | |
610 | ||
611 | kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr; | |
612 | return kvm_nr_uret_msrs++; | |
18863bdd | 613 | } |
e5fda4bb | 614 | EXPORT_SYMBOL_GPL(kvm_add_user_return_msr); |
18863bdd | 615 | |
8ea8b8d6 SC |
616 | int kvm_find_user_return_msr(u32 msr) |
617 | { | |
618 | int i; | |
619 | ||
9cc39a5a SC |
620 | for (i = 0; i < kvm_nr_uret_msrs; ++i) { |
621 | if (kvm_uret_msrs_list[i] == msr) | |
8ea8b8d6 SC |
622 | return i; |
623 | } | |
624 | return -1; | |
625 | } | |
626 | EXPORT_SYMBOL_GPL(kvm_find_user_return_msr); | |
627 | ||
7e34fbd0 | 628 | static void kvm_user_return_msr_cpu_online(void) |
18863bdd | 629 | { |
e0183a42 | 630 | struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); |
05c19c2f SC |
631 | u64 value; |
632 | int i; | |
18863bdd | 633 | |
9cc39a5a | 634 | for (i = 0; i < kvm_nr_uret_msrs; ++i) { |
6fe22aba | 635 | rdmsrq_safe(kvm_uret_msrs_list[i], &value); |
7e34fbd0 SC |
636 | msrs->values[i].host = value; |
637 | msrs->values[i].curr = value; | |
05c19c2f | 638 | } |
18863bdd AK |
639 | } |
640 | ||
d3a6b6cf CG |
641 | static void kvm_user_return_register_notifier(struct kvm_user_return_msrs *msrs) |
642 | { | |
643 | if (!msrs->registered) { | |
644 | msrs->urn.on_user_return = kvm_on_user_return; | |
645 | user_return_notifier_register(&msrs->urn); | |
646 | msrs->registered = true; | |
647 | } | |
648 | } | |
649 | ||
7e34fbd0 | 650 | int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask) |
18863bdd | 651 | { |
15e1c3d6 | 652 | struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); |
8b3c3104 | 653 | int err; |
18863bdd | 654 | |
7e34fbd0 SC |
655 | value = (value & mask) | (msrs->values[slot].host & ~mask); |
656 | if (value == msrs->values[slot].curr) | |
8b3c3104 | 657 | return 0; |
6fa17efe | 658 | err = wrmsrq_safe(kvm_uret_msrs_list[slot], value); |
8b3c3104 AH |
659 | if (err) |
660 | return 1; | |
661 | ||
7e34fbd0 | 662 | msrs->values[slot].curr = value; |
d3a6b6cf | 663 | kvm_user_return_register_notifier(msrs); |
8b3c3104 | 664 | return 0; |
18863bdd | 665 | } |
7e34fbd0 | 666 | EXPORT_SYMBOL_GPL(kvm_set_user_return_msr); |
18863bdd | 667 | |
d3a6b6cf CG |
668 | void kvm_user_return_msr_update_cache(unsigned int slot, u64 value) |
669 | { | |
670 | struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); | |
671 | ||
672 | msrs->values[slot].curr = value; | |
673 | kvm_user_return_register_notifier(msrs); | |
674 | } | |
675 | EXPORT_SYMBOL_GPL(kvm_user_return_msr_update_cache); | |
676 | ||
13a34e06 | 677 | static void drop_user_return_notifiers(void) |
3548bab5 | 678 | { |
15e1c3d6 | 679 | struct kvm_user_return_msrs *msrs = this_cpu_ptr(user_return_msrs); |
3548bab5 | 680 | |
7e34fbd0 SC |
681 | if (msrs->registered) |
682 | kvm_on_user_return(&msrs->urn); | |
3548bab5 AK |
683 | } |
684 | ||
ad0577c3 SC |
685 | /* |
686 | * Handle a fault on a hardware virtualization (VMX or SVM) instruction. | |
687 | * | |
688 | * Hardware virtualization extension instructions may fault if a reboot turns | |
689 | * off virtualization while processes are running. Usually after catching the | |
690 | * fault we just panic; during reboot instead the instruction is ignored. | |
691 | */ | |
692 | noinstr void kvm_spurious_fault(void) | |
e3ba45b8 GL |
693 | { |
694 | /* Fault while not rebooting. We want the trace. */ | |
b4fdcf60 | 695 | BUG_ON(!kvm_rebooting); |
e3ba45b8 GL |
696 | } |
697 | EXPORT_SYMBOL_GPL(kvm_spurious_fault); | |
698 | ||
3fd28fce ED |
699 | #define EXCPT_BENIGN 0 |
700 | #define EXCPT_CONTRIBUTORY 1 | |
701 | #define EXCPT_PF 2 | |
702 | ||
703 | static int exception_class(int vector) | |
704 | { | |
705 | switch (vector) { | |
706 | case PF_VECTOR: | |
707 | return EXCPT_PF; | |
708 | case DE_VECTOR: | |
709 | case TS_VECTOR: | |
710 | case NP_VECTOR: | |
711 | case SS_VECTOR: | |
712 | case GP_VECTOR: | |
713 | return EXCPT_CONTRIBUTORY; | |
714 | default: | |
715 | break; | |
716 | } | |
717 | return EXCPT_BENIGN; | |
718 | } | |
719 | ||
d6e8c854 NA |
720 | #define EXCPT_FAULT 0 |
721 | #define EXCPT_TRAP 1 | |
722 | #define EXCPT_ABORT 2 | |
723 | #define EXCPT_INTERRUPT 3 | |
5623f751 | 724 | #define EXCPT_DB 4 |
d6e8c854 NA |
725 | |
726 | static int exception_type(int vector) | |
727 | { | |
728 | unsigned int mask; | |
729 | ||
730 | if (WARN_ON(vector > 31 || vector == NMI_VECTOR)) | |
731 | return EXCPT_INTERRUPT; | |
732 | ||
733 | mask = 1 << vector; | |
734 | ||
5623f751 SC |
735 | /* |
736 | * #DBs can be trap-like or fault-like, the caller must check other CPU | |
737 | * state, e.g. DR6, to determine whether a #DB is a trap or fault. | |
738 | */ | |
739 | if (mask & (1 << DB_VECTOR)) | |
740 | return EXCPT_DB; | |
741 | ||
742 | if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR))) | |
d6e8c854 NA |
743 | return EXCPT_TRAP; |
744 | ||
745 | if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR))) | |
746 | return EXCPT_ABORT; | |
747 | ||
748 | /* Reserved exceptions will result in fault */ | |
749 | return EXCPT_FAULT; | |
750 | } | |
751 | ||
d4963e31 SC |
752 | void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu, |
753 | struct kvm_queued_exception *ex) | |
da998b46 | 754 | { |
d4963e31 | 755 | if (!ex->has_payload) |
da998b46 JM |
756 | return; |
757 | ||
d4963e31 | 758 | switch (ex->vector) { |
f10c729f JM |
759 | case DB_VECTOR: |
760 | /* | |
761 | * "Certain debug exceptions may clear bit 0-3. The | |
762 | * remaining contents of the DR6 register are never | |
763 | * cleared by the processor". | |
764 | */ | |
765 | vcpu->arch.dr6 &= ~DR_TRAP_BITS; | |
766 | /* | |
9a3ecd5e CQ |
767 | * In order to reflect the #DB exception payload in guest |
768 | * dr6, three components need to be considered: active low | |
769 | * bit, FIXED_1 bits and active high bits (e.g. DR6_BD, | |
770 | * DR6_BS and DR6_BT) | |
771 | * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits. | |
772 | * In the target guest dr6: | |
773 | * FIXED_1 bits should always be set. | |
774 | * Active low bits should be cleared if 1-setting in payload. | |
775 | * Active high bits should be set if 1-setting in payload. | |
776 | * | |
777 | * Note, the payload is compatible with the pending debug | |
778 | * exceptions/exit qualification under VMX, that active_low bits | |
779 | * are active high in payload. | |
780 | * So they need to be flipped for DR6. | |
f10c729f | 781 | */ |
9a3ecd5e | 782 | vcpu->arch.dr6 |= DR6_ACTIVE_LOW; |
d4963e31 SC |
783 | vcpu->arch.dr6 |= ex->payload; |
784 | vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW; | |
307f1cfa OU |
785 | |
786 | /* | |
787 | * The #DB payload is defined as compatible with the 'pending | |
788 | * debug exceptions' field under VMX, not DR6. While bit 12 is | |
789 | * defined in the 'pending debug exceptions' field (enabled | |
790 | * breakpoint), it is reserved and must be zero in DR6. | |
791 | */ | |
792 | vcpu->arch.dr6 &= ~BIT(12); | |
f10c729f | 793 | break; |
da998b46 | 794 | case PF_VECTOR: |
d4963e31 | 795 | vcpu->arch.cr2 = ex->payload; |
da998b46 JM |
796 | break; |
797 | } | |
798 | ||
d4963e31 SC |
799 | ex->has_payload = false; |
800 | ex->payload = 0; | |
da998b46 JM |
801 | } |
802 | EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload); | |
803 | ||
7709aba8 SC |
804 | static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector, |
805 | bool has_error_code, u32 error_code, | |
806 | bool has_payload, unsigned long payload) | |
807 | { | |
808 | struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit; | |
809 | ||
810 | ex->vector = vector; | |
811 | ex->injected = false; | |
812 | ex->pending = true; | |
813 | ex->has_error_code = has_error_code; | |
814 | ex->error_code = error_code; | |
815 | ex->has_payload = has_payload; | |
816 | ex->payload = payload; | |
817 | } | |
818 | ||
b50cb2b1 SC |
819 | static void kvm_multiple_exception(struct kvm_vcpu *vcpu, unsigned int nr, |
820 | bool has_error, u32 error_code, | |
821 | bool has_payload, unsigned long payload) | |
3fd28fce ED |
822 | { |
823 | u32 prev_nr; | |
824 | int class1, class2; | |
825 | ||
3842d135 AK |
826 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
827 | ||
7709aba8 | 828 | /* |
b50cb2b1 SC |
829 | * If the exception is destined for L2, morph it to a VM-Exit if L1 |
830 | * wants to intercept the exception. | |
7709aba8 | 831 | */ |
b50cb2b1 | 832 | if (is_guest_mode(vcpu) && |
7709aba8 SC |
833 | kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) { |
834 | kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code, | |
835 | has_payload, payload); | |
836 | return; | |
837 | } | |
838 | ||
664f8e26 | 839 | if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) { |
3fd28fce | 840 | queue: |
b50cb2b1 SC |
841 | vcpu->arch.exception.pending = true; |
842 | vcpu->arch.exception.injected = false; | |
843 | ||
3fd28fce | 844 | vcpu->arch.exception.has_error_code = has_error; |
d4963e31 | 845 | vcpu->arch.exception.vector = nr; |
3fd28fce | 846 | vcpu->arch.exception.error_code = error_code; |
91e86d22 JM |
847 | vcpu->arch.exception.has_payload = has_payload; |
848 | vcpu->arch.exception.payload = payload; | |
a06230b6 | 849 | if (!is_guest_mode(vcpu)) |
d4963e31 SC |
850 | kvm_deliver_exception_payload(vcpu, |
851 | &vcpu->arch.exception); | |
3fd28fce ED |
852 | return; |
853 | } | |
854 | ||
855 | /* to check exception */ | |
d4963e31 | 856 | prev_nr = vcpu->arch.exception.vector; |
3fd28fce ED |
857 | if (prev_nr == DF_VECTOR) { |
858 | /* triple fault -> shutdown */ | |
a8eeb04a | 859 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
3fd28fce ED |
860 | return; |
861 | } | |
862 | class1 = exception_class(prev_nr); | |
863 | class2 = exception_class(nr); | |
81601495 SC |
864 | if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) || |
865 | (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) { | |
664f8e26 | 866 | /* |
81601495 SC |
867 | * Synthesize #DF. Clear the previously injected or pending |
868 | * exception so as not to incorrectly trigger shutdown. | |
664f8e26 | 869 | */ |
664f8e26 | 870 | vcpu->arch.exception.injected = false; |
81601495 SC |
871 | vcpu->arch.exception.pending = false; |
872 | ||
873 | kvm_queue_exception_e(vcpu, DF_VECTOR, 0); | |
874 | } else { | |
3fd28fce ED |
875 | /* replace previous exception with a new one in a hope |
876 | that instruction re-execution will regenerate lost | |
877 | exception */ | |
878 | goto queue; | |
81601495 | 879 | } |
3fd28fce ED |
880 | } |
881 | ||
298101da AK |
882 | void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr) |
883 | { | |
b50cb2b1 | 884 | kvm_multiple_exception(vcpu, nr, false, 0, false, 0); |
298101da AK |
885 | } |
886 | EXPORT_SYMBOL_GPL(kvm_queue_exception); | |
887 | ||
ce7ddec4 | 888 | |
4d5523cf PB |
889 | void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, |
890 | unsigned long payload) | |
f10c729f | 891 | { |
b50cb2b1 | 892 | kvm_multiple_exception(vcpu, nr, false, 0, true, payload); |
f10c729f | 893 | } |
4d5523cf | 894 | EXPORT_SYMBOL_GPL(kvm_queue_exception_p); |
f10c729f | 895 | |
da998b46 JM |
896 | static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr, |
897 | u32 error_code, unsigned long payload) | |
898 | { | |
b50cb2b1 | 899 | kvm_multiple_exception(vcpu, nr, true, error_code, true, payload); |
da998b46 JM |
900 | } |
901 | ||
b50cb2b1 SC |
902 | void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned int nr, |
903 | bool has_error_code, u32 error_code) | |
904 | { | |
905 | ||
906 | /* | |
907 | * On VM-Entry, an exception can be pending if and only if event | |
908 | * injection was blocked by nested_run_pending. In that case, however, | |
909 | * vcpu_enter_guest() requests an immediate exit, and the guest | |
910 | * shouldn't proceed far enough to need reinjection. | |
911 | */ | |
912 | WARN_ON_ONCE(kvm_is_exception_pending(vcpu)); | |
913 | ||
914 | /* | |
915 | * Do not check for interception when injecting an event for L2, as the | |
916 | * exception was checked for intercept when it was original queued, and | |
917 | * re-checking is incorrect if _L1_ injected the exception, in which | |
918 | * case it's exempt from interception. | |
919 | */ | |
920 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
921 | ||
922 | vcpu->arch.exception.injected = true; | |
923 | vcpu->arch.exception.has_error_code = has_error_code; | |
924 | vcpu->arch.exception.vector = nr; | |
925 | vcpu->arch.exception.error_code = error_code; | |
926 | vcpu->arch.exception.has_payload = false; | |
927 | vcpu->arch.exception.payload = 0; | |
928 | } | |
929 | EXPORT_SYMBOL_GPL(kvm_requeue_exception); | |
930 | ||
6affcbed | 931 | int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err) |
c3c91fee | 932 | { |
db8fcefa AP |
933 | if (err) |
934 | kvm_inject_gp(vcpu, 0); | |
935 | else | |
6affcbed KH |
936 | return kvm_skip_emulated_instruction(vcpu); |
937 | ||
938 | return 1; | |
db8fcefa AP |
939 | } |
940 | EXPORT_SYMBOL_GPL(kvm_complete_insn_gp); | |
8df25a32 | 941 | |
d2f7d498 HW |
942 | static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err) |
943 | { | |
944 | if (err) { | |
945 | kvm_inject_gp(vcpu, 0); | |
946 | return 1; | |
947 | } | |
948 | ||
949 | return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP | | |
950 | EMULTYPE_COMPLETE_USER_EXIT); | |
951 | } | |
952 | ||
6389ee94 | 953 | void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault) |
c3c91fee AK |
954 | { |
955 | ++vcpu->stat.pf_guest; | |
7709aba8 SC |
956 | |
957 | /* | |
958 | * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of | |
959 | * whether or not L1 wants to intercept "regular" #PF. | |
960 | */ | |
961 | if (is_guest_mode(vcpu) && fault->async_page_fault) | |
962 | kvm_queue_exception_vmexit(vcpu, PF_VECTOR, | |
963 | true, fault->error_code, | |
964 | true, fault->address); | |
965 | else | |
da998b46 JM |
966 | kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code, |
967 | fault->address); | |
c3c91fee AK |
968 | } |
969 | ||
7709aba8 | 970 | void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu, |
53b3d8e9 | 971 | struct x86_exception *fault) |
d4f8cf66 | 972 | { |
0cd665bd | 973 | struct kvm_mmu *fault_mmu; |
53b3d8e9 SC |
974 | WARN_ON_ONCE(fault->vector != PF_VECTOR); |
975 | ||
0cd665bd PB |
976 | fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu : |
977 | vcpu->arch.walk_mmu; | |
ef54bcfe | 978 | |
ee1fa209 JS |
979 | /* |
980 | * Invalidate the TLB entry for the faulting address, if it exists, | |
981 | * else the access will fault indefinitely (and to emulate hardware). | |
982 | */ | |
983 | if ((fault->error_code & PFERR_PRESENT_MASK) && | |
984 | !(fault->error_code & PFERR_RSVD_MASK)) | |
753b43c9 | 985 | kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address, |
cd42853e | 986 | KVM_MMU_ROOT_CURRENT); |
ee1fa209 JS |
987 | |
988 | fault_mmu->inject_page_fault(vcpu, fault); | |
d4f8cf66 | 989 | } |
53b3d8e9 | 990 | EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault); |
d4f8cf66 | 991 | |
3419ffc8 SY |
992 | void kvm_inject_nmi(struct kvm_vcpu *vcpu) |
993 | { | |
7460fb4a AK |
994 | atomic_inc(&vcpu->arch.nmi_queued); |
995 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
3419ffc8 | 996 | } |
3419ffc8 | 997 | |
298101da AK |
998 | void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code) |
999 | { | |
b50cb2b1 | 1000 | kvm_multiple_exception(vcpu, nr, true, error_code, false, 0); |
298101da AK |
1001 | } |
1002 | EXPORT_SYMBOL_GPL(kvm_queue_exception_e); | |
1003 | ||
0a79b009 AK |
1004 | /* |
1005 | * Checks if cpl <= required_cpl; if true, return true. Otherwise queue | |
1006 | * a #GP and return false. | |
1007 | */ | |
1008 | bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl) | |
298101da | 1009 | { |
89604647 | 1010 | if (kvm_x86_call(get_cpl)(vcpu) <= required_cpl) |
0a79b009 AK |
1011 | return true; |
1012 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
1013 | return false; | |
298101da AK |
1014 | } |
1015 | ||
16f8a6f9 NA |
1016 | bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr) |
1017 | { | |
607475cf | 1018 | if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE)) |
16f8a6f9 NA |
1019 | return true; |
1020 | ||
1021 | kvm_queue_exception(vcpu, UD_VECTOR); | |
1022 | return false; | |
1023 | } | |
1024 | EXPORT_SYMBOL_GPL(kvm_require_dr); | |
1025 | ||
16cfacc8 SC |
1026 | static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu) |
1027 | { | |
5b7f575c | 1028 | return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2); |
16cfacc8 SC |
1029 | } |
1030 | ||
a03490ed | 1031 | /* |
16cfacc8 | 1032 | * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise. |
a03490ed | 1033 | */ |
2df4a5eb | 1034 | int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 1035 | { |
2df4a5eb | 1036 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
a03490ed | 1037 | gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT; |
15cabbc2 | 1038 | gpa_t real_gpa; |
a03490ed CO |
1039 | int i; |
1040 | int ret; | |
ff03a073 | 1041 | u64 pdpte[ARRAY_SIZE(mmu->pdptrs)]; |
a03490ed | 1042 | |
15cabbc2 SC |
1043 | /* |
1044 | * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated | |
1045 | * to an L1 GPA. | |
1046 | */ | |
c59a0f57 LJ |
1047 | real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn), |
1048 | PFERR_USER_MASK | PFERR_WRITE_MASK, NULL); | |
6e1d2a3f | 1049 | if (real_gpa == INVALID_GPA) |
15cabbc2 SC |
1050 | return 0; |
1051 | ||
94c641ba | 1052 | /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */ |
15cabbc2 | 1053 | ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte, |
94c641ba | 1054 | cr3 & GENMASK(11, 5), sizeof(pdpte)); |
15cabbc2 SC |
1055 | if (ret < 0) |
1056 | return 0; | |
1057 | ||
a03490ed | 1058 | for (i = 0; i < ARRAY_SIZE(pdpte); ++i) { |
812f30b2 | 1059 | if ((pdpte[i] & PT_PRESENT_MASK) && |
16cfacc8 | 1060 | (pdpte[i] & pdptr_rsvd_bits(vcpu))) { |
15cabbc2 | 1061 | return 0; |
a03490ed CO |
1062 | } |
1063 | } | |
a03490ed | 1064 | |
6b123c3a LJ |
1065 | /* |
1066 | * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled. | |
1067 | * Shadow page roots need to be reconstructed instead. | |
1068 | */ | |
1069 | if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs))) | |
0c1c92f1 | 1070 | kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT); |
6b123c3a | 1071 | |
46cbc040 PB |
1072 | memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)); |
1073 | kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); | |
1074 | kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu); | |
158a48ec ML |
1075 | vcpu->arch.pdptrs_from_userspace = false; |
1076 | ||
15cabbc2 | 1077 | return 1; |
a03490ed | 1078 | } |
cc4b6871 | 1079 | EXPORT_SYMBOL_GPL(load_pdptrs); |
a03490ed | 1080 | |
26a0652c SC |
1081 | static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
1082 | { | |
1083 | #ifdef CONFIG_X86_64 | |
1084 | if (cr0 & 0xffffffff00000000UL) | |
1085 | return false; | |
1086 | #endif | |
1087 | ||
1088 | if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD)) | |
1089 | return false; | |
1090 | ||
1091 | if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE)) | |
1092 | return false; | |
1093 | ||
89604647 | 1094 | return kvm_x86_call(is_valid_cr0)(vcpu, cr0); |
26a0652c SC |
1095 | } |
1096 | ||
f27ad38a TL |
1097 | void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0) |
1098 | { | |
01b31714 MK |
1099 | /* |
1100 | * CR0.WP is incorporated into the MMU role, but only for non-nested, | |
e40bcf9f MK |
1101 | * indirect shadow MMUs. If paging is disabled, no updates are needed |
1102 | * as there are no permission bits to emulate. If TDP is enabled, the | |
1103 | * MMU's metadata needs to be updated, e.g. so that emulating guest | |
1104 | * translations does the right thing, but there's no need to unload the | |
1105 | * root as CR0.WP doesn't affect SPTEs. | |
01b31714 | 1106 | */ |
e40bcf9f MK |
1107 | if ((cr0 ^ old_cr0) == X86_CR0_WP) { |
1108 | if (!(cr0 & X86_CR0_PG)) | |
1109 | return; | |
1110 | ||
1111 | if (tdp_enabled) { | |
1112 | kvm_init_mmu(vcpu); | |
1113 | return; | |
1114 | } | |
01b31714 MK |
1115 | } |
1116 | ||
f27ad38a TL |
1117 | if ((cr0 ^ old_cr0) & X86_CR0_PG) { |
1118 | kvm_clear_async_pf_completion_queue(vcpu); | |
1119 | kvm_async_pf_hash_reset(vcpu); | |
b5f61c03 PB |
1120 | |
1121 | /* | |
1122 | * Clearing CR0.PG is defined to flush the TLB from the guest's | |
1123 | * perspective. | |
1124 | */ | |
1125 | if (!(cr0 & X86_CR0_PG)) | |
1126 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | |
f27ad38a TL |
1127 | } |
1128 | ||
20f632bd | 1129 | if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS) |
f27ad38a | 1130 | kvm_mmu_reset_context(vcpu); |
f27ad38a TL |
1131 | } |
1132 | EXPORT_SYMBOL_GPL(kvm_post_set_cr0); | |
1133 | ||
49a9b07e | 1134 | int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0) |
a03490ed | 1135 | { |
aad82703 | 1136 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
aad82703 | 1137 | |
26a0652c | 1138 | if (!kvm_is_valid_cr0(vcpu, cr0)) |
0f12244f | 1139 | return 1; |
a03490ed | 1140 | |
26a0652c | 1141 | cr0 |= X86_CR0_ET; |
a03490ed | 1142 | |
26a0652c SC |
1143 | /* Write to CR0 reserved bits are ignored, even on Intel. */ |
1144 | cr0 &= ~CR0_RESERVED_BITS; | |
a03490ed | 1145 | |
a03490ed | 1146 | #ifdef CONFIG_X86_64 |
05487215 SC |
1147 | if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) && |
1148 | (cr0 & X86_CR0_PG)) { | |
1149 | int cs_db, cs_l; | |
1150 | ||
1151 | if (!is_pae(vcpu)) | |
1152 | return 1; | |
89604647 | 1153 | kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); |
05487215 | 1154 | if (cs_l) |
0f12244f | 1155 | return 1; |
a03490ed | 1156 | } |
05487215 SC |
1157 | #endif |
1158 | if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) && | |
e63f315d | 1159 | is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) && |
2df4a5eb | 1160 | !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) |
05487215 | 1161 | return 1; |
a03490ed | 1162 | |
777ab82d | 1163 | if (!(cr0 & X86_CR0_PG) && |
607475cf | 1164 | (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))) |
ad756a16 MJ |
1165 | return 1; |
1166 | ||
89604647 | 1167 | kvm_x86_call(set_cr0)(vcpu, cr0); |
a03490ed | 1168 | |
f27ad38a | 1169 | kvm_post_set_cr0(vcpu, old_cr0, cr0); |
b18d5431 | 1170 | |
0f12244f GN |
1171 | return 0; |
1172 | } | |
2d3ad1f4 | 1173 | EXPORT_SYMBOL_GPL(kvm_set_cr0); |
a03490ed | 1174 | |
2d3ad1f4 | 1175 | void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw) |
a03490ed | 1176 | { |
49a9b07e | 1177 | (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f)); |
a03490ed | 1178 | } |
2d3ad1f4 | 1179 | EXPORT_SYMBOL_GPL(kvm_lmsw); |
a03490ed | 1180 | |
139a12cf | 1181 | void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu) |
42bdf991 | 1182 | { |
16809ecd TL |
1183 | if (vcpu->arch.guest_state_protected) |
1184 | return; | |
1185 | ||
607475cf | 1186 | if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { |
139a12cf | 1187 | |
7974c064 | 1188 | if (vcpu->arch.xcr0 != kvm_host.xcr0) |
139a12cf AL |
1189 | xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0); |
1190 | ||
2c5e168e | 1191 | if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && |
7974c064 | 1192 | vcpu->arch.ia32_xss != kvm_host.xss) |
78255eb2 | 1193 | wrmsrq(MSR_IA32_XSS, vcpu->arch.ia32_xss); |
139a12cf | 1194 | } |
37486135 | 1195 | |
056b9919 | 1196 | if (cpu_feature_enabled(X86_FEATURE_PKU) && |
945024d7 JK |
1197 | vcpu->arch.pkru != vcpu->arch.host_pkru && |
1198 | ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || | |
607475cf | 1199 | kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) |
4c20cd4c | 1200 | wrpkru(vcpu->arch.pkru); |
42bdf991 | 1201 | } |
139a12cf | 1202 | EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state); |
42bdf991 | 1203 | |
139a12cf | 1204 | void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu) |
42bdf991 | 1205 | { |
16809ecd TL |
1206 | if (vcpu->arch.guest_state_protected) |
1207 | return; | |
1208 | ||
056b9919 | 1209 | if (cpu_feature_enabled(X86_FEATURE_PKU) && |
945024d7 | 1210 | ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) || |
607475cf | 1211 | kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) { |
37486135 BM |
1212 | vcpu->arch.pkru = rdpkru(); |
1213 | if (vcpu->arch.pkru != vcpu->arch.host_pkru) | |
4c20cd4c | 1214 | wrpkru(vcpu->arch.host_pkru); |
37486135 BM |
1215 | } |
1216 | ||
607475cf | 1217 | if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) { |
139a12cf | 1218 | |
7974c064 SC |
1219 | if (vcpu->arch.xcr0 != kvm_host.xcr0) |
1220 | xsetbv(XCR_XFEATURE_ENABLED_MASK, kvm_host.xcr0); | |
139a12cf | 1221 | |
2c5e168e | 1222 | if (guest_cpu_cap_has(vcpu, X86_FEATURE_XSAVES) && |
7974c064 | 1223 | vcpu->arch.ia32_xss != kvm_host.xss) |
78255eb2 | 1224 | wrmsrq(MSR_IA32_XSS, kvm_host.xss); |
139a12cf AL |
1225 | } |
1226 | ||
42bdf991 | 1227 | } |
139a12cf | 1228 | EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state); |
42bdf991 | 1229 | |
ba1f77c5 | 1230 | #ifdef CONFIG_X86_64 |
988896bb LB |
1231 | static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu) |
1232 | { | |
ee519b3a | 1233 | return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC; |
988896bb | 1234 | } |
ba1f77c5 | 1235 | #endif |
988896bb | 1236 | |
69b0049a | 1237 | static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr) |
2acf923e | 1238 | { |
56c103ec LJ |
1239 | u64 xcr0 = xcr; |
1240 | u64 old_xcr0 = vcpu->arch.xcr0; | |
46c34cb0 | 1241 | u64 valid_bits; |
2acf923e DC |
1242 | |
1243 | /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */ | |
1244 | if (index != XCR_XFEATURE_ENABLED_MASK) | |
1245 | return 1; | |
d91cab78 | 1246 | if (!(xcr0 & XFEATURE_MASK_FP)) |
2acf923e | 1247 | return 1; |
d91cab78 | 1248 | if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE)) |
2acf923e | 1249 | return 1; |
46c34cb0 PB |
1250 | |
1251 | /* | |
1252 | * Do not allow the guest to set bits that we do not support | |
1253 | * saving. However, xcr0 bit 0 is always set, even if the | |
e8f65b9b | 1254 | * emulated CPU does not support XSAVE (see kvm_vcpu_reset()). |
46c34cb0 | 1255 | */ |
ee519b3a | 1256 | valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP; |
46c34cb0 | 1257 | if (xcr0 & ~valid_bits) |
2acf923e | 1258 | return 1; |
46c34cb0 | 1259 | |
d91cab78 DH |
1260 | if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) != |
1261 | (!(xcr0 & XFEATURE_MASK_BNDCSR))) | |
390bd528 LJ |
1262 | return 1; |
1263 | ||
d91cab78 DH |
1264 | if (xcr0 & XFEATURE_MASK_AVX512) { |
1265 | if (!(xcr0 & XFEATURE_MASK_YMM)) | |
612263b3 | 1266 | return 1; |
d91cab78 | 1267 | if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512) |
612263b3 CP |
1268 | return 1; |
1269 | } | |
86aff7a4 JL |
1270 | |
1271 | if ((xcr0 & XFEATURE_MASK_XTILE) && | |
1272 | ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE)) | |
1273 | return 1; | |
1274 | ||
2acf923e | 1275 | vcpu->arch.xcr0 = xcr0; |
56c103ec | 1276 | |
d91cab78 | 1277 | if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND) |
93da6af3 | 1278 | vcpu->arch.cpuid_dynamic_bits_dirty = true; |
2acf923e DC |
1279 | return 0; |
1280 | } | |
1281 | ||
92f9895c | 1282 | int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu) |
2acf923e | 1283 | { |
50b2d49b | 1284 | /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */ |
89604647 | 1285 | if (kvm_x86_call(get_cpl)(vcpu) != 0 || |
92f9895c SC |
1286 | __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) { |
1287 | kvm_inject_gp(vcpu, 0); | |
1288 | return 1; | |
1289 | } | |
bbefd4fc | 1290 | |
92f9895c | 1291 | return kvm_skip_emulated_instruction(vcpu); |
2acf923e | 1292 | } |
92f9895c | 1293 | EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv); |
2acf923e | 1294 | |
c33f6f22 SC |
1295 | static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) |
1296 | { | |
1297 | return __kvm_is_valid_cr4(vcpu, cr4) && | |
89604647 | 1298 | kvm_x86_call(is_valid_cr4)(vcpu, cr4); |
3ca94192 WL |
1299 | } |
1300 | ||
5b51cb13 TL |
1301 | void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4) |
1302 | { | |
b5f61c03 PB |
1303 | if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS) |
1304 | kvm_mmu_reset_context(vcpu); | |
1305 | ||
509bfe3d | 1306 | /* |
509bfe3d LJ |
1307 | * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB |
1308 | * according to the SDM; however, stale prev_roots could be reused | |
1309 | * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we | |
b5f61c03 PB |
1310 | * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST |
1311 | * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed, | |
1312 | * so fall through. | |
509bfe3d | 1313 | */ |
b5f61c03 PB |
1314 | if (!tdp_enabled && |
1315 | (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) | |
f6d0a252 | 1316 | kvm_mmu_unload(vcpu); |
b5f61c03 PB |
1317 | |
1318 | /* | |
1319 | * The TLB has to be flushed for all PCIDs if any of the following | |
1320 | * (architecturally required) changes happen: | |
1321 | * - CR4.PCIDE is changed from 1 to 0 | |
1322 | * - CR4.PGE is toggled | |
509bfe3d | 1323 | * |
b5f61c03 | 1324 | * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT. |
509bfe3d | 1325 | */ |
b5f61c03 PB |
1326 | if (((cr4 ^ old_cr4) & X86_CR4_PGE) || |
1327 | (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE))) | |
55261738 | 1328 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
b5f61c03 PB |
1329 | |
1330 | /* | |
1331 | * The TLB has to be flushed for the current PCID if any of the | |
1332 | * following (architecturally required) changes happen: | |
1333 | * - CR4.SMEP is changed from 0 to 1 | |
1334 | * - CR4.PAE is toggled | |
1335 | */ | |
1336 | else if (((cr4 ^ old_cr4) & X86_CR4_PAE) || | |
1337 | ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP))) | |
1338 | kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); | |
1339 | ||
3ca94192 | 1340 | } |
5b51cb13 | 1341 | EXPORT_SYMBOL_GPL(kvm_post_set_cr4); |
3ca94192 WL |
1342 | |
1343 | int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4) | |
1344 | { | |
1345 | unsigned long old_cr4 = kvm_read_cr4(vcpu); | |
3ca94192 | 1346 | |
ee69c92b | 1347 | if (!kvm_is_valid_cr4(vcpu, cr4)) |
ae3e61e1 PB |
1348 | return 1; |
1349 | ||
a03490ed | 1350 | if (is_long_mode(vcpu)) { |
0f12244f GN |
1351 | if (!(cr4 & X86_CR4_PAE)) |
1352 | return 1; | |
d74fcfc1 SC |
1353 | if ((cr4 ^ old_cr4) & X86_CR4_LA57) |
1354 | return 1; | |
a2edf57f | 1355 | } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE) |
a37ebdce | 1356 | && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS) |
2df4a5eb | 1357 | && !load_pdptrs(vcpu, kvm_read_cr3(vcpu))) |
0f12244f GN |
1358 | return 1; |
1359 | ||
ad756a16 | 1360 | if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) { |
ad756a16 MJ |
1361 | /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */ |
1362 | if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu)) | |
1363 | return 1; | |
1364 | } | |
1365 | ||
89604647 | 1366 | kvm_x86_call(set_cr4)(vcpu, cr4); |
a03490ed | 1367 | |
5b51cb13 | 1368 | kvm_post_set_cr4(vcpu, old_cr4, cr4); |
2acf923e | 1369 | |
0f12244f GN |
1370 | return 0; |
1371 | } | |
2d3ad1f4 | 1372 | EXPORT_SYMBOL_GPL(kvm_set_cr4); |
a03490ed | 1373 | |
21823fbd SC |
1374 | static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid) |
1375 | { | |
1376 | struct kvm_mmu *mmu = vcpu->arch.mmu; | |
1377 | unsigned long roots_to_free = 0; | |
1378 | int i; | |
1379 | ||
e45e9e39 LJ |
1380 | /* |
1381 | * MOV CR3 and INVPCID are usually not intercepted when using TDP, but | |
1382 | * this is reachable when running EPT=1 and unrestricted_guest=0, and | |
1383 | * also via the emulator. KVM's TDP page tables are not in the scope of | |
1384 | * the invalidation, but the guest's TLB entries need to be flushed as | |
1385 | * the CPU may have cached entries in its TLB for the target PCID. | |
1386 | */ | |
1387 | if (unlikely(tdp_enabled)) { | |
1388 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | |
1389 | return; | |
1390 | } | |
1391 | ||
21823fbd SC |
1392 | /* |
1393 | * If neither the current CR3 nor any of the prev_roots use the given | |
1394 | * PCID, then nothing needs to be done here because a resync will | |
1395 | * happen anyway before switching to any other CR3. | |
1396 | */ | |
1397 | if (kvm_get_active_pcid(vcpu) == pcid) { | |
e62f1aa8 | 1398 | kvm_make_request(KVM_REQ_MMU_SYNC, vcpu); |
21823fbd SC |
1399 | kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); |
1400 | } | |
1401 | ||
509bfe3d LJ |
1402 | /* |
1403 | * If PCID is disabled, there is no need to free prev_roots even if the | |
1404 | * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB | |
1405 | * with PCIDE=0. | |
1406 | */ | |
607475cf | 1407 | if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) |
509bfe3d LJ |
1408 | return; |
1409 | ||
21823fbd SC |
1410 | for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) |
1411 | if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid) | |
1412 | roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i); | |
1413 | ||
0c1c92f1 | 1414 | kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free); |
21823fbd SC |
1415 | } |
1416 | ||
2390218b | 1417 | int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3) |
a03490ed | 1418 | { |
ade61e28 | 1419 | bool skip_tlb_flush = false; |
21823fbd | 1420 | unsigned long pcid = 0; |
ac146235 | 1421 | #ifdef CONFIG_X86_64 |
607475cf | 1422 | if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) { |
208320ba JS |
1423 | skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH; |
1424 | cr3 &= ~X86_CR3_PCID_NOFLUSH; | |
21823fbd | 1425 | pcid = cr3 & X86_CR3_PCID_MASK; |
ade61e28 | 1426 | } |
ac146235 | 1427 | #endif |
9d88fca7 | 1428 | |
c7313155 | 1429 | /* PDPTRs are always reloaded for PAE paging. */ |
21823fbd SC |
1430 | if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu)) |
1431 | goto handle_tlb_flush; | |
d835dfec | 1432 | |
886bbcc7 SC |
1433 | /* |
1434 | * Do not condition the GPA check on long mode, this helper is used to | |
1435 | * stuff CR3, e.g. for RSM emulation, and there is no guarantee that | |
1436 | * the current vCPU mode is accurate. | |
1437 | */ | |
2c49db45 | 1438 | if (!kvm_vcpu_is_legal_cr3(vcpu, cr3)) |
d1cd3ce9 | 1439 | return 1; |
886bbcc7 | 1440 | |
2df4a5eb | 1441 | if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3)) |
346874c9 | 1442 | return 1; |
a03490ed | 1443 | |
21823fbd | 1444 | if (cr3 != kvm_read_cr3(vcpu)) |
b5129100 | 1445 | kvm_mmu_new_pgd(vcpu, cr3); |
21823fbd | 1446 | |
0f12244f | 1447 | vcpu->arch.cr3 = cr3; |
3883bc9d | 1448 | kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
405329fc | 1449 | /* Do not call post_set_cr3, we do not get here for confidential guests. */ |
7c390d35 | 1450 | |
21823fbd SC |
1451 | handle_tlb_flush: |
1452 | /* | |
1453 | * A load of CR3 that flushes the TLB flushes only the current PCID, | |
1454 | * even if PCID is disabled, in which case PCID=0 is flushed. It's a | |
1455 | * moot point in the end because _disabling_ PCID will flush all PCIDs, | |
1456 | * and it's impossible to use a non-zero PCID when PCID is disabled, | |
1457 | * i.e. only PCID=0 can be relevant. | |
1458 | */ | |
1459 | if (!skip_tlb_flush) | |
1460 | kvm_invalidate_pcid(vcpu, pcid); | |
1461 | ||
0f12244f GN |
1462 | return 0; |
1463 | } | |
2d3ad1f4 | 1464 | EXPORT_SYMBOL_GPL(kvm_set_cr3); |
a03490ed | 1465 | |
eea1cff9 | 1466 | int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8) |
a03490ed | 1467 | { |
0f12244f GN |
1468 | if (cr8 & CR8_RESERVED_BITS) |
1469 | return 1; | |
35754c98 | 1470 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
1471 | kvm_lapic_set_tpr(vcpu, cr8); |
1472 | else | |
ad312c7c | 1473 | vcpu->arch.cr8 = cr8; |
0f12244f GN |
1474 | return 0; |
1475 | } | |
2d3ad1f4 | 1476 | EXPORT_SYMBOL_GPL(kvm_set_cr8); |
a03490ed | 1477 | |
2d3ad1f4 | 1478 | unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu) |
a03490ed | 1479 | { |
35754c98 | 1480 | if (lapic_in_kernel(vcpu)) |
a03490ed CO |
1481 | return kvm_lapic_get_cr8(vcpu); |
1482 | else | |
ad312c7c | 1483 | return vcpu->arch.cr8; |
a03490ed | 1484 | } |
2d3ad1f4 | 1485 | EXPORT_SYMBOL_GPL(kvm_get_cr8); |
a03490ed | 1486 | |
ae561ede NA |
1487 | static void kvm_update_dr0123(struct kvm_vcpu *vcpu) |
1488 | { | |
1489 | int i; | |
1490 | ||
1491 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) { | |
1492 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
1493 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae561ede NA |
1494 | } |
1495 | } | |
1496 | ||
7c86663b | 1497 | void kvm_update_dr7(struct kvm_vcpu *vcpu) |
c8639010 JK |
1498 | { |
1499 | unsigned long dr7; | |
1500 | ||
1501 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) | |
1502 | dr7 = vcpu->arch.guest_debug_dr7; | |
1503 | else | |
1504 | dr7 = vcpu->arch.dr7; | |
89604647 | 1505 | kvm_x86_call(set_dr7)(vcpu, dr7); |
360b948d PB |
1506 | vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED; |
1507 | if (dr7 & DR7_BP_EN_MASK) | |
1508 | vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED; | |
c8639010 | 1509 | } |
7c86663b | 1510 | EXPORT_SYMBOL_GPL(kvm_update_dr7); |
c8639010 | 1511 | |
6f43ed01 NA |
1512 | static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu) |
1513 | { | |
1514 | u64 fixed = DR6_FIXED_1; | |
1515 | ||
8f2a2775 | 1516 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_RTM)) |
6f43ed01 | 1517 | fixed |= DR6_RTM; |
e8ea85fb | 1518 | |
8f2a2775 | 1519 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT)) |
e8ea85fb | 1520 | fixed |= DR6_BUS_LOCK; |
6f43ed01 NA |
1521 | return fixed; |
1522 | } | |
1523 | ||
996ff542 | 1524 | int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val) |
020df079 | 1525 | { |
ea740059 MP |
1526 | size_t size = ARRAY_SIZE(vcpu->arch.db); |
1527 | ||
020df079 GN |
1528 | switch (dr) { |
1529 | case 0 ... 3: | |
ea740059 | 1530 | vcpu->arch.db[array_index_nospec(dr, size)] = val; |
020df079 GN |
1531 | if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) |
1532 | vcpu->arch.eff_db[dr] = val; | |
1533 | break; | |
1534 | case 4: | |
020df079 | 1535 | case 6: |
f5f6145e | 1536 | if (!kvm_dr6_valid(val)) |
996ff542 | 1537 | return 1; /* #GP */ |
6f43ed01 | 1538 | vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu); |
020df079 GN |
1539 | break; |
1540 | case 5: | |
020df079 | 1541 | default: /* 7 */ |
b91991bf | 1542 | if (!kvm_dr7_valid(val)) |
996ff542 | 1543 | return 1; /* #GP */ |
020df079 | 1544 | vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1; |
c8639010 | 1545 | kvm_update_dr7(vcpu); |
020df079 GN |
1546 | break; |
1547 | } | |
1548 | ||
1549 | return 0; | |
1550 | } | |
1551 | EXPORT_SYMBOL_GPL(kvm_set_dr); | |
1552 | ||
fc5375dd | 1553 | unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr) |
020df079 | 1554 | { |
ea740059 MP |
1555 | size_t size = ARRAY_SIZE(vcpu->arch.db); |
1556 | ||
020df079 GN |
1557 | switch (dr) { |
1558 | case 0 ... 3: | |
fc5375dd | 1559 | return vcpu->arch.db[array_index_nospec(dr, size)]; |
020df079 | 1560 | case 4: |
020df079 | 1561 | case 6: |
fc5375dd | 1562 | return vcpu->arch.dr6; |
020df079 | 1563 | case 5: |
020df079 | 1564 | default: /* 7 */ |
fc5375dd | 1565 | return vcpu->arch.dr7; |
020df079 | 1566 | } |
338dbc97 | 1567 | } |
020df079 GN |
1568 | EXPORT_SYMBOL_GPL(kvm_get_dr); |
1569 | ||
c483c454 | 1570 | int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu) |
022cd0e8 | 1571 | { |
de3cd117 | 1572 | u32 ecx = kvm_rcx_read(vcpu); |
022cd0e8 | 1573 | u64 data; |
022cd0e8 | 1574 | |
c483c454 SC |
1575 | if (kvm_pmu_rdpmc(vcpu, ecx, &data)) { |
1576 | kvm_inject_gp(vcpu, 0); | |
1577 | return 1; | |
1578 | } | |
1579 | ||
de3cd117 SC |
1580 | kvm_rax_write(vcpu, (u32)data); |
1581 | kvm_rdx_write(vcpu, data >> 32); | |
c483c454 | 1582 | return kvm_skip_emulated_instruction(vcpu); |
022cd0e8 | 1583 | } |
c483c454 | 1584 | EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc); |
022cd0e8 | 1585 | |
0204750b JM |
1586 | /* |
1587 | * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM | |
1588 | * does not yet virtualize. These include: | |
1589 | * 10 - MISC_PACKAGE_CTRLS | |
1590 | * 11 - ENERGY_FILTERING_CTL | |
1591 | * 12 - DOITM | |
1592 | * 18 - FB_CLEAR_CTRL | |
1593 | * 21 - XAPIC_DISABLE_STATUS | |
1594 | * 23 - OVERCLOCKING_STATUS | |
1595 | */ | |
1596 | ||
1597 | #define KVM_SUPPORTED_ARCH_CAP \ | |
1598 | (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \ | |
1599 | ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \ | |
1600 | ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \ | |
1601 | ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \ | |
2a018012 | 1602 | ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO | \ |
159013a7 | 1603 | ARCH_CAP_RFDS_NO | ARCH_CAP_RFDS_CLEAR | ARCH_CAP_BHI_NO | ARCH_CAP_ITS_NO) |
0204750b | 1604 | |
4d22c17c | 1605 | static u64 kvm_get_arch_capabilities(void) |
5b76a3cf | 1606 | { |
7974c064 | 1607 | u64 data = kvm_host.arch_capabilities & KVM_SUPPORTED_ARCH_CAP; |
5b76a3cf | 1608 | |
b8e8c830 PB |
1609 | /* |
1610 | * If nx_huge_pages is enabled, KVM's shadow paging will ensure that | |
1611 | * the nested hypervisor runs with NX huge pages. If it is not, | |
d9f6e12f | 1612 | * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other |
b8e8c830 PB |
1613 | * L1 guests, so it need not worry about its own (L2) guests. |
1614 | */ | |
1615 | data |= ARCH_CAP_PSCHANGE_MC_NO; | |
1616 | ||
5b76a3cf PB |
1617 | /* |
1618 | * If we're doing cache flushes (either "always" or "cond") | |
1619 | * we will do one whenever the guest does a vmlaunch/vmresume. | |
1620 | * If an outer hypervisor is doing the cache flush for us | |
02f1b0b7 | 1621 | * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that |
5b76a3cf PB |
1622 | * capability to the guest too, and if EPT is disabled we're not |
1623 | * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will | |
1624 | * require a nested hypervisor to do a flush of its own. | |
1625 | */ | |
1626 | if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER) | |
1627 | data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH; | |
1628 | ||
0c54914d PB |
1629 | if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN)) |
1630 | data |= ARCH_CAP_RDCL_NO; | |
1631 | if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS)) | |
1632 | data |= ARCH_CAP_SSB_NO; | |
1633 | if (!boot_cpu_has_bug(X86_BUG_MDS)) | |
1634 | data |= ARCH_CAP_MDS_NO; | |
2a018012 PG |
1635 | if (!boot_cpu_has_bug(X86_BUG_RFDS)) |
1636 | data |= ARCH_CAP_RFDS_NO; | |
159013a7 PG |
1637 | if (!boot_cpu_has_bug(X86_BUG_ITS)) |
1638 | data |= ARCH_CAP_ITS_NO; | |
0c54914d | 1639 | |
7131636e PB |
1640 | if (!boot_cpu_has(X86_FEATURE_RTM)) { |
1641 | /* | |
1642 | * If RTM=0 because the kernel has disabled TSX, the host might | |
1643 | * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0 | |
1644 | * and therefore knows that there cannot be TAA) but keep | |
1645 | * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts, | |
1646 | * and we want to allow migrating those guests to tsx=off hosts. | |
1647 | */ | |
1648 | data &= ~ARCH_CAP_TAA_NO; | |
1649 | } else if (!boot_cpu_has_bug(X86_BUG_TAA)) { | |
cbbaa272 | 1650 | data |= ARCH_CAP_TAA_NO; |
7131636e PB |
1651 | } else { |
1652 | /* | |
1653 | * Nothing to do here; we emulate TSX_CTRL if present on the | |
1654 | * host so the guest can choose between disabling TSX or | |
1655 | * using VERW to clear CPU buffers. | |
1656 | */ | |
1657 | } | |
e1d38b63 | 1658 | |
81ac7e5d DS |
1659 | if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated()) |
1660 | data |= ARCH_CAP_GDS_NO; | |
1661 | ||
5b76a3cf PB |
1662 | return data; |
1663 | } | |
5b76a3cf | 1664 | |
7075f163 SC |
1665 | static int kvm_get_feature_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, |
1666 | bool host_initiated) | |
66421c1e | 1667 | { |
7075f163 SC |
1668 | WARN_ON_ONCE(!host_initiated); |
1669 | ||
1670 | switch (index) { | |
cd283252 | 1671 | case MSR_IA32_ARCH_CAPABILITIES: |
7075f163 | 1672 | *data = kvm_get_arch_capabilities(); |
5b76a3cf | 1673 | break; |
5fe9805d | 1674 | case MSR_IA32_PERF_CAPABILITIES: |
7075f163 | 1675 | *data = kvm_caps.supported_perf_cap; |
5fe9805d | 1676 | break; |
b467ab82 PB |
1677 | case MSR_PLATFORM_INFO: |
1678 | *data = MSR_PLATFORM_INFO_CPUID_FAULT; | |
1679 | break; | |
5b76a3cf | 1680 | case MSR_IA32_UCODE_REV: |
6fe22aba | 1681 | rdmsrq_safe(index, data); |
518e7b94 | 1682 | break; |
66421c1e | 1683 | default: |
7075f163 | 1684 | return kvm_x86_call(get_feature_msr)(index, data); |
66421c1e WL |
1685 | } |
1686 | return 0; | |
1687 | } | |
1688 | ||
b848f24b | 1689 | static int do_get_feature_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) |
801e459a | 1690 | { |
1cec2034 SC |
1691 | return kvm_do_msr_access(vcpu, index, data, true, MSR_TYPE_R, |
1692 | kvm_get_feature_msr); | |
801e459a TL |
1693 | } |
1694 | ||
11988499 | 1695 | static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) |
15c4a640 | 1696 | { |
8f2a2775 | 1697 | if (efer & EFER_AUTOIBRS && !guest_cpu_cap_has(vcpu, X86_FEATURE_AUTOIBRS)) |
8c19b6f2 KP |
1698 | return false; |
1699 | ||
8f2a2775 | 1700 | if (efer & EFER_FFXSR && !guest_cpu_cap_has(vcpu, X86_FEATURE_FXSR_OPT)) |
11988499 | 1701 | return false; |
1b2fd70c | 1702 | |
8f2a2775 | 1703 | if (efer & EFER_SVME && !guest_cpu_cap_has(vcpu, X86_FEATURE_SVM)) |
11988499 | 1704 | return false; |
d8017474 | 1705 | |
0a629563 | 1706 | if (efer & (EFER_LME | EFER_LMA) && |
8f2a2775 | 1707 | !guest_cpu_cap_has(vcpu, X86_FEATURE_LM)) |
0a629563 SC |
1708 | return false; |
1709 | ||
8f2a2775 | 1710 | if (efer & EFER_NX && !guest_cpu_cap_has(vcpu, X86_FEATURE_NX)) |
0a629563 | 1711 | return false; |
d8017474 | 1712 | |
384bb783 | 1713 | return true; |
11988499 SC |
1714 | |
1715 | } | |
1716 | bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer) | |
1717 | { | |
1718 | if (efer & efer_reserved_bits) | |
1719 | return false; | |
1720 | ||
1721 | return __kvm_valid_efer(vcpu, efer); | |
384bb783 JK |
1722 | } |
1723 | EXPORT_SYMBOL_GPL(kvm_valid_efer); | |
1724 | ||
11988499 | 1725 | static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
384bb783 JK |
1726 | { |
1727 | u64 old_efer = vcpu->arch.efer; | |
11988499 | 1728 | u64 efer = msr_info->data; |
72f211ec | 1729 | int r; |
384bb783 | 1730 | |
11988499 | 1731 | if (efer & efer_reserved_bits) |
66f61c92 | 1732 | return 1; |
384bb783 | 1733 | |
11988499 SC |
1734 | if (!msr_info->host_initiated) { |
1735 | if (!__kvm_valid_efer(vcpu, efer)) | |
1736 | return 1; | |
1737 | ||
1738 | if (is_paging(vcpu) && | |
1739 | (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME)) | |
1740 | return 1; | |
1741 | } | |
384bb783 | 1742 | |
15c4a640 | 1743 | efer &= ~EFER_LMA; |
f6801dff | 1744 | efer |= vcpu->arch.efer & EFER_LMA; |
15c4a640 | 1745 | |
89604647 | 1746 | r = kvm_x86_call(set_efer)(vcpu, efer); |
72f211ec ML |
1747 | if (r) { |
1748 | WARN_ON(r > 0); | |
1749 | return r; | |
1750 | } | |
a3d204e2 | 1751 | |
d6174299 | 1752 | if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS) |
aad82703 SY |
1753 | kvm_mmu_reset_context(vcpu); |
1754 | ||
d52734d0 MS |
1755 | if (!static_cpu_has(X86_FEATURE_XSAVES) && |
1756 | (efer & EFER_SVME)) | |
1757 | kvm_hv_xsaves_xsavec_maybe_warn(vcpu); | |
1758 | ||
b69e8cae | 1759 | return 0; |
15c4a640 CO |
1760 | } |
1761 | ||
f2b4b7dd JR |
1762 | void kvm_enable_efer_bits(u64 mask) |
1763 | { | |
1764 | efer_reserved_bits &= ~mask; | |
1765 | } | |
1766 | EXPORT_SYMBOL_GPL(kvm_enable_efer_bits); | |
1767 | ||
51de8151 AG |
1768 | bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type) |
1769 | { | |
b318e8de SC |
1770 | struct kvm_x86_msr_filter *msr_filter; |
1771 | struct msr_bitmap_range *ranges; | |
1a155254 | 1772 | struct kvm *kvm = vcpu->kvm; |
b318e8de | 1773 | bool allowed; |
1a155254 | 1774 | int idx; |
b318e8de | 1775 | u32 i; |
1a155254 | 1776 | |
b318e8de SC |
1777 | /* x2APIC MSRs do not support filtering. */ |
1778 | if (index >= 0x800 && index <= 0x8ff) | |
1a155254 AG |
1779 | return true; |
1780 | ||
1a155254 AG |
1781 | idx = srcu_read_lock(&kvm->srcu); |
1782 | ||
b318e8de SC |
1783 | msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu); |
1784 | if (!msr_filter) { | |
1785 | allowed = true; | |
1786 | goto out; | |
1787 | } | |
1788 | ||
1789 | allowed = msr_filter->default_allow; | |
1790 | ranges = msr_filter->ranges; | |
1791 | ||
1792 | for (i = 0; i < msr_filter->count; i++) { | |
1a155254 AG |
1793 | u32 start = ranges[i].base; |
1794 | u32 end = start + ranges[i].nmsrs; | |
1795 | u32 flags = ranges[i].flags; | |
1796 | unsigned long *bitmap = ranges[i].bitmap; | |
1797 | ||
1798 | if ((index >= start) && (index < end) && (flags & type)) { | |
e12fa4b9 | 1799 | allowed = test_bit(index - start, bitmap); |
1a155254 AG |
1800 | break; |
1801 | } | |
1802 | } | |
1803 | ||
b318e8de | 1804 | out: |
1a155254 AG |
1805 | srcu_read_unlock(&kvm->srcu, idx); |
1806 | ||
b318e8de | 1807 | return allowed; |
51de8151 AG |
1808 | } |
1809 | EXPORT_SYMBOL_GPL(kvm_msr_allowed); | |
1810 | ||
15c4a640 | 1811 | /* |
f20935d8 SC |
1812 | * Write @data into the MSR specified by @index. Select MSR specific fault |
1813 | * checks are bypassed if @host_initiated is %true. | |
15c4a640 CO |
1814 | * Returns 0 on success, non-0 otherwise. |
1815 | * Assumes vcpu_load() was already called. | |
1816 | */ | |
f20935d8 SC |
1817 | static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data, |
1818 | bool host_initiated) | |
15c4a640 | 1819 | { |
f20935d8 SC |
1820 | struct msr_data msr; |
1821 | ||
1822 | switch (index) { | |
854e8bb1 NA |
1823 | case MSR_FS_BASE: |
1824 | case MSR_GS_BASE: | |
1825 | case MSR_KERNEL_GS_BASE: | |
1826 | case MSR_CSTAR: | |
1827 | case MSR_LSTAR: | |
9245fd6b | 1828 | if (is_noncanonical_msr_address(data, vcpu)) |
854e8bb1 NA |
1829 | return 1; |
1830 | break; | |
1831 | case MSR_IA32_SYSENTER_EIP: | |
1832 | case MSR_IA32_SYSENTER_ESP: | |
1833 | /* | |
1834 | * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if | |
1835 | * non-canonical address is written on Intel but not on | |
1836 | * AMD (which ignores the top 32-bits, because it does | |
1837 | * not implement 64-bit SYSENTER). | |
1838 | * | |
1839 | * 64-bit code should hence be able to write a non-canonical | |
1840 | * value on AMD. Making the address canonical ensures that | |
1841 | * vmentry does not fail on Intel after writing a non-canonical | |
1842 | * value, and that something deterministic happens if the guest | |
1843 | * invokes 64-bit SYSENTER. | |
1844 | */ | |
9245fd6b | 1845 | data = __canonical_address(data, max_host_virt_addr_bits()); |
61a05d44 SC |
1846 | break; |
1847 | case MSR_TSC_AUX: | |
1848 | if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) | |
1849 | return 1; | |
1850 | ||
1851 | if (!host_initiated && | |
8f2a2775 SC |
1852 | !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && |
1853 | !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) | |
61a05d44 SC |
1854 | return 1; |
1855 | ||
1856 | /* | |
1857 | * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has | |
1858 | * incomplete and conflicting architectural behavior. Current | |
1859 | * AMD CPUs completely ignore bits 63:32, i.e. they aren't | |
1860 | * reserved and always read as zeros. Enforce Intel's reserved | |
6463e5e4 SC |
1861 | * bits check if the guest CPU is Intel compatible, otherwise |
1862 | * clear the bits. This ensures cross-vendor migration will | |
1863 | * provide consistent behavior for the guest. | |
61a05d44 | 1864 | */ |
6463e5e4 | 1865 | if (guest_cpuid_is_intel_compatible(vcpu) && (data >> 32) != 0) |
61a05d44 SC |
1866 | return 1; |
1867 | ||
1868 | data = (u32)data; | |
1869 | break; | |
854e8bb1 | 1870 | } |
f20935d8 SC |
1871 | |
1872 | msr.data = data; | |
1873 | msr.index = index; | |
1874 | msr.host_initiated = host_initiated; | |
1875 | ||
89604647 | 1876 | return kvm_x86_call(set_msr)(vcpu, &msr); |
15c4a640 CO |
1877 | } |
1878 | ||
1cec2034 SC |
1879 | static int _kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, |
1880 | bool host_initiated) | |
1881 | { | |
1882 | return __kvm_set_msr(vcpu, index, *data, host_initiated); | |
1883 | } | |
1884 | ||
6abe9c13 PX |
1885 | static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu, |
1886 | u32 index, u64 data, bool host_initiated) | |
1887 | { | |
1cec2034 SC |
1888 | return kvm_do_msr_access(vcpu, index, &data, host_initiated, MSR_TYPE_W, |
1889 | _kvm_set_msr); | |
6abe9c13 PX |
1890 | } |
1891 | ||
313a3dc7 | 1892 | /* |
f20935d8 SC |
1893 | * Read the MSR specified by @index into @data. Select MSR specific fault |
1894 | * checks are bypassed if @host_initiated is %true. | |
1895 | * Returns 0 on success, non-0 otherwise. | |
1896 | * Assumes vcpu_load() was already called. | |
313a3dc7 | 1897 | */ |
edef5c36 PB |
1898 | int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, |
1899 | bool host_initiated) | |
609e36d3 PB |
1900 | { |
1901 | struct msr_data msr; | |
f20935d8 | 1902 | int ret; |
609e36d3 | 1903 | |
61a05d44 SC |
1904 | switch (index) { |
1905 | case MSR_TSC_AUX: | |
1906 | if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX)) | |
1907 | return 1; | |
1908 | ||
1909 | if (!host_initiated && | |
8f2a2775 SC |
1910 | !guest_cpu_cap_has(vcpu, X86_FEATURE_RDTSCP) && |
1911 | !guest_cpu_cap_has(vcpu, X86_FEATURE_RDPID)) | |
61a05d44 SC |
1912 | return 1; |
1913 | break; | |
1914 | } | |
1915 | ||
609e36d3 | 1916 | msr.index = index; |
f20935d8 | 1917 | msr.host_initiated = host_initiated; |
609e36d3 | 1918 | |
89604647 | 1919 | ret = kvm_x86_call(get_msr)(vcpu, &msr); |
f20935d8 SC |
1920 | if (!ret) |
1921 | *data = msr.data; | |
1922 | return ret; | |
609e36d3 PB |
1923 | } |
1924 | ||
6abe9c13 PX |
1925 | static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu, |
1926 | u32 index, u64 *data, bool host_initiated) | |
1927 | { | |
1cec2034 SC |
1928 | return kvm_do_msr_access(vcpu, index, data, host_initiated, MSR_TYPE_R, |
1929 | __kvm_get_msr); | |
6abe9c13 PX |
1930 | } |
1931 | ||
653ea448 | 1932 | int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data) |
ac8d6cad HW |
1933 | { |
1934 | if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ)) | |
1935 | return KVM_MSR_RET_FILTERED; | |
1936 | return kvm_get_msr_ignored_check(vcpu, index, data, false); | |
1937 | } | |
653ea448 | 1938 | EXPORT_SYMBOL_GPL(kvm_get_msr_with_filter); |
ac8d6cad | 1939 | |
653ea448 | 1940 | int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data) |
ac8d6cad HW |
1941 | { |
1942 | if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE)) | |
1943 | return KVM_MSR_RET_FILTERED; | |
1944 | return kvm_set_msr_ignored_check(vcpu, index, data, false); | |
1945 | } | |
653ea448 | 1946 | EXPORT_SYMBOL_GPL(kvm_set_msr_with_filter); |
ac8d6cad | 1947 | |
f20935d8 | 1948 | int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data) |
313a3dc7 | 1949 | { |
6abe9c13 | 1950 | return kvm_get_msr_ignored_check(vcpu, index, data, false); |
f20935d8 SC |
1951 | } |
1952 | EXPORT_SYMBOL_GPL(kvm_get_msr); | |
8fe8ab46 | 1953 | |
f20935d8 SC |
1954 | int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data) |
1955 | { | |
6abe9c13 | 1956 | return kvm_set_msr_ignored_check(vcpu, index, data, false); |
f20935d8 SC |
1957 | } |
1958 | EXPORT_SYMBOL_GPL(kvm_set_msr); | |
1959 | ||
d2f7d498 | 1960 | static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu) |
1ae09954 | 1961 | { |
d2f7d498 | 1962 | if (!vcpu->run->msr.error) { |
1ae09954 AG |
1963 | kvm_rax_write(vcpu, (u32)vcpu->run->msr.data); |
1964 | kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32); | |
1965 | } | |
d2f7d498 | 1966 | } |
1ae09954 | 1967 | |
d2f7d498 HW |
1968 | static int complete_emulated_msr_access(struct kvm_vcpu *vcpu) |
1969 | { | |
1970 | return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error); | |
1ae09954 AG |
1971 | } |
1972 | ||
d2f7d498 HW |
1973 | static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu) |
1974 | { | |
1975 | complete_userspace_rdmsr(vcpu); | |
1976 | return complete_emulated_msr_access(vcpu); | |
1977 | } | |
1978 | ||
1979 | static int complete_fast_msr_access(struct kvm_vcpu *vcpu) | |
1ae09954 | 1980 | { |
89604647 | 1981 | return kvm_x86_call(complete_emulated_msr)(vcpu, vcpu->run->msr.error); |
1ae09954 AG |
1982 | } |
1983 | ||
d2f7d498 HW |
1984 | static int complete_fast_rdmsr(struct kvm_vcpu *vcpu) |
1985 | { | |
1986 | complete_userspace_rdmsr(vcpu); | |
1987 | return complete_fast_msr_access(vcpu); | |
1988 | } | |
1989 | ||
1ae09954 AG |
1990 | static u64 kvm_msr_reason(int r) |
1991 | { | |
1992 | switch (r) { | |
aaecae7b | 1993 | case KVM_MSR_RET_UNSUPPORTED: |
1ae09954 | 1994 | return KVM_MSR_EXIT_REASON_UNKNOWN; |
cc4cb017 | 1995 | case KVM_MSR_RET_FILTERED: |
1a155254 | 1996 | return KVM_MSR_EXIT_REASON_FILTER; |
1ae09954 AG |
1997 | default: |
1998 | return KVM_MSR_EXIT_REASON_INVAL; | |
1999 | } | |
2000 | } | |
2001 | ||
2002 | static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index, | |
2003 | u32 exit_reason, u64 data, | |
2004 | int (*completion)(struct kvm_vcpu *vcpu), | |
2005 | int r) | |
2006 | { | |
2007 | u64 msr_reason = kvm_msr_reason(r); | |
2008 | ||
2009 | /* Check if the user wanted to know about this MSR fault */ | |
2010 | if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason)) | |
2011 | return 0; | |
2012 | ||
2013 | vcpu->run->exit_reason = exit_reason; | |
2014 | vcpu->run->msr.error = 0; | |
2015 | memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad)); | |
2016 | vcpu->run->msr.reason = msr_reason; | |
2017 | vcpu->run->msr.index = index; | |
2018 | vcpu->run->msr.data = data; | |
2019 | vcpu->arch.complete_userspace_io = completion; | |
2020 | ||
2021 | return 1; | |
2022 | } | |
2023 | ||
1edce0a9 SC |
2024 | int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu) |
2025 | { | |
2026 | u32 ecx = kvm_rcx_read(vcpu); | |
2027 | u64 data; | |
1ae09954 AG |
2028 | int r; |
2029 | ||
ac8d6cad | 2030 | r = kvm_get_msr_with_filter(vcpu, ecx, &data); |
1edce0a9 | 2031 | |
8b474427 PB |
2032 | if (!r) { |
2033 | trace_kvm_msr_read(ecx, data); | |
2034 | ||
2035 | kvm_rax_write(vcpu, data & -1u); | |
2036 | kvm_rdx_write(vcpu, (data >> 32) & -1u); | |
2037 | } else { | |
d2f7d498 HW |
2038 | /* MSR read failed? See if we should ask user space */ |
2039 | if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0, | |
2040 | complete_fast_rdmsr, r)) | |
2041 | return 0; | |
1edce0a9 | 2042 | trace_kvm_msr_read_ex(ecx); |
1edce0a9 SC |
2043 | } |
2044 | ||
89604647 | 2045 | return kvm_x86_call(complete_emulated_msr)(vcpu, r); |
1edce0a9 SC |
2046 | } |
2047 | EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr); | |
2048 | ||
2049 | int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu) | |
2050 | { | |
2051 | u32 ecx = kvm_rcx_read(vcpu); | |
2052 | u64 data = kvm_read_edx_eax(vcpu); | |
1ae09954 | 2053 | int r; |
1edce0a9 | 2054 | |
ac8d6cad | 2055 | r = kvm_set_msr_with_filter(vcpu, ecx, data); |
1ae09954 | 2056 | |
d2f7d498 | 2057 | if (!r) { |
8b474427 | 2058 | trace_kvm_msr_write(ecx, data); |
d2f7d498 HW |
2059 | } else { |
2060 | /* MSR write failed? See if we should ask user space */ | |
2061 | if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data, | |
2062 | complete_fast_msr_access, r)) | |
2063 | return 0; | |
2064 | /* Signal all other negative errors to userspace */ | |
2065 | if (r < 0) | |
2066 | return r; | |
1edce0a9 | 2067 | trace_kvm_msr_write_ex(ecx, data); |
d2f7d498 | 2068 | } |
1edce0a9 | 2069 | |
89604647 | 2070 | return kvm_x86_call(complete_emulated_msr)(vcpu, r); |
1edce0a9 SC |
2071 | } |
2072 | EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr); | |
2073 | ||
5ff3a351 SC |
2074 | int kvm_emulate_as_nop(struct kvm_vcpu *vcpu) |
2075 | { | |
2076 | return kvm_skip_emulated_instruction(vcpu); | |
2077 | } | |
5ff3a351 SC |
2078 | |
2079 | int kvm_emulate_invd(struct kvm_vcpu *vcpu) | |
2080 | { | |
2081 | /* Treat an INVD instruction as a NOP and just skip it. */ | |
2082 | return kvm_emulate_as_nop(vcpu); | |
2083 | } | |
2084 | EXPORT_SYMBOL_GPL(kvm_emulate_invd); | |
2085 | ||
5ff3a351 SC |
2086 | int kvm_handle_invalid_op(struct kvm_vcpu *vcpu) |
2087 | { | |
2088 | kvm_queue_exception(vcpu, UD_VECTOR); | |
2089 | return 1; | |
2090 | } | |
2091 | EXPORT_SYMBOL_GPL(kvm_handle_invalid_op); | |
2092 | ||
bfbcc81b SC |
2093 | |
2094 | static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn) | |
5ff3a351 | 2095 | { |
a487f679 SC |
2096 | bool enabled; |
2097 | ||
2098 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)) | |
2099 | goto emulate_as_nop; | |
2100 | ||
2101 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT)) | |
2102 | enabled = guest_cpu_cap_has(vcpu, X86_FEATURE_MWAIT); | |
2103 | else | |
2104 | enabled = vcpu->arch.ia32_misc_enable_msr & MSR_IA32_MISC_ENABLE_MWAIT; | |
2105 | ||
2106 | if (!enabled) | |
bfbcc81b SC |
2107 | return kvm_handle_invalid_op(vcpu); |
2108 | ||
a487f679 | 2109 | emulate_as_nop: |
8d20bd63 | 2110 | pr_warn_once("%s instruction emulated as NOP!\n", insn); |
5ff3a351 SC |
2111 | return kvm_emulate_as_nop(vcpu); |
2112 | } | |
bfbcc81b SC |
2113 | int kvm_emulate_mwait(struct kvm_vcpu *vcpu) |
2114 | { | |
2115 | return kvm_emulate_monitor_mwait(vcpu, "MWAIT"); | |
2116 | } | |
2117 | EXPORT_SYMBOL_GPL(kvm_emulate_mwait); | |
2118 | ||
2119 | int kvm_emulate_monitor(struct kvm_vcpu *vcpu) | |
2120 | { | |
2121 | return kvm_emulate_monitor_mwait(vcpu, "MONITOR"); | |
2122 | } | |
5ff3a351 SC |
2123 | EXPORT_SYMBOL_GPL(kvm_emulate_monitor); |
2124 | ||
d89d04ab | 2125 | static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu) |
5a9f5443 | 2126 | { |
4ae7dc97 | 2127 | xfer_to_guest_mode_prepare(); |
3ffe874e SC |
2128 | |
2129 | return READ_ONCE(vcpu->mode) == EXITING_GUEST_MODE || | |
2130 | kvm_request_pending(vcpu) || xfer_to_guest_mode_work_pending(); | |
5a9f5443 | 2131 | } |
5a9f5443 | 2132 | |
1e9e2622 WL |
2133 | /* |
2134 | * The fast path for frequent and performance sensitive wrmsr emulation, | |
2135 | * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces | |
2136 | * the latency of virtual IPI by avoiding the expensive bits of transitioning | |
2137 | * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the | |
2138 | * other cases which must be called after interrupts are enabled on the host. | |
2139 | */ | |
2140 | static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data) | |
2141 | { | |
e1be9ac8 WL |
2142 | if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic)) |
2143 | return 1; | |
2144 | ||
2145 | if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) && | |
bd17f417 SC |
2146 | ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) && |
2147 | ((data & APIC_MODE_MASK) == APIC_DM_FIXED) && | |
b9964ee3 SC |
2148 | ((u32)(data >> 32) != X2APIC_BROADCAST)) |
2149 | return kvm_x2apic_icr_write(vcpu->arch.apic, data); | |
1e9e2622 WL |
2150 | |
2151 | return 1; | |
2152 | } | |
2153 | ||
ae95f566 WL |
2154 | static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data) |
2155 | { | |
2156 | if (!kvm_can_use_hv_timer(vcpu)) | |
2157 | return 1; | |
2158 | ||
2159 | kvm_set_lapic_tscdeadline_msr(vcpu, data); | |
2160 | return 0; | |
2161 | } | |
2162 | ||
404d5d7b | 2163 | fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu) |
1e9e2622 WL |
2164 | { |
2165 | u32 msr = kvm_rcx_read(vcpu); | |
8a1038de | 2166 | u64 data; |
ea60229a SC |
2167 | fastpath_t ret; |
2168 | bool handled; | |
1e9e2622 | 2169 | |
3f2739bd SC |
2170 | kvm_vcpu_srcu_read_lock(vcpu); |
2171 | ||
1e9e2622 WL |
2172 | switch (msr) { |
2173 | case APIC_BASE_MSR + (APIC_ICR >> 4): | |
8a1038de | 2174 | data = kvm_read_edx_eax(vcpu); |
ea60229a | 2175 | handled = !handle_fastpath_set_x2apic_icr_irqoff(vcpu, data); |
1e9e2622 | 2176 | break; |
09141ec0 | 2177 | case MSR_IA32_TSC_DEADLINE: |
ae95f566 | 2178 | data = kvm_read_edx_eax(vcpu); |
ea60229a | 2179 | handled = !handle_fastpath_set_tscdeadline(vcpu, data); |
ae95f566 | 2180 | break; |
1e9e2622 | 2181 | default: |
ea60229a | 2182 | handled = false; |
404d5d7b | 2183 | break; |
1e9e2622 WL |
2184 | } |
2185 | ||
ea60229a | 2186 | if (handled) { |
f7f39c50 SC |
2187 | if (!kvm_skip_emulated_instruction(vcpu)) |
2188 | ret = EXIT_FASTPATH_EXIT_USERSPACE; | |
2189 | else | |
2190 | ret = EXIT_FASTPATH_REENTER_GUEST; | |
1e9e2622 | 2191 | trace_kvm_msr_write(msr, data); |
ea60229a SC |
2192 | } else { |
2193 | ret = EXIT_FASTPATH_NONE; | |
2194 | } | |
1e9e2622 | 2195 | |
3f2739bd SC |
2196 | kvm_vcpu_srcu_read_unlock(vcpu); |
2197 | ||
404d5d7b | 2198 | return ret; |
1e9e2622 WL |
2199 | } |
2200 | EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff); | |
2201 | ||
f20935d8 SC |
2202 | /* |
2203 | * Adapt set_msr() to msr_io()'s calling convention | |
2204 | */ | |
2205 | static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | |
2206 | { | |
6abe9c13 | 2207 | return kvm_get_msr_ignored_check(vcpu, index, data, true); |
f20935d8 SC |
2208 | } |
2209 | ||
2210 | static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data) | |
2211 | { | |
0094f62c SC |
2212 | u64 val; |
2213 | ||
2214 | /* | |
2215 | * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does | |
2216 | * not support modifying the guest vCPU model on the fly, e.g. changing | |
1d294dfa | 2217 | * the nVMX capabilities while L2 is running is nonsensical. Allow |
0094f62c SC |
2218 | * writes of the same value, e.g. to allow userspace to blindly stuff |
2219 | * all MSRs when emulating RESET. | |
2220 | */ | |
1d294dfa SC |
2221 | if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index) && |
2222 | (do_get_msr(vcpu, index, &val) || *data != val)) | |
2223 | return -EINVAL; | |
0094f62c | 2224 | |
6abe9c13 | 2225 | return kvm_set_msr_ignored_check(vcpu, index, *data, true); |
313a3dc7 CO |
2226 | } |
2227 | ||
16e8d74d | 2228 | #ifdef CONFIG_X86_64 |
53fafdbb MT |
2229 | struct pvclock_clock { |
2230 | int vclock_mode; | |
2231 | u64 cycle_last; | |
2232 | u64 mask; | |
2233 | u32 mult; | |
2234 | u32 shift; | |
917f9475 PB |
2235 | u64 base_cycles; |
2236 | u64 offset; | |
53fafdbb MT |
2237 | }; |
2238 | ||
16e8d74d MT |
2239 | struct pvclock_gtod_data { |
2240 | seqcount_t seq; | |
2241 | ||
53fafdbb MT |
2242 | struct pvclock_clock clock; /* extract of a clocksource struct */ |
2243 | struct pvclock_clock raw_clock; /* extract of a clocksource struct */ | |
16e8d74d | 2244 | |
917f9475 | 2245 | ktime_t offs_boot; |
55dd00a7 | 2246 | u64 wall_time_sec; |
16e8d74d MT |
2247 | }; |
2248 | ||
2249 | static struct pvclock_gtod_data pvclock_gtod_data; | |
2250 | ||
2251 | static void update_pvclock_gtod(struct timekeeper *tk) | |
2252 | { | |
2253 | struct pvclock_gtod_data *vdata = &pvclock_gtod_data; | |
2254 | ||
2255 | write_seqcount_begin(&vdata->seq); | |
2256 | ||
2257 | /* copy pvclock gtod data */ | |
b95a8a27 | 2258 | vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode; |
876e7881 PZ |
2259 | vdata->clock.cycle_last = tk->tkr_mono.cycle_last; |
2260 | vdata->clock.mask = tk->tkr_mono.mask; | |
2261 | vdata->clock.mult = tk->tkr_mono.mult; | |
2262 | vdata->clock.shift = tk->tkr_mono.shift; | |
917f9475 PB |
2263 | vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec; |
2264 | vdata->clock.offset = tk->tkr_mono.base; | |
16e8d74d | 2265 | |
b95a8a27 | 2266 | vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode; |
53fafdbb MT |
2267 | vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last; |
2268 | vdata->raw_clock.mask = tk->tkr_raw.mask; | |
2269 | vdata->raw_clock.mult = tk->tkr_raw.mult; | |
2270 | vdata->raw_clock.shift = tk->tkr_raw.shift; | |
917f9475 PB |
2271 | vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec; |
2272 | vdata->raw_clock.offset = tk->tkr_raw.base; | |
16e8d74d | 2273 | |
55dd00a7 MT |
2274 | vdata->wall_time_sec = tk->xtime_sec; |
2275 | ||
917f9475 | 2276 | vdata->offs_boot = tk->offs_boot; |
53fafdbb | 2277 | |
16e8d74d MT |
2278 | write_seqcount_end(&vdata->seq); |
2279 | } | |
8171cd68 PB |
2280 | |
2281 | static s64 get_kvmclock_base_ns(void) | |
2282 | { | |
2283 | /* Count up from boot time, but with the frequency of the raw clock. */ | |
2284 | return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot)); | |
2285 | } | |
2286 | #else | |
2287 | static s64 get_kvmclock_base_ns(void) | |
2288 | { | |
2289 | /* Master clock not used, so we can just use CLOCK_BOOTTIME. */ | |
2290 | return ktime_get_boottime_ns(); | |
2291 | } | |
16e8d74d MT |
2292 | #endif |
2293 | ||
55749769 | 2294 | static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs) |
18068523 | 2295 | { |
9ed3c444 AK |
2296 | int version; |
2297 | int r; | |
50d0a0f9 | 2298 | struct pvclock_wall_clock wc; |
629b5348 | 2299 | u32 wc_sec_hi; |
8171cd68 | 2300 | u64 wall_nsec; |
18068523 GOC |
2301 | |
2302 | if (!wall_clock) | |
2303 | return; | |
2304 | ||
9ed3c444 AK |
2305 | r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version)); |
2306 | if (r) | |
2307 | return; | |
2308 | ||
2309 | if (version & 1) | |
2310 | ++version; /* first time write, random junk */ | |
2311 | ||
2312 | ++version; | |
18068523 | 2313 | |
1dab1345 NK |
2314 | if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version))) |
2315 | return; | |
18068523 | 2316 | |
5d6d6a7d | 2317 | wall_nsec = kvm_get_wall_clock_epoch(kvm); |
50d0a0f9 | 2318 | |
5d6d6a7d | 2319 | wc.nsec = do_div(wall_nsec, NSEC_PER_SEC); |
8171cd68 | 2320 | wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */ |
50d0a0f9 | 2321 | wc.version = version; |
18068523 GOC |
2322 | |
2323 | kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc)); | |
2324 | ||
629b5348 JM |
2325 | if (sec_hi_ofs) { |
2326 | wc_sec_hi = wall_nsec >> 32; | |
2327 | kvm_write_guest(kvm, wall_clock + sec_hi_ofs, | |
2328 | &wc_sec_hi, sizeof(wc_sec_hi)); | |
2329 | } | |
2330 | ||
18068523 GOC |
2331 | version++; |
2332 | kvm_write_guest(kvm, wall_clock, &version, sizeof(version)); | |
18068523 GOC |
2333 | } |
2334 | ||
5b9bb0eb OU |
2335 | static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time, |
2336 | bool old_msr, bool host_initiated) | |
2337 | { | |
2338 | struct kvm_arch *ka = &vcpu->kvm->arch; | |
2339 | ||
2340 | if (vcpu->vcpu_id == 0 && !host_initiated) { | |
1e293d1a | 2341 | if (ka->boot_vcpu_runs_old_kvmclock != old_msr) |
5b9bb0eb OU |
2342 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
2343 | ||
2344 | ka->boot_vcpu_runs_old_kvmclock = old_msr; | |
2345 | } | |
2346 | ||
2347 | vcpu->arch.time = system_time; | |
2348 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); | |
2349 | ||
2350 | /* we verify if the enable bit is set... */ | |
8c82a0b3 ML |
2351 | if (system_time & 1) |
2352 | kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL, | |
52491a38 | 2353 | sizeof(struct pvclock_vcpu_time_info)); |
8c82a0b3 ML |
2354 | else |
2355 | kvm_gpc_deactivate(&vcpu->arch.pv_time); | |
5b9bb0eb OU |
2356 | |
2357 | return; | |
2358 | } | |
2359 | ||
50d0a0f9 GH |
2360 | static uint32_t div_frac(uint32_t dividend, uint32_t divisor) |
2361 | { | |
b51012de PB |
2362 | do_shl32_div32(dividend, divisor); |
2363 | return dividend; | |
50d0a0f9 GH |
2364 | } |
2365 | ||
3ae13faa | 2366 | static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz, |
5f4e3f88 | 2367 | s8 *pshift, u32 *pmultiplier) |
50d0a0f9 | 2368 | { |
5f4e3f88 | 2369 | uint64_t scaled64; |
50d0a0f9 GH |
2370 | int32_t shift = 0; |
2371 | uint64_t tps64; | |
2372 | uint32_t tps32; | |
2373 | ||
3ae13faa PB |
2374 | tps64 = base_hz; |
2375 | scaled64 = scaled_hz; | |
50933623 | 2376 | while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) { |
50d0a0f9 GH |
2377 | tps64 >>= 1; |
2378 | shift--; | |
2379 | } | |
2380 | ||
2381 | tps32 = (uint32_t)tps64; | |
50933623 JK |
2382 | while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) { |
2383 | if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000) | |
5f4e3f88 ZA |
2384 | scaled64 >>= 1; |
2385 | else | |
2386 | tps32 <<= 1; | |
50d0a0f9 GH |
2387 | shift++; |
2388 | } | |
2389 | ||
5f4e3f88 ZA |
2390 | *pshift = shift; |
2391 | *pmultiplier = div_frac(scaled64, tps32); | |
50d0a0f9 GH |
2392 | } |
2393 | ||
d828199e | 2394 | #ifdef CONFIG_X86_64 |
16e8d74d | 2395 | static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0); |
d828199e | 2396 | #endif |
16e8d74d | 2397 | |
c8076604 | 2398 | static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz); |
69b0049a | 2399 | static unsigned long max_tsc_khz; |
c8076604 | 2400 | |
cc578287 | 2401 | static u32 adjust_tsc_khz(u32 khz, s32 ppm) |
1e993611 | 2402 | { |
cc578287 ZA |
2403 | u64 v = (u64)khz * (1000000 + ppm); |
2404 | do_div(v, 1000000); | |
2405 | return v; | |
1e993611 JR |
2406 | } |
2407 | ||
1ab9287a IS |
2408 | static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier); |
2409 | ||
381d585c HZ |
2410 | static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale) |
2411 | { | |
2412 | u64 ratio; | |
2413 | ||
2414 | /* Guest TSC same frequency as host TSC? */ | |
2415 | if (!scale) { | |
938c8745 | 2416 | kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); |
381d585c HZ |
2417 | return 0; |
2418 | } | |
2419 | ||
2420 | /* TSC scaling supported? */ | |
938c8745 | 2421 | if (!kvm_caps.has_tsc_control) { |
381d585c HZ |
2422 | if (user_tsc_khz > tsc_khz) { |
2423 | vcpu->arch.tsc_catchup = 1; | |
2424 | vcpu->arch.tsc_always_catchup = 1; | |
2425 | return 0; | |
2426 | } else { | |
3f16a5c3 | 2427 | pr_warn_ratelimited("user requested TSC rate below hardware speed\n"); |
381d585c HZ |
2428 | return -1; |
2429 | } | |
2430 | } | |
2431 | ||
2432 | /* TSC scaling required - calculate ratio */ | |
938c8745 | 2433 | ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits, |
381d585c HZ |
2434 | user_tsc_khz, tsc_khz); |
2435 | ||
938c8745 | 2436 | if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) { |
3f16a5c3 PB |
2437 | pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n", |
2438 | user_tsc_khz); | |
381d585c HZ |
2439 | return -1; |
2440 | } | |
2441 | ||
1ab9287a | 2442 | kvm_vcpu_write_tsc_multiplier(vcpu, ratio); |
381d585c HZ |
2443 | return 0; |
2444 | } | |
2445 | ||
4941b8cb | 2446 | static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz) |
759379dd | 2447 | { |
cc578287 ZA |
2448 | u32 thresh_lo, thresh_hi; |
2449 | int use_scaling = 0; | |
217fc9cf | 2450 | |
03ba32ca | 2451 | /* tsc_khz can be zero if TSC calibration fails */ |
4941b8cb | 2452 | if (user_tsc_khz == 0) { |
ad721883 | 2453 | /* set tsc_scaling_ratio to a safe value */ |
938c8745 | 2454 | kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio); |
381d585c | 2455 | return -1; |
ad721883 | 2456 | } |
03ba32ca | 2457 | |
c285545f | 2458 | /* Compute a scale to convert nanoseconds in TSC cycles */ |
3ae13faa | 2459 | kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC, |
cc578287 ZA |
2460 | &vcpu->arch.virtual_tsc_shift, |
2461 | &vcpu->arch.virtual_tsc_mult); | |
4941b8cb | 2462 | vcpu->arch.virtual_tsc_khz = user_tsc_khz; |
cc578287 ZA |
2463 | |
2464 | /* | |
2465 | * Compute the variation in TSC rate which is acceptable | |
2466 | * within the range of tolerance and decide if the | |
2467 | * rate being applied is within that bounds of the hardware | |
2468 | * rate. If so, no scaling or compensation need be done. | |
2469 | */ | |
2470 | thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm); | |
2471 | thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm); | |
4941b8cb | 2472 | if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) { |
8d20bd63 SC |
2473 | pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n", |
2474 | user_tsc_khz, thresh_lo, thresh_hi); | |
cc578287 ZA |
2475 | use_scaling = 1; |
2476 | } | |
4941b8cb | 2477 | return set_tsc_khz(vcpu, user_tsc_khz, use_scaling); |
c285545f ZA |
2478 | } |
2479 | ||
2480 | static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns) | |
2481 | { | |
e26101b1 | 2482 | u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec, |
cc578287 ZA |
2483 | vcpu->arch.virtual_tsc_mult, |
2484 | vcpu->arch.virtual_tsc_shift); | |
e26101b1 | 2485 | tsc += vcpu->arch.this_tsc_write; |
c285545f ZA |
2486 | return tsc; |
2487 | } | |
2488 | ||
ba1f77c5 | 2489 | #ifdef CONFIG_X86_64 |
9e62797f | 2490 | static inline bool gtod_is_based_on_tsc(int mode) |
b0c39dc6 | 2491 | { |
b95a8a27 | 2492 | return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK; |
b0c39dc6 | 2493 | } |
ba1f77c5 | 2494 | #endif |
b0c39dc6 | 2495 | |
c52ffadc | 2496 | static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu, bool new_generation) |
b48aa97e MT |
2497 | { |
2498 | #ifdef CONFIG_X86_64 | |
b48aa97e MT |
2499 | struct kvm_arch *ka = &vcpu->kvm->arch; |
2500 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
2501 | ||
c52ffadc SC |
2502 | /* |
2503 | * To use the masterclock, the host clocksource must be based on TSC | |
2504 | * and all vCPUs must have matching TSCs. Note, the count for matching | |
2505 | * vCPUs doesn't include the reference vCPU, hence "+1". | |
2506 | */ | |
2507 | bool use_master_clock = (ka->nr_vcpus_matched_tsc + 1 == | |
2508 | atomic_read(&vcpu->kvm->online_vcpus)) && | |
2509 | gtod_is_based_on_tsc(gtod->clock.vclock_mode); | |
b48aa97e | 2510 | |
7f187922 | 2511 | /* |
c52ffadc SC |
2512 | * Request a masterclock update if the masterclock needs to be toggled |
2513 | * on/off, or when starting a new generation and the masterclock is | |
2514 | * enabled (compute_guest_tsc() requires the masterclock snapshot to be | |
2515 | * taken _after_ the new generation is created). | |
7f187922 | 2516 | */ |
c52ffadc SC |
2517 | if ((ka->use_master_clock && new_generation) || |
2518 | (ka->use_master_clock != use_master_clock)) | |
b48aa97e MT |
2519 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
2520 | ||
2521 | trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc, | |
2522 | atomic_read(&vcpu->kvm->online_vcpus), | |
2523 | ka->use_master_clock, gtod->clock.vclock_mode); | |
2524 | #endif | |
2525 | } | |
2526 | ||
35181e86 HZ |
2527 | /* |
2528 | * Multiply tsc by a fixed point number represented by ratio. | |
2529 | * | |
2530 | * The most significant 64-N bits (mult) of ratio represent the | |
2531 | * integral part of the fixed point number; the remaining N bits | |
2532 | * (frac) represent the fractional part, ie. ratio represents a fixed | |
2533 | * point number (mult + frac * 2^(-N)). | |
2534 | * | |
938c8745 | 2535 | * N equals to kvm_caps.tsc_scaling_ratio_frac_bits. |
35181e86 HZ |
2536 | */ |
2537 | static inline u64 __scale_tsc(u64 ratio, u64 tsc) | |
2538 | { | |
938c8745 | 2539 | return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits); |
35181e86 HZ |
2540 | } |
2541 | ||
62711e5a | 2542 | u64 kvm_scale_tsc(u64 tsc, u64 ratio) |
35181e86 HZ |
2543 | { |
2544 | u64 _tsc = tsc; | |
35181e86 | 2545 | |
938c8745 | 2546 | if (ratio != kvm_caps.default_tsc_scaling_ratio) |
35181e86 HZ |
2547 | _tsc = __scale_tsc(ratio, tsc); |
2548 | ||
2549 | return _tsc; | |
2550 | } | |
35181e86 | 2551 | |
9b399dfd | 2552 | static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc) |
07c1419a HZ |
2553 | { |
2554 | u64 tsc; | |
2555 | ||
62711e5a | 2556 | tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio); |
07c1419a HZ |
2557 | |
2558 | return target_tsc - tsc; | |
2559 | } | |
2560 | ||
4ba76538 HZ |
2561 | u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc) |
2562 | { | |
fe3eb504 | 2563 | return vcpu->arch.l1_tsc_offset + |
62711e5a | 2564 | kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio); |
4ba76538 HZ |
2565 | } |
2566 | EXPORT_SYMBOL_GPL(kvm_read_l1_tsc); | |
2567 | ||
83150f29 IS |
2568 | u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier) |
2569 | { | |
2570 | u64 nested_offset; | |
2571 | ||
938c8745 | 2572 | if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio) |
83150f29 IS |
2573 | nested_offset = l1_offset; |
2574 | else | |
2575 | nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier, | |
938c8745 | 2576 | kvm_caps.tsc_scaling_ratio_frac_bits); |
83150f29 IS |
2577 | |
2578 | nested_offset += l2_offset; | |
2579 | return nested_offset; | |
2580 | } | |
2581 | EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset); | |
2582 | ||
2583 | u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier) | |
2584 | { | |
938c8745 | 2585 | if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio) |
83150f29 | 2586 | return mul_u64_u64_shr(l1_multiplier, l2_multiplier, |
938c8745 | 2587 | kvm_caps.tsc_scaling_ratio_frac_bits); |
83150f29 IS |
2588 | |
2589 | return l1_multiplier; | |
2590 | } | |
2591 | EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier); | |
2592 | ||
edcfe540 | 2593 | static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset) |
a545ab6a | 2594 | { |
adafea11 IY |
2595 | if (vcpu->arch.guest_tsc_protected) |
2596 | return; | |
2597 | ||
edcfe540 IS |
2598 | trace_kvm_write_tsc_offset(vcpu->vcpu_id, |
2599 | vcpu->arch.l1_tsc_offset, | |
2600 | l1_offset); | |
2601 | ||
2602 | vcpu->arch.l1_tsc_offset = l1_offset; | |
2603 | ||
2604 | /* | |
2605 | * If we are here because L1 chose not to trap WRMSR to TSC then | |
2606 | * according to the spec this should set L1's TSC (as opposed to | |
2607 | * setting L1's offset for L2). | |
2608 | */ | |
2609 | if (is_guest_mode(vcpu)) | |
2610 | vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset( | |
2611 | l1_offset, | |
89604647 WW |
2612 | kvm_x86_call(get_l2_tsc_offset)(vcpu), |
2613 | kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); | |
edcfe540 IS |
2614 | else |
2615 | vcpu->arch.tsc_offset = l1_offset; | |
2616 | ||
89604647 | 2617 | kvm_x86_call(write_tsc_offset)(vcpu); |
a545ab6a LC |
2618 | } |
2619 | ||
1ab9287a IS |
2620 | static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier) |
2621 | { | |
2622 | vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier; | |
2623 | ||
2624 | /* Userspace is changing the multiplier while L2 is active */ | |
2625 | if (is_guest_mode(vcpu)) | |
2626 | vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier( | |
2627 | l1_multiplier, | |
89604647 | 2628 | kvm_x86_call(get_l2_tsc_multiplier)(vcpu)); |
1ab9287a IS |
2629 | else |
2630 | vcpu->arch.tsc_scaling_ratio = l1_multiplier; | |
2631 | ||
938c8745 | 2632 | if (kvm_caps.has_tsc_control) |
89604647 | 2633 | kvm_x86_call(write_tsc_multiplier)(vcpu); |
1ab9287a IS |
2634 | } |
2635 | ||
b0c39dc6 VK |
2636 | static inline bool kvm_check_tsc_unstable(void) |
2637 | { | |
2638 | #ifdef CONFIG_X86_64 | |
2639 | /* | |
2640 | * TSC is marked unstable when we're running on Hyper-V, | |
2641 | * 'TSC page' clocksource is good. | |
2642 | */ | |
b95a8a27 | 2643 | if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK) |
b0c39dc6 VK |
2644 | return false; |
2645 | #endif | |
2646 | return check_tsc_unstable(); | |
2647 | } | |
2648 | ||
58d4277b OU |
2649 | /* |
2650 | * Infers attempts to synchronize the guest's tsc from host writes. Sets the | |
2651 | * offset for the vcpu and tracks the TSC matching generation that the vcpu | |
2652 | * participates in. | |
2653 | */ | |
2654 | static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc, | |
5f3b30b2 | 2655 | u64 ns, bool matched, bool user_set_tsc) |
58d4277b OU |
2656 | { |
2657 | struct kvm *kvm = vcpu->kvm; | |
2658 | ||
2659 | lockdep_assert_held(&kvm->arch.tsc_write_lock); | |
2660 | ||
adafea11 IY |
2661 | if (vcpu->arch.guest_tsc_protected) |
2662 | return; | |
2663 | ||
5f3b30b2 IY |
2664 | if (user_set_tsc) |
2665 | vcpu->kvm->arch.user_set_tsc = true; | |
2666 | ||
58d4277b OU |
2667 | /* |
2668 | * We also track th most recent recorded KHZ, write and time to | |
2669 | * allow the matching interval to be extended at each write. | |
2670 | */ | |
2671 | kvm->arch.last_tsc_nsec = ns; | |
2672 | kvm->arch.last_tsc_write = tsc; | |
2673 | kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz; | |
828ca896 | 2674 | kvm->arch.last_tsc_offset = offset; |
58d4277b OU |
2675 | |
2676 | vcpu->arch.last_guest_tsc = tsc; | |
2677 | ||
2678 | kvm_vcpu_write_tsc_offset(vcpu, offset); | |
2679 | ||
2680 | if (!matched) { | |
2681 | /* | |
2682 | * We split periods of matched TSC writes into generations. | |
2683 | * For each generation, we track the original measured | |
2684 | * nanosecond time, offset, and write, so if TSCs are in | |
2685 | * sync, we can match exact offset, and if not, we can match | |
2686 | * exact software computation in compute_guest_tsc() | |
2687 | * | |
2688 | * These values are tracked in kvm->arch.cur_xxx variables. | |
2689 | */ | |
2690 | kvm->arch.cur_tsc_generation++; | |
2691 | kvm->arch.cur_tsc_nsec = ns; | |
2692 | kvm->arch.cur_tsc_write = tsc; | |
2693 | kvm->arch.cur_tsc_offset = offset; | |
2694 | kvm->arch.nr_vcpus_matched_tsc = 0; | |
2695 | } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) { | |
2696 | kvm->arch.nr_vcpus_matched_tsc++; | |
2697 | } | |
2698 | ||
2699 | /* Keep track of which generation this VCPU has synchronized to */ | |
2700 | vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation; | |
2701 | vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec; | |
2702 | vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write; | |
2703 | ||
c52ffadc | 2704 | kvm_track_tsc_matching(vcpu, !matched); |
58d4277b OU |
2705 | } |
2706 | ||
bf328e22 | 2707 | static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 *user_value) |
99e3e30a | 2708 | { |
bf328e22 | 2709 | u64 data = user_value ? *user_value : 0; |
99e3e30a | 2710 | struct kvm *kvm = vcpu->kvm; |
f38e098f | 2711 | u64 offset, ns, elapsed; |
99e3e30a | 2712 | unsigned long flags; |
58d4277b | 2713 | bool matched = false; |
c5e8ec8e | 2714 | bool synchronizing = false; |
99e3e30a | 2715 | |
038f8c11 | 2716 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); |
9b399dfd | 2717 | offset = kvm_compute_l1_tsc_offset(vcpu, data); |
8171cd68 | 2718 | ns = get_kvmclock_base_ns(); |
f38e098f | 2719 | elapsed = ns - kvm->arch.last_tsc_nsec; |
5d3cb0f6 | 2720 | |
03ba32ca | 2721 | if (vcpu->arch.virtual_tsc_khz) { |
0c899c25 | 2722 | if (data == 0) { |
bd8fab39 | 2723 | /* |
bf328e22 LX |
2724 | * Force synchronization when creating a vCPU, or when |
2725 | * userspace explicitly writes a zero value. | |
bd8fab39 DP |
2726 | */ |
2727 | synchronizing = true; | |
bf328e22 | 2728 | } else if (kvm->arch.user_set_tsc) { |
bd8fab39 DP |
2729 | u64 tsc_exp = kvm->arch.last_tsc_write + |
2730 | nsec_to_cycles(vcpu, elapsed); | |
2731 | u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL; | |
2732 | /* | |
bf328e22 LX |
2733 | * Here lies UAPI baggage: when a user-initiated TSC write has |
2734 | * a small delta (1 second) of virtual cycle time against the | |
2735 | * previously set vCPU, we assume that they were intended to be | |
2736 | * in sync and the delta was only due to the racy nature of the | |
2737 | * legacy API. | |
2738 | * | |
2739 | * This trick falls down when restoring a guest which genuinely | |
2740 | * has been running for less time than the 1 second of imprecision | |
2741 | * which we allow for in the legacy API. In this case, the first | |
2742 | * value written by userspace (on any vCPU) should not be subject | |
2743 | * to this 'correction' to make it sync up with values that only | |
2744 | * come from the kernel's default vCPU creation. Make the 1-second | |
2745 | * slop hack only trigger if the user_set_tsc flag is already set. | |
bd8fab39 DP |
2746 | */ |
2747 | synchronizing = data < tsc_exp + tsc_hz && | |
2748 | data + tsc_hz > tsc_exp; | |
2749 | } | |
c5e8ec8e | 2750 | } |
f38e098f | 2751 | |
bf328e22 | 2752 | |
f38e098f | 2753 | /* |
5d3cb0f6 ZA |
2754 | * For a reliable TSC, we can match TSC offsets, and for an unstable |
2755 | * TSC, we add elapsed time in this computation. We could let the | |
2756 | * compensation code attempt to catch up if we fall behind, but | |
2757 | * it's better to try to match offsets from the beginning. | |
2758 | */ | |
c5e8ec8e | 2759 | if (synchronizing && |
5d3cb0f6 | 2760 | vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) { |
b0c39dc6 | 2761 | if (!kvm_check_tsc_unstable()) { |
e26101b1 | 2762 | offset = kvm->arch.cur_tsc_offset; |
f38e098f | 2763 | } else { |
857e4099 | 2764 | u64 delta = nsec_to_cycles(vcpu, elapsed); |
5d3cb0f6 | 2765 | data += delta; |
9b399dfd | 2766 | offset = kvm_compute_l1_tsc_offset(vcpu, data); |
f38e098f | 2767 | } |
b48aa97e | 2768 | matched = true; |
f38e098f | 2769 | } |
e26101b1 | 2770 | |
5f3b30b2 | 2771 | __kvm_synchronize_tsc(vcpu, offset, data, ns, matched, !!user_value); |
e26101b1 | 2772 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
99e3e30a | 2773 | } |
e26101b1 | 2774 | |
58ea6767 HZ |
2775 | static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, |
2776 | s64 adjustment) | |
2777 | { | |
56ba77a4 | 2778 | u64 tsc_offset = vcpu->arch.l1_tsc_offset; |
326e7425 | 2779 | kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment); |
58ea6767 HZ |
2780 | } |
2781 | ||
2782 | static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment) | |
2783 | { | |
938c8745 | 2784 | if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio) |
58ea6767 | 2785 | WARN_ON(adjustment < 0); |
62711e5a | 2786 | adjustment = kvm_scale_tsc((u64) adjustment, |
fe3eb504 | 2787 | vcpu->arch.l1_tsc_scaling_ratio); |
ea26e4ec | 2788 | adjust_tsc_offset_guest(vcpu, adjustment); |
58ea6767 HZ |
2789 | } |
2790 | ||
d828199e MT |
2791 | #ifdef CONFIG_X86_64 |
2792 | ||
a5a1d1c2 | 2793 | static u64 read_tsc(void) |
d828199e | 2794 | { |
a5a1d1c2 | 2795 | u64 ret = (u64)rdtsc_ordered(); |
03b9730b | 2796 | u64 last = pvclock_gtod_data.clock.cycle_last; |
d828199e MT |
2797 | |
2798 | if (likely(ret >= last)) | |
2799 | return ret; | |
2800 | ||
2801 | /* | |
2802 | * GCC likes to generate cmov here, but this branch is extremely | |
6a6256f9 | 2803 | * predictable (it's just a function of time and the likely is |
d828199e MT |
2804 | * very likely) and there's a data dependence, so force GCC |
2805 | * to generate a branch instead. I don't barrier() because | |
2806 | * we don't actually need a barrier, and if this function | |
2807 | * ever gets inlined it will generate worse code. | |
2808 | */ | |
2809 | asm volatile (""); | |
2810 | return last; | |
2811 | } | |
2812 | ||
53fafdbb MT |
2813 | static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp, |
2814 | int *mode) | |
d828199e | 2815 | { |
b0c39dc6 | 2816 | u64 tsc_pg_val; |
9397fa2e | 2817 | long v; |
b0c39dc6 | 2818 | |
53fafdbb | 2819 | switch (clock->vclock_mode) { |
b95a8a27 | 2820 | case VDSO_CLOCKMODE_HVCLOCK: |
9397fa2e PZ |
2821 | if (hv_read_tsc_page_tsc(hv_get_tsc_page(), |
2822 | tsc_timestamp, &tsc_pg_val)) { | |
b0c39dc6 | 2823 | /* TSC page valid */ |
b95a8a27 | 2824 | *mode = VDSO_CLOCKMODE_HVCLOCK; |
53fafdbb MT |
2825 | v = (tsc_pg_val - clock->cycle_last) & |
2826 | clock->mask; | |
b0c39dc6 VK |
2827 | } else { |
2828 | /* TSC page invalid */ | |
b95a8a27 | 2829 | *mode = VDSO_CLOCKMODE_NONE; |
b0c39dc6 VK |
2830 | } |
2831 | break; | |
b95a8a27 TG |
2832 | case VDSO_CLOCKMODE_TSC: |
2833 | *mode = VDSO_CLOCKMODE_TSC; | |
b0c39dc6 | 2834 | *tsc_timestamp = read_tsc(); |
53fafdbb MT |
2835 | v = (*tsc_timestamp - clock->cycle_last) & |
2836 | clock->mask; | |
b0c39dc6 VK |
2837 | break; |
2838 | default: | |
b95a8a27 | 2839 | *mode = VDSO_CLOCKMODE_NONE; |
b0c39dc6 | 2840 | } |
d828199e | 2841 | |
b95a8a27 | 2842 | if (*mode == VDSO_CLOCKMODE_NONE) |
b0c39dc6 | 2843 | *tsc_timestamp = v = 0; |
d828199e | 2844 | |
53fafdbb | 2845 | return v * clock->mult; |
d828199e MT |
2846 | } |
2847 | ||
451a7078 DW |
2848 | /* |
2849 | * As with get_kvmclock_base_ns(), this counts from boot time, at the | |
2850 | * frequency of CLOCK_MONOTONIC_RAW (hence adding gtos->offs_boot). | |
2851 | */ | |
2852 | static int do_kvmclock_base(s64 *t, u64 *tsc_timestamp) | |
d828199e | 2853 | { |
cbcf2dd3 | 2854 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; |
d828199e | 2855 | unsigned long seq; |
d828199e | 2856 | int mode; |
cbcf2dd3 | 2857 | u64 ns; |
d828199e | 2858 | |
d828199e MT |
2859 | do { |
2860 | seq = read_seqcount_begin(>od->seq); | |
917f9475 | 2861 | ns = gtod->raw_clock.base_cycles; |
53fafdbb | 2862 | ns += vgettsc(>od->raw_clock, tsc_timestamp, &mode); |
917f9475 PB |
2863 | ns >>= gtod->raw_clock.shift; |
2864 | ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot)); | |
d828199e | 2865 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); |
cbcf2dd3 | 2866 | *t = ns; |
d828199e MT |
2867 | |
2868 | return mode; | |
2869 | } | |
2870 | ||
451a7078 DW |
2871 | /* |
2872 | * This calculates CLOCK_MONOTONIC at the time of the TSC snapshot, with | |
2873 | * no boot time offset. | |
2874 | */ | |
2875 | static int do_monotonic(s64 *t, u64 *tsc_timestamp) | |
2876 | { | |
2877 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
2878 | unsigned long seq; | |
2879 | int mode; | |
2880 | u64 ns; | |
2881 | ||
2882 | do { | |
2883 | seq = read_seqcount_begin(>od->seq); | |
2884 | ns = gtod->clock.base_cycles; | |
2885 | ns += vgettsc(>od->clock, tsc_timestamp, &mode); | |
2886 | ns >>= gtod->clock.shift; | |
2887 | ns += ktime_to_ns(gtod->clock.offset); | |
2888 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
2889 | *t = ns; | |
2890 | ||
2891 | return mode; | |
2892 | } | |
2893 | ||
899a31f5 | 2894 | static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp) |
55dd00a7 MT |
2895 | { |
2896 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
2897 | unsigned long seq; | |
2898 | int mode; | |
2899 | u64 ns; | |
2900 | ||
2901 | do { | |
2902 | seq = read_seqcount_begin(>od->seq); | |
55dd00a7 | 2903 | ts->tv_sec = gtod->wall_time_sec; |
917f9475 | 2904 | ns = gtod->clock.base_cycles; |
53fafdbb | 2905 | ns += vgettsc(>od->clock, tsc_timestamp, &mode); |
55dd00a7 MT |
2906 | ns >>= gtod->clock.shift; |
2907 | } while (unlikely(read_seqcount_retry(>od->seq, seq))); | |
2908 | ||
2909 | ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns); | |
2910 | ts->tv_nsec = ns; | |
2911 | ||
2912 | return mode; | |
2913 | } | |
2914 | ||
451a7078 DW |
2915 | /* |
2916 | * Calculates the kvmclock_base_ns (CLOCK_MONOTONIC_RAW + boot time) and | |
2917 | * reports the TSC value from which it do so. Returns true if host is | |
2918 | * using TSC based clocksource. | |
2919 | */ | |
b0c39dc6 | 2920 | static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) |
d828199e | 2921 | { |
d828199e | 2922 | /* checked again under seqlock below */ |
b0c39dc6 | 2923 | if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
d828199e MT |
2924 | return false; |
2925 | ||
451a7078 DW |
2926 | return gtod_is_based_on_tsc(do_kvmclock_base(kernel_ns, |
2927 | tsc_timestamp)); | |
d828199e | 2928 | } |
55dd00a7 | 2929 | |
451a7078 DW |
2930 | /* |
2931 | * Calculates CLOCK_MONOTONIC and reports the TSC value from which it did | |
2932 | * so. Returns true if host is using TSC based clocksource. | |
2933 | */ | |
2934 | bool kvm_get_monotonic_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp) | |
2935 | { | |
2936 | /* checked again under seqlock below */ | |
2937 | if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) | |
2938 | return false; | |
2939 | ||
2940 | return gtod_is_based_on_tsc(do_monotonic(kernel_ns, | |
2941 | tsc_timestamp)); | |
2942 | } | |
2943 | ||
2944 | /* | |
2945 | * Calculates CLOCK_REALTIME and reports the TSC value from which it did | |
2946 | * so. Returns true if host is using TSC based clocksource. | |
2947 | * | |
2948 | * DO NOT USE this for anything related to migration. You want CLOCK_TAI | |
2949 | * for that. | |
2950 | */ | |
899a31f5 | 2951 | static bool kvm_get_walltime_and_clockread(struct timespec64 *ts, |
b0c39dc6 | 2952 | u64 *tsc_timestamp) |
55dd00a7 MT |
2953 | { |
2954 | /* checked again under seqlock below */ | |
b0c39dc6 | 2955 | if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode)) |
55dd00a7 MT |
2956 | return false; |
2957 | ||
b0c39dc6 | 2958 | return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp)); |
55dd00a7 | 2959 | } |
d828199e MT |
2960 | #endif |
2961 | ||
2962 | /* | |
2963 | * | |
b48aa97e MT |
2964 | * Assuming a stable TSC across physical CPUS, and a stable TSC |
2965 | * across virtual CPUs, the following condition is possible. | |
2966 | * Each numbered line represents an event visible to both | |
d828199e MT |
2967 | * CPUs at the next numbered event. |
2968 | * | |
2969 | * "timespecX" represents host monotonic time. "tscX" represents | |
2970 | * RDTSC value. | |
2971 | * | |
2972 | * VCPU0 on CPU0 | VCPU1 on CPU1 | |
2973 | * | |
2974 | * 1. read timespec0,tsc0 | |
2975 | * 2. | timespec1 = timespec0 + N | |
2976 | * | tsc1 = tsc0 + M | |
2977 | * 3. transition to guest | transition to guest | |
2978 | * 4. ret0 = timespec0 + (rdtsc - tsc0) | | |
2979 | * 5. | ret1 = timespec1 + (rdtsc - tsc1) | |
2980 | * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M)) | |
2981 | * | |
2982 | * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity: | |
2983 | * | |
2984 | * - ret0 < ret1 | |
2985 | * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M)) | |
2986 | * ... | |
2987 | * - 0 < N - M => M < N | |
2988 | * | |
2989 | * That is, when timespec0 != timespec1, M < N. Unfortunately that is not | |
2990 | * always the case (the difference between two distinct xtime instances | |
2991 | * might be smaller then the difference between corresponding TSC reads, | |
2992 | * when updating guest vcpus pvclock areas). | |
2993 | * | |
2994 | * To avoid that problem, do not allow visibility of distinct | |
2995 | * system_timestamp/tsc_timestamp values simultaneously: use a master | |
2996 | * copy of host monotonic time values. Update that master copy | |
2997 | * in lockstep. | |
2998 | * | |
b48aa97e | 2999 | * Rely on synchronization of host TSCs and guest TSCs for monotonicity. |
d828199e MT |
3000 | * |
3001 | */ | |
3002 | ||
3003 | static void pvclock_update_vm_gtod_copy(struct kvm *kvm) | |
3004 | { | |
3005 | #ifdef CONFIG_X86_64 | |
3006 | struct kvm_arch *ka = &kvm->arch; | |
3007 | int vclock_mode; | |
b48aa97e MT |
3008 | bool host_tsc_clocksource, vcpus_matched; |
3009 | ||
869b4421 | 3010 | lockdep_assert_held(&kvm->arch.tsc_write_lock); |
b48aa97e MT |
3011 | vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 == |
3012 | atomic_read(&kvm->online_vcpus)); | |
d828199e MT |
3013 | |
3014 | /* | |
3015 | * If the host uses TSC clock, then passthrough TSC as stable | |
3016 | * to the guest. | |
3017 | */ | |
b48aa97e | 3018 | host_tsc_clocksource = kvm_get_time_and_clockread( |
d828199e MT |
3019 | &ka->master_kernel_ns, |
3020 | &ka->master_cycle_now); | |
3021 | ||
16a96021 | 3022 | ka->use_master_clock = host_tsc_clocksource && vcpus_matched |
a826faf1 | 3023 | && !ka->backwards_tsc_observed |
54750f2c | 3024 | && !ka->boot_vcpu_runs_old_kvmclock; |
b48aa97e | 3025 | |
d828199e MT |
3026 | if (ka->use_master_clock) |
3027 | atomic_set(&kvm_guest_has_master_clock, 1); | |
3028 | ||
3029 | vclock_mode = pvclock_gtod_data.clock.vclock_mode; | |
b48aa97e MT |
3030 | trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode, |
3031 | vcpus_matched); | |
d828199e MT |
3032 | #endif |
3033 | } | |
3034 | ||
6b6fcd28 | 3035 | static void kvm_make_mclock_inprogress_request(struct kvm *kvm) |
2860c4b1 PB |
3036 | { |
3037 | kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS); | |
3038 | } | |
3039 | ||
869b4421 | 3040 | static void __kvm_start_pvclock_update(struct kvm *kvm) |
2e762ff7 | 3041 | { |
869b4421 PB |
3042 | raw_spin_lock_irq(&kvm->arch.tsc_write_lock); |
3043 | write_seqcount_begin(&kvm->arch.pvclock_sc); | |
3044 | } | |
e880c6ea | 3045 | |
869b4421 PB |
3046 | static void kvm_start_pvclock_update(struct kvm *kvm) |
3047 | { | |
2e762ff7 | 3048 | kvm_make_mclock_inprogress_request(kvm); |
c2c647f9 | 3049 | |
2e762ff7 | 3050 | /* no guest entries from this point */ |
869b4421 | 3051 | __kvm_start_pvclock_update(kvm); |
6b6fcd28 | 3052 | } |
2e762ff7 | 3053 | |
6b6fcd28 PB |
3054 | static void kvm_end_pvclock_update(struct kvm *kvm) |
3055 | { | |
3056 | struct kvm_arch *ka = &kvm->arch; | |
3057 | struct kvm_vcpu *vcpu; | |
46808a4c | 3058 | unsigned long i; |
2e762ff7 | 3059 | |
869b4421 PB |
3060 | write_seqcount_end(&ka->pvclock_sc); |
3061 | raw_spin_unlock_irq(&ka->tsc_write_lock); | |
2e762ff7 | 3062 | kvm_for_each_vcpu(i, vcpu, kvm) |
105b21bb | 3063 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
2e762ff7 MT |
3064 | |
3065 | /* guest entries allowed */ | |
3066 | kvm_for_each_vcpu(i, vcpu, kvm) | |
72875d8a | 3067 | kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu); |
2e762ff7 MT |
3068 | } |
3069 | ||
6b6fcd28 PB |
3070 | static void kvm_update_masterclock(struct kvm *kvm) |
3071 | { | |
42dcbe7d | 3072 | kvm_hv_request_tsc_page_update(kvm); |
6b6fcd28 PB |
3073 | kvm_start_pvclock_update(kvm); |
3074 | pvclock_update_vm_gtod_copy(kvm); | |
3075 | kvm_end_pvclock_update(kvm); | |
2e762ff7 MT |
3076 | } |
3077 | ||
3ebcbd22 AR |
3078 | /* |
3079 | * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's | |
3080 | * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz | |
3081 | * can change during boot even if the TSC is constant, as it's possible for KVM | |
3082 | * to be loaded before TSC calibration completes. Ideally, KVM would get a | |
3083 | * notification when calibration completes, but practically speaking calibration | |
3084 | * will complete before userspace is alive enough to create VMs. | |
3085 | */ | |
3086 | static unsigned long get_cpu_tsc_khz(void) | |
3087 | { | |
3088 | if (static_cpu_has(X86_FEATURE_CONSTANT_TSC)) | |
3089 | return tsc_khz; | |
3090 | else | |
3091 | return __this_cpu_read(cpu_tsc_khz); | |
3092 | } | |
3093 | ||
869b4421 PB |
3094 | /* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */ |
3095 | static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) | |
108b249c | 3096 | { |
108b249c | 3097 | struct kvm_arch *ka = &kvm->arch; |
8b953440 | 3098 | struct pvclock_vcpu_time_info hv_clock; |
8b953440 | 3099 | |
e2c2206a WL |
3100 | /* both __this_cpu_read() and rdtsc() should be on the same cpu */ |
3101 | get_cpu(); | |
3102 | ||
869b4421 | 3103 | data->flags = 0; |
3ebcbd22 AR |
3104 | if (ka->use_master_clock && |
3105 | (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) { | |
c68dc1b5 OU |
3106 | #ifdef CONFIG_X86_64 |
3107 | struct timespec64 ts; | |
3108 | ||
3109 | if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) { | |
3110 | data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec; | |
3111 | data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC; | |
3112 | } else | |
3113 | #endif | |
3114 | data->host_tsc = rdtsc(); | |
3115 | ||
869b4421 PB |
3116 | data->flags |= KVM_CLOCK_TSC_STABLE; |
3117 | hv_clock.tsc_timestamp = ka->master_cycle_now; | |
3118 | hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | |
3ebcbd22 | 3119 | kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL, |
e70b57a6 WL |
3120 | &hv_clock.tsc_shift, |
3121 | &hv_clock.tsc_to_system_mul); | |
c68dc1b5 | 3122 | data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc); |
55c0cefb OU |
3123 | } else { |
3124 | data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset; | |
3125 | } | |
e2c2206a WL |
3126 | |
3127 | put_cpu(); | |
55c0cefb | 3128 | } |
e2c2206a | 3129 | |
869b4421 PB |
3130 | static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data) |
3131 | { | |
3132 | struct kvm_arch *ka = &kvm->arch; | |
3133 | unsigned seq; | |
3134 | ||
3135 | do { | |
3136 | seq = read_seqcount_begin(&ka->pvclock_sc); | |
3137 | __get_kvmclock(kvm, data); | |
3138 | } while (read_seqcount_retry(&ka->pvclock_sc, seq)); | |
3139 | } | |
3140 | ||
55c0cefb OU |
3141 | u64 get_kvmclock_ns(struct kvm *kvm) |
3142 | { | |
3143 | struct kvm_clock_data data; | |
3144 | ||
55c0cefb OU |
3145 | get_kvmclock(kvm, &data); |
3146 | return data.clock; | |
108b249c PB |
3147 | } |
3148 | ||
46aed4d4 SC |
3149 | static void kvm_setup_guest_pvclock(struct pvclock_vcpu_time_info *ref_hv_clock, |
3150 | struct kvm_vcpu *vcpu, | |
916d3608 | 3151 | struct gfn_to_pfn_cache *gpc, |
1b3c3805 | 3152 | unsigned int offset) |
0d6dd2ff | 3153 | { |
916d3608 | 3154 | struct pvclock_vcpu_time_info *guest_hv_clock; |
24c16637 | 3155 | struct pvclock_vcpu_time_info hv_clock; |
916d3608 | 3156 | unsigned long flags; |
0d6dd2ff | 3157 | |
46aed4d4 | 3158 | memcpy(&hv_clock, ref_hv_clock, sizeof(hv_clock)); |
24c16637 | 3159 | |
916d3608 | 3160 | read_lock_irqsave(&gpc->lock, flags); |
58f5ee5f | 3161 | while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) { |
916d3608 DW |
3162 | read_unlock_irqrestore(&gpc->lock, flags); |
3163 | ||
58f5ee5f | 3164 | if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock))) |
916d3608 | 3165 | return; |
0d6dd2ff | 3166 | |
916d3608 DW |
3167 | read_lock_irqsave(&gpc->lock, flags); |
3168 | } | |
3169 | ||
3170 | guest_hv_clock = (void *)(gpc->khva + offset); | |
3171 | ||
3172 | /* | |
3173 | * This VCPU is paused, but it's legal for a guest to read another | |
0d6dd2ff PB |
3174 | * VCPU's kvmclock, so we really have to follow the specification where |
3175 | * it says that version is odd if data is being modified, and even after | |
3176 | * it is consistent. | |
0d6dd2ff | 3177 | */ |
0d6dd2ff | 3178 | |
24c16637 | 3179 | guest_hv_clock->version = hv_clock.version = (guest_hv_clock->version + 1) | 1; |
0d6dd2ff PB |
3180 | smp_wmb(); |
3181 | ||
3182 | /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */ | |
24c16637 | 3183 | hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED); |
0d6dd2ff | 3184 | |
24c16637 | 3185 | memcpy(guest_hv_clock, &hv_clock, sizeof(*guest_hv_clock)); |
6d722835 | 3186 | |
916d3608 | 3187 | smp_wmb(); |
0d6dd2ff | 3188 | |
24c16637 | 3189 | guest_hv_clock->version = ++hv_clock.version; |
0d6dd2ff | 3190 | |
78b74638 | 3191 | kvm_gpc_mark_dirty_in_slot(gpc); |
916d3608 | 3192 | read_unlock_irqrestore(&gpc->lock, flags); |
0d6dd2ff | 3193 | |
46aed4d4 | 3194 | trace_kvm_pvclock_update(vcpu->vcpu_id, &hv_clock); |
0d6dd2ff PB |
3195 | } |
3196 | ||
a2b00f85 | 3197 | int kvm_guest_time_update(struct kvm_vcpu *v) |
18068523 | 3198 | { |
39d61b46 | 3199 | struct pvclock_vcpu_time_info hv_clock = {}; |
78db6a50 | 3200 | unsigned long flags, tgt_tsc_khz; |
869b4421 | 3201 | unsigned seq; |
18068523 | 3202 | struct kvm_vcpu_arch *vcpu = &v->arch; |
d828199e | 3203 | struct kvm_arch *ka = &v->kvm->arch; |
f25e656d | 3204 | s64 kernel_ns; |
d828199e | 3205 | u64 tsc_timestamp, host_tsc; |
d828199e MT |
3206 | bool use_master_clock; |
3207 | ||
3208 | kernel_ns = 0; | |
3209 | host_tsc = 0; | |
18068523 | 3210 | |
d828199e MT |
3211 | /* |
3212 | * If the host uses TSC clock, then passthrough TSC as stable | |
3213 | * to the guest. | |
3214 | */ | |
869b4421 PB |
3215 | do { |
3216 | seq = read_seqcount_begin(&ka->pvclock_sc); | |
3217 | use_master_clock = ka->use_master_clock; | |
3218 | if (use_master_clock) { | |
3219 | host_tsc = ka->master_cycle_now; | |
3220 | kernel_ns = ka->master_kernel_ns; | |
3221 | } | |
3222 | } while (read_seqcount_retry(&ka->pvclock_sc, seq)); | |
c09664bb MT |
3223 | |
3224 | /* Keep irq disabled to prevent changes to the clock */ | |
3225 | local_irq_save(flags); | |
3ebcbd22 | 3226 | tgt_tsc_khz = get_cpu_tsc_khz(); |
78db6a50 | 3227 | if (unlikely(tgt_tsc_khz == 0)) { |
c09664bb MT |
3228 | local_irq_restore(flags); |
3229 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); | |
3230 | return 1; | |
3231 | } | |
d828199e | 3232 | if (!use_master_clock) { |
4ea1636b | 3233 | host_tsc = rdtsc(); |
8171cd68 | 3234 | kernel_ns = get_kvmclock_base_ns(); |
d828199e MT |
3235 | } |
3236 | ||
4ba76538 | 3237 | tsc_timestamp = kvm_read_l1_tsc(v, host_tsc); |
d828199e | 3238 | |
c285545f ZA |
3239 | /* |
3240 | * We may have to catch up the TSC to match elapsed wall clock | |
3241 | * time for two reasons, even if kvmclock is used. | |
3242 | * 1) CPU could have been running below the maximum TSC rate | |
3243 | * 2) Broken TSC compensation resets the base at each VCPU | |
3244 | * entry to avoid unknown leaps of TSC even when running | |
3245 | * again on the same CPU. This may cause apparent elapsed | |
3246 | * time to disappear, and the guest to stand still or run | |
3247 | * very slowly. | |
3248 | */ | |
3249 | if (vcpu->tsc_catchup) { | |
3250 | u64 tsc = compute_guest_tsc(v, kernel_ns); | |
3251 | if (tsc > tsc_timestamp) { | |
f1e2b260 | 3252 | adjust_tsc_offset_guest(v, tsc - tsc_timestamp); |
c285545f ZA |
3253 | tsc_timestamp = tsc; |
3254 | } | |
50d0a0f9 GH |
3255 | } |
3256 | ||
18068523 GOC |
3257 | local_irq_restore(flags); |
3258 | ||
0d6dd2ff | 3259 | /* With all the info we got, fill in the values */ |
18068523 | 3260 | |
938c8745 | 3261 | if (kvm_caps.has_tsc_control) |
62711e5a | 3262 | tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz, |
fe3eb504 | 3263 | v->arch.l1_tsc_scaling_ratio); |
78db6a50 PB |
3264 | |
3265 | if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) { | |
3ae13faa | 3266 | kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL, |
39d61b46 SC |
3267 | &vcpu->pvclock_tsc_shift, |
3268 | &vcpu->pvclock_tsc_mul); | |
78db6a50 | 3269 | vcpu->hw_tsc_khz = tgt_tsc_khz; |
8cfdc000 ZA |
3270 | } |
3271 | ||
39d61b46 SC |
3272 | hv_clock.tsc_shift = vcpu->pvclock_tsc_shift; |
3273 | hv_clock.tsc_to_system_mul = vcpu->pvclock_tsc_mul; | |
3274 | hv_clock.tsc_timestamp = tsc_timestamp; | |
3275 | hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset; | |
28e4639a | 3276 | vcpu->last_guest_tsc = tsc_timestamp; |
51d59c6b | 3277 | |
d828199e | 3278 | /* If the host uses TSC clocksource, then it is stable */ |
39d61b46 | 3279 | hv_clock.flags = 0; |
d828199e | 3280 | if (use_master_clock) |
39d61b46 | 3281 | hv_clock.flags |= PVCLOCK_TSC_STABLE_BIT; |
78c0337a | 3282 | |
93fb0b10 SC |
3283 | if (vcpu->pv_time.active) { |
3284 | /* | |
3285 | * GUEST_STOPPED is only supported by kvmclock, and KVM's | |
3286 | * historic behavior is to only process the request if kvmclock | |
3287 | * is active/enabled. | |
3288 | */ | |
6c4927a4 | 3289 | if (vcpu->pvclock_set_guest_stopped_request) { |
39d61b46 | 3290 | hv_clock.flags |= PVCLOCK_GUEST_STOPPED; |
6c4927a4 SC |
3291 | vcpu->pvclock_set_guest_stopped_request = false; |
3292 | } | |
1b3c3805 | 3293 | kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->pv_time, 0); |
93fb0b10 | 3294 | |
39d61b46 | 3295 | hv_clock.flags &= ~PVCLOCK_GUEST_STOPPED; |
6c4927a4 | 3296 | } |
d828199e | 3297 | |
847d68ab | 3298 | kvm_hv_setup_tsc_page(v->kvm, &hv_clock); |
78c0337a | 3299 | |
ee11ab6b | 3300 | #ifdef CONFIG_KVM_XEN |
1b3c3805 SC |
3301 | /* |
3302 | * For Xen guests we may need to override PVCLOCK_TSC_STABLE_BIT as unless | |
3303 | * explicitly told to use TSC as its clocksource Xen will not set this bit. | |
3304 | * This default behaviour led to bugs in some guest kernels which cause | |
3305 | * problems if they observe PVCLOCK_TSC_STABLE_BIT in the pvclock flags. | |
3306 | * | |
3307 | * Note! Clear TSC_STABLE only for Xen clocks, i.e. the order matters! | |
3308 | */ | |
3ecf162a | 3309 | if (ka->xen.hvm_config.flags & KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE) |
1b3c3805 SC |
3310 | hv_clock.flags &= ~PVCLOCK_TSC_STABLE_BIT; |
3311 | ||
7caf9571 | 3312 | if (vcpu->xen.vcpu_info_cache.active) |
39d61b46 | 3313 | kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_info_cache, |
1b3c3805 | 3314 | offsetof(struct compat_vcpu_info, time)); |
69d413cf | 3315 | if (vcpu->xen.vcpu_time_info_cache.active) |
1b3c3805 | 3316 | kvm_setup_guest_pvclock(&hv_clock, v, &vcpu->xen.vcpu_time_info_cache, 0); |
ee11ab6b | 3317 | #endif |
8cfdc000 | 3318 | return 0; |
c8076604 GH |
3319 | } |
3320 | ||
5d6d6a7d DW |
3321 | /* |
3322 | * The pvclock_wall_clock ABI tells the guest the wall clock time at | |
3323 | * which it started (i.e. its epoch, when its kvmclock was zero). | |
3324 | * | |
3325 | * In fact those clocks are subtly different; wall clock frequency is | |
3326 | * adjusted by NTP and has leap seconds, while the kvmclock is a | |
3327 | * simple function of the TSC without any such adjustment. | |
3328 | * | |
3329 | * Perhaps the ABI should have exposed CLOCK_TAI and a ratio between | |
3330 | * that and kvmclock, but even that would be subject to change over | |
3331 | * time. | |
3332 | * | |
3333 | * Attempt to calculate the epoch at a given moment using the *same* | |
3334 | * TSC reading via kvm_get_walltime_and_clockread() to obtain both | |
3335 | * wallclock and kvmclock times, and subtracting one from the other. | |
3336 | * | |
3337 | * Fall back to using their values at slightly different moments by | |
3338 | * calling ktime_get_real_ns() and get_kvmclock_ns() separately. | |
3339 | */ | |
3340 | uint64_t kvm_get_wall_clock_epoch(struct kvm *kvm) | |
3341 | { | |
3342 | #ifdef CONFIG_X86_64 | |
3343 | struct pvclock_vcpu_time_info hv_clock; | |
3344 | struct kvm_arch *ka = &kvm->arch; | |
3345 | unsigned long seq, local_tsc_khz; | |
3346 | struct timespec64 ts; | |
3347 | uint64_t host_tsc; | |
3348 | ||
3349 | do { | |
3350 | seq = read_seqcount_begin(&ka->pvclock_sc); | |
3351 | ||
3352 | local_tsc_khz = 0; | |
3353 | if (!ka->use_master_clock) | |
3354 | break; | |
3355 | ||
3356 | /* | |
3357 | * The TSC read and the call to get_cpu_tsc_khz() must happen | |
3358 | * on the same CPU. | |
3359 | */ | |
3360 | get_cpu(); | |
3361 | ||
3362 | local_tsc_khz = get_cpu_tsc_khz(); | |
3363 | ||
3364 | if (local_tsc_khz && | |
3365 | !kvm_get_walltime_and_clockread(&ts, &host_tsc)) | |
3366 | local_tsc_khz = 0; /* Fall back to old method */ | |
3367 | ||
3368 | put_cpu(); | |
3369 | ||
3370 | /* | |
3371 | * These values must be snapshotted within the seqcount loop. | |
3372 | * After that, it's just mathematics which can happen on any | |
3373 | * CPU at any time. | |
3374 | */ | |
3375 | hv_clock.tsc_timestamp = ka->master_cycle_now; | |
3376 | hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset; | |
3377 | ||
3378 | } while (read_seqcount_retry(&ka->pvclock_sc, seq)); | |
3379 | ||
3380 | /* | |
3381 | * If the conditions were right, and obtaining the wallclock+TSC was | |
3382 | * successful, calculate the KVM clock at the corresponding time and | |
3383 | * subtract one from the other to get the guest's epoch in nanoseconds | |
3384 | * since 1970-01-01. | |
3385 | */ | |
3386 | if (local_tsc_khz) { | |
3387 | kvm_get_time_scale(NSEC_PER_SEC, local_tsc_khz * NSEC_PER_USEC, | |
3388 | &hv_clock.tsc_shift, | |
3389 | &hv_clock.tsc_to_system_mul); | |
3390 | return ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec - | |
3391 | __pvclock_read_cycles(&hv_clock, host_tsc); | |
3392 | } | |
3393 | #endif | |
3394 | return ktime_get_real_ns() - get_kvmclock_ns(kvm); | |
3395 | } | |
3396 | ||
0061d53d MT |
3397 | /* |
3398 | * kvmclock updates which are isolated to a given vcpu, such as | |
3399 | * vcpu->cpu migration, should not allow system_timestamp from | |
3400 | * the rest of the vcpus to remain static. Otherwise ntp frequency | |
3401 | * correction applies to one vcpu's system_timestamp but not | |
3402 | * the others. | |
3403 | * | |
3404 | * So in those cases, request a kvmclock update for all vcpus. | |
7e44e449 AJ |
3405 | * We need to rate-limit these requests though, as they can |
3406 | * considerably slow guests that have a large number of vcpus. | |
3407 | * The time for a remote vcpu to update its kvmclock is bound | |
3408 | * by the delay we use to rate-limit the updates. | |
0061d53d MT |
3409 | */ |
3410 | ||
7e44e449 AJ |
3411 | #define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100) |
3412 | ||
3413 | static void kvmclock_update_fn(struct work_struct *work) | |
0061d53d | 3414 | { |
46808a4c | 3415 | unsigned long i; |
7e44e449 AJ |
3416 | struct delayed_work *dwork = to_delayed_work(work); |
3417 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
3418 | kvmclock_update_work); | |
3419 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
0061d53d MT |
3420 | struct kvm_vcpu *vcpu; |
3421 | ||
3422 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
105b21bb | 3423 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0061d53d MT |
3424 | kvm_vcpu_kick(vcpu); |
3425 | } | |
3426 | } | |
3427 | ||
7e44e449 AJ |
3428 | static void kvm_gen_kvmclock_update(struct kvm_vcpu *v) |
3429 | { | |
3430 | struct kvm *kvm = v->kvm; | |
3431 | ||
105b21bb | 3432 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, v); |
7e44e449 AJ |
3433 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, |
3434 | KVMCLOCK_UPDATE_DELAY); | |
3435 | } | |
3436 | ||
332967a3 AJ |
3437 | #define KVMCLOCK_SYNC_PERIOD (300 * HZ) |
3438 | ||
3439 | static void kvmclock_sync_fn(struct work_struct *work) | |
3440 | { | |
3441 | struct delayed_work *dwork = to_delayed_work(work); | |
3442 | struct kvm_arch *ka = container_of(dwork, struct kvm_arch, | |
3443 | kvmclock_sync_work); | |
3444 | struct kvm *kvm = container_of(ka, struct kvm, arch); | |
3445 | ||
3446 | schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0); | |
3447 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | |
3448 | KVMCLOCK_SYNC_PERIOD); | |
3449 | } | |
3450 | ||
281b5278 JW |
3451 | /* These helpers are safe iff @msr is known to be an MCx bank MSR. */ |
3452 | static bool is_mci_control_msr(u32 msr) | |
3453 | { | |
3454 | return (msr & 3) == 0; | |
3455 | } | |
3456 | static bool is_mci_status_msr(u32 msr) | |
3457 | { | |
3458 | return (msr & 3) == 1; | |
3459 | } | |
3460 | ||
191c8137 BP |
3461 | /* |
3462 | * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP. | |
3463 | */ | |
3464 | static bool can_set_mci_status(struct kvm_vcpu *vcpu) | |
3465 | { | |
3466 | /* McStatusWrEn enabled? */ | |
fd706c9b | 3467 | if (guest_cpuid_is_amd_compatible(vcpu)) |
191c8137 BP |
3468 | return !!(vcpu->arch.msr_hwcr & BIT_ULL(18)); |
3469 | ||
3470 | return false; | |
3471 | } | |
3472 | ||
9ffd986c | 3473 | static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 3474 | { |
890ca9ae HY |
3475 | u64 mcg_cap = vcpu->arch.mcg_cap; |
3476 | unsigned bank_num = mcg_cap & 0xff; | |
9ffd986c WL |
3477 | u32 msr = msr_info->index; |
3478 | u64 data = msr_info->data; | |
281b5278 | 3479 | u32 offset, last_msr; |
890ca9ae | 3480 | |
15c4a640 | 3481 | switch (msr) { |
15c4a640 | 3482 | case MSR_IA32_MCG_STATUS: |
890ca9ae | 3483 | vcpu->arch.mcg_status = data; |
15c4a640 | 3484 | break; |
c7ac679c | 3485 | case MSR_IA32_MCG_CTL: |
44883f01 PB |
3486 | if (!(mcg_cap & MCG_CTL_P) && |
3487 | (data || !msr_info->host_initiated)) | |
890ca9ae HY |
3488 | return 1; |
3489 | if (data != 0 && data != ~(u64)0) | |
44883f01 | 3490 | return 1; |
890ca9ae HY |
3491 | vcpu->arch.mcg_ctl = data; |
3492 | break; | |
281b5278 JW |
3493 | case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
3494 | last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; | |
3495 | if (msr > last_msr) | |
3496 | return 1; | |
191c8137 | 3497 | |
281b5278 JW |
3498 | if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated)) |
3499 | return 1; | |
3500 | /* An attempt to write a 1 to a reserved bit raises #GP */ | |
3501 | if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK)) | |
3502 | return 1; | |
3503 | offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, | |
3504 | last_msr + 1 - MSR_IA32_MC0_CTL2); | |
3505 | vcpu->arch.mci_ctl2_banks[offset] = data; | |
3506 | break; | |
3507 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | |
3508 | last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; | |
3509 | if (msr > last_msr) | |
3510 | return 1; | |
3511 | ||
3512 | /* | |
3513 | * Only 0 or all 1s can be written to IA32_MCi_CTL, all other | |
3514 | * values are architecturally undefined. But, some Linux | |
3515 | * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB | |
3516 | * issue on AMD K8s, allow bit 10 to be clear when setting all | |
3517 | * other bits in order to avoid an uncaught #GP in the guest. | |
f5223a33 SC |
3518 | * |
3519 | * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable, | |
3520 | * single-bit ECC data errors. | |
281b5278 JW |
3521 | */ |
3522 | if (is_mci_control_msr(msr) && | |
3523 | data != 0 && (data | (1 << 10) | 1) != ~(u64)0) | |
3524 | return 1; | |
191c8137 | 3525 | |
281b5278 JW |
3526 | /* |
3527 | * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR. | |
3528 | * AMD-based CPUs allow non-zero values, but if and only if | |
3529 | * HWCR[McStatusWrEn] is set. | |
3530 | */ | |
3531 | if (!msr_info->host_initiated && is_mci_status_msr(msr) && | |
3532 | data != 0 && !can_set_mci_status(vcpu)) | |
3533 | return 1; | |
3534 | ||
3535 | offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, | |
3536 | last_msr + 1 - MSR_IA32_MC0_CTL); | |
3537 | vcpu->arch.mce_banks[offset] = data; | |
3538 | break; | |
3539 | default: | |
890ca9ae HY |
3540 | return 1; |
3541 | } | |
3542 | return 0; | |
3543 | } | |
3544 | ||
2635b5c4 VK |
3545 | static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu) |
3546 | { | |
3547 | u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT; | |
3548 | ||
3549 | return (vcpu->arch.apf.msr_en_val & mask) == mask; | |
3550 | } | |
3551 | ||
344d9588 GN |
3552 | static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data) |
3553 | { | |
3554 | gpa_t gpa = data & ~0x3f; | |
3555 | ||
2635b5c4 VK |
3556 | /* Bits 4:5 are reserved, Should be zero */ |
3557 | if (data & 0x30) | |
344d9588 GN |
3558 | return 1; |
3559 | ||
66570e96 OU |
3560 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) && |
3561 | (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT)) | |
3562 | return 1; | |
3563 | ||
3564 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) && | |
3565 | (data & KVM_ASYNC_PF_DELIVERY_AS_INT)) | |
3566 | return 1; | |
3567 | ||
9d3c447c | 3568 | if (!lapic_in_kernel(vcpu)) |
d831de17 | 3569 | return data ? 1 : 0; |
9d3c447c | 3570 | |
2635b5c4 | 3571 | vcpu->arch.apf.msr_en_val = data; |
344d9588 | 3572 | |
2635b5c4 | 3573 | if (!kvm_pv_async_pf_enabled(vcpu)) { |
344d9588 GN |
3574 | kvm_clear_async_pf_completion_queue(vcpu); |
3575 | kvm_async_pf_hash_reset(vcpu); | |
3576 | return 0; | |
3577 | } | |
3578 | ||
4e335d9e | 3579 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa, |
68fd66f1 | 3580 | sizeof(u64))) |
344d9588 GN |
3581 | return 1; |
3582 | ||
4fa0efb4 | 3583 | vcpu->arch.apf.send_always = (data & KVM_ASYNC_PF_SEND_ALWAYS); |
52a5c155 | 3584 | vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT; |
2635b5c4 | 3585 | |
344d9588 | 3586 | kvm_async_pf_wakeup_all(vcpu); |
2635b5c4 VK |
3587 | |
3588 | return 0; | |
3589 | } | |
3590 | ||
3591 | static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data) | |
3592 | { | |
3593 | /* Bits 8-63 are reserved */ | |
3594 | if (data >> 8) | |
3595 | return 1; | |
3596 | ||
3597 | if (!lapic_in_kernel(vcpu)) | |
3598 | return 1; | |
3599 | ||
3600 | vcpu->arch.apf.msr_int_val = data; | |
3601 | ||
3602 | vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK; | |
3603 | ||
344d9588 GN |
3604 | return 0; |
3605 | } | |
3606 | ||
12f9a48f GC |
3607 | static void kvmclock_reset(struct kvm_vcpu *vcpu) |
3608 | { | |
8c82a0b3 | 3609 | kvm_gpc_deactivate(&vcpu->arch.pv_time); |
49dedf0d | 3610 | vcpu->arch.time = 0; |
12f9a48f GC |
3611 | } |
3612 | ||
7780938c | 3613 | static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu) |
f38a7b75 WL |
3614 | { |
3615 | ++vcpu->stat.tlb_flush; | |
89604647 | 3616 | kvm_x86_call(flush_tlb_all)(vcpu); |
e94cea09 SC |
3617 | |
3618 | /* Flushing all ASIDs flushes the current ASID... */ | |
3619 | kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu); | |
f38a7b75 WL |
3620 | } |
3621 | ||
0baedd79 VK |
3622 | static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu) |
3623 | { | |
3624 | ++vcpu->stat.tlb_flush; | |
b53e84ee LJ |
3625 | |
3626 | if (!tdp_enabled) { | |
61b05a9f | 3627 | /* |
b53e84ee LJ |
3628 | * A TLB flush on behalf of the guest is equivalent to |
3629 | * INVPCID(all), toggling CR4.PGE, etc., which requires | |
61b05a9f LJ |
3630 | * a forced sync of the shadow page tables. Ensure all the |
3631 | * roots are synced and the guest TLB in hardware is clean. | |
b53e84ee | 3632 | */ |
61b05a9f LJ |
3633 | kvm_mmu_sync_roots(vcpu); |
3634 | kvm_mmu_sync_prev_roots(vcpu); | |
b53e84ee LJ |
3635 | } |
3636 | ||
89604647 | 3637 | kvm_x86_call(flush_tlb_guest)(vcpu); |
adc43caa VK |
3638 | |
3639 | /* | |
3640 | * Flushing all "guest" TLB is always a superset of Hyper-V's fine | |
3641 | * grained flushing. | |
3642 | */ | |
0823570f | 3643 | kvm_hv_vcpu_purge_flush_tlb(vcpu); |
0baedd79 VK |
3644 | } |
3645 | ||
40e5f908 SC |
3646 | |
3647 | static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu) | |
3648 | { | |
3649 | ++vcpu->stat.tlb_flush; | |
89604647 | 3650 | kvm_x86_call(flush_tlb_current)(vcpu); |
40e5f908 SC |
3651 | } |
3652 | ||
3653 | /* | |
3654 | * Service "local" TLB flush requests, which are specific to the current MMU | |
3655 | * context. In addition to the generic event handling in vcpu_enter_guest(), | |
3656 | * TLB flushes that are targeted at an MMU context also need to be serviced | |
3657 | * prior before nested VM-Enter/VM-Exit. | |
3658 | */ | |
3659 | void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu) | |
3660 | { | |
3661 | if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu)) | |
3662 | kvm_vcpu_flush_tlb_current(vcpu); | |
3663 | ||
3664 | if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu)) | |
3665 | kvm_vcpu_flush_tlb_guest(vcpu); | |
3666 | } | |
3667 | EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests); | |
3668 | ||
c9aaa895 GC |
3669 | static void record_steal_time(struct kvm_vcpu *vcpu) |
3670 | { | |
7e2175eb DW |
3671 | struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; |
3672 | struct kvm_steal_time __user *st; | |
3673 | struct kvm_memslots *slots; | |
901d3765 | 3674 | gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; |
7e2175eb DW |
3675 | u64 steal; |
3676 | u32 version; | |
b0431382 | 3677 | |
30b5c851 DW |
3678 | if (kvm_xen_msr_enabled(vcpu->kvm)) { |
3679 | kvm_xen_runstate_set_running(vcpu); | |
3680 | return; | |
3681 | } | |
3682 | ||
c9aaa895 GC |
3683 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
3684 | return; | |
3685 | ||
7e2175eb | 3686 | if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm)) |
c9aaa895 GC |
3687 | return; |
3688 | ||
7e2175eb DW |
3689 | slots = kvm_memslots(vcpu->kvm); |
3690 | ||
3691 | if (unlikely(slots->generation != ghc->generation || | |
901d3765 | 3692 | gpa != ghc->gpa || |
7e2175eb | 3693 | kvm_is_error_hva(ghc->hva) || !ghc->memslot)) { |
7e2175eb DW |
3694 | /* We rely on the fact that it fits in a single page. */ |
3695 | BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS); | |
3696 | ||
901d3765 | 3697 | if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) || |
7e2175eb DW |
3698 | kvm_is_error_hva(ghc->hva) || !ghc->memslot) |
3699 | return; | |
3700 | } | |
3701 | ||
3702 | st = (struct kvm_steal_time __user *)ghc->hva; | |
f38a7b75 WL |
3703 | /* |
3704 | * Doing a TLB flush here, on the guest's behalf, can avoid | |
3705 | * expensive IPIs. | |
3706 | */ | |
66570e96 | 3707 | if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) { |
7e2175eb DW |
3708 | u8 st_preempted = 0; |
3709 | int err = -EFAULT; | |
3710 | ||
3e067fd8 PB |
3711 | if (!user_access_begin(st, sizeof(*st))) |
3712 | return; | |
3713 | ||
7e2175eb DW |
3714 | asm volatile("1: xchgb %0, %2\n" |
3715 | "xor %1, %1\n" | |
3716 | "2:\n" | |
3717 | _ASM_EXTABLE_UA(1b, 2b) | |
964b7aa0 DW |
3718 | : "+q" (st_preempted), |
3719 | "+&r" (err), | |
3720 | "+m" (st->preempted)); | |
7e2175eb DW |
3721 | if (err) |
3722 | goto out; | |
3723 | ||
3724 | user_access_end(); | |
3725 | ||
3726 | vcpu->arch.st.preempted = 0; | |
af3511ff | 3727 | |
66570e96 | 3728 | trace_kvm_pv_tlb_flush(vcpu->vcpu_id, |
af3511ff LJ |
3729 | st_preempted & KVM_VCPU_FLUSH_TLB); |
3730 | if (st_preempted & KVM_VCPU_FLUSH_TLB) | |
66570e96 | 3731 | kvm_vcpu_flush_tlb_guest(vcpu); |
7e2175eb DW |
3732 | |
3733 | if (!user_access_begin(st, sizeof(*st))) | |
3734 | goto dirty; | |
1eff0ada | 3735 | } else { |
3e067fd8 PB |
3736 | if (!user_access_begin(st, sizeof(*st))) |
3737 | return; | |
3738 | ||
7e2175eb DW |
3739 | unsafe_put_user(0, &st->preempted, out); |
3740 | vcpu->arch.st.preempted = 0; | |
66570e96 | 3741 | } |
0b9f6c46 | 3742 | |
7e2175eb DW |
3743 | unsafe_get_user(version, &st->version, out); |
3744 | if (version & 1) | |
3745 | version += 1; /* first time write, random junk */ | |
35f3fae1 | 3746 | |
7e2175eb DW |
3747 | version += 1; |
3748 | unsafe_put_user(version, &st->version, out); | |
35f3fae1 WL |
3749 | |
3750 | smp_wmb(); | |
3751 | ||
7e2175eb DW |
3752 | unsafe_get_user(steal, &st->steal, out); |
3753 | steal += current->sched_info.run_delay - | |
c54cdf14 LC |
3754 | vcpu->arch.st.last_steal; |
3755 | vcpu->arch.st.last_steal = current->sched_info.run_delay; | |
7e2175eb | 3756 | unsafe_put_user(steal, &st->steal, out); |
35f3fae1 | 3757 | |
7e2175eb DW |
3758 | version += 1; |
3759 | unsafe_put_user(version, &st->version, out); | |
35f3fae1 | 3760 | |
7e2175eb DW |
3761 | out: |
3762 | user_access_end(); | |
3763 | dirty: | |
3764 | mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); | |
c9aaa895 GC |
3765 | } |
3766 | ||
8fe8ab46 | 3767 | int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
15c4a640 | 3768 | { |
8fe8ab46 WA |
3769 | u32 msr = msr_info->index; |
3770 | u64 data = msr_info->data; | |
5753785f | 3771 | |
3617c0ee DW |
3772 | /* |
3773 | * Do not allow host-initiated writes to trigger the Xen hypercall | |
3774 | * page setup; it could incur locking paths which are not expected | |
3775 | * if userspace sets the MSR in an unusual location. | |
3776 | */ | |
bb0978d9 | 3777 | if (kvm_xen_is_hypercall_page_msr(vcpu->kvm, msr) && |
3617c0ee | 3778 | !msr_info->host_initiated) |
23200b7a | 3779 | return kvm_xen_write_hypercall_page(vcpu, data); |
1232f8e6 | 3780 | |
15c4a640 | 3781 | switch (msr) { |
2e32b719 | 3782 | case MSR_AMD64_NB_CFG: |
2e32b719 BP |
3783 | case MSR_IA32_UCODE_WRITE: |
3784 | case MSR_VM_HSAVE_PA: | |
3785 | case MSR_AMD64_PATCH_LOADER: | |
3786 | case MSR_AMD64_BU_CFG2: | |
405a353a | 3787 | case MSR_AMD64_DC_CFG: |
2770d472 | 3788 | case MSR_AMD64_TW_CFG: |
0e1b869f | 3789 | case MSR_F15H_EX_CFG: |
2e32b719 BP |
3790 | break; |
3791 | ||
518e7b94 WL |
3792 | case MSR_IA32_UCODE_REV: |
3793 | if (msr_info->host_initiated) | |
3794 | vcpu->arch.microcode_version = data; | |
3795 | break; | |
0cf9135b | 3796 | case MSR_IA32_ARCH_CAPABILITIES: |
a5d56389 | 3797 | if (!msr_info->host_initiated || |
8f2a2775 | 3798 | !guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) |
a5d56389 | 3799 | return KVM_MSR_RET_UNSUPPORTED; |
0cf9135b SC |
3800 | vcpu->arch.arch_capabilities = data; |
3801 | break; | |
686e0f03 | 3802 | case MSR_IA32_PERF_CAPABILITIES: |
d75cac36 | 3803 | if (!msr_info->host_initiated || |
8f2a2775 | 3804 | !guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) |
d75cac36 SC |
3805 | return KVM_MSR_RET_UNSUPPORTED; |
3806 | ||
686e0f03 | 3807 | if (data & ~kvm_caps.supported_perf_cap) |
d574c539 VK |
3808 | return 1; |
3809 | ||
3a6de51a SC |
3810 | /* |
3811 | * Note, this is not just a performance optimization! KVM | |
3812 | * disallows changing feature MSRs after the vCPU has run; PMU | |
3813 | * refresh will bug the VM if called after the vCPU has run. | |
3814 | */ | |
3815 | if (vcpu->arch.perf_capabilities == data) | |
3816 | break; | |
3817 | ||
d574c539 | 3818 | vcpu->arch.perf_capabilities = data; |
17a024a8 | 3819 | kvm_pmu_refresh(vcpu); |
3a6de51a | 3820 | break; |
e47d8608 JP |
3821 | case MSR_IA32_PRED_CMD: { |
3822 | u64 reserved_bits = ~(PRED_CMD_IBPB | PRED_CMD_SBPB); | |
3823 | ||
3824 | if (!msr_info->host_initiated) { | |
3825 | if ((!guest_has_pred_cmd_msr(vcpu))) | |
3826 | return 1; | |
3827 | ||
8f2a2775 SC |
3828 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SPEC_CTRL) && |
3829 | !guest_cpu_cap_has(vcpu, X86_FEATURE_AMD_IBPB)) | |
e47d8608 JP |
3830 | reserved_bits |= PRED_CMD_IBPB; |
3831 | ||
8f2a2775 | 3832 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_SBPB)) |
e47d8608 JP |
3833 | reserved_bits |= PRED_CMD_SBPB; |
3834 | } | |
903358c7 | 3835 | |
e47d8608 JP |
3836 | if (!boot_cpu_has(X86_FEATURE_IBPB)) |
3837 | reserved_bits |= PRED_CMD_IBPB; | |
3838 | ||
3839 | if (!boot_cpu_has(X86_FEATURE_SBPB)) | |
3840 | reserved_bits |= PRED_CMD_SBPB; | |
3841 | ||
3842 | if (data & reserved_bits) | |
903358c7 | 3843 | return 1; |
e47d8608 | 3844 | |
903358c7 SC |
3845 | if (!data) |
3846 | break; | |
3847 | ||
78255eb2 | 3848 | wrmsrq(MSR_IA32_PRED_CMD, data); |
903358c7 | 3849 | break; |
e47d8608 | 3850 | } |
da3db168 SC |
3851 | case MSR_IA32_FLUSH_CMD: |
3852 | if (!msr_info->host_initiated && | |
8f2a2775 | 3853 | !guest_cpu_cap_has(vcpu, X86_FEATURE_FLUSH_L1D)) |
da3db168 SC |
3854 | return 1; |
3855 | ||
3856 | if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH)) | |
3857 | return 1; | |
3858 | if (!data) | |
3859 | break; | |
3860 | ||
78255eb2 | 3861 | wrmsrq(MSR_IA32_FLUSH_CMD, L1D_FLUSH); |
da3db168 | 3862 | break; |
15c4a640 | 3863 | case MSR_EFER: |
11988499 | 3864 | return set_efer(vcpu, msr_info); |
8f1589d9 AP |
3865 | case MSR_K7_HWCR: |
3866 | data &= ~(u64)0x40; /* ignore flush filter disable */ | |
82494028 | 3867 | data &= ~(u64)0x100; /* ignore ignne emulation enable */ |
a223c313 | 3868 | data &= ~(u64)0x8; /* ignore TLB cache disable */ |
191c8137 | 3869 | |
8b0e00fb JM |
3870 | /* |
3871 | * Allow McStatusWrEn and TscFreqSel. (Linux guests from v3.2 | |
3872 | * through at least v6.6 whine if TscFreqSel is clear, | |
3873 | * depending on F/M/S. | |
3874 | */ | |
3875 | if (data & ~(BIT_ULL(18) | BIT_ULL(24))) { | |
e76ae527 | 3876 | kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
8f1589d9 AP |
3877 | return 1; |
3878 | } | |
598a790f | 3879 | vcpu->arch.msr_hwcr = data; |
15c4a640 | 3880 | break; |
f7c6d140 AP |
3881 | case MSR_FAM10H_MMIO_CONF_BASE: |
3882 | if (data != 0) { | |
e76ae527 | 3883 | kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
f7c6d140 AP |
3884 | return 1; |
3885 | } | |
15c4a640 | 3886 | break; |
34a83dea | 3887 | case MSR_IA32_CR_PAT: |
bc7fe2f0 SC |
3888 | if (!kvm_pat_valid(data)) |
3889 | return 1; | |
3890 | ||
3891 | vcpu->arch.pat = data; | |
3892 | break; | |
34a83dea SC |
3893 | case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: |
3894 | case MSR_MTRRdefType: | |
ff53604b | 3895 | return kvm_mtrr_set_msr(vcpu, msr, data); |
15c4a640 | 3896 | case MSR_IA32_APICBASE: |
c9155eb0 | 3897 | return kvm_apic_set_base(vcpu, data, msr_info->host_initiated); |
bf10bd0b | 3898 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: |
0105d1a5 | 3899 | return kvm_x2apic_msr_write(vcpu, msr, data); |
09141ec0 | 3900 | case MSR_IA32_TSC_DEADLINE: |
a3e06bbe LJ |
3901 | kvm_set_lapic_tscdeadline_msr(vcpu, data); |
3902 | break; | |
ba904635 | 3903 | case MSR_IA32_TSC_ADJUST: |
8f2a2775 | 3904 | if (guest_cpu_cap_has(vcpu, X86_FEATURE_TSC_ADJUST)) { |
ba904635 | 3905 | if (!msr_info->host_initiated) { |
d913b904 | 3906 | s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr; |
d7add054 | 3907 | adjust_tsc_offset_guest(vcpu, adj); |
d9130a2d ZD |
3908 | /* Before back to guest, tsc_timestamp must be adjusted |
3909 | * as well, otherwise guest's percpu pvclock time could jump. | |
3910 | */ | |
3911 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
ba904635 WA |
3912 | } |
3913 | vcpu->arch.ia32_tsc_adjust_msr = data; | |
3914 | } | |
3915 | break; | |
bef6ecca LX |
3916 | case MSR_IA32_MISC_ENABLE: { |
3917 | u64 old_val = vcpu->arch.ia32_misc_enable_msr; | |
d1055173 | 3918 | |
9fc22296 SC |
3919 | if (!msr_info->host_initiated) { |
3920 | /* RO bits */ | |
3921 | if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK) | |
3922 | return 1; | |
3923 | ||
3924 | /* R bits, i.e. writes are ignored, but don't fault. */ | |
3925 | data = data & ~MSR_IA32_MISC_ENABLE_EMON; | |
3926 | data |= old_val & MSR_IA32_MISC_ENABLE_EMON; | |
3927 | } | |
bef6ecca | 3928 | |
511a8556 | 3929 | if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) && |
bef6ecca | 3930 | ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) { |
8f2a2775 | 3931 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_XMM3)) |
511a8556 WL |
3932 | return 1; |
3933 | vcpu->arch.ia32_misc_enable_msr = data; | |
93da6af3 | 3934 | vcpu->arch.cpuid_dynamic_bits_dirty = true; |
511a8556 WL |
3935 | } else { |
3936 | vcpu->arch.ia32_misc_enable_msr = data; | |
3937 | } | |
15c4a640 | 3938 | break; |
bef6ecca | 3939 | } |
64d60670 | 3940 | case MSR_IA32_SMBASE: |
4b8e1b32 | 3941 | if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) |
64d60670 PB |
3942 | return 1; |
3943 | vcpu->arch.smbase = data; | |
3944 | break; | |
73f624f4 PB |
3945 | case MSR_IA32_POWER_CTL: |
3946 | vcpu->arch.msr_ia32_power_ctl = data; | |
3947 | break; | |
dd259935 | 3948 | case MSR_IA32_TSC: |
0c899c25 | 3949 | if (msr_info->host_initiated) { |
bf328e22 | 3950 | kvm_synchronize_tsc(vcpu, &data); |
adafea11 | 3951 | } else if (!vcpu->arch.guest_tsc_protected) { |
9b399dfd | 3952 | u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset; |
0c899c25 PB |
3953 | adjust_tsc_offset_guest(vcpu, adj); |
3954 | vcpu->arch.ia32_tsc_adjust_msr += adj; | |
3955 | } | |
dd259935 | 3956 | break; |
864e2ab2 AL |
3957 | case MSR_IA32_XSS: |
3958 | if (!msr_info->host_initiated && | |
3959 | !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) | |
3960 | return 1; | |
3961 | /* | |
a1bead2a SC |
3962 | * KVM supports exposing PT to the guest, but does not support |
3963 | * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than | |
3964 | * XSAVES/XRSTORS to save/restore PT MSRs. | |
864e2ab2 | 3965 | */ |
938c8745 | 3966 | if (data & ~kvm_caps.supported_xss) |
864e2ab2 AL |
3967 | return 1; |
3968 | vcpu->arch.ia32_xss = data; | |
93da6af3 | 3969 | vcpu->arch.cpuid_dynamic_bits_dirty = true; |
864e2ab2 | 3970 | break; |
52797bf9 LA |
3971 | case MSR_SMI_COUNT: |
3972 | if (!msr_info->host_initiated) | |
3973 | return 1; | |
3974 | vcpu->arch.smi_count = data; | |
3975 | break; | |
11c6bffa | 3976 | case MSR_KVM_WALL_CLOCK_NEW: |
66570e96 OU |
3977 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
3978 | return 1; | |
3979 | ||
629b5348 JM |
3980 | vcpu->kvm->arch.wall_clock = data; |
3981 | kvm_write_wall_clock(vcpu->kvm, data, 0); | |
66570e96 | 3982 | break; |
18068523 | 3983 | case MSR_KVM_WALL_CLOCK: |
66570e96 OU |
3984 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
3985 | return 1; | |
3986 | ||
629b5348 JM |
3987 | vcpu->kvm->arch.wall_clock = data; |
3988 | kvm_write_wall_clock(vcpu->kvm, data, 0); | |
18068523 | 3989 | break; |
11c6bffa | 3990 | case MSR_KVM_SYSTEM_TIME_NEW: |
66570e96 OU |
3991 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
3992 | return 1; | |
3993 | ||
5b9bb0eb OU |
3994 | kvm_write_system_time(vcpu, data, false, msr_info->host_initiated); |
3995 | break; | |
3996 | case MSR_KVM_SYSTEM_TIME: | |
66570e96 OU |
3997 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
3998 | return 1; | |
3999 | ||
4000 | kvm_write_system_time(vcpu, data, true, msr_info->host_initiated); | |
18068523 | 4001 | break; |
344d9588 | 4002 | case MSR_KVM_ASYNC_PF_EN: |
66570e96 OU |
4003 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) |
4004 | return 1; | |
4005 | ||
344d9588 GN |
4006 | if (kvm_pv_enable_async_pf(vcpu, data)) |
4007 | return 1; | |
4008 | break; | |
2635b5c4 | 4009 | case MSR_KVM_ASYNC_PF_INT: |
66570e96 OU |
4010 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
4011 | return 1; | |
4012 | ||
2635b5c4 VK |
4013 | if (kvm_pv_enable_async_pf_int(vcpu, data)) |
4014 | return 1; | |
4015 | break; | |
557a961a | 4016 | case MSR_KVM_ASYNC_PF_ACK: |
0a31df68 | 4017 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
66570e96 | 4018 | return 1; |
557a961a VK |
4019 | if (data & 0x1) { |
4020 | vcpu->arch.apf.pageready_pending = false; | |
4021 | kvm_check_async_pf_completion(vcpu); | |
4022 | } | |
4023 | break; | |
c9aaa895 | 4024 | case MSR_KVM_STEAL_TIME: |
66570e96 OU |
4025 | if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) |
4026 | return 1; | |
c9aaa895 GC |
4027 | |
4028 | if (unlikely(!sched_info_on())) | |
4029 | return 1; | |
4030 | ||
4031 | if (data & KVM_STEAL_RESERVED_MASK) | |
4032 | return 1; | |
4033 | ||
c9aaa895 GC |
4034 | vcpu->arch.st.msr_val = data; |
4035 | ||
4036 | if (!(data & KVM_MSR_ENABLED)) | |
4037 | break; | |
4038 | ||
c9aaa895 GC |
4039 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
4040 | ||
4041 | break; | |
ae7a2a3f | 4042 | case MSR_KVM_PV_EOI_EN: |
66570e96 OU |
4043 | if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) |
4044 | return 1; | |
4045 | ||
77c3323f | 4046 | if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8))) |
ae7a2a3f MT |
4047 | return 1; |
4048 | break; | |
c9aaa895 | 4049 | |
2d5ba19b | 4050 | case MSR_KVM_POLL_CONTROL: |
66570e96 OU |
4051 | if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) |
4052 | return 1; | |
4053 | ||
2d5ba19b MT |
4054 | /* only enable bit supported */ |
4055 | if (data & (-1ULL << 1)) | |
4056 | return 1; | |
4057 | ||
4058 | vcpu->arch.msr_kvm_poll_control = data; | |
4059 | break; | |
4060 | ||
890ca9ae HY |
4061 | case MSR_IA32_MCG_CTL: |
4062 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 4063 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
281b5278 | 4064 | case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
9ffd986c | 4065 | return set_msr_mce(vcpu, msr_info); |
71db6023 | 4066 | |
6912ac32 WH |
4067 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: |
4068 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
6912ac32 WH |
4069 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
4070 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 4071 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
afd80d85 | 4072 | return kvm_pmu_set_msr(vcpu, msr_info); |
5753785f | 4073 | |
e76ae527 SC |
4074 | if (data) |
4075 | kvm_pr_unimpl_wrmsr(vcpu, msr, data); | |
5753785f | 4076 | break; |
84e0cefa JS |
4077 | case MSR_K7_CLK_CTL: |
4078 | /* | |
4079 | * Ignore all writes to this no longer documented MSR. | |
4080 | * Writes are only relevant for old K7 processors, | |
4081 | * all pre-dating SVM, but a recommended workaround from | |
4a969980 | 4082 | * AMD for these chips. It is possible to specify the |
84e0cefa JS |
4083 | * affected processor models on the command line, hence |
4084 | * the need to ignore the workaround. | |
4085 | */ | |
4086 | break; | |
b4f69df0 | 4087 | #ifdef CONFIG_KVM_HYPERV |
55cd8e5a | 4088 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
f97f5a56 JD |
4089 | case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
4090 | case HV_X64_MSR_SYNDBG_OPTIONS: | |
e7d9513b AS |
4091 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
4092 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 4093 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
a2e164e7 VK |
4094 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
4095 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
4096 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
2be1bd3a | 4097 | case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
e7d9513b AS |
4098 | return kvm_hv_set_msr_common(vcpu, msr, data, |
4099 | msr_info->host_initiated); | |
b4f69df0 | 4100 | #endif |
91c9c3ed | 4101 | case MSR_IA32_BBL_CR_CTL3: |
4102 | /* Drop writes to this legacy MSR -- see rdmsr | |
4103 | * counterpart for further detail. | |
4104 | */ | |
e76ae527 | 4105 | kvm_pr_unimpl_wrmsr(vcpu, msr, data); |
91c9c3ed | 4106 | break; |
2b036c6b | 4107 | case MSR_AMD64_OSVW_ID_LENGTH: |
8f2a2775 | 4108 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
4109 | return 1; |
4110 | vcpu->arch.osvw.length = data; | |
4111 | break; | |
4112 | case MSR_AMD64_OSVW_STATUS: | |
8f2a2775 | 4113 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b BO |
4114 | return 1; |
4115 | vcpu->arch.osvw.status = data; | |
4116 | break; | |
db2336a8 | 4117 | case MSR_PLATFORM_INFO: |
1ded7a57 | 4118 | if (!msr_info->host_initiated) |
db2336a8 KH |
4119 | return 1; |
4120 | vcpu->arch.msr_platform_info = data; | |
4121 | break; | |
4122 | case MSR_MISC_FEATURES_ENABLES: | |
4123 | if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT || | |
4124 | (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT && | |
4125 | !supports_cpuid_fault(vcpu))) | |
4126 | return 1; | |
4127 | vcpu->arch.msr_misc_features_enables = data; | |
4128 | break; | |
820a6ee9 JL |
4129 | #ifdef CONFIG_X86_64 |
4130 | case MSR_IA32_XFD: | |
4131 | if (!msr_info->host_initiated && | |
8f2a2775 | 4132 | !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) |
820a6ee9 JL |
4133 | return 1; |
4134 | ||
988896bb | 4135 | if (data & ~kvm_guest_supported_xfd(vcpu)) |
820a6ee9 JL |
4136 | return 1; |
4137 | ||
4138 | fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data); | |
4139 | break; | |
548e8365 JL |
4140 | case MSR_IA32_XFD_ERR: |
4141 | if (!msr_info->host_initiated && | |
8f2a2775 | 4142 | !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) |
548e8365 JL |
4143 | return 1; |
4144 | ||
988896bb | 4145 | if (data & ~kvm_guest_supported_xfd(vcpu)) |
548e8365 JL |
4146 | return 1; |
4147 | ||
4148 | vcpu->arch.guest_fpu.xfd_err = data; | |
4149 | break; | |
820a6ee9 | 4150 | #endif |
2de154f5 | 4151 | default: |
157fc497 SC |
4152 | if (kvm_pmu_is_valid_msr(vcpu, msr)) |
4153 | return kvm_pmu_set_msr(vcpu, msr_info); | |
2de154f5 | 4154 | |
aaecae7b | 4155 | return KVM_MSR_RET_UNSUPPORTED; |
15c4a640 CO |
4156 | } |
4157 | return 0; | |
4158 | } | |
4159 | EXPORT_SYMBOL_GPL(kvm_set_msr_common); | |
4160 | ||
44883f01 | 4161 | static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host) |
15c4a640 CO |
4162 | { |
4163 | u64 data; | |
890ca9ae HY |
4164 | u64 mcg_cap = vcpu->arch.mcg_cap; |
4165 | unsigned bank_num = mcg_cap & 0xff; | |
281b5278 | 4166 | u32 offset, last_msr; |
15c4a640 CO |
4167 | |
4168 | switch (msr) { | |
15c4a640 CO |
4169 | case MSR_IA32_P5_MC_ADDR: |
4170 | case MSR_IA32_P5_MC_TYPE: | |
890ca9ae HY |
4171 | data = 0; |
4172 | break; | |
15c4a640 | 4173 | case MSR_IA32_MCG_CAP: |
890ca9ae HY |
4174 | data = vcpu->arch.mcg_cap; |
4175 | break; | |
c7ac679c | 4176 | case MSR_IA32_MCG_CTL: |
44883f01 | 4177 | if (!(mcg_cap & MCG_CTL_P) && !host) |
890ca9ae HY |
4178 | return 1; |
4179 | data = vcpu->arch.mcg_ctl; | |
4180 | break; | |
4181 | case MSR_IA32_MCG_STATUS: | |
4182 | data = vcpu->arch.mcg_status; | |
4183 | break; | |
281b5278 JW |
4184 | case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
4185 | last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1; | |
4186 | if (msr > last_msr) | |
4187 | return 1; | |
6ec4c5ee | 4188 | |
281b5278 JW |
4189 | if (!(mcg_cap & MCG_CMCI_P) && !host) |
4190 | return 1; | |
4191 | offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2, | |
4192 | last_msr + 1 - MSR_IA32_MC0_CTL2); | |
4193 | data = vcpu->arch.mci_ctl2_banks[offset]; | |
4194 | break; | |
4195 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: | |
4196 | last_msr = MSR_IA32_MCx_CTL(bank_num) - 1; | |
4197 | if (msr > last_msr) | |
4198 | return 1; | |
4199 | ||
4200 | offset = array_index_nospec(msr - MSR_IA32_MC0_CTL, | |
4201 | last_msr + 1 - MSR_IA32_MC0_CTL); | |
4202 | data = vcpu->arch.mce_banks[offset]; | |
4203 | break; | |
4204 | default: | |
890ca9ae HY |
4205 | return 1; |
4206 | } | |
4207 | *pdata = data; | |
4208 | return 0; | |
4209 | } | |
4210 | ||
609e36d3 | 4211 | int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info) |
890ca9ae | 4212 | { |
609e36d3 | 4213 | switch (msr_info->index) { |
890ca9ae | 4214 | case MSR_IA32_PLATFORM_ID: |
15c4a640 | 4215 | case MSR_IA32_EBL_CR_POWERON: |
b5e2fec0 AG |
4216 | case MSR_IA32_LASTBRANCHFROMIP: |
4217 | case MSR_IA32_LASTBRANCHTOIP: | |
4218 | case MSR_IA32_LASTINTFROMIP: | |
4219 | case MSR_IA32_LASTINTTOIP: | |
059e5c32 | 4220 | case MSR_AMD64_SYSCFG: |
3afb1121 PB |
4221 | case MSR_K8_TSEG_ADDR: |
4222 | case MSR_K8_TSEG_MASK: | |
61a6bd67 | 4223 | case MSR_VM_HSAVE_PA: |
1fdbd48c | 4224 | case MSR_K8_INT_PENDING_MSG: |
c323c0e5 | 4225 | case MSR_AMD64_NB_CFG: |
f7c6d140 | 4226 | case MSR_FAM10H_MMIO_CONF_BASE: |
2e32b719 | 4227 | case MSR_AMD64_BU_CFG2: |
0c2df2a1 | 4228 | case MSR_IA32_PERF_CTL: |
405a353a | 4229 | case MSR_AMD64_DC_CFG: |
2770d472 | 4230 | case MSR_AMD64_TW_CFG: |
0e1b869f | 4231 | case MSR_F15H_EX_CFG: |
2ca1a06a VS |
4232 | /* |
4233 | * Intel Sandy Bridge CPUs must support the RAPL (running average power | |
4234 | * limit) MSRs. Just return 0, as we do not want to expose the host | |
4235 | * data here. Do not conditionalize this on CPUID, as KVM does not do | |
4236 | * so for existing CPU-specific MSRs. | |
4237 | */ | |
4238 | case MSR_RAPL_POWER_UNIT: | |
4239 | case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */ | |
4240 | case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */ | |
4241 | case MSR_PKG_ENERGY_STATUS: /* Total package */ | |
4242 | case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */ | |
609e36d3 | 4243 | msr_info->data = 0; |
15c4a640 | 4244 | break; |
6912ac32 WH |
4245 | case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3: |
4246 | case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3: | |
4247 | case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1: | |
4248 | case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1: | |
c6702c9d | 4249 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
cbd71758 | 4250 | return kvm_pmu_get_msr(vcpu, msr_info); |
609e36d3 | 4251 | msr_info->data = 0; |
5753785f | 4252 | break; |
742bc670 | 4253 | case MSR_IA32_UCODE_REV: |
518e7b94 | 4254 | msr_info->data = vcpu->arch.microcode_version; |
742bc670 | 4255 | break; |
0cf9135b | 4256 | case MSR_IA32_ARCH_CAPABILITIES: |
8f2a2775 | 4257 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES)) |
a5d56389 | 4258 | return KVM_MSR_RET_UNSUPPORTED; |
0cf9135b SC |
4259 | msr_info->data = vcpu->arch.arch_capabilities; |
4260 | break; | |
d574c539 | 4261 | case MSR_IA32_PERF_CAPABILITIES: |
8f2a2775 | 4262 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_PDCM)) |
d75cac36 | 4263 | return KVM_MSR_RET_UNSUPPORTED; |
d574c539 VK |
4264 | msr_info->data = vcpu->arch.perf_capabilities; |
4265 | break; | |
73f624f4 PB |
4266 | case MSR_IA32_POWER_CTL: |
4267 | msr_info->data = vcpu->arch.msr_ia32_power_ctl; | |
4268 | break; | |
cc5b54dd ML |
4269 | case MSR_IA32_TSC: { |
4270 | /* | |
4271 | * Intel SDM states that MSR_IA32_TSC read adds the TSC offset | |
4272 | * even when not intercepted. AMD manual doesn't explicitly | |
4273 | * state this but appears to behave the same. | |
4274 | * | |
ee6fa053 | 4275 | * On userspace reads and writes, however, we unconditionally |
c0623f5e | 4276 | * return L1's TSC value to ensure backwards-compatible |
ee6fa053 | 4277 | * behavior for migration. |
cc5b54dd | 4278 | */ |
fe3eb504 | 4279 | u64 offset, ratio; |
cc5b54dd | 4280 | |
fe3eb504 IS |
4281 | if (msr_info->host_initiated) { |
4282 | offset = vcpu->arch.l1_tsc_offset; | |
4283 | ratio = vcpu->arch.l1_tsc_scaling_ratio; | |
4284 | } else { | |
4285 | offset = vcpu->arch.tsc_offset; | |
4286 | ratio = vcpu->arch.tsc_scaling_ratio; | |
4287 | } | |
4288 | ||
62711e5a | 4289 | msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset; |
dd259935 | 4290 | break; |
cc5b54dd | 4291 | } |
34a83dea | 4292 | case MSR_IA32_CR_PAT: |
bc7fe2f0 SC |
4293 | msr_info->data = vcpu->arch.pat; |
4294 | break; | |
9ba075a6 | 4295 | case MSR_MTRRcap: |
34a83dea SC |
4296 | case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000: |
4297 | case MSR_MTRRdefType: | |
ff53604b | 4298 | return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data); |
15c4a640 | 4299 | case 0xcd: /* fsb frequency */ |
609e36d3 | 4300 | msr_info->data = 3; |
15c4a640 | 4301 | break; |
7b914098 JS |
4302 | /* |
4303 | * MSR_EBC_FREQUENCY_ID | |
4304 | * Conservative value valid for even the basic CPU models. | |
4305 | * Models 0,1: 000 in bits 23:21 indicating a bus speed of | |
4306 | * 100MHz, model 2 000 in bits 18:16 indicating 100MHz, | |
4307 | * and 266MHz for model 3, or 4. Set Core Clock | |
4308 | * Frequency to System Bus Frequency Ratio to 1 (bits | |
4309 | * 31:24) even though these are only valid for CPU | |
4310 | * models > 2, however guests may end up dividing or | |
4311 | * multiplying by zero otherwise. | |
4312 | */ | |
4313 | case MSR_EBC_FREQUENCY_ID: | |
609e36d3 | 4314 | msr_info->data = 1 << 24; |
7b914098 | 4315 | break; |
15c4a640 | 4316 | case MSR_IA32_APICBASE: |
d91060e3 | 4317 | msr_info->data = vcpu->arch.apic_base; |
15c4a640 | 4318 | break; |
bf10bd0b | 4319 | case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff: |
609e36d3 | 4320 | return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data); |
09141ec0 | 4321 | case MSR_IA32_TSC_DEADLINE: |
609e36d3 | 4322 | msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu); |
a3e06bbe | 4323 | break; |
ba904635 | 4324 | case MSR_IA32_TSC_ADJUST: |
609e36d3 | 4325 | msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr; |
ba904635 | 4326 | break; |
15c4a640 | 4327 | case MSR_IA32_MISC_ENABLE: |
609e36d3 | 4328 | msr_info->data = vcpu->arch.ia32_misc_enable_msr; |
15c4a640 | 4329 | break; |
64d60670 | 4330 | case MSR_IA32_SMBASE: |
4b8e1b32 | 4331 | if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated) |
64d60670 PB |
4332 | return 1; |
4333 | msr_info->data = vcpu->arch.smbase; | |
15c4a640 | 4334 | break; |
52797bf9 LA |
4335 | case MSR_SMI_COUNT: |
4336 | msr_info->data = vcpu->arch.smi_count; | |
4337 | break; | |
847f0ad8 AG |
4338 | case MSR_IA32_PERF_STATUS: |
4339 | /* TSC increment by tick */ | |
609e36d3 | 4340 | msr_info->data = 1000ULL; |
847f0ad8 | 4341 | /* CPU multiplier */ |
b0996ae4 | 4342 | msr_info->data |= (((uint64_t)4ULL) << 40); |
847f0ad8 | 4343 | break; |
15c4a640 | 4344 | case MSR_EFER: |
609e36d3 | 4345 | msr_info->data = vcpu->arch.efer; |
15c4a640 | 4346 | break; |
18068523 | 4347 | case MSR_KVM_WALL_CLOCK: |
1930e5dd OU |
4348 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
4349 | return 1; | |
4350 | ||
4351 | msr_info->data = vcpu->kvm->arch.wall_clock; | |
4352 | break; | |
11c6bffa | 4353 | case MSR_KVM_WALL_CLOCK_NEW: |
1930e5dd OU |
4354 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
4355 | return 1; | |
4356 | ||
609e36d3 | 4357 | msr_info->data = vcpu->kvm->arch.wall_clock; |
18068523 GOC |
4358 | break; |
4359 | case MSR_KVM_SYSTEM_TIME: | |
1930e5dd OU |
4360 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE)) |
4361 | return 1; | |
4362 | ||
4363 | msr_info->data = vcpu->arch.time; | |
4364 | break; | |
11c6bffa | 4365 | case MSR_KVM_SYSTEM_TIME_NEW: |
1930e5dd OU |
4366 | if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2)) |
4367 | return 1; | |
4368 | ||
609e36d3 | 4369 | msr_info->data = vcpu->arch.time; |
18068523 | 4370 | break; |
344d9588 | 4371 | case MSR_KVM_ASYNC_PF_EN: |
1930e5dd OU |
4372 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF)) |
4373 | return 1; | |
4374 | ||
2635b5c4 VK |
4375 | msr_info->data = vcpu->arch.apf.msr_en_val; |
4376 | break; | |
4377 | case MSR_KVM_ASYNC_PF_INT: | |
1930e5dd OU |
4378 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
4379 | return 1; | |
4380 | ||
2635b5c4 | 4381 | msr_info->data = vcpu->arch.apf.msr_int_val; |
344d9588 | 4382 | break; |
557a961a | 4383 | case MSR_KVM_ASYNC_PF_ACK: |
0a31df68 | 4384 | if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT)) |
1930e5dd OU |
4385 | return 1; |
4386 | ||
557a961a VK |
4387 | msr_info->data = 0; |
4388 | break; | |
c9aaa895 | 4389 | case MSR_KVM_STEAL_TIME: |
1930e5dd OU |
4390 | if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME)) |
4391 | return 1; | |
4392 | ||
609e36d3 | 4393 | msr_info->data = vcpu->arch.st.msr_val; |
c9aaa895 | 4394 | break; |
1d92128f | 4395 | case MSR_KVM_PV_EOI_EN: |
1930e5dd OU |
4396 | if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI)) |
4397 | return 1; | |
4398 | ||
609e36d3 | 4399 | msr_info->data = vcpu->arch.pv_eoi.msr_val; |
1d92128f | 4400 | break; |
2d5ba19b | 4401 | case MSR_KVM_POLL_CONTROL: |
1930e5dd OU |
4402 | if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL)) |
4403 | return 1; | |
4404 | ||
2d5ba19b MT |
4405 | msr_info->data = vcpu->arch.msr_kvm_poll_control; |
4406 | break; | |
890ca9ae HY |
4407 | case MSR_IA32_P5_MC_ADDR: |
4408 | case MSR_IA32_P5_MC_TYPE: | |
4409 | case MSR_IA32_MCG_CAP: | |
4410 | case MSR_IA32_MCG_CTL: | |
4411 | case MSR_IA32_MCG_STATUS: | |
81760dcc | 4412 | case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1: |
281b5278 | 4413 | case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1: |
44883f01 PB |
4414 | return get_msr_mce(vcpu, msr_info->index, &msr_info->data, |
4415 | msr_info->host_initiated); | |
864e2ab2 AL |
4416 | case MSR_IA32_XSS: |
4417 | if (!msr_info->host_initiated && | |
4418 | !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES)) | |
4419 | return 1; | |
4420 | msr_info->data = vcpu->arch.ia32_xss; | |
4421 | break; | |
84e0cefa JS |
4422 | case MSR_K7_CLK_CTL: |
4423 | /* | |
4424 | * Provide expected ramp-up count for K7. All other | |
4425 | * are set to zero, indicating minimum divisors for | |
4426 | * every field. | |
4427 | * | |
4428 | * This prevents guest kernels on AMD host with CPU | |
4429 | * type 6, model 8 and higher from exploding due to | |
4430 | * the rdmsr failing. | |
4431 | */ | |
609e36d3 | 4432 | msr_info->data = 0x20000000; |
84e0cefa | 4433 | break; |
b4f69df0 | 4434 | #ifdef CONFIG_KVM_HYPERV |
55cd8e5a | 4435 | case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15: |
f97f5a56 JD |
4436 | case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER: |
4437 | case HV_X64_MSR_SYNDBG_OPTIONS: | |
e7d9513b AS |
4438 | case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4: |
4439 | case HV_X64_MSR_CRASH_CTL: | |
1f4b34f8 | 4440 | case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT: |
a2e164e7 VK |
4441 | case HV_X64_MSR_REENLIGHTENMENT_CONTROL: |
4442 | case HV_X64_MSR_TSC_EMULATION_CONTROL: | |
4443 | case HV_X64_MSR_TSC_EMULATION_STATUS: | |
2be1bd3a | 4444 | case HV_X64_MSR_TSC_INVARIANT_CONTROL: |
e83d5887 | 4445 | return kvm_hv_get_msr_common(vcpu, |
44883f01 PB |
4446 | msr_info->index, &msr_info->data, |
4447 | msr_info->host_initiated); | |
b4f69df0 | 4448 | #endif |
91c9c3ed | 4449 | case MSR_IA32_BBL_CR_CTL3: |
4450 | /* This legacy MSR exists but isn't fully documented in current | |
4451 | * silicon. It is however accessed by winxp in very narrow | |
4452 | * scenarios where it sets bit #19, itself documented as | |
4453 | * a "reserved" bit. Best effort attempt to source coherent | |
4454 | * read data here should the balance of the register be | |
4455 | * interpreted by the guest: | |
4456 | * | |
4457 | * L2 cache control register 3: 64GB range, 256KB size, | |
4458 | * enabled, latency 0x1, configured | |
4459 | */ | |
609e36d3 | 4460 | msr_info->data = 0xbe702111; |
91c9c3ed | 4461 | break; |
2b036c6b | 4462 | case MSR_AMD64_OSVW_ID_LENGTH: |
8f2a2775 | 4463 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 4464 | return 1; |
609e36d3 | 4465 | msr_info->data = vcpu->arch.osvw.length; |
2b036c6b BO |
4466 | break; |
4467 | case MSR_AMD64_OSVW_STATUS: | |
8f2a2775 | 4468 | if (!guest_cpu_cap_has(vcpu, X86_FEATURE_OSVW)) |
2b036c6b | 4469 | return 1; |
609e36d3 | 4470 | msr_info->data = vcpu->arch.osvw.status; |
2b036c6b | 4471 | break; |
db2336a8 | 4472 | case MSR_PLATFORM_INFO: |
6fbbde9a DS |
4473 | if (!msr_info->host_initiated && |
4474 | !vcpu->kvm->arch.guest_can_read_msr_platform_info) | |
4475 | return 1; | |
db2336a8 KH |
4476 | msr_info->data = vcpu->arch.msr_platform_info; |
4477 | break; | |
4478 | case MSR_MISC_FEATURES_ENABLES: | |
4479 | msr_info->data = vcpu->arch.msr_misc_features_enables; | |
4480 | break; | |
191c8137 BP |
4481 | case MSR_K7_HWCR: |
4482 | msr_info->data = vcpu->arch.msr_hwcr; | |
4483 | break; | |
820a6ee9 JL |
4484 | #ifdef CONFIG_X86_64 |
4485 | case MSR_IA32_XFD: | |
4486 | if (!msr_info->host_initiated && | |
8f2a2775 | 4487 | !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) |
820a6ee9 JL |
4488 | return 1; |
4489 | ||
4490 | msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd; | |
4491 | break; | |
548e8365 JL |
4492 | case MSR_IA32_XFD_ERR: |
4493 | if (!msr_info->host_initiated && | |
8f2a2775 | 4494 | !guest_cpu_cap_has(vcpu, X86_FEATURE_XFD)) |
548e8365 JL |
4495 | return 1; |
4496 | ||
4497 | msr_info->data = vcpu->arch.guest_fpu.xfd_err; | |
4498 | break; | |
820a6ee9 | 4499 | #endif |
15c4a640 | 4500 | default: |
c6702c9d | 4501 | if (kvm_pmu_is_valid_msr(vcpu, msr_info->index)) |
cbd71758 | 4502 | return kvm_pmu_get_msr(vcpu, msr_info); |
2de154f5 | 4503 | |
aaecae7b | 4504 | return KVM_MSR_RET_UNSUPPORTED; |
15c4a640 | 4505 | } |
15c4a640 CO |
4506 | return 0; |
4507 | } | |
4508 | EXPORT_SYMBOL_GPL(kvm_get_msr_common); | |
4509 | ||
313a3dc7 CO |
4510 | /* |
4511 | * Read or write a bunch of msrs. All parameters are kernel addresses. | |
4512 | * | |
4513 | * @return number of msrs set successfully. | |
4514 | */ | |
4515 | static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs, | |
4516 | struct kvm_msr_entry *entries, | |
4517 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
4518 | unsigned index, u64 *data)) | |
4519 | { | |
801e459a | 4520 | int i; |
313a3dc7 | 4521 | |
313a3dc7 CO |
4522 | for (i = 0; i < msrs->nmsrs; ++i) |
4523 | if (do_msr(vcpu, entries[i].index, &entries[i].data)) | |
4524 | break; | |
4525 | ||
313a3dc7 CO |
4526 | return i; |
4527 | } | |
4528 | ||
4529 | /* | |
4530 | * Read or write a bunch of msrs. Parameters are user addresses. | |
4531 | * | |
4532 | * @return number of msrs set successfully. | |
4533 | */ | |
4534 | static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs, | |
4535 | int (*do_msr)(struct kvm_vcpu *vcpu, | |
4536 | unsigned index, u64 *data), | |
4537 | int writeback) | |
4538 | { | |
4539 | struct kvm_msrs msrs; | |
4540 | struct kvm_msr_entry *entries; | |
313a3dc7 | 4541 | unsigned size; |
e73ba25f | 4542 | int r; |
313a3dc7 CO |
4543 | |
4544 | r = -EFAULT; | |
0e96f31e | 4545 | if (copy_from_user(&msrs, user_msrs, sizeof(msrs))) |
313a3dc7 CO |
4546 | goto out; |
4547 | ||
4548 | r = -E2BIG; | |
4549 | if (msrs.nmsrs >= MAX_IO_MSRS) | |
4550 | goto out; | |
4551 | ||
313a3dc7 | 4552 | size = sizeof(struct kvm_msr_entry) * msrs.nmsrs; |
ff5c2c03 SL |
4553 | entries = memdup_user(user_msrs->entries, size); |
4554 | if (IS_ERR(entries)) { | |
4555 | r = PTR_ERR(entries); | |
313a3dc7 | 4556 | goto out; |
ff5c2c03 | 4557 | } |
313a3dc7 | 4558 | |
e73ba25f | 4559 | r = __msr_io(vcpu, &msrs, entries, do_msr); |
313a3dc7 | 4560 | |
313a3dc7 | 4561 | if (writeback && copy_to_user(user_msrs->entries, entries, size)) |
e73ba25f | 4562 | r = -EFAULT; |
313a3dc7 | 4563 | |
7a73c028 | 4564 | kfree(entries); |
313a3dc7 CO |
4565 | out: |
4566 | return r; | |
4567 | } | |
4568 | ||
4d5422ce WL |
4569 | static inline bool kvm_can_mwait_in_guest(void) |
4570 | { | |
4571 | return boot_cpu_has(X86_FEATURE_MWAIT) && | |
8e9b29b6 KA |
4572 | !boot_cpu_has_bug(X86_BUG_MONITOR) && |
4573 | boot_cpu_has(X86_FEATURE_ARAT); | |
4d5422ce WL |
4574 | } |
4575 | ||
c829ccd4 SC |
4576 | static u64 kvm_get_allowed_disable_exits(void) |
4577 | { | |
4578 | u64 r = KVM_X86_DISABLE_EXITS_PAUSE; | |
4579 | ||
4580 | if (!mitigate_smt_rsb) { | |
4581 | r |= KVM_X86_DISABLE_EXITS_HLT | | |
4582 | KVM_X86_DISABLE_EXITS_CSTATE; | |
4583 | ||
4584 | if (kvm_can_mwait_in_guest()) | |
4585 | r |= KVM_X86_DISABLE_EXITS_MWAIT; | |
4586 | } | |
4587 | return r; | |
4588 | } | |
4589 | ||
b4f69df0 | 4590 | #ifdef CONFIG_KVM_HYPERV |
c21d54f0 VK |
4591 | static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu, |
4592 | struct kvm_cpuid2 __user *cpuid_arg) | |
4593 | { | |
4594 | struct kvm_cpuid2 cpuid; | |
4595 | int r; | |
4596 | ||
4597 | r = -EFAULT; | |
4598 | if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) | |
4599 | return r; | |
4600 | ||
4601 | r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
4602 | if (r) | |
4603 | return r; | |
4604 | ||
4605 | r = -EFAULT; | |
4606 | if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) | |
4607 | return r; | |
4608 | ||
4609 | return 0; | |
4610 | } | |
b4f69df0 | 4611 | #endif |
c21d54f0 | 4612 | |
89ea60c2 SC |
4613 | static bool kvm_is_vm_type_supported(unsigned long type) |
4614 | { | |
2a955c4d | 4615 | return type < 32 && (kvm_caps.supported_vm_types & BIT(type)); |
89ea60c2 | 4616 | } |
c21d54f0 | 4617 | |
a476cadf | 4618 | static inline u64 kvm_sync_valid_fields(struct kvm *kvm) |
74c1807f PB |
4619 | { |
4620 | return kvm && kvm->arch.has_protected_state ? 0 : KVM_SYNC_X86_VALID_FIELDS; | |
4621 | } | |
4622 | ||
784aa3d7 | 4623 | int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext) |
018d00d2 | 4624 | { |
4d5422ce | 4625 | int r = 0; |
018d00d2 ZX |
4626 | |
4627 | switch (ext) { | |
4628 | case KVM_CAP_IRQCHIP: | |
4629 | case KVM_CAP_HLT: | |
4630 | case KVM_CAP_MMU_SHADOW_CACHE_CONTROL: | |
018d00d2 | 4631 | case KVM_CAP_SET_TSS_ADDR: |
07716717 | 4632 | case KVM_CAP_EXT_CPUID: |
9c15bb1d | 4633 | case KVM_CAP_EXT_EMUL_CPUID: |
c8076604 | 4634 | case KVM_CAP_CLOCKSOURCE: |
7837699f | 4635 | case KVM_CAP_PIT: |
a28e4f5a | 4636 | case KVM_CAP_NOP_IO_DELAY: |
62d9f0db | 4637 | case KVM_CAP_MP_STATE: |
ed848624 | 4638 | case KVM_CAP_SYNC_MMU: |
a355c85c | 4639 | case KVM_CAP_USER_NMI: |
52d939a0 | 4640 | case KVM_CAP_REINJECT_CONTROL: |
4925663a | 4641 | case KVM_CAP_IRQ_INJECT_STATUS: |
d34e6b17 | 4642 | case KVM_CAP_IOEVENTFD: |
f848a5a8 | 4643 | case KVM_CAP_IOEVENTFD_NO_LENGTH: |
c5ff41ce | 4644 | case KVM_CAP_PIT2: |
e9f42757 | 4645 | case KVM_CAP_PIT_STATE2: |
b927a3ce | 4646 | case KVM_CAP_SET_IDENTITY_MAP_ADDR: |
3cfc3092 | 4647 | case KVM_CAP_VCPU_EVENTS: |
b4f69df0 | 4648 | #ifdef CONFIG_KVM_HYPERV |
55cd8e5a | 4649 | case KVM_CAP_HYPERV: |
10388a07 | 4650 | case KVM_CAP_HYPERV_VAPIC: |
c25bc163 | 4651 | case KVM_CAP_HYPERV_SPIN: |
b4f69df0 | 4652 | case KVM_CAP_HYPERV_TIME: |
5c919412 | 4653 | case KVM_CAP_HYPERV_SYNIC: |
efc479e6 | 4654 | case KVM_CAP_HYPERV_SYNIC2: |
d3457c87 | 4655 | case KVM_CAP_HYPERV_VP_INDEX: |
faeb7833 | 4656 | case KVM_CAP_HYPERV_EVENTFD: |
c1aea919 | 4657 | case KVM_CAP_HYPERV_TLBFLUSH: |
214ff83d | 4658 | case KVM_CAP_HYPERV_SEND_IPI: |
2bc39970 | 4659 | case KVM_CAP_HYPERV_CPUID: |
644f7067 | 4660 | case KVM_CAP_HYPERV_ENFORCE_CPUID: |
c21d54f0 | 4661 | case KVM_CAP_SYS_HYPERV_CPUID: |
b4f69df0 | 4662 | #endif |
ab9f4ecb | 4663 | case KVM_CAP_PCI_SEGMENT: |
a1efbe77 | 4664 | case KVM_CAP_DEBUGREGS: |
d2be1651 | 4665 | case KVM_CAP_X86_ROBUST_SINGLESTEP: |
2d5b5a66 | 4666 | case KVM_CAP_XSAVE: |
344d9588 | 4667 | case KVM_CAP_ASYNC_PF: |
72de5fa4 | 4668 | case KVM_CAP_ASYNC_PF_INT: |
92a1f12d | 4669 | case KVM_CAP_GET_TSC_KHZ: |
1c0b28c2 | 4670 | case KVM_CAP_KVMCLOCK_CTRL: |
100943c5 | 4671 | case KVM_CAP_IOAPIC_POLARITY_IGNORED: |
defcf51f | 4672 | case KVM_CAP_TSC_DEADLINE_TIMER: |
90de4a18 | 4673 | case KVM_CAP_DISABLE_QUIRKS: |
d71ba788 | 4674 | case KVM_CAP_SET_BOOT_CPU_ID: |
49df6397 | 4675 | case KVM_CAP_SPLIT_IRQCHIP: |
460df4c1 | 4676 | case KVM_CAP_IMMEDIATE_EXIT: |
66bb8a06 | 4677 | case KVM_CAP_PMU_EVENT_FILTER: |
14329b82 | 4678 | case KVM_CAP_PMU_EVENT_MASKED_EVENTS: |
801e459a | 4679 | case KVM_CAP_GET_MSR_FEATURES: |
6fbbde9a | 4680 | case KVM_CAP_MSR_PLATFORM_INFO: |
c4f55198 | 4681 | case KVM_CAP_EXCEPTION_PAYLOAD: |
ed235117 | 4682 | case KVM_CAP_X86_TRIPLE_FAULT_EVENT: |
b9b2782c | 4683 | case KVM_CAP_SET_GUEST_DEBUG: |
1aa561b1 | 4684 | case KVM_CAP_LAST_CPU: |
1ae09954 | 4685 | case KVM_CAP_X86_USER_SPACE_MSR: |
1a155254 | 4686 | case KVM_CAP_X86_MSR_FILTER: |
66570e96 | 4687 | case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: |
fe7e9488 SC |
4688 | #ifdef CONFIG_X86_SGX_KVM |
4689 | case KVM_CAP_SGX_ATTRIBUTE: | |
4690 | #endif | |
54526d1f | 4691 | case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: |
30d7c5d6 | 4692 | case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: |
6dba9403 | 4693 | case KVM_CAP_SREGS2: |
19238e75 | 4694 | case KVM_CAP_EXIT_ON_EMULATION_FAILURE: |
828ca896 | 4695 | case KVM_CAP_VCPU_ATTRIBUTES: |
dd6e6312 | 4696 | case KVM_CAP_SYS_ATTRIBUTES: |
8a289785 | 4697 | case KVM_CAP_VAPIC: |
127770ac | 4698 | case KVM_CAP_ENABLE_CAP: |
084cc29f | 4699 | case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: |
52882b9c | 4700 | case KVM_CAP_IRQFD_RESAMPLE: |
16f95f3b | 4701 | case KVM_CAP_MEMORY_FAULT_INFO: |
85542adb | 4702 | case KVM_CAP_X86_GUEST_MODE: |
018d00d2 ZX |
4703 | r = 1; |
4704 | break; | |
6e01b760 PB |
4705 | case KVM_CAP_PRE_FAULT_MEMORY: |
4706 | r = tdp_enabled; | |
4707 | break; | |
6fef5185 IY |
4708 | case KVM_CAP_X86_APIC_BUS_CYCLES_NS: |
4709 | r = APIC_BUS_CYCLE_NS_DEFAULT; | |
4710 | break; | |
0dbb1123 AK |
4711 | case KVM_CAP_EXIT_HYPERCALL: |
4712 | r = KVM_EXIT_HYPERCALL_VALID_MASK; | |
4713 | break; | |
7e582ccb ML |
4714 | case KVM_CAP_SET_GUEST_DEBUG2: |
4715 | return KVM_GUESTDBG_VALID_MASK; | |
b59b153d | 4716 | #ifdef CONFIG_KVM_XEN |
23200b7a JM |
4717 | case KVM_CAP_XEN_HVM: |
4718 | r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR | | |
8d4e7e80 | 4719 | KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL | |
14243b38 | 4720 | KVM_XEN_HVM_CONFIG_SHARED_INFO | |
661a20fa | 4721 | KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL | |
6d722835 | 4722 | KVM_XEN_HVM_CONFIG_EVTCHN_SEND | |
615451d8 PD |
4723 | KVM_XEN_HVM_CONFIG_PVCLOCK_TSC_UNSTABLE | |
4724 | KVM_XEN_HVM_CONFIG_SHARED_INFO_HVA; | |
30b5c851 | 4725 | if (sched_info_on()) |
d8ba8ba4 DW |
4726 | r |= KVM_XEN_HVM_CONFIG_RUNSTATE | |
4727 | KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG; | |
23200b7a | 4728 | break; |
b59b153d | 4729 | #endif |
01643c51 | 4730 | case KVM_CAP_SYNC_REGS: |
74c1807f | 4731 | r = kvm_sync_valid_fields(kvm); |
01643c51 | 4732 | break; |
e3fd9a93 | 4733 | case KVM_CAP_ADJUST_CLOCK: |
c68dc1b5 | 4734 | r = KVM_CLOCK_VALID_FLAGS; |
e3fd9a93 | 4735 | break; |
4d5422ce | 4736 | case KVM_CAP_X86_DISABLE_EXITS: |
c829ccd4 | 4737 | r = kvm_get_allowed_disable_exits(); |
668fffa3 | 4738 | break; |
6d396b55 | 4739 | case KVM_CAP_X86_SMM: |
4b8e1b32 PB |
4740 | if (!IS_ENABLED(CONFIG_KVM_SMM)) |
4741 | break; | |
4742 | ||
6d396b55 PB |
4743 | /* SMBASE is usually relocated above 1M on modern chipsets, |
4744 | * and SMM handlers might indeed rely on 4G segment limits, | |
4745 | * so do not report SMM to be available if real mode is | |
4746 | * emulated via vm86 mode. Still, do not go to great lengths | |
4747 | * to avoid userspace's usage of the feature, because it is a | |
4748 | * fringe case that is not enabled except via specific settings | |
4749 | * of the module parameters. | |
4750 | */ | |
89604647 | 4751 | r = kvm_x86_call(has_emulated_msr)(kvm, MSR_IA32_SMBASE); |
6d396b55 | 4752 | break; |
f725230a | 4753 | case KVM_CAP_NR_VCPUS: |
2845e735 | 4754 | r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS); |
8c3ba334 SL |
4755 | break; |
4756 | case KVM_CAP_MAX_VCPUS: | |
f725230a | 4757 | r = KVM_MAX_VCPUS; |
f94f4a97 IY |
4758 | if (kvm) |
4759 | r = kvm->max_vcpus; | |
f725230a | 4760 | break; |
a86cb413 | 4761 | case KVM_CAP_MAX_VCPU_ID: |
a1c42dde | 4762 | r = KVM_MAX_VCPU_IDS; |
a86cb413 | 4763 | break; |
a68a6a72 MT |
4764 | case KVM_CAP_PV_MMU: /* obsolete */ |
4765 | r = 0; | |
2f333bcb | 4766 | break; |
890ca9ae HY |
4767 | case KVM_CAP_MCE: |
4768 | r = KVM_MAX_MCE_BANKS; | |
4769 | break; | |
2d5b5a66 | 4770 | case KVM_CAP_XCRS: |
d366bf7e | 4771 | r = boot_cpu_has(X86_FEATURE_XSAVE); |
2d5b5a66 | 4772 | break; |
92a1f12d | 4773 | case KVM_CAP_TSC_CONTROL: |
ffbb61d0 | 4774 | case KVM_CAP_VM_TSC_CONTROL: |
938c8745 | 4775 | r = kvm_caps.has_tsc_control; |
92a1f12d | 4776 | break; |
37131313 RK |
4777 | case KVM_CAP_X2APIC_API: |
4778 | r = KVM_X2APIC_API_VALID_FLAGS; | |
4779 | break; | |
8fcc4b59 | 4780 | case KVM_CAP_NESTED_STATE: |
33b22172 PB |
4781 | r = kvm_x86_ops.nested_ops->get_state ? |
4782 | kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0; | |
8fcc4b59 | 4783 | break; |
b4f69df0 | 4784 | #ifdef CONFIG_KVM_HYPERV |
344c6c80 | 4785 | case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: |
b83237ad | 4786 | r = kvm_x86_ops.enable_l2_tlb_flush != NULL; |
5a0165f6 VK |
4787 | break; |
4788 | case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: | |
33b22172 | 4789 | r = kvm_x86_ops.nested_ops->enable_evmcs != NULL; |
344c6c80 | 4790 | break; |
b4f69df0 | 4791 | #endif |
3edd6839 MG |
4792 | case KVM_CAP_SMALLER_MAXPHYADDR: |
4793 | r = (int) allow_smaller_maxphyaddr; | |
4794 | break; | |
004a0124 AJ |
4795 | case KVM_CAP_STEAL_TIME: |
4796 | r = sched_info_on(); | |
4797 | break; | |
fe6b6bc8 | 4798 | case KVM_CAP_X86_BUS_LOCK_EXIT: |
938c8745 | 4799 | if (kvm_caps.has_bus_lock_exit) |
fe6b6bc8 CQ |
4800 | r = KVM_BUS_LOCK_DETECTION_OFF | |
4801 | KVM_BUS_LOCK_DETECTION_EXIT; | |
4802 | else | |
4803 | r = 0; | |
4804 | break; | |
be50b206 | 4805 | case KVM_CAP_XSAVE2: { |
6be3ae45 | 4806 | r = xstate_required_size(kvm_get_filtered_xcr0(), false); |
be50b206 GZ |
4807 | if (r < sizeof(struct kvm_xsave)) |
4808 | r = sizeof(struct kvm_xsave); | |
4809 | break; | |
1c4dc573 | 4810 | } |
ba7bb663 DD |
4811 | case KVM_CAP_PMU_CAPABILITY: |
4812 | r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0; | |
4813 | break; | |
6d849191 | 4814 | case KVM_CAP_DISABLE_QUIRKS2: |
bd7d5362 | 4815 | r = kvm_caps.supported_quirks; |
6d849191 | 4816 | break; |
2f4073e0 TX |
4817 | case KVM_CAP_X86_NOTIFY_VMEXIT: |
4818 | r = kvm_caps.has_notify_vmexit; | |
4819 | break; | |
89ea60c2 | 4820 | case KVM_CAP_VM_TYPES: |
2a955c4d | 4821 | r = kvm_caps.supported_vm_types; |
89ea60c2 | 4822 | break; |
d30d9ee9 TD |
4823 | case KVM_CAP_READONLY_MEM: |
4824 | r = kvm ? kvm_arch_has_readonly_mem(kvm) : 1; | |
9d4c3040 | 4825 | break; |
018d00d2 | 4826 | default: |
018d00d2 ZX |
4827 | break; |
4828 | } | |
4829 | return r; | |
56f289a8 SC |
4830 | } |
4831 | ||
546d714b | 4832 | static int __kvm_x86_dev_get_attr(struct kvm_device_attr *attr, u64 *val) |
dd6e6312 | 4833 | { |
546d714b PB |
4834 | if (attr->group) { |
4835 | if (kvm_x86_ops.dev_get_attr) | |
89604647 | 4836 | return kvm_x86_call(dev_get_attr)(attr->group, attr->attr, val); |
dd6e6312 | 4837 | return -ENXIO; |
546d714b | 4838 | } |
dd6e6312 | 4839 | |
dd6e6312 PB |
4840 | switch (attr->attr) { |
4841 | case KVM_X86_XCOMP_GUEST_SUPP: | |
546d714b | 4842 | *val = kvm_caps.supported_xcr0; |
dd6e6312 PB |
4843 | return 0; |
4844 | default: | |
4845 | return -ENXIO; | |
dd6e6312 PB |
4846 | } |
4847 | } | |
4848 | ||
546d714b PB |
4849 | static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr) |
4850 | { | |
4851 | u64 __user *uaddr = u64_to_user_ptr(attr->addr); | |
4852 | int r; | |
4853 | u64 val; | |
4854 | ||
4855 | r = __kvm_x86_dev_get_attr(attr, &val); | |
4856 | if (r < 0) | |
4857 | return r; | |
4858 | ||
4859 | if (put_user(val, uaddr)) | |
4860 | return -EFAULT; | |
4861 | ||
4862 | return 0; | |
4863 | } | |
4864 | ||
dd6e6312 PB |
4865 | static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr) |
4866 | { | |
546d714b | 4867 | u64 val; |
dd6e6312 | 4868 | |
546d714b | 4869 | return __kvm_x86_dev_get_attr(attr, &val); |
dd6e6312 PB |
4870 | } |
4871 | ||
043405e1 CO |
4872 | long kvm_arch_dev_ioctl(struct file *filp, |
4873 | unsigned int ioctl, unsigned long arg) | |
4874 | { | |
4875 | void __user *argp = (void __user *)arg; | |
4876 | long r; | |
4877 | ||
4878 | switch (ioctl) { | |
4879 | case KVM_GET_MSR_INDEX_LIST: { | |
4880 | struct kvm_msr_list __user *user_msr_list = argp; | |
4881 | struct kvm_msr_list msr_list; | |
4882 | unsigned n; | |
4883 | ||
4884 | r = -EFAULT; | |
0e96f31e | 4885 | if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) |
043405e1 CO |
4886 | goto out; |
4887 | n = msr_list.nmsrs; | |
62ef68bb | 4888 | msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs; |
0e96f31e | 4889 | if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) |
043405e1 CO |
4890 | goto out; |
4891 | r = -E2BIG; | |
e125e7b6 | 4892 | if (n < msr_list.nmsrs) |
043405e1 CO |
4893 | goto out; |
4894 | r = -EFAULT; | |
4895 | if (copy_to_user(user_msr_list->indices, &msrs_to_save, | |
4896 | num_msrs_to_save * sizeof(u32))) | |
4897 | goto out; | |
e125e7b6 | 4898 | if (copy_to_user(user_msr_list->indices + num_msrs_to_save, |
043405e1 | 4899 | &emulated_msrs, |
62ef68bb | 4900 | num_emulated_msrs * sizeof(u32))) |
043405e1 CO |
4901 | goto out; |
4902 | r = 0; | |
4903 | break; | |
4904 | } | |
9c15bb1d BP |
4905 | case KVM_GET_SUPPORTED_CPUID: |
4906 | case KVM_GET_EMULATED_CPUID: { | |
674eea0f AK |
4907 | struct kvm_cpuid2 __user *cpuid_arg = argp; |
4908 | struct kvm_cpuid2 cpuid; | |
4909 | ||
4910 | r = -EFAULT; | |
0e96f31e | 4911 | if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
674eea0f | 4912 | goto out; |
9c15bb1d BP |
4913 | |
4914 | r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries, | |
4915 | ioctl); | |
674eea0f AK |
4916 | if (r) |
4917 | goto out; | |
4918 | ||
4919 | r = -EFAULT; | |
0e96f31e | 4920 | if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) |
674eea0f AK |
4921 | goto out; |
4922 | r = 0; | |
4923 | break; | |
4924 | } | |
cf6c26ec | 4925 | case KVM_X86_GET_MCE_CAP_SUPPORTED: |
890ca9ae | 4926 | r = -EFAULT; |
938c8745 SC |
4927 | if (copy_to_user(argp, &kvm_caps.supported_mce_cap, |
4928 | sizeof(kvm_caps.supported_mce_cap))) | |
890ca9ae HY |
4929 | goto out; |
4930 | r = 0; | |
4931 | break; | |
801e459a TL |
4932 | case KVM_GET_MSR_FEATURE_INDEX_LIST: { |
4933 | struct kvm_msr_list __user *user_msr_list = argp; | |
4934 | struct kvm_msr_list msr_list; | |
4935 | unsigned int n; | |
4936 | ||
4937 | r = -EFAULT; | |
4938 | if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list))) | |
4939 | goto out; | |
4940 | n = msr_list.nmsrs; | |
4941 | msr_list.nmsrs = num_msr_based_features; | |
4942 | if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list))) | |
4943 | goto out; | |
4944 | r = -E2BIG; | |
4945 | if (n < msr_list.nmsrs) | |
4946 | goto out; | |
4947 | r = -EFAULT; | |
4948 | if (copy_to_user(user_msr_list->indices, &msr_based_features, | |
4949 | num_msr_based_features * sizeof(u32))) | |
4950 | goto out; | |
4951 | r = 0; | |
4952 | break; | |
4953 | } | |
4954 | case KVM_GET_MSRS: | |
b848f24b | 4955 | r = msr_io(NULL, argp, do_get_feature_msr, 1); |
801e459a | 4956 | break; |
b4f69df0 | 4957 | #ifdef CONFIG_KVM_HYPERV |
c21d54f0 VK |
4958 | case KVM_GET_SUPPORTED_HV_CPUID: |
4959 | r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp); | |
4960 | break; | |
b4f69df0 | 4961 | #endif |
dd6e6312 PB |
4962 | case KVM_GET_DEVICE_ATTR: { |
4963 | struct kvm_device_attr attr; | |
4964 | r = -EFAULT; | |
4965 | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | |
4966 | break; | |
4967 | r = kvm_x86_dev_get_attr(&attr); | |
4968 | break; | |
4969 | } | |
4970 | case KVM_HAS_DEVICE_ATTR: { | |
4971 | struct kvm_device_attr attr; | |
4972 | r = -EFAULT; | |
4973 | if (copy_from_user(&attr, (void __user *)arg, sizeof(attr))) | |
4974 | break; | |
4975 | r = kvm_x86_dev_has_attr(&attr); | |
4976 | break; | |
4977 | } | |
043405e1 CO |
4978 | default: |
4979 | r = -EINVAL; | |
cf6c26ec | 4980 | break; |
043405e1 CO |
4981 | } |
4982 | out: | |
4983 | return r; | |
4984 | } | |
4985 | ||
f5f48ee1 SY |
4986 | static void wbinvd_ipi(void *garbage) |
4987 | { | |
4988 | wbinvd(); | |
4989 | } | |
4990 | ||
4991 | static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
4992 | { | |
e0f0bbc5 | 4993 | return kvm_arch_has_noncoherent_dma(vcpu->kvm); |
f5f48ee1 SY |
4994 | } |
4995 | ||
54a1a24f SC |
4996 | static DEFINE_PER_CPU(struct kvm_vcpu *, last_vcpu); |
4997 | ||
313a3dc7 CO |
4998 | void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu) |
4999 | { | |
8fbb696a SC |
5000 | struct kvm_pmu *pmu = vcpu_to_pmu(vcpu); |
5001 | ||
ef2e18ef SC |
5002 | vcpu->arch.l1tf_flush_l1d = true; |
5003 | ||
5004 | if (vcpu->scheduled_out && pmu->version && pmu->event_count) { | |
5005 | pmu->need_cleanup = true; | |
5006 | kvm_make_request(KVM_REQ_PMU, vcpu); | |
8fbb696a SC |
5007 | } |
5008 | ||
f5f48ee1 SY |
5009 | /* Address WBINVD may be executed by guest */ |
5010 | if (need_emulate_wbinvd(vcpu)) { | |
89604647 | 5011 | if (kvm_x86_call(has_wbinvd_exit)()) |
f5f48ee1 SY |
5012 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); |
5013 | else if (vcpu->cpu != -1 && vcpu->cpu != cpu) | |
5014 | smp_call_function_single(vcpu->cpu, | |
5015 | wbinvd_ipi, NULL, 1); | |
5016 | } | |
5017 | ||
89604647 | 5018 | kvm_x86_call(vcpu_load)(vcpu, cpu); |
8f6055cb | 5019 | |
54a1a24f SC |
5020 | if (vcpu != per_cpu(last_vcpu, cpu)) { |
5021 | /* | |
5022 | * Flush the branch predictor when switching vCPUs on the same | |
5023 | * physical CPU, as each vCPU needs its own branch prediction | |
5024 | * domain. No IBPB is needed when switching between L1 and L2 | |
5025 | * on the same vCPU unless IBRS is advertised to the vCPU; that | |
5026 | * is handled on the nested VM-Exit path. | |
5027 | */ | |
5028 | if (static_branch_likely(&switch_vcpu_ibpb)) | |
5029 | indirect_branch_prediction_barrier(); | |
5030 | per_cpu(last_vcpu, cpu) = vcpu; | |
5031 | } | |
5032 | ||
37486135 BM |
5033 | /* Save host pkru register if supported */ |
5034 | vcpu->arch.host_pkru = read_pkru(); | |
5035 | ||
0dd6a6ed ZA |
5036 | /* Apply any externally detected TSC adjustments (due to suspend) */ |
5037 | if (unlikely(vcpu->arch.tsc_offset_adjustment)) { | |
5038 | adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment); | |
5039 | vcpu->arch.tsc_offset_adjustment = 0; | |
105b21bb | 5040 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed | 5041 | } |
8f6055cb | 5042 | |
b0c39dc6 | 5043 | if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) { |
6f526ec5 | 5044 | s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 : |
4ea1636b | 5045 | rdtsc() - vcpu->arch.last_host_tsc; |
e48672fa ZA |
5046 | if (tsc_delta < 0) |
5047 | mark_tsc_unstable("KVM discovered backwards TSC"); | |
ce7a058a | 5048 | |
b0c39dc6 | 5049 | if (kvm_check_tsc_unstable()) { |
9b399dfd | 5050 | u64 offset = kvm_compute_l1_tsc_offset(vcpu, |
b183aa58 | 5051 | vcpu->arch.last_guest_tsc); |
a545ab6a | 5052 | kvm_vcpu_write_tsc_offset(vcpu, offset); |
adafea11 IY |
5053 | if (!vcpu->arch.guest_tsc_protected) |
5054 | vcpu->arch.tsc_catchup = 1; | |
c285545f | 5055 | } |
a749e247 PB |
5056 | |
5057 | if (kvm_lapic_hv_timer_in_use(vcpu)) | |
5058 | kvm_lapic_restart_hv_timer(vcpu); | |
5059 | ||
d98d07ca MT |
5060 | /* |
5061 | * On a host with synchronized TSC, there is no need to update | |
5062 | * kvmclock on vcpu->cpu migration | |
5063 | */ | |
5064 | if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1) | |
0061d53d | 5065 | kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu); |
c285545f | 5066 | if (vcpu->cpu != cpu) |
1bd2009e | 5067 | kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu); |
e48672fa | 5068 | vcpu->cpu = cpu; |
6b7d7e76 | 5069 | } |
c9aaa895 | 5070 | |
c9aaa895 | 5071 | kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu); |
313a3dc7 CO |
5072 | } |
5073 | ||
0b9f6c46 PX |
5074 | static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu) |
5075 | { | |
7e2175eb DW |
5076 | struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache; |
5077 | struct kvm_steal_time __user *st; | |
5078 | struct kvm_memslots *slots; | |
5079 | static const u8 preempted = KVM_VCPU_PREEMPTED; | |
c3c28d24 | 5080 | gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS; |
b0431382 | 5081 | |
6cd88243 PB |
5082 | /* |
5083 | * The vCPU can be marked preempted if and only if the VM-Exit was on | |
5084 | * an instruction boundary and will not trigger guest emulation of any | |
5085 | * kind (see vcpu_run). Vendor specific code controls (conservatively) | |
5086 | * when this is true, for example allowing the vCPU to be marked | |
5087 | * preempted if and only if the VM-Exit was due to a host interrupt. | |
5088 | */ | |
5089 | if (!vcpu->arch.at_instruction_boundary) { | |
5090 | vcpu->stat.preemption_other++; | |
5091 | return; | |
5092 | } | |
5093 | ||
5094 | vcpu->stat.preemption_reported++; | |
0b9f6c46 PX |
5095 | if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED)) |
5096 | return; | |
5097 | ||
a6bd811f | 5098 | if (vcpu->arch.st.preempted) |
8c6de56a BO |
5099 | return; |
5100 | ||
7e2175eb DW |
5101 | /* This happens on process exit */ |
5102 | if (unlikely(current->mm != vcpu->kvm->mm)) | |
9c1a0744 | 5103 | return; |
b0431382 | 5104 | |
7e2175eb DW |
5105 | slots = kvm_memslots(vcpu->kvm); |
5106 | ||
5107 | if (unlikely(slots->generation != ghc->generation || | |
c3c28d24 | 5108 | gpa != ghc->gpa || |
7e2175eb | 5109 | kvm_is_error_hva(ghc->hva) || !ghc->memslot)) |
9c1a0744 | 5110 | return; |
b0431382 | 5111 | |
7e2175eb DW |
5112 | st = (struct kvm_steal_time __user *)ghc->hva; |
5113 | BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted)); | |
0b9f6c46 | 5114 | |
7e2175eb DW |
5115 | if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted))) |
5116 | vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED; | |
0b9f6c46 | 5117 | |
7e2175eb | 5118 | mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa)); |
0b9f6c46 PX |
5119 | } |
5120 | ||
313a3dc7 CO |
5121 | void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu) |
5122 | { | |
9c1a0744 WL |
5123 | int idx; |
5124 | ||
54aa83c9 | 5125 | if (vcpu->preempted) { |
f0e7012c SC |
5126 | /* |
5127 | * Assume protected guests are in-kernel. Inefficient yielding | |
5128 | * due to false positives is preferable to never yielding due | |
5129 | * to false negatives. | |
5130 | */ | |
5131 | vcpu->arch.preempted_in_kernel = vcpu->arch.guest_state_protected || | |
5132 | !kvm_x86_call(get_cpl_no_cache)(vcpu); | |
de63ad4c | 5133 | |
54aa83c9 PB |
5134 | /* |
5135 | * Take the srcu lock as memslots will be accessed to check the gfn | |
5136 | * cache generation against the memslots generation. | |
5137 | */ | |
5138 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
5139 | if (kvm_xen_msr_enabled(vcpu->kvm)) | |
5140 | kvm_xen_runstate_set_preempted(vcpu); | |
5141 | else | |
5142 | kvm_steal_time_set_preempted(vcpu); | |
5143 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | |
5144 | } | |
30b5c851 | 5145 | |
89604647 | 5146 | kvm_x86_call(vcpu_put)(vcpu); |
4ea1636b | 5147 | vcpu->arch.last_host_tsc = rdtsc(); |
313a3dc7 CO |
5148 | } |
5149 | ||
313a3dc7 CO |
5150 | static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu, |
5151 | struct kvm_lapic_state *s) | |
5152 | { | |
f65916ae IY |
5153 | if (vcpu->arch.apic->guest_apic_protected) |
5154 | return -EINVAL; | |
5155 | ||
89604647 | 5156 | kvm_x86_call(sync_pir_to_irr)(vcpu); |
d62caabb | 5157 | |
a92e2543 | 5158 | return kvm_apic_get_state(vcpu, s); |
313a3dc7 CO |
5159 | } |
5160 | ||
5161 | static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu, | |
5162 | struct kvm_lapic_state *s) | |
5163 | { | |
a92e2543 RK |
5164 | int r; |
5165 | ||
f65916ae IY |
5166 | if (vcpu->arch.apic->guest_apic_protected) |
5167 | return -EINVAL; | |
5168 | ||
a92e2543 RK |
5169 | r = kvm_apic_set_state(vcpu, s); |
5170 | if (r) | |
5171 | return r; | |
cb142eb7 | 5172 | update_cr8_intercept(vcpu); |
313a3dc7 CO |
5173 | |
5174 | return 0; | |
5175 | } | |
5176 | ||
127a457a MG |
5177 | static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu) |
5178 | { | |
71cc849b PB |
5179 | /* |
5180 | * We can accept userspace's request for interrupt injection | |
5181 | * as long as we have a place to store the interrupt number. | |
5182 | * The actual injection will happen when the CPU is able to | |
5183 | * deliver the interrupt. | |
5184 | */ | |
5185 | if (kvm_cpu_has_extint(vcpu)) | |
5186 | return false; | |
5187 | ||
5188 | /* Acknowledging ExtINT does not happen if LINT0 is masked. */ | |
127a457a MG |
5189 | return (!lapic_in_kernel(vcpu) || |
5190 | kvm_apic_accept_pic_intr(vcpu)); | |
5191 | } | |
5192 | ||
782d422b MG |
5193 | static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu) |
5194 | { | |
fa7a549d PB |
5195 | /* |
5196 | * Do not cause an interrupt window exit if an exception | |
5197 | * is pending or an event needs reinjection; userspace | |
5198 | * might want to inject the interrupt manually using KVM_SET_REGS | |
5199 | * or KVM_SET_SREGS. For that to work, we must be at an | |
5200 | * instruction boundary and with no events half-injected. | |
5201 | */ | |
5202 | return (kvm_arch_interrupt_allowed(vcpu) && | |
5203 | kvm_cpu_accept_dm_intr(vcpu) && | |
5204 | !kvm_event_needs_reinjection(vcpu) && | |
7709aba8 | 5205 | !kvm_is_exception_pending(vcpu)); |
782d422b MG |
5206 | } |
5207 | ||
f77bc6a4 ZX |
5208 | static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, |
5209 | struct kvm_interrupt *irq) | |
5210 | { | |
02cdb50f | 5211 | if (irq->irq >= KVM_NR_INTERRUPTS) |
f77bc6a4 | 5212 | return -EINVAL; |
1c1a9ce9 SR |
5213 | |
5214 | if (!irqchip_in_kernel(vcpu->kvm)) { | |
5215 | kvm_queue_interrupt(vcpu, irq->irq, false); | |
5216 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
5217 | return 0; | |
5218 | } | |
5219 | ||
5220 | /* | |
5221 | * With in-kernel LAPIC, we only use this to inject EXTINT, so | |
5222 | * fail for in-kernel 8259. | |
5223 | */ | |
5224 | if (pic_in_kernel(vcpu->kvm)) | |
f77bc6a4 | 5225 | return -ENXIO; |
f77bc6a4 | 5226 | |
1c1a9ce9 SR |
5227 | if (vcpu->arch.pending_external_vector != -1) |
5228 | return -EEXIST; | |
f77bc6a4 | 5229 | |
1c1a9ce9 | 5230 | vcpu->arch.pending_external_vector = irq->irq; |
934bf653 | 5231 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
f77bc6a4 ZX |
5232 | return 0; |
5233 | } | |
5234 | ||
c4abb7c9 JK |
5235 | static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu) |
5236 | { | |
c4abb7c9 | 5237 | kvm_inject_nmi(vcpu); |
c4abb7c9 JK |
5238 | |
5239 | return 0; | |
5240 | } | |
5241 | ||
b209749f AK |
5242 | static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu, |
5243 | struct kvm_tpr_access_ctl *tac) | |
5244 | { | |
5245 | if (tac->flags) | |
5246 | return -EINVAL; | |
5247 | vcpu->arch.tpr_access_reporting = !!tac->enabled; | |
5248 | return 0; | |
5249 | } | |
5250 | ||
890ca9ae HY |
5251 | static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu, |
5252 | u64 mcg_cap) | |
5253 | { | |
5254 | int r; | |
5255 | unsigned bank_num = mcg_cap & 0xff, bank; | |
5256 | ||
5257 | r = -EINVAL; | |
c4e0e4ab | 5258 | if (!bank_num || bank_num > KVM_MAX_MCE_BANKS) |
890ca9ae | 5259 | goto out; |
938c8745 | 5260 | if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000)) |
890ca9ae HY |
5261 | goto out; |
5262 | r = 0; | |
5263 | vcpu->arch.mcg_cap = mcg_cap; | |
5264 | /* Init IA32_MCG_CTL to all 1s */ | |
5265 | if (mcg_cap & MCG_CTL_P) | |
5266 | vcpu->arch.mcg_ctl = ~(u64)0; | |
281b5278 JW |
5267 | /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */ |
5268 | for (bank = 0; bank < bank_num; bank++) { | |
890ca9ae | 5269 | vcpu->arch.mce_banks[bank*4] = ~(u64)0; |
281b5278 JW |
5270 | if (mcg_cap & MCG_CMCI_P) |
5271 | vcpu->arch.mci_ctl2_banks[bank] = 0; | |
5272 | } | |
f83894b2 SC |
5273 | |
5274 | kvm_apic_after_set_mcg_cap(vcpu); | |
c45dcc71 | 5275 | |
89604647 | 5276 | kvm_x86_call(setup_mce)(vcpu); |
890ca9ae HY |
5277 | out: |
5278 | return r; | |
5279 | } | |
5280 | ||
aebc3ca1 JW |
5281 | /* |
5282 | * Validate this is an UCNA (uncorrectable no action) error by checking the | |
5283 | * MCG_STATUS and MCi_STATUS registers: | |
5284 | * - none of the bits for Machine Check Exceptions are set | |
5285 | * - both the VAL (valid) and UC (uncorrectable) bits are set | |
5286 | * MCI_STATUS_PCC - Processor Context Corrupted | |
5287 | * MCI_STATUS_S - Signaled as a Machine Check Exception | |
5288 | * MCI_STATUS_AR - Software recoverable Action Required | |
5289 | */ | |
5290 | static bool is_ucna(struct kvm_x86_mce *mce) | |
5291 | { | |
5292 | return !mce->mcg_status && | |
5293 | !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) && | |
5294 | (mce->status & MCI_STATUS_VAL) && | |
5295 | (mce->status & MCI_STATUS_UC); | |
5296 | } | |
5297 | ||
5298 | static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks) | |
5299 | { | |
5300 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
5301 | ||
5302 | banks[1] = mce->status; | |
5303 | banks[2] = mce->addr; | |
5304 | banks[3] = mce->misc; | |
5305 | vcpu->arch.mcg_status = mce->mcg_status; | |
5306 | ||
5307 | if (!(mcg_cap & MCG_CMCI_P) || | |
5308 | !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN)) | |
5309 | return 0; | |
5310 | ||
5311 | if (lapic_in_kernel(vcpu)) | |
5312 | kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI); | |
5313 | ||
5314 | return 0; | |
5315 | } | |
5316 | ||
890ca9ae HY |
5317 | static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu, |
5318 | struct kvm_x86_mce *mce) | |
5319 | { | |
5320 | u64 mcg_cap = vcpu->arch.mcg_cap; | |
5321 | unsigned bank_num = mcg_cap & 0xff; | |
5322 | u64 *banks = vcpu->arch.mce_banks; | |
5323 | ||
5324 | if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL)) | |
5325 | return -EINVAL; | |
aebc3ca1 JW |
5326 | |
5327 | banks += array_index_nospec(4 * mce->bank, 4 * bank_num); | |
5328 | ||
5329 | if (is_ucna(mce)) | |
5330 | return kvm_vcpu_x86_set_ucna(vcpu, mce, banks); | |
5331 | ||
890ca9ae HY |
5332 | /* |
5333 | * if IA32_MCG_CTL is not all 1s, the uncorrected error | |
5334 | * reporting is disabled | |
5335 | */ | |
5336 | if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) && | |
5337 | vcpu->arch.mcg_ctl != ~(u64)0) | |
5338 | return 0; | |
890ca9ae HY |
5339 | /* |
5340 | * if IA32_MCi_CTL is not all 1s, the uncorrected error | |
5341 | * reporting is disabled for the bank | |
5342 | */ | |
5343 | if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0) | |
5344 | return 0; | |
5345 | if (mce->status & MCI_STATUS_UC) { | |
5346 | if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) || | |
607475cf | 5347 | !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) { |
a8eeb04a | 5348 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); |
890ca9ae HY |
5349 | return 0; |
5350 | } | |
5351 | if (banks[1] & MCI_STATUS_VAL) | |
5352 | mce->status |= MCI_STATUS_OVER; | |
5353 | banks[2] = mce->addr; | |
5354 | banks[3] = mce->misc; | |
5355 | vcpu->arch.mcg_status = mce->mcg_status; | |
5356 | banks[1] = mce->status; | |
5357 | kvm_queue_exception(vcpu, MC_VECTOR); | |
5358 | } else if (!(banks[1] & MCI_STATUS_VAL) | |
5359 | || !(banks[1] & MCI_STATUS_UC)) { | |
5360 | if (banks[1] & MCI_STATUS_VAL) | |
5361 | mce->status |= MCI_STATUS_OVER; | |
5362 | banks[2] = mce->addr; | |
5363 | banks[3] = mce->misc; | |
5364 | banks[1] = mce->status; | |
5365 | } else | |
5366 | banks[1] |= MCI_STATUS_OVER; | |
5367 | return 0; | |
5368 | } | |
5369 | ||
3cfc3092 JK |
5370 | static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu, |
5371 | struct kvm_vcpu_events *events) | |
5372 | { | |
7709aba8 | 5373 | struct kvm_queued_exception *ex; |
d4963e31 | 5374 | |
7460fb4a | 5375 | process_nmi(vcpu); |
59073aaf | 5376 | |
cf7316d0 | 5377 | #ifdef CONFIG_KVM_SMM |
1f7becf1 JZ |
5378 | if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
5379 | process_smi(vcpu); | |
cf7316d0 | 5380 | #endif |
1f7becf1 | 5381 | |
a06230b6 | 5382 | /* |
7709aba8 SC |
5383 | * KVM's ABI only allows for one exception to be migrated. Luckily, |
5384 | * the only time there can be two queued exceptions is if there's a | |
5385 | * non-exiting _injected_ exception, and a pending exiting exception. | |
5386 | * In that case, ignore the VM-Exiting exception as it's an extension | |
5387 | * of the injected exception. | |
5388 | */ | |
5389 | if (vcpu->arch.exception_vmexit.pending && | |
5390 | !vcpu->arch.exception.pending && | |
5391 | !vcpu->arch.exception.injected) | |
5392 | ex = &vcpu->arch.exception_vmexit; | |
5393 | else | |
5394 | ex = &vcpu->arch.exception; | |
5395 | ||
a06230b6 | 5396 | /* |
d4963e31 SC |
5397 | * In guest mode, payload delivery should be deferred if the exception |
5398 | * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1 | |
5399 | * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability, | |
5400 | * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not | |
5401 | * propagate the payload and so it cannot be safely deferred. Deliver | |
5402 | * the payload if the capability hasn't been requested. | |
a06230b6 OU |
5403 | */ |
5404 | if (!vcpu->kvm->arch.exception_payload_enabled && | |
d4963e31 SC |
5405 | ex->pending && ex->has_payload) |
5406 | kvm_deliver_exception_payload(vcpu, ex); | |
a06230b6 | 5407 | |
85672346 PB |
5408 | memset(events, 0, sizeof(*events)); |
5409 | ||
664f8e26 | 5410 | /* |
59073aaf JM |
5411 | * The API doesn't provide the instruction length for software |
5412 | * exceptions, so don't report them. As long as the guest RIP | |
5413 | * isn't advanced, we should expect to encounter the exception | |
5414 | * again. | |
664f8e26 | 5415 | */ |
85672346 | 5416 | if (!kvm_exception_is_soft(ex->vector)) { |
d4963e31 SC |
5417 | events->exception.injected = ex->injected; |
5418 | events->exception.pending = ex->pending; | |
59073aaf JM |
5419 | /* |
5420 | * For ABI compatibility, deliberately conflate | |
5421 | * pending and injected exceptions when | |
5422 | * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled. | |
5423 | */ | |
5424 | if (!vcpu->kvm->arch.exception_payload_enabled) | |
d4963e31 | 5425 | events->exception.injected |= ex->pending; |
59073aaf | 5426 | } |
d4963e31 SC |
5427 | events->exception.nr = ex->vector; |
5428 | events->exception.has_error_code = ex->has_error_code; | |
5429 | events->exception.error_code = ex->error_code; | |
5430 | events->exception_has_payload = ex->has_payload; | |
5431 | events->exception_payload = ex->payload; | |
3cfc3092 | 5432 | |
03b82a30 | 5433 | events->interrupt.injected = |
04140b41 | 5434 | vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft; |
3cfc3092 | 5435 | events->interrupt.nr = vcpu->arch.interrupt.nr; |
89604647 | 5436 | events->interrupt.shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); |
3cfc3092 JK |
5437 | |
5438 | events->nmi.injected = vcpu->arch.nmi_injected; | |
fa4c027a | 5439 | events->nmi.pending = kvm_get_nr_pending_nmis(vcpu); |
89604647 | 5440 | events->nmi.masked = kvm_x86_call(get_nmi_mask)(vcpu); |
3cfc3092 | 5441 | |
85672346 | 5442 | /* events->sipi_vector is never valid when reporting to user space */ |
3cfc3092 | 5443 | |
a7662aa5 | 5444 | #ifdef CONFIG_KVM_SMM |
f077825a PB |
5445 | events->smi.smm = is_smm(vcpu); |
5446 | events->smi.pending = vcpu->arch.smi_pending; | |
5447 | events->smi.smm_inside_nmi = | |
5448 | !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK); | |
a7662aa5 | 5449 | #endif |
f077825a PB |
5450 | events->smi.latched_init = kvm_lapic_latched_init(vcpu); |
5451 | ||
dab4b911 | 5452 | events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING |
f077825a PB |
5453 | | KVM_VCPUEVENT_VALID_SHADOW |
5454 | | KVM_VCPUEVENT_VALID_SMM); | |
59073aaf JM |
5455 | if (vcpu->kvm->arch.exception_payload_enabled) |
5456 | events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD; | |
ed235117 CQ |
5457 | if (vcpu->kvm->arch.triple_fault_event) { |
5458 | events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu); | |
5459 | events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT; | |
5460 | } | |
3cfc3092 JK |
5461 | } |
5462 | ||
5463 | static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu, | |
5464 | struct kvm_vcpu_events *events) | |
5465 | { | |
dab4b911 | 5466 | if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING |
48005f64 | 5467 | | KVM_VCPUEVENT_VALID_SIPI_VECTOR |
f077825a | 5468 | | KVM_VCPUEVENT_VALID_SHADOW |
59073aaf | 5469 | | KVM_VCPUEVENT_VALID_SMM |
ed235117 CQ |
5470 | | KVM_VCPUEVENT_VALID_PAYLOAD |
5471 | | KVM_VCPUEVENT_VALID_TRIPLE_FAULT)) | |
3cfc3092 JK |
5472 | return -EINVAL; |
5473 | ||
59073aaf JM |
5474 | if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) { |
5475 | if (!vcpu->kvm->arch.exception_payload_enabled) | |
5476 | return -EINVAL; | |
5477 | if (events->exception.pending) | |
5478 | events->exception.injected = 0; | |
5479 | else | |
5480 | events->exception_has_payload = 0; | |
5481 | } else { | |
5482 | events->exception.pending = 0; | |
5483 | events->exception_has_payload = 0; | |
5484 | } | |
5485 | ||
5486 | if ((events->exception.injected || events->exception.pending) && | |
5487 | (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR)) | |
78e546c8 PB |
5488 | return -EINVAL; |
5489 | ||
28bf2888 DH |
5490 | /* INITs are latched while in SMM */ |
5491 | if (events->flags & KVM_VCPUEVENT_VALID_SMM && | |
5492 | (events->smi.smm || events->smi.pending) && | |
5493 | vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) | |
5494 | return -EINVAL; | |
5495 | ||
7460fb4a | 5496 | process_nmi(vcpu); |
7709aba8 SC |
5497 | |
5498 | /* | |
5499 | * Flag that userspace is stuffing an exception, the next KVM_RUN will | |
5500 | * morph the exception to a VM-Exit if appropriate. Do this only for | |
5501 | * pending exceptions, already-injected exceptions are not subject to | |
5502 | * intercpetion. Note, userspace that conflates pending and injected | |
5503 | * is hosed, and will incorrectly convert an injected exception into a | |
5504 | * pending exception, which in turn may cause a spurious VM-Exit. | |
5505 | */ | |
5506 | vcpu->arch.exception_from_userspace = events->exception.pending; | |
5507 | ||
5508 | vcpu->arch.exception_vmexit.pending = false; | |
5509 | ||
59073aaf JM |
5510 | vcpu->arch.exception.injected = events->exception.injected; |
5511 | vcpu->arch.exception.pending = events->exception.pending; | |
d4963e31 | 5512 | vcpu->arch.exception.vector = events->exception.nr; |
3cfc3092 JK |
5513 | vcpu->arch.exception.has_error_code = events->exception.has_error_code; |
5514 | vcpu->arch.exception.error_code = events->exception.error_code; | |
59073aaf JM |
5515 | vcpu->arch.exception.has_payload = events->exception_has_payload; |
5516 | vcpu->arch.exception.payload = events->exception_payload; | |
3cfc3092 | 5517 | |
04140b41 | 5518 | vcpu->arch.interrupt.injected = events->interrupt.injected; |
3cfc3092 JK |
5519 | vcpu->arch.interrupt.nr = events->interrupt.nr; |
5520 | vcpu->arch.interrupt.soft = events->interrupt.soft; | |
48005f64 | 5521 | if (events->flags & KVM_VCPUEVENT_VALID_SHADOW) |
89604647 WW |
5522 | kvm_x86_call(set_interrupt_shadow)(vcpu, |
5523 | events->interrupt.shadow); | |
3cfc3092 JK |
5524 | |
5525 | vcpu->arch.nmi_injected = events->nmi.injected; | |
ab2ee212 | 5526 | if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) { |
bdedff26 SC |
5527 | vcpu->arch.nmi_pending = 0; |
5528 | atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending); | |
6231c9e1 PP |
5529 | if (events->nmi.pending) |
5530 | kvm_make_request(KVM_REQ_NMI, vcpu); | |
ab2ee212 | 5531 | } |
89604647 | 5532 | kvm_x86_call(set_nmi_mask)(vcpu, events->nmi.masked); |
3cfc3092 | 5533 | |
66450a21 | 5534 | if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR && |
bce87cce | 5535 | lapic_in_kernel(vcpu)) |
66450a21 | 5536 | vcpu->arch.apic->sipi_vector = events->sipi_vector; |
3cfc3092 | 5537 | |
f077825a | 5538 | if (events->flags & KVM_VCPUEVENT_VALID_SMM) { |
4b8e1b32 | 5539 | #ifdef CONFIG_KVM_SMM |
f7e57078 | 5540 | if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) { |
f9697df2 | 5541 | kvm_leave_nested(vcpu); |
dc87275f | 5542 | kvm_smm_changed(vcpu, events->smi.smm); |
f7e57078 | 5543 | } |
6ef4e07e | 5544 | |
f077825a | 5545 | vcpu->arch.smi_pending = events->smi.pending; |
f4ef1910 WL |
5546 | |
5547 | if (events->smi.smm) { | |
5548 | if (events->smi.smm_inside_nmi) | |
5549 | vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK; | |
f077825a | 5550 | else |
f4ef1910 | 5551 | vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK; |
ff90afa7 LA |
5552 | } |
5553 | ||
4b8e1b32 PB |
5554 | #else |
5555 | if (events->smi.smm || events->smi.pending || | |
5556 | events->smi.smm_inside_nmi) | |
5557 | return -EINVAL; | |
5558 | #endif | |
5559 | ||
ff90afa7 LA |
5560 | if (lapic_in_kernel(vcpu)) { |
5561 | if (events->smi.latched_init) | |
5562 | set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
5563 | else | |
5564 | clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events); | |
f077825a PB |
5565 | } |
5566 | } | |
5567 | ||
ed235117 CQ |
5568 | if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) { |
5569 | if (!vcpu->kvm->arch.triple_fault_event) | |
5570 | return -EINVAL; | |
5571 | if (events->triple_fault.pending) | |
5572 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | |
5573 | else | |
5574 | kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu); | |
5575 | } | |
5576 | ||
3842d135 AK |
5577 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
5578 | ||
3cfc3092 JK |
5579 | return 0; |
5580 | } | |
5581 | ||
517987e3 PB |
5582 | static int kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu, |
5583 | struct kvm_debugregs *dbgregs) | |
a1efbe77 | 5584 | { |
e1dda3af | 5585 | unsigned int i; |
73aaf249 | 5586 | |
517987e3 PB |
5587 | if (vcpu->kvm->arch.has_protected_state && |
5588 | vcpu->arch.guest_state_protected) | |
5589 | return -EINVAL; | |
5590 | ||
2c10b614 | 5591 | memset(dbgregs, 0, sizeof(*dbgregs)); |
e1dda3af MK |
5592 | |
5593 | BUILD_BUG_ON(ARRAY_SIZE(vcpu->arch.db) != ARRAY_SIZE(dbgregs->db)); | |
5594 | for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) | |
5595 | dbgregs->db[i] = vcpu->arch.db[i]; | |
5596 | ||
2a5f091c | 5597 | dbgregs->dr6 = vcpu->arch.dr6; |
a1efbe77 | 5598 | dbgregs->dr7 = vcpu->arch.dr7; |
517987e3 | 5599 | return 0; |
a1efbe77 JK |
5600 | } |
5601 | ||
5602 | static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu, | |
5603 | struct kvm_debugregs *dbgregs) | |
5604 | { | |
e1dda3af MK |
5605 | unsigned int i; |
5606 | ||
517987e3 PB |
5607 | if (vcpu->kvm->arch.has_protected_state && |
5608 | vcpu->arch.guest_state_protected) | |
5609 | return -EINVAL; | |
5610 | ||
a1efbe77 JK |
5611 | if (dbgregs->flags) |
5612 | return -EINVAL; | |
5613 | ||
fd238002 | 5614 | if (!kvm_dr6_valid(dbgregs->dr6)) |
d14bdb55 | 5615 | return -EINVAL; |
fd238002 | 5616 | if (!kvm_dr7_valid(dbgregs->dr7)) |
d14bdb55 PB |
5617 | return -EINVAL; |
5618 | ||
e1dda3af MK |
5619 | for (i = 0; i < ARRAY_SIZE(vcpu->arch.db); i++) |
5620 | vcpu->arch.db[i] = dbgregs->db[i]; | |
5621 | ||
ae561ede | 5622 | kvm_update_dr0123(vcpu); |
a1efbe77 JK |
5623 | vcpu->arch.dr6 = dbgregs->dr6; |
5624 | vcpu->arch.dr7 = dbgregs->dr7; | |
9926c9fd | 5625 | kvm_update_dr7(vcpu); |
a1efbe77 | 5626 | |
a1efbe77 JK |
5627 | return 0; |
5628 | } | |
5629 | ||
18164f66 | 5630 | |
517987e3 PB |
5631 | static int kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu, |
5632 | u8 *state, unsigned int size) | |
2d5b5a66 | 5633 | { |
8647c52e SC |
5634 | /* |
5635 | * Only copy state for features that are enabled for the guest. The | |
5636 | * state itself isn't problematic, but setting bits in the header for | |
5637 | * features that are supported in *this* host but not exposed to the | |
5638 | * guest can result in KVM_SET_XSAVE failing when live migrating to a | |
5639 | * compatible host without the features that are NOT exposed to the | |
5640 | * guest. | |
5641 | * | |
5642 | * FP+SSE can always be saved/restored via KVM_{G,S}ET_XSAVE, even if | |
5643 | * XSAVE/XCRO are not exposed to the guest, and even if XSAVE isn't | |
5644 | * supported by the host. | |
5645 | */ | |
5646 | u64 supported_xcr0 = vcpu->arch.guest_supported_xcr0 | | |
5647 | XFEATURE_MASK_FPSSE; | |
5648 | ||
d69c1382 | 5649 | if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
517987e3 | 5650 | return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; |
ed02b213 | 5651 | |
18164f66 | 5652 | fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu, state, size, |
8647c52e | 5653 | supported_xcr0, vcpu->arch.pkru); |
517987e3 | 5654 | return 0; |
2d5b5a66 SY |
5655 | } |
5656 | ||
517987e3 PB |
5657 | static int kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu, |
5658 | struct kvm_xsave *guest_xsave) | |
be50b206 | 5659 | { |
517987e3 PB |
5660 | return kvm_vcpu_ioctl_x86_get_xsave2(vcpu, (void *)guest_xsave->region, |
5661 | sizeof(guest_xsave->region)); | |
be50b206 GZ |
5662 | } |
5663 | ||
2d5b5a66 SY |
5664 | static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu, |
5665 | struct kvm_xsave *guest_xsave) | |
5666 | { | |
d69c1382 | 5667 | if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
517987e3 | 5668 | return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; |
ed02b213 | 5669 | |
d69c1382 TG |
5670 | return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu, |
5671 | guest_xsave->region, | |
938c8745 SC |
5672 | kvm_caps.supported_xcr0, |
5673 | &vcpu->arch.pkru); | |
2d5b5a66 SY |
5674 | } |
5675 | ||
517987e3 PB |
5676 | static int kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu, |
5677 | struct kvm_xcrs *guest_xcrs) | |
2d5b5a66 | 5678 | { |
517987e3 PB |
5679 | if (vcpu->kvm->arch.has_protected_state && |
5680 | vcpu->arch.guest_state_protected) | |
5681 | return -EINVAL; | |
5682 | ||
d366bf7e | 5683 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) { |
2d5b5a66 | 5684 | guest_xcrs->nr_xcrs = 0; |
517987e3 | 5685 | return 0; |
2d5b5a66 SY |
5686 | } |
5687 | ||
5688 | guest_xcrs->nr_xcrs = 1; | |
5689 | guest_xcrs->flags = 0; | |
5690 | guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK; | |
5691 | guest_xcrs->xcrs[0].value = vcpu->arch.xcr0; | |
517987e3 | 5692 | return 0; |
2d5b5a66 SY |
5693 | } |
5694 | ||
5695 | static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu, | |
5696 | struct kvm_xcrs *guest_xcrs) | |
5697 | { | |
5698 | int i, r = 0; | |
5699 | ||
517987e3 PB |
5700 | if (vcpu->kvm->arch.has_protected_state && |
5701 | vcpu->arch.guest_state_protected) | |
5702 | return -EINVAL; | |
5703 | ||
d366bf7e | 5704 | if (!boot_cpu_has(X86_FEATURE_XSAVE)) |
2d5b5a66 SY |
5705 | return -EINVAL; |
5706 | ||
5707 | if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags) | |
5708 | return -EINVAL; | |
5709 | ||
5710 | for (i = 0; i < guest_xcrs->nr_xcrs; i++) | |
5711 | /* Only support XCR0 currently */ | |
c67a04cb | 5712 | if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) { |
2d5b5a66 | 5713 | r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK, |
c67a04cb | 5714 | guest_xcrs->xcrs[i].value); |
2d5b5a66 SY |
5715 | break; |
5716 | } | |
5717 | if (r) | |
5718 | r = -EINVAL; | |
5719 | return r; | |
5720 | } | |
5721 | ||
1c0b28c2 EM |
5722 | /* |
5723 | * kvm_set_guest_paused() indicates to the guest kernel that it has been | |
5724 | * stopped by the hypervisor. This function will be called from the host only. | |
5725 | * EINVAL is returned when the host attempts to set the flag for a guest that | |
5726 | * does not support pv clocks. | |
5727 | */ | |
5728 | static int kvm_set_guest_paused(struct kvm_vcpu *vcpu) | |
5729 | { | |
916d3608 | 5730 | if (!vcpu->arch.pv_time.active) |
1c0b28c2 | 5731 | return -EINVAL; |
51d59c6b | 5732 | vcpu->arch.pvclock_set_guest_stopped_request = true; |
1c0b28c2 EM |
5733 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
5734 | return 0; | |
5735 | } | |
5736 | ||
828ca896 OU |
5737 | static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu, |
5738 | struct kvm_device_attr *attr) | |
5739 | { | |
5740 | int r; | |
5741 | ||
5742 | switch (attr->attr) { | |
5743 | case KVM_VCPU_TSC_OFFSET: | |
5744 | r = 0; | |
5745 | break; | |
5746 | default: | |
5747 | r = -ENXIO; | |
5748 | } | |
5749 | ||
5750 | return r; | |
5751 | } | |
5752 | ||
5753 | static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu, | |
5754 | struct kvm_device_attr *attr) | |
5755 | { | |
8d2aec3b | 5756 | u64 __user *uaddr = u64_to_user_ptr(attr->addr); |
828ca896 OU |
5757 | int r; |
5758 | ||
828ca896 OU |
5759 | switch (attr->attr) { |
5760 | case KVM_VCPU_TSC_OFFSET: | |
5761 | r = -EFAULT; | |
5762 | if (put_user(vcpu->arch.l1_tsc_offset, uaddr)) | |
5763 | break; | |
5764 | r = 0; | |
5765 | break; | |
5766 | default: | |
5767 | r = -ENXIO; | |
5768 | } | |
5769 | ||
5770 | return r; | |
5771 | } | |
5772 | ||
5773 | static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu, | |
5774 | struct kvm_device_attr *attr) | |
5775 | { | |
8d2aec3b | 5776 | u64 __user *uaddr = u64_to_user_ptr(attr->addr); |
828ca896 OU |
5777 | struct kvm *kvm = vcpu->kvm; |
5778 | int r; | |
5779 | ||
828ca896 OU |
5780 | switch (attr->attr) { |
5781 | case KVM_VCPU_TSC_OFFSET: { | |
5782 | u64 offset, tsc, ns; | |
5783 | unsigned long flags; | |
5784 | bool matched; | |
5785 | ||
5786 | r = -EFAULT; | |
5787 | if (get_user(offset, uaddr)) | |
5788 | break; | |
5789 | ||
5790 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | |
5791 | ||
5792 | matched = (vcpu->arch.virtual_tsc_khz && | |
5793 | kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz && | |
5794 | kvm->arch.last_tsc_offset == offset); | |
5795 | ||
62711e5a | 5796 | tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset; |
828ca896 OU |
5797 | ns = get_kvmclock_base_ns(); |
5798 | ||
5f3b30b2 | 5799 | __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched, true); |
828ca896 OU |
5800 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
5801 | ||
5802 | r = 0; | |
5803 | break; | |
5804 | } | |
5805 | default: | |
5806 | r = -ENXIO; | |
5807 | } | |
5808 | ||
5809 | return r; | |
5810 | } | |
5811 | ||
5812 | static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu, | |
5813 | unsigned int ioctl, | |
5814 | void __user *argp) | |
5815 | { | |
5816 | struct kvm_device_attr attr; | |
5817 | int r; | |
5818 | ||
5819 | if (copy_from_user(&attr, argp, sizeof(attr))) | |
5820 | return -EFAULT; | |
5821 | ||
5822 | if (attr.group != KVM_VCPU_TSC_CTRL) | |
5823 | return -ENXIO; | |
5824 | ||
5825 | switch (ioctl) { | |
5826 | case KVM_HAS_DEVICE_ATTR: | |
5827 | r = kvm_arch_tsc_has_attr(vcpu, &attr); | |
5828 | break; | |
5829 | case KVM_GET_DEVICE_ATTR: | |
5830 | r = kvm_arch_tsc_get_attr(vcpu, &attr); | |
5831 | break; | |
5832 | case KVM_SET_DEVICE_ATTR: | |
5833 | r = kvm_arch_tsc_set_attr(vcpu, &attr); | |
5834 | break; | |
5835 | } | |
5836 | ||
5837 | return r; | |
5838 | } | |
5839 | ||
5c919412 AS |
5840 | static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu, |
5841 | struct kvm_enable_cap *cap) | |
5842 | { | |
5843 | if (cap->flags) | |
5844 | return -EINVAL; | |
5845 | ||
5846 | switch (cap->cap) { | |
b4f69df0 | 5847 | #ifdef CONFIG_KVM_HYPERV |
efc479e6 RK |
5848 | case KVM_CAP_HYPERV_SYNIC2: |
5849 | if (cap->args[0]) | |
5850 | return -EINVAL; | |
df561f66 | 5851 | fallthrough; |
b2869f28 | 5852 | |
5c919412 | 5853 | case KVM_CAP_HYPERV_SYNIC: |
546d87e5 WL |
5854 | if (!irqchip_in_kernel(vcpu->kvm)) |
5855 | return -EINVAL; | |
efc479e6 RK |
5856 | return kvm_hv_activate_synic(vcpu, cap->cap == |
5857 | KVM_CAP_HYPERV_SYNIC2); | |
57b119da | 5858 | case KVM_CAP_HYPERV_ENLIGHTENED_VMCS: |
b4f69df0 VK |
5859 | { |
5860 | int r; | |
5861 | uint16_t vmcs_version; | |
5862 | void __user *user_ptr; | |
5863 | ||
5864 | if (!kvm_x86_ops.nested_ops->enable_evmcs) | |
5865 | return -ENOTTY; | |
5866 | r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version); | |
5867 | if (!r) { | |
5868 | user_ptr = (void __user *)(uintptr_t)cap->args[0]; | |
5869 | if (copy_to_user(user_ptr, &vmcs_version, | |
5870 | sizeof(vmcs_version))) | |
5871 | r = -EFAULT; | |
5872 | } | |
5873 | return r; | |
57b119da | 5874 | } |
344c6c80 | 5875 | case KVM_CAP_HYPERV_DIRECT_TLBFLUSH: |
b83237ad | 5876 | if (!kvm_x86_ops.enable_l2_tlb_flush) |
344c6c80 TL |
5877 | return -ENOTTY; |
5878 | ||
89604647 | 5879 | return kvm_x86_call(enable_l2_tlb_flush)(vcpu); |
57b119da | 5880 | |
644f7067 VK |
5881 | case KVM_CAP_HYPERV_ENFORCE_CPUID: |
5882 | return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]); | |
b4f69df0 | 5883 | #endif |
644f7067 | 5884 | |
66570e96 OU |
5885 | case KVM_CAP_ENFORCE_PV_FEATURE_CPUID: |
5886 | vcpu->arch.pv_cpuid.enforce = cap->args[0]; | |
66570e96 | 5887 | return 0; |
5c919412 AS |
5888 | default: |
5889 | return -EINVAL; | |
5890 | } | |
5891 | } | |
5892 | ||
313a3dc7 CO |
5893 | long kvm_arch_vcpu_ioctl(struct file *filp, |
5894 | unsigned int ioctl, unsigned long arg) | |
5895 | { | |
5896 | struct kvm_vcpu *vcpu = filp->private_data; | |
5897 | void __user *argp = (void __user *)arg; | |
5898 | int r; | |
d1ac91d8 | 5899 | union { |
6dba9403 | 5900 | struct kvm_sregs2 *sregs2; |
d1ac91d8 AK |
5901 | struct kvm_lapic_state *lapic; |
5902 | struct kvm_xsave *xsave; | |
5903 | struct kvm_xcrs *xcrs; | |
5904 | void *buffer; | |
5905 | } u; | |
5906 | ||
9b062471 CD |
5907 | vcpu_load(vcpu); |
5908 | ||
d1ac91d8 | 5909 | u.buffer = NULL; |
313a3dc7 CO |
5910 | switch (ioctl) { |
5911 | case KVM_GET_LAPIC: { | |
2204ae3c | 5912 | r = -EINVAL; |
bce87cce | 5913 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 5914 | goto out; |
dd103407 | 5915 | u.lapic = kzalloc(sizeof(struct kvm_lapic_state), GFP_KERNEL); |
313a3dc7 | 5916 | |
b772ff36 | 5917 | r = -ENOMEM; |
d1ac91d8 | 5918 | if (!u.lapic) |
b772ff36 | 5919 | goto out; |
d1ac91d8 | 5920 | r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic); |
313a3dc7 CO |
5921 | if (r) |
5922 | goto out; | |
5923 | r = -EFAULT; | |
d1ac91d8 | 5924 | if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state))) |
313a3dc7 CO |
5925 | goto out; |
5926 | r = 0; | |
5927 | break; | |
5928 | } | |
5929 | case KVM_SET_LAPIC: { | |
2204ae3c | 5930 | r = -EINVAL; |
bce87cce | 5931 | if (!lapic_in_kernel(vcpu)) |
2204ae3c | 5932 | goto out; |
ff5c2c03 | 5933 | u.lapic = memdup_user(argp, sizeof(*u.lapic)); |
9b062471 CD |
5934 | if (IS_ERR(u.lapic)) { |
5935 | r = PTR_ERR(u.lapic); | |
5936 | goto out_nofree; | |
5937 | } | |
ff5c2c03 | 5938 | |
d1ac91d8 | 5939 | r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic); |
313a3dc7 CO |
5940 | break; |
5941 | } | |
f77bc6a4 ZX |
5942 | case KVM_INTERRUPT: { |
5943 | struct kvm_interrupt irq; | |
5944 | ||
5945 | r = -EFAULT; | |
0e96f31e | 5946 | if (copy_from_user(&irq, argp, sizeof(irq))) |
f77bc6a4 ZX |
5947 | goto out; |
5948 | r = kvm_vcpu_ioctl_interrupt(vcpu, &irq); | |
f77bc6a4 ZX |
5949 | break; |
5950 | } | |
c4abb7c9 JK |
5951 | case KVM_NMI: { |
5952 | r = kvm_vcpu_ioctl_nmi(vcpu); | |
c4abb7c9 JK |
5953 | break; |
5954 | } | |
f077825a | 5955 | case KVM_SMI: { |
b0b42197 | 5956 | r = kvm_inject_smi(vcpu); |
f077825a PB |
5957 | break; |
5958 | } | |
313a3dc7 CO |
5959 | case KVM_SET_CPUID: { |
5960 | struct kvm_cpuid __user *cpuid_arg = argp; | |
5961 | struct kvm_cpuid cpuid; | |
5962 | ||
5963 | r = -EFAULT; | |
0e96f31e | 5964 | if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
313a3dc7 CO |
5965 | goto out; |
5966 | r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries); | |
313a3dc7 CO |
5967 | break; |
5968 | } | |
07716717 DK |
5969 | case KVM_SET_CPUID2: { |
5970 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
5971 | struct kvm_cpuid2 cpuid; | |
5972 | ||
5973 | r = -EFAULT; | |
0e96f31e | 5974 | if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
07716717 DK |
5975 | goto out; |
5976 | r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid, | |
19355475 | 5977 | cpuid_arg->entries); |
07716717 DK |
5978 | break; |
5979 | } | |
5980 | case KVM_GET_CPUID2: { | |
5981 | struct kvm_cpuid2 __user *cpuid_arg = argp; | |
5982 | struct kvm_cpuid2 cpuid; | |
5983 | ||
5984 | r = -EFAULT; | |
0e96f31e | 5985 | if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid))) |
07716717 DK |
5986 | goto out; |
5987 | r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid, | |
19355475 | 5988 | cpuid_arg->entries); |
07716717 DK |
5989 | if (r) |
5990 | goto out; | |
5991 | r = -EFAULT; | |
0e96f31e | 5992 | if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid))) |
07716717 DK |
5993 | goto out; |
5994 | r = 0; | |
5995 | break; | |
5996 | } | |
801e459a TL |
5997 | case KVM_GET_MSRS: { |
5998 | int idx = srcu_read_lock(&vcpu->kvm->srcu); | |
609e36d3 | 5999 | r = msr_io(vcpu, argp, do_get_msr, 1); |
801e459a | 6000 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 6001 | break; |
801e459a TL |
6002 | } |
6003 | case KVM_SET_MSRS: { | |
6004 | int idx = srcu_read_lock(&vcpu->kvm->srcu); | |
313a3dc7 | 6005 | r = msr_io(vcpu, argp, do_set_msr, 0); |
801e459a | 6006 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
313a3dc7 | 6007 | break; |
801e459a | 6008 | } |
b209749f AK |
6009 | case KVM_TPR_ACCESS_REPORTING: { |
6010 | struct kvm_tpr_access_ctl tac; | |
6011 | ||
6012 | r = -EFAULT; | |
0e96f31e | 6013 | if (copy_from_user(&tac, argp, sizeof(tac))) |
b209749f AK |
6014 | goto out; |
6015 | r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac); | |
6016 | if (r) | |
6017 | goto out; | |
6018 | r = -EFAULT; | |
0e96f31e | 6019 | if (copy_to_user(argp, &tac, sizeof(tac))) |
b209749f AK |
6020 | goto out; |
6021 | r = 0; | |
6022 | break; | |
6023 | }; | |
b93463aa AK |
6024 | case KVM_SET_VAPIC_ADDR: { |
6025 | struct kvm_vapic_addr va; | |
7301d6ab | 6026 | int idx; |
b93463aa AK |
6027 | |
6028 | r = -EINVAL; | |
35754c98 | 6029 | if (!lapic_in_kernel(vcpu)) |
b93463aa AK |
6030 | goto out; |
6031 | r = -EFAULT; | |
0e96f31e | 6032 | if (copy_from_user(&va, argp, sizeof(va))) |
b93463aa | 6033 | goto out; |
7301d6ab | 6034 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
fda4e2e8 | 6035 | r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr); |
7301d6ab | 6036 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
b93463aa AK |
6037 | break; |
6038 | } | |
890ca9ae HY |
6039 | case KVM_X86_SETUP_MCE: { |
6040 | u64 mcg_cap; | |
6041 | ||
6042 | r = -EFAULT; | |
0e96f31e | 6043 | if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap))) |
890ca9ae HY |
6044 | goto out; |
6045 | r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap); | |
6046 | break; | |
6047 | } | |
6048 | case KVM_X86_SET_MCE: { | |
6049 | struct kvm_x86_mce mce; | |
6050 | ||
6051 | r = -EFAULT; | |
0e96f31e | 6052 | if (copy_from_user(&mce, argp, sizeof(mce))) |
890ca9ae HY |
6053 | goto out; |
6054 | r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce); | |
6055 | break; | |
6056 | } | |
3cfc3092 JK |
6057 | case KVM_GET_VCPU_EVENTS: { |
6058 | struct kvm_vcpu_events events; | |
6059 | ||
6060 | kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events); | |
6061 | ||
6062 | r = -EFAULT; | |
6063 | if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events))) | |
6064 | break; | |
6065 | r = 0; | |
6066 | break; | |
6067 | } | |
6068 | case KVM_SET_VCPU_EVENTS: { | |
6069 | struct kvm_vcpu_events events; | |
6070 | ||
6071 | r = -EFAULT; | |
6072 | if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events))) | |
6073 | break; | |
6074 | ||
4bcdd831 | 6075 | kvm_vcpu_srcu_read_lock(vcpu); |
3cfc3092 | 6076 | r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events); |
4bcdd831 | 6077 | kvm_vcpu_srcu_read_unlock(vcpu); |
3cfc3092 JK |
6078 | break; |
6079 | } | |
a1efbe77 JK |
6080 | case KVM_GET_DEBUGREGS: { |
6081 | struct kvm_debugregs dbgregs; | |
6082 | ||
517987e3 PB |
6083 | r = kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs); |
6084 | if (r < 0) | |
6085 | break; | |
a1efbe77 JK |
6086 | |
6087 | r = -EFAULT; | |
6088 | if (copy_to_user(argp, &dbgregs, | |
6089 | sizeof(struct kvm_debugregs))) | |
6090 | break; | |
6091 | r = 0; | |
6092 | break; | |
6093 | } | |
6094 | case KVM_SET_DEBUGREGS: { | |
6095 | struct kvm_debugregs dbgregs; | |
6096 | ||
6097 | r = -EFAULT; | |
6098 | if (copy_from_user(&dbgregs, argp, | |
6099 | sizeof(struct kvm_debugregs))) | |
6100 | break; | |
6101 | ||
6102 | r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs); | |
6103 | break; | |
6104 | } | |
2d5b5a66 | 6105 | case KVM_GET_XSAVE: { |
be50b206 GZ |
6106 | r = -EINVAL; |
6107 | if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave)) | |
6108 | break; | |
6109 | ||
dd103407 | 6110 | u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL); |
2d5b5a66 | 6111 | r = -ENOMEM; |
d1ac91d8 | 6112 | if (!u.xsave) |
2d5b5a66 SY |
6113 | break; |
6114 | ||
517987e3 PB |
6115 | r = kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave); |
6116 | if (r < 0) | |
6117 | break; | |
2d5b5a66 SY |
6118 | |
6119 | r = -EFAULT; | |
d1ac91d8 | 6120 | if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave))) |
2d5b5a66 SY |
6121 | break; |
6122 | r = 0; | |
6123 | break; | |
6124 | } | |
6125 | case KVM_SET_XSAVE: { | |
be50b206 GZ |
6126 | int size = vcpu->arch.guest_fpu.uabi_size; |
6127 | ||
6128 | u.xsave = memdup_user(argp, size); | |
9b062471 CD |
6129 | if (IS_ERR(u.xsave)) { |
6130 | r = PTR_ERR(u.xsave); | |
6131 | goto out_nofree; | |
6132 | } | |
2d5b5a66 | 6133 | |
d1ac91d8 | 6134 | r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave); |
2d5b5a66 SY |
6135 | break; |
6136 | } | |
be50b206 GZ |
6137 | |
6138 | case KVM_GET_XSAVE2: { | |
6139 | int size = vcpu->arch.guest_fpu.uabi_size; | |
6140 | ||
dd103407 | 6141 | u.xsave = kzalloc(size, GFP_KERNEL); |
be50b206 GZ |
6142 | r = -ENOMEM; |
6143 | if (!u.xsave) | |
6144 | break; | |
6145 | ||
517987e3 PB |
6146 | r = kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size); |
6147 | if (r < 0) | |
6148 | break; | |
be50b206 GZ |
6149 | |
6150 | r = -EFAULT; | |
6151 | if (copy_to_user(argp, u.xsave, size)) | |
6152 | break; | |
6153 | ||
6154 | r = 0; | |
6155 | break; | |
6156 | } | |
6157 | ||
2d5b5a66 | 6158 | case KVM_GET_XCRS: { |
dd103407 | 6159 | u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL); |
2d5b5a66 | 6160 | r = -ENOMEM; |
d1ac91d8 | 6161 | if (!u.xcrs) |
2d5b5a66 SY |
6162 | break; |
6163 | ||
517987e3 PB |
6164 | r = kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs); |
6165 | if (r < 0) | |
6166 | break; | |
2d5b5a66 SY |
6167 | |
6168 | r = -EFAULT; | |
d1ac91d8 | 6169 | if (copy_to_user(argp, u.xcrs, |
2d5b5a66 SY |
6170 | sizeof(struct kvm_xcrs))) |
6171 | break; | |
6172 | r = 0; | |
6173 | break; | |
6174 | } | |
6175 | case KVM_SET_XCRS: { | |
ff5c2c03 | 6176 | u.xcrs = memdup_user(argp, sizeof(*u.xcrs)); |
9b062471 CD |
6177 | if (IS_ERR(u.xcrs)) { |
6178 | r = PTR_ERR(u.xcrs); | |
6179 | goto out_nofree; | |
6180 | } | |
2d5b5a66 | 6181 | |
d1ac91d8 | 6182 | r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs); |
2d5b5a66 SY |
6183 | break; |
6184 | } | |
92a1f12d JR |
6185 | case KVM_SET_TSC_KHZ: { |
6186 | u32 user_tsc_khz; | |
6187 | ||
6188 | r = -EINVAL; | |
92a1f12d JR |
6189 | user_tsc_khz = (u32)arg; |
6190 | ||
938c8745 SC |
6191 | if (kvm_caps.has_tsc_control && |
6192 | user_tsc_khz >= kvm_caps.max_guest_tsc_khz) | |
92a1f12d JR |
6193 | goto out; |
6194 | ||
cc578287 ZA |
6195 | if (user_tsc_khz == 0) |
6196 | user_tsc_khz = tsc_khz; | |
6197 | ||
381d585c HZ |
6198 | if (!kvm_set_tsc_khz(vcpu, user_tsc_khz)) |
6199 | r = 0; | |
92a1f12d | 6200 | |
92a1f12d JR |
6201 | goto out; |
6202 | } | |
6203 | case KVM_GET_TSC_KHZ: { | |
cc578287 | 6204 | r = vcpu->arch.virtual_tsc_khz; |
92a1f12d JR |
6205 | goto out; |
6206 | } | |
1c0b28c2 EM |
6207 | case KVM_KVMCLOCK_CTRL: { |
6208 | r = kvm_set_guest_paused(vcpu); | |
6209 | goto out; | |
6210 | } | |
5c919412 AS |
6211 | case KVM_ENABLE_CAP: { |
6212 | struct kvm_enable_cap cap; | |
6213 | ||
6214 | r = -EFAULT; | |
6215 | if (copy_from_user(&cap, argp, sizeof(cap))) | |
6216 | goto out; | |
6217 | r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap); | |
6218 | break; | |
6219 | } | |
8fcc4b59 JM |
6220 | case KVM_GET_NESTED_STATE: { |
6221 | struct kvm_nested_state __user *user_kvm_nested_state = argp; | |
6222 | u32 user_data_size; | |
6223 | ||
6224 | r = -EINVAL; | |
33b22172 | 6225 | if (!kvm_x86_ops.nested_ops->get_state) |
8fcc4b59 JM |
6226 | break; |
6227 | ||
6228 | BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size)); | |
26b471c7 | 6229 | r = -EFAULT; |
8fcc4b59 | 6230 | if (get_user(user_data_size, &user_kvm_nested_state->size)) |
26b471c7 | 6231 | break; |
8fcc4b59 | 6232 | |
33b22172 PB |
6233 | r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state, |
6234 | user_data_size); | |
8fcc4b59 | 6235 | if (r < 0) |
26b471c7 | 6236 | break; |
8fcc4b59 JM |
6237 | |
6238 | if (r > user_data_size) { | |
6239 | if (put_user(r, &user_kvm_nested_state->size)) | |
26b471c7 LA |
6240 | r = -EFAULT; |
6241 | else | |
6242 | r = -E2BIG; | |
6243 | break; | |
8fcc4b59 | 6244 | } |
26b471c7 | 6245 | |
8fcc4b59 JM |
6246 | r = 0; |
6247 | break; | |
6248 | } | |
6249 | case KVM_SET_NESTED_STATE: { | |
6250 | struct kvm_nested_state __user *user_kvm_nested_state = argp; | |
6251 | struct kvm_nested_state kvm_state; | |
ad5996d9 | 6252 | int idx; |
8fcc4b59 JM |
6253 | |
6254 | r = -EINVAL; | |
33b22172 | 6255 | if (!kvm_x86_ops.nested_ops->set_state) |
8fcc4b59 JM |
6256 | break; |
6257 | ||
26b471c7 | 6258 | r = -EFAULT; |
8fcc4b59 | 6259 | if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state))) |
26b471c7 | 6260 | break; |
8fcc4b59 | 6261 | |
26b471c7 | 6262 | r = -EINVAL; |
8fcc4b59 | 6263 | if (kvm_state.size < sizeof(kvm_state)) |
26b471c7 | 6264 | break; |
8fcc4b59 JM |
6265 | |
6266 | if (kvm_state.flags & | |
8cab6507 | 6267 | ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE |
cc440cda PB |
6268 | | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING |
6269 | | KVM_STATE_NESTED_GIF_SET)) | |
26b471c7 | 6270 | break; |
8fcc4b59 JM |
6271 | |
6272 | /* nested_run_pending implies guest_mode. */ | |
8cab6507 VK |
6273 | if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING) |
6274 | && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE)) | |
26b471c7 | 6275 | break; |
8fcc4b59 | 6276 | |
ad5996d9 | 6277 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
33b22172 | 6278 | r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state); |
ad5996d9 | 6279 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8fcc4b59 JM |
6280 | break; |
6281 | } | |
b4f69df0 | 6282 | #ifdef CONFIG_KVM_HYPERV |
c21d54f0 VK |
6283 | case KVM_GET_SUPPORTED_HV_CPUID: |
6284 | r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp); | |
2bc39970 | 6285 | break; |
b4f69df0 | 6286 | #endif |
b59b153d | 6287 | #ifdef CONFIG_KVM_XEN |
3e324615 DW |
6288 | case KVM_XEN_VCPU_GET_ATTR: { |
6289 | struct kvm_xen_vcpu_attr xva; | |
6290 | ||
6291 | r = -EFAULT; | |
6292 | if (copy_from_user(&xva, argp, sizeof(xva))) | |
6293 | goto out; | |
6294 | r = kvm_xen_vcpu_get_attr(vcpu, &xva); | |
6295 | if (!r && copy_to_user(argp, &xva, sizeof(xva))) | |
6296 | r = -EFAULT; | |
6297 | break; | |
6298 | } | |
6299 | case KVM_XEN_VCPU_SET_ATTR: { | |
6300 | struct kvm_xen_vcpu_attr xva; | |
6301 | ||
6302 | r = -EFAULT; | |
6303 | if (copy_from_user(&xva, argp, sizeof(xva))) | |
6304 | goto out; | |
6305 | r = kvm_xen_vcpu_set_attr(vcpu, &xva); | |
6306 | break; | |
6307 | } | |
b59b153d | 6308 | #endif |
6dba9403 | 6309 | case KVM_GET_SREGS2: { |
517987e3 PB |
6310 | r = -EINVAL; |
6311 | if (vcpu->kvm->arch.has_protected_state && | |
6312 | vcpu->arch.guest_state_protected) | |
6313 | goto out; | |
6314 | ||
6dba9403 ML |
6315 | u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL); |
6316 | r = -ENOMEM; | |
6317 | if (!u.sregs2) | |
6318 | goto out; | |
6319 | __get_sregs2(vcpu, u.sregs2); | |
6320 | r = -EFAULT; | |
6321 | if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2))) | |
6322 | goto out; | |
6323 | r = 0; | |
6324 | break; | |
6325 | } | |
6326 | case KVM_SET_SREGS2: { | |
517987e3 PB |
6327 | r = -EINVAL; |
6328 | if (vcpu->kvm->arch.has_protected_state && | |
6329 | vcpu->arch.guest_state_protected) | |
6330 | goto out; | |
6331 | ||
6dba9403 ML |
6332 | u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2)); |
6333 | if (IS_ERR(u.sregs2)) { | |
6334 | r = PTR_ERR(u.sregs2); | |
6335 | u.sregs2 = NULL; | |
6336 | goto out; | |
6337 | } | |
6338 | r = __set_sregs2(vcpu, u.sregs2); | |
6339 | break; | |
6340 | } | |
828ca896 OU |
6341 | case KVM_HAS_DEVICE_ATTR: |
6342 | case KVM_GET_DEVICE_ATTR: | |
6343 | case KVM_SET_DEVICE_ATTR: | |
6344 | r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp); | |
6345 | break; | |
a50f673f IY |
6346 | case KVM_MEMORY_ENCRYPT_OP: |
6347 | r = -ENOTTY; | |
6348 | if (!kvm_x86_ops.vcpu_mem_enc_ioctl) | |
6349 | goto out; | |
6350 | r = kvm_x86_ops.vcpu_mem_enc_ioctl(vcpu, argp); | |
6351 | break; | |
313a3dc7 CO |
6352 | default: |
6353 | r = -EINVAL; | |
6354 | } | |
6355 | out: | |
d1ac91d8 | 6356 | kfree(u.buffer); |
9b062471 CD |
6357 | out_nofree: |
6358 | vcpu_put(vcpu); | |
313a3dc7 CO |
6359 | return r; |
6360 | } | |
6361 | ||
1499fa80 | 6362 | vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf) |
5b1c1493 CO |
6363 | { |
6364 | return VM_FAULT_SIGBUS; | |
6365 | } | |
6366 | ||
1fe779f8 CO |
6367 | static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr) |
6368 | { | |
6369 | int ret; | |
6370 | ||
6371 | if (addr > (unsigned int)(-3 * PAGE_SIZE)) | |
951179ce | 6372 | return -EINVAL; |
89604647 | 6373 | ret = kvm_x86_call(set_tss_addr)(kvm, addr); |
1fe779f8 CO |
6374 | return ret; |
6375 | } | |
6376 | ||
b927a3ce SY |
6377 | static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm, |
6378 | u64 ident_addr) | |
6379 | { | |
89604647 | 6380 | return kvm_x86_call(set_identity_map_addr)(kvm, ident_addr); |
b927a3ce SY |
6381 | } |
6382 | ||
1fe779f8 | 6383 | static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm, |
bc8a3d89 | 6384 | unsigned long kvm_nr_mmu_pages) |
1fe779f8 CO |
6385 | { |
6386 | if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES) | |
6387 | return -EINVAL; | |
6388 | ||
79fac95e | 6389 | mutex_lock(&kvm->slots_lock); |
1fe779f8 CO |
6390 | |
6391 | kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages); | |
f05e70ac | 6392 | kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages; |
1fe779f8 | 6393 | |
79fac95e | 6394 | mutex_unlock(&kvm->slots_lock); |
1fe779f8 CO |
6395 | return 0; |
6396 | } | |
6397 | ||
1fe779f8 CO |
6398 | static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) |
6399 | { | |
90bca052 | 6400 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
6401 | int r; |
6402 | ||
6403 | r = 0; | |
6404 | switch (chip->chip_id) { | |
6405 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 | 6406 | memcpy(&chip->chip.pic, &pic->pics[0], |
1fe779f8 CO |
6407 | sizeof(struct kvm_pic_state)); |
6408 | break; | |
6409 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 | 6410 | memcpy(&chip->chip.pic, &pic->pics[1], |
1fe779f8 CO |
6411 | sizeof(struct kvm_pic_state)); |
6412 | break; | |
6413 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 6414 | kvm_get_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
6415 | break; |
6416 | default: | |
6417 | r = -EINVAL; | |
6418 | break; | |
6419 | } | |
6420 | return r; | |
6421 | } | |
6422 | ||
6423 | static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip) | |
6424 | { | |
90bca052 | 6425 | struct kvm_pic *pic = kvm->arch.vpic; |
1fe779f8 CO |
6426 | int r; |
6427 | ||
6428 | r = 0; | |
6429 | switch (chip->chip_id) { | |
6430 | case KVM_IRQCHIP_PIC_MASTER: | |
90bca052 DH |
6431 | spin_lock(&pic->lock); |
6432 | memcpy(&pic->pics[0], &chip->chip.pic, | |
1fe779f8 | 6433 | sizeof(struct kvm_pic_state)); |
90bca052 | 6434 | spin_unlock(&pic->lock); |
1fe779f8 CO |
6435 | break; |
6436 | case KVM_IRQCHIP_PIC_SLAVE: | |
90bca052 DH |
6437 | spin_lock(&pic->lock); |
6438 | memcpy(&pic->pics[1], &chip->chip.pic, | |
1fe779f8 | 6439 | sizeof(struct kvm_pic_state)); |
90bca052 | 6440 | spin_unlock(&pic->lock); |
1fe779f8 CO |
6441 | break; |
6442 | case KVM_IRQCHIP_IOAPIC: | |
33392b49 | 6443 | kvm_set_ioapic(kvm, &chip->chip.ioapic); |
1fe779f8 CO |
6444 | break; |
6445 | default: | |
6446 | r = -EINVAL; | |
6447 | break; | |
6448 | } | |
90bca052 | 6449 | kvm_pic_update_irq(pic); |
1fe779f8 CO |
6450 | return r; |
6451 | } | |
6452 | ||
e0f63cb9 SY |
6453 | static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps) |
6454 | { | |
34f3941c RK |
6455 | struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state; |
6456 | ||
6457 | BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels)); | |
6458 | ||
6459 | mutex_lock(&kps->lock); | |
6460 | memcpy(ps, &kps->channels, sizeof(*ps)); | |
6461 | mutex_unlock(&kps->lock); | |
2da29bcc | 6462 | return 0; |
e0f63cb9 SY |
6463 | } |
6464 | ||
6465 | static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps) | |
6466 | { | |
0185604c | 6467 | int i; |
09edea72 RK |
6468 | struct kvm_pit *pit = kvm->arch.vpit; |
6469 | ||
6470 | mutex_lock(&pit->pit_state.lock); | |
34f3941c | 6471 | memcpy(&pit->pit_state.channels, ps, sizeof(*ps)); |
0185604c | 6472 | for (i = 0; i < 3; i++) |
09edea72 RK |
6473 | kvm_pit_load_count(pit, i, ps->channels[i].count, 0); |
6474 | mutex_unlock(&pit->pit_state.lock); | |
2da29bcc | 6475 | return 0; |
e9f42757 BK |
6476 | } |
6477 | ||
6478 | static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
6479 | { | |
e9f42757 BK |
6480 | mutex_lock(&kvm->arch.vpit->pit_state.lock); |
6481 | memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels, | |
6482 | sizeof(ps->channels)); | |
6483 | ps->flags = kvm->arch.vpit->pit_state.flags; | |
6484 | mutex_unlock(&kvm->arch.vpit->pit_state.lock); | |
97e69aa6 | 6485 | memset(&ps->reserved, 0, sizeof(ps->reserved)); |
2da29bcc | 6486 | return 0; |
e9f42757 BK |
6487 | } |
6488 | ||
6489 | static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps) | |
6490 | { | |
2da29bcc | 6491 | int start = 0; |
0185604c | 6492 | int i; |
e9f42757 | 6493 | u32 prev_legacy, cur_legacy; |
09edea72 RK |
6494 | struct kvm_pit *pit = kvm->arch.vpit; |
6495 | ||
6496 | mutex_lock(&pit->pit_state.lock); | |
6497 | prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY; | |
e9f42757 BK |
6498 | cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY; |
6499 | if (!prev_legacy && cur_legacy) | |
6500 | start = 1; | |
09edea72 RK |
6501 | memcpy(&pit->pit_state.channels, &ps->channels, |
6502 | sizeof(pit->pit_state.channels)); | |
6503 | pit->pit_state.flags = ps->flags; | |
0185604c | 6504 | for (i = 0; i < 3; i++) |
09edea72 | 6505 | kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count, |
e5e57e7a | 6506 | start && i == 0); |
09edea72 | 6507 | mutex_unlock(&pit->pit_state.lock); |
2da29bcc | 6508 | return 0; |
e0f63cb9 SY |
6509 | } |
6510 | ||
52d939a0 MT |
6511 | static int kvm_vm_ioctl_reinject(struct kvm *kvm, |
6512 | struct kvm_reinject_control *control) | |
6513 | { | |
71474e2f RK |
6514 | struct kvm_pit *pit = kvm->arch.vpit; |
6515 | ||
71474e2f RK |
6516 | /* pit->pit_state.lock was overloaded to prevent userspace from getting |
6517 | * an inconsistent state after running multiple KVM_REINJECT_CONTROL | |
6518 | * ioctls in parallel. Use a separate lock if that ioctl isn't rare. | |
6519 | */ | |
6520 | mutex_lock(&pit->pit_state.lock); | |
6521 | kvm_pit_set_reinject(pit, control->pit_reinject); | |
6522 | mutex_unlock(&pit->pit_state.lock); | |
b39c90b6 | 6523 | |
52d939a0 MT |
6524 | return 0; |
6525 | } | |
6526 | ||
0dff0846 | 6527 | void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot) |
5bb064dc | 6528 | { |
a018eba5 | 6529 | |
88178fd4 | 6530 | /* |
a018eba5 SC |
6531 | * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called |
6532 | * before reporting dirty_bitmap to userspace. KVM flushes the buffers | |
6533 | * on all VM-Exits, thus we only need to kick running vCPUs to force a | |
6534 | * VM-Exit. | |
88178fd4 | 6535 | */ |
a018eba5 | 6536 | struct kvm_vcpu *vcpu; |
46808a4c | 6537 | unsigned long i; |
a018eba5 | 6538 | |
fbb4adad | 6539 | if (!kvm->arch.cpu_dirty_log_size) |
3d30bfcb DM |
6540 | return; |
6541 | ||
a018eba5 SC |
6542 | kvm_for_each_vcpu(i, vcpu, kvm) |
6543 | kvm_vcpu_kick(vcpu); | |
5bb064dc ZX |
6544 | } |
6545 | ||
aa2fbe6d YZ |
6546 | int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event, |
6547 | bool line_status) | |
23d43cf9 CD |
6548 | { |
6549 | if (!irqchip_in_kernel(kvm)) | |
6550 | return -ENXIO; | |
6551 | ||
6552 | irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID, | |
aa2fbe6d YZ |
6553 | irq_event->irq, irq_event->level, |
6554 | line_status); | |
23d43cf9 CD |
6555 | return 0; |
6556 | } | |
6557 | ||
e5d83c74 PB |
6558 | int kvm_vm_ioctl_enable_cap(struct kvm *kvm, |
6559 | struct kvm_enable_cap *cap) | |
90de4a18 NA |
6560 | { |
6561 | int r; | |
6562 | ||
6563 | if (cap->flags) | |
6564 | return -EINVAL; | |
6565 | ||
6566 | switch (cap->cap) { | |
6d849191 OU |
6567 | case KVM_CAP_DISABLE_QUIRKS2: |
6568 | r = -EINVAL; | |
bd7d5362 | 6569 | if (cap->args[0] & ~kvm_caps.supported_quirks) |
6d849191 OU |
6570 | break; |
6571 | fallthrough; | |
90de4a18 | 6572 | case KVM_CAP_DISABLE_QUIRKS: |
bd7d5362 | 6573 | kvm->arch.disabled_quirks |= cap->args[0] & kvm_caps.supported_quirks; |
90de4a18 NA |
6574 | r = 0; |
6575 | break; | |
49df6397 SR |
6576 | case KVM_CAP_SPLIT_IRQCHIP: { |
6577 | mutex_lock(&kvm->lock); | |
b053b2ae SR |
6578 | r = -EINVAL; |
6579 | if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS) | |
6580 | goto split_irqchip_unlock; | |
49df6397 SR |
6581 | r = -EEXIST; |
6582 | if (irqchip_in_kernel(kvm)) | |
6583 | goto split_irqchip_unlock; | |
557abc40 | 6584 | if (kvm->created_vcpus) |
49df6397 | 6585 | goto split_irqchip_unlock; |
49df6397 SR |
6586 | /* Pairs with irqchip_in_kernel. */ |
6587 | smp_wmb(); | |
49776faf | 6588 | kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT; |
b053b2ae | 6589 | kvm->arch.nr_reserved_ioapic_pins = cap->args[0]; |
320af55a | 6590 | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); |
49df6397 SR |
6591 | r = 0; |
6592 | split_irqchip_unlock: | |
6593 | mutex_unlock(&kvm->lock); | |
6594 | break; | |
6595 | } | |
37131313 RK |
6596 | case KVM_CAP_X2APIC_API: |
6597 | r = -EINVAL; | |
6598 | if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS) | |
6599 | break; | |
6600 | ||
6601 | if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS) | |
6602 | kvm->arch.x2apic_format = true; | |
c519265f RK |
6603 | if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK) |
6604 | kvm->arch.x2apic_broadcast_quirk_disabled = true; | |
37131313 RK |
6605 | |
6606 | r = 0; | |
6607 | break; | |
4d5422ce WL |
6608 | case KVM_CAP_X86_DISABLE_EXITS: |
6609 | r = -EINVAL; | |
c829ccd4 | 6610 | if (cap->args[0] & ~kvm_get_allowed_disable_exits()) |
4d5422ce WL |
6611 | break; |
6612 | ||
04cd8f86 SC |
6613 | mutex_lock(&kvm->lock); |
6614 | if (kvm->created_vcpus) | |
6615 | goto disable_exits_unlock; | |
6f0f2d5e TL |
6616 | |
6617 | #define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \ | |
6618 | "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests." | |
6619 | ||
c829ccd4 SC |
6620 | if (!mitigate_smt_rsb && boot_cpu_has_bug(X86_BUG_SMT_RSB) && |
6621 | cpu_smt_possible() && | |
6622 | (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE)) | |
6623 | pr_warn_once(SMT_RSB_MSG); | |
6f0f2d5e | 6624 | |
c829ccd4 SC |
6625 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE) |
6626 | kvm->arch.pause_in_guest = true; | |
6627 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) | |
6628 | kvm->arch.mwait_in_guest = true; | |
6629 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT) | |
6630 | kvm->arch.hlt_in_guest = true; | |
6631 | if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE) | |
6632 | kvm->arch.cstate_in_guest = true; | |
4d5422ce | 6633 | r = 0; |
04cd8f86 SC |
6634 | disable_exits_unlock: |
6635 | mutex_unlock(&kvm->lock); | |
4d5422ce | 6636 | break; |
6fbbde9a DS |
6637 | case KVM_CAP_MSR_PLATFORM_INFO: |
6638 | kvm->arch.guest_can_read_msr_platform_info = cap->args[0]; | |
6639 | r = 0; | |
c4f55198 JM |
6640 | break; |
6641 | case KVM_CAP_EXCEPTION_PAYLOAD: | |
6642 | kvm->arch.exception_payload_enabled = cap->args[0]; | |
6643 | r = 0; | |
6fbbde9a | 6644 | break; |
ed235117 CQ |
6645 | case KVM_CAP_X86_TRIPLE_FAULT_EVENT: |
6646 | kvm->arch.triple_fault_event = cap->args[0]; | |
6647 | r = 0; | |
6648 | break; | |
1ae09954 | 6649 | case KVM_CAP_X86_USER_SPACE_MSR: |
cf5029d5 | 6650 | r = -EINVAL; |
db205f7e | 6651 | if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK) |
cf5029d5 | 6652 | break; |
1ae09954 AG |
6653 | kvm->arch.user_space_msr_mask = cap->args[0]; |
6654 | r = 0; | |
6655 | break; | |
fe6b6bc8 CQ |
6656 | case KVM_CAP_X86_BUS_LOCK_EXIT: |
6657 | r = -EINVAL; | |
6658 | if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE) | |
6659 | break; | |
6660 | ||
6661 | if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) && | |
6662 | (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)) | |
6663 | break; | |
6664 | ||
938c8745 | 6665 | if (kvm_caps.has_bus_lock_exit && |
fe6b6bc8 CQ |
6666 | cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT) |
6667 | kvm->arch.bus_lock_detection_enabled = true; | |
6668 | r = 0; | |
6669 | break; | |
fe7e9488 SC |
6670 | #ifdef CONFIG_X86_SGX_KVM |
6671 | case KVM_CAP_SGX_ATTRIBUTE: { | |
6672 | unsigned long allowed_attributes = 0; | |
6673 | ||
6674 | r = sgx_set_attribute(&allowed_attributes, cap->args[0]); | |
6675 | if (r) | |
6676 | break; | |
6677 | ||
6678 | /* KVM only supports the PROVISIONKEY privileged attribute. */ | |
6679 | if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) && | |
6680 | !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY)) | |
6681 | kvm->arch.sgx_provisioning_allowed = true; | |
6682 | else | |
6683 | r = -EINVAL; | |
6684 | break; | |
6685 | } | |
6686 | #endif | |
54526d1f NT |
6687 | case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM: |
6688 | r = -EINVAL; | |
7ad02ef0 SC |
6689 | if (!kvm_x86_ops.vm_copy_enc_context_from) |
6690 | break; | |
6691 | ||
89604647 | 6692 | r = kvm_x86_call(vm_copy_enc_context_from)(kvm, cap->args[0]); |
7ad02ef0 | 6693 | break; |
b5663931 PG |
6694 | case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM: |
6695 | r = -EINVAL; | |
7ad02ef0 SC |
6696 | if (!kvm_x86_ops.vm_move_enc_context_from) |
6697 | break; | |
6698 | ||
89604647 | 6699 | r = kvm_x86_call(vm_move_enc_context_from)(kvm, cap->args[0]); |
7ad02ef0 | 6700 | break; |
0dbb1123 AK |
6701 | case KVM_CAP_EXIT_HYPERCALL: |
6702 | if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) { | |
6703 | r = -EINVAL; | |
6704 | break; | |
6705 | } | |
6706 | kvm->arch.hypercall_exit_enabled = cap->args[0]; | |
6707 | r = 0; | |
6708 | break; | |
19238e75 AL |
6709 | case KVM_CAP_EXIT_ON_EMULATION_FAILURE: |
6710 | r = -EINVAL; | |
6711 | if (cap->args[0] & ~1) | |
6712 | break; | |
6713 | kvm->arch.exit_on_emulation_error = cap->args[0]; | |
6714 | r = 0; | |
6715 | break; | |
ba7bb663 DD |
6716 | case KVM_CAP_PMU_CAPABILITY: |
6717 | r = -EINVAL; | |
6718 | if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK)) | |
6719 | break; | |
6720 | ||
6721 | mutex_lock(&kvm->lock); | |
6722 | if (!kvm->created_vcpus) { | |
6723 | kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE); | |
6724 | r = 0; | |
6725 | } | |
6726 | mutex_unlock(&kvm->lock); | |
6727 | break; | |
35875316 ZG |
6728 | case KVM_CAP_MAX_VCPU_ID: |
6729 | r = -EINVAL; | |
6730 | if (cap->args[0] > KVM_MAX_VCPU_IDS) | |
6731 | break; | |
6732 | ||
6733 | mutex_lock(&kvm->lock); | |
d29bf2ca SC |
6734 | if (kvm->arch.bsp_vcpu_id > cap->args[0]) { |
6735 | ; | |
6736 | } else if (kvm->arch.max_vcpu_ids == cap->args[0]) { | |
35875316 ZG |
6737 | r = 0; |
6738 | } else if (!kvm->arch.max_vcpu_ids) { | |
6739 | kvm->arch.max_vcpu_ids = cap->args[0]; | |
6740 | r = 0; | |
6741 | } | |
6742 | mutex_unlock(&kvm->lock); | |
6743 | break; | |
2f4073e0 TX |
6744 | case KVM_CAP_X86_NOTIFY_VMEXIT: |
6745 | r = -EINVAL; | |
6746 | if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS) | |
6747 | break; | |
6748 | if (!kvm_caps.has_notify_vmexit) | |
6749 | break; | |
6750 | if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED)) | |
6751 | break; | |
6752 | mutex_lock(&kvm->lock); | |
6753 | if (!kvm->created_vcpus) { | |
6754 | kvm->arch.notify_window = cap->args[0] >> 32; | |
6755 | kvm->arch.notify_vmexit_flags = (u32)cap->args[0]; | |
6756 | r = 0; | |
6757 | } | |
6758 | mutex_unlock(&kvm->lock); | |
6759 | break; | |
084cc29f BG |
6760 | case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES: |
6761 | r = -EINVAL; | |
6762 | ||
6763 | /* | |
6764 | * Since the risk of disabling NX hugepages is a guest crashing | |
6765 | * the system, ensure the userspace process has permission to | |
6766 | * reboot the system. | |
6767 | * | |
6768 | * Note that unlike the reboot() syscall, the process must have | |
6769 | * this capability in the root namespace because exposing | |
6770 | * /dev/kvm into a container does not limit the scope of the | |
6771 | * iTLB multihit bug to that container. In other words, | |
6772 | * this must use capable(), not ns_capable(). | |
6773 | */ | |
6774 | if (!capable(CAP_SYS_BOOT)) { | |
6775 | r = -EPERM; | |
6776 | break; | |
6777 | } | |
6778 | ||
6779 | if (cap->args[0]) | |
6780 | break; | |
6781 | ||
6782 | mutex_lock(&kvm->lock); | |
6783 | if (!kvm->created_vcpus) { | |
6784 | kvm->arch.disable_nx_huge_pages = true; | |
6785 | r = 0; | |
6786 | } | |
6787 | mutex_unlock(&kvm->lock); | |
6788 | break; | |
6fef5185 IY |
6789 | case KVM_CAP_X86_APIC_BUS_CYCLES_NS: { |
6790 | u64 bus_cycle_ns = cap->args[0]; | |
6791 | u64 unused; | |
6792 | ||
6793 | /* | |
6794 | * Guard against overflow in tmict_to_ns(). 128 is the highest | |
6795 | * divide value that can be programmed in APIC_TDCR. | |
6796 | */ | |
6797 | r = -EINVAL; | |
6798 | if (!bus_cycle_ns || | |
6799 | check_mul_overflow((u64)U32_MAX * 128, bus_cycle_ns, &unused)) | |
6800 | break; | |
6801 | ||
6802 | r = 0; | |
6803 | mutex_lock(&kvm->lock); | |
6804 | if (!irqchip_in_kernel(kvm)) | |
6805 | r = -ENXIO; | |
6806 | else if (kvm->created_vcpus) | |
6807 | r = -EINVAL; | |
6808 | else | |
6809 | kvm->arch.apic_bus_cycle_ns = bus_cycle_ns; | |
6810 | mutex_unlock(&kvm->lock); | |
6811 | break; | |
6812 | } | |
90de4a18 NA |
6813 | default: |
6814 | r = -EINVAL; | |
6815 | break; | |
6816 | } | |
6817 | return r; | |
6818 | } | |
6819 | ||
b318e8de SC |
6820 | static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow) |
6821 | { | |
6822 | struct kvm_x86_msr_filter *msr_filter; | |
6823 | ||
6824 | msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT); | |
6825 | if (!msr_filter) | |
6826 | return NULL; | |
6827 | ||
6828 | msr_filter->default_allow = default_allow; | |
6829 | return msr_filter; | |
6830 | } | |
6831 | ||
6832 | static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter) | |
1a155254 AG |
6833 | { |
6834 | u32 i; | |
1a155254 | 6835 | |
b318e8de SC |
6836 | if (!msr_filter) |
6837 | return; | |
6838 | ||
6839 | for (i = 0; i < msr_filter->count; i++) | |
6840 | kfree(msr_filter->ranges[i].bitmap); | |
1a155254 | 6841 | |
b318e8de | 6842 | kfree(msr_filter); |
1a155254 AG |
6843 | } |
6844 | ||
b318e8de SC |
6845 | static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter, |
6846 | struct kvm_msr_filter_range *user_range) | |
1a155254 | 6847 | { |
392a5324 | 6848 | unsigned long *bitmap; |
1a155254 | 6849 | size_t bitmap_size; |
1a155254 AG |
6850 | |
6851 | if (!user_range->nmsrs) | |
6852 | return 0; | |
6853 | ||
8aff460f | 6854 | if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK) |
aca35288 SC |
6855 | return -EINVAL; |
6856 | ||
6857 | if (!user_range->flags) | |
6858 | return -EINVAL; | |
6859 | ||
1a155254 AG |
6860 | bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long); |
6861 | if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE) | |
6862 | return -EINVAL; | |
6863 | ||
6864 | bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size); | |
6865 | if (IS_ERR(bitmap)) | |
6866 | return PTR_ERR(bitmap); | |
6867 | ||
aca35288 | 6868 | msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) { |
1a155254 AG |
6869 | .flags = user_range->flags, |
6870 | .base = user_range->base, | |
6871 | .nmsrs = user_range->nmsrs, | |
6872 | .bitmap = bitmap, | |
6873 | }; | |
6874 | ||
b318e8de | 6875 | msr_filter->count++; |
1a155254 | 6876 | return 0; |
1a155254 AG |
6877 | } |
6878 | ||
2e3272bc AG |
6879 | static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, |
6880 | struct kvm_msr_filter *filter) | |
1a155254 | 6881 | { |
b318e8de | 6882 | struct kvm_x86_msr_filter *new_filter, *old_filter; |
1a155254 | 6883 | bool default_allow; |
043248b3 | 6884 | bool empty = true; |
4559e6cf | 6885 | int r; |
1a155254 AG |
6886 | u32 i; |
6887 | ||
c1340fe3 | 6888 | if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK) |
cf5029d5 AL |
6889 | return -EINVAL; |
6890 | ||
2e3272bc AG |
6891 | for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) |
6892 | empty &= !filter->ranges[i].nmsrs; | |
1a155254 | 6893 | |
2e3272bc | 6894 | default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY); |
043248b3 PB |
6895 | if (empty && !default_allow) |
6896 | return -EINVAL; | |
6897 | ||
b318e8de SC |
6898 | new_filter = kvm_alloc_msr_filter(default_allow); |
6899 | if (!new_filter) | |
6900 | return -ENOMEM; | |
1a155254 | 6901 | |
2e3272bc AG |
6902 | for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) { |
6903 | r = kvm_add_msr_filter(new_filter, &filter->ranges[i]); | |
b318e8de SC |
6904 | if (r) { |
6905 | kvm_free_msr_filter(new_filter); | |
6906 | return r; | |
6907 | } | |
1a155254 AG |
6908 | } |
6909 | ||
b318e8de | 6910 | mutex_lock(&kvm->lock); |
1fdefb8b ML |
6911 | old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter, |
6912 | mutex_is_locked(&kvm->lock)); | |
708f799d | 6913 | mutex_unlock(&kvm->lock); |
b318e8de SC |
6914 | synchronize_srcu(&kvm->srcu); |
6915 | ||
6916 | kvm_free_msr_filter(old_filter); | |
6917 | ||
1a155254 | 6918 | kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED); |
1a155254 | 6919 | |
b318e8de | 6920 | return 0; |
1a155254 AG |
6921 | } |
6922 | ||
1739c701 AG |
6923 | #ifdef CONFIG_KVM_COMPAT |
6924 | /* for KVM_X86_SET_MSR_FILTER */ | |
6925 | struct kvm_msr_filter_range_compat { | |
6926 | __u32 flags; | |
6927 | __u32 nmsrs; | |
6928 | __u32 base; | |
6929 | __u32 bitmap; | |
6930 | }; | |
6931 | ||
6932 | struct kvm_msr_filter_compat { | |
6933 | __u32 flags; | |
6934 | struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES]; | |
6935 | }; | |
6936 | ||
6937 | #define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat) | |
6938 | ||
6939 | long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl, | |
6940 | unsigned long arg) | |
6941 | { | |
6942 | void __user *argp = (void __user *)arg; | |
6943 | struct kvm *kvm = filp->private_data; | |
6944 | long r = -ENOTTY; | |
6945 | ||
6946 | switch (ioctl) { | |
6947 | case KVM_X86_SET_MSR_FILTER_COMPAT: { | |
6948 | struct kvm_msr_filter __user *user_msr_filter = argp; | |
6949 | struct kvm_msr_filter_compat filter_compat; | |
6950 | struct kvm_msr_filter filter; | |
6951 | int i; | |
6952 | ||
6953 | if (copy_from_user(&filter_compat, user_msr_filter, | |
6954 | sizeof(filter_compat))) | |
6955 | return -EFAULT; | |
6956 | ||
6957 | filter.flags = filter_compat.flags; | |
6958 | for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) { | |
6959 | struct kvm_msr_filter_range_compat *cr; | |
6960 | ||
6961 | cr = &filter_compat.ranges[i]; | |
6962 | filter.ranges[i] = (struct kvm_msr_filter_range) { | |
6963 | .flags = cr->flags, | |
6964 | .nmsrs = cr->nmsrs, | |
6965 | .base = cr->base, | |
6966 | .bitmap = (__u8 *)(ulong)cr->bitmap, | |
6967 | }; | |
6968 | } | |
6969 | ||
6970 | r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); | |
6971 | break; | |
6972 | } | |
6973 | } | |
6974 | ||
6975 | return r; | |
6976 | } | |
6977 | #endif | |
6978 | ||
7d62874f SS |
6979 | #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER |
6980 | static int kvm_arch_suspend_notifier(struct kvm *kvm) | |
6981 | { | |
6982 | struct kvm_vcpu *vcpu; | |
46808a4c | 6983 | unsigned long i; |
7d62874f | 6984 | |
4198f38a SC |
6985 | /* |
6986 | * Ignore the return, marking the guest paused only "fails" if the vCPU | |
6987 | * isn't using kvmclock; continuing on is correct and desirable. | |
6988 | */ | |
6989 | kvm_for_each_vcpu(i, vcpu, kvm) | |
6990 | (void)kvm_set_guest_paused(vcpu); | |
7d62874f | 6991 | |
4198f38a | 6992 | return NOTIFY_DONE; |
7d62874f SS |
6993 | } |
6994 | ||
6995 | int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state) | |
6996 | { | |
6997 | switch (state) { | |
6998 | case PM_HIBERNATION_PREPARE: | |
6999 | case PM_SUSPEND_PREPARE: | |
7000 | return kvm_arch_suspend_notifier(kvm); | |
7001 | } | |
7002 | ||
7003 | return NOTIFY_DONE; | |
7004 | } | |
7005 | #endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */ | |
7006 | ||
45e6c2fa PB |
7007 | static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp) |
7008 | { | |
869b4421 | 7009 | struct kvm_clock_data data = { 0 }; |
45e6c2fa | 7010 | |
55c0cefb | 7011 | get_kvmclock(kvm, &data); |
45e6c2fa PB |
7012 | if (copy_to_user(argp, &data, sizeof(data))) |
7013 | return -EFAULT; | |
7014 | ||
7015 | return 0; | |
7016 | } | |
7017 | ||
7018 | static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp) | |
7019 | { | |
7020 | struct kvm_arch *ka = &kvm->arch; | |
7021 | struct kvm_clock_data data; | |
c68dc1b5 | 7022 | u64 now_raw_ns; |
45e6c2fa PB |
7023 | |
7024 | if (copy_from_user(&data, argp, sizeof(data))) | |
7025 | return -EFAULT; | |
7026 | ||
c68dc1b5 OU |
7027 | /* |
7028 | * Only KVM_CLOCK_REALTIME is used, but allow passing the | |
7029 | * result of KVM_GET_CLOCK back to KVM_SET_CLOCK. | |
7030 | */ | |
7031 | if (data.flags & ~KVM_CLOCK_VALID_FLAGS) | |
45e6c2fa PB |
7032 | return -EINVAL; |
7033 | ||
42dcbe7d | 7034 | kvm_hv_request_tsc_page_update(kvm); |
45e6c2fa PB |
7035 | kvm_start_pvclock_update(kvm); |
7036 | pvclock_update_vm_gtod_copy(kvm); | |
7037 | ||
7038 | /* | |
7039 | * This pairs with kvm_guest_time_update(): when masterclock is | |
7040 | * in use, we use master_kernel_ns + kvmclock_offset to set | |
7041 | * unsigned 'system_time' so if we use get_kvmclock_ns() (which | |
7042 | * is slightly ahead) here we risk going negative on unsigned | |
7043 | * 'system_time' when 'data.clock' is very small. | |
7044 | */ | |
c68dc1b5 OU |
7045 | if (data.flags & KVM_CLOCK_REALTIME) { |
7046 | u64 now_real_ns = ktime_get_real_ns(); | |
7047 | ||
7048 | /* | |
7049 | * Avoid stepping the kvmclock backwards. | |
7050 | */ | |
7051 | if (now_real_ns > data.realtime) | |
7052 | data.clock += now_real_ns - data.realtime; | |
7053 | } | |
7054 | ||
7055 | if (ka->use_master_clock) | |
7056 | now_raw_ns = ka->master_kernel_ns; | |
45e6c2fa | 7057 | else |
c68dc1b5 OU |
7058 | now_raw_ns = get_kvmclock_base_ns(); |
7059 | ka->kvmclock_offset = data.clock - now_raw_ns; | |
45e6c2fa PB |
7060 | kvm_end_pvclock_update(kvm); |
7061 | return 0; | |
7062 | } | |
7063 | ||
d8708b80 | 7064 | int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg) |
1fe779f8 CO |
7065 | { |
7066 | struct kvm *kvm = filp->private_data; | |
7067 | void __user *argp = (void __user *)arg; | |
367e1319 | 7068 | int r = -ENOTTY; |
f0d66275 DH |
7069 | /* |
7070 | * This union makes it completely explicit to gcc-3.x | |
7071 | * that these two variables' stack usage should be | |
7072 | * combined, not added together. | |
7073 | */ | |
7074 | union { | |
7075 | struct kvm_pit_state ps; | |
e9f42757 | 7076 | struct kvm_pit_state2 ps2; |
c5ff41ce | 7077 | struct kvm_pit_config pit_config; |
f0d66275 | 7078 | } u; |
1fe779f8 CO |
7079 | |
7080 | switch (ioctl) { | |
7081 | case KVM_SET_TSS_ADDR: | |
7082 | r = kvm_vm_ioctl_set_tss_addr(kvm, arg); | |
1fe779f8 | 7083 | break; |
b927a3ce SY |
7084 | case KVM_SET_IDENTITY_MAP_ADDR: { |
7085 | u64 ident_addr; | |
7086 | ||
1af1ac91 DH |
7087 | mutex_lock(&kvm->lock); |
7088 | r = -EINVAL; | |
7089 | if (kvm->created_vcpus) | |
7090 | goto set_identity_unlock; | |
b927a3ce | 7091 | r = -EFAULT; |
0e96f31e | 7092 | if (copy_from_user(&ident_addr, argp, sizeof(ident_addr))) |
1af1ac91 | 7093 | goto set_identity_unlock; |
b927a3ce | 7094 | r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr); |
1af1ac91 DH |
7095 | set_identity_unlock: |
7096 | mutex_unlock(&kvm->lock); | |
b927a3ce SY |
7097 | break; |
7098 | } | |
1fe779f8 CO |
7099 | case KVM_SET_NR_MMU_PAGES: |
7100 | r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg); | |
1fe779f8 | 7101 | break; |
3ddea128 | 7102 | case KVM_CREATE_IRQCHIP: { |
3ddea128 | 7103 | mutex_lock(&kvm->lock); |
09941366 | 7104 | |
3ddea128 | 7105 | r = -EEXIST; |
35e6eaa3 | 7106 | if (irqchip_in_kernel(kvm)) |
3ddea128 | 7107 | goto create_irqchip_unlock; |
09941366 | 7108 | |
3e515705 | 7109 | r = -EINVAL; |
557abc40 | 7110 | if (kvm->created_vcpus) |
3e515705 | 7111 | goto create_irqchip_unlock; |
09941366 RK |
7112 | |
7113 | r = kvm_pic_init(kvm); | |
7114 | if (r) | |
3ddea128 | 7115 | goto create_irqchip_unlock; |
09941366 RK |
7116 | |
7117 | r = kvm_ioapic_init(kvm); | |
7118 | if (r) { | |
09941366 | 7119 | kvm_pic_destroy(kvm); |
3ddea128 | 7120 | goto create_irqchip_unlock; |
09941366 RK |
7121 | } |
7122 | ||
399ec807 AK |
7123 | r = kvm_setup_default_irq_routing(kvm); |
7124 | if (r) { | |
72bb2fcd | 7125 | kvm_ioapic_destroy(kvm); |
09941366 | 7126 | kvm_pic_destroy(kvm); |
71ba994c | 7127 | goto create_irqchip_unlock; |
399ec807 | 7128 | } |
49776faf | 7129 | /* Write kvm->irq_routing before enabling irqchip_in_kernel. */ |
71ba994c | 7130 | smp_wmb(); |
49776faf | 7131 | kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL; |
320af55a | 7132 | kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT); |
3ddea128 MT |
7133 | create_irqchip_unlock: |
7134 | mutex_unlock(&kvm->lock); | |
1fe779f8 | 7135 | break; |
3ddea128 | 7136 | } |
7837699f | 7137 | case KVM_CREATE_PIT: |
c5ff41ce JK |
7138 | u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY; |
7139 | goto create_pit; | |
7140 | case KVM_CREATE_PIT2: | |
7141 | r = -EFAULT; | |
7142 | if (copy_from_user(&u.pit_config, argp, | |
7143 | sizeof(struct kvm_pit_config))) | |
7144 | goto out; | |
7145 | create_pit: | |
250715a6 | 7146 | mutex_lock(&kvm->lock); |
269e05e4 AK |
7147 | r = -EEXIST; |
7148 | if (kvm->arch.vpit) | |
7149 | goto create_pit_unlock; | |
9e05d9b0 TY |
7150 | r = -ENOENT; |
7151 | if (!pic_in_kernel(kvm)) | |
7152 | goto create_pit_unlock; | |
7837699f | 7153 | r = -ENOMEM; |
c5ff41ce | 7154 | kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags); |
7837699f SY |
7155 | if (kvm->arch.vpit) |
7156 | r = 0; | |
269e05e4 | 7157 | create_pit_unlock: |
250715a6 | 7158 | mutex_unlock(&kvm->lock); |
7837699f | 7159 | break; |
1fe779f8 CO |
7160 | case KVM_GET_IRQCHIP: { |
7161 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 7162 | struct kvm_irqchip *chip; |
1fe779f8 | 7163 | |
ff5c2c03 SL |
7164 | chip = memdup_user(argp, sizeof(*chip)); |
7165 | if (IS_ERR(chip)) { | |
7166 | r = PTR_ERR(chip); | |
1fe779f8 | 7167 | goto out; |
ff5c2c03 SL |
7168 | } |
7169 | ||
1fe779f8 | 7170 | r = -ENXIO; |
826da321 | 7171 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
7172 | goto get_irqchip_out; |
7173 | r = kvm_vm_ioctl_get_irqchip(kvm, chip); | |
1fe779f8 | 7174 | if (r) |
f0d66275 | 7175 | goto get_irqchip_out; |
1fe779f8 | 7176 | r = -EFAULT; |
0e96f31e | 7177 | if (copy_to_user(argp, chip, sizeof(*chip))) |
f0d66275 | 7178 | goto get_irqchip_out; |
1fe779f8 | 7179 | r = 0; |
f0d66275 DH |
7180 | get_irqchip_out: |
7181 | kfree(chip); | |
1fe779f8 CO |
7182 | break; |
7183 | } | |
7184 | case KVM_SET_IRQCHIP: { | |
7185 | /* 0: PIC master, 1: PIC slave, 2: IOAPIC */ | |
ff5c2c03 | 7186 | struct kvm_irqchip *chip; |
1fe779f8 | 7187 | |
ff5c2c03 SL |
7188 | chip = memdup_user(argp, sizeof(*chip)); |
7189 | if (IS_ERR(chip)) { | |
7190 | r = PTR_ERR(chip); | |
1fe779f8 | 7191 | goto out; |
ff5c2c03 SL |
7192 | } |
7193 | ||
1fe779f8 | 7194 | r = -ENXIO; |
826da321 | 7195 | if (!irqchip_kernel(kvm)) |
f0d66275 DH |
7196 | goto set_irqchip_out; |
7197 | r = kvm_vm_ioctl_set_irqchip(kvm, chip); | |
f0d66275 DH |
7198 | set_irqchip_out: |
7199 | kfree(chip); | |
1fe779f8 CO |
7200 | break; |
7201 | } | |
e0f63cb9 | 7202 | case KVM_GET_PIT: { |
e0f63cb9 | 7203 | r = -EFAULT; |
f0d66275 | 7204 | if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
7205 | goto out; |
7206 | r = -ENXIO; | |
7207 | if (!kvm->arch.vpit) | |
7208 | goto out; | |
f0d66275 | 7209 | r = kvm_vm_ioctl_get_pit(kvm, &u.ps); |
e0f63cb9 SY |
7210 | if (r) |
7211 | goto out; | |
7212 | r = -EFAULT; | |
f0d66275 | 7213 | if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state))) |
e0f63cb9 SY |
7214 | goto out; |
7215 | r = 0; | |
7216 | break; | |
7217 | } | |
7218 | case KVM_SET_PIT: { | |
e0f63cb9 | 7219 | r = -EFAULT; |
0e96f31e | 7220 | if (copy_from_user(&u.ps, argp, sizeof(u.ps))) |
e0f63cb9 | 7221 | goto out; |
7289fdb5 | 7222 | mutex_lock(&kvm->lock); |
e0f63cb9 SY |
7223 | r = -ENXIO; |
7224 | if (!kvm->arch.vpit) | |
7289fdb5 | 7225 | goto set_pit_out; |
f0d66275 | 7226 | r = kvm_vm_ioctl_set_pit(kvm, &u.ps); |
7289fdb5 SR |
7227 | set_pit_out: |
7228 | mutex_unlock(&kvm->lock); | |
e0f63cb9 SY |
7229 | break; |
7230 | } | |
e9f42757 BK |
7231 | case KVM_GET_PIT2: { |
7232 | r = -ENXIO; | |
7233 | if (!kvm->arch.vpit) | |
7234 | goto out; | |
7235 | r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2); | |
7236 | if (r) | |
7237 | goto out; | |
7238 | r = -EFAULT; | |
7239 | if (copy_to_user(argp, &u.ps2, sizeof(u.ps2))) | |
7240 | goto out; | |
7241 | r = 0; | |
7242 | break; | |
7243 | } | |
7244 | case KVM_SET_PIT2: { | |
7245 | r = -EFAULT; | |
7246 | if (copy_from_user(&u.ps2, argp, sizeof(u.ps2))) | |
7247 | goto out; | |
7289fdb5 | 7248 | mutex_lock(&kvm->lock); |
e9f42757 BK |
7249 | r = -ENXIO; |
7250 | if (!kvm->arch.vpit) | |
7289fdb5 | 7251 | goto set_pit2_out; |
e9f42757 | 7252 | r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2); |
7289fdb5 SR |
7253 | set_pit2_out: |
7254 | mutex_unlock(&kvm->lock); | |
e9f42757 BK |
7255 | break; |
7256 | } | |
52d939a0 MT |
7257 | case KVM_REINJECT_CONTROL: { |
7258 | struct kvm_reinject_control control; | |
7259 | r = -EFAULT; | |
7260 | if (copy_from_user(&control, argp, sizeof(control))) | |
7261 | goto out; | |
cad23e72 ML |
7262 | r = -ENXIO; |
7263 | if (!kvm->arch.vpit) | |
7264 | goto out; | |
52d939a0 | 7265 | r = kvm_vm_ioctl_reinject(kvm, &control); |
52d939a0 MT |
7266 | break; |
7267 | } | |
d71ba788 PB |
7268 | case KVM_SET_BOOT_CPU_ID: |
7269 | r = 0; | |
7270 | mutex_lock(&kvm->lock); | |
557abc40 | 7271 | if (kvm->created_vcpus) |
d71ba788 | 7272 | r = -EBUSY; |
7c305d51 MK |
7273 | else if (arg > KVM_MAX_VCPU_IDS || |
7274 | (kvm->arch.max_vcpu_ids && arg > kvm->arch.max_vcpu_ids)) | |
7275 | r = -EINVAL; | |
d71ba788 PB |
7276 | else |
7277 | kvm->arch.bsp_vcpu_id = arg; | |
7278 | mutex_unlock(&kvm->lock); | |
7279 | break; | |
b59b153d | 7280 | #ifdef CONFIG_KVM_XEN |
ffde22ac | 7281 | case KVM_XEN_HVM_CONFIG: { |
51776043 | 7282 | struct kvm_xen_hvm_config xhc; |
ffde22ac | 7283 | r = -EFAULT; |
51776043 | 7284 | if (copy_from_user(&xhc, argp, sizeof(xhc))) |
ffde22ac | 7285 | goto out; |
78e9878c | 7286 | r = kvm_xen_hvm_config(kvm, &xhc); |
ffde22ac ES |
7287 | break; |
7288 | } | |
a76b9641 JM |
7289 | case KVM_XEN_HVM_GET_ATTR: { |
7290 | struct kvm_xen_hvm_attr xha; | |
7291 | ||
7292 | r = -EFAULT; | |
7293 | if (copy_from_user(&xha, argp, sizeof(xha))) | |
ffde22ac | 7294 | goto out; |
a76b9641 JM |
7295 | r = kvm_xen_hvm_get_attr(kvm, &xha); |
7296 | if (!r && copy_to_user(argp, &xha, sizeof(xha))) | |
7297 | r = -EFAULT; | |
7298 | break; | |
7299 | } | |
7300 | case KVM_XEN_HVM_SET_ATTR: { | |
7301 | struct kvm_xen_hvm_attr xha; | |
7302 | ||
7303 | r = -EFAULT; | |
7304 | if (copy_from_user(&xha, argp, sizeof(xha))) | |
7305 | goto out; | |
7306 | r = kvm_xen_hvm_set_attr(kvm, &xha); | |
ffde22ac ES |
7307 | break; |
7308 | } | |
35025735 DW |
7309 | case KVM_XEN_HVM_EVTCHN_SEND: { |
7310 | struct kvm_irq_routing_xen_evtchn uxe; | |
7311 | ||
7312 | r = -EFAULT; | |
7313 | if (copy_from_user(&uxe, argp, sizeof(uxe))) | |
7314 | goto out; | |
7315 | r = kvm_xen_hvm_evtchn_send(kvm, &uxe); | |
7316 | break; | |
7317 | } | |
b59b153d | 7318 | #endif |
45e6c2fa PB |
7319 | case KVM_SET_CLOCK: |
7320 | r = kvm_vm_ioctl_set_clock(kvm, argp); | |
afbcf7ab | 7321 | break; |
45e6c2fa PB |
7322 | case KVM_GET_CLOCK: |
7323 | r = kvm_vm_ioctl_get_clock(kvm, argp); | |
afbcf7ab | 7324 | break; |
ffbb61d0 DW |
7325 | case KVM_SET_TSC_KHZ: { |
7326 | u32 user_tsc_khz; | |
7327 | ||
7328 | r = -EINVAL; | |
7329 | user_tsc_khz = (u32)arg; | |
7330 | ||
938c8745 SC |
7331 | if (kvm_caps.has_tsc_control && |
7332 | user_tsc_khz >= kvm_caps.max_guest_tsc_khz) | |
ffbb61d0 DW |
7333 | goto out; |
7334 | ||
7335 | if (user_tsc_khz == 0) | |
7336 | user_tsc_khz = tsc_khz; | |
7337 | ||
7338 | WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz); | |
7339 | r = 0; | |
7340 | ||
7341 | goto out; | |
7342 | } | |
7343 | case KVM_GET_TSC_KHZ: { | |
7344 | r = READ_ONCE(kvm->arch.default_tsc_khz); | |
7345 | goto out; | |
7346 | } | |
f2d79933 SC |
7347 | case KVM_MEMORY_ENCRYPT_OP: |
7348 | r = -ENOTTY; | |
7349 | if (!kvm_x86_ops.mem_enc_ioctl) | |
7350 | goto out; | |
7351 | ||
89604647 | 7352 | r = kvm_x86_call(mem_enc_ioctl)(kvm, argp); |
5acc5c06 | 7353 | break; |
69eaedee BS |
7354 | case KVM_MEMORY_ENCRYPT_REG_REGION: { |
7355 | struct kvm_enc_region region; | |
7356 | ||
7357 | r = -EFAULT; | |
7358 | if (copy_from_user(®ion, argp, sizeof(region))) | |
7359 | goto out; | |
7360 | ||
7361 | r = -ENOTTY; | |
03d004cd SC |
7362 | if (!kvm_x86_ops.mem_enc_register_region) |
7363 | goto out; | |
7364 | ||
89604647 | 7365 | r = kvm_x86_call(mem_enc_register_region)(kvm, ®ion); |
69eaedee BS |
7366 | break; |
7367 | } | |
7368 | case KVM_MEMORY_ENCRYPT_UNREG_REGION: { | |
7369 | struct kvm_enc_region region; | |
7370 | ||
7371 | r = -EFAULT; | |
7372 | if (copy_from_user(®ion, argp, sizeof(region))) | |
7373 | goto out; | |
7374 | ||
7375 | r = -ENOTTY; | |
03d004cd SC |
7376 | if (!kvm_x86_ops.mem_enc_unregister_region) |
7377 | goto out; | |
7378 | ||
89604647 | 7379 | r = kvm_x86_call(mem_enc_unregister_region)(kvm, ®ion); |
69eaedee BS |
7380 | break; |
7381 | } | |
b4f69df0 | 7382 | #ifdef CONFIG_KVM_HYPERV |
faeb7833 RK |
7383 | case KVM_HYPERV_EVENTFD: { |
7384 | struct kvm_hyperv_eventfd hvevfd; | |
7385 | ||
7386 | r = -EFAULT; | |
7387 | if (copy_from_user(&hvevfd, argp, sizeof(hvevfd))) | |
7388 | goto out; | |
7389 | r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd); | |
7390 | break; | |
7391 | } | |
b4f69df0 | 7392 | #endif |
66bb8a06 EH |
7393 | case KVM_SET_PMU_EVENT_FILTER: |
7394 | r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp); | |
7395 | break; | |
2e3272bc AG |
7396 | case KVM_X86_SET_MSR_FILTER: { |
7397 | struct kvm_msr_filter __user *user_msr_filter = argp; | |
7398 | struct kvm_msr_filter filter; | |
7399 | ||
7400 | if (copy_from_user(&filter, user_msr_filter, sizeof(filter))) | |
7401 | return -EFAULT; | |
7402 | ||
7403 | r = kvm_vm_ioctl_set_msr_filter(kvm, &filter); | |
1a155254 | 7404 | break; |
2e3272bc | 7405 | } |
1fe779f8 | 7406 | default: |
ad6260da | 7407 | r = -ENOTTY; |
1fe779f8 CO |
7408 | } |
7409 | out: | |
7410 | return r; | |
7411 | } | |
7412 | ||
9eb6ba31 SC |
7413 | static void kvm_probe_feature_msr(u32 msr_index) |
7414 | { | |
7075f163 | 7415 | u64 data; |
9eb6ba31 | 7416 | |
7075f163 | 7417 | if (kvm_get_feature_msr(NULL, msr_index, &data, true)) |
9eb6ba31 SC |
7418 | return; |
7419 | ||
7420 | msr_based_features[num_msr_based_features++] = msr_index; | |
7421 | } | |
7422 | ||
2374b731 | 7423 | static void kvm_probe_msr_to_save(u32 msr_index) |
043405e1 CO |
7424 | { |
7425 | u32 dummy[2]; | |
2374b731 SC |
7426 | |
7427 | if (rdmsr_safe(msr_index, &dummy[0], &dummy[1])) | |
7428 | return; | |
7429 | ||
7430 | /* | |
7431 | * Even MSRs that are valid in the host may not be exposed to guests in | |
7432 | * some cases. | |
7433 | */ | |
7434 | switch (msr_index) { | |
7435 | case MSR_IA32_BNDCFGS: | |
7436 | if (!kvm_mpx_supported()) | |
7437 | return; | |
7438 | break; | |
7439 | case MSR_TSC_AUX: | |
7440 | if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) && | |
7441 | !kvm_cpu_cap_has(X86_FEATURE_RDPID)) | |
7442 | return; | |
7443 | break; | |
7444 | case MSR_IA32_UMWAIT_CONTROL: | |
7445 | if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG)) | |
7446 | return; | |
7447 | break; | |
7448 | case MSR_IA32_RTIT_CTL: | |
7449 | case MSR_IA32_RTIT_STATUS: | |
7450 | if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT)) | |
7451 | return; | |
7452 | break; | |
7453 | case MSR_IA32_RTIT_CR3_MATCH: | |
7454 | if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | |
7455 | !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering)) | |
7456 | return; | |
7457 | break; | |
7458 | case MSR_IA32_RTIT_OUTPUT_BASE: | |
7459 | case MSR_IA32_RTIT_OUTPUT_MASK: | |
7460 | if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | |
7461 | (!intel_pt_validate_hw_cap(PT_CAP_topa_output) && | |
7462 | !intel_pt_validate_hw_cap(PT_CAP_single_range_output))) | |
7463 | return; | |
7464 | break; | |
7465 | case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B: | |
7466 | if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) || | |
7467 | (msr_index - MSR_IA32_RTIT_ADDR0_A >= | |
7468 | intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)) | |
7469 | return; | |
7470 | break; | |
f287bef6 DM |
7471 | case MSR_ARCH_PERFMON_PERFCTR0 ... |
7472 | MSR_ARCH_PERFMON_PERFCTR0 + KVM_MAX_NR_GP_COUNTERS - 1: | |
2374b731 SC |
7473 | if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >= |
7474 | kvm_pmu_cap.num_counters_gp) | |
7475 | return; | |
7476 | break; | |
f287bef6 DM |
7477 | case MSR_ARCH_PERFMON_EVENTSEL0 ... |
7478 | MSR_ARCH_PERFMON_EVENTSEL0 + KVM_MAX_NR_GP_COUNTERS - 1: | |
2374b731 SC |
7479 | if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >= |
7480 | kvm_pmu_cap.num_counters_gp) | |
7481 | return; | |
7482 | break; | |
f287bef6 DM |
7483 | case MSR_ARCH_PERFMON_FIXED_CTR0 ... |
7484 | MSR_ARCH_PERFMON_FIXED_CTR0 + KVM_MAX_NR_FIXED_COUNTERS - 1: | |
e33b6d79 LX |
7485 | if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >= |
7486 | kvm_pmu_cap.num_counters_fixed) | |
7487 | return; | |
7488 | break; | |
4a277189 LX |
7489 | case MSR_AMD64_PERF_CNTR_GLOBAL_CTL: |
7490 | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS: | |
7491 | case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR: | |
7492 | if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2)) | |
7493 | return; | |
7494 | break; | |
2374b731 SC |
7495 | case MSR_IA32_XFD: |
7496 | case MSR_IA32_XFD_ERR: | |
7497 | if (!kvm_cpu_cap_has(X86_FEATURE_XFD)) | |
7498 | return; | |
7499 | break; | |
b9846a69 MZ |
7500 | case MSR_IA32_TSX_CTRL: |
7501 | if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR)) | |
7502 | return; | |
7503 | break; | |
2374b731 SC |
7504 | default: |
7505 | break; | |
7506 | } | |
7507 | ||
7508 | msrs_to_save[num_msrs_to_save++] = msr_index; | |
7509 | } | |
7510 | ||
b1932c5c | 7511 | static void kvm_init_msr_lists(void) |
2374b731 | 7512 | { |
7a5ee6ed | 7513 | unsigned i; |
043405e1 | 7514 | |
f287bef6 | 7515 | BUILD_BUG_ON_MSG(KVM_MAX_NR_FIXED_COUNTERS != 3, |
2374b731 | 7516 | "Please update the fixed PMCs in msrs_to_save_pmu[]"); |
24c29b7a | 7517 | |
6cbee2b9 XL |
7518 | num_msrs_to_save = 0; |
7519 | num_emulated_msrs = 0; | |
7520 | num_msr_based_features = 0; | |
7521 | ||
2374b731 SC |
7522 | for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++) |
7523 | kvm_probe_msr_to_save(msrs_to_save_base[i]); | |
93c4adc7 | 7524 | |
c3531edc SC |
7525 | if (enable_pmu) { |
7526 | for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++) | |
7527 | kvm_probe_msr_to_save(msrs_to_save_pmu[i]); | |
043405e1 | 7528 | } |
62ef68bb | 7529 | |
7a5ee6ed | 7530 | for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) { |
89604647 WW |
7531 | if (!kvm_x86_call(has_emulated_msr)(NULL, |
7532 | emulated_msrs_all[i])) | |
bc226f07 | 7533 | continue; |
62ef68bb | 7534 | |
7a5ee6ed | 7535 | emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i]; |
62ef68bb | 7536 | } |
801e459a | 7537 | |
9eb6ba31 SC |
7538 | for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++) |
7539 | kvm_probe_feature_msr(i); | |
801e459a | 7540 | |
9eb6ba31 SC |
7541 | for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) |
7542 | kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]); | |
043405e1 CO |
7543 | } |
7544 | ||
bda9020e MT |
7545 | static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len, |
7546 | const void *v) | |
bbd9b64e | 7547 | { |
70252a10 AK |
7548 | int handled = 0; |
7549 | int n; | |
7550 | ||
7551 | do { | |
7552 | n = min(len, 8); | |
bce87cce | 7553 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
7554 | !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v)) |
7555 | && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 AK |
7556 | break; |
7557 | handled += n; | |
7558 | addr += n; | |
7559 | len -= n; | |
7560 | v += n; | |
7561 | } while (len); | |
bbd9b64e | 7562 | |
70252a10 | 7563 | return handled; |
bbd9b64e CO |
7564 | } |
7565 | ||
bda9020e | 7566 | static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v) |
bbd9b64e | 7567 | { |
70252a10 AK |
7568 | int handled = 0; |
7569 | int n; | |
7570 | ||
7571 | do { | |
7572 | n = min(len, 8); | |
bce87cce | 7573 | if (!(lapic_in_kernel(vcpu) && |
e32edf4f NN |
7574 | !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev, |
7575 | addr, n, v)) | |
7576 | && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v)) | |
70252a10 | 7577 | break; |
e39d200f | 7578 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v); |
70252a10 AK |
7579 | handled += n; |
7580 | addr += n; | |
7581 | len -= n; | |
7582 | v += n; | |
7583 | } while (len); | |
bbd9b64e | 7584 | |
70252a10 | 7585 | return handled; |
bbd9b64e CO |
7586 | } |
7587 | ||
c53da4f3 PB |
7588 | void kvm_set_segment(struct kvm_vcpu *vcpu, |
7589 | struct kvm_segment *var, int seg) | |
2dafc6c2 | 7590 | { |
89604647 | 7591 | kvm_x86_call(set_segment)(vcpu, var, seg); |
2dafc6c2 GN |
7592 | } |
7593 | ||
7594 | void kvm_get_segment(struct kvm_vcpu *vcpu, | |
7595 | struct kvm_segment *var, int seg) | |
7596 | { | |
89604647 | 7597 | kvm_x86_call(get_segment)(vcpu, var, seg); |
2dafc6c2 GN |
7598 | } |
7599 | ||
5b22bbe7 | 7600 | gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access, |
54987b7a | 7601 | struct x86_exception *exception) |
02f59dc9 | 7602 | { |
1f5a21ee | 7603 | struct kvm_mmu *mmu = vcpu->arch.mmu; |
02f59dc9 | 7604 | gpa_t t_gpa; |
02f59dc9 JR |
7605 | |
7606 | BUG_ON(!mmu_is_nested(vcpu)); | |
7607 | ||
7608 | /* NPT walks are always user-walks */ | |
7609 | access |= PFERR_USER_MASK; | |
1f5a21ee | 7610 | t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception); |
02f59dc9 JR |
7611 | |
7612 | return t_gpa; | |
7613 | } | |
7614 | ||
ab9ae313 AK |
7615 | gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva, |
7616 | struct x86_exception *exception) | |
1871c602 | 7617 | { |
1f5a21ee LJ |
7618 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
7619 | ||
89604647 | 7620 | u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
1f5a21ee | 7621 | return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
1871c602 | 7622 | } |
54f958cd | 7623 | EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read); |
1871c602 | 7624 | |
ab9ae313 AK |
7625 | gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva, |
7626 | struct x86_exception *exception) | |
1871c602 | 7627 | { |
1f5a21ee LJ |
7628 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
7629 | ||
89604647 | 7630 | u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
1871c602 | 7631 | access |= PFERR_WRITE_MASK; |
1f5a21ee | 7632 | return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
1871c602 | 7633 | } |
54f958cd | 7634 | EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write); |
1871c602 GN |
7635 | |
7636 | /* uses this to access any guest's mapped memory without checking CPL */ | |
ab9ae313 AK |
7637 | gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva, |
7638 | struct x86_exception *exception) | |
1871c602 | 7639 | { |
1f5a21ee LJ |
7640 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
7641 | ||
7642 | return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception); | |
1871c602 GN |
7643 | } |
7644 | ||
7645 | static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, | |
5b22bbe7 | 7646 | struct kvm_vcpu *vcpu, u64 access, |
bcc55cba | 7647 | struct x86_exception *exception) |
bbd9b64e | 7648 | { |
1f5a21ee | 7649 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
bbd9b64e | 7650 | void *data = val; |
10589a46 | 7651 | int r = X86EMUL_CONTINUE; |
bbd9b64e CO |
7652 | |
7653 | while (bytes) { | |
1f5a21ee | 7654 | gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); |
bbd9b64e | 7655 | unsigned offset = addr & (PAGE_SIZE-1); |
77c2002e | 7656 | unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset); |
bbd9b64e CO |
7657 | int ret; |
7658 | ||
6e1d2a3f | 7659 | if (gpa == INVALID_GPA) |
ab9ae313 | 7660 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa PB |
7661 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data, |
7662 | offset, toread); | |
10589a46 | 7663 | if (ret < 0) { |
c3cd7ffa | 7664 | r = X86EMUL_IO_NEEDED; |
10589a46 MT |
7665 | goto out; |
7666 | } | |
bbd9b64e | 7667 | |
77c2002e IE |
7668 | bytes -= toread; |
7669 | data += toread; | |
7670 | addr += toread; | |
bbd9b64e | 7671 | } |
10589a46 | 7672 | out: |
10589a46 | 7673 | return r; |
bbd9b64e | 7674 | } |
77c2002e | 7675 | |
1871c602 | 7676 | /* used for instruction fetching */ |
0f65dd70 AK |
7677 | static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt, |
7678 | gva_t addr, void *val, unsigned int bytes, | |
bcc55cba | 7679 | struct x86_exception *exception) |
1871c602 | 7680 | { |
0f65dd70 | 7681 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
1f5a21ee | 7682 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
89604647 | 7683 | u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
44583cba PB |
7684 | unsigned offset; |
7685 | int ret; | |
0f65dd70 | 7686 | |
44583cba | 7687 | /* Inline kvm_read_guest_virt_helper for speed. */ |
1f5a21ee LJ |
7688 | gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK, |
7689 | exception); | |
6e1d2a3f | 7690 | if (unlikely(gpa == INVALID_GPA)) |
44583cba PB |
7691 | return X86EMUL_PROPAGATE_FAULT; |
7692 | ||
7693 | offset = addr & (PAGE_SIZE-1); | |
7694 | if (WARN_ON(offset + bytes > PAGE_SIZE)) | |
7695 | bytes = (unsigned)PAGE_SIZE - offset; | |
54bf36aa PB |
7696 | ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val, |
7697 | offset, bytes); | |
44583cba PB |
7698 | if (unlikely(ret < 0)) |
7699 | return X86EMUL_IO_NEEDED; | |
7700 | ||
7701 | return X86EMUL_CONTINUE; | |
1871c602 GN |
7702 | } |
7703 | ||
ce14e868 | 7704 | int kvm_read_guest_virt(struct kvm_vcpu *vcpu, |
0f65dd70 | 7705 | gva_t addr, void *val, unsigned int bytes, |
bcc55cba | 7706 | struct x86_exception *exception) |
1871c602 | 7707 | { |
89604647 | 7708 | u64 access = (kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0; |
0f65dd70 | 7709 | |
353c0956 PB |
7710 | /* |
7711 | * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED | |
7712 | * is returned, but our callers are not ready for that and they blindly | |
7713 | * call kvm_inject_page_fault. Ensure that they at least do not leak | |
7714 | * uninitialized kernel stack memory into cr2 and error code. | |
7715 | */ | |
7716 | memset(exception, 0, sizeof(*exception)); | |
1871c602 | 7717 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, |
bcc55cba | 7718 | exception); |
1871c602 | 7719 | } |
064aea77 | 7720 | EXPORT_SYMBOL_GPL(kvm_read_guest_virt); |
1871c602 | 7721 | |
ce14e868 PB |
7722 | static int emulator_read_std(struct x86_emulate_ctxt *ctxt, |
7723 | gva_t addr, void *val, unsigned int bytes, | |
3c9fa24c | 7724 | struct x86_exception *exception, bool system) |
1871c602 | 7725 | { |
0f65dd70 | 7726 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
5b22bbe7 | 7727 | u64 access = 0; |
3c9fa24c | 7728 | |
4f4aa80e LJ |
7729 | if (system) |
7730 | access |= PFERR_IMPLICIT_ACCESS; | |
89604647 | 7731 | else if (kvm_x86_call(get_cpl)(vcpu) == 3) |
3c9fa24c PB |
7732 | access |= PFERR_USER_MASK; |
7733 | ||
7734 | return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception); | |
1871c602 GN |
7735 | } |
7736 | ||
ce14e868 | 7737 | static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes, |
5b22bbe7 | 7738 | struct kvm_vcpu *vcpu, u64 access, |
ce14e868 | 7739 | struct x86_exception *exception) |
77c2002e | 7740 | { |
1f5a21ee | 7741 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
77c2002e IE |
7742 | void *data = val; |
7743 | int r = X86EMUL_CONTINUE; | |
7744 | ||
7745 | while (bytes) { | |
1f5a21ee | 7746 | gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception); |
77c2002e IE |
7747 | unsigned offset = addr & (PAGE_SIZE-1); |
7748 | unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset); | |
7749 | int ret; | |
7750 | ||
6e1d2a3f | 7751 | if (gpa == INVALID_GPA) |
ab9ae313 | 7752 | return X86EMUL_PROPAGATE_FAULT; |
54bf36aa | 7753 | ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite); |
77c2002e | 7754 | if (ret < 0) { |
c3cd7ffa | 7755 | r = X86EMUL_IO_NEEDED; |
77c2002e IE |
7756 | goto out; |
7757 | } | |
7758 | ||
7759 | bytes -= towrite; | |
7760 | data += towrite; | |
7761 | addr += towrite; | |
7762 | } | |
7763 | out: | |
7764 | return r; | |
7765 | } | |
ce14e868 PB |
7766 | |
7767 | static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val, | |
3c9fa24c PB |
7768 | unsigned int bytes, struct x86_exception *exception, |
7769 | bool system) | |
ce14e868 PB |
7770 | { |
7771 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); | |
5b22bbe7 | 7772 | u64 access = PFERR_WRITE_MASK; |
3c9fa24c | 7773 | |
4f4aa80e LJ |
7774 | if (system) |
7775 | access |= PFERR_IMPLICIT_ACCESS; | |
89604647 | 7776 | else if (kvm_x86_call(get_cpl)(vcpu) == 3) |
3c9fa24c | 7777 | access |= PFERR_USER_MASK; |
ce14e868 PB |
7778 | |
7779 | return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, | |
3c9fa24c | 7780 | access, exception); |
ce14e868 PB |
7781 | } |
7782 | ||
7783 | int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val, | |
7784 | unsigned int bytes, struct x86_exception *exception) | |
7785 | { | |
c595ceee PB |
7786 | /* kvm_write_guest_virt_system can pull in tons of pages. */ |
7787 | vcpu->arch.l1tf_flush_l1d = true; | |
7788 | ||
ce14e868 PB |
7789 | return kvm_write_guest_virt_helper(addr, val, bytes, vcpu, |
7790 | PFERR_WRITE_MASK, exception); | |
7791 | } | |
6a4d7550 | 7792 | EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system); |
77c2002e | 7793 | |
aeb904f6 SC |
7794 | static int kvm_check_emulate_insn(struct kvm_vcpu *vcpu, int emul_type, |
7795 | void *insn, int insn_len) | |
4d31d9ef | 7796 | { |
89604647 WW |
7797 | return kvm_x86_call(check_emulate_instruction)(vcpu, emul_type, |
7798 | insn, insn_len); | |
4d31d9ef SC |
7799 | } |
7800 | ||
082d06ed WL |
7801 | int handle_ud(struct kvm_vcpu *vcpu) |
7802 | { | |
b3dc0695 | 7803 | static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX }; |
40aaa5b6 | 7804 | int fep_flags = READ_ONCE(force_emulation_prefix); |
6c86eedc | 7805 | int emul_type = EMULTYPE_TRAP_UD; |
6c86eedc WL |
7806 | char sig[5]; /* ud2; .ascii "kvm" */ |
7807 | struct x86_exception e; | |
aeb904f6 | 7808 | int r; |
6c86eedc | 7809 | |
aeb904f6 SC |
7810 | r = kvm_check_emulate_insn(vcpu, emul_type, NULL, 0); |
7811 | if (r != X86EMUL_CONTINUE) | |
09e3e2a1 SC |
7812 | return 1; |
7813 | ||
40aaa5b6 | 7814 | if (fep_flags && |
3c9fa24c PB |
7815 | kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu), |
7816 | sig, sizeof(sig), &e) == 0 && | |
b3dc0695 | 7817 | memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) { |
40aaa5b6 | 7818 | if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF) |
d500e1ed | 7819 | kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF); |
6c86eedc | 7820 | kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig)); |
b4000606 | 7821 | emul_type = EMULTYPE_TRAP_UD_FORCED; |
6c86eedc | 7822 | } |
082d06ed | 7823 | |
60fc3d02 | 7824 | return kvm_emulate_instruction(vcpu, emul_type); |
082d06ed WL |
7825 | } |
7826 | EXPORT_SYMBOL_GPL(handle_ud); | |
7827 | ||
0f89b207 TL |
7828 | static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
7829 | gpa_t gpa, bool write) | |
7830 | { | |
7831 | /* For APIC access vmexit */ | |
7832 | if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) | |
7833 | return 1; | |
7834 | ||
7835 | if (vcpu_match_mmio_gpa(vcpu, gpa)) { | |
7836 | trace_vcpu_match_mmio(gva, gpa, write, true); | |
7837 | return 1; | |
7838 | } | |
7839 | ||
7840 | return 0; | |
7841 | } | |
7842 | ||
af7cc7d1 XG |
7843 | static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva, |
7844 | gpa_t *gpa, struct x86_exception *exception, | |
7845 | bool write) | |
7846 | { | |
1f5a21ee | 7847 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
89604647 WW |
7848 | u64 access = ((kvm_x86_call(get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0) |
7849 | | (write ? PFERR_WRITE_MASK : 0); | |
af7cc7d1 | 7850 | |
be94f6b7 HH |
7851 | /* |
7852 | * currently PKRU is only applied to ept enabled guest so | |
7853 | * there is no pkey in EPT page table for L1 guest or EPT | |
7854 | * shadow page table for L2 guest. | |
7855 | */ | |
908b7d43 SC |
7856 | if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) || |
7857 | !permission_fault(vcpu, vcpu->arch.walk_mmu, | |
7858 | vcpu->arch.mmio_access, 0, access))) { | |
bebb106a XG |
7859 | *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT | |
7860 | (gva & (PAGE_SIZE - 1)); | |
4f022648 | 7861 | trace_vcpu_match_mmio(gva, *gpa, write, false); |
bebb106a XG |
7862 | return 1; |
7863 | } | |
7864 | ||
1f5a21ee | 7865 | *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception); |
af7cc7d1 | 7866 | |
6e1d2a3f | 7867 | if (*gpa == INVALID_GPA) |
af7cc7d1 XG |
7868 | return -1; |
7869 | ||
0f89b207 | 7870 | return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write); |
af7cc7d1 XG |
7871 | } |
7872 | ||
3200f405 | 7873 | int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa, |
bcc55cba | 7874 | const void *val, int bytes) |
bbd9b64e CO |
7875 | { |
7876 | int ret; | |
7877 | ||
54bf36aa | 7878 | ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes); |
9f811285 | 7879 | if (ret < 0) |
bbd9b64e | 7880 | return 0; |
0eb05bf2 | 7881 | kvm_page_track_write(vcpu, gpa, val, bytes); |
bbd9b64e CO |
7882 | return 1; |
7883 | } | |
7884 | ||
77d197b2 XG |
7885 | struct read_write_emulator_ops { |
7886 | int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val, | |
7887 | int bytes); | |
7888 | int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7889 | void *val, int bytes); | |
7890 | int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7891 | int bytes, void *val); | |
7892 | int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7893 | void *val, int bytes); | |
7894 | bool write; | |
7895 | }; | |
7896 | ||
7897 | static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes) | |
7898 | { | |
7899 | if (vcpu->mmio_read_completed) { | |
77d197b2 | 7900 | trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes, |
e39d200f | 7901 | vcpu->mmio_fragments[0].gpa, val); |
77d197b2 XG |
7902 | vcpu->mmio_read_completed = 0; |
7903 | return 1; | |
7904 | } | |
7905 | ||
7906 | return 0; | |
7907 | } | |
7908 | ||
7909 | static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7910 | void *val, int bytes) | |
7911 | { | |
54bf36aa | 7912 | return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes); |
77d197b2 XG |
7913 | } |
7914 | ||
7915 | static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7916 | void *val, int bytes) | |
7917 | { | |
7918 | return emulator_write_phys(vcpu, gpa, val, bytes); | |
7919 | } | |
7920 | ||
7921 | static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val) | |
7922 | { | |
e39d200f | 7923 | trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val); |
77d197b2 XG |
7924 | return vcpu_mmio_write(vcpu, gpa, bytes, val); |
7925 | } | |
7926 | ||
7927 | static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7928 | void *val, int bytes) | |
7929 | { | |
e39d200f | 7930 | trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL); |
77d197b2 XG |
7931 | return X86EMUL_IO_NEEDED; |
7932 | } | |
7933 | ||
7934 | static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, | |
7935 | void *val, int bytes) | |
7936 | { | |
f78146b0 AK |
7937 | struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0]; |
7938 | ||
87da7e66 | 7939 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); |
77d197b2 XG |
7940 | return X86EMUL_CONTINUE; |
7941 | } | |
7942 | ||
0fbe9b0b | 7943 | static const struct read_write_emulator_ops read_emultor = { |
77d197b2 XG |
7944 | .read_write_prepare = read_prepare, |
7945 | .read_write_emulate = read_emulate, | |
7946 | .read_write_mmio = vcpu_mmio_read, | |
7947 | .read_write_exit_mmio = read_exit_mmio, | |
7948 | }; | |
7949 | ||
0fbe9b0b | 7950 | static const struct read_write_emulator_ops write_emultor = { |
77d197b2 XG |
7951 | .read_write_emulate = write_emulate, |
7952 | .read_write_mmio = write_mmio, | |
7953 | .read_write_exit_mmio = write_exit_mmio, | |
7954 | .write = true, | |
7955 | }; | |
7956 | ||
22388a3c XG |
7957 | static int emulator_read_write_onepage(unsigned long addr, void *val, |
7958 | unsigned int bytes, | |
7959 | struct x86_exception *exception, | |
7960 | struct kvm_vcpu *vcpu, | |
0fbe9b0b | 7961 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 7962 | { |
af7cc7d1 XG |
7963 | gpa_t gpa; |
7964 | int handled, ret; | |
22388a3c | 7965 | bool write = ops->write; |
f78146b0 | 7966 | struct kvm_mmio_fragment *frag; |
c9b8b07c | 7967 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
0f89b207 TL |
7968 | |
7969 | /* | |
7970 | * If the exit was due to a NPF we may already have a GPA. | |
7971 | * If the GPA is present, use it to avoid the GVA to GPA table walk. | |
7972 | * Note, this cannot be used on string operations since string | |
7973 | * operation using rep will only have the initial GPA from the NPF | |
7974 | * occurred. | |
7975 | */ | |
744e699c SC |
7976 | if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) && |
7977 | (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) { | |
7978 | gpa = ctxt->gpa_val; | |
618232e2 BS |
7979 | ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write); |
7980 | } else { | |
7981 | ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write); | |
7982 | if (ret < 0) | |
7983 | return X86EMUL_PROPAGATE_FAULT; | |
0f89b207 | 7984 | } |
10589a46 | 7985 | |
618232e2 | 7986 | if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes)) |
bbd9b64e CO |
7987 | return X86EMUL_CONTINUE; |
7988 | ||
bbd9b64e CO |
7989 | /* |
7990 | * Is this MMIO handled locally? | |
7991 | */ | |
22388a3c | 7992 | handled = ops->read_write_mmio(vcpu, gpa, bytes, val); |
70252a10 | 7993 | if (handled == bytes) |
bbd9b64e | 7994 | return X86EMUL_CONTINUE; |
bbd9b64e | 7995 | |
70252a10 AK |
7996 | gpa += handled; |
7997 | bytes -= handled; | |
7998 | val += handled; | |
7999 | ||
87da7e66 XG |
8000 | WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS); |
8001 | frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++]; | |
8002 | frag->gpa = gpa; | |
8003 | frag->data = val; | |
8004 | frag->len = bytes; | |
f78146b0 | 8005 | return X86EMUL_CONTINUE; |
bbd9b64e CO |
8006 | } |
8007 | ||
52eb5a6d XL |
8008 | static int emulator_read_write(struct x86_emulate_ctxt *ctxt, |
8009 | unsigned long addr, | |
22388a3c XG |
8010 | void *val, unsigned int bytes, |
8011 | struct x86_exception *exception, | |
0fbe9b0b | 8012 | const struct read_write_emulator_ops *ops) |
bbd9b64e | 8013 | { |
0f65dd70 | 8014 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
f78146b0 AK |
8015 | gpa_t gpa; |
8016 | int rc; | |
8017 | ||
8018 | if (ops->read_write_prepare && | |
8019 | ops->read_write_prepare(vcpu, val, bytes)) | |
8020 | return X86EMUL_CONTINUE; | |
8021 | ||
8022 | vcpu->mmio_nr_fragments = 0; | |
0f65dd70 | 8023 | |
bbd9b64e CO |
8024 | /* Crossing a page boundary? */ |
8025 | if (((addr + bytes - 1) ^ addr) & PAGE_MASK) { | |
f78146b0 | 8026 | int now; |
bbd9b64e CO |
8027 | |
8028 | now = -addr & ~PAGE_MASK; | |
22388a3c XG |
8029 | rc = emulator_read_write_onepage(addr, val, now, exception, |
8030 | vcpu, ops); | |
8031 | ||
bbd9b64e CO |
8032 | if (rc != X86EMUL_CONTINUE) |
8033 | return rc; | |
8034 | addr += now; | |
bac15531 NA |
8035 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
8036 | addr = (u32)addr; | |
bbd9b64e CO |
8037 | val += now; |
8038 | bytes -= now; | |
8039 | } | |
22388a3c | 8040 | |
f78146b0 AK |
8041 | rc = emulator_read_write_onepage(addr, val, bytes, exception, |
8042 | vcpu, ops); | |
8043 | if (rc != X86EMUL_CONTINUE) | |
8044 | return rc; | |
8045 | ||
8046 | if (!vcpu->mmio_nr_fragments) | |
f804dc6a | 8047 | return X86EMUL_CONTINUE; |
f78146b0 AK |
8048 | |
8049 | gpa = vcpu->mmio_fragments[0].gpa; | |
8050 | ||
8051 | vcpu->mmio_needed = 1; | |
8052 | vcpu->mmio_cur_fragment = 0; | |
8053 | ||
87da7e66 | 8054 | vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len); |
f78146b0 AK |
8055 | vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write; |
8056 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
8057 | vcpu->run->mmio.phys_addr = gpa; | |
8058 | ||
8059 | return ops->read_write_exit_mmio(vcpu, gpa, val, bytes); | |
22388a3c XG |
8060 | } |
8061 | ||
8062 | static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt, | |
8063 | unsigned long addr, | |
8064 | void *val, | |
8065 | unsigned int bytes, | |
8066 | struct x86_exception *exception) | |
8067 | { | |
8068 | return emulator_read_write(ctxt, addr, val, bytes, | |
8069 | exception, &read_emultor); | |
8070 | } | |
8071 | ||
52eb5a6d | 8072 | static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt, |
22388a3c XG |
8073 | unsigned long addr, |
8074 | const void *val, | |
8075 | unsigned int bytes, | |
8076 | struct x86_exception *exception) | |
8077 | { | |
8078 | return emulator_read_write(ctxt, addr, (void *)val, bytes, | |
8079 | exception, &write_emultor); | |
bbd9b64e | 8080 | } |
bbd9b64e | 8081 | |
1c2361f6 SC |
8082 | #define emulator_try_cmpxchg_user(t, ptr, old, new) \ |
8083 | (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t)) | |
daea3e73 | 8084 | |
0f65dd70 AK |
8085 | static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt, |
8086 | unsigned long addr, | |
bbd9b64e CO |
8087 | const void *old, |
8088 | const void *new, | |
8089 | unsigned int bytes, | |
0f65dd70 | 8090 | struct x86_exception *exception) |
bbd9b64e | 8091 | { |
0f65dd70 | 8092 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
9de6fe3c | 8093 | u64 page_line_mask; |
1c2361f6 | 8094 | unsigned long hva; |
daea3e73 | 8095 | gpa_t gpa; |
1c2361f6 | 8096 | int r; |
2bacc55c | 8097 | |
daea3e73 AK |
8098 | /* guests cmpxchg8b have to be emulated atomically */ |
8099 | if (bytes > 8 || (bytes & (bytes - 1))) | |
8100 | goto emul_write; | |
10589a46 | 8101 | |
daea3e73 | 8102 | gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL); |
2bacc55c | 8103 | |
6e1d2a3f | 8104 | if (gpa == INVALID_GPA || |
daea3e73 AK |
8105 | (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE) |
8106 | goto emul_write; | |
2bacc55c | 8107 | |
9de6fe3c XL |
8108 | /* |
8109 | * Emulate the atomic as a straight write to avoid #AC if SLD is | |
8110 | * enabled in the host and the access splits a cache line. | |
8111 | */ | |
8112 | if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT)) | |
8113 | page_line_mask = ~(cache_line_size() - 1); | |
8114 | else | |
8115 | page_line_mask = PAGE_MASK; | |
8116 | ||
8117 | if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask)) | |
daea3e73 | 8118 | goto emul_write; |
72dc67a6 | 8119 | |
1c2361f6 | 8120 | hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa)); |
33fbe6be | 8121 | if (kvm_is_error_hva(hva)) |
c19b8bd6 | 8122 | goto emul_write; |
72dc67a6 | 8123 | |
1c2361f6 | 8124 | hva += offset_in_page(gpa); |
42e35f80 | 8125 | |
daea3e73 AK |
8126 | switch (bytes) { |
8127 | case 1: | |
1c2361f6 | 8128 | r = emulator_try_cmpxchg_user(u8, hva, old, new); |
daea3e73 AK |
8129 | break; |
8130 | case 2: | |
1c2361f6 | 8131 | r = emulator_try_cmpxchg_user(u16, hva, old, new); |
daea3e73 AK |
8132 | break; |
8133 | case 4: | |
1c2361f6 | 8134 | r = emulator_try_cmpxchg_user(u32, hva, old, new); |
daea3e73 AK |
8135 | break; |
8136 | case 8: | |
1c2361f6 | 8137 | r = emulator_try_cmpxchg_user(u64, hva, old, new); |
daea3e73 AK |
8138 | break; |
8139 | default: | |
8140 | BUG(); | |
2bacc55c | 8141 | } |
42e35f80 | 8142 | |
1c2361f6 | 8143 | if (r < 0) |
5d6c7de6 | 8144 | return X86EMUL_UNHANDLEABLE; |
910c57df SC |
8145 | |
8146 | /* | |
8147 | * Mark the page dirty _before_ checking whether or not the CMPXCHG was | |
8148 | * successful, as the old value is written back on failure. Note, for | |
8149 | * live migration, this is unnecessarily conservative as CMPXCHG writes | |
8150 | * back the original value and the access is atomic, but KVM's ABI is | |
8151 | * that all writes are dirty logged, regardless of the value written. | |
8152 | */ | |
8153 | kvm_vcpu_mark_page_dirty(vcpu, gpa_to_gfn(gpa)); | |
8154 | ||
1c2361f6 | 8155 | if (r) |
daea3e73 AK |
8156 | return X86EMUL_CMPXCHG_FAILED; |
8157 | ||
0eb05bf2 | 8158 | kvm_page_track_write(vcpu, gpa, new, bytes); |
8f6abd06 GN |
8159 | |
8160 | return X86EMUL_CONTINUE; | |
4a5f48f6 | 8161 | |
3200f405 | 8162 | emul_write: |
8d20bd63 | 8163 | pr_warn_once("emulating exchange as write\n"); |
2bacc55c | 8164 | |
0f65dd70 | 8165 | return emulator_write_emulated(ctxt, addr, new, bytes, exception); |
bbd9b64e CO |
8166 | } |
8167 | ||
6f6fbe98 | 8168 | static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size, |
30d583fd | 8169 | unsigned short port, void *data, |
6f6fbe98 | 8170 | unsigned int count, bool in) |
cf8f70bf | 8171 | { |
0f87ac23 PB |
8172 | unsigned i; |
8173 | int r; | |
cf8f70bf | 8174 | |
30d583fd | 8175 | WARN_ON_ONCE(vcpu->arch.pio.count); |
0f87ac23 PB |
8176 | for (i = 0; i < count; i++) { |
8177 | if (in) | |
8178 | r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data); | |
cbfc6c91 | 8179 | else |
0f87ac23 | 8180 | r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data); |
35ab3b77 PB |
8181 | |
8182 | if (r) { | |
8183 | if (i == 0) | |
8184 | goto userspace_io; | |
8185 | ||
8186 | /* | |
8187 | * Userspace must have unregistered the device while PIO | |
0c05e10b | 8188 | * was running. Drop writes / read as 0. |
35ab3b77 | 8189 | */ |
0c05e10b PB |
8190 | if (in) |
8191 | memset(data, 0, size * (count - i)); | |
cbfc6c91 | 8192 | break; |
35ab3b77 PB |
8193 | } |
8194 | ||
0f87ac23 | 8195 | data += size; |
cbfc6c91 | 8196 | } |
0f87ac23 | 8197 | return 1; |
cf8f70bf | 8198 | |
0f87ac23 | 8199 | userspace_io: |
cf8f70bf | 8200 | vcpu->arch.pio.port = port; |
6f6fbe98 | 8201 | vcpu->arch.pio.in = in; |
0c05e10b | 8202 | vcpu->arch.pio.count = count; |
cf8f70bf GN |
8203 | vcpu->arch.pio.size = size; |
8204 | ||
0c05e10b PB |
8205 | if (in) |
8206 | memset(vcpu->arch.pio_data, 0, size * count); | |
8207 | else | |
8208 | memcpy(vcpu->arch.pio_data, data, size * count); | |
cf8f70bf GN |
8209 | |
8210 | vcpu->run->exit_reason = KVM_EXIT_IO; | |
6f6fbe98 | 8211 | vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT; |
cf8f70bf GN |
8212 | vcpu->run->io.size = size; |
8213 | vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE; | |
8214 | vcpu->run->io.count = count; | |
8215 | vcpu->run->io.port = port; | |
cf8f70bf GN |
8216 | return 0; |
8217 | } | |
8218 | ||
f35cee4a PB |
8219 | static int emulator_pio_in(struct kvm_vcpu *vcpu, int size, |
8220 | unsigned short port, void *val, unsigned int count) | |
cf8f70bf | 8221 | { |
0c05e10b PB |
8222 | int r = emulator_pio_in_out(vcpu, size, port, val, count, true); |
8223 | if (r) | |
8224 | trace_kvm_pio(KVM_PIO_IN, port, size, count, val); | |
8225 | ||
8226 | return r; | |
3b27de27 | 8227 | } |
ca1d4a9e | 8228 | |
6b5efc93 | 8229 | static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val) |
3b27de27 | 8230 | { |
6b5efc93 | 8231 | int size = vcpu->arch.pio.size; |
0c05e10b | 8232 | unsigned int count = vcpu->arch.pio.count; |
6b5efc93 PB |
8233 | memcpy(val, vcpu->arch.pio_data, size * count); |
8234 | trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data); | |
3b27de27 PB |
8235 | vcpu->arch.pio.count = 0; |
8236 | } | |
cf8f70bf | 8237 | |
f35cee4a PB |
8238 | static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt, |
8239 | int size, unsigned short port, void *val, | |
8240 | unsigned int count) | |
3b27de27 | 8241 | { |
f35cee4a | 8242 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
3b27de27 | 8243 | if (vcpu->arch.pio.count) { |
d07898ea SC |
8244 | /* |
8245 | * Complete a previous iteration that required userspace I/O. | |
8246 | * Note, @count isn't guaranteed to match pio.count as userspace | |
8247 | * can modify ECX before rerunning the vCPU. Ignore any such | |
8248 | * shenanigans as KVM doesn't support modifying the rep count, | |
8249 | * and the emulator ensures @count doesn't overflow the buffer. | |
8250 | */ | |
0c05e10b PB |
8251 | complete_emulator_pio_in(vcpu, val); |
8252 | return 1; | |
cf8f70bf GN |
8253 | } |
8254 | ||
f35cee4a | 8255 | return emulator_pio_in(vcpu, size, port, val, count); |
2e3bb4d8 | 8256 | } |
6f6fbe98 | 8257 | |
2e3bb4d8 SC |
8258 | static int emulator_pio_out(struct kvm_vcpu *vcpu, int size, |
8259 | unsigned short port, const void *val, | |
8260 | unsigned int count) | |
8261 | { | |
30d583fd | 8262 | trace_kvm_pio(KVM_PIO_OUT, port, size, count, val); |
0c05e10b | 8263 | return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false); |
6f6fbe98 XG |
8264 | } |
8265 | ||
2e3bb4d8 SC |
8266 | static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt, |
8267 | int size, unsigned short port, | |
8268 | const void *val, unsigned int count) | |
8269 | { | |
8270 | return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count); | |
8271 | } | |
8272 | ||
bbd9b64e CO |
8273 | static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg) |
8274 | { | |
89604647 | 8275 | return kvm_x86_call(get_segment_base)(vcpu, seg); |
bbd9b64e CO |
8276 | } |
8277 | ||
3cb16fe7 | 8278 | static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address) |
bbd9b64e | 8279 | { |
3cb16fe7 | 8280 | kvm_mmu_invlpg(emul_to_vcpu(ctxt), address); |
bbd9b64e CO |
8281 | } |
8282 | ||
ae6a2375 | 8283 | static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu) |
f5f48ee1 SY |
8284 | { |
8285 | if (!need_emulate_wbinvd(vcpu)) | |
8286 | return X86EMUL_CONTINUE; | |
8287 | ||
89604647 | 8288 | if (kvm_x86_call(has_wbinvd_exit)()) { |
2eec7343 JK |
8289 | int cpu = get_cpu(); |
8290 | ||
8291 | cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask); | |
c2162e13 | 8292 | on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask, |
f5f48ee1 | 8293 | wbinvd_ipi, NULL, 1); |
2eec7343 | 8294 | put_cpu(); |
f5f48ee1 | 8295 | cpumask_clear(vcpu->arch.wbinvd_dirty_mask); |
2eec7343 JK |
8296 | } else |
8297 | wbinvd(); | |
f5f48ee1 SY |
8298 | return X86EMUL_CONTINUE; |
8299 | } | |
5cb56059 JS |
8300 | |
8301 | int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu) | |
8302 | { | |
6affcbed KH |
8303 | kvm_emulate_wbinvd_noskip(vcpu); |
8304 | return kvm_skip_emulated_instruction(vcpu); | |
5cb56059 | 8305 | } |
f5f48ee1 SY |
8306 | EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd); |
8307 | ||
5cb56059 JS |
8308 | |
8309 | ||
bcaf5cc5 AK |
8310 | static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt) |
8311 | { | |
5cb56059 | 8312 | kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt)); |
bcaf5cc5 AK |
8313 | } |
8314 | ||
fc5375dd | 8315 | static unsigned long emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr) |
bbd9b64e | 8316 | { |
fc5375dd | 8317 | return kvm_get_dr(emul_to_vcpu(ctxt), dr); |
bbd9b64e CO |
8318 | } |
8319 | ||
52eb5a6d XL |
8320 | static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr, |
8321 | unsigned long value) | |
bbd9b64e | 8322 | { |
338dbc97 | 8323 | |
996ff542 | 8324 | return kvm_set_dr(emul_to_vcpu(ctxt), dr, value); |
bbd9b64e CO |
8325 | } |
8326 | ||
52a46617 | 8327 | static u64 mk_cr_64(u64 curr_cr, u32 new_val) |
5fdbf976 | 8328 | { |
52a46617 | 8329 | return (curr_cr & ~((1ULL << 32) - 1)) | new_val; |
5fdbf976 MT |
8330 | } |
8331 | ||
717746e3 | 8332 | static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr) |
bbd9b64e | 8333 | { |
717746e3 | 8334 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
52a46617 GN |
8335 | unsigned long value; |
8336 | ||
8337 | switch (cr) { | |
8338 | case 0: | |
8339 | value = kvm_read_cr0(vcpu); | |
8340 | break; | |
8341 | case 2: | |
8342 | value = vcpu->arch.cr2; | |
8343 | break; | |
8344 | case 3: | |
9f8fe504 | 8345 | value = kvm_read_cr3(vcpu); |
52a46617 GN |
8346 | break; |
8347 | case 4: | |
8348 | value = kvm_read_cr4(vcpu); | |
8349 | break; | |
8350 | case 8: | |
8351 | value = kvm_get_cr8(vcpu); | |
8352 | break; | |
8353 | default: | |
a737f256 | 8354 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
52a46617 GN |
8355 | return 0; |
8356 | } | |
8357 | ||
8358 | return value; | |
8359 | } | |
8360 | ||
717746e3 | 8361 | static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val) |
52a46617 | 8362 | { |
717746e3 | 8363 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
0f12244f GN |
8364 | int res = 0; |
8365 | ||
52a46617 GN |
8366 | switch (cr) { |
8367 | case 0: | |
49a9b07e | 8368 | res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val)); |
52a46617 GN |
8369 | break; |
8370 | case 2: | |
8371 | vcpu->arch.cr2 = val; | |
8372 | break; | |
8373 | case 3: | |
2390218b | 8374 | res = kvm_set_cr3(vcpu, val); |
52a46617 GN |
8375 | break; |
8376 | case 4: | |
a83b29c6 | 8377 | res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val)); |
52a46617 GN |
8378 | break; |
8379 | case 8: | |
eea1cff9 | 8380 | res = kvm_set_cr8(vcpu, val); |
52a46617 GN |
8381 | break; |
8382 | default: | |
a737f256 | 8383 | kvm_err("%s: unexpected cr %u\n", __func__, cr); |
0f12244f | 8384 | res = -1; |
52a46617 | 8385 | } |
0f12244f GN |
8386 | |
8387 | return res; | |
52a46617 GN |
8388 | } |
8389 | ||
717746e3 | 8390 | static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt) |
9c537244 | 8391 | { |
89604647 | 8392 | return kvm_x86_call(get_cpl)(emul_to_vcpu(ctxt)); |
9c537244 GN |
8393 | } |
8394 | ||
4bff1e86 | 8395 | static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
2dafc6c2 | 8396 | { |
89604647 | 8397 | kvm_x86_call(get_gdt)(emul_to_vcpu(ctxt), dt); |
2dafc6c2 GN |
8398 | } |
8399 | ||
4bff1e86 | 8400 | static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
160ce1f1 | 8401 | { |
89604647 | 8402 | kvm_x86_call(get_idt)(emul_to_vcpu(ctxt), dt); |
160ce1f1 MG |
8403 | } |
8404 | ||
1ac9d0cf AK |
8405 | static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) |
8406 | { | |
89604647 | 8407 | kvm_x86_call(set_gdt)(emul_to_vcpu(ctxt), dt); |
1ac9d0cf AK |
8408 | } |
8409 | ||
8410 | static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt) | |
8411 | { | |
89604647 | 8412 | kvm_x86_call(set_idt)(emul_to_vcpu(ctxt), dt); |
1ac9d0cf AK |
8413 | } |
8414 | ||
4bff1e86 AK |
8415 | static unsigned long emulator_get_cached_segment_base( |
8416 | struct x86_emulate_ctxt *ctxt, int seg) | |
5951c442 | 8417 | { |
4bff1e86 | 8418 | return get_segment_base(emul_to_vcpu(ctxt), seg); |
5951c442 GN |
8419 | } |
8420 | ||
1aa36616 AK |
8421 | static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector, |
8422 | struct desc_struct *desc, u32 *base3, | |
8423 | int seg) | |
2dafc6c2 GN |
8424 | { |
8425 | struct kvm_segment var; | |
8426 | ||
4bff1e86 | 8427 | kvm_get_segment(emul_to_vcpu(ctxt), &var, seg); |
1aa36616 | 8428 | *selector = var.selector; |
2dafc6c2 | 8429 | |
378a8b09 GN |
8430 | if (var.unusable) { |
8431 | memset(desc, 0, sizeof(*desc)); | |
f0367ee1 RK |
8432 | if (base3) |
8433 | *base3 = 0; | |
2dafc6c2 | 8434 | return false; |
378a8b09 | 8435 | } |
2dafc6c2 GN |
8436 | |
8437 | if (var.g) | |
8438 | var.limit >>= 12; | |
8439 | set_desc_limit(desc, var.limit); | |
8440 | set_desc_base(desc, (unsigned long)var.base); | |
5601d05b GN |
8441 | #ifdef CONFIG_X86_64 |
8442 | if (base3) | |
8443 | *base3 = var.base >> 32; | |
8444 | #endif | |
2dafc6c2 GN |
8445 | desc->type = var.type; |
8446 | desc->s = var.s; | |
8447 | desc->dpl = var.dpl; | |
8448 | desc->p = var.present; | |
8449 | desc->avl = var.avl; | |
8450 | desc->l = var.l; | |
8451 | desc->d = var.db; | |
8452 | desc->g = var.g; | |
8453 | ||
8454 | return true; | |
8455 | } | |
8456 | ||
1aa36616 AK |
8457 | static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector, |
8458 | struct desc_struct *desc, u32 base3, | |
8459 | int seg) | |
2dafc6c2 | 8460 | { |
4bff1e86 | 8461 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
2dafc6c2 GN |
8462 | struct kvm_segment var; |
8463 | ||
1aa36616 | 8464 | var.selector = selector; |
2dafc6c2 | 8465 | var.base = get_desc_base(desc); |
5601d05b GN |
8466 | #ifdef CONFIG_X86_64 |
8467 | var.base |= ((u64)base3) << 32; | |
8468 | #endif | |
2dafc6c2 GN |
8469 | var.limit = get_desc_limit(desc); |
8470 | if (desc->g) | |
8471 | var.limit = (var.limit << 12) | 0xfff; | |
8472 | var.type = desc->type; | |
2dafc6c2 GN |
8473 | var.dpl = desc->dpl; |
8474 | var.db = desc->d; | |
8475 | var.s = desc->s; | |
8476 | var.l = desc->l; | |
8477 | var.g = desc->g; | |
8478 | var.avl = desc->avl; | |
8479 | var.present = desc->p; | |
8480 | var.unusable = !var.present; | |
8481 | var.padding = 0; | |
8482 | ||
8483 | kvm_set_segment(vcpu, &var, seg); | |
8484 | return; | |
8485 | } | |
8486 | ||
ac8d6cad HW |
8487 | static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt, |
8488 | u32 msr_index, u64 *pdata) | |
717746e3 | 8489 | { |
1ae09954 AG |
8490 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8491 | int r; | |
8492 | ||
ac8d6cad | 8493 | r = kvm_get_msr_with_filter(vcpu, msr_index, pdata); |
36d546d5 HW |
8494 | if (r < 0) |
8495 | return X86EMUL_UNHANDLEABLE; | |
1ae09954 | 8496 | |
36d546d5 HW |
8497 | if (r) { |
8498 | if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0, | |
8499 | complete_emulated_rdmsr, r)) | |
8500 | return X86EMUL_IO_NEEDED; | |
794663e1 HW |
8501 | |
8502 | trace_kvm_msr_read_ex(msr_index); | |
36d546d5 | 8503 | return X86EMUL_PROPAGATE_FAULT; |
1ae09954 AG |
8504 | } |
8505 | ||
794663e1 | 8506 | trace_kvm_msr_read(msr_index, *pdata); |
36d546d5 | 8507 | return X86EMUL_CONTINUE; |
717746e3 AK |
8508 | } |
8509 | ||
ac8d6cad HW |
8510 | static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt, |
8511 | u32 msr_index, u64 data) | |
717746e3 | 8512 | { |
1ae09954 AG |
8513 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8514 | int r; | |
8515 | ||
ac8d6cad | 8516 | r = kvm_set_msr_with_filter(vcpu, msr_index, data); |
36d546d5 HW |
8517 | if (r < 0) |
8518 | return X86EMUL_UNHANDLEABLE; | |
1ae09954 | 8519 | |
36d546d5 HW |
8520 | if (r) { |
8521 | if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data, | |
8522 | complete_emulated_msr_access, r)) | |
8523 | return X86EMUL_IO_NEEDED; | |
794663e1 HW |
8524 | |
8525 | trace_kvm_msr_write_ex(msr_index, data); | |
36d546d5 | 8526 | return X86EMUL_PROPAGATE_FAULT; |
1ae09954 AG |
8527 | } |
8528 | ||
794663e1 | 8529 | trace_kvm_msr_write(msr_index, data); |
36d546d5 | 8530 | return X86EMUL_CONTINUE; |
717746e3 AK |
8531 | } |
8532 | ||
ac8d6cad HW |
8533 | static int emulator_get_msr(struct x86_emulate_ctxt *ctxt, |
8534 | u32 msr_index, u64 *pdata) | |
8535 | { | |
8536 | return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata); | |
8537 | } | |
8538 | ||
7bb7fce1 | 8539 | static int emulator_check_rdpmc_early(struct x86_emulate_ctxt *ctxt, u32 pmc) |
67f4d428 | 8540 | { |
7bb7fce1 | 8541 | return kvm_pmu_check_rdpmc_early(emul_to_vcpu(ctxt), pmc); |
67f4d428 NA |
8542 | } |
8543 | ||
222d21aa AK |
8544 | static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt, |
8545 | u32 pmc, u64 *pdata) | |
8546 | { | |
c6702c9d | 8547 | return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata); |
222d21aa AK |
8548 | } |
8549 | ||
6c3287f7 AK |
8550 | static void emulator_halt(struct x86_emulate_ctxt *ctxt) |
8551 | { | |
8552 | emul_to_vcpu(ctxt)->arch.halt_request = 1; | |
8553 | } | |
8554 | ||
2953538e | 8555 | static int emulator_intercept(struct x86_emulate_ctxt *ctxt, |
8a76d7f2 | 8556 | struct x86_instruction_info *info, |
c4f035c6 AK |
8557 | enum x86_intercept_stage stage) |
8558 | { | |
89604647 WW |
8559 | return kvm_x86_call(check_intercept)(emul_to_vcpu(ctxt), info, stage, |
8560 | &ctxt->exception); | |
c4f035c6 AK |
8561 | } |
8562 | ||
e911eb3b | 8563 | static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt, |
f91af517 SC |
8564 | u32 *eax, u32 *ebx, u32 *ecx, u32 *edx, |
8565 | bool exact_only) | |
bdb42f5a | 8566 | { |
f91af517 | 8567 | return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only); |
bdb42f5a SB |
8568 | } |
8569 | ||
5ae78e95 SC |
8570 | static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt) |
8571 | { | |
8f2a2775 | 8572 | return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE); |
5ae78e95 SC |
8573 | } |
8574 | ||
8575 | static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt) | |
8576 | { | |
8f2a2775 | 8577 | return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR); |
5ae78e95 SC |
8578 | } |
8579 | ||
a836839c HW |
8580 | static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt) |
8581 | { | |
8f2a2775 | 8582 | return guest_cpu_cap_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID); |
a836839c HW |
8583 | } |
8584 | ||
d99e4cb2 SC |
8585 | static bool emulator_guest_cpuid_is_intel_compatible(struct x86_emulate_ctxt *ctxt) |
8586 | { | |
8587 | return guest_cpuid_is_intel_compatible(emul_to_vcpu(ctxt)); | |
8588 | } | |
8589 | ||
dd856efa AK |
8590 | static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg) |
8591 | { | |
27b4a9c4 | 8592 | return kvm_register_read_raw(emul_to_vcpu(ctxt), reg); |
dd856efa AK |
8593 | } |
8594 | ||
8595 | static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val) | |
8596 | { | |
27b4a9c4 | 8597 | kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val); |
dd856efa AK |
8598 | } |
8599 | ||
801806d9 NA |
8600 | static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked) |
8601 | { | |
89604647 | 8602 | kvm_x86_call(set_nmi_mask)(emul_to_vcpu(ctxt), masked); |
801806d9 NA |
8603 | } |
8604 | ||
32e69f23 | 8605 | static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt) |
6ed071f0 | 8606 | { |
32e69f23 ML |
8607 | return is_smm(emul_to_vcpu(ctxt)); |
8608 | } | |
8609 | ||
8610 | static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt) | |
6ed071f0 | 8611 | { |
32e69f23 | 8612 | return is_guest_mode(emul_to_vcpu(ctxt)); |
6ed071f0 LP |
8613 | } |
8614 | ||
4b8e1b32 PB |
8615 | #ifndef CONFIG_KVM_SMM |
8616 | static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt) | |
6ed071f0 | 8617 | { |
4b8e1b32 PB |
8618 | WARN_ON_ONCE(1); |
8619 | return X86EMUL_UNHANDLEABLE; | |
0234bf88 | 8620 | } |
4b8e1b32 | 8621 | #endif |
0234bf88 | 8622 | |
25b17226 SC |
8623 | static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt) |
8624 | { | |
8625 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt)); | |
8626 | } | |
8627 | ||
02d4160f VK |
8628 | static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr) |
8629 | { | |
8630 | return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr); | |
8631 | } | |
8632 | ||
1cca2f8c SC |
8633 | static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt) |
8634 | { | |
8635 | struct kvm *kvm = emul_to_vcpu(ctxt)->kvm; | |
8636 | ||
8637 | if (!kvm->vm_bugged) | |
8638 | kvm_vm_bugged(kvm); | |
8639 | } | |
8640 | ||
37a41847 BW |
8641 | static gva_t emulator_get_untagged_addr(struct x86_emulate_ctxt *ctxt, |
8642 | gva_t addr, unsigned int flags) | |
8643 | { | |
8644 | if (!kvm_x86_ops.get_untagged_addr) | |
8645 | return addr; | |
8646 | ||
89604647 WW |
8647 | return kvm_x86_call(get_untagged_addr)(emul_to_vcpu(ctxt), |
8648 | addr, flags); | |
37a41847 BW |
8649 | } |
8650 | ||
16ccadef | 8651 | static bool emulator_is_canonical_addr(struct x86_emulate_ctxt *ctxt, |
c534b37b | 8652 | gva_t addr, unsigned int flags) |
16ccadef | 8653 | { |
9245fd6b | 8654 | return !is_noncanonical_address(addr, emul_to_vcpu(ctxt), flags); |
16ccadef ML |
8655 | } |
8656 | ||
0225fb50 | 8657 | static const struct x86_emulate_ops emulate_ops = { |
1cca2f8c | 8658 | .vm_bugged = emulator_vm_bugged, |
dd856efa AK |
8659 | .read_gpr = emulator_read_gpr, |
8660 | .write_gpr = emulator_write_gpr, | |
ce14e868 PB |
8661 | .read_std = emulator_read_std, |
8662 | .write_std = emulator_write_std, | |
1871c602 | 8663 | .fetch = kvm_fetch_guest_virt, |
bbd9b64e CO |
8664 | .read_emulated = emulator_read_emulated, |
8665 | .write_emulated = emulator_write_emulated, | |
8666 | .cmpxchg_emulated = emulator_cmpxchg_emulated, | |
3cb16fe7 | 8667 | .invlpg = emulator_invlpg, |
cf8f70bf GN |
8668 | .pio_in_emulated = emulator_pio_in_emulated, |
8669 | .pio_out_emulated = emulator_pio_out_emulated, | |
1aa36616 AK |
8670 | .get_segment = emulator_get_segment, |
8671 | .set_segment = emulator_set_segment, | |
5951c442 | 8672 | .get_cached_segment_base = emulator_get_cached_segment_base, |
2dafc6c2 | 8673 | .get_gdt = emulator_get_gdt, |
160ce1f1 | 8674 | .get_idt = emulator_get_idt, |
1ac9d0cf AK |
8675 | .set_gdt = emulator_set_gdt, |
8676 | .set_idt = emulator_set_idt, | |
52a46617 GN |
8677 | .get_cr = emulator_get_cr, |
8678 | .set_cr = emulator_set_cr, | |
9c537244 | 8679 | .cpl = emulator_get_cpl, |
35aa5375 GN |
8680 | .get_dr = emulator_get_dr, |
8681 | .set_dr = emulator_set_dr, | |
ac8d6cad HW |
8682 | .set_msr_with_filter = emulator_set_msr_with_filter, |
8683 | .get_msr_with_filter = emulator_get_msr_with_filter, | |
717746e3 | 8684 | .get_msr = emulator_get_msr, |
7bb7fce1 | 8685 | .check_rdpmc_early = emulator_check_rdpmc_early, |
222d21aa | 8686 | .read_pmc = emulator_read_pmc, |
6c3287f7 | 8687 | .halt = emulator_halt, |
bcaf5cc5 | 8688 | .wbinvd = emulator_wbinvd, |
d6aa1000 | 8689 | .fix_hypercall = emulator_fix_hypercall, |
c4f035c6 | 8690 | .intercept = emulator_intercept, |
bdb42f5a | 8691 | .get_cpuid = emulator_get_cpuid, |
5ae78e95 SC |
8692 | .guest_has_movbe = emulator_guest_has_movbe, |
8693 | .guest_has_fxsr = emulator_guest_has_fxsr, | |
a836839c | 8694 | .guest_has_rdpid = emulator_guest_has_rdpid, |
d99e4cb2 | 8695 | .guest_cpuid_is_intel_compatible = emulator_guest_cpuid_is_intel_compatible, |
801806d9 | 8696 | .set_nmi_mask = emulator_set_nmi_mask, |
32e69f23 ML |
8697 | .is_smm = emulator_is_smm, |
8698 | .is_guest_mode = emulator_is_guest_mode, | |
ecc513e5 | 8699 | .leave_smm = emulator_leave_smm, |
25b17226 | 8700 | .triple_fault = emulator_triple_fault, |
02d4160f | 8701 | .set_xcr = emulator_set_xcr, |
37a41847 | 8702 | .get_untagged_addr = emulator_get_untagged_addr, |
16ccadef | 8703 | .is_canonical_addr = emulator_is_canonical_addr, |
bbd9b64e CO |
8704 | }; |
8705 | ||
95cb2295 GN |
8706 | static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask) |
8707 | { | |
89604647 | 8708 | u32 int_shadow = kvm_x86_call(get_interrupt_shadow)(vcpu); |
95cb2295 GN |
8709 | /* |
8710 | * an sti; sti; sequence only disable interrupts for the first | |
8711 | * instruction. So, if the last instruction, be it emulated or | |
8712 | * not, left the system with the INT_STI flag enabled, it | |
8713 | * means that the last instruction is an sti. We should not | |
8714 | * leave the flag on in this case. The same goes for mov ss | |
8715 | */ | |
37ccdcbe PB |
8716 | if (int_shadow & mask) |
8717 | mask = 0; | |
6addfc42 | 8718 | if (unlikely(int_shadow || mask)) { |
89604647 | 8719 | kvm_x86_call(set_interrupt_shadow)(vcpu, mask); |
6addfc42 PB |
8720 | if (!mask) |
8721 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
8722 | } | |
95cb2295 GN |
8723 | } |
8724 | ||
7709aba8 | 8725 | static void inject_emulated_exception(struct kvm_vcpu *vcpu) |
54b8486f | 8726 | { |
c9b8b07c | 8727 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
ef54bcfe | 8728 | |
7709aba8 SC |
8729 | if (ctxt->exception.vector == PF_VECTOR) |
8730 | kvm_inject_emulated_page_fault(vcpu, &ctxt->exception); | |
8731 | else if (ctxt->exception.error_code_valid) | |
da9cb575 AK |
8732 | kvm_queue_exception_e(vcpu, ctxt->exception.vector, |
8733 | ctxt->exception.error_code); | |
54b8486f | 8734 | else |
da9cb575 | 8735 | kvm_queue_exception(vcpu, ctxt->exception.vector); |
54b8486f GN |
8736 | } |
8737 | ||
c9b8b07c SC |
8738 | static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu) |
8739 | { | |
8740 | struct x86_emulate_ctxt *ctxt; | |
8741 | ||
8742 | ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT); | |
8743 | if (!ctxt) { | |
8d20bd63 | 8744 | pr_err("failed to allocate vcpu's emulator\n"); |
c9b8b07c SC |
8745 | return NULL; |
8746 | } | |
8747 | ||
8748 | ctxt->vcpu = vcpu; | |
8749 | ctxt->ops = &emulate_ops; | |
8750 | vcpu->arch.emulate_ctxt = ctxt; | |
8751 | ||
8752 | return ctxt; | |
8753 | } | |
8754 | ||
8ec4722d MG |
8755 | static void init_emulate_ctxt(struct kvm_vcpu *vcpu) |
8756 | { | |
c9b8b07c | 8757 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
8ec4722d MG |
8758 | int cs_db, cs_l; |
8759 | ||
89604647 | 8760 | kvm_x86_call(get_cs_db_l_bits)(vcpu, &cs_db, &cs_l); |
8ec4722d | 8761 | |
744e699c | 8762 | ctxt->gpa_available = false; |
adf52235 | 8763 | ctxt->eflags = kvm_get_rflags(vcpu); |
c8401dda PB |
8764 | ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0; |
8765 | ||
adf52235 TY |
8766 | ctxt->eip = kvm_rip_read(vcpu); |
8767 | ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL : | |
8768 | (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 : | |
42bf549f | 8769 | (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 : |
adf52235 TY |
8770 | cs_db ? X86EMUL_MODE_PROT32 : |
8771 | X86EMUL_MODE_PROT16; | |
da6393cd WL |
8772 | ctxt->interruptibility = 0; |
8773 | ctxt->have_exception = false; | |
8774 | ctxt->exception.vector = -1; | |
8775 | ctxt->perm_ok = false; | |
8776 | ||
dd856efa | 8777 | init_decode_cache(ctxt); |
7ae441ea | 8778 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; |
8ec4722d MG |
8779 | } |
8780 | ||
9497e1f2 | 8781 | void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip) |
63995653 | 8782 | { |
c9b8b07c | 8783 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
63995653 MG |
8784 | int ret; |
8785 | ||
8786 | init_emulate_ctxt(vcpu); | |
8787 | ||
9dac77fa AK |
8788 | ctxt->op_bytes = 2; |
8789 | ctxt->ad_bytes = 2; | |
8790 | ctxt->_eip = ctxt->eip + inc_eip; | |
9d74191a | 8791 | ret = emulate_int_real(ctxt, irq); |
63995653 | 8792 | |
9497e1f2 SC |
8793 | if (ret != X86EMUL_CONTINUE) { |
8794 | kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu); | |
8795 | } else { | |
8796 | ctxt->eip = ctxt->_eip; | |
8797 | kvm_rip_write(vcpu, ctxt->eip); | |
8798 | kvm_set_rflags(vcpu, ctxt->eflags); | |
8799 | } | |
63995653 MG |
8800 | } |
8801 | EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt); | |
8802 | ||
e615e355 DE |
8803 | static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, |
8804 | u8 ndata, u8 *insn_bytes, u8 insn_size) | |
19238e75 | 8805 | { |
19238e75 | 8806 | struct kvm_run *run = vcpu->run; |
e615e355 DE |
8807 | u64 info[5]; |
8808 | u8 info_start; | |
8809 | ||
8810 | /* | |
8811 | * Zero the whole array used to retrieve the exit info, as casting to | |
8812 | * u32 for select entries will leave some chunks uninitialized. | |
8813 | */ | |
8814 | memset(&info, 0, sizeof(info)); | |
8815 | ||
89604647 WW |
8816 | kvm_x86_call(get_exit_info)(vcpu, (u32 *)&info[0], &info[1], &info[2], |
8817 | (u32 *)&info[3], (u32 *)&info[4]); | |
19238e75 AL |
8818 | |
8819 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
8820 | run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
e615e355 DE |
8821 | |
8822 | /* | |
8823 | * There's currently space for 13 entries, but 5 are used for the exit | |
8824 | * reason and info. Restrict to 4 to reduce the maintenance burden | |
8825 | * when expanding kvm_run.emulation_failure in the future. | |
8826 | */ | |
8827 | if (WARN_ON_ONCE(ndata > 4)) | |
8828 | ndata = 4; | |
8829 | ||
8830 | /* Always include the flags as a 'data' entry. */ | |
8831 | info_start = 1; | |
19238e75 AL |
8832 | run->emulation_failure.flags = 0; |
8833 | ||
8834 | if (insn_size) { | |
e615e355 DE |
8835 | BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) + |
8836 | sizeof(run->emulation_failure.insn_bytes) != 16)); | |
8837 | info_start += 2; | |
19238e75 AL |
8838 | run->emulation_failure.flags |= |
8839 | KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES; | |
8840 | run->emulation_failure.insn_size = insn_size; | |
8841 | memset(run->emulation_failure.insn_bytes, 0x90, | |
8842 | sizeof(run->emulation_failure.insn_bytes)); | |
e615e355 | 8843 | memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size); |
19238e75 | 8844 | } |
e615e355 DE |
8845 | |
8846 | memcpy(&run->internal.data[info_start], info, sizeof(info)); | |
8847 | memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data, | |
8848 | ndata * sizeof(data[0])); | |
8849 | ||
8850 | run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata; | |
19238e75 AL |
8851 | } |
8852 | ||
e615e355 DE |
8853 | static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu) |
8854 | { | |
8855 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; | |
8856 | ||
8857 | prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data, | |
8858 | ctxt->fetch.end - ctxt->fetch.data); | |
8859 | } | |
8860 | ||
8861 | void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data, | |
8862 | u8 ndata) | |
8863 | { | |
8864 | prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0); | |
19238e75 | 8865 | } |
e615e355 DE |
8866 | EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit); |
8867 | ||
8868 | void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu) | |
8869 | { | |
8870 | __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0); | |
8871 | } | |
8872 | EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit); | |
19238e75 | 8873 | |
11c98fa0 IO |
8874 | void kvm_prepare_event_vectoring_exit(struct kvm_vcpu *vcpu, gpa_t gpa) |
8875 | { | |
8876 | u32 reason, intr_info, error_code; | |
8877 | struct kvm_run *run = vcpu->run; | |
8878 | u64 info1, info2; | |
8879 | int ndata = 0; | |
8880 | ||
8881 | kvm_x86_call(get_exit_info)(vcpu, &reason, &info1, &info2, | |
8882 | &intr_info, &error_code); | |
8883 | ||
8884 | run->internal.data[ndata++] = info2; | |
8885 | run->internal.data[ndata++] = reason; | |
8886 | run->internal.data[ndata++] = info1; | |
8887 | run->internal.data[ndata++] = gpa; | |
8888 | run->internal.data[ndata++] = vcpu->arch.last_vmentry_cpu; | |
8889 | ||
8890 | run->exit_reason = KVM_EXIT_INTERNAL_ERROR; | |
8891 | run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV; | |
8892 | run->internal.ndata = ndata; | |
8893 | } | |
8894 | EXPORT_SYMBOL_GPL(kvm_prepare_event_vectoring_exit); | |
8895 | ||
e2366171 | 8896 | static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type) |
6d77dbfc | 8897 | { |
19238e75 AL |
8898 | struct kvm *kvm = vcpu->kvm; |
8899 | ||
6d77dbfc GN |
8900 | ++vcpu->stat.insn_emulation_fail; |
8901 | trace_kvm_emulate_insn_failed(vcpu); | |
e2366171 | 8902 | |
42cbf068 SC |
8903 | if (emulation_type & EMULTYPE_VMWARE_GP) { |
8904 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
60fc3d02 | 8905 | return 1; |
42cbf068 | 8906 | } |
e2366171 | 8907 | |
19238e75 AL |
8908 | if (kvm->arch.exit_on_emulation_error || |
8909 | (emulation_type & EMULTYPE_SKIP)) { | |
e615e355 | 8910 | prepare_emulation_ctxt_failure_exit(vcpu); |
60fc3d02 | 8911 | return 0; |
738fece4 SC |
8912 | } |
8913 | ||
22da61c9 SC |
8914 | kvm_queue_exception(vcpu, UD_VECTOR); |
8915 | ||
89604647 | 8916 | if (!is_guest_mode(vcpu) && kvm_x86_call(get_cpl)(vcpu) == 0) { |
e615e355 | 8917 | prepare_emulation_ctxt_failure_exit(vcpu); |
60fc3d02 | 8918 | return 0; |
fc3a9157 | 8919 | } |
e2366171 | 8920 | |
60fc3d02 | 8921 | return 1; |
6d77dbfc GN |
8922 | } |
8923 | ||
2876624e SC |
8924 | static bool kvm_unprotect_and_retry_on_failure(struct kvm_vcpu *vcpu, |
8925 | gpa_t cr2_or_gpa, | |
8926 | int emulation_type) | |
a6f177ef | 8927 | { |
92daa48b | 8928 | if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF)) |
991eebf9 GN |
8929 | return false; |
8930 | ||
93c05d3e | 8931 | /* |
515c18a6 SC |
8932 | * If the failed instruction faulted on an access to page tables that |
8933 | * are used to translate any part of the instruction, KVM can't resolve | |
8934 | * the issue by unprotecting the gfn, as zapping the shadow page will | |
8935 | * result in the instruction taking a !PRESENT page fault and thus put | |
8936 | * the vCPU into an infinite loop of page faults. E.g. KVM will create | |
8937 | * a SPTE and write-protect the gfn to resolve the !PRESENT fault, and | |
8938 | * then zap the SPTE to unprotect the gfn, and then do it all over | |
8939 | * again. Report the error to userspace. | |
93c05d3e | 8940 | */ |
19ab2c8b SC |
8941 | if (emulation_type & EMULTYPE_WRITE_PF_TO_SP) |
8942 | return false; | |
1cb3f3ae XG |
8943 | |
8944 | /* | |
515c18a6 SC |
8945 | * If emulation may have been triggered by a write to a shadowed page |
8946 | * table, unprotect the gfn (zap any relevant SPTEs) and re-enter the | |
8947 | * guest to let the CPU re-execute the instruction in the hope that the | |
8948 | * CPU can cleanly execute the instruction that KVM failed to emulate. | |
1cb3f3ae | 8949 | */ |
4df68566 | 8950 | __kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa, true); |
1cb3f3ae | 8951 | |
93c05d3e | 8952 | /* |
19ab2c8b SC |
8953 | * Retry even if _this_ vCPU didn't unprotect the gfn, as it's possible |
8954 | * all SPTEs were already zapped by a different task. The alternative | |
8955 | * is to report the error to userspace and likely terminate the guest, | |
8956 | * and the last_retry_{eip,addr} checks will prevent retrying the page | |
8957 | * fault indefinitely, i.e. there's nothing to lose by retrying. | |
93c05d3e | 8958 | */ |
1cb3f3ae XG |
8959 | return true; |
8960 | } | |
8961 | ||
716d51ab GN |
8962 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu); |
8963 | static int complete_emulated_pio(struct kvm_vcpu *vcpu); | |
8964 | ||
4a1e10d5 PB |
8965 | static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7, |
8966 | unsigned long *db) | |
8967 | { | |
8968 | u32 dr6 = 0; | |
8969 | int i; | |
8970 | u32 enable, rwlen; | |
8971 | ||
8972 | enable = dr7; | |
8973 | rwlen = dr7 >> 16; | |
8974 | for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4) | |
8975 | if ((enable & 3) && (rwlen & 15) == type && db[i] == addr) | |
8976 | dr6 |= (1 << i); | |
8977 | return dr6; | |
8978 | } | |
8979 | ||
120c2c4f | 8980 | static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu) |
663f4c61 PB |
8981 | { |
8982 | struct kvm_run *kvm_run = vcpu->run; | |
8983 | ||
c8401dda | 8984 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) { |
9a3ecd5e | 8985 | kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW; |
d5d260c5 | 8986 | kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu); |
c8401dda PB |
8987 | kvm_run->debug.arch.exception = DB_VECTOR; |
8988 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
60fc3d02 | 8989 | return 0; |
663f4c61 | 8990 | } |
120c2c4f | 8991 | kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS); |
60fc3d02 | 8992 | return 1; |
663f4c61 PB |
8993 | } |
8994 | ||
6affcbed KH |
8995 | int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu) |
8996 | { | |
89604647 | 8997 | unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); |
f8ea7c60 | 8998 | int r; |
6affcbed | 8999 | |
89604647 | 9000 | r = kvm_x86_call(skip_emulated_instruction)(vcpu); |
60fc3d02 | 9001 | if (unlikely(!r)) |
f8ea7c60 | 9002 | return 0; |
c8401dda | 9003 | |
f19063b1 | 9004 | kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); |
9cd803d4 | 9005 | |
c8401dda PB |
9006 | /* |
9007 | * rflags is the old, "raw" value of the flags. The new value has | |
9008 | * not been saved yet. | |
9009 | * | |
9010 | * This is correct even for TF set by the guest, because "the | |
9011 | * processor will not generate this exception after the instruction | |
9012 | * that sets the TF flag". | |
9013 | */ | |
9014 | if (unlikely(rflags & X86_EFLAGS_TF)) | |
120c2c4f | 9015 | r = kvm_vcpu_do_singlestep(vcpu); |
60fc3d02 | 9016 | return r; |
6affcbed KH |
9017 | } |
9018 | EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction); | |
9019 | ||
baf67ca8 | 9020 | static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu) |
4a1e10d5 | 9021 | { |
baf67ca8 SC |
9022 | if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF) |
9023 | return true; | |
9024 | ||
9025 | /* | |
c092fc87 SC |
9026 | * Intel compatible CPUs inhibit code #DBs when MOV/POP SS blocking is |
9027 | * active, but AMD compatible CPUs do not. | |
baf67ca8 | 9028 | */ |
c092fc87 SC |
9029 | if (!guest_cpuid_is_intel_compatible(vcpu)) |
9030 | return false; | |
9031 | ||
89604647 | 9032 | return kvm_x86_call(get_interrupt_shadow)(vcpu) & KVM_X86_SHADOW_INT_MOV_SS; |
baf67ca8 SC |
9033 | } |
9034 | ||
750f8fcb SC |
9035 | static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu, |
9036 | int emulation_type, int *r) | |
4a1e10d5 | 9037 | { |
750f8fcb SC |
9038 | WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE); |
9039 | ||
9040 | /* | |
9041 | * Do not check for code breakpoints if hardware has already done the | |
9042 | * checks, as inferred from the emulation type. On NO_DECODE and SKIP, | |
9043 | * the instruction has passed all exception checks, and all intercepted | |
9044 | * exceptions that trigger emulation have lower priority than code | |
9045 | * breakpoints, i.e. the fact that the intercepted exception occurred | |
9046 | * means any code breakpoints have already been serviced. | |
9047 | * | |
9048 | * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as | |
9049 | * hardware has checked the RIP of the magic prefix, but not the RIP of | |
9050 | * the instruction being emulated. The intent of forced emulation is | |
9051 | * to behave as if KVM intercepted the instruction without an exception | |
9052 | * and without a prefix. | |
9053 | */ | |
9054 | if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP | | |
9055 | EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF)) | |
9056 | return false; | |
9057 | ||
4a1e10d5 PB |
9058 | if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) && |
9059 | (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) { | |
82b32774 NA |
9060 | struct kvm_run *kvm_run = vcpu->run; |
9061 | unsigned long eip = kvm_get_linear_rip(vcpu); | |
9062 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
9063 | vcpu->arch.guest_debug_dr7, |
9064 | vcpu->arch.eff_db); | |
9065 | ||
9066 | if (dr6 != 0) { | |
9a3ecd5e | 9067 | kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW; |
82b32774 | 9068 | kvm_run->debug.arch.pc = eip; |
4a1e10d5 PB |
9069 | kvm_run->debug.arch.exception = DB_VECTOR; |
9070 | kvm_run->exit_reason = KVM_EXIT_DEBUG; | |
60fc3d02 | 9071 | *r = 0; |
4a1e10d5 PB |
9072 | return true; |
9073 | } | |
9074 | } | |
9075 | ||
4161a569 | 9076 | if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) && |
baf67ca8 | 9077 | !kvm_is_code_breakpoint_inhibited(vcpu)) { |
82b32774 NA |
9078 | unsigned long eip = kvm_get_linear_rip(vcpu); |
9079 | u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0, | |
4a1e10d5 PB |
9080 | vcpu->arch.dr7, |
9081 | vcpu->arch.db); | |
9082 | ||
9083 | if (dr6 != 0) { | |
4d5523cf | 9084 | kvm_queue_exception_p(vcpu, DB_VECTOR, dr6); |
60fc3d02 | 9085 | *r = 1; |
4a1e10d5 PB |
9086 | return true; |
9087 | } | |
9088 | } | |
9089 | ||
9090 | return false; | |
9091 | } | |
9092 | ||
04789b66 LA |
9093 | static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt) |
9094 | { | |
2d7921c4 AM |
9095 | switch (ctxt->opcode_len) { |
9096 | case 1: | |
9097 | switch (ctxt->b) { | |
9098 | case 0xe4: /* IN */ | |
9099 | case 0xe5: | |
9100 | case 0xec: | |
9101 | case 0xed: | |
9102 | case 0xe6: /* OUT */ | |
9103 | case 0xe7: | |
9104 | case 0xee: | |
9105 | case 0xef: | |
9106 | case 0x6c: /* INS */ | |
9107 | case 0x6d: | |
9108 | case 0x6e: /* OUTS */ | |
9109 | case 0x6f: | |
9110 | return true; | |
9111 | } | |
9112 | break; | |
9113 | case 2: | |
9114 | switch (ctxt->b) { | |
9115 | case 0x33: /* RDPMC */ | |
9116 | return true; | |
9117 | } | |
9118 | break; | |
04789b66 LA |
9119 | } |
9120 | ||
9121 | return false; | |
9122 | } | |
9123 | ||
4aa2691d | 9124 | /* |
fee060cd SC |
9125 | * Decode an instruction for emulation. The caller is responsible for handling |
9126 | * code breakpoints. Note, manually detecting code breakpoints is unnecessary | |
9127 | * (and wrong) when emulating on an intercepted fault-like exception[*], as | |
9128 | * code breakpoints have higher priority and thus have already been done by | |
9129 | * hardware. | |
9130 | * | |
9131 | * [*] Except #MC, which is higher priority, but KVM should never emulate in | |
9132 | * response to a machine check. | |
4aa2691d WH |
9133 | */ |
9134 | int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type, | |
9135 | void *insn, int insn_len) | |
9136 | { | |
4aa2691d | 9137 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
fee060cd | 9138 | int r; |
4aa2691d WH |
9139 | |
9140 | init_emulate_ctxt(vcpu); | |
9141 | ||
b35491e6 | 9142 | r = x86_decode_insn(ctxt, insn, insn_len, emulation_type); |
4aa2691d WH |
9143 | |
9144 | trace_kvm_emulate_insn_start(vcpu); | |
9145 | ++vcpu->stat.insn_emulation; | |
9146 | ||
9147 | return r; | |
9148 | } | |
9149 | EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction); | |
9150 | ||
736c291c SC |
9151 | int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, |
9152 | int emulation_type, void *insn, int insn_len) | |
bbd9b64e | 9153 | { |
95cb2295 | 9154 | int r; |
c9b8b07c | 9155 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
7ae441ea | 9156 | bool writeback = true; |
09e3e2a1 | 9157 | |
41e6e367 SC |
9158 | if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && |
9159 | (WARN_ON_ONCE(is_guest_mode(vcpu)) || | |
9160 | WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))) | |
9161 | emulation_type &= ~EMULTYPE_ALLOW_RETRY_PF; | |
9162 | ||
aeb904f6 | 9163 | r = kvm_check_emulate_insn(vcpu, emulation_type, insn, insn_len); |
00682995 SC |
9164 | if (r != X86EMUL_CONTINUE) { |
9165 | if (r == X86EMUL_RETRY_INSTR || r == X86EMUL_PROPAGATE_FAULT) | |
9166 | return 1; | |
9167 | ||
704fc602 IO |
9168 | if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, |
9169 | emulation_type)) | |
9170 | return 1; | |
9171 | ||
5c9cfc48 IO |
9172 | if (r == X86EMUL_UNHANDLEABLE_VECTORING) { |
9173 | kvm_prepare_event_vectoring_exit(vcpu, cr2_or_gpa); | |
9174 | return 0; | |
9175 | } | |
9176 | ||
00682995 SC |
9177 | WARN_ON_ONCE(r != X86EMUL_UNHANDLEABLE); |
9178 | return handle_emulation_failure(vcpu, emulation_type); | |
9179 | } | |
bbd9b64e | 9180 | |
c595ceee PB |
9181 | vcpu->arch.l1tf_flush_l1d = true; |
9182 | ||
571008da | 9183 | if (!(emulation_type & EMULTYPE_NO_DECODE)) { |
4aa2691d | 9184 | kvm_clear_exception_queue(vcpu); |
4a1e10d5 | 9185 | |
fee060cd SC |
9186 | /* |
9187 | * Return immediately if RIP hits a code breakpoint, such #DBs | |
9188 | * are fault-like and are higher priority than any faults on | |
9189 | * the code fetch itself. | |
9190 | */ | |
750f8fcb | 9191 | if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r)) |
fee060cd SC |
9192 | return r; |
9193 | ||
4aa2691d WH |
9194 | r = x86_decode_emulated_instruction(vcpu, emulation_type, |
9195 | insn, insn_len); | |
1d2887e2 | 9196 | if (r != EMULATION_OK) { |
b4000606 | 9197 | if ((emulation_type & EMULTYPE_TRAP_UD) || |
c83fad65 SC |
9198 | (emulation_type & EMULTYPE_TRAP_UD_FORCED)) { |
9199 | kvm_queue_exception(vcpu, UD_VECTOR); | |
60fc3d02 | 9200 | return 1; |
c83fad65 | 9201 | } |
2876624e SC |
9202 | if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, |
9203 | emulation_type)) | |
60fc3d02 | 9204 | return 1; |
17122c06 SC |
9205 | |
9206 | if (ctxt->have_exception && | |
9207 | !(emulation_type & EMULTYPE_SKIP)) { | |
c8848cee JD |
9208 | /* |
9209 | * #UD should result in just EMULATION_FAILED, and trap-like | |
9210 | * exception should not be encountered during decode. | |
9211 | */ | |
9212 | WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR || | |
9213 | exception_type(ctxt->exception.vector) == EXCPT_TRAP); | |
8530a79c | 9214 | inject_emulated_exception(vcpu); |
60fc3d02 | 9215 | return 1; |
8530a79c | 9216 | } |
e2366171 | 9217 | return handle_emulation_failure(vcpu, emulation_type); |
bbd9b64e CO |
9218 | } |
9219 | } | |
9220 | ||
42cbf068 SC |
9221 | if ((emulation_type & EMULTYPE_VMWARE_GP) && |
9222 | !is_vmware_backdoor_opcode(ctxt)) { | |
9223 | kvm_queue_exception_e(vcpu, GP_VECTOR, 0); | |
60fc3d02 | 9224 | return 1; |
42cbf068 | 9225 | } |
04789b66 | 9226 | |
1957aa63 | 9227 | /* |
906fa904 HW |
9228 | * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for |
9229 | * use *only* by vendor callbacks for kvm_skip_emulated_instruction(). | |
9230 | * The caller is responsible for updating interruptibility state and | |
9231 | * injecting single-step #DBs. | |
1957aa63 | 9232 | */ |
ba8afb6b | 9233 | if (emulation_type & EMULTYPE_SKIP) { |
5e854864 SC |
9234 | if (ctxt->mode != X86EMUL_MODE_PROT64) |
9235 | ctxt->eip = (u32)ctxt->_eip; | |
9236 | else | |
9237 | ctxt->eip = ctxt->_eip; | |
9238 | ||
906fa904 HW |
9239 | if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) { |
9240 | r = 1; | |
9241 | goto writeback; | |
9242 | } | |
9243 | ||
5e854864 | 9244 | kvm_rip_write(vcpu, ctxt->eip); |
bb663c7a NA |
9245 | if (ctxt->eflags & X86_EFLAGS_RF) |
9246 | kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF); | |
60fc3d02 | 9247 | return 1; |
ba8afb6b GN |
9248 | } |
9249 | ||
2df354e3 SC |
9250 | /* |
9251 | * If emulation was caused by a write-protection #PF on a non-page_table | |
9252 | * writing instruction, try to unprotect the gfn, i.e. zap shadow pages, | |
9253 | * and retry the instruction, as the vCPU is likely no longer using the | |
9254 | * gfn as a page table. | |
9255 | */ | |
9256 | if ((emulation_type & EMULTYPE_ALLOW_RETRY_PF) && | |
9257 | !x86_page_table_writing_insn(ctxt) && | |
9258 | kvm_mmu_unprotect_gfn_and_retry(vcpu, cr2_or_gpa)) | |
60fc3d02 | 9259 | return 1; |
1cb3f3ae | 9260 | |
7ae441ea | 9261 | /* this is needed for vmware backdoor interface to work since it |
4d2179e1 | 9262 | changes registers values during IO operation */ |
7ae441ea GN |
9263 | if (vcpu->arch.emulate_regs_need_sync_from_vcpu) { |
9264 | vcpu->arch.emulate_regs_need_sync_from_vcpu = false; | |
dd856efa | 9265 | emulator_invalidate_register_cache(ctxt); |
7ae441ea | 9266 | } |
4d2179e1 | 9267 | |
5cd21917 | 9268 | restart: |
92daa48b SC |
9269 | if (emulation_type & EMULTYPE_PF) { |
9270 | /* Save the faulting GPA (cr2) in the address field */ | |
9271 | ctxt->exception.address = cr2_or_gpa; | |
9272 | ||
9273 | /* With shadow page tables, cr2 contains a GVA or nGPA. */ | |
347a0d0d | 9274 | if (vcpu->arch.mmu->root_role.direct) { |
744e699c SC |
9275 | ctxt->gpa_available = true; |
9276 | ctxt->gpa_val = cr2_or_gpa; | |
92daa48b SC |
9277 | } |
9278 | } else { | |
9279 | /* Sanitize the address out of an abundance of paranoia. */ | |
9280 | ctxt->exception.address = 0; | |
9281 | } | |
0f89b207 | 9282 | |
9d74191a | 9283 | r = x86_emulate_insn(ctxt); |
bbd9b64e | 9284 | |
775fde86 | 9285 | if (r == EMULATION_INTERCEPTED) |
60fc3d02 | 9286 | return 1; |
775fde86 | 9287 | |
d2ddd1c4 | 9288 | if (r == EMULATION_FAILED) { |
2876624e SC |
9289 | if (kvm_unprotect_and_retry_on_failure(vcpu, cr2_or_gpa, |
9290 | emulation_type)) | |
60fc3d02 | 9291 | return 1; |
c3cd7ffa | 9292 | |
e2366171 | 9293 | return handle_emulation_failure(vcpu, emulation_type); |
bbd9b64e CO |
9294 | } |
9295 | ||
9d74191a | 9296 | if (ctxt->have_exception) { |
0dc90226 SC |
9297 | WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write); |
9298 | vcpu->mmio_needed = false; | |
60fc3d02 | 9299 | r = 1; |
7709aba8 | 9300 | inject_emulated_exception(vcpu); |
d2ddd1c4 | 9301 | } else if (vcpu->arch.pio.count) { |
0912c977 PB |
9302 | if (!vcpu->arch.pio.in) { |
9303 | /* FIXME: return into emulator if single-stepping. */ | |
3457e419 | 9304 | vcpu->arch.pio.count = 0; |
0912c977 | 9305 | } else { |
7ae441ea | 9306 | writeback = false; |
716d51ab GN |
9307 | vcpu->arch.complete_userspace_io = complete_emulated_pio; |
9308 | } | |
60fc3d02 | 9309 | r = 0; |
7ae441ea | 9310 | } else if (vcpu->mmio_needed) { |
bc8a0aaf SC |
9311 | ++vcpu->stat.mmio_exits; |
9312 | ||
7ae441ea GN |
9313 | if (!vcpu->mmio_is_write) |
9314 | writeback = false; | |
60fc3d02 | 9315 | r = 0; |
716d51ab | 9316 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; |
adbfb12d HW |
9317 | } else if (vcpu->arch.complete_userspace_io) { |
9318 | writeback = false; | |
9319 | r = 0; | |
7ae441ea | 9320 | } else if (r == EMULATION_RESTART) |
5cd21917 | 9321 | goto restart; |
d2ddd1c4 | 9322 | else |
60fc3d02 | 9323 | r = 1; |
f850e2e6 | 9324 | |
906fa904 | 9325 | writeback: |
7ae441ea | 9326 | if (writeback) { |
89604647 | 9327 | unsigned long rflags = kvm_x86_call(get_rflags)(vcpu); |
9d74191a | 9328 | toggle_interruptibility(vcpu, ctxt->interruptibility); |
7ae441ea | 9329 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
5623f751 SC |
9330 | |
9331 | /* | |
9332 | * Note, EXCPT_DB is assumed to be fault-like as the emulator | |
9333 | * only supports code breakpoints and general detect #DB, both | |
9334 | * of which are fault-like. | |
9335 | */ | |
38827dbd | 9336 | if (!ctxt->have_exception || |
75ee23b3 | 9337 | exception_type(ctxt->exception.vector) == EXCPT_TRAP) { |
f19063b1 | 9338 | kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.INSTRUCTIONS_RETIRED); |
018d70ff | 9339 | if (ctxt->is_branch) |
f19063b1 | 9340 | kvm_pmu_trigger_event(vcpu, kvm_pmu_eventsel.BRANCH_INSTRUCTIONS_RETIRED); |
75ee23b3 | 9341 | kvm_rip_write(vcpu, ctxt->eip); |
384dea1c | 9342 | if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP))) |
120c2c4f | 9343 | r = kvm_vcpu_do_singlestep(vcpu); |
89604647 | 9344 | kvm_x86_call(update_emulated_instruction)(vcpu); |
38827dbd | 9345 | __kvm_set_rflags(vcpu, ctxt->eflags); |
75ee23b3 | 9346 | } |
6addfc42 PB |
9347 | |
9348 | /* | |
9349 | * For STI, interrupts are shadowed; so KVM_REQ_EVENT will | |
9350 | * do nothing, and it will be requested again as soon as | |
9351 | * the shadow expires. But we still need to check here, | |
9352 | * because POPF has no interrupt shadow. | |
9353 | */ | |
9354 | if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF)) | |
9355 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7ae441ea GN |
9356 | } else |
9357 | vcpu->arch.emulate_regs_need_sync_to_vcpu = true; | |
e85d28f8 GN |
9358 | |
9359 | return r; | |
de7d789a | 9360 | } |
c60658d1 SC |
9361 | |
9362 | int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type) | |
9363 | { | |
9364 | return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0); | |
9365 | } | |
9366 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction); | |
9367 | ||
9368 | int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu, | |
9369 | void *insn, int insn_len) | |
9370 | { | |
9371 | return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len); | |
9372 | } | |
9373 | EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer); | |
de7d789a | 9374 | |
8764ed55 SC |
9375 | static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu) |
9376 | { | |
9377 | vcpu->arch.pio.count = 0; | |
9378 | return 1; | |
9379 | } | |
9380 | ||
45def77e SC |
9381 | static int complete_fast_pio_out(struct kvm_vcpu *vcpu) |
9382 | { | |
9383 | vcpu->arch.pio.count = 0; | |
9384 | ||
e9628b01 | 9385 | if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) |
45def77e SC |
9386 | return 1; |
9387 | ||
9388 | return kvm_skip_emulated_instruction(vcpu); | |
9389 | } | |
9390 | ||
dca7f128 SC |
9391 | static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size, |
9392 | unsigned short port) | |
de7d789a | 9393 | { |
de3cd117 | 9394 | unsigned long val = kvm_rax_read(vcpu); |
2e3bb4d8 SC |
9395 | int ret = emulator_pio_out(vcpu, size, port, &val, 1); |
9396 | ||
8764ed55 SC |
9397 | if (ret) |
9398 | return ret; | |
45def77e | 9399 | |
8764ed55 SC |
9400 | /* |
9401 | * Workaround userspace that relies on old KVM behavior of %rip being | |
9402 | * incremented prior to exiting to userspace to handle "OUT 0x7e". | |
9403 | */ | |
9404 | if (port == 0x7e && | |
9405 | kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) { | |
9406 | vcpu->arch.complete_userspace_io = | |
9407 | complete_fast_pio_out_port_0x7e; | |
9408 | kvm_skip_emulated_instruction(vcpu); | |
9409 | } else { | |
e9628b01 | 9410 | vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); |
45def77e SC |
9411 | vcpu->arch.complete_userspace_io = complete_fast_pio_out; |
9412 | } | |
8764ed55 | 9413 | return 0; |
de7d789a | 9414 | } |
de7d789a | 9415 | |
8370c3d0 TL |
9416 | static int complete_fast_pio_in(struct kvm_vcpu *vcpu) |
9417 | { | |
9418 | unsigned long val; | |
9419 | ||
9420 | /* We should only ever be called with arch.pio.count equal to 1 */ | |
9421 | BUG_ON(vcpu->arch.pio.count != 1); | |
9422 | ||
e9628b01 | 9423 | if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.cui_linear_rip))) { |
45def77e SC |
9424 | vcpu->arch.pio.count = 0; |
9425 | return 1; | |
9426 | } | |
9427 | ||
8370c3d0 | 9428 | /* For size less than 4 we merge, else we zero extend */ |
de3cd117 | 9429 | val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0; |
8370c3d0 | 9430 | |
7a6177d6 | 9431 | complete_emulator_pio_in(vcpu, &val); |
de3cd117 | 9432 | kvm_rax_write(vcpu, val); |
8370c3d0 | 9433 | |
45def77e | 9434 | return kvm_skip_emulated_instruction(vcpu); |
8370c3d0 TL |
9435 | } |
9436 | ||
dca7f128 SC |
9437 | static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size, |
9438 | unsigned short port) | |
8370c3d0 TL |
9439 | { |
9440 | unsigned long val; | |
9441 | int ret; | |
9442 | ||
9443 | /* For size less than 4 we merge, else we zero extend */ | |
de3cd117 | 9444 | val = (size < 4) ? kvm_rax_read(vcpu) : 0; |
8370c3d0 | 9445 | |
2e3bb4d8 | 9446 | ret = emulator_pio_in(vcpu, size, port, &val, 1); |
8370c3d0 | 9447 | if (ret) { |
de3cd117 | 9448 | kvm_rax_write(vcpu, val); |
8370c3d0 TL |
9449 | return ret; |
9450 | } | |
9451 | ||
e9628b01 | 9452 | vcpu->arch.cui_linear_rip = kvm_get_linear_rip(vcpu); |
8370c3d0 TL |
9453 | vcpu->arch.complete_userspace_io = complete_fast_pio_in; |
9454 | ||
9455 | return 0; | |
9456 | } | |
dca7f128 SC |
9457 | |
9458 | int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in) | |
9459 | { | |
45def77e | 9460 | int ret; |
dca7f128 | 9461 | |
dca7f128 | 9462 | if (in) |
45def77e | 9463 | ret = kvm_fast_pio_in(vcpu, size, port); |
dca7f128 | 9464 | else |
45def77e SC |
9465 | ret = kvm_fast_pio_out(vcpu, size, port); |
9466 | return ret && kvm_skip_emulated_instruction(vcpu); | |
dca7f128 SC |
9467 | } |
9468 | EXPORT_SYMBOL_GPL(kvm_fast_pio); | |
8370c3d0 | 9469 | |
251a5fd6 | 9470 | static int kvmclock_cpu_down_prep(unsigned int cpu) |
8cfdc000 | 9471 | { |
0a3aee0d | 9472 | __this_cpu_write(cpu_tsc_khz, 0); |
251a5fd6 | 9473 | return 0; |
8cfdc000 ZA |
9474 | } |
9475 | ||
9476 | static void tsc_khz_changed(void *data) | |
c8076604 | 9477 | { |
8cfdc000 | 9478 | struct cpufreq_freqs *freq = data; |
392a5324 | 9479 | unsigned long khz; |
8cfdc000 | 9480 | |
3ebcbd22 AR |
9481 | WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC)); |
9482 | ||
8cfdc000 ZA |
9483 | if (data) |
9484 | khz = freq->new; | |
3ebcbd22 | 9485 | else |
8cfdc000 ZA |
9486 | khz = cpufreq_quick_get(raw_smp_processor_id()); |
9487 | if (!khz) | |
9488 | khz = tsc_khz; | |
0a3aee0d | 9489 | __this_cpu_write(cpu_tsc_khz, khz); |
c8076604 GH |
9490 | } |
9491 | ||
5fa4ec9c | 9492 | #ifdef CONFIG_X86_64 |
0092e434 VK |
9493 | static void kvm_hyperv_tsc_notifier(void) |
9494 | { | |
0092e434 | 9495 | struct kvm *kvm; |
0092e434 VK |
9496 | int cpu; |
9497 | ||
0d9ce162 | 9498 | mutex_lock(&kvm_lock); |
0092e434 VK |
9499 | list_for_each_entry(kvm, &vm_list, vm_list) |
9500 | kvm_make_mclock_inprogress_request(kvm); | |
9501 | ||
6b6fcd28 | 9502 | /* no guest entries from this point */ |
0092e434 VK |
9503 | hyperv_stop_tsc_emulation(); |
9504 | ||
9505 | /* TSC frequency always matches when on Hyper-V */ | |
3ebcbd22 AR |
9506 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
9507 | for_each_present_cpu(cpu) | |
9508 | per_cpu(cpu_tsc_khz, cpu) = tsc_khz; | |
9509 | } | |
938c8745 | 9510 | kvm_caps.max_guest_tsc_khz = tsc_khz; |
0092e434 VK |
9511 | |
9512 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
869b4421 | 9513 | __kvm_start_pvclock_update(kvm); |
0092e434 | 9514 | pvclock_update_vm_gtod_copy(kvm); |
6b6fcd28 | 9515 | kvm_end_pvclock_update(kvm); |
0092e434 | 9516 | } |
6b6fcd28 | 9517 | |
0d9ce162 | 9518 | mutex_unlock(&kvm_lock); |
0092e434 | 9519 | } |
5fa4ec9c | 9520 | #endif |
0092e434 | 9521 | |
df24014a | 9522 | static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu) |
c8076604 | 9523 | { |
c8076604 GH |
9524 | struct kvm *kvm; |
9525 | struct kvm_vcpu *vcpu; | |
46808a4c MZ |
9526 | int send_ipi = 0; |
9527 | unsigned long i; | |
c8076604 | 9528 | |
8cfdc000 ZA |
9529 | /* |
9530 | * We allow guests to temporarily run on slowing clocks, | |
9531 | * provided we notify them after, or to run on accelerating | |
9532 | * clocks, provided we notify them before. Thus time never | |
9533 | * goes backwards. | |
9534 | * | |
9535 | * However, we have a problem. We can't atomically update | |
9536 | * the frequency of a given CPU from this function; it is | |
9537 | * merely a notifier, which can be called from any CPU. | |
9538 | * Changing the TSC frequency at arbitrary points in time | |
9539 | * requires a recomputation of local variables related to | |
9540 | * the TSC for each VCPU. We must flag these local variables | |
9541 | * to be updated and be sure the update takes place with the | |
9542 | * new frequency before any guests proceed. | |
9543 | * | |
9544 | * Unfortunately, the combination of hotplug CPU and frequency | |
9545 | * change creates an intractable locking scenario; the order | |
9546 | * of when these callouts happen is undefined with respect to | |
9547 | * CPU hotplug, and they can race with each other. As such, | |
9548 | * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is | |
9549 | * undefined; you can actually have a CPU frequency change take | |
9550 | * place in between the computation of X and the setting of the | |
9551 | * variable. To protect against this problem, all updates of | |
9552 | * the per_cpu tsc_khz variable are done in an interrupt | |
9553 | * protected IPI, and all callers wishing to update the value | |
9554 | * must wait for a synchronous IPI to complete (which is trivial | |
9555 | * if the caller is on the CPU already). This establishes the | |
9556 | * necessary total order on variable updates. | |
9557 | * | |
9558 | * Note that because a guest time update may take place | |
9559 | * anytime after the setting of the VCPU's request bit, the | |
9560 | * correct TSC value must be set before the request. However, | |
9561 | * to ensure the update actually makes it to any guest which | |
9562 | * starts running in hardware virtualization between the set | |
9563 | * and the acquisition of the spinlock, we must also ping the | |
9564 | * CPU after setting the request bit. | |
9565 | * | |
9566 | */ | |
9567 | ||
df24014a | 9568 | smp_call_function_single(cpu, tsc_khz_changed, freq, 1); |
c8076604 | 9569 | |
0d9ce162 | 9570 | mutex_lock(&kvm_lock); |
c8076604 | 9571 | list_for_each_entry(kvm, &vm_list, vm_list) { |
988a2cae | 9572 | kvm_for_each_vcpu(i, vcpu, kvm) { |
df24014a | 9573 | if (vcpu->cpu != cpu) |
c8076604 | 9574 | continue; |
c285545f | 9575 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0d9ce162 | 9576 | if (vcpu->cpu != raw_smp_processor_id()) |
8cfdc000 | 9577 | send_ipi = 1; |
c8076604 GH |
9578 | } |
9579 | } | |
0d9ce162 | 9580 | mutex_unlock(&kvm_lock); |
c8076604 GH |
9581 | |
9582 | if (freq->old < freq->new && send_ipi) { | |
9583 | /* | |
9584 | * We upscale the frequency. Must make the guest | |
9585 | * doesn't see old kvmclock values while running with | |
9586 | * the new frequency, otherwise we risk the guest sees | |
9587 | * time go backwards. | |
9588 | * | |
9589 | * In case we update the frequency for another cpu | |
9590 | * (which might be in guest context) send an interrupt | |
9591 | * to kick the cpu out of guest context. Next time | |
9592 | * guest context is entered kvmclock will be updated, | |
9593 | * so the guest will not see stale values. | |
9594 | */ | |
df24014a | 9595 | smp_call_function_single(cpu, tsc_khz_changed, freq, 1); |
c8076604 | 9596 | } |
df24014a VK |
9597 | } |
9598 | ||
9599 | static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val, | |
9600 | void *data) | |
9601 | { | |
9602 | struct cpufreq_freqs *freq = data; | |
9603 | int cpu; | |
9604 | ||
9605 | if (val == CPUFREQ_PRECHANGE && freq->old > freq->new) | |
9606 | return 0; | |
9607 | if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new) | |
9608 | return 0; | |
9609 | ||
9610 | for_each_cpu(cpu, freq->policy->cpus) | |
9611 | __kvmclock_cpufreq_notifier(freq, cpu); | |
9612 | ||
c8076604 GH |
9613 | return 0; |
9614 | } | |
9615 | ||
9616 | static struct notifier_block kvmclock_cpufreq_notifier_block = { | |
8cfdc000 ZA |
9617 | .notifier_call = kvmclock_cpufreq_notifier |
9618 | }; | |
9619 | ||
251a5fd6 | 9620 | static int kvmclock_cpu_online(unsigned int cpu) |
8cfdc000 | 9621 | { |
251a5fd6 SAS |
9622 | tsc_khz_changed(NULL); |
9623 | return 0; | |
8cfdc000 ZA |
9624 | } |
9625 | ||
b820cc0c ZA |
9626 | static void kvm_timer_init(void) |
9627 | { | |
b820cc0c | 9628 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
741e511b SC |
9629 | max_tsc_khz = tsc_khz; |
9630 | ||
9631 | if (IS_ENABLED(CONFIG_CPU_FREQ)) { | |
9632 | struct cpufreq_policy *policy; | |
9633 | int cpu; | |
9634 | ||
9635 | cpu = get_cpu(); | |
9636 | policy = cpufreq_cpu_get(cpu); | |
9637 | if (policy) { | |
9638 | if (policy->cpuinfo.max_freq) | |
9639 | max_tsc_khz = policy->cpuinfo.max_freq; | |
9640 | cpufreq_cpu_put(policy); | |
9641 | } | |
9642 | put_cpu(); | |
9a11997e | 9643 | } |
b820cc0c ZA |
9644 | cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block, |
9645 | CPUFREQ_TRANSITION_NOTIFIER); | |
460dd42e | 9646 | |
3ebcbd22 AR |
9647 | cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online", |
9648 | kvmclock_cpu_online, kvmclock_cpu_down_prep); | |
9649 | } | |
b820cc0c ZA |
9650 | } |
9651 | ||
16e8d74d MT |
9652 | #ifdef CONFIG_X86_64 |
9653 | static void pvclock_gtod_update_fn(struct work_struct *work) | |
9654 | { | |
d828199e | 9655 | struct kvm *kvm; |
d828199e | 9656 | struct kvm_vcpu *vcpu; |
46808a4c | 9657 | unsigned long i; |
d828199e | 9658 | |
0d9ce162 | 9659 | mutex_lock(&kvm_lock); |
d828199e MT |
9660 | list_for_each_entry(kvm, &vm_list, vm_list) |
9661 | kvm_for_each_vcpu(i, vcpu, kvm) | |
105b21bb | 9662 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
d828199e | 9663 | atomic_set(&kvm_guest_has_master_clock, 0); |
0d9ce162 | 9664 | mutex_unlock(&kvm_lock); |
16e8d74d MT |
9665 | } |
9666 | ||
9667 | static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn); | |
9668 | ||
3f804f6d TG |
9669 | /* |
9670 | * Indirection to move queue_work() out of the tk_core.seq write held | |
9671 | * region to prevent possible deadlocks against time accessors which | |
9672 | * are invoked with work related locks held. | |
9673 | */ | |
9674 | static void pvclock_irq_work_fn(struct irq_work *w) | |
9675 | { | |
9676 | queue_work(system_long_wq, &pvclock_gtod_work); | |
9677 | } | |
9678 | ||
9679 | static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn); | |
9680 | ||
16e8d74d MT |
9681 | /* |
9682 | * Notification about pvclock gtod data update. | |
9683 | */ | |
9684 | static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused, | |
9685 | void *priv) | |
9686 | { | |
9687 | struct pvclock_gtod_data *gtod = &pvclock_gtod_data; | |
9688 | struct timekeeper *tk = priv; | |
9689 | ||
9690 | update_pvclock_gtod(tk); | |
9691 | ||
3f804f6d TG |
9692 | /* |
9693 | * Disable master clock if host does not trust, or does not use, | |
9694 | * TSC based clocksource. Delegate queue_work() to irq_work as | |
9695 | * this is invoked with tk_core.seq write held. | |
16e8d74d | 9696 | */ |
b0c39dc6 | 9697 | if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) && |
16e8d74d | 9698 | atomic_read(&kvm_guest_has_master_clock) != 0) |
3f804f6d | 9699 | irq_work_queue(&pvclock_irq_work); |
16e8d74d MT |
9700 | return 0; |
9701 | } | |
9702 | ||
9703 | static struct notifier_block pvclock_gtod_notifier = { | |
9704 | .notifier_call = pvclock_gtod_notify, | |
9705 | }; | |
9706 | #endif | |
9707 | ||
b7483387 SC |
9708 | static inline void kvm_ops_update(struct kvm_x86_init_ops *ops) |
9709 | { | |
9710 | memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops)); | |
9711 | ||
9712 | #define __KVM_X86_OP(func) \ | |
9713 | static_call_update(kvm_x86_##func, kvm_x86_ops.func); | |
9714 | #define KVM_X86_OP(func) \ | |
9715 | WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func) | |
9716 | #define KVM_X86_OP_OPTIONAL __KVM_X86_OP | |
9717 | #define KVM_X86_OP_OPTIONAL_RET0(func) \ | |
9718 | static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \ | |
9719 | (void *)__static_call_return0); | |
9720 | #include <asm/kvm-x86-ops.h> | |
9721 | #undef __KVM_X86_OP | |
9722 | ||
9723 | kvm_pmu_ops_update(ops->pmu_ops); | |
9724 | } | |
9725 | ||
d83420c2 | 9726 | static int kvm_x86_check_processor_compatibility(void) |
3045c483 | 9727 | { |
e4aa7f88 CG |
9728 | int cpu = smp_processor_id(); |
9729 | struct cpuinfo_x86 *c = &cpu_data(cpu); | |
9730 | ||
9731 | /* | |
9732 | * Compatibility checks are done when loading KVM and when enabling | |
9733 | * hardware, e.g. during CPU hotplug, to ensure all online CPUs are | |
9734 | * compatible, i.e. KVM should never perform a compatibility check on | |
9735 | * an offline CPU. | |
9736 | */ | |
9737 | WARN_ON(!cpu_online(cpu)); | |
3045c483 | 9738 | |
3045c483 SC |
9739 | if (__cr4_reserved_bits(cpu_has, c) != |
9740 | __cr4_reserved_bits(cpu_has, &boot_cpu_data)) | |
9741 | return -EIO; | |
9742 | ||
89604647 | 9743 | return kvm_x86_call(check_processor_compatibility)(); |
3045c483 SC |
9744 | } |
9745 | ||
d83420c2 | 9746 | static void kvm_x86_check_cpu_compat(void *ret) |
3045c483 | 9747 | { |
d83420c2 | 9748 | *(int *)ret = kvm_x86_check_processor_compatibility(); |
3045c483 SC |
9749 | } |
9750 | ||
955997e8 | 9751 | int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops) |
043405e1 | 9752 | { |
94bda2f4 | 9753 | u64 host_pat; |
3045c483 | 9754 | int r, cpu; |
f8c16bba | 9755 | |
955997e8 NB |
9756 | guard(mutex)(&vendor_module_lock); |
9757 | ||
0617a769 | 9758 | if (kvm_x86_ops.enable_virtualization_cpu) { |
8d20bd63 | 9759 | pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name); |
82ffad2d | 9760 | return -EEXIST; |
f8c16bba ZX |
9761 | } |
9762 | ||
b666a4b6 MO |
9763 | /* |
9764 | * KVM explicitly assumes that the guest has an FPU and | |
9765 | * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the | |
9766 | * vCPU's FPU state as a fxregs_state struct. | |
9767 | */ | |
9768 | if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) { | |
8d20bd63 | 9769 | pr_err("inadequate fpu\n"); |
82ffad2d | 9770 | return -EOPNOTSUPP; |
b666a4b6 MO |
9771 | } |
9772 | ||
5e17b2ee TG |
9773 | if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
9774 | pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n"); | |
82ffad2d | 9775 | return -EOPNOTSUPP; |
b666a4b6 MO |
9776 | } |
9777 | ||
94bda2f4 SC |
9778 | /* |
9779 | * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes | |
9780 | * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something | |
9781 | * other than WB. Note, EPT doesn't utilize the PAT, but don't bother | |
9782 | * with an exception. PAT[0] is set to WB on RESET and also by the | |
9783 | * kernel, i.e. failure indicates a kernel bug or broken firmware. | |
9784 | */ | |
6fe22aba | 9785 | if (rdmsrq_safe(MSR_IA32_CR_PAT, &host_pat) || |
94bda2f4 | 9786 | (host_pat & GENMASK(2, 0)) != 6) { |
8d20bd63 | 9787 | pr_err("host PAT[0] is not WB\n"); |
82ffad2d | 9788 | return -EIO; |
94bda2f4 | 9789 | } |
b666a4b6 | 9790 | |
40269c03 SC |
9791 | memset(&kvm_caps, 0, sizeof(kvm_caps)); |
9792 | ||
c9b8b07c SC |
9793 | x86_emulator_cache = kvm_alloc_emulator_cache(); |
9794 | if (!x86_emulator_cache) { | |
8d20bd63 | 9795 | pr_err("failed to allocate cache for x86 emulator\n"); |
82ffad2d | 9796 | return -ENOMEM; |
c9b8b07c SC |
9797 | } |
9798 | ||
7e34fbd0 SC |
9799 | user_return_msrs = alloc_percpu(struct kvm_user_return_msrs); |
9800 | if (!user_return_msrs) { | |
8d20bd63 | 9801 | pr_err("failed to allocate percpu kvm_user_return_msrs\n"); |
82ffad2d | 9802 | r = -ENOMEM; |
c9b8b07c | 9803 | goto out_free_x86_emulator_cache; |
013f6a5d | 9804 | } |
e5fda4bb | 9805 | kvm_nr_uret_msrs = 0; |
013f6a5d | 9806 | |
1d0e8480 | 9807 | r = kvm_mmu_vendor_module_init(); |
97db56ce | 9808 | if (r) |
013f6a5d | 9809 | goto out_free_percpu; |
97db56ce | 9810 | |
c43ad190 | 9811 | kvm_caps.supported_vm_types = BIT(KVM_X86_DEFAULT_VM); |
555485bd | 9812 | kvm_caps.supported_mce_cap = MCG_CTL_P | MCG_SER_P; |
c43ad190 | 9813 | |
cfc48181 | 9814 | if (boot_cpu_has(X86_FEATURE_XSAVE)) { |
7974c064 SC |
9815 | kvm_host.xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK); |
9816 | kvm_caps.supported_xcr0 = kvm_host.xcr0 & KVM_SUPPORTED_XCR0; | |
cfc48181 | 9817 | } |
bd7d5362 | 9818 | kvm_caps.supported_quirks = KVM_X86_VALID_QUIRKS; |
a4dae7c7 | 9819 | kvm_caps.inapplicable_quirks = KVM_X86_CONDITIONAL_QUIRKS; |
2acf923e | 9820 | |
6fe22aba | 9821 | rdmsrq_safe(MSR_EFER, &kvm_host.efer); |
b7483387 SC |
9822 | |
9823 | if (boot_cpu_has(X86_FEATURE_XSAVES)) | |
c435e608 | 9824 | rdmsrq(MSR_IA32_XSS, kvm_host.xss); |
b7483387 | 9825 | |
8911ce66 | 9826 | kvm_init_pmu_capability(ops->pmu_ops); |
b7483387 | 9827 | |
a2fd5d02 | 9828 | if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) |
c435e608 | 9829 | rdmsrq(MSR_IA32_ARCH_CAPABILITIES, kvm_host.arch_capabilities); |
a2fd5d02 | 9830 | |
b7483387 SC |
9831 | r = ops->hardware_setup(); |
9832 | if (r != 0) | |
9833 | goto out_mmu_exit; | |
9834 | ||
459074cf SC |
9835 | enable_device_posted_irqs &= enable_apicv && |
9836 | irq_remapping_cap(IRQ_POSTING_CAP); | |
9837 | ||
d83420c2 SC |
9838 | kvm_ops_update(ops); |
9839 | ||
3045c483 | 9840 | for_each_online_cpu(cpu) { |
d83420c2 | 9841 | smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1); |
3045c483 | 9842 | if (r < 0) |
d83420c2 | 9843 | goto out_unwind_ops; |
3045c483 SC |
9844 | } |
9845 | ||
b7483387 SC |
9846 | /* |
9847 | * Point of no return! DO NOT add error paths below this point unless | |
9848 | * absolutely necessary, as most operations from this point forward | |
9849 | * require unwinding. | |
9850 | */ | |
1935542a SC |
9851 | kvm_timer_init(); |
9852 | ||
0c5f81da | 9853 | if (pi_inject_timer == -1) |
04d4e665 | 9854 | pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER); |
16e8d74d MT |
9855 | #ifdef CONFIG_X86_64 |
9856 | pvclock_gtod_register_notifier(&pvclock_gtod_notifier); | |
0092e434 | 9857 | |
5fa4ec9c | 9858 | if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
0092e434 | 9859 | set_hv_tscchange_cb(kvm_hyperv_tsc_notifier); |
16e8d74d MT |
9860 | #endif |
9861 | ||
b7483387 SC |
9862 | kvm_register_perf_callbacks(ops->handle_intel_pt_intr); |
9863 | ||
2a955c4d PB |
9864 | if (IS_ENABLED(CONFIG_KVM_SW_PROTECTED_VM) && tdp_mmu_enabled) |
9865 | kvm_caps.supported_vm_types |= BIT(KVM_X86_SW_PROTECTED_VM); | |
9866 | ||
c9c1e20b YZ |
9867 | /* KVM always ignores guest PAT for shadow paging. */ |
9868 | if (!tdp_enabled) | |
9869 | kvm_caps.supported_quirks &= ~KVM_X86_QUIRK_IGNORE_GUEST_PAT; | |
9870 | ||
b7483387 SC |
9871 | if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES)) |
9872 | kvm_caps.supported_xss = 0; | |
9873 | ||
b7483387 SC |
9874 | if (kvm_caps.has_tsc_control) { |
9875 | /* | |
9876 | * Make sure the user can only configure tsc_khz values that | |
9877 | * fit into a signed integer. | |
9878 | * A min value is not calculated because it will always | |
9879 | * be 1 on all machines. | |
9880 | */ | |
9881 | u64 max = min(0x7fffffffULL, | |
9882 | __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz)); | |
9883 | kvm_caps.max_guest_tsc_khz = max; | |
9884 | } | |
9885 | kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits; | |
b1932c5c | 9886 | kvm_init_msr_lists(); |
f8c16bba | 9887 | return 0; |
56c6d28a | 9888 | |
d83420c2 | 9889 | out_unwind_ops: |
0617a769 | 9890 | kvm_x86_ops.enable_virtualization_cpu = NULL; |
89604647 | 9891 | kvm_x86_call(hardware_unsetup)(); |
b7483387 SC |
9892 | out_mmu_exit: |
9893 | kvm_mmu_vendor_module_exit(); | |
013f6a5d | 9894 | out_free_percpu: |
7e34fbd0 | 9895 | free_percpu(user_return_msrs); |
c9b8b07c SC |
9896 | out_free_x86_emulator_cache: |
9897 | kmem_cache_destroy(x86_emulator_cache); | |
56c6d28a | 9898 | return r; |
043405e1 | 9899 | } |
4f8396b9 | 9900 | EXPORT_SYMBOL_GPL(kvm_x86_vendor_init); |
8776e519 | 9901 | |
4f8396b9 | 9902 | void kvm_x86_vendor_exit(void) |
f8c16bba | 9903 | { |
b7483387 SC |
9904 | kvm_unregister_perf_callbacks(); |
9905 | ||
0092e434 | 9906 | #ifdef CONFIG_X86_64 |
5fa4ec9c | 9907 | if (hypervisor_is_type(X86_HYPER_MS_HYPERV)) |
0092e434 VK |
9908 | clear_hv_tscchange_cb(); |
9909 | #endif | |
cef84c30 | 9910 | kvm_lapic_exit(); |
647daca2 | 9911 | |
3ebcbd22 | 9912 | if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) { |
888d256e JK |
9913 | cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block, |
9914 | CPUFREQ_TRANSITION_NOTIFIER); | |
3ebcbd22 AR |
9915 | cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE); |
9916 | } | |
16e8d74d MT |
9917 | #ifdef CONFIG_X86_64 |
9918 | pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier); | |
3f804f6d | 9919 | irq_work_sync(&pvclock_irq_work); |
594b27e6 | 9920 | cancel_work_sync(&pvclock_gtod_work); |
16e8d74d | 9921 | #endif |
89604647 | 9922 | kvm_x86_call(hardware_unsetup)(); |
1d0e8480 | 9923 | kvm_mmu_vendor_module_exit(); |
7e34fbd0 | 9924 | free_percpu(user_return_msrs); |
dfdc0a71 | 9925 | kmem_cache_destroy(x86_emulator_cache); |
b59b153d | 9926 | #ifdef CONFIG_KVM_XEN |
c462f859 | 9927 | static_key_deferred_flush(&kvm_xen_enabled); |
7d6bbebb | 9928 | WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key)); |
b59b153d | 9929 | #endif |
3af4a9e6 | 9930 | mutex_lock(&vendor_module_lock); |
41786cc5 | 9931 | kvm_x86_ops.enable_virtualization_cpu = NULL; |
3af4a9e6 | 9932 | mutex_unlock(&vendor_module_lock); |
647daca2 | 9933 | } |
4f8396b9 | 9934 | EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit); |
647daca2 | 9935 | |
8ef81a9a | 9936 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
9937 | static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr, |
9938 | unsigned long clock_type) | |
9939 | { | |
9940 | struct kvm_clock_pairing clock_pairing; | |
899a31f5 | 9941 | struct timespec64 ts; |
80fbd89c | 9942 | u64 cycle; |
55dd00a7 MT |
9943 | int ret; |
9944 | ||
9945 | if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK) | |
9946 | return -KVM_EOPNOTSUPP; | |
9947 | ||
3a55f729 AR |
9948 | /* |
9949 | * When tsc is in permanent catchup mode guests won't be able to use | |
9950 | * pvclock_read_retry loop to get consistent view of pvclock | |
9951 | */ | |
9952 | if (vcpu->arch.tsc_always_catchup) | |
9953 | return -KVM_EOPNOTSUPP; | |
9954 | ||
7ca7f3b9 | 9955 | if (!kvm_get_walltime_and_clockread(&ts, &cycle)) |
55dd00a7 MT |
9956 | return -KVM_EOPNOTSUPP; |
9957 | ||
9958 | clock_pairing.sec = ts.tv_sec; | |
9959 | clock_pairing.nsec = ts.tv_nsec; | |
9960 | clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle); | |
9961 | clock_pairing.flags = 0; | |
bcbfbd8e | 9962 | memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad)); |
55dd00a7 MT |
9963 | |
9964 | ret = 0; | |
9965 | if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing, | |
9966 | sizeof(struct kvm_clock_pairing))) | |
9967 | ret = -KVM_EFAULT; | |
9968 | ||
9969 | return ret; | |
9970 | } | |
8ef81a9a | 9971 | #endif |
55dd00a7 | 9972 | |
6aef266c SV |
9973 | /* |
9974 | * kvm_pv_kick_cpu_op: Kick a vcpu. | |
9975 | * | |
9976 | * @apicid - apicid of vcpu to be kicked. | |
9977 | */ | |
9d68c6f6 | 9978 | static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid) |
6aef266c | 9979 | { |
8a414f94 VK |
9980 | /* |
9981 | * All other fields are unused for APIC_DM_REMRD, but may be consumed by | |
9982 | * common code, e.g. for tracing. Defer initialization to the compiler. | |
9983 | */ | |
9984 | struct kvm_lapic_irq lapic_irq = { | |
9985 | .delivery_mode = APIC_DM_REMRD, | |
9986 | .dest_mode = APIC_DEST_PHYSICAL, | |
9987 | .shorthand = APIC_DEST_NOSHORT, | |
9988 | .dest_id = apicid, | |
9989 | }; | |
6aef266c | 9990 | |
795a149e | 9991 | kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL); |
6aef266c SV |
9992 | } |
9993 | ||
4e19c36f SS |
9994 | bool kvm_apicv_activated(struct kvm *kvm) |
9995 | { | |
9996 | return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0); | |
9997 | } | |
9998 | EXPORT_SYMBOL_GPL(kvm_apicv_activated); | |
9999 | ||
d5fa597e ML |
10000 | bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu) |
10001 | { | |
10002 | ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons); | |
89604647 WW |
10003 | ulong vcpu_reasons = |
10004 | kvm_x86_call(vcpu_get_apicv_inhibit_reasons)(vcpu); | |
d5fa597e ML |
10005 | |
10006 | return (vm_reasons | vcpu_reasons) == 0; | |
10007 | } | |
10008 | EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated); | |
4f4c4a3e SC |
10009 | |
10010 | static void set_or_clear_apicv_inhibit(unsigned long *inhibits, | |
10011 | enum kvm_apicv_inhibit reason, bool set) | |
10012 | { | |
69148cce AJ |
10013 | const struct trace_print_flags apicv_inhibits[] = { APICV_INHIBIT_REASONS }; |
10014 | ||
10015 | BUILD_BUG_ON(ARRAY_SIZE(apicv_inhibits) != NR_APICV_INHIBIT_REASONS); | |
10016 | ||
4f4c4a3e SC |
10017 | if (set) |
10018 | __set_bit(reason, inhibits); | |
10019 | else | |
10020 | __clear_bit(reason, inhibits); | |
10021 | ||
10022 | trace_kvm_apicv_inhibit_changed(reason, set, *inhibits); | |
10023 | } | |
10024 | ||
4651fc56 | 10025 | static void kvm_apicv_init(struct kvm *kvm) |
4e19c36f | 10026 | { |
6982b34c | 10027 | enum kvm_apicv_inhibit reason = enable_apicv ? APICV_INHIBIT_REASON_ABSENT : |
f9925721 | 10028 | APICV_INHIBIT_REASON_DISABLED; |
4f4c4a3e | 10029 | |
6982b34c | 10030 | set_or_clear_apicv_inhibit(&kvm->arch.apicv_inhibit_reasons, reason, true); |
4f4c4a3e | 10031 | |
6982b34c | 10032 | init_rwsem(&kvm->arch.apicv_update_lock); |
4e19c36f | 10033 | } |
4e19c36f | 10034 | |
4a7132ef | 10035 | static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id) |
71506297 WL |
10036 | { |
10037 | struct kvm_vcpu *target = NULL; | |
10038 | struct kvm_apic_map *map; | |
10039 | ||
4a7132ef WL |
10040 | vcpu->stat.directed_yield_attempted++; |
10041 | ||
72b268a8 WL |
10042 | if (single_task_running()) |
10043 | goto no_yield; | |
10044 | ||
71506297 | 10045 | rcu_read_lock(); |
4a7132ef | 10046 | map = rcu_dereference(vcpu->kvm->arch.apic_map); |
71506297 WL |
10047 | |
10048 | if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id]) | |
10049 | target = map->phys_map[dest_id]->vcpu; | |
10050 | ||
10051 | rcu_read_unlock(); | |
10052 | ||
4a7132ef WL |
10053 | if (!target || !READ_ONCE(target->ready)) |
10054 | goto no_yield; | |
10055 | ||
a1fa4cbd WL |
10056 | /* Ignore requests to yield to self */ |
10057 | if (vcpu == target) | |
10058 | goto no_yield; | |
10059 | ||
4a7132ef WL |
10060 | if (kvm_vcpu_yield_to(target) <= 0) |
10061 | goto no_yield; | |
10062 | ||
10063 | vcpu->stat.directed_yield_successful++; | |
10064 | ||
10065 | no_yield: | |
10066 | return; | |
71506297 WL |
10067 | } |
10068 | ||
0dbb1123 AK |
10069 | static int complete_hypercall_exit(struct kvm_vcpu *vcpu) |
10070 | { | |
10071 | u64 ret = vcpu->run->hypercall.ret; | |
10072 | ||
9b42d1e8 | 10073 | if (!is_64_bit_hypercall(vcpu)) |
0dbb1123 AK |
10074 | ret = (u32)ret; |
10075 | kvm_rax_write(vcpu, ret); | |
0dbb1123 AK |
10076 | return kvm_skip_emulated_instruction(vcpu); |
10077 | } | |
10078 | ||
6162b373 | 10079 | int ____kvm_emulate_hypercall(struct kvm_vcpu *vcpu, int cpl, |
c50be1c9 | 10080 | int (*complete_hypercall)(struct kvm_vcpu *)) |
8776e519 | 10081 | { |
e913ef15 | 10082 | unsigned long ret; |
6162b373 BW |
10083 | unsigned long nr = kvm_rax_read(vcpu); |
10084 | unsigned long a0 = kvm_rbx_read(vcpu); | |
10085 | unsigned long a1 = kvm_rcx_read(vcpu); | |
10086 | unsigned long a2 = kvm_rdx_read(vcpu); | |
10087 | unsigned long a3 = kvm_rsi_read(vcpu); | |
10088 | int op_64_bit = is_64_bit_hypercall(vcpu); | |
8776e519 | 10089 | |
05a518b4 SC |
10090 | ++vcpu->stat.hypercalls; |
10091 | ||
229456fc | 10092 | trace_kvm_hypercall(nr, a0, a1, a2, a3); |
2714d1d3 | 10093 | |
a449c7aa | 10094 | if (!op_64_bit) { |
8776e519 HB |
10095 | nr &= 0xFFFFFFFF; |
10096 | a0 &= 0xFFFFFFFF; | |
10097 | a1 &= 0xFFFFFFFF; | |
10098 | a2 &= 0xFFFFFFFF; | |
10099 | a3 &= 0xFFFFFFFF; | |
10100 | } | |
10101 | ||
e913ef15 | 10102 | if (cpl) { |
07708c4a | 10103 | ret = -KVM_EPERM; |
696ca779 | 10104 | goto out; |
07708c4a JK |
10105 | } |
10106 | ||
66570e96 OU |
10107 | ret = -KVM_ENOSYS; |
10108 | ||
8776e519 | 10109 | switch (nr) { |
b93463aa AK |
10110 | case KVM_HC_VAPIC_POLL_IRQ: |
10111 | ret = 0; | |
10112 | break; | |
6aef266c | 10113 | case KVM_HC_KICK_CPU: |
66570e96 OU |
10114 | if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT)) |
10115 | break; | |
10116 | ||
9d68c6f6 | 10117 | kvm_pv_kick_cpu_op(vcpu->kvm, a1); |
4a7132ef | 10118 | kvm_sched_yield(vcpu, a1); |
6aef266c SV |
10119 | ret = 0; |
10120 | break; | |
8ef81a9a | 10121 | #ifdef CONFIG_X86_64 |
55dd00a7 MT |
10122 | case KVM_HC_CLOCK_PAIRING: |
10123 | ret = kvm_pv_clock_pairing(vcpu, a0, a1); | |
10124 | break; | |
1ed199a4 | 10125 | #endif |
4180bf1b | 10126 | case KVM_HC_SEND_IPI: |
66570e96 OU |
10127 | if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI)) |
10128 | break; | |
10129 | ||
4180bf1b WL |
10130 | ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit); |
10131 | break; | |
71506297 | 10132 | case KVM_HC_SCHED_YIELD: |
66570e96 OU |
10133 | if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD)) |
10134 | break; | |
10135 | ||
4a7132ef | 10136 | kvm_sched_yield(vcpu, a0); |
71506297 WL |
10137 | ret = 0; |
10138 | break; | |
0dbb1123 AK |
10139 | case KVM_HC_MAP_GPA_RANGE: { |
10140 | u64 gpa = a0, npages = a1, attrs = a2; | |
10141 | ||
10142 | ret = -KVM_ENOSYS; | |
c4c083d9 | 10143 | if (!user_exit_on_hypercall(vcpu->kvm, KVM_HC_MAP_GPA_RANGE)) |
0dbb1123 AK |
10144 | break; |
10145 | ||
10146 | if (!PAGE_ALIGNED(gpa) || !npages || | |
10147 | gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) { | |
10148 | ret = -KVM_EINVAL; | |
10149 | break; | |
10150 | } | |
10151 | ||
10152 | vcpu->run->exit_reason = KVM_EXIT_HYPERCALL; | |
10153 | vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE; | |
9a1dfeff PB |
10154 | /* |
10155 | * In principle this should have been -KVM_ENOSYS, but userspace (QEMU <=9.2) | |
10156 | * assumed that vcpu->run->hypercall.ret is never changed by KVM and thus that | |
10157 | * it was always zero on KVM_EXIT_HYPERCALL. Since KVM is now overwriting | |
10158 | * vcpu->run->hypercall.ret, ensuring that it is zero to not break QEMU. | |
10159 | */ | |
10160 | vcpu->run->hypercall.ret = 0; | |
0dbb1123 AK |
10161 | vcpu->run->hypercall.args[0] = gpa; |
10162 | vcpu->run->hypercall.args[1] = npages; | |
10163 | vcpu->run->hypercall.args[2] = attrs; | |
e65733b5 OU |
10164 | vcpu->run->hypercall.flags = 0; |
10165 | if (op_64_bit) | |
10166 | vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE; | |
10167 | ||
10168 | WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ); | |
d9eb86a6 | 10169 | vcpu->arch.complete_userspace_io = complete_hypercall; |
0dbb1123 AK |
10170 | return 0; |
10171 | } | |
8776e519 HB |
10172 | default: |
10173 | ret = -KVM_ENOSYS; | |
10174 | break; | |
10175 | } | |
e913ef15 | 10176 | |
696ca779 | 10177 | out: |
d9eb86a6 | 10178 | vcpu->run->hypercall.ret = ret; |
c50be1c9 | 10179 | return 1; |
e913ef15 | 10180 | } |
c50be1c9 | 10181 | EXPORT_SYMBOL_GPL(____kvm_emulate_hypercall); |
e913ef15 SC |
10182 | |
10183 | int kvm_emulate_hypercall(struct kvm_vcpu *vcpu) | |
10184 | { | |
e913ef15 SC |
10185 | if (kvm_xen_hypercall_enabled(vcpu->kvm)) |
10186 | return kvm_xen_hypercall(vcpu); | |
10187 | ||
10188 | if (kvm_hv_hypercall_enabled(vcpu)) | |
10189 | return kvm_hv_hypercall(vcpu); | |
10190 | ||
6162b373 | 10191 | return __kvm_emulate_hypercall(vcpu, kvm_x86_call(get_cpl)(vcpu), |
d9eb86a6 | 10192 | complete_hypercall_exit); |
8776e519 HB |
10193 | } |
10194 | EXPORT_SYMBOL_GPL(kvm_emulate_hypercall); | |
10195 | ||
b6785def | 10196 | static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt) |
8776e519 | 10197 | { |
d6aa1000 | 10198 | struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt); |
8776e519 | 10199 | char instruction[3]; |
5fdbf976 | 10200 | unsigned long rip = kvm_rip_read(vcpu); |
8776e519 | 10201 | |
f1a9761f OU |
10202 | /* |
10203 | * If the quirk is disabled, synthesize a #UD and let the guest pick up | |
10204 | * the pieces. | |
10205 | */ | |
10206 | if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) { | |
10207 | ctxt->exception.error_code_valid = false; | |
10208 | ctxt->exception.vector = UD_VECTOR; | |
10209 | ctxt->have_exception = true; | |
10210 | return X86EMUL_PROPAGATE_FAULT; | |
10211 | } | |
10212 | ||
89604647 | 10213 | kvm_x86_call(patch_hypercall)(vcpu, instruction); |
8776e519 | 10214 | |
ce2e852e DV |
10215 | return emulator_write_emulated(ctxt, rip, instruction, 3, |
10216 | &ctxt->exception); | |
8776e519 HB |
10217 | } |
10218 | ||
851ba692 | 10219 | static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu) |
b6c7a5dc | 10220 | { |
782d422b MG |
10221 | return vcpu->run->request_interrupt_window && |
10222 | likely(!pic_in_kernel(vcpu->kvm)); | |
b6c7a5dc HB |
10223 | } |
10224 | ||
8d25b7be | 10225 | /* Called within kvm->srcu read side. */ |
851ba692 | 10226 | static void post_kvm_run_save(struct kvm_vcpu *vcpu) |
b6c7a5dc | 10227 | { |
851ba692 AK |
10228 | struct kvm_run *kvm_run = vcpu->run; |
10229 | ||
89604647 | 10230 | kvm_run->if_flag = kvm_x86_call(get_if_flag)(vcpu); |
2d3ad1f4 | 10231 | kvm_run->cr8 = kvm_get_cr8(vcpu); |
d91060e3 | 10232 | kvm_run->apic_base = vcpu->arch.apic_base; |
f3d1436d | 10233 | |
127a457a MG |
10234 | kvm_run->ready_for_interrupt_injection = |
10235 | pic_in_kernel(vcpu->kvm) || | |
782d422b | 10236 | kvm_vcpu_ready_for_interrupt_injection(vcpu); |
15aad3be CQ |
10237 | |
10238 | if (is_smm(vcpu)) | |
10239 | kvm_run->flags |= KVM_RUN_X86_SMM; | |
85542adb TP |
10240 | if (is_guest_mode(vcpu)) |
10241 | kvm_run->flags |= KVM_RUN_X86_GUEST_MODE; | |
b6c7a5dc HB |
10242 | } |
10243 | ||
95ba8273 GN |
10244 | static void update_cr8_intercept(struct kvm_vcpu *vcpu) |
10245 | { | |
10246 | int max_irr, tpr; | |
10247 | ||
afaf0b2f | 10248 | if (!kvm_x86_ops.update_cr8_intercept) |
95ba8273 GN |
10249 | return; |
10250 | ||
bce87cce | 10251 | if (!lapic_in_kernel(vcpu)) |
88c808fd AK |
10252 | return; |
10253 | ||
ce0a58f4 | 10254 | if (vcpu->arch.apic->apicv_active) |
d62caabb AS |
10255 | return; |
10256 | ||
8db3baa2 GN |
10257 | if (!vcpu->arch.apic->vapic_addr) |
10258 | max_irr = kvm_lapic_find_highest_irr(vcpu); | |
10259 | else | |
10260 | max_irr = -1; | |
95ba8273 GN |
10261 | |
10262 | if (max_irr != -1) | |
10263 | max_irr >>= 4; | |
10264 | ||
10265 | tpr = kvm_lapic_get_cr8(vcpu); | |
10266 | ||
89604647 | 10267 | kvm_x86_call(update_cr8_intercept)(vcpu, tpr, max_irr); |
95ba8273 GN |
10268 | } |
10269 | ||
b97f0745 | 10270 | |
cb6a32c2 SC |
10271 | int kvm_check_nested_events(struct kvm_vcpu *vcpu) |
10272 | { | |
92e7d5c8 | 10273 | if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
cb6a32c2 SC |
10274 | kvm_x86_ops.nested_ops->triple_fault(vcpu); |
10275 | return 1; | |
10276 | } | |
10277 | ||
10278 | return kvm_x86_ops.nested_ops->check_events(vcpu); | |
10279 | } | |
10280 | ||
b97f0745 ML |
10281 | static void kvm_inject_exception(struct kvm_vcpu *vcpu) |
10282 | { | |
6c41468c SC |
10283 | /* |
10284 | * Suppress the error code if the vCPU is in Real Mode, as Real Mode | |
10285 | * exceptions don't report error codes. The presence of an error code | |
10286 | * is carried with the exception and only stripped when the exception | |
10287 | * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do | |
10288 | * report an error code despite the CPU being in Real Mode. | |
10289 | */ | |
10290 | vcpu->arch.exception.has_error_code &= is_protmode(vcpu); | |
10291 | ||
d4963e31 | 10292 | trace_kvm_inj_exception(vcpu->arch.exception.vector, |
a61d7c54 SC |
10293 | vcpu->arch.exception.has_error_code, |
10294 | vcpu->arch.exception.error_code, | |
10295 | vcpu->arch.exception.injected); | |
10296 | ||
89604647 | 10297 | kvm_x86_call(inject_exception)(vcpu); |
b97f0745 ML |
10298 | } |
10299 | ||
e746c1f1 SC |
10300 | /* |
10301 | * Check for any event (interrupt or exception) that is ready to be injected, | |
10302 | * and if there is at least one event, inject the event with the highest | |
10303 | * priority. This handles both "pending" events, i.e. events that have never | |
10304 | * been injected into the guest, and "injected" events, i.e. events that were | |
10305 | * injected as part of a previous VM-Enter, but weren't successfully delivered | |
10306 | * and need to be re-injected. | |
10307 | * | |
10308 | * Note, this is not guaranteed to be invoked on a guest instruction boundary, | |
10309 | * i.e. doesn't guarantee that there's an event window in the guest. KVM must | |
10310 | * be able to inject exceptions in the "middle" of an instruction, and so must | |
10311 | * also be able to re-inject NMIs and IRQs in the middle of an instruction. | |
10312 | * I.e. for exceptions and re-injected events, NOT invoking this on instruction | |
10313 | * boundaries is necessary and correct. | |
10314 | * | |
10315 | * For simplicity, KVM uses a single path to inject all events (except events | |
10316 | * that are injected directly from L1 to L2) and doesn't explicitly track | |
10317 | * instruction boundaries for asynchronous events. However, because VM-Exits | |
10318 | * that can occur during instruction execution typically result in KVM skipping | |
10319 | * the instruction or injecting an exception, e.g. instruction and exception | |
10320 | * intercepts, and because pending exceptions have higher priority than pending | |
10321 | * interrupts, KVM still honors instruction boundaries in most scenarios. | |
10322 | * | |
10323 | * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip | |
10324 | * the instruction or inject an exception, then KVM can incorrecty inject a new | |
54aa699e | 10325 | * asynchronous event if the event became pending after the CPU fetched the |
e746c1f1 SC |
10326 | * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation) |
10327 | * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be | |
10328 | * injected on the restarted instruction instead of being deferred until the | |
10329 | * instruction completes. | |
10330 | * | |
10331 | * In practice, this virtualization hole is unlikely to be observed by the | |
10332 | * guest, and even less likely to cause functional problems. To detect the | |
10333 | * hole, the guest would have to trigger an event on a side effect of an early | |
10334 | * phase of instruction execution, e.g. on the instruction fetch from memory. | |
10335 | * And for it to be a functional problem, the guest would need to depend on the | |
10336 | * ordering between that side effect, the instruction completing, _and_ the | |
10337 | * delivery of the asynchronous event. | |
10338 | */ | |
10339 | static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu, | |
10340 | bool *req_immediate_exit) | |
95ba8273 | 10341 | { |
28360f88 | 10342 | bool can_inject; |
b6b8a145 JK |
10343 | int r; |
10344 | ||
6c593b52 | 10345 | /* |
54aa699e | 10346 | * Process nested events first, as nested VM-Exit supersedes event |
6c593b52 SC |
10347 | * re-injection. If there's an event queued for re-injection, it will |
10348 | * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit. | |
10349 | */ | |
10350 | if (is_guest_mode(vcpu)) | |
10351 | r = kvm_check_nested_events(vcpu); | |
10352 | else | |
10353 | r = 0; | |
664f8e26 WL |
10354 | |
10355 | /* | |
6c593b52 SC |
10356 | * Re-inject exceptions and events *especially* if immediate entry+exit |
10357 | * to/from L2 is needed, as any event that has already been injected | |
10358 | * into L2 needs to complete its lifecycle before injecting a new event. | |
10359 | * | |
10360 | * Don't re-inject an NMI or interrupt if there is a pending exception. | |
10361 | * This collision arises if an exception occurred while vectoring the | |
10362 | * injected event, KVM intercepted said exception, and KVM ultimately | |
10363 | * determined the fault belongs to the guest and queues the exception | |
10364 | * for injection back into the guest. | |
10365 | * | |
10366 | * "Injected" interrupts can also collide with pending exceptions if | |
10367 | * userspace ignores the "ready for injection" flag and blindly queues | |
10368 | * an interrupt. In that case, prioritizing the exception is correct, | |
10369 | * as the exception "occurred" before the exit to userspace. Trap-like | |
10370 | * exceptions, e.g. most #DBs, have higher priority than interrupts. | |
10371 | * And while fault-like exceptions, e.g. #GP and #PF, are the lowest | |
10372 | * priority, they're only generated (pended) during instruction | |
10373 | * execution, and interrupts are recognized at instruction boundaries. | |
10374 | * Thus a pending fault-like exception means the fault occurred on the | |
10375 | * *previous* instruction and must be serviced prior to recognizing any | |
10376 | * new events in order to fully complete the previous instruction. | |
664f8e26 | 10377 | */ |
6c593b52 SC |
10378 | if (vcpu->arch.exception.injected) |
10379 | kvm_inject_exception(vcpu); | |
7709aba8 | 10380 | else if (kvm_is_exception_pending(vcpu)) |
6c593b52 SC |
10381 | ; /* see above */ |
10382 | else if (vcpu->arch.nmi_injected) | |
89604647 | 10383 | kvm_x86_call(inject_nmi)(vcpu); |
6c593b52 | 10384 | else if (vcpu->arch.interrupt.injected) |
89604647 | 10385 | kvm_x86_call(inject_irq)(vcpu, true); |
664f8e26 | 10386 | |
6c593b52 SC |
10387 | /* |
10388 | * Exceptions that morph to VM-Exits are handled above, and pending | |
10389 | * exceptions on top of injected exceptions that do not VM-Exit should | |
10390 | * either morph to #DF or, sadly, override the injected exception. | |
10391 | */ | |
3b82b8d7 SC |
10392 | WARN_ON_ONCE(vcpu->arch.exception.injected && |
10393 | vcpu->arch.exception.pending); | |
10394 | ||
1a680e35 | 10395 | /* |
6c593b52 SC |
10396 | * Bail if immediate entry+exit to/from the guest is needed to complete |
10397 | * nested VM-Enter or event re-injection so that a different pending | |
10398 | * event can be serviced (or if KVM needs to exit to userspace). | |
10399 | * | |
10400 | * Otherwise, continue processing events even if VM-Exit occurred. The | |
10401 | * VM-Exit will have cleared exceptions that were meant for L2, but | |
10402 | * there may now be events that can be injected into L1. | |
1a680e35 | 10403 | */ |
6c593b52 SC |
10404 | if (r < 0) |
10405 | goto out; | |
664f8e26 | 10406 | |
7709aba8 SC |
10407 | /* |
10408 | * A pending exception VM-Exit should either result in nested VM-Exit | |
10409 | * or force an immediate re-entry and exit to/from L2, and exception | |
10410 | * VM-Exits cannot be injected (flag should _never_ be set). | |
10411 | */ | |
10412 | WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected || | |
10413 | vcpu->arch.exception_vmexit.pending); | |
10414 | ||
28360f88 SC |
10415 | /* |
10416 | * New events, other than exceptions, cannot be injected if KVM needs | |
10417 | * to re-inject a previous event. See above comments on re-injecting | |
10418 | * for why pending exceptions get priority. | |
10419 | */ | |
10420 | can_inject = !kvm_event_needs_reinjection(vcpu); | |
664f8e26 | 10421 | |
b59bb7bd | 10422 | if (vcpu->arch.exception.pending) { |
5623f751 SC |
10423 | /* |
10424 | * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS | |
10425 | * value pushed on the stack. Trap-like exception and all #DBs | |
10426 | * leave RF as-is (KVM follows Intel's behavior in this regard; | |
10427 | * AMD states that code breakpoint #DBs excplitly clear RF=0). | |
10428 | * | |
10429 | * Note, most versions of Intel's SDM and AMD's APM incorrectly | |
10430 | * describe the behavior of General Detect #DBs, which are | |
10431 | * fault-like. They do _not_ set RF, a la code breakpoints. | |
10432 | */ | |
d4963e31 | 10433 | if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT) |
d6e8c854 NA |
10434 | __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) | |
10435 | X86_EFLAGS_RF); | |
10436 | ||
d4963e31 SC |
10437 | if (vcpu->arch.exception.vector == DB_VECTOR) { |
10438 | kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception); | |
f10c729f JM |
10439 | if (vcpu->arch.dr7 & DR7_GD) { |
10440 | vcpu->arch.dr7 &= ~DR7_GD; | |
10441 | kvm_update_dr7(vcpu); | |
10442 | } | |
6bdf0662 NA |
10443 | } |
10444 | ||
b97f0745 | 10445 | kvm_inject_exception(vcpu); |
a61d7c54 SC |
10446 | |
10447 | vcpu->arch.exception.pending = false; | |
10448 | vcpu->arch.exception.injected = true; | |
10449 | ||
c6b22f59 | 10450 | can_inject = false; |
1a680e35 LA |
10451 | } |
10452 | ||
61e5f69e ML |
10453 | /* Don't inject interrupts if the user asked to avoid doing so */ |
10454 | if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) | |
10455 | return 0; | |
10456 | ||
c9d40913 PB |
10457 | /* |
10458 | * Finally, inject interrupt events. If an event cannot be injected | |
10459 | * due to architectural conditions (e.g. IF=0) a window-open exit | |
10460 | * will re-request KVM_REQ_EVENT. Sometimes however an event is pending | |
10461 | * and can architecturally be injected, but we cannot do it right now: | |
10462 | * an interrupt could have arrived just now and we have to inject it | |
10463 | * as a vmexit, or there could already an event in the queue, which is | |
10464 | * indicated by can_inject. In that case we request an immediate exit | |
10465 | * in order to make progress and get back here for another iteration. | |
10466 | * The kvm_x86_ops hooks communicate this by returning -EBUSY. | |
10467 | */ | |
31e83e21 | 10468 | #ifdef CONFIG_KVM_SMM |
c9d40913 | 10469 | if (vcpu->arch.smi_pending) { |
89604647 WW |
10470 | r = can_inject ? kvm_x86_call(smi_allowed)(vcpu, true) : |
10471 | -EBUSY; | |
c9d40913 | 10472 | if (r < 0) |
a5f6909a | 10473 | goto out; |
c9d40913 PB |
10474 | if (r) { |
10475 | vcpu->arch.smi_pending = false; | |
10476 | ++vcpu->arch.smi_count; | |
10477 | enter_smm(vcpu); | |
10478 | can_inject = false; | |
10479 | } else | |
89604647 | 10480 | kvm_x86_call(enable_smi_window)(vcpu); |
c9d40913 | 10481 | } |
31e83e21 | 10482 | #endif |
c9d40913 PB |
10483 | |
10484 | if (vcpu->arch.nmi_pending) { | |
89604647 WW |
10485 | r = can_inject ? kvm_x86_call(nmi_allowed)(vcpu, true) : |
10486 | -EBUSY; | |
c9d40913 | 10487 | if (r < 0) |
a5f6909a | 10488 | goto out; |
c9d40913 PB |
10489 | if (r) { |
10490 | --vcpu->arch.nmi_pending; | |
10491 | vcpu->arch.nmi_injected = true; | |
89604647 | 10492 | kvm_x86_call(inject_nmi)(vcpu); |
c9d40913 | 10493 | can_inject = false; |
89604647 | 10494 | WARN_ON(kvm_x86_call(nmi_allowed)(vcpu, true) < 0); |
c9d40913 PB |
10495 | } |
10496 | if (vcpu->arch.nmi_pending) | |
89604647 | 10497 | kvm_x86_call(enable_nmi_window)(vcpu); |
c9d40913 | 10498 | } |
1a680e35 | 10499 | |
c9d40913 | 10500 | if (kvm_cpu_has_injectable_intr(vcpu)) { |
89604647 WW |
10501 | r = can_inject ? kvm_x86_call(interrupt_allowed)(vcpu, true) : |
10502 | -EBUSY; | |
c9d40913 | 10503 | if (r < 0) |
a5f6909a | 10504 | goto out; |
c9d40913 | 10505 | if (r) { |
bf672720 ML |
10506 | int irq = kvm_cpu_get_interrupt(vcpu); |
10507 | ||
10508 | if (!WARN_ON_ONCE(irq == -1)) { | |
10509 | kvm_queue_interrupt(vcpu, irq, false); | |
89604647 WW |
10510 | kvm_x86_call(inject_irq)(vcpu, false); |
10511 | WARN_ON(kvm_x86_call(interrupt_allowed)(vcpu, true) < 0); | |
bf672720 | 10512 | } |
c9d40913 PB |
10513 | } |
10514 | if (kvm_cpu_has_injectable_intr(vcpu)) | |
89604647 | 10515 | kvm_x86_call(enable_irq_window)(vcpu); |
95ba8273 | 10516 | } |
ee2cd4b7 | 10517 | |
c9d40913 | 10518 | if (is_guest_mode(vcpu) && |
5b4ac1a1 | 10519 | kvm_x86_ops.nested_ops->has_events && |
32f55e47 | 10520 | kvm_x86_ops.nested_ops->has_events(vcpu, true)) |
c9d40913 PB |
10521 | *req_immediate_exit = true; |
10522 | ||
dea0d5a2 SC |
10523 | /* |
10524 | * KVM must never queue a new exception while injecting an event; KVM | |
10525 | * is done emulating and should only propagate the to-be-injected event | |
10526 | * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an | |
10527 | * infinite loop as KVM will bail from VM-Enter to inject the pending | |
10528 | * exception and start the cycle all over. | |
10529 | * | |
10530 | * Exempt triple faults as they have special handling and won't put the | |
10531 | * vCPU into an infinite loop. Triple fault can be queued when running | |
10532 | * VMX without unrestricted guest, as that requires KVM to emulate Real | |
10533 | * Mode events (see kvm_inject_realmode_interrupt()). | |
10534 | */ | |
10535 | WARN_ON_ONCE(vcpu->arch.exception.pending || | |
10536 | vcpu->arch.exception_vmexit.pending); | |
a5f6909a | 10537 | return 0; |
c9d40913 | 10538 | |
a5f6909a JM |
10539 | out: |
10540 | if (r == -EBUSY) { | |
10541 | *req_immediate_exit = true; | |
10542 | r = 0; | |
10543 | } | |
10544 | return r; | |
95ba8273 GN |
10545 | } |
10546 | ||
7460fb4a AK |
10547 | static void process_nmi(struct kvm_vcpu *vcpu) |
10548 | { | |
400fee8c | 10549 | unsigned int limit; |
7460fb4a AK |
10550 | |
10551 | /* | |
400fee8c SC |
10552 | * x86 is limited to one NMI pending, but because KVM can't react to |
10553 | * incoming NMIs as quickly as bare metal, e.g. if the vCPU is | |
10554 | * scheduled out, KVM needs to play nice with two queued NMIs showing | |
10555 | * up at the same time. To handle this scenario, allow two NMIs to be | |
10556 | * (temporarily) pending so long as NMIs are not blocked and KVM is not | |
10557 | * waiting for a previous NMI injection to complete (which effectively | |
10558 | * blocks NMIs). KVM will immediately inject one of the two NMIs, and | |
10559 | * will request an NMI window to handle the second NMI. | |
7460fb4a | 10560 | */ |
89604647 | 10561 | if (kvm_x86_call(get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected) |
7460fb4a | 10562 | limit = 1; |
400fee8c SC |
10563 | else |
10564 | limit = 2; | |
7460fb4a | 10565 | |
fa4c027a SS |
10566 | /* |
10567 | * Adjust the limit to account for pending virtual NMIs, which aren't | |
10568 | * tracked in vcpu->arch.nmi_pending. | |
10569 | */ | |
89604647 | 10570 | if (kvm_x86_call(is_vnmi_pending)(vcpu)) |
fa4c027a | 10571 | limit--; |
7460fb4a AK |
10572 | |
10573 | vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0); | |
10574 | vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit); | |
2cb93173 | 10575 | |
fa4c027a | 10576 | if (vcpu->arch.nmi_pending && |
89604647 | 10577 | (kvm_x86_call(set_vnmi_pending)(vcpu))) |
fa4c027a SS |
10578 | vcpu->arch.nmi_pending--; |
10579 | ||
2cb93173 SC |
10580 | if (vcpu->arch.nmi_pending) |
10581 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
7460fb4a AK |
10582 | } |
10583 | ||
fa4c027a SS |
10584 | /* Return total number of NMIs pending injection to the VM */ |
10585 | int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu) | |
10586 | { | |
10587 | return vcpu->arch.nmi_pending + | |
89604647 | 10588 | kvm_x86_call(is_vnmi_pending)(vcpu); |
7460fb4a AK |
10589 | } |
10590 | ||
7ee30bc1 NNL |
10591 | void kvm_make_scan_ioapic_request_mask(struct kvm *kvm, |
10592 | unsigned long *vcpu_bitmap) | |
10593 | { | |
620b2438 | 10594 | kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap); |
7ee30bc1 NNL |
10595 | } |
10596 | ||
2860c4b1 PB |
10597 | void kvm_make_scan_ioapic_request(struct kvm *kvm) |
10598 | { | |
10599 | kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC); | |
10600 | } | |
10601 | ||
2008fab3 | 10602 | void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) |
8df14af4 | 10603 | { |
ce0a58f4 | 10604 | struct kvm_lapic *apic = vcpu->arch.apic; |
06ef8134 ML |
10605 | bool activate; |
10606 | ||
8df14af4 SS |
10607 | if (!lapic_in_kernel(vcpu)) |
10608 | return; | |
10609 | ||
187c8833 | 10610 | down_read(&vcpu->kvm->arch.apicv_update_lock); |
66c768d3 | 10611 | preempt_disable(); |
b0a1637f | 10612 | |
8fc9c7a3 SS |
10613 | /* Do not activate APICV when APIC is disabled */ |
10614 | activate = kvm_vcpu_apicv_activated(vcpu) && | |
10615 | (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED); | |
d5fa597e | 10616 | |
ce0a58f4 | 10617 | if (apic->apicv_active == activate) |
06ef8134 ML |
10618 | goto out; |
10619 | ||
ce0a58f4 | 10620 | apic->apicv_active = activate; |
8df14af4 | 10621 | kvm_apic_update_apicv(vcpu); |
89604647 | 10622 | kvm_x86_call(refresh_apicv_exec_ctrl)(vcpu); |
bca66dbc VK |
10623 | |
10624 | /* | |
10625 | * When APICv gets disabled, we may still have injected interrupts | |
10626 | * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was | |
10627 | * still active when the interrupt got accepted. Make sure | |
e746c1f1 | 10628 | * kvm_check_and_inject_events() is called to check for that. |
bca66dbc | 10629 | */ |
ce0a58f4 | 10630 | if (!apic->apicv_active) |
bca66dbc | 10631 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
b0a1637f | 10632 | |
06ef8134 | 10633 | out: |
66c768d3 | 10634 | preempt_enable(); |
187c8833 | 10635 | up_read(&vcpu->kvm->arch.apicv_update_lock); |
8df14af4 | 10636 | } |
2008fab3 SC |
10637 | EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv); |
10638 | ||
10639 | static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu) | |
10640 | { | |
10641 | if (!lapic_in_kernel(vcpu)) | |
10642 | return; | |
10643 | ||
10644 | /* | |
10645 | * Due to sharing page tables across vCPUs, the xAPIC memslot must be | |
10646 | * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but | |
10647 | * and hardware doesn't support x2APIC virtualization. E.g. some AMD | |
10648 | * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in | |
ef86fe03 KH |
10649 | * this case so that KVM can use the AVIC doorbell to inject interrupts |
10650 | * to running vCPUs, but KVM must not create SPTEs for the APIC base as | |
2008fab3 SC |
10651 | * the vCPU would incorrectly be able to access the vAPIC page via MMIO |
10652 | * despite being in x2APIC mode. For simplicity, inhibiting the APIC | |
10653 | * access page is sticky. | |
10654 | */ | |
10655 | if (apic_x2apic_mode(vcpu->arch.apic) && | |
10656 | kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization) | |
10657 | kvm_inhibit_apic_access_page(vcpu); | |
10658 | ||
10659 | __kvm_vcpu_update_apicv(vcpu); | |
10660 | } | |
8df14af4 | 10661 | |
320af55a SC |
10662 | void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, |
10663 | enum kvm_apicv_inhibit reason, bool set) | |
8df14af4 | 10664 | { |
b0a1637f | 10665 | unsigned long old, new; |
8e205a6b | 10666 | |
187c8833 SC |
10667 | lockdep_assert_held_write(&kvm->arch.apicv_update_lock); |
10668 | ||
b3f257a8 | 10669 | if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason))) |
ef8efd7a SS |
10670 | return; |
10671 | ||
b0a1637f ML |
10672 | old = new = kvm->arch.apicv_inhibit_reasons; |
10673 | ||
4f4c4a3e | 10674 | set_or_clear_apicv_inhibit(&new, reason, set); |
8e205a6b | 10675 | |
36222b11 | 10676 | if (!!old != !!new) { |
ee49a893 SC |
10677 | /* |
10678 | * Kick all vCPUs before setting apicv_inhibit_reasons to avoid | |
6e44d242 | 10679 | * false positives in the sanity check WARN in vcpu_enter_guest(). |
ee49a893 SC |
10680 | * This task will wait for all vCPUs to ack the kick IRQ before |
10681 | * updating apicv_inhibit_reasons, and all other vCPUs will | |
10682 | * block on acquiring apicv_update_lock so that vCPUs can't | |
6e44d242 | 10683 | * redo vcpu_enter_guest() without seeing the new inhibit state. |
ee49a893 SC |
10684 | * |
10685 | * Note, holding apicv_update_lock and taking it in the read | |
10686 | * side (handling the request) also prevents other vCPUs from | |
10687 | * servicing the request with a stale apicv_inhibit_reasons. | |
10688 | */ | |
36222b11 | 10689 | kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE); |
b0a1637f | 10690 | kvm->arch.apicv_inhibit_reasons = new; |
36222b11 ML |
10691 | if (new) { |
10692 | unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE); | |
074c0080 BG |
10693 | int idx = srcu_read_lock(&kvm->srcu); |
10694 | ||
36222b11 | 10695 | kvm_zap_gfn_range(kvm, gfn, gfn+1); |
074c0080 | 10696 | srcu_read_unlock(&kvm->srcu, idx); |
36222b11 | 10697 | } |
7491b7b2 | 10698 | } else { |
b0a1637f | 10699 | kvm->arch.apicv_inhibit_reasons = new; |
7491b7b2 | 10700 | } |
b0a1637f | 10701 | } |
7d611233 | 10702 | |
320af55a SC |
10703 | void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm, |
10704 | enum kvm_apicv_inhibit reason, bool set) | |
b0a1637f | 10705 | { |
f1575642 SC |
10706 | if (!enable_apicv) |
10707 | return; | |
10708 | ||
187c8833 | 10709 | down_write(&kvm->arch.apicv_update_lock); |
320af55a | 10710 | __kvm_set_or_clear_apicv_inhibit(kvm, reason, set); |
187c8833 | 10711 | up_write(&kvm->arch.apicv_update_lock); |
8df14af4 | 10712 | } |
320af55a | 10713 | EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit); |
8df14af4 | 10714 | |
3d81bc7e | 10715 | static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu) |
c7c9c56c | 10716 | { |
dcbd3e49 | 10717 | if (!kvm_apic_present(vcpu)) |
3d81bc7e | 10718 | return; |
c7c9c56c | 10719 | |
6308630b | 10720 | bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256); |
87e4951e | 10721 | vcpu->arch.highest_stale_pending_ioapic_eoi = -1; |
c7c9c56c | 10722 | |
89604647 | 10723 | kvm_x86_call(sync_pir_to_irr)(vcpu); |
f3ced000 | 10724 | |
b053b2ae | 10725 | if (irqchip_split(vcpu->kvm)) |
6308630b | 10726 | kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors); |
f3ced000 SC |
10727 | else if (ioapic_in_kernel(vcpu->kvm)) |
10728 | kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors); | |
e40ff1d6 LA |
10729 | |
10730 | if (is_guest_mode(vcpu)) | |
10731 | vcpu->arch.load_eoi_exitmap_pending = true; | |
10732 | else | |
10733 | kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu); | |
10734 | } | |
10735 | ||
10736 | static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu) | |
10737 | { | |
e40ff1d6 LA |
10738 | if (!kvm_apic_hw_enabled(vcpu->arch.apic)) |
10739 | return; | |
10740 | ||
b4f69df0 | 10741 | #ifdef CONFIG_KVM_HYPERV |
c5adbb3a | 10742 | if (to_hv_vcpu(vcpu)) { |
b4f69df0 VK |
10743 | u64 eoi_exit_bitmap[4]; |
10744 | ||
f2bc14b6 VK |
10745 | bitmap_or((ulong *)eoi_exit_bitmap, |
10746 | vcpu->arch.ioapic_handled_vectors, | |
10747 | to_hv_synic(vcpu)->vec_bitmap, 256); | |
89604647 | 10748 | kvm_x86_call(load_eoi_exitmap)(vcpu, eoi_exit_bitmap); |
c5adbb3a | 10749 | return; |
10750 | } | |
b4f69df0 | 10751 | #endif |
89604647 | 10752 | kvm_x86_call(load_eoi_exitmap)( |
c5adbb3a | 10753 | vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors); |
c7c9c56c YZ |
10754 | } |
10755 | ||
683412cc MZ |
10756 | void kvm_arch_guest_memory_reclaimed(struct kvm *kvm) |
10757 | { | |
89604647 | 10758 | kvm_x86_call(guest_memory_reclaimed)(kvm); |
683412cc MZ |
10759 | } |
10760 | ||
d081a343 | 10761 | static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu) |
4256f43f | 10762 | { |
35754c98 | 10763 | if (!lapic_in_kernel(vcpu)) |
f439ed27 PB |
10764 | return; |
10765 | ||
89604647 | 10766 | kvm_x86_call(set_apic_access_page_addr)(vcpu); |
4256f43f | 10767 | } |
4256f43f | 10768 | |
9357d939 | 10769 | /* |
8d25b7be | 10770 | * Called within kvm->srcu read side. |
362c698f | 10771 | * Returns 1 to let vcpu_run() continue the guest execution loop without |
9357d939 TY |
10772 | * exiting to the userspace. Otherwise, the value will be returned to the |
10773 | * userspace. | |
10774 | */ | |
851ba692 | 10775 | static int vcpu_enter_guest(struct kvm_vcpu *vcpu) |
b6c7a5dc HB |
10776 | { |
10777 | int r; | |
62a193ed MG |
10778 | bool req_int_win = |
10779 | dm_request_for_irq_injection(vcpu) && | |
10780 | kvm_cpu_accept_dm_intr(vcpu); | |
404d5d7b | 10781 | fastpath_t exit_fastpath; |
62a193ed | 10782 | |
730dca42 | 10783 | bool req_immediate_exit = false; |
b6c7a5dc | 10784 | |
2fa6e1e1 | 10785 | if (kvm_request_pending(vcpu)) { |
f4d31653 | 10786 | if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) { |
67369273 SC |
10787 | r = -EIO; |
10788 | goto out; | |
10789 | } | |
cf87ac73 GS |
10790 | |
10791 | if (kvm_dirty_ring_check_request(vcpu)) { | |
10792 | r = 0; | |
10793 | goto out; | |
10794 | } | |
10795 | ||
729c15c2 | 10796 | if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) { |
9a78e158 | 10797 | if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) { |
671ddc70 JM |
10798 | r = 0; |
10799 | goto out; | |
10800 | } | |
10801 | } | |
527d5cd7 SC |
10802 | if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu)) |
10803 | kvm_mmu_free_obsolete_roots(vcpu); | |
a8eeb04a | 10804 | if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu)) |
2f599714 | 10805 | __kvm_migrate_timers(vcpu); |
d828199e | 10806 | if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu)) |
6b6fcd28 | 10807 | kvm_update_masterclock(vcpu->kvm); |
0061d53d MT |
10808 | if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu)) |
10809 | kvm_gen_kvmclock_update(vcpu); | |
34c238a1 ZA |
10810 | if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) { |
10811 | r = kvm_guest_time_update(vcpu); | |
8cfdc000 ZA |
10812 | if (unlikely(r)) |
10813 | goto out; | |
10814 | } | |
a8eeb04a | 10815 | if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu)) |
4731d4c7 | 10816 | kvm_mmu_sync_roots(vcpu); |
727a7e27 PB |
10817 | if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu)) |
10818 | kvm_mmu_load_pgd(vcpu); | |
e94cea09 SC |
10819 | |
10820 | /* | |
10821 | * Note, the order matters here, as flushing "all" TLB entries | |
10822 | * also flushes the "current" TLB entries, i.e. servicing the | |
10823 | * flush "all" will clear any request to flush "current". | |
10824 | */ | |
10825 | if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) | |
7780938c | 10826 | kvm_vcpu_flush_tlb_all(vcpu); |
eeeb4f67 | 10827 | |
40e5f908 | 10828 | kvm_service_local_tlb_flush_requests(vcpu); |
eeeb4f67 | 10829 | |
0823570f VK |
10830 | /* |
10831 | * Fall back to a "full" guest flush if Hyper-V's precise | |
10832 | * flushing fails. Note, Hyper-V's flushing is per-vCPU, but | |
10833 | * the flushes are considered "remote" and not "local" because | |
10834 | * the requests can be initiated from other vCPUs. | |
10835 | */ | |
b4f69df0 | 10836 | #ifdef CONFIG_KVM_HYPERV |
0823570f VK |
10837 | if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) && |
10838 | kvm_hv_vcpu_flush_tlb(vcpu)) | |
adc43caa | 10839 | kvm_vcpu_flush_tlb_guest(vcpu); |
b4f69df0 | 10840 | #endif |
adc43caa | 10841 | |
a8eeb04a | 10842 | if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) { |
851ba692 | 10843 | vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS; |
b93463aa AK |
10844 | r = 0; |
10845 | goto out; | |
10846 | } | |
92e7d5c8 ML |
10847 | if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { |
10848 | if (is_guest_mode(vcpu)) | |
cb6a32c2 | 10849 | kvm_x86_ops.nested_ops->triple_fault(vcpu); |
92e7d5c8 ML |
10850 | |
10851 | if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) { | |
cb6a32c2 SC |
10852 | vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN; |
10853 | vcpu->mmio_needed = 0; | |
10854 | r = 0; | |
e542baf3 | 10855 | goto out; |
cb6a32c2 | 10856 | } |
71c4dfaf | 10857 | } |
af585b92 GN |
10858 | if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) { |
10859 | /* Page is swapped out. Do synthetic halt */ | |
10860 | vcpu->arch.apf.halted = true; | |
10861 | r = 1; | |
10862 | goto out; | |
10863 | } | |
c9aaa895 GC |
10864 | if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu)) |
10865 | record_steal_time(vcpu); | |
fad505b2 MZ |
10866 | if (kvm_check_request(KVM_REQ_PMU, vcpu)) |
10867 | kvm_pmu_handle_event(vcpu); | |
10868 | if (kvm_check_request(KVM_REQ_PMI, vcpu)) | |
10869 | kvm_pmu_deliver_pmi(vcpu); | |
cf7316d0 | 10870 | #ifdef CONFIG_KVM_SMM |
64d60670 PB |
10871 | if (kvm_check_request(KVM_REQ_SMI, vcpu)) |
10872 | process_smi(vcpu); | |
cf7316d0 | 10873 | #endif |
7460fb4a AK |
10874 | if (kvm_check_request(KVM_REQ_NMI, vcpu)) |
10875 | process_nmi(vcpu); | |
7543a635 SR |
10876 | if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) { |
10877 | BUG_ON(vcpu->arch.pending_ioapic_eoi > 255); | |
10878 | if (test_bit(vcpu->arch.pending_ioapic_eoi, | |
6308630b | 10879 | vcpu->arch.ioapic_handled_vectors)) { |
7543a635 SR |
10880 | vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI; |
10881 | vcpu->run->eoi.vector = | |
10882 | vcpu->arch.pending_ioapic_eoi; | |
10883 | r = 0; | |
10884 | goto out; | |
10885 | } | |
10886 | } | |
3d81bc7e YZ |
10887 | if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu)) |
10888 | vcpu_scan_ioapic(vcpu); | |
e40ff1d6 LA |
10889 | if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu)) |
10890 | vcpu_load_eoi_exitmap(vcpu); | |
4256f43f TC |
10891 | if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu)) |
10892 | kvm_vcpu_reload_apic_access_page(vcpu); | |
b4f69df0 | 10893 | #ifdef CONFIG_KVM_HYPERV |
2ce79189 AS |
10894 | if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) { |
10895 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
10896 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH; | |
d495f942 | 10897 | vcpu->run->system_event.ndata = 0; |
2ce79189 AS |
10898 | r = 0; |
10899 | goto out; | |
10900 | } | |
e516cebb AS |
10901 | if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) { |
10902 | vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT; | |
10903 | vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET; | |
d495f942 | 10904 | vcpu->run->system_event.ndata = 0; |
e516cebb AS |
10905 | r = 0; |
10906 | goto out; | |
10907 | } | |
db397571 | 10908 | if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) { |
9ff5e030 VK |
10909 | struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu); |
10910 | ||
db397571 | 10911 | vcpu->run->exit_reason = KVM_EXIT_HYPERV; |
9ff5e030 | 10912 | vcpu->run->hyperv = hv_vcpu->exit; |
db397571 AS |
10913 | r = 0; |
10914 | goto out; | |
10915 | } | |
f3b138c5 AS |
10916 | |
10917 | /* | |
10918 | * KVM_REQ_HV_STIMER has to be processed after | |
10919 | * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers | |
10920 | * depend on the guest clock being up-to-date | |
10921 | */ | |
1f4b34f8 AS |
10922 | if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu)) |
10923 | kvm_hv_process_stimers(vcpu); | |
b4f69df0 | 10924 | #endif |
8df14af4 SS |
10925 | if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu)) |
10926 | kvm_vcpu_update_apicv(vcpu); | |
557a961a VK |
10927 | if (kvm_check_request(KVM_REQ_APF_READY, vcpu)) |
10928 | kvm_check_async_pf_completion(vcpu); | |
1a155254 | 10929 | if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu)) |
89604647 | 10930 | kvm_x86_call(msr_filter_changed)(vcpu); |
a85863c2 MS |
10931 | |
10932 | if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu)) | |
89604647 | 10933 | kvm_x86_call(update_cpu_dirty_logging)(vcpu); |
e366f92e TL |
10934 | |
10935 | if (kvm_check_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) { | |
10936 | kvm_vcpu_reset(vcpu, true); | |
10937 | if (vcpu->arch.mp_state != KVM_MP_STATE_RUNNABLE) { | |
10938 | r = 1; | |
10939 | goto out; | |
10940 | } | |
10941 | } | |
2f52d58c | 10942 | } |
b93463aa | 10943 | |
40da8ccd DW |
10944 | if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win || |
10945 | kvm_xen_has_interrupt(vcpu)) { | |
0f1e261e | 10946 | ++vcpu->stat.req_event; |
4fe09bcf JM |
10947 | r = kvm_apic_accept_events(vcpu); |
10948 | if (r < 0) { | |
10949 | r = 0; | |
10950 | goto out; | |
10951 | } | |
66450a21 JK |
10952 | if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) { |
10953 | r = 1; | |
10954 | goto out; | |
10955 | } | |
10956 | ||
e746c1f1 | 10957 | r = kvm_check_and_inject_events(vcpu, &req_immediate_exit); |
a5f6909a JM |
10958 | if (r < 0) { |
10959 | r = 0; | |
10960 | goto out; | |
10961 | } | |
c9d40913 | 10962 | if (req_int_win) |
89604647 | 10963 | kvm_x86_call(enable_irq_window)(vcpu); |
b463a6f7 AK |
10964 | |
10965 | if (kvm_lapic_enabled(vcpu)) { | |
10966 | update_cr8_intercept(vcpu); | |
10967 | kvm_lapic_sync_to_vapic(vcpu); | |
10968 | } | |
10969 | } | |
10970 | ||
d8368af8 AK |
10971 | r = kvm_mmu_reload(vcpu); |
10972 | if (unlikely(r)) { | |
d905c069 | 10973 | goto cancel_injection; |
d8368af8 AK |
10974 | } |
10975 | ||
b6c7a5dc HB |
10976 | preempt_disable(); |
10977 | ||
89604647 | 10978 | kvm_x86_call(prepare_switch_to_guest)(vcpu); |
b95234c8 PB |
10979 | |
10980 | /* | |
10981 | * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt | |
10982 | * IPI are then delayed after guest entry, which ensures that they | |
10983 | * result in virtual interrupt delivery. | |
10984 | */ | |
10985 | local_irq_disable(); | |
66fa226c ML |
10986 | |
10987 | /* Store vcpu->apicv_active before vcpu->mode. */ | |
10988 | smp_store_release(&vcpu->mode, IN_GUEST_MODE); | |
6b7e2d09 | 10989 | |
2031f287 | 10990 | kvm_vcpu_srcu_read_unlock(vcpu); |
01b71917 | 10991 | |
0f127d12 | 10992 | /* |
b95234c8 | 10993 | * 1) We should set ->mode before checking ->requests. Please see |
cde9af6e | 10994 | * the comment in kvm_vcpu_exiting_guest_mode(). |
b95234c8 | 10995 | * |
81b01667 | 10996 | * 2) For APICv, we should set ->mode before checking PID.ON. This |
b95234c8 PB |
10997 | * pairs with the memory barrier implicit in pi_test_and_set_on |
10998 | * (see vmx_deliver_posted_interrupt). | |
10999 | * | |
11000 | * 3) This also orders the write to mode from any reads to the page | |
11001 | * tables done while the VCPU is running. Please see the comment | |
11002 | * in kvm_flush_remote_tlbs. | |
6b7e2d09 | 11003 | */ |
01b71917 | 11004 | smp_mb__after_srcu_read_unlock(); |
b6c7a5dc | 11005 | |
b95234c8 | 11006 | /* |
0f65a9d3 SC |
11007 | * Process pending posted interrupts to handle the case where the |
11008 | * notification IRQ arrived in the host, or was never sent (because the | |
11009 | * target vCPU wasn't running). Do this regardless of the vCPU's APICv | |
11010 | * status, KVM doesn't update assigned devices when APICv is inhibited, | |
11011 | * i.e. they can post interrupts even if APICv is temporarily disabled. | |
b95234c8 | 11012 | */ |
37c4dbf3 | 11013 | if (kvm_lapic_enabled(vcpu)) |
89604647 | 11014 | kvm_x86_call(sync_pir_to_irr)(vcpu); |
32f88400 | 11015 | |
5a9f5443 | 11016 | if (kvm_vcpu_exit_request(vcpu)) { |
6b7e2d09 | 11017 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 11018 | smp_wmb(); |
6c142801 AK |
11019 | local_irq_enable(); |
11020 | preempt_enable(); | |
2031f287 | 11021 | kvm_vcpu_srcu_read_lock(vcpu); |
6c142801 | 11022 | r = 1; |
d905c069 | 11023 | goto cancel_injection; |
6c142801 AK |
11024 | } |
11025 | ||
0ec3d6d1 | 11026 | if (req_immediate_exit) |
c43203ca | 11027 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
d6185f20 | 11028 | |
2620fe26 SC |
11029 | fpregs_assert_state_consistent(); |
11030 | if (test_thread_flag(TIF_NEED_FPU_LOAD)) | |
11031 | switch_fpu_return(); | |
5f409e20 | 11032 | |
ec5be88a | 11033 | if (vcpu->arch.guest_fpu.xfd_err) |
78255eb2 | 11034 | wrmsrq(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err); |
ec5be88a | 11035 | |
484612f1 IY |
11036 | if (unlikely(vcpu->arch.switch_db_regs && |
11037 | !(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH))) { | |
fa7d0f83 | 11038 | set_debugreg(DR7_FIXED_1, 7); |
42dbaa5a JK |
11039 | set_debugreg(vcpu->arch.eff_db[0], 0); |
11040 | set_debugreg(vcpu->arch.eff_db[1], 1); | |
11041 | set_debugreg(vcpu->arch.eff_db[2], 2); | |
11042 | set_debugreg(vcpu->arch.eff_db[3], 3); | |
c2fee09f SC |
11043 | /* When KVM_DEBUGREG_WONT_EXIT, dr6 is accessible in guest. */ |
11044 | if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) | |
11045 | kvm_x86_call(set_dr6)(vcpu, vcpu->arch.dr6); | |
f85d4016 | 11046 | } else if (unlikely(hw_breakpoint_active())) { |
fa7d0f83 | 11047 | set_debugreg(DR7_FIXED_1, 7); |
42dbaa5a | 11048 | } |
b6c7a5dc | 11049 | |
189ecdb3 SC |
11050 | vcpu->arch.host_debugctl = get_debugctlmsr(); |
11051 | ||
b2d2af7e MR |
11052 | guest_timing_enter_irqoff(); |
11053 | ||
d89d04ab | 11054 | for (;;) { |
ee49a893 SC |
11055 | /* |
11056 | * Assert that vCPU vs. VM APICv state is consistent. An APICv | |
11057 | * update must kick and wait for all vCPUs before toggling the | |
54aa699e | 11058 | * per-VM state, and responding vCPUs must wait for the update |
ee49a893 SC |
11059 | * to complete before servicing KVM_REQ_APICV_UPDATE. |
11060 | */ | |
f8d8ac21 SS |
11061 | WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) && |
11062 | (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED)); | |
ee49a893 | 11063 | |
89604647 WW |
11064 | exit_fastpath = kvm_x86_call(vcpu_run)(vcpu, |
11065 | req_immediate_exit); | |
d89d04ab PB |
11066 | if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST)) |
11067 | break; | |
11068 | ||
37c4dbf3 | 11069 | if (kvm_lapic_enabled(vcpu)) |
89604647 | 11070 | kvm_x86_call(sync_pir_to_irr)(vcpu); |
de7cd3f6 PB |
11071 | |
11072 | if (unlikely(kvm_vcpu_exit_request(vcpu))) { | |
d89d04ab PB |
11073 | exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED; |
11074 | break; | |
11075 | } | |
8b703a49 SC |
11076 | |
11077 | /* Note, VM-Exits that go down the "slow" path are accounted below. */ | |
11078 | ++vcpu->stat.exits; | |
de7cd3f6 | 11079 | } |
b6c7a5dc | 11080 | |
c77fb5fe PB |
11081 | /* |
11082 | * Do this here before restoring debug registers on the host. And | |
11083 | * since we do this before handling the vmexit, a DR access vmexit | |
11084 | * can (a) read the correct value of the debug registers, (b) set | |
11085 | * KVM_DEBUGREG_WONT_EXIT again. | |
11086 | */ | |
11087 | if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) { | |
c77fb5fe | 11088 | WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP); |
484612f1 | 11089 | WARN_ON(vcpu->arch.switch_db_regs & KVM_DEBUGREG_AUTO_SWITCH); |
89604647 | 11090 | kvm_x86_call(sync_dirty_debug_regs)(vcpu); |
70e4da7a | 11091 | kvm_update_dr0123(vcpu); |
70e4da7a | 11092 | kvm_update_dr7(vcpu); |
c77fb5fe PB |
11093 | } |
11094 | ||
24f1e32c FW |
11095 | /* |
11096 | * If the guest has used debug registers, at least dr7 | |
11097 | * will be disabled while returning to the host. | |
11098 | * If we don't have active breakpoints in the host, we don't | |
11099 | * care about the messed up debug address registers. But if | |
11100 | * we have some of them active, restore the old state. | |
11101 | */ | |
59d8eb53 | 11102 | if (hw_breakpoint_active()) |
24f1e32c | 11103 | hw_breakpoint_restore(); |
42dbaa5a | 11104 | |
c967118d | 11105 | vcpu->arch.last_vmentry_cpu = vcpu->cpu; |
4ba76538 | 11106 | vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc()); |
1d5f066e | 11107 | |
6b7e2d09 | 11108 | vcpu->mode = OUTSIDE_GUEST_MODE; |
d94e1dc9 | 11109 | smp_wmb(); |
a547c6db | 11110 | |
b5274b1b KT |
11111 | /* |
11112 | * Sync xfd before calling handle_exit_irqoff() which may | |
11113 | * rely on the fact that guest_fpu::xfd is up-to-date (e.g. | |
11114 | * in #NM irqoff handler). | |
11115 | */ | |
11116 | if (vcpu->arch.xfd_no_write_intercept) | |
11117 | fpu_sync_guest_vmexit_xfd_state(); | |
11118 | ||
89604647 | 11119 | kvm_x86_call(handle_exit_irqoff)(vcpu); |
b6c7a5dc | 11120 | |
ec5be88a | 11121 | if (vcpu->arch.guest_fpu.xfd_err) |
78255eb2 | 11122 | wrmsrq(MSR_IA32_XFD_ERR, 0); |
ec5be88a | 11123 | |
d7a08882 SC |
11124 | /* |
11125 | * Consume any pending interrupts, including the possible source of | |
11126 | * VM-Exit on SVM and any ticks that occur between VM-Exit and now. | |
11127 | * An instruction is required after local_irq_enable() to fully unblock | |
11128 | * interrupts on processors that implement an interrupt shadow, the | |
11129 | * stat.exits increment will do nicely. | |
11130 | */ | |
db215756 | 11131 | kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ); |
d7a08882 | 11132 | local_irq_enable(); |
b6c7a5dc | 11133 | ++vcpu->stat.exits; |
d7a08882 SC |
11134 | local_irq_disable(); |
11135 | kvm_after_interrupt(vcpu); | |
b6c7a5dc | 11136 | |
16045714 WL |
11137 | /* |
11138 | * Wait until after servicing IRQs to account guest time so that any | |
11139 | * ticks that occurred while running the guest are properly accounted | |
11140 | * to the guest. Waiting until IRQs are enabled degrades the accuracy | |
11141 | * of accounting via context tracking, but the loss of accuracy is | |
11142 | * acceptable for all known use cases. | |
11143 | */ | |
b2d2af7e | 11144 | guest_timing_exit_irqoff(); |
16045714 | 11145 | |
f2485b3e | 11146 | local_irq_enable(); |
b6c7a5dc HB |
11147 | preempt_enable(); |
11148 | ||
2031f287 | 11149 | kvm_vcpu_srcu_read_lock(vcpu); |
3200f405 | 11150 | |
65a4de0f YZ |
11151 | /* |
11152 | * Call this to ensure WC buffers in guest are evicted after each VM | |
11153 | * Exit, so that the evicted WC writes can be snooped across all cpus | |
11154 | */ | |
11155 | smp_mb__after_srcu_read_lock(); | |
11156 | ||
b6c7a5dc HB |
11157 | /* |
11158 | * Profile KVM exit RIPs: | |
11159 | */ | |
38e93267 AH |
11160 | if (unlikely(prof_on == KVM_PROFILING && |
11161 | !vcpu->arch.guest_state_protected)) { | |
5fdbf976 MT |
11162 | unsigned long rip = kvm_rip_read(vcpu); |
11163 | profile_hit(KVM_PROFILING, (void *)rip); | |
b6c7a5dc HB |
11164 | } |
11165 | ||
cc578287 ZA |
11166 | if (unlikely(vcpu->arch.tsc_always_catchup)) |
11167 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); | |
298101da | 11168 | |
5cfb1d5a MT |
11169 | if (vcpu->arch.apic_attention) |
11170 | kvm_lapic_sync_from_vapic(vcpu); | |
b93463aa | 11171 | |
f7f39c50 SC |
11172 | if (unlikely(exit_fastpath == EXIT_FASTPATH_EXIT_USERSPACE)) |
11173 | return 0; | |
11174 | ||
89604647 | 11175 | r = kvm_x86_call(handle_exit)(vcpu, exit_fastpath); |
d905c069 MT |
11176 | return r; |
11177 | ||
11178 | cancel_injection: | |
8081ad06 SC |
11179 | if (req_immediate_exit) |
11180 | kvm_make_request(KVM_REQ_EVENT, vcpu); | |
89604647 | 11181 | kvm_x86_call(cancel_injection)(vcpu); |
ae7a2a3f MT |
11182 | if (unlikely(vcpu->arch.apic_attention)) |
11183 | kvm_lapic_sync_from_vapic(vcpu); | |
d7690175 MT |
11184 | out: |
11185 | return r; | |
11186 | } | |
b6c7a5dc | 11187 | |
70cdd238 SC |
11188 | static bool kvm_vcpu_running(struct kvm_vcpu *vcpu) |
11189 | { | |
11190 | return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE && | |
11191 | !vcpu->arch.apf.halted); | |
11192 | } | |
11193 | ||
44428e49 | 11194 | bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu) |
70cdd238 SC |
11195 | { |
11196 | if (!list_empty_careful(&vcpu->async_pf.done)) | |
11197 | return true; | |
11198 | ||
11199 | if (kvm_apic_has_pending_init_or_sipi(vcpu) && | |
11200 | kvm_apic_init_sipi_allowed(vcpu)) | |
11201 | return true; | |
11202 | ||
70cdd238 SC |
11203 | if (kvm_is_exception_pending(vcpu)) |
11204 | return true; | |
11205 | ||
11206 | if (kvm_test_request(KVM_REQ_NMI, vcpu) || | |
11207 | (vcpu->arch.nmi_pending && | |
11208 | kvm_x86_call(nmi_allowed)(vcpu, false))) | |
11209 | return true; | |
11210 | ||
11211 | #ifdef CONFIG_KVM_SMM | |
11212 | if (kvm_test_request(KVM_REQ_SMI, vcpu) || | |
11213 | (vcpu->arch.smi_pending && | |
11214 | kvm_x86_call(smi_allowed)(vcpu, false))) | |
11215 | return true; | |
11216 | #endif | |
11217 | ||
11218 | if (kvm_test_request(KVM_REQ_PMI, vcpu)) | |
11219 | return true; | |
11220 | ||
11221 | if (kvm_test_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, vcpu)) | |
11222 | return true; | |
11223 | ||
11224 | if (kvm_arch_interrupt_allowed(vcpu) && kvm_cpu_has_interrupt(vcpu)) | |
11225 | return true; | |
11226 | ||
11227 | if (kvm_hv_has_stimer_pending(vcpu)) | |
11228 | return true; | |
11229 | ||
11230 | if (is_guest_mode(vcpu) && | |
11231 | kvm_x86_ops.nested_ops->has_events && | |
11232 | kvm_x86_ops.nested_ops->has_events(vcpu, false)) | |
11233 | return true; | |
11234 | ||
11235 | if (kvm_xen_has_pending_events(vcpu)) | |
11236 | return true; | |
11237 | ||
11238 | return false; | |
11239 | } | |
44428e49 | 11240 | EXPORT_SYMBOL_GPL(kvm_vcpu_has_events); |
70cdd238 SC |
11241 | |
11242 | int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu) | |
11243 | { | |
44428e49 BW |
11244 | return kvm_vcpu_running(vcpu) || vcpu->arch.pv.pv_unhalted || |
11245 | kvm_vcpu_has_events(vcpu); | |
70cdd238 SC |
11246 | } |
11247 | ||
8d25b7be | 11248 | /* Called within kvm->srcu read side. */ |
2031f287 | 11249 | static inline int vcpu_block(struct kvm_vcpu *vcpu) |
362c698f | 11250 | { |
98c25ead SC |
11251 | bool hv_timer; |
11252 | ||
c3e8abf0 | 11253 | if (!kvm_arch_vcpu_runnable(vcpu)) { |
98c25ead SC |
11254 | /* |
11255 | * Switch to the software timer before halt-polling/blocking as | |
11256 | * the guest's timer may be a break event for the vCPU, and the | |
11257 | * hypervisor timer runs only when the CPU is in guest mode. | |
11258 | * Switch before halt-polling so that KVM recognizes an expired | |
11259 | * timer before blocking. | |
11260 | */ | |
11261 | hv_timer = kvm_lapic_hv_timer_in_use(vcpu); | |
11262 | if (hv_timer) | |
11263 | kvm_lapic_switch_to_sw_timer(vcpu); | |
11264 | ||
2031f287 | 11265 | kvm_vcpu_srcu_read_unlock(vcpu); |
cdafece4 SC |
11266 | if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED) |
11267 | kvm_vcpu_halt(vcpu); | |
11268 | else | |
11269 | kvm_vcpu_block(vcpu); | |
2031f287 | 11270 | kvm_vcpu_srcu_read_lock(vcpu); |
bf9f6ac8 | 11271 | |
98c25ead SC |
11272 | if (hv_timer) |
11273 | kvm_lapic_switch_to_hv_timer(vcpu); | |
11274 | ||
599275c0 PB |
11275 | /* |
11276 | * If the vCPU is not runnable, a signal or another host event | |
11277 | * of some kind is pending; service it without changing the | |
11278 | * vCPU's activity state. | |
11279 | */ | |
11280 | if (!kvm_arch_vcpu_runnable(vcpu)) | |
9c8fd1ba PB |
11281 | return 1; |
11282 | } | |
362c698f | 11283 | |
26844fee PB |
11284 | /* |
11285 | * Evaluate nested events before exiting the halted state. This allows | |
11286 | * the halt state to be recorded properly in the VMCS12's activity | |
11287 | * state field (AMD does not have a similar field and a VM-Exit always | |
11288 | * causes a spurious wakeup from HLT). | |
11289 | */ | |
11290 | if (is_guest_mode(vcpu)) { | |
45405155 SC |
11291 | int r = kvm_check_nested_events(vcpu); |
11292 | ||
11293 | WARN_ON_ONCE(r == -EBUSY); | |
11294 | if (r < 0) | |
26844fee PB |
11295 | return 0; |
11296 | } | |
11297 | ||
4fe09bcf JM |
11298 | if (kvm_apic_accept_events(vcpu) < 0) |
11299 | return 0; | |
362c698f PB |
11300 | switch(vcpu->arch.mp_state) { |
11301 | case KVM_MP_STATE_HALTED: | |
647daca2 | 11302 | case KVM_MP_STATE_AP_RESET_HOLD: |
c9e5f3fa | 11303 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); |
df561f66 | 11304 | fallthrough; |
362c698f PB |
11305 | case KVM_MP_STATE_RUNNABLE: |
11306 | vcpu->arch.apf.halted = false; | |
11307 | break; | |
11308 | case KVM_MP_STATE_INIT_RECEIVED: | |
11309 | break; | |
11310 | default: | |
22c6a0ef PB |
11311 | WARN_ON_ONCE(1); |
11312 | break; | |
362c698f PB |
11313 | } |
11314 | return 1; | |
11315 | } | |
09cec754 | 11316 | |
8d25b7be | 11317 | /* Called within kvm->srcu read side. */ |
362c698f | 11318 | static int vcpu_run(struct kvm_vcpu *vcpu) |
d7690175 MT |
11319 | { |
11320 | int r; | |
11321 | ||
ee605e31 | 11322 | vcpu->run->exit_reason = KVM_EXIT_UNKNOWN; |
d7690175 | 11323 | |
362c698f | 11324 | for (;;) { |
6cd88243 PB |
11325 | /* |
11326 | * If another guest vCPU requests a PV TLB flush in the middle | |
11327 | * of instruction emulation, the rest of the emulation could | |
11328 | * use a stale page translation. Assume that any code after | |
11329 | * this point can start executing an instruction. | |
11330 | */ | |
11331 | vcpu->arch.at_instruction_boundary = false; | |
58f800d5 | 11332 | if (kvm_vcpu_running(vcpu)) { |
851ba692 | 11333 | r = vcpu_enter_guest(vcpu); |
bf9f6ac8 | 11334 | } else { |
2031f287 | 11335 | r = vcpu_block(vcpu); |
bf9f6ac8 FW |
11336 | } |
11337 | ||
09cec754 GN |
11338 | if (r <= 0) |
11339 | break; | |
11340 | ||
084071d5 | 11341 | kvm_clear_request(KVM_REQ_UNBLOCK, vcpu); |
7caf9571 DW |
11342 | if (kvm_xen_has_pending_events(vcpu)) |
11343 | kvm_xen_inject_pending_events(vcpu); | |
11344 | ||
09cec754 GN |
11345 | if (kvm_cpu_has_pending_timer(vcpu)) |
11346 | kvm_inject_pending_timer_irqs(vcpu); | |
11347 | ||
782d422b MG |
11348 | if (dm_request_for_irq_injection(vcpu) && |
11349 | kvm_vcpu_ready_for_interrupt_injection(vcpu)) { | |
4ca7dd8c PB |
11350 | r = 0; |
11351 | vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN; | |
09cec754 | 11352 | ++vcpu->stat.request_irq_exits; |
362c698f | 11353 | break; |
09cec754 | 11354 | } |
af585b92 | 11355 | |
f3020b88 | 11356 | if (__xfer_to_guest_mode_work_pending()) { |
2031f287 | 11357 | kvm_vcpu_srcu_read_unlock(vcpu); |
72c3c0fe | 11358 | r = xfer_to_guest_mode_handle_work(vcpu); |
2031f287 | 11359 | kvm_vcpu_srcu_read_lock(vcpu); |
72c3c0fe TG |
11360 | if (r) |
11361 | return r; | |
d7690175 | 11362 | } |
b6c7a5dc HB |
11363 | } |
11364 | ||
b6c7a5dc HB |
11365 | return r; |
11366 | } | |
11367 | ||
70cdd238 SC |
11368 | static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason) |
11369 | { | |
11370 | /* | |
11371 | * The vCPU has halted, e.g. executed HLT. Update the run state if the | |
11372 | * local APIC is in-kernel, the run loop will detect the non-runnable | |
11373 | * state and halt the vCPU. Exit to userspace if the local APIC is | |
11374 | * managed by userspace, in which case userspace is responsible for | |
11375 | * handling wake events. | |
11376 | */ | |
11377 | ++vcpu->stat.halt_exits; | |
11378 | if (lapic_in_kernel(vcpu)) { | |
44428e49 | 11379 | if (kvm_vcpu_has_events(vcpu) || vcpu->arch.pv.pv_unhalted) |
2a289aed SC |
11380 | state = KVM_MP_STATE_RUNNABLE; |
11381 | kvm_set_mp_state(vcpu, state); | |
70cdd238 SC |
11382 | return 1; |
11383 | } else { | |
11384 | vcpu->run->exit_reason = reason; | |
11385 | return 0; | |
11386 | } | |
11387 | } | |
11388 | ||
11389 | int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu) | |
11390 | { | |
11391 | return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT); | |
11392 | } | |
11393 | EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip); | |
11394 | ||
11395 | int kvm_emulate_halt(struct kvm_vcpu *vcpu) | |
11396 | { | |
11397 | int ret = kvm_skip_emulated_instruction(vcpu); | |
11398 | /* | |
11399 | * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered | |
11400 | * KVM_EXIT_DEBUG here. | |
11401 | */ | |
11402 | return kvm_emulate_halt_noskip(vcpu) && ret; | |
11403 | } | |
11404 | EXPORT_SYMBOL_GPL(kvm_emulate_halt); | |
11405 | ||
1876dd69 SC |
11406 | fastpath_t handle_fastpath_hlt(struct kvm_vcpu *vcpu) |
11407 | { | |
11408 | int ret; | |
11409 | ||
11410 | kvm_vcpu_srcu_read_lock(vcpu); | |
11411 | ret = kvm_emulate_halt(vcpu); | |
11412 | kvm_vcpu_srcu_read_unlock(vcpu); | |
11413 | ||
11414 | if (!ret) | |
11415 | return EXIT_FASTPATH_EXIT_USERSPACE; | |
11416 | ||
11417 | if (kvm_vcpu_running(vcpu)) | |
11418 | return EXIT_FASTPATH_REENTER_GUEST; | |
11419 | ||
11420 | return EXIT_FASTPATH_EXIT_HANDLED; | |
11421 | } | |
11422 | EXPORT_SYMBOL_GPL(handle_fastpath_hlt); | |
11423 | ||
70cdd238 SC |
11424 | int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu) |
11425 | { | |
11426 | int ret = kvm_skip_emulated_instruction(vcpu); | |
11427 | ||
11428 | return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD, | |
11429 | KVM_EXIT_AP_RESET_HOLD) && ret; | |
11430 | } | |
11431 | EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold); | |
11432 | ||
11433 | bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu) | |
11434 | { | |
11435 | return kvm_vcpu_apicv_active(vcpu) && | |
11436 | kvm_x86_call(dy_apicv_has_pending_interrupt)(vcpu); | |
11437 | } | |
11438 | ||
11439 | bool kvm_arch_vcpu_preempted_in_kernel(struct kvm_vcpu *vcpu) | |
11440 | { | |
11441 | return vcpu->arch.preempted_in_kernel; | |
11442 | } | |
11443 | ||
11444 | bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu) | |
11445 | { | |
11446 | if (READ_ONCE(vcpu->arch.pv.pv_unhalted)) | |
11447 | return true; | |
11448 | ||
11449 | if (kvm_test_request(KVM_REQ_NMI, vcpu) || | |
11450 | #ifdef CONFIG_KVM_SMM | |
11451 | kvm_test_request(KVM_REQ_SMI, vcpu) || | |
11452 | #endif | |
11453 | kvm_test_request(KVM_REQ_EVENT, vcpu)) | |
11454 | return true; | |
11455 | ||
11456 | return kvm_arch_dy_has_pending_interrupt(vcpu); | |
11457 | } | |
11458 | ||
716d51ab GN |
11459 | static inline int complete_emulated_io(struct kvm_vcpu *vcpu) |
11460 | { | |
2d089356 | 11461 | return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE); |
716d51ab GN |
11462 | } |
11463 | ||
11464 | static int complete_emulated_pio(struct kvm_vcpu *vcpu) | |
11465 | { | |
11466 | BUG_ON(!vcpu->arch.pio.count); | |
11467 | ||
11468 | return complete_emulated_io(vcpu); | |
11469 | } | |
11470 | ||
f78146b0 AK |
11471 | /* |
11472 | * Implements the following, as a state machine: | |
11473 | * | |
11474 | * read: | |
11475 | * for each fragment | |
87da7e66 XG |
11476 | * for each mmio piece in the fragment |
11477 | * write gpa, len | |
11478 | * exit | |
11479 | * copy data | |
f78146b0 AK |
11480 | * execute insn |
11481 | * | |
11482 | * write: | |
11483 | * for each fragment | |
87da7e66 XG |
11484 | * for each mmio piece in the fragment |
11485 | * write gpa, len | |
11486 | * copy data | |
11487 | * exit | |
f78146b0 | 11488 | */ |
716d51ab | 11489 | static int complete_emulated_mmio(struct kvm_vcpu *vcpu) |
5287f194 AK |
11490 | { |
11491 | struct kvm_run *run = vcpu->run; | |
f78146b0 | 11492 | struct kvm_mmio_fragment *frag; |
87da7e66 | 11493 | unsigned len; |
5287f194 | 11494 | |
716d51ab | 11495 | BUG_ON(!vcpu->mmio_needed); |
5287f194 | 11496 | |
716d51ab | 11497 | /* Complete previous fragment */ |
87da7e66 XG |
11498 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; |
11499 | len = min(8u, frag->len); | |
716d51ab | 11500 | if (!vcpu->mmio_is_write) |
87da7e66 XG |
11501 | memcpy(frag->data, run->mmio.data, len); |
11502 | ||
11503 | if (frag->len <= 8) { | |
11504 | /* Switch to the next fragment. */ | |
11505 | frag++; | |
11506 | vcpu->mmio_cur_fragment++; | |
11507 | } else { | |
11508 | /* Go forward to the next mmio piece. */ | |
11509 | frag->data += len; | |
11510 | frag->gpa += len; | |
11511 | frag->len -= len; | |
11512 | } | |
11513 | ||
a08d3b3b | 11514 | if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { |
716d51ab | 11515 | vcpu->mmio_needed = 0; |
0912c977 PB |
11516 | |
11517 | /* FIXME: return into emulator if single-stepping. */ | |
cef4dea0 | 11518 | if (vcpu->mmio_is_write) |
716d51ab GN |
11519 | return 1; |
11520 | vcpu->mmio_read_completed = 1; | |
11521 | return complete_emulated_io(vcpu); | |
11522 | } | |
87da7e66 | 11523 | |
716d51ab GN |
11524 | run->exit_reason = KVM_EXIT_MMIO; |
11525 | run->mmio.phys_addr = frag->gpa; | |
11526 | if (vcpu->mmio_is_write) | |
87da7e66 XG |
11527 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); |
11528 | run->mmio.len = min(8u, frag->len); | |
716d51ab GN |
11529 | run->mmio.is_write = vcpu->mmio_is_write; |
11530 | vcpu->arch.complete_userspace_io = complete_emulated_mmio; | |
11531 | return 0; | |
5287f194 AK |
11532 | } |
11533 | ||
822f312d SAS |
11534 | /* Swap (qemu) user FPU context for the guest FPU context. */ |
11535 | static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu) | |
11536 | { | |
e27bc044 | 11537 | /* Exclude PKRU, it's restored separately immediately after VM-Exit. */ |
d69c1382 | 11538 | fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true); |
822f312d SAS |
11539 | trace_kvm_fpu(1); |
11540 | } | |
11541 | ||
11542 | /* When vcpu_run ends, restore user space FPU context. */ | |
11543 | static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu) | |
11544 | { | |
d69c1382 | 11545 | fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false); |
822f312d SAS |
11546 | ++vcpu->stat.fpu_reload; |
11547 | trace_kvm_fpu(0); | |
11548 | } | |
11549 | ||
1b94f6f8 | 11550 | int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu) |
b6c7a5dc | 11551 | { |
7709aba8 | 11552 | struct kvm_queued_exception *ex = &vcpu->arch.exception; |
1b94f6f8 | 11553 | struct kvm_run *kvm_run = vcpu->run; |
a476cadf | 11554 | u64 sync_valid_fields; |
b6c7a5dc | 11555 | int r; |
b6c7a5dc | 11556 | |
931656b9 KB |
11557 | r = kvm_mmu_post_init_vm(vcpu->kvm); |
11558 | if (r) | |
11559 | return r; | |
11560 | ||
accb757d | 11561 | vcpu_load(vcpu); |
20b7035c | 11562 | kvm_sigset_activate(vcpu); |
15aad3be | 11563 | kvm_run->flags = 0; |
5663d8f9 PX |
11564 | kvm_load_guest_fpu(vcpu); |
11565 | ||
2031f287 | 11566 | kvm_vcpu_srcu_read_lock(vcpu); |
a4535290 | 11567 | if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) { |
a6816314 | 11568 | if (!vcpu->wants_to_run) { |
2f173d26 JS |
11569 | r = -EINTR; |
11570 | goto out; | |
11571 | } | |
7b0151ca | 11572 | |
98c25ead | 11573 | /* |
7b0151ca SC |
11574 | * Don't bother switching APIC timer emulation from the |
11575 | * hypervisor timer to the software timer, the only way for the | |
11576 | * APIC timer to be active is if userspace stuffed vCPU state, | |
11577 | * i.e. put the vCPU into a nonsensical state. Only an INIT | |
11578 | * will transition the vCPU out of UNINITIALIZED (without more | |
11579 | * state stuffing from userspace), which will reset the local | |
11580 | * APIC and thus cancel the timer or drop the IRQ (if the timer | |
11581 | * already expired). | |
98c25ead | 11582 | */ |
2031f287 | 11583 | kvm_vcpu_srcu_read_unlock(vcpu); |
c91d4497 | 11584 | kvm_vcpu_block(vcpu); |
2031f287 | 11585 | kvm_vcpu_srcu_read_lock(vcpu); |
8d25b7be | 11586 | |
4fe09bcf JM |
11587 | if (kvm_apic_accept_events(vcpu) < 0) { |
11588 | r = 0; | |
11589 | goto out; | |
11590 | } | |
ac9f6dc0 | 11591 | r = -EAGAIN; |
a0595000 JS |
11592 | if (signal_pending(current)) { |
11593 | r = -EINTR; | |
1b94f6f8 | 11594 | kvm_run->exit_reason = KVM_EXIT_INTR; |
a0595000 JS |
11595 | ++vcpu->stat.signal_exits; |
11596 | } | |
ac9f6dc0 | 11597 | goto out; |
b6c7a5dc HB |
11598 | } |
11599 | ||
74c1807f PB |
11600 | sync_valid_fields = kvm_sync_valid_fields(vcpu->kvm); |
11601 | if ((kvm_run->kvm_valid_regs & ~sync_valid_fields) || | |
11602 | (kvm_run->kvm_dirty_regs & ~sync_valid_fields)) { | |
01643c51 KH |
11603 | r = -EINVAL; |
11604 | goto out; | |
11605 | } | |
11606 | ||
1b94f6f8 | 11607 | if (kvm_run->kvm_dirty_regs) { |
01643c51 KH |
11608 | r = sync_regs(vcpu); |
11609 | if (r != 0) | |
11610 | goto out; | |
11611 | } | |
11612 | ||
b6c7a5dc | 11613 | /* re-sync apic's tpr */ |
35754c98 | 11614 | if (!lapic_in_kernel(vcpu)) { |
eea1cff9 AP |
11615 | if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) { |
11616 | r = -EINVAL; | |
11617 | goto out; | |
11618 | } | |
11619 | } | |
b6c7a5dc | 11620 | |
7709aba8 SC |
11621 | /* |
11622 | * If userspace set a pending exception and L2 is active, convert it to | |
11623 | * a pending VM-Exit if L1 wants to intercept the exception. | |
11624 | */ | |
11625 | if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) && | |
11626 | kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector, | |
11627 | ex->error_code)) { | |
11628 | kvm_queue_exception_vmexit(vcpu, ex->vector, | |
11629 | ex->has_error_code, ex->error_code, | |
11630 | ex->has_payload, ex->payload); | |
11631 | ex->injected = false; | |
11632 | ex->pending = false; | |
11633 | } | |
11634 | vcpu->arch.exception_from_userspace = false; | |
11635 | ||
716d51ab GN |
11636 | if (unlikely(vcpu->arch.complete_userspace_io)) { |
11637 | int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io; | |
11638 | vcpu->arch.complete_userspace_io = NULL; | |
11639 | r = cui(vcpu); | |
11640 | if (r <= 0) | |
5663d8f9 | 11641 | goto out; |
0bc27326 SC |
11642 | } else { |
11643 | WARN_ON_ONCE(vcpu->arch.pio.count); | |
11644 | WARN_ON_ONCE(vcpu->mmio_needed); | |
11645 | } | |
5287f194 | 11646 | |
a6816314 | 11647 | if (!vcpu->wants_to_run) { |
460df4c1 | 11648 | r = -EINTR; |
fc4fad79 SC |
11649 | goto out; |
11650 | } | |
11651 | ||
89604647 | 11652 | r = kvm_x86_call(vcpu_pre_run)(vcpu); |
fc4fad79 SC |
11653 | if (r <= 0) |
11654 | goto out; | |
11655 | ||
11656 | r = vcpu_run(vcpu); | |
b6c7a5dc HB |
11657 | |
11658 | out: | |
5663d8f9 | 11659 | kvm_put_guest_fpu(vcpu); |
74c1807f | 11660 | if (kvm_run->kvm_valid_regs && likely(!vcpu->arch.guest_state_protected)) |
01643c51 | 11661 | store_regs(vcpu); |
f1d86e46 | 11662 | post_kvm_run_save(vcpu); |
2031f287 | 11663 | kvm_vcpu_srcu_read_unlock(vcpu); |
b6c7a5dc | 11664 | |
8d25b7be | 11665 | kvm_sigset_deactivate(vcpu); |
accb757d | 11666 | vcpu_put(vcpu); |
b6c7a5dc HB |
11667 | return r; |
11668 | } | |
11669 | ||
01643c51 | 11670 | static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
b6c7a5dc | 11671 | { |
7ae441ea GN |
11672 | if (vcpu->arch.emulate_regs_need_sync_to_vcpu) { |
11673 | /* | |
11674 | * We are here if userspace calls get_regs() in the middle of | |
11675 | * instruction emulation. Registers state needs to be copied | |
4a969980 | 11676 | * back from emulation context to vcpu. Userspace shouldn't do |
7ae441ea GN |
11677 | * that usually, but some bad designed PV devices (vmware |
11678 | * backdoor interface) need this to work | |
11679 | */ | |
c9b8b07c | 11680 | emulator_writeback_register_cache(vcpu->arch.emulate_ctxt); |
7ae441ea GN |
11681 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; |
11682 | } | |
de3cd117 SC |
11683 | regs->rax = kvm_rax_read(vcpu); |
11684 | regs->rbx = kvm_rbx_read(vcpu); | |
11685 | regs->rcx = kvm_rcx_read(vcpu); | |
11686 | regs->rdx = kvm_rdx_read(vcpu); | |
11687 | regs->rsi = kvm_rsi_read(vcpu); | |
11688 | regs->rdi = kvm_rdi_read(vcpu); | |
e9c16c78 | 11689 | regs->rsp = kvm_rsp_read(vcpu); |
de3cd117 | 11690 | regs->rbp = kvm_rbp_read(vcpu); |
b6c7a5dc | 11691 | #ifdef CONFIG_X86_64 |
de3cd117 SC |
11692 | regs->r8 = kvm_r8_read(vcpu); |
11693 | regs->r9 = kvm_r9_read(vcpu); | |
11694 | regs->r10 = kvm_r10_read(vcpu); | |
11695 | regs->r11 = kvm_r11_read(vcpu); | |
11696 | regs->r12 = kvm_r12_read(vcpu); | |
11697 | regs->r13 = kvm_r13_read(vcpu); | |
11698 | regs->r14 = kvm_r14_read(vcpu); | |
11699 | regs->r15 = kvm_r15_read(vcpu); | |
b6c7a5dc HB |
11700 | #endif |
11701 | ||
5fdbf976 | 11702 | regs->rip = kvm_rip_read(vcpu); |
91586a3b | 11703 | regs->rflags = kvm_get_rflags(vcpu); |
01643c51 | 11704 | } |
b6c7a5dc | 11705 | |
01643c51 KH |
11706 | int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
11707 | { | |
517987e3 PB |
11708 | if (vcpu->kvm->arch.has_protected_state && |
11709 | vcpu->arch.guest_state_protected) | |
11710 | return -EINVAL; | |
11711 | ||
01643c51 KH |
11712 | vcpu_load(vcpu); |
11713 | __get_regs(vcpu, regs); | |
1fc9b76b | 11714 | vcpu_put(vcpu); |
b6c7a5dc HB |
11715 | return 0; |
11716 | } | |
11717 | ||
01643c51 | 11718 | static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
b6c7a5dc | 11719 | { |
7ae441ea GN |
11720 | vcpu->arch.emulate_regs_need_sync_from_vcpu = true; |
11721 | vcpu->arch.emulate_regs_need_sync_to_vcpu = false; | |
11722 | ||
de3cd117 SC |
11723 | kvm_rax_write(vcpu, regs->rax); |
11724 | kvm_rbx_write(vcpu, regs->rbx); | |
11725 | kvm_rcx_write(vcpu, regs->rcx); | |
11726 | kvm_rdx_write(vcpu, regs->rdx); | |
11727 | kvm_rsi_write(vcpu, regs->rsi); | |
11728 | kvm_rdi_write(vcpu, regs->rdi); | |
e9c16c78 | 11729 | kvm_rsp_write(vcpu, regs->rsp); |
de3cd117 | 11730 | kvm_rbp_write(vcpu, regs->rbp); |
b6c7a5dc | 11731 | #ifdef CONFIG_X86_64 |
de3cd117 SC |
11732 | kvm_r8_write(vcpu, regs->r8); |
11733 | kvm_r9_write(vcpu, regs->r9); | |
11734 | kvm_r10_write(vcpu, regs->r10); | |
11735 | kvm_r11_write(vcpu, regs->r11); | |
11736 | kvm_r12_write(vcpu, regs->r12); | |
11737 | kvm_r13_write(vcpu, regs->r13); | |
11738 | kvm_r14_write(vcpu, regs->r14); | |
11739 | kvm_r15_write(vcpu, regs->r15); | |
b6c7a5dc HB |
11740 | #endif |
11741 | ||
5fdbf976 | 11742 | kvm_rip_write(vcpu, regs->rip); |
d73235d1 | 11743 | kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED); |
b6c7a5dc | 11744 | |
b4f14abd | 11745 | vcpu->arch.exception.pending = false; |
7709aba8 | 11746 | vcpu->arch.exception_vmexit.pending = false; |
b4f14abd | 11747 | |
3842d135 | 11748 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
01643c51 | 11749 | } |
3842d135 | 11750 | |
01643c51 KH |
11751 | int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs) |
11752 | { | |
517987e3 PB |
11753 | if (vcpu->kvm->arch.has_protected_state && |
11754 | vcpu->arch.guest_state_protected) | |
11755 | return -EINVAL; | |
11756 | ||
01643c51 KH |
11757 | vcpu_load(vcpu); |
11758 | __set_regs(vcpu, regs); | |
875656fe | 11759 | vcpu_put(vcpu); |
b6c7a5dc HB |
11760 | return 0; |
11761 | } | |
11762 | ||
6dba9403 | 11763 | static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
b6c7a5dc | 11764 | { |
89a27f4d | 11765 | struct desc_ptr dt; |
b6c7a5dc | 11766 | |
5265713a TL |
11767 | if (vcpu->arch.guest_state_protected) |
11768 | goto skip_protected_regs; | |
11769 | ||
3e6e0aab GT |
11770 | kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
11771 | kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
11772 | kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
11773 | kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
11774 | kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
11775 | kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 11776 | |
3e6e0aab GT |
11777 | kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
11778 | kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 11779 | |
89604647 | 11780 | kvm_x86_call(get_idt)(vcpu, &dt); |
89a27f4d GN |
11781 | sregs->idt.limit = dt.size; |
11782 | sregs->idt.base = dt.address; | |
89604647 | 11783 | kvm_x86_call(get_gdt)(vcpu, &dt); |
89a27f4d GN |
11784 | sregs->gdt.limit = dt.size; |
11785 | sregs->gdt.base = dt.address; | |
b6c7a5dc | 11786 | |
ad312c7c | 11787 | sregs->cr2 = vcpu->arch.cr2; |
9f8fe504 | 11788 | sregs->cr3 = kvm_read_cr3(vcpu); |
5265713a TL |
11789 | |
11790 | skip_protected_regs: | |
11791 | sregs->cr0 = kvm_read_cr0(vcpu); | |
fc78f519 | 11792 | sregs->cr4 = kvm_read_cr4(vcpu); |
2d3ad1f4 | 11793 | sregs->cr8 = kvm_get_cr8(vcpu); |
f6801dff | 11794 | sregs->efer = vcpu->arch.efer; |
d91060e3 | 11795 | sregs->apic_base = vcpu->arch.apic_base; |
6dba9403 | 11796 | } |
b6c7a5dc | 11797 | |
6dba9403 ML |
11798 | static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
11799 | { | |
11800 | __get_sregs_common(vcpu, sregs); | |
11801 | ||
11802 | if (vcpu->arch.guest_state_protected) | |
11803 | return; | |
b6c7a5dc | 11804 | |
04140b41 | 11805 | if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft) |
14d0bc1f GN |
11806 | set_bit(vcpu->arch.interrupt.nr, |
11807 | (unsigned long *)sregs->interrupt_bitmap); | |
01643c51 | 11808 | } |
16d7a191 | 11809 | |
6dba9403 ML |
11810 | static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) |
11811 | { | |
11812 | int i; | |
11813 | ||
11814 | __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2); | |
11815 | ||
11816 | if (vcpu->arch.guest_state_protected) | |
11817 | return; | |
11818 | ||
11819 | if (is_pae_paging(vcpu)) { | |
11820 | for (i = 0 ; i < 4 ; i++) | |
11821 | sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i); | |
11822 | sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID; | |
11823 | } | |
11824 | } | |
11825 | ||
01643c51 KH |
11826 | int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu, |
11827 | struct kvm_sregs *sregs) | |
11828 | { | |
517987e3 PB |
11829 | if (vcpu->kvm->arch.has_protected_state && |
11830 | vcpu->arch.guest_state_protected) | |
11831 | return -EINVAL; | |
11832 | ||
01643c51 KH |
11833 | vcpu_load(vcpu); |
11834 | __get_sregs(vcpu, sregs); | |
bcdec41c | 11835 | vcpu_put(vcpu); |
b6c7a5dc HB |
11836 | return 0; |
11837 | } | |
11838 | ||
62d9f0db MT |
11839 | int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu, |
11840 | struct kvm_mp_state *mp_state) | |
11841 | { | |
4fe09bcf JM |
11842 | int r; |
11843 | ||
fd232561 | 11844 | vcpu_load(vcpu); |
f958bd23 SC |
11845 | if (kvm_mpx_supported()) |
11846 | kvm_load_guest_fpu(vcpu); | |
fd232561 | 11847 | |
ef01cac4 SC |
11848 | kvm_vcpu_srcu_read_lock(vcpu); |
11849 | ||
4fe09bcf JM |
11850 | r = kvm_apic_accept_events(vcpu); |
11851 | if (r < 0) | |
11852 | goto out; | |
11853 | r = 0; | |
11854 | ||
647daca2 TL |
11855 | if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED || |
11856 | vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) && | |
11857 | vcpu->arch.pv.pv_unhalted) | |
6aef266c SV |
11858 | mp_state->mp_state = KVM_MP_STATE_RUNNABLE; |
11859 | else | |
11860 | mp_state->mp_state = vcpu->arch.mp_state; | |
11861 | ||
4fe09bcf | 11862 | out: |
ef01cac4 SC |
11863 | kvm_vcpu_srcu_read_unlock(vcpu); |
11864 | ||
f958bd23 SC |
11865 | if (kvm_mpx_supported()) |
11866 | kvm_put_guest_fpu(vcpu); | |
fd232561 | 11867 | vcpu_put(vcpu); |
4fe09bcf | 11868 | return r; |
62d9f0db MT |
11869 | } |
11870 | ||
11871 | int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu, | |
11872 | struct kvm_mp_state *mp_state) | |
11873 | { | |
e83dff5e CD |
11874 | int ret = -EINVAL; |
11875 | ||
11876 | vcpu_load(vcpu); | |
11877 | ||
22c6a0ef PB |
11878 | switch (mp_state->mp_state) { |
11879 | case KVM_MP_STATE_UNINITIALIZED: | |
11880 | case KVM_MP_STATE_HALTED: | |
11881 | case KVM_MP_STATE_AP_RESET_HOLD: | |
11882 | case KVM_MP_STATE_INIT_RECEIVED: | |
11883 | case KVM_MP_STATE_SIPI_RECEIVED: | |
11884 | if (!lapic_in_kernel(vcpu)) | |
11885 | goto out; | |
11886 | break; | |
11887 | ||
11888 | case KVM_MP_STATE_RUNNABLE: | |
11889 | break; | |
11890 | ||
11891 | default: | |
e83dff5e | 11892 | goto out; |
22c6a0ef | 11893 | } |
66450a21 | 11894 | |
27cbe7d6 | 11895 | /* |
1b7a1b78 SC |
11896 | * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow |
11897 | * forcing the guest into INIT/SIPI if those events are supposed to be | |
11898 | * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state | |
11899 | * if an SMI is pending as well. | |
27cbe7d6 | 11900 | */ |
1b7a1b78 | 11901 | if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) && |
28bf2888 DH |
11902 | (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED || |
11903 | mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED)) | |
e83dff5e | 11904 | goto out; |
28bf2888 | 11905 | |
66450a21 | 11906 | if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) { |
c9e5f3fa | 11907 | kvm_set_mp_state(vcpu, KVM_MP_STATE_INIT_RECEIVED); |
66450a21 JK |
11908 | set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events); |
11909 | } else | |
c9e5f3fa | 11910 | kvm_set_mp_state(vcpu, mp_state->mp_state); |
3842d135 | 11911 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
e83dff5e CD |
11912 | |
11913 | ret = 0; | |
11914 | out: | |
11915 | vcpu_put(vcpu); | |
11916 | return ret; | |
62d9f0db MT |
11917 | } |
11918 | ||
7f3d35fd KW |
11919 | int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index, |
11920 | int reason, bool has_error_code, u32 error_code) | |
b6c7a5dc | 11921 | { |
c9b8b07c | 11922 | struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt; |
8ec4722d | 11923 | int ret; |
e01c2426 | 11924 | |
8ec4722d | 11925 | init_emulate_ctxt(vcpu); |
c697518a | 11926 | |
7f3d35fd | 11927 | ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason, |
9d74191a | 11928 | has_error_code, error_code); |
2a1fc7dc SC |
11929 | |
11930 | /* | |
11931 | * Report an error userspace if MMIO is needed, as KVM doesn't support | |
11932 | * MMIO during a task switch (or any other complex operation). | |
11933 | */ | |
11934 | if (ret || vcpu->mmio_needed) { | |
11935 | vcpu->mmio_needed = false; | |
1051778f SC |
11936 | vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR; |
11937 | vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION; | |
11938 | vcpu->run->internal.ndata = 0; | |
60fc3d02 | 11939 | return 0; |
1051778f | 11940 | } |
37817f29 | 11941 | |
9d74191a TY |
11942 | kvm_rip_write(vcpu, ctxt->eip); |
11943 | kvm_set_rflags(vcpu, ctxt->eflags); | |
60fc3d02 | 11944 | return 1; |
37817f29 IE |
11945 | } |
11946 | EXPORT_SYMBOL_GPL(kvm_task_switch); | |
11947 | ||
ee69c92b | 11948 | static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) |
f2981033 | 11949 | { |
37b95951 | 11950 | if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) { |
f2981033 LT |
11951 | /* |
11952 | * When EFER.LME and CR0.PG are set, the processor is in | |
11953 | * 64-bit mode (though maybe in a 32-bit code segment). | |
11954 | * CR4.PAE and EFER.LMA must be set. | |
11955 | */ | |
ee69c92b SC |
11956 | if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA)) |
11957 | return false; | |
2c49db45 | 11958 | if (!kvm_vcpu_is_legal_cr3(vcpu, sregs->cr3)) |
c1c35cf7 | 11959 | return false; |
f2981033 LT |
11960 | } else { |
11961 | /* | |
11962 | * Not in 64-bit mode: EFER.LMA is clear and the code | |
11963 | * segment cannot be 64-bit. | |
11964 | */ | |
11965 | if (sregs->efer & EFER_LMA || sregs->cs.l) | |
ee69c92b | 11966 | return false; |
f2981033 LT |
11967 | } |
11968 | ||
26a0652c SC |
11969 | return kvm_is_valid_cr4(vcpu, sregs->cr4) && |
11970 | kvm_is_valid_cr0(vcpu, sregs->cr0); | |
f2981033 LT |
11971 | } |
11972 | ||
6dba9403 ML |
11973 | static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs, |
11974 | int *mmu_reset_needed, bool update_pdptrs) | |
b6c7a5dc | 11975 | { |
6dba9403 | 11976 | int idx; |
89a27f4d | 11977 | struct desc_ptr dt; |
b4ef9d4e | 11978 | |
ee69c92b | 11979 | if (!kvm_is_valid_sregs(vcpu, sregs)) |
6dba9403 | 11980 | return -EINVAL; |
f2981033 | 11981 | |
c9155eb0 | 11982 | if (kvm_apic_set_base(vcpu, sregs->apic_base, true)) |
6dba9403 | 11983 | return -EINVAL; |
6d1068b3 | 11984 | |
5265713a | 11985 | if (vcpu->arch.guest_state_protected) |
6dba9403 | 11986 | return 0; |
5265713a | 11987 | |
89a27f4d GN |
11988 | dt.size = sregs->idt.limit; |
11989 | dt.address = sregs->idt.base; | |
89604647 | 11990 | kvm_x86_call(set_idt)(vcpu, &dt); |
89a27f4d GN |
11991 | dt.size = sregs->gdt.limit; |
11992 | dt.address = sregs->gdt.base; | |
89604647 | 11993 | kvm_x86_call(set_gdt)(vcpu, &dt); |
b6c7a5dc | 11994 | |
ad312c7c | 11995 | vcpu->arch.cr2 = sregs->cr2; |
6dba9403 | 11996 | *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3; |
dc7e795e | 11997 | vcpu->arch.cr3 = sregs->cr3; |
3883bc9d | 11998 | kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); |
89604647 | 11999 | kvm_x86_call(post_set_cr3)(vcpu, sregs->cr3); |
b6c7a5dc | 12000 | |
2d3ad1f4 | 12001 | kvm_set_cr8(vcpu, sregs->cr8); |
b6c7a5dc | 12002 | |
6dba9403 | 12003 | *mmu_reset_needed |= vcpu->arch.efer != sregs->efer; |
89604647 | 12004 | kvm_x86_call(set_efer)(vcpu, sregs->efer); |
b6c7a5dc | 12005 | |
6dba9403 | 12006 | *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0; |
89604647 | 12007 | kvm_x86_call(set_cr0)(vcpu, sregs->cr0); |
b6c7a5dc | 12008 | |
6dba9403 | 12009 | *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4; |
89604647 | 12010 | kvm_x86_call(set_cr4)(vcpu, sregs->cr4); |
63f42e02 | 12011 | |
6dba9403 ML |
12012 | if (update_pdptrs) { |
12013 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
12014 | if (is_pae_paging(vcpu)) { | |
2df4a5eb | 12015 | load_pdptrs(vcpu, kvm_read_cr3(vcpu)); |
6dba9403 ML |
12016 | *mmu_reset_needed = 1; |
12017 | } | |
12018 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | |
7c93be44 | 12019 | } |
b6c7a5dc | 12020 | |
3e6e0aab GT |
12021 | kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS); |
12022 | kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS); | |
12023 | kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES); | |
12024 | kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS); | |
12025 | kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS); | |
12026 | kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS); | |
b6c7a5dc | 12027 | |
3e6e0aab GT |
12028 | kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR); |
12029 | kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR); | |
b6c7a5dc | 12030 | |
5f0269f5 ME |
12031 | update_cr8_intercept(vcpu); |
12032 | ||
9c3e4aab | 12033 | /* Older userspace won't unhalt the vcpu on reset. */ |
c5af89b6 | 12034 | if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 && |
9c3e4aab | 12035 | sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 && |
3eeb3288 | 12036 | !is_protmode(vcpu)) |
c9e5f3fa | 12037 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); |
9c3e4aab | 12038 | |
6dba9403 ML |
12039 | return 0; |
12040 | } | |
12041 | ||
12042 | static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs) | |
12043 | { | |
12044 | int pending_vec, max_bits; | |
12045 | int mmu_reset_needed = 0; | |
12046 | int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true); | |
12047 | ||
12048 | if (ret) | |
12049 | return ret; | |
12050 | ||
4346db6e | 12051 | if (mmu_reset_needed) { |
6dba9403 | 12052 | kvm_mmu_reset_context(vcpu); |
4346db6e ML |
12053 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
12054 | } | |
6dba9403 | 12055 | |
5265713a TL |
12056 | max_bits = KVM_NR_INTERRUPTS; |
12057 | pending_vec = find_first_bit( | |
12058 | (const unsigned long *)sregs->interrupt_bitmap, max_bits); | |
6dba9403 | 12059 | |
5265713a TL |
12060 | if (pending_vec < max_bits) { |
12061 | kvm_queue_interrupt(vcpu, pending_vec, false); | |
12062 | pr_debug("Set back pending irq %d\n", pending_vec); | |
6dba9403 | 12063 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
5265713a | 12064 | } |
6dba9403 ML |
12065 | return 0; |
12066 | } | |
5265713a | 12067 | |
6dba9403 ML |
12068 | static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2) |
12069 | { | |
12070 | int mmu_reset_needed = 0; | |
12071 | bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID; | |
12072 | bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) && | |
12073 | !(sregs2->efer & EFER_LMA); | |
12074 | int i, ret; | |
3842d135 | 12075 | |
6dba9403 ML |
12076 | if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID) |
12077 | return -EINVAL; | |
12078 | ||
12079 | if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected)) | |
12080 | return -EINVAL; | |
12081 | ||
12082 | ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2, | |
12083 | &mmu_reset_needed, !valid_pdptrs); | |
12084 | if (ret) | |
12085 | return ret; | |
12086 | ||
12087 | if (valid_pdptrs) { | |
12088 | for (i = 0; i < 4 ; i++) | |
12089 | kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]); | |
12090 | ||
12091 | kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR); | |
12092 | mmu_reset_needed = 1; | |
158a48ec | 12093 | vcpu->arch.pdptrs_from_userspace = true; |
6dba9403 | 12094 | } |
4346db6e | 12095 | if (mmu_reset_needed) { |
6dba9403 | 12096 | kvm_mmu_reset_context(vcpu); |
4346db6e ML |
12097 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
12098 | } | |
6dba9403 | 12099 | return 0; |
01643c51 KH |
12100 | } |
12101 | ||
12102 | int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu, | |
12103 | struct kvm_sregs *sregs) | |
12104 | { | |
12105 | int ret; | |
12106 | ||
517987e3 PB |
12107 | if (vcpu->kvm->arch.has_protected_state && |
12108 | vcpu->arch.guest_state_protected) | |
12109 | return -EINVAL; | |
12110 | ||
01643c51 KH |
12111 | vcpu_load(vcpu); |
12112 | ret = __set_sregs(vcpu, sregs); | |
b4ef9d4e CD |
12113 | vcpu_put(vcpu); |
12114 | return ret; | |
b6c7a5dc HB |
12115 | } |
12116 | ||
cae72dcc ML |
12117 | static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm) |
12118 | { | |
320af55a | 12119 | bool set = false; |
cae72dcc | 12120 | struct kvm_vcpu *vcpu; |
46808a4c | 12121 | unsigned long i; |
cae72dcc | 12122 | |
0047fb33 SC |
12123 | if (!enable_apicv) |
12124 | return; | |
12125 | ||
cae72dcc ML |
12126 | down_write(&kvm->arch.apicv_update_lock); |
12127 | ||
12128 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
12129 | if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) { | |
320af55a | 12130 | set = true; |
cae72dcc ML |
12131 | break; |
12132 | } | |
12133 | } | |
320af55a | 12134 | __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set); |
cae72dcc ML |
12135 | up_write(&kvm->arch.apicv_update_lock); |
12136 | } | |
12137 | ||
d0bfb940 JK |
12138 | int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu, |
12139 | struct kvm_guest_debug *dbg) | |
b6c7a5dc | 12140 | { |
355be0b9 | 12141 | unsigned long rflags; |
ae675ef0 | 12142 | int i, r; |
b6c7a5dc | 12143 | |
8d4846b9 TL |
12144 | if (vcpu->arch.guest_state_protected) |
12145 | return -EINVAL; | |
12146 | ||
66b56562 CD |
12147 | vcpu_load(vcpu); |
12148 | ||
4f926bf2 JK |
12149 | if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) { |
12150 | r = -EBUSY; | |
7709aba8 | 12151 | if (kvm_is_exception_pending(vcpu)) |
2122ff5e | 12152 | goto out; |
4f926bf2 JK |
12153 | if (dbg->control & KVM_GUESTDBG_INJECT_DB) |
12154 | kvm_queue_exception(vcpu, DB_VECTOR); | |
12155 | else | |
12156 | kvm_queue_exception(vcpu, BP_VECTOR); | |
12157 | } | |
12158 | ||
91586a3b JK |
12159 | /* |
12160 | * Read rflags as long as potentially injected trace flags are still | |
12161 | * filtered out. | |
12162 | */ | |
12163 | rflags = kvm_get_rflags(vcpu); | |
355be0b9 JK |
12164 | |
12165 | vcpu->guest_debug = dbg->control; | |
12166 | if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE)) | |
12167 | vcpu->guest_debug = 0; | |
12168 | ||
12169 | if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) { | |
ae675ef0 JK |
12170 | for (i = 0; i < KVM_NR_DB_REGS; ++i) |
12171 | vcpu->arch.eff_db[i] = dbg->arch.debugreg[i]; | |
c8639010 | 12172 | vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7]; |
ae675ef0 JK |
12173 | } else { |
12174 | for (i = 0; i < KVM_NR_DB_REGS; i++) | |
12175 | vcpu->arch.eff_db[i] = vcpu->arch.db[i]; | |
ae675ef0 | 12176 | } |
c8639010 | 12177 | kvm_update_dr7(vcpu); |
ae675ef0 | 12178 | |
f92653ee | 12179 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
e87e46d5 | 12180 | vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu); |
94fe45da | 12181 | |
91586a3b JK |
12182 | /* |
12183 | * Trigger an rflags update that will inject or remove the trace | |
12184 | * flags. | |
12185 | */ | |
12186 | kvm_set_rflags(vcpu, rflags); | |
b6c7a5dc | 12187 | |
89604647 | 12188 | kvm_x86_call(update_exception_bitmap)(vcpu); |
b6c7a5dc | 12189 | |
cae72dcc ML |
12190 | kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm); |
12191 | ||
4f926bf2 | 12192 | r = 0; |
d0bfb940 | 12193 | |
2122ff5e | 12194 | out: |
66b56562 | 12195 | vcpu_put(vcpu); |
b6c7a5dc HB |
12196 | return r; |
12197 | } | |
12198 | ||
8b006791 ZX |
12199 | /* |
12200 | * Translate a guest virtual address to a guest physical address. | |
12201 | */ | |
12202 | int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu, | |
12203 | struct kvm_translation *tr) | |
12204 | { | |
12205 | unsigned long vaddr = tr->linear_address; | |
12206 | gpa_t gpa; | |
f656ce01 | 12207 | int idx; |
8b006791 | 12208 | |
1da5b61d CD |
12209 | vcpu_load(vcpu); |
12210 | ||
f656ce01 | 12211 | idx = srcu_read_lock(&vcpu->kvm->srcu); |
1871c602 | 12212 | gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL); |
f656ce01 | 12213 | srcu_read_unlock(&vcpu->kvm->srcu, idx); |
8b006791 | 12214 | tr->physical_address = gpa; |
6e1d2a3f | 12215 | tr->valid = gpa != INVALID_GPA; |
8b006791 ZX |
12216 | tr->writeable = 1; |
12217 | tr->usermode = 0; | |
8b006791 | 12218 | |
1da5b61d | 12219 | vcpu_put(vcpu); |
8b006791 ZX |
12220 | return 0; |
12221 | } | |
12222 | ||
d0752060 HB |
12223 | int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) |
12224 | { | |
1393123e | 12225 | struct fxregs_state *fxsave; |
d0752060 | 12226 | |
d69c1382 | 12227 | if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
517987e3 | 12228 | return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; |
ed02b213 | 12229 | |
1393123e | 12230 | vcpu_load(vcpu); |
d0752060 | 12231 | |
d69c1382 | 12232 | fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; |
d0752060 HB |
12233 | memcpy(fpu->fpr, fxsave->st_space, 128); |
12234 | fpu->fcw = fxsave->cwd; | |
12235 | fpu->fsw = fxsave->swd; | |
12236 | fpu->ftwx = fxsave->twd; | |
12237 | fpu->last_opcode = fxsave->fop; | |
12238 | fpu->last_ip = fxsave->rip; | |
12239 | fpu->last_dp = fxsave->rdp; | |
0e96f31e | 12240 | memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space)); |
d0752060 | 12241 | |
1393123e | 12242 | vcpu_put(vcpu); |
d0752060 HB |
12243 | return 0; |
12244 | } | |
12245 | ||
12246 | int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu) | |
12247 | { | |
6a96bc7f CD |
12248 | struct fxregs_state *fxsave; |
12249 | ||
d69c1382 | 12250 | if (fpstate_is_confidential(&vcpu->arch.guest_fpu)) |
517987e3 | 12251 | return vcpu->kvm->arch.has_protected_state ? -EINVAL : 0; |
ed02b213 | 12252 | |
6a96bc7f CD |
12253 | vcpu_load(vcpu); |
12254 | ||
d69c1382 | 12255 | fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave; |
d0752060 | 12256 | |
d0752060 HB |
12257 | memcpy(fxsave->st_space, fpu->fpr, 128); |
12258 | fxsave->cwd = fpu->fcw; | |
12259 | fxsave->swd = fpu->fsw; | |
12260 | fxsave->twd = fpu->ftwx; | |
12261 | fxsave->fop = fpu->last_opcode; | |
12262 | fxsave->rip = fpu->last_ip; | |
12263 | fxsave->rdp = fpu->last_dp; | |
0e96f31e | 12264 | memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space)); |
d0752060 | 12265 | |
6a96bc7f | 12266 | vcpu_put(vcpu); |
d0752060 HB |
12267 | return 0; |
12268 | } | |
12269 | ||
01643c51 KH |
12270 | static void store_regs(struct kvm_vcpu *vcpu) |
12271 | { | |
12272 | BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES); | |
12273 | ||
12274 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS) | |
12275 | __get_regs(vcpu, &vcpu->run->s.regs.regs); | |
12276 | ||
12277 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS) | |
12278 | __get_sregs(vcpu, &vcpu->run->s.regs.sregs); | |
12279 | ||
12280 | if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS) | |
12281 | kvm_vcpu_ioctl_x86_get_vcpu_events( | |
12282 | vcpu, &vcpu->run->s.regs.events); | |
12283 | } | |
12284 | ||
12285 | static int sync_regs(struct kvm_vcpu *vcpu) | |
12286 | { | |
01643c51 KH |
12287 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) { |
12288 | __set_regs(vcpu, &vcpu->run->s.regs.regs); | |
12289 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS; | |
12290 | } | |
0d033770 | 12291 | |
01643c51 | 12292 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) { |
0d033770 ML |
12293 | struct kvm_sregs sregs = vcpu->run->s.regs.sregs; |
12294 | ||
12295 | if (__set_sregs(vcpu, &sregs)) | |
01643c51 | 12296 | return -EINVAL; |
0d033770 | 12297 | |
01643c51 KH |
12298 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS; |
12299 | } | |
0d033770 | 12300 | |
01643c51 | 12301 | if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) { |
0d033770 ML |
12302 | struct kvm_vcpu_events events = vcpu->run->s.regs.events; |
12303 | ||
12304 | if (kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events)) | |
01643c51 | 12305 | return -EINVAL; |
0d033770 | 12306 | |
01643c51 KH |
12307 | vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS; |
12308 | } | |
12309 | ||
12310 | return 0; | |
12311 | } | |
12312 | ||
897cc38e | 12313 | int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id) |
e9b11c17 | 12314 | { |
1d5e740d | 12315 | if (kvm_check_tsc_unstable() && kvm->created_vcpus) |
8d20bd63 | 12316 | pr_warn_once("SMP vm created on host with unstable TSC; " |
897cc38e | 12317 | "guest TSC will not be reliable\n"); |
7f1ea208 | 12318 | |
35875316 ZG |
12319 | if (!kvm->arch.max_vcpu_ids) |
12320 | kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS; | |
12321 | ||
12322 | if (id >= kvm->arch.max_vcpu_ids) | |
12323 | return -EINVAL; | |
12324 | ||
89604647 | 12325 | return kvm_x86_call(vcpu_precreate)(kvm); |
e9b11c17 ZX |
12326 | } |
12327 | ||
e529ef66 | 12328 | int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu) |
e9b11c17 | 12329 | { |
95a0d01e SC |
12330 | struct page *page; |
12331 | int r; | |
c447e76b | 12332 | |
63f5a190 | 12333 | vcpu->arch.last_vmentry_cpu = -1; |
7117003f SC |
12334 | vcpu->arch.regs_avail = ~0; |
12335 | vcpu->arch.regs_dirty = ~0; | |
63f5a190 | 12336 | |
a4bff3df | 12337 | kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm); |
52491a38 | 12338 | |
95a0d01e | 12339 | if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu)) |
c9e5f3fa | 12340 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); |
95a0d01e | 12341 | else |
c9e5f3fa | 12342 | kvm_set_mp_state(vcpu, KVM_MP_STATE_UNINITIALIZED); |
c447e76b | 12343 | |
95a0d01e SC |
12344 | r = kvm_mmu_create(vcpu); |
12345 | if (r < 0) | |
12346 | return r; | |
12347 | ||
89a58812 | 12348 | r = kvm_create_lapic(vcpu); |
a78d9046 SC |
12349 | if (r < 0) |
12350 | goto fail_mmu_destroy; | |
95a0d01e SC |
12351 | |
12352 | r = -ENOMEM; | |
12353 | ||
93bb59ca | 12354 | page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO); |
95a0d01e SC |
12355 | if (!page) |
12356 | goto fail_free_lapic; | |
12357 | vcpu->arch.pio_data = page_address(page); | |
12358 | ||
087acc4e | 12359 | vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64), |
95a0d01e | 12360 | GFP_KERNEL_ACCOUNT); |
281b5278 JW |
12361 | vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64), |
12362 | GFP_KERNEL_ACCOUNT); | |
12363 | if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks) | |
3c0ba05c | 12364 | goto fail_free_mce_banks; |
95a0d01e SC |
12365 | vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS; |
12366 | ||
12367 | if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask, | |
12368 | GFP_KERNEL_ACCOUNT)) | |
12369 | goto fail_free_mce_banks; | |
12370 | ||
c9b8b07c SC |
12371 | if (!alloc_emulate_ctxt(vcpu)) |
12372 | goto free_wbinvd_dirty_mask; | |
12373 | ||
d69c1382 | 12374 | if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) { |
8d20bd63 | 12375 | pr_err("failed to allocate vcpu's fpu\n"); |
c9b8b07c | 12376 | goto free_emulate_ctxt; |
95a0d01e SC |
12377 | } |
12378 | ||
95a0d01e | 12379 | kvm_async_pf_hash_reset(vcpu); |
6c6f82be | 12380 | |
dcb988cd SC |
12381 | if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_STUFF_FEATURE_MSRS)) { |
12382 | vcpu->arch.arch_capabilities = kvm_get_arch_capabilities(); | |
12383 | vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT; | |
12384 | vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap; | |
12385 | } | |
95a0d01e SC |
12386 | kvm_pmu_init(vcpu); |
12387 | ||
12388 | vcpu->arch.pending_external_vector = -1; | |
12389 | vcpu->arch.preempted_in_kernel = false; | |
12390 | ||
3c86c0d3 VP |
12391 | #if IS_ENABLED(CONFIG_HYPERV) |
12392 | vcpu->arch.hv_root_tdp = INVALID_PAGE; | |
12393 | #endif | |
12394 | ||
89604647 | 12395 | r = kvm_x86_call(vcpu_create)(vcpu); |
95a0d01e SC |
12396 | if (r) |
12397 | goto free_guest_fpu; | |
e9b11c17 | 12398 | |
942c2490 | 12399 | kvm_xen_init_vcpu(vcpu); |
ec7660cc | 12400 | vcpu_load(vcpu); |
85e5ba83 | 12401 | kvm_vcpu_after_set_cpuid(vcpu); |
ffbb61d0 | 12402 | kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz); |
d28bc9dd | 12403 | kvm_vcpu_reset(vcpu, false); |
c9060662 | 12404 | kvm_init_mmu(vcpu); |
e9b11c17 | 12405 | vcpu_put(vcpu); |
ec7660cc | 12406 | return 0; |
95a0d01e SC |
12407 | |
12408 | free_guest_fpu: | |
d69c1382 | 12409 | fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); |
c9b8b07c SC |
12410 | free_emulate_ctxt: |
12411 | kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); | |
95a0d01e SC |
12412 | free_wbinvd_dirty_mask: |
12413 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); | |
12414 | fail_free_mce_banks: | |
12415 | kfree(vcpu->arch.mce_banks); | |
281b5278 | 12416 | kfree(vcpu->arch.mci_ctl2_banks); |
95a0d01e SC |
12417 | free_page((unsigned long)vcpu->arch.pio_data); |
12418 | fail_free_lapic: | |
12419 | kvm_free_lapic(vcpu); | |
12420 | fail_mmu_destroy: | |
12421 | kvm_mmu_destroy(vcpu); | |
12422 | return r; | |
e9b11c17 ZX |
12423 | } |
12424 | ||
31928aa5 | 12425 | void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu) |
42897d86 | 12426 | { |
332967a3 | 12427 | struct kvm *kvm = vcpu->kvm; |
42897d86 | 12428 | |
ec7660cc | 12429 | if (mutex_lock_killable(&vcpu->mutex)) |
31928aa5 | 12430 | return; |
ec7660cc | 12431 | vcpu_load(vcpu); |
bf328e22 | 12432 | kvm_synchronize_tsc(vcpu, NULL); |
42897d86 | 12433 | vcpu_put(vcpu); |
2d5ba19b MT |
12434 | |
12435 | /* poll control enabled by default */ | |
12436 | vcpu->arch.msr_kvm_poll_control = 1; | |
12437 | ||
ec7660cc | 12438 | mutex_unlock(&vcpu->mutex); |
42897d86 | 12439 | |
b34de572 WL |
12440 | if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0) |
12441 | schedule_delayed_work(&kvm->arch.kvmclock_sync_work, | |
12442 | KVMCLOCK_SYNC_PERIOD); | |
42897d86 MT |
12443 | } |
12444 | ||
d40ccc62 | 12445 | void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu) |
e9b11c17 | 12446 | { |
54a1a24f | 12447 | int idx, cpu; |
344d9588 | 12448 | |
e4472125 SC |
12449 | kvm_clear_async_pf_completion_queue(vcpu); |
12450 | kvm_mmu_unload(vcpu); | |
12451 | ||
50b143e1 | 12452 | kvmclock_reset(vcpu); |
e9b11c17 | 12453 | |
54a1a24f SC |
12454 | for_each_possible_cpu(cpu) |
12455 | cmpxchg(per_cpu_ptr(&last_vcpu, cpu), vcpu, NULL); | |
12456 | ||
89604647 | 12457 | kvm_x86_call(vcpu_free)(vcpu); |
50b143e1 | 12458 | |
c9b8b07c | 12459 | kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt); |
50b143e1 | 12460 | free_cpumask_var(vcpu->arch.wbinvd_dirty_mask); |
d69c1382 | 12461 | fpu_free_guest_fpstate(&vcpu->arch.guest_fpu); |
95a0d01e | 12462 | |
a795cd43 | 12463 | kvm_xen_destroy_vcpu(vcpu); |
95a0d01e SC |
12464 | kvm_hv_vcpu_uninit(vcpu); |
12465 | kvm_pmu_destroy(vcpu); | |
12466 | kfree(vcpu->arch.mce_banks); | |
281b5278 | 12467 | kfree(vcpu->arch.mci_ctl2_banks); |
95a0d01e SC |
12468 | kvm_free_lapic(vcpu); |
12469 | idx = srcu_read_lock(&vcpu->kvm->srcu); | |
12470 | kvm_mmu_destroy(vcpu); | |
12471 | srcu_read_unlock(&vcpu->kvm->srcu, idx); | |
12472 | free_page((unsigned long)vcpu->arch.pio_data); | |
255cbecf | 12473 | kvfree(vcpu->arch.cpuid_entries); |
e9b11c17 ZX |
12474 | } |
12475 | ||
d28bc9dd | 12476 | void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event) |
e9b11c17 | 12477 | { |
25b97845 | 12478 | struct kvm_cpuid_entry2 *cpuid_0x1; |
0aa18375 | 12479 | unsigned long old_cr0 = kvm_read_cr0(vcpu); |
4c72ab5a | 12480 | unsigned long new_cr0; |
0aa18375 | 12481 | |
62dd57dd SC |
12482 | /* |
12483 | * Several of the "set" flows, e.g. ->set_cr0(), read other registers | |
12484 | * to handle side effects. RESET emulation hits those flows and relies | |
12485 | * on emulated/virtualized registers, including those that are loaded | |
12486 | * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel | |
12487 | * to detect improper or missing initialization. | |
12488 | */ | |
12489 | WARN_ON_ONCE(!init_event && | |
12490 | (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu))); | |
0aa18375 | 12491 | |
ed129ec9 ML |
12492 | /* |
12493 | * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's | |
12494 | * possible to INIT the vCPU while L2 is active. Force the vCPU back | |
12495 | * into L1 as EFER.SVME is cleared on INIT (along with all other EFER | |
12496 | * bits), i.e. virtualization is disabled. | |
12497 | */ | |
12498 | if (is_guest_mode(vcpu)) | |
12499 | kvm_leave_nested(vcpu); | |
12500 | ||
b7e31be3 RK |
12501 | kvm_lapic_reset(vcpu, init_event); |
12502 | ||
ed129ec9 | 12503 | WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu)); |
e69fab5d PB |
12504 | vcpu->arch.hflags = 0; |
12505 | ||
c43203ca | 12506 | vcpu->arch.smi_pending = 0; |
52797bf9 | 12507 | vcpu->arch.smi_count = 0; |
7460fb4a AK |
12508 | atomic_set(&vcpu->arch.nmi_queued, 0); |
12509 | vcpu->arch.nmi_pending = 0; | |
448fa4a9 | 12510 | vcpu->arch.nmi_injected = false; |
5f7552d4 NA |
12511 | kvm_clear_interrupt_queue(vcpu); |
12512 | kvm_clear_exception_queue(vcpu); | |
448fa4a9 | 12513 | |
42dbaa5a | 12514 | memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db)); |
ae561ede | 12515 | kvm_update_dr0123(vcpu); |
9a3ecd5e | 12516 | vcpu->arch.dr6 = DR6_ACTIVE_LOW; |
42dbaa5a | 12517 | vcpu->arch.dr7 = DR7_FIXED_1; |
c8639010 | 12518 | kvm_update_dr7(vcpu); |
42dbaa5a | 12519 | |
1119022c NA |
12520 | vcpu->arch.cr2 = 0; |
12521 | ||
3842d135 | 12522 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
2635b5c4 VK |
12523 | vcpu->arch.apf.msr_en_val = 0; |
12524 | vcpu->arch.apf.msr_int_val = 0; | |
c9aaa895 | 12525 | vcpu->arch.st.msr_val = 0; |
3842d135 | 12526 | |
12f9a48f GC |
12527 | kvmclock_reset(vcpu); |
12528 | ||
af585b92 GN |
12529 | kvm_clear_async_pf_completion_queue(vcpu); |
12530 | kvm_async_pf_hash_reset(vcpu); | |
12531 | vcpu->arch.apf.halted = false; | |
3842d135 | 12532 | |
d69c1382 TG |
12533 | if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) { |
12534 | struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate; | |
a554d207 WL |
12535 | |
12536 | /* | |
a61353ac SC |
12537 | * All paths that lead to INIT are required to load the guest's |
12538 | * FPU state (because most paths are buried in KVM_RUN). | |
a554d207 | 12539 | */ |
f775b13e RR |
12540 | if (init_event) |
12541 | kvm_put_guest_fpu(vcpu); | |
087df48c TG |
12542 | |
12543 | fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS); | |
12544 | fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR); | |
12545 | ||
f775b13e RR |
12546 | if (init_event) |
12547 | kvm_load_guest_fpu(vcpu); | |
a554d207 WL |
12548 | } |
12549 | ||
64d60670 | 12550 | if (!init_event) { |
64d60670 | 12551 | vcpu->arch.smbase = 0x30000; |
db2336a8 | 12552 | |
b6717d35 SC |
12553 | vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT; |
12554 | ||
db2336a8 | 12555 | vcpu->arch.msr_misc_features_enables = 0; |
9fc22296 SC |
12556 | vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL | |
12557 | MSR_IA32_MISC_ENABLE_BTS_UNAVAIL; | |
a554d207 | 12558 | |
05a9e065 LX |
12559 | __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP); |
12560 | __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true); | |
64d60670 | 12561 | } |
f5132b01 | 12562 | |
ff8828c8 | 12563 | /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */ |
66f7b72e | 12564 | memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs)); |
ff8828c8 | 12565 | kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP); |
66f7b72e | 12566 | |
49d8665c SC |
12567 | /* |
12568 | * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon) | |
12569 | * if no CPUID match is found. Note, it's impossible to get a match at | |
12570 | * RESET since KVM emulates RESET before exposing the vCPU to userspace, | |
25b97845 SC |
12571 | * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry |
12572 | * on RESET. But, go through the motions in case that's ever remedied. | |
49d8665c | 12573 | */ |
277ad7d5 | 12574 | cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1); |
25b97845 | 12575 | kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600); |
49d8665c | 12576 | |
89604647 | 12577 | kvm_x86_call(vcpu_reset)(vcpu, init_event); |
0aa18375 | 12578 | |
f39e805e SC |
12579 | kvm_set_rflags(vcpu, X86_EFLAGS_FIXED); |
12580 | kvm_rip_write(vcpu, 0xfff0); | |
12581 | ||
03a6e840 SC |
12582 | vcpu->arch.cr3 = 0; |
12583 | kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3); | |
12584 | ||
4c72ab5a SC |
12585 | /* |
12586 | * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions | |
12587 | * of Intel's SDM list CD/NW as being set on INIT, but they contradict | |
12588 | * (or qualify) that with a footnote stating that CD/NW are preserved. | |
12589 | */ | |
12590 | new_cr0 = X86_CR0_ET; | |
12591 | if (init_event) | |
12592 | new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD)); | |
12593 | else | |
12594 | new_cr0 |= X86_CR0_NW | X86_CR0_CD; | |
12595 | ||
89604647 WW |
12596 | kvm_x86_call(set_cr0)(vcpu, new_cr0); |
12597 | kvm_x86_call(set_cr4)(vcpu, 0); | |
12598 | kvm_x86_call(set_efer)(vcpu, 0); | |
12599 | kvm_x86_call(update_exception_bitmap)(vcpu); | |
f39e805e | 12600 | |
0aa18375 | 12601 | /* |
b5f61c03 PB |
12602 | * On the standard CR0/CR4/EFER modification paths, there are several |
12603 | * complex conditions determining whether the MMU has to be reset and/or | |
12604 | * which PCIDs have to be flushed. However, CR0.WP and the paging-related | |
12605 | * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush | |
12606 | * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as | |
12607 | * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here. | |
0aa18375 | 12608 | */ |
b5f61c03 PB |
12609 | if (old_cr0 & X86_CR0_PG) { |
12610 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | |
0aa18375 | 12611 | kvm_mmu_reset_context(vcpu); |
b5f61c03 | 12612 | } |
df37ed38 SC |
12613 | |
12614 | /* | |
12615 | * Intel's SDM states that all TLB entries are flushed on INIT. AMD's | |
12616 | * APM states the TLBs are untouched by INIT, but it also states that | |
12617 | * the TLBs are flushed on "External initialization of the processor." | |
12618 | * Flush the guest TLB regardless of vendor, there is no meaningful | |
12619 | * benefit in relying on the guest to flush the TLB immediately after | |
12620 | * INIT. A spurious TLB flush is benign and likely negligible from a | |
12621 | * performance perspective. | |
12622 | */ | |
12623 | if (init_event) | |
12624 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); | |
e9b11c17 | 12625 | } |
265e4353 | 12626 | EXPORT_SYMBOL_GPL(kvm_vcpu_reset); |
e9b11c17 | 12627 | |
2b4a273b | 12628 | void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector) |
66450a21 JK |
12629 | { |
12630 | struct kvm_segment cs; | |
12631 | ||
12632 | kvm_get_segment(vcpu, &cs, VCPU_SREG_CS); | |
12633 | cs.selector = vector << 8; | |
12634 | cs.base = vector << 12; | |
12635 | kvm_set_segment(vcpu, &cs, VCPU_SREG_CS); | |
12636 | kvm_rip_write(vcpu, 0); | |
e9b11c17 | 12637 | } |
647daca2 | 12638 | EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector); |
e9b11c17 | 12639 | |
590b09b1 SC |
12640 | void kvm_arch_enable_virtualization(void) |
12641 | { | |
12642 | cpu_emergency_register_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); | |
12643 | } | |
12644 | ||
12645 | void kvm_arch_disable_virtualization(void) | |
12646 | { | |
12647 | cpu_emergency_unregister_virt_callback(kvm_x86_ops.emergency_disable_virtualization_cpu); | |
12648 | } | |
12649 | ||
071f24ad | 12650 | int kvm_arch_enable_virtualization_cpu(void) |
e9b11c17 | 12651 | { |
ca84d1a2 ZA |
12652 | struct kvm *kvm; |
12653 | struct kvm_vcpu *vcpu; | |
46808a4c | 12654 | unsigned long i; |
0dd6a6ed ZA |
12655 | int ret; |
12656 | u64 local_tsc; | |
12657 | u64 max_tsc = 0; | |
12658 | bool stable, backwards_tsc = false; | |
18863bdd | 12659 | |
7e34fbd0 | 12660 | kvm_user_return_msr_cpu_online(); |
c82a5c5c CG |
12661 | |
12662 | ret = kvm_x86_check_processor_compatibility(); | |
12663 | if (ret) | |
12664 | return ret; | |
12665 | ||
0617a769 | 12666 | ret = kvm_x86_call(enable_virtualization_cpu)(); |
0dd6a6ed ZA |
12667 | if (ret != 0) |
12668 | return ret; | |
12669 | ||
4ea1636b | 12670 | local_tsc = rdtsc(); |
b0c39dc6 | 12671 | stable = !kvm_check_tsc_unstable(); |
0dd6a6ed ZA |
12672 | list_for_each_entry(kvm, &vm_list, vm_list) { |
12673 | kvm_for_each_vcpu(i, vcpu, kvm) { | |
12674 | if (!stable && vcpu->cpu == smp_processor_id()) | |
105b21bb | 12675 | kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
12676 | if (stable && vcpu->arch.last_host_tsc > local_tsc) { |
12677 | backwards_tsc = true; | |
12678 | if (vcpu->arch.last_host_tsc > max_tsc) | |
12679 | max_tsc = vcpu->arch.last_host_tsc; | |
12680 | } | |
12681 | } | |
12682 | } | |
12683 | ||
12684 | /* | |
12685 | * Sometimes, even reliable TSCs go backwards. This happens on | |
12686 | * platforms that reset TSC during suspend or hibernate actions, but | |
12687 | * maintain synchronization. We must compensate. Fortunately, we can | |
12688 | * detect that condition here, which happens early in CPU bringup, | |
12689 | * before any KVM threads can be running. Unfortunately, we can't | |
12690 | * bring the TSCs fully up to date with real time, as we aren't yet far | |
12691 | * enough into CPU bringup that we know how much real time has actually | |
9285ec4c | 12692 | * elapsed; our helper function, ktime_get_boottime_ns() will be using boot |
0dd6a6ed ZA |
12693 | * variables that haven't been updated yet. |
12694 | * | |
12695 | * So we simply find the maximum observed TSC above, then record the | |
12696 | * adjustment to TSC in each VCPU. When the VCPU later gets loaded, | |
12697 | * the adjustment will be applied. Note that we accumulate | |
12698 | * adjustments, in case multiple suspend cycles happen before some VCPU | |
12699 | * gets a chance to run again. In the event that no KVM threads get a | |
12700 | * chance to run, we will miss the entire elapsed period, as we'll have | |
12701 | * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may | |
12702 | * loose cycle time. This isn't too big a deal, since the loss will be | |
12703 | * uniform across all VCPUs (not to mention the scenario is extremely | |
12704 | * unlikely). It is possible that a second hibernate recovery happens | |
12705 | * much faster than a first, causing the observed TSC here to be | |
12706 | * smaller; this would require additional padding adjustment, which is | |
12707 | * why we set last_host_tsc to the local tsc observed here. | |
12708 | * | |
12709 | * N.B. - this code below runs only on platforms with reliable TSC, | |
12710 | * as that is the only way backwards_tsc is set above. Also note | |
12711 | * that this runs for ALL vcpus, which is not a bug; all VCPUs should | |
12712 | * have the same delta_cyc adjustment applied if backwards_tsc | |
12713 | * is detected. Note further, this adjustment is only done once, | |
12714 | * as we reset last_host_tsc on all VCPUs to stop this from being | |
12715 | * called multiple times (one for each physical CPU bringup). | |
12716 | * | |
4a969980 | 12717 | * Platforms with unreliable TSCs don't have to deal with this, they |
0dd6a6ed ZA |
12718 | * will be compensated by the logic in vcpu_load, which sets the TSC to |
12719 | * catchup mode. This will catchup all VCPUs to real time, but cannot | |
12720 | * guarantee that they stay in perfect synchronization. | |
12721 | */ | |
12722 | if (backwards_tsc) { | |
12723 | u64 delta_cyc = max_tsc - local_tsc; | |
12724 | list_for_each_entry(kvm, &vm_list, vm_list) { | |
a826faf1 | 12725 | kvm->arch.backwards_tsc_observed = true; |
0dd6a6ed ZA |
12726 | kvm_for_each_vcpu(i, vcpu, kvm) { |
12727 | vcpu->arch.tsc_offset_adjustment += delta_cyc; | |
12728 | vcpu->arch.last_host_tsc = local_tsc; | |
105b21bb | 12729 | kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu); |
0dd6a6ed ZA |
12730 | } |
12731 | ||
12732 | /* | |
12733 | * We have to disable TSC offset matching.. if you were | |
12734 | * booting a VM while issuing an S4 host suspend.... | |
12735 | * you may have some problem. Solving this issue is | |
12736 | * left as an exercise to the reader. | |
12737 | */ | |
12738 | kvm->arch.last_tsc_nsec = 0; | |
12739 | kvm->arch.last_tsc_write = 0; | |
12740 | } | |
12741 | ||
12742 | } | |
12743 | return 0; | |
e9b11c17 ZX |
12744 | } |
12745 | ||
071f24ad | 12746 | void kvm_arch_disable_virtualization_cpu(void) |
e9b11c17 | 12747 | { |
0617a769 | 12748 | kvm_x86_call(disable_virtualization_cpu)(); |
13a34e06 | 12749 | drop_user_return_notifiers(); |
e9b11c17 ZX |
12750 | } |
12751 | ||
d71ba788 PB |
12752 | bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu) |
12753 | { | |
12754 | return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id; | |
12755 | } | |
a50f673f | 12756 | EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp); |
d71ba788 PB |
12757 | |
12758 | bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu) | |
12759 | { | |
12760 | return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0; | |
e9b11c17 ZX |
12761 | } |
12762 | ||
562b6b08 SC |
12763 | void kvm_arch_free_vm(struct kvm *kvm) |
12764 | { | |
cfef5af3 VK |
12765 | #if IS_ENABLED(CONFIG_HYPERV) |
12766 | kfree(kvm->arch.hv_pa_pg); | |
12767 | #endif | |
78b497f2 | 12768 | __kvm_arch_free_vm(kvm); |
e790d9ef RK |
12769 | } |
12770 | ||
562b6b08 | 12771 | |
e08b9637 | 12772 | int kvm_arch_init_vm(struct kvm *kvm, unsigned long type) |
d19a9cd2 | 12773 | { |
eb7511bf | 12774 | int ret; |
869b4421 | 12775 | unsigned long flags; |
eb7511bf | 12776 | |
89ea60c2 | 12777 | if (!kvm_is_vm_type_supported(type)) |
e08b9637 CO |
12778 | return -EINVAL; |
12779 | ||
89ea60c2 | 12780 | kvm->arch.vm_type = type; |
517987e3 PB |
12781 | kvm->arch.has_private_mem = |
12782 | (type == KVM_X86_SW_PROTECTED_VM); | |
5932ca41 PB |
12783 | /* Decided by the vendor code for other VM types. */ |
12784 | kvm->arch.pre_fault_allowed = | |
12785 | type == KVM_X86_DEFAULT_VM || type == KVM_X86_SW_PROTECTED_VM; | |
bd7d5362 | 12786 | kvm->arch.disabled_quirks = kvm_caps.inapplicable_quirks & kvm_caps.supported_quirks; |
89ea60c2 | 12787 | |
eb7511bf HZ |
12788 | ret = kvm_page_track_init(kvm); |
12789 | if (ret) | |
a1a39128 PB |
12790 | goto out; |
12791 | ||
0df9dab8 | 12792 | kvm_mmu_init_vm(kvm); |
eb7511bf | 12793 | |
89604647 | 12794 | ret = kvm_x86_call(vm_init)(kvm); |
b24ede22 JS |
12795 | if (ret) |
12796 | goto out_uninit_mmu; | |
12797 | ||
6ef768fa | 12798 | INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list); |
e0f0bbc5 | 12799 | atomic_set(&kvm->arch.noncoherent_dma_count, 0); |
d19a9cd2 | 12800 | |
5550af4d SY |
12801 | /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */ |
12802 | set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap); | |
7a84428a AW |
12803 | /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */ |
12804 | set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID, | |
12805 | &kvm->arch.irq_sources_bitmap); | |
5550af4d | 12806 | |
038f8c11 | 12807 | raw_spin_lock_init(&kvm->arch.tsc_write_lock); |
1e08ec4a | 12808 | mutex_init(&kvm->arch.apic_map_lock); |
869b4421 | 12809 | seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock); |
8171cd68 | 12810 | kvm->arch.kvmclock_offset = -get_kvmclock_base_ns(); |
869b4421 PB |
12811 | |
12812 | raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags); | |
d828199e | 12813 | pvclock_update_vm_gtod_copy(kvm); |
869b4421 | 12814 | raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags); |
53f658b3 | 12815 | |
741e511b | 12816 | kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz; |
b460256b | 12817 | kvm->arch.apic_bus_cycle_ns = APIC_BUS_CYCLE_NS_DEFAULT; |
6fbbde9a | 12818 | kvm->arch.guest_can_read_msr_platform_info = true; |
ba7bb663 | 12819 | kvm->arch.enable_pmu = enable_pmu; |
6fbbde9a | 12820 | |
3c86c0d3 VP |
12821 | #if IS_ENABLED(CONFIG_HYPERV) |
12822 | spin_lock_init(&kvm->arch.hv_root_tdp_lock); | |
12823 | kvm->arch.hv_root_tdp = INVALID_PAGE; | |
12824 | #endif | |
12825 | ||
7e44e449 | 12826 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn); |
332967a3 | 12827 | INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn); |
7e44e449 | 12828 | |
4651fc56 | 12829 | kvm_apicv_init(kvm); |
cbc0236a | 12830 | kvm_hv_init_vm(kvm); |
319afe68 | 12831 | kvm_xen_init_vm(kvm); |
0eb05bf2 | 12832 | |
398b7b6c PB |
12833 | if (ignore_msrs && !report_ignored_msrs) { |
12834 | pr_warn_once("Running KVM with ignore_msrs=1 and report_ignored_msrs=0 is not a\n" | |
12835 | "a supported configuration. Lying to the guest about the existence of MSRs\n" | |
12836 | "may cause the guest operating system to hang or produce errors. If a guest\n" | |
12837 | "does not run without ignore_msrs=1, please report it to kvm@vger.kernel.org.\n"); | |
12838 | } | |
12839 | ||
6f612694 | 12840 | once_init(&kvm->arch.nx_once); |
b24ede22 | 12841 | return 0; |
a1a39128 | 12842 | |
b24ede22 JS |
12843 | out_uninit_mmu: |
12844 | kvm_mmu_uninit_vm(kvm); | |
a1a39128 PB |
12845 | kvm_page_track_cleanup(kvm); |
12846 | out: | |
12847 | return ret; | |
d19a9cd2 ZX |
12848 | } |
12849 | ||
ff5a983c PX |
12850 | /** |
12851 | * __x86_set_memory_region: Setup KVM internal memory slot | |
12852 | * | |
12853 | * @kvm: the kvm pointer to the VM. | |
12854 | * @id: the slot ID to setup. | |
12855 | * @gpa: the GPA to install the slot (unused when @size == 0). | |
12856 | * @size: the size of the slot. Set to zero to uninstall a slot. | |
12857 | * | |
12858 | * This function helps to setup a KVM internal memory slot. Specify | |
12859 | * @size > 0 to install a new slot, while @size == 0 to uninstall a | |
12860 | * slot. The return code can be one of the following: | |
12861 | * | |
12862 | * HVA: on success (uninstall will return a bogus HVA) | |
12863 | * -errno: on error | |
12864 | * | |
12865 | * The caller should always use IS_ERR() to check the return value | |
12866 | * before use. Note, the KVM internal memory slots are guaranteed to | |
12867 | * remain valid and unchanged until the VM is destroyed, i.e., the | |
12868 | * GPA->HVA translation will not change. However, the HVA is a user | |
12869 | * address, i.e. its accessibility is not guaranteed, and must be | |
12870 | * accessed via __copy_{to,from}_user(). | |
12871 | */ | |
12872 | void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa, | |
12873 | u32 size) | |
9da0e4d5 PB |
12874 | { |
12875 | int i, r; | |
3f649ab7 | 12876 | unsigned long hva, old_npages; |
f0d648bd | 12877 | struct kvm_memslots *slots = kvm_memslots(kvm); |
0577d1ab | 12878 | struct kvm_memory_slot *slot; |
9da0e4d5 | 12879 | |
d131f004 SC |
12880 | lockdep_assert_held(&kvm->slots_lock); |
12881 | ||
1d8007bd | 12882 | if (WARN_ON(id >= KVM_MEM_SLOTS_NUM)) |
ff5a983c | 12883 | return ERR_PTR_USR(-EINVAL); |
9da0e4d5 | 12884 | |
f0d648bd PB |
12885 | slot = id_to_memslot(slots, id); |
12886 | if (size) { | |
0577d1ab | 12887 | if (slot && slot->npages) |
ff5a983c | 12888 | return ERR_PTR_USR(-EEXIST); |
f0d648bd PB |
12889 | |
12890 | /* | |
12891 | * MAP_SHARED to prevent internal slot pages from being moved | |
12892 | * by fork()/COW. | |
12893 | */ | |
12894 | hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE, | |
12895 | MAP_SHARED | MAP_ANONYMOUS, 0); | |
2eb398df | 12896 | if (IS_ERR_VALUE(hva)) |
ff5a983c | 12897 | return (void __user *)hva; |
f0d648bd | 12898 | } else { |
0577d1ab | 12899 | if (!slot || !slot->npages) |
46914534 | 12900 | return NULL; |
f0d648bd | 12901 | |
0577d1ab | 12902 | old_npages = slot->npages; |
b66f9bab | 12903 | hva = slot->userspace_addr; |
f0d648bd PB |
12904 | } |
12905 | ||
eed52e43 | 12906 | for (i = 0; i < kvm_arch_nr_memslot_as_ids(kvm); i++) { |
bb58b90b | 12907 | struct kvm_userspace_memory_region2 m; |
9da0e4d5 | 12908 | |
1d8007bd PB |
12909 | m.slot = id | (i << 16); |
12910 | m.flags = 0; | |
12911 | m.guest_phys_addr = gpa; | |
f0d648bd | 12912 | m.userspace_addr = hva; |
1d8007bd | 12913 | m.memory_size = size; |
156bffdb | 12914 | r = kvm_set_internal_memslot(kvm, &m); |
9da0e4d5 | 12915 | if (r < 0) |
ff5a983c | 12916 | return ERR_PTR_USR(r); |
9da0e4d5 PB |
12917 | } |
12918 | ||
103c763c | 12919 | if (!size) |
0577d1ab | 12920 | vm_munmap(hva, old_npages * PAGE_SIZE); |
f0d648bd | 12921 | |
ff5a983c | 12922 | return (void __user *)hva; |
9da0e4d5 PB |
12923 | } |
12924 | EXPORT_SYMBOL_GPL(__x86_set_memory_region); | |
12925 | ||
1aa9b957 JS |
12926 | void kvm_arch_pre_destroy_vm(struct kvm *kvm) |
12927 | { | |
fd217326 SC |
12928 | /* |
12929 | * Stop all background workers and kthreads before destroying vCPUs, as | |
12930 | * iterating over vCPUs in a different task while vCPUs are being freed | |
12931 | * is unsafe, i.e. will lead to use-after-free. The PIT also needs to | |
12932 | * be stopped before IRQ routing is freed. | |
12933 | */ | |
12934 | cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work); | |
12935 | cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work); | |
12936 | ||
12937 | kvm_free_pit(kvm); | |
12938 | ||
1aa9b957 | 12939 | kvm_mmu_pre_destroy_vm(kvm); |
8d032b68 | 12940 | static_call_cond(kvm_x86_vm_pre_destroy)(kvm); |
1aa9b957 JS |
12941 | } |
12942 | ||
d19a9cd2 ZX |
12943 | void kvm_arch_destroy_vm(struct kvm *kvm) |
12944 | { | |
27469d29 AH |
12945 | if (current->mm == kvm->mm) { |
12946 | /* | |
12947 | * Free memory regions allocated on behalf of userspace, | |
f7081834 | 12948 | * unless the memory map has changed due to process exit |
27469d29 AH |
12949 | * or fd copying. |
12950 | */ | |
6a3c623b PX |
12951 | mutex_lock(&kvm->slots_lock); |
12952 | __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT, | |
12953 | 0, 0); | |
12954 | __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT, | |
12955 | 0, 0); | |
12956 | __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0); | |
12957 | mutex_unlock(&kvm->slots_lock); | |
27469d29 | 12958 | } |
17bcd714 | 12959 | kvm_destroy_vcpus(kvm); |
b318e8de | 12960 | kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1)); |
c761159c PX |
12961 | kvm_pic_destroy(kvm); |
12962 | kvm_ioapic_destroy(kvm); | |
af1bae54 | 12963 | kvfree(rcu_dereference_check(kvm->arch.apic_map, 1)); |
66bb8a06 | 12964 | kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1)); |
13d268ca | 12965 | kvm_mmu_uninit_vm(kvm); |
2beb6dad | 12966 | kvm_page_track_cleanup(kvm); |
7d6bbebb | 12967 | kvm_xen_destroy_vm(kvm); |
cbc0236a | 12968 | kvm_hv_destroy_vm(kvm); |
46c49372 | 12969 | kvm_x86_call(vm_destroy)(kvm); |
d19a9cd2 | 12970 | } |
0de10343 | 12971 | |
c9b929b3 | 12972 | static void memslot_rmap_free(struct kvm_memory_slot *slot) |
db3fe4eb TY |
12973 | { |
12974 | int i; | |
12975 | ||
d89cc617 | 12976 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { |
a952d608 | 12977 | vfree(slot->arch.rmap[i]); |
e96c81ee | 12978 | slot->arch.rmap[i] = NULL; |
c9b929b3 BG |
12979 | } |
12980 | } | |
e96c81ee | 12981 | |
c9b929b3 BG |
12982 | void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot) |
12983 | { | |
12984 | int i; | |
12985 | ||
12986 | memslot_rmap_free(slot); | |
d89cc617 | 12987 | |
c9b929b3 | 12988 | for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { |
a952d608 | 12989 | vfree(slot->arch.lpage_info[i - 1]); |
e96c81ee | 12990 | slot->arch.lpage_info[i - 1] = NULL; |
db3fe4eb | 12991 | } |
21ebbeda | 12992 | |
e96c81ee | 12993 | kvm_page_track_free_memslot(slot); |
db3fe4eb TY |
12994 | } |
12995 | ||
1e76a3ce | 12996 | int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages) |
56dd1019 BG |
12997 | { |
12998 | const int sz = sizeof(*slot->arch.rmap[0]); | |
12999 | int i; | |
13000 | ||
13001 | for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) { | |
13002 | int level = i + 1; | |
4139b197 | 13003 | int lpages = __kvm_mmu_slot_lpages(slot, npages, level); |
56dd1019 | 13004 | |
fa13843d PB |
13005 | if (slot->arch.rmap[i]) |
13006 | continue; | |
d501f747 | 13007 | |
37b2a651 | 13008 | slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT); |
56dd1019 BG |
13009 | if (!slot->arch.rmap[i]) { |
13010 | memslot_rmap_free(slot); | |
13011 | return -ENOMEM; | |
13012 | } | |
13013 | } | |
13014 | ||
13015 | return 0; | |
13016 | } | |
13017 | ||
a2557408 | 13018 | static int kvm_alloc_memslot_metadata(struct kvm *kvm, |
9d7d18ee | 13019 | struct kvm_memory_slot *slot) |
db3fe4eb | 13020 | { |
9d7d18ee | 13021 | unsigned long npages = slot->npages; |
56dd1019 | 13022 | int i, r; |
db3fe4eb | 13023 | |
edd4fa37 SC |
13024 | /* |
13025 | * Clear out the previous array pointers for the KVM_MR_MOVE case. The | |
344315e9 | 13026 | * old arrays will be freed by kvm_set_memory_region() if installing |
edd4fa37 SC |
13027 | * the new memslot is successful. |
13028 | */ | |
13029 | memset(&slot->arch, 0, sizeof(slot->arch)); | |
13030 | ||
e2209710 | 13031 | if (kvm_memslots_have_rmaps(kvm)) { |
a2557408 BG |
13032 | r = memslot_rmap_alloc(slot, npages); |
13033 | if (r) | |
13034 | return r; | |
13035 | } | |
56dd1019 BG |
13036 | |
13037 | for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { | |
92f94f1e | 13038 | struct kvm_lpage_info *linfo; |
db3fe4eb TY |
13039 | unsigned long ugfn; |
13040 | int lpages; | |
d89cc617 | 13041 | int level = i + 1; |
db3fe4eb | 13042 | |
4139b197 | 13043 | lpages = __kvm_mmu_slot_lpages(slot, npages, level); |
db3fe4eb | 13044 | |
37b2a651 | 13045 | linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT); |
92f94f1e | 13046 | if (!linfo) |
db3fe4eb TY |
13047 | goto out_free; |
13048 | ||
92f94f1e XG |
13049 | slot->arch.lpage_info[i - 1] = linfo; |
13050 | ||
db3fe4eb | 13051 | if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 13052 | linfo[0].disallow_lpage = 1; |
db3fe4eb | 13053 | if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1)) |
92f94f1e | 13054 | linfo[lpages - 1].disallow_lpage = 1; |
db3fe4eb TY |
13055 | ugfn = slot->userspace_addr >> PAGE_SHIFT; |
13056 | /* | |
13057 | * If the gfn and userspace address are not aligned wrt each | |
600087b6 | 13058 | * other, disable large page support for this slot. |
db3fe4eb | 13059 | */ |
600087b6 | 13060 | if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) { |
db3fe4eb TY |
13061 | unsigned long j; |
13062 | ||
13063 | for (j = 0; j < lpages; ++j) | |
92f94f1e | 13064 | linfo[j].disallow_lpage = 1; |
db3fe4eb TY |
13065 | } |
13066 | } | |
13067 | ||
90b4fe17 CP |
13068 | #ifdef CONFIG_KVM_GENERIC_MEMORY_ATTRIBUTES |
13069 | kvm_mmu_init_memslot_memory_attributes(kvm, slot); | |
13070 | #endif | |
13071 | ||
deae4a10 | 13072 | if (kvm_page_track_create_memslot(kvm, slot, npages)) |
21ebbeda XG |
13073 | goto out_free; |
13074 | ||
db3fe4eb TY |
13075 | return 0; |
13076 | ||
13077 | out_free: | |
c9b929b3 | 13078 | memslot_rmap_free(slot); |
d89cc617 | 13079 | |
c9b929b3 | 13080 | for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) { |
a952d608 | 13081 | vfree(slot->arch.lpage_info[i - 1]); |
d89cc617 | 13082 | slot->arch.lpage_info[i - 1] = NULL; |
db3fe4eb TY |
13083 | } |
13084 | return -ENOMEM; | |
13085 | } | |
13086 | ||
15248258 | 13087 | void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen) |
e59dbe09 | 13088 | { |
91724814 | 13089 | struct kvm_vcpu *vcpu; |
46808a4c | 13090 | unsigned long i; |
91724814 | 13091 | |
e6dff7d1 TY |
13092 | /* |
13093 | * memslots->generation has been incremented. | |
13094 | * mmio generation may have reached its maximum value. | |
13095 | */ | |
15248258 | 13096 | kvm_mmu_invalidate_mmio_sptes(kvm, gen); |
91724814 BO |
13097 | |
13098 | /* Force re-initialization of steal_time cache */ | |
13099 | kvm_for_each_vcpu(i, vcpu, kvm) | |
13100 | kvm_vcpu_kick(vcpu); | |
e59dbe09 TY |
13101 | } |
13102 | ||
f7784b8e | 13103 | int kvm_arch_prepare_memory_region(struct kvm *kvm, |
537a17b3 SC |
13104 | const struct kvm_memory_slot *old, |
13105 | struct kvm_memory_slot *new, | |
13106 | enum kvm_mr_change change) | |
0de10343 | 13107 | { |
c70934e0 SC |
13108 | /* |
13109 | * KVM doesn't support moving memslots when there are external page | |
13110 | * trackers attached to the VM, i.e. if KVMGT is in use. | |
13111 | */ | |
13112 | if (change == KVM_MR_MOVE && kvm_page_track_has_external_user(kvm)) | |
13113 | return -EINVAL; | |
13114 | ||
86931ff7 SC |
13115 | if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) { |
13116 | if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn()) | |
13117 | return -EINVAL; | |
13118 | ||
2c3412e9 RE |
13119 | if (kvm_is_gfn_alias(kvm, new->base_gfn + new->npages - 1)) |
13120 | return -EINVAL; | |
13121 | ||
9d7d18ee | 13122 | return kvm_alloc_memslot_metadata(kvm, new); |
86931ff7 | 13123 | } |
537a17b3 SC |
13124 | |
13125 | if (change == KVM_MR_FLAGS_ONLY) | |
13126 | memcpy(&new->arch, &old->arch, sizeof(old->arch)); | |
13127 | else if (WARN_ON_ONCE(change != KVM_MR_DELETE)) | |
13128 | return -EIO; | |
13129 | ||
f7784b8e MT |
13130 | return 0; |
13131 | } | |
13132 | ||
a85863c2 MS |
13133 | |
13134 | static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable) | |
13135 | { | |
ee661d8e | 13136 | int nr_slots; |
a85863c2 | 13137 | |
fbb4adad | 13138 | if (!kvm->arch.cpu_dirty_log_size) |
a85863c2 MS |
13139 | return; |
13140 | ||
ee661d8e DM |
13141 | nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging); |
13142 | if ((enable && nr_slots == 1) || !nr_slots) | |
a85863c2 | 13143 | kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING); |
a85863c2 MS |
13144 | } |
13145 | ||
88178fd4 | 13146 | static void kvm_mmu_slot_apply_flags(struct kvm *kvm, |
3741679b | 13147 | struct kvm_memory_slot *old, |
269e9552 | 13148 | const struct kvm_memory_slot *new, |
3741679b | 13149 | enum kvm_mr_change change) |
88178fd4 | 13150 | { |
77aedf26 SC |
13151 | u32 old_flags = old ? old->flags : 0; |
13152 | u32 new_flags = new ? new->flags : 0; | |
13153 | bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES; | |
a85863c2 | 13154 | |
3741679b | 13155 | /* |
a85863c2 MS |
13156 | * Update CPU dirty logging if dirty logging is being toggled. This |
13157 | * applies to all operations. | |
3741679b | 13158 | */ |
77aedf26 | 13159 | if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES) |
a85863c2 | 13160 | kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages); |
88178fd4 KH |
13161 | |
13162 | /* | |
a85863c2 | 13163 | * Nothing more to do for RO slots (which can't be dirtied and can't be |
b6e16ae5 | 13164 | * made writable) or CREATE/MOVE/DELETE of a slot. |
88178fd4 | 13165 | * |
b6e16ae5 | 13166 | * For a memslot with dirty logging disabled: |
3741679b AY |
13167 | * CREATE: No dirty mappings will already exist. |
13168 | * MOVE/DELETE: The old mappings will already have been cleaned up by | |
13169 | * kvm_arch_flush_shadow_memslot() | |
b6e16ae5 SC |
13170 | * |
13171 | * For a memslot with dirty logging enabled: | |
13172 | * CREATE: No shadow pages exist, thus nothing to write-protect | |
13173 | * and no dirty bits to clear. | |
13174 | * MOVE/DELETE: The old mappings will already have been cleaned up by | |
13175 | * kvm_arch_flush_shadow_memslot(). | |
3741679b | 13176 | */ |
77aedf26 | 13177 | if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY)) |
88178fd4 | 13178 | return; |
3741679b AY |
13179 | |
13180 | /* | |
52f46079 SC |
13181 | * READONLY and non-flags changes were filtered out above, and the only |
13182 | * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty | |
13183 | * logging isn't being toggled on or off. | |
88178fd4 | 13184 | */ |
77aedf26 | 13185 | if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES))) |
52f46079 SC |
13186 | return; |
13187 | ||
b6e16ae5 SC |
13188 | if (!log_dirty_pages) { |
13189 | /* | |
13e2e4f6 DM |
13190 | * Recover huge page mappings in the slot now that dirty logging |
13191 | * is disabled, i.e. now that KVM does not have to track guest | |
13192 | * writes at 4KiB granularity. | |
b6e16ae5 | 13193 | * |
13e2e4f6 DM |
13194 | * Dirty logging might be disabled by userspace if an ongoing VM |
13195 | * live migration is cancelled and the VM must continue running | |
13196 | * on the source. | |
b6e16ae5 | 13197 | */ |
13e2e4f6 | 13198 | kvm_mmu_recover_huge_pages(kvm, new); |
b6e16ae5 | 13199 | } else { |
89212919 KZ |
13200 | /* |
13201 | * Initially-all-set does not require write protecting any page, | |
13202 | * because they're all assumed to be dirty. | |
13203 | */ | |
13204 | if (kvm_dirty_log_manual_protect_and_init_set(kvm)) | |
13205 | return; | |
a1419f8b | 13206 | |
a3fe5dbd DM |
13207 | if (READ_ONCE(eager_page_split)) |
13208 | kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K); | |
13209 | ||
fbb4adad | 13210 | if (kvm->arch.cpu_dirty_log_size) { |
89212919 KZ |
13211 | kvm_mmu_slot_leaf_clear_dirty(kvm, new); |
13212 | kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M); | |
13213 | } else { | |
13214 | kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K); | |
3c9bd400 | 13215 | } |
b64d740e JS |
13216 | |
13217 | /* | |
13218 | * Unconditionally flush the TLBs after enabling dirty logging. | |
13219 | * A flush is almost always going to be necessary (see below), | |
13220 | * and unconditionally flushing allows the helpers to omit | |
13221 | * the subtly complex checks when removing write access. | |
13222 | * | |
13223 | * Do the flush outside of mmu_lock to reduce the amount of | |
13224 | * time mmu_lock is held. Flushing after dropping mmu_lock is | |
13225 | * safe as KVM only needs to guarantee the slot is fully | |
13226 | * write-protected before returning to userspace, i.e. before | |
13227 | * userspace can consume the dirty status. | |
13228 | * | |
13229 | * Flushing outside of mmu_lock requires KVM to be careful when | |
13230 | * making decisions based on writable status of an SPTE, e.g. a | |
13231 | * !writable SPTE doesn't guarantee a CPU can't perform writes. | |
13232 | * | |
13233 | * Specifically, KVM also write-protects guest page tables to | |
13234 | * monitor changes when using shadow paging, and must guarantee | |
13235 | * no CPUs can write to those page before mmu_lock is dropped. | |
13236 | * Because CPUs may have stale TLB entries at this point, a | |
13237 | * !writable SPTE doesn't guarantee CPUs can't perform writes. | |
13238 | * | |
13239 | * KVM also allows making SPTES writable outside of mmu_lock, | |
13240 | * e.g. to allow dirty logging without taking mmu_lock. | |
13241 | * | |
13242 | * To handle these scenarios, KVM uses a separate software-only | |
13243 | * bit (MMU-writable) to track if a SPTE is !writable due to | |
13244 | * a guest page table being write-protected (KVM clears the | |
13245 | * MMU-writable flag when write-protecting for shadow paging). | |
13246 | * | |
13247 | * The use of MMU-writable is also the primary motivation for | |
13248 | * the unconditional flush. Because KVM must guarantee that a | |
13249 | * CPU doesn't contain stale, writable TLB entries for a | |
13250 | * !MMU-writable SPTE, KVM must flush if it encounters any | |
13251 | * MMU-writable SPTE regardless of whether the actual hardware | |
13252 | * writable bit was set. I.e. KVM is almost guaranteed to need | |
13253 | * to flush, while unconditionally flushing allows the "remove | |
13254 | * write access" helpers to ignore MMU-writable entirely. | |
13255 | * | |
13256 | * See is_writable_pte() for more details (the case involving | |
13257 | * access-tracked SPTEs is particularly relevant). | |
13258 | */ | |
619b5072 | 13259 | kvm_flush_remote_tlbs_memslot(kvm, new); |
88178fd4 KH |
13260 | } |
13261 | } | |
13262 | ||
f7784b8e | 13263 | void kvm_arch_commit_memory_region(struct kvm *kvm, |
9d4c197c | 13264 | struct kvm_memory_slot *old, |
f36f3f28 | 13265 | const struct kvm_memory_slot *new, |
8482644a | 13266 | enum kvm_mr_change change) |
f7784b8e | 13267 | { |
b83ab124 YZ |
13268 | if (change == KVM_MR_DELETE) |
13269 | kvm_page_track_delete_slot(kvm, old); | |
13270 | ||
e0c2b633 | 13271 | if (!kvm->arch.n_requested_mmu_pages && |
f5756029 MS |
13272 | (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) { |
13273 | unsigned long nr_mmu_pages; | |
13274 | ||
13275 | nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO; | |
13276 | nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES); | |
13277 | kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages); | |
13278 | } | |
1c91cad4 | 13279 | |
269e9552 | 13280 | kvm_mmu_slot_apply_flags(kvm, old, new, change); |
21198846 SC |
13281 | |
13282 | /* Free the arrays associated with the old memslot. */ | |
13283 | if (change == KVM_MR_MOVE) | |
e96c81ee | 13284 | kvm_arch_free_memslot(kvm, old); |
0de10343 | 13285 | } |
1d737c8a | 13286 | |
199b5763 LM |
13287 | bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu) |
13288 | { | |
eecf3985 SC |
13289 | WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); |
13290 | ||
b86bb11e WL |
13291 | if (vcpu->arch.guest_state_protected) |
13292 | return true; | |
13293 | ||
89604647 | 13294 | return kvm_x86_call(get_cpl)(vcpu) == 0; |
199b5763 LM |
13295 | } |
13296 | ||
e1bfc245 SC |
13297 | unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu) |
13298 | { | |
eecf3985 SC |
13299 | WARN_ON_ONCE(!kvm_arch_pmi_in_guest(vcpu)); |
13300 | ||
13301 | if (vcpu->arch.guest_state_protected) | |
13302 | return 0; | |
13303 | ||
e1bfc245 SC |
13304 | return kvm_rip_read(vcpu); |
13305 | } | |
13306 | ||
b6d33834 | 13307 | int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu) |
5736199a | 13308 | { |
b6d33834 | 13309 | return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE; |
5736199a | 13310 | } |
78646121 GN |
13311 | |
13312 | int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu) | |
13313 | { | |
89604647 | 13314 | return kvm_x86_call(interrupt_allowed)(vcpu, false); |
78646121 | 13315 | } |
229456fc | 13316 | |
82b32774 | 13317 | unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu) |
f92653ee | 13318 | { |
7ed9abfe TL |
13319 | /* Can't read the RIP when guest state is protected, just return 0 */ |
13320 | if (vcpu->arch.guest_state_protected) | |
13321 | return 0; | |
13322 | ||
82b32774 NA |
13323 | if (is_64_bit_mode(vcpu)) |
13324 | return kvm_rip_read(vcpu); | |
13325 | return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) + | |
13326 | kvm_rip_read(vcpu)); | |
13327 | } | |
13328 | EXPORT_SYMBOL_GPL(kvm_get_linear_rip); | |
f92653ee | 13329 | |
82b32774 NA |
13330 | bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip) |
13331 | { | |
13332 | return kvm_get_linear_rip(vcpu) == linear_rip; | |
f92653ee JK |
13333 | } |
13334 | EXPORT_SYMBOL_GPL(kvm_is_linear_rip); | |
13335 | ||
94fe45da JK |
13336 | unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu) |
13337 | { | |
13338 | unsigned long rflags; | |
13339 | ||
89604647 | 13340 | rflags = kvm_x86_call(get_rflags)(vcpu); |
94fe45da | 13341 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) |
c310bac5 | 13342 | rflags &= ~X86_EFLAGS_TF; |
94fe45da JK |
13343 | return rflags; |
13344 | } | |
13345 | EXPORT_SYMBOL_GPL(kvm_get_rflags); | |
13346 | ||
6addfc42 | 13347 | static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) |
94fe45da JK |
13348 | { |
13349 | if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP && | |
f92653ee | 13350 | kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip)) |
c310bac5 | 13351 | rflags |= X86_EFLAGS_TF; |
89604647 | 13352 | kvm_x86_call(set_rflags)(vcpu, rflags); |
6addfc42 PB |
13353 | } |
13354 | ||
13355 | void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags) | |
13356 | { | |
13357 | __kvm_set_rflags(vcpu, rflags); | |
3842d135 | 13358 | kvm_make_request(KVM_REQ_EVENT, vcpu); |
94fe45da JK |
13359 | } |
13360 | EXPORT_SYMBOL_GPL(kvm_set_rflags); | |
13361 | ||
af585b92 GN |
13362 | static inline u32 kvm_async_pf_hash_fn(gfn_t gfn) |
13363 | { | |
dd03bcaa PX |
13364 | BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU)); |
13365 | ||
af585b92 GN |
13366 | return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU)); |
13367 | } | |
13368 | ||
13369 | static inline u32 kvm_async_pf_next_probe(u32 key) | |
13370 | { | |
dd03bcaa | 13371 | return (key + 1) & (ASYNC_PF_PER_VCPU - 1); |
af585b92 GN |
13372 | } |
13373 | ||
13374 | static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
13375 | { | |
13376 | u32 key = kvm_async_pf_hash_fn(gfn); | |
13377 | ||
13378 | while (vcpu->arch.apf.gfns[key] != ~0) | |
13379 | key = kvm_async_pf_next_probe(key); | |
13380 | ||
13381 | vcpu->arch.apf.gfns[key] = gfn; | |
13382 | } | |
13383 | ||
13384 | static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn) | |
13385 | { | |
13386 | int i; | |
13387 | u32 key = kvm_async_pf_hash_fn(gfn); | |
13388 | ||
dd03bcaa | 13389 | for (i = 0; i < ASYNC_PF_PER_VCPU && |
c7d28c24 XG |
13390 | (vcpu->arch.apf.gfns[key] != gfn && |
13391 | vcpu->arch.apf.gfns[key] != ~0); i++) | |
af585b92 GN |
13392 | key = kvm_async_pf_next_probe(key); |
13393 | ||
13394 | return key; | |
13395 | } | |
13396 | ||
13397 | bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
13398 | { | |
13399 | return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn; | |
13400 | } | |
13401 | ||
13402 | static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn) | |
13403 | { | |
13404 | u32 i, j, k; | |
13405 | ||
13406 | i = j = kvm_async_pf_gfn_slot(vcpu, gfn); | |
0fd46044 PX |
13407 | |
13408 | if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn)) | |
13409 | return; | |
13410 | ||
af585b92 GN |
13411 | while (true) { |
13412 | vcpu->arch.apf.gfns[i] = ~0; | |
13413 | do { | |
13414 | j = kvm_async_pf_next_probe(j); | |
13415 | if (vcpu->arch.apf.gfns[j] == ~0) | |
13416 | return; | |
13417 | k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]); | |
13418 | /* | |
13419 | * k lies cyclically in ]i,j] | |
13420 | * | i.k.j | | |
13421 | * |....j i.k.| or |.k..j i...| | |
13422 | */ | |
13423 | } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j)); | |
13424 | vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j]; | |
13425 | i = j; | |
13426 | } | |
13427 | } | |
13428 | ||
68fd66f1 | 13429 | static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu) |
7c90705b | 13430 | { |
68fd66f1 VK |
13431 | u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT; |
13432 | ||
13433 | return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason, | |
13434 | sizeof(reason)); | |
13435 | } | |
13436 | ||
13437 | static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token) | |
13438 | { | |
2635b5c4 | 13439 | unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); |
4e335d9e | 13440 | |
2635b5c4 VK |
13441 | return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, |
13442 | &token, offset, sizeof(token)); | |
13443 | } | |
13444 | ||
13445 | static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu) | |
13446 | { | |
13447 | unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token); | |
13448 | u32 val; | |
13449 | ||
13450 | if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data, | |
13451 | &val, offset, sizeof(val))) | |
13452 | return false; | |
13453 | ||
13454 | return !val; | |
7c90705b GN |
13455 | } |
13456 | ||
1dfdb45e PB |
13457 | static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu) |
13458 | { | |
57cb3bb0 PB |
13459 | |
13460 | if (!kvm_pv_async_pf_enabled(vcpu)) | |
1dfdb45e PB |
13461 | return false; |
13462 | ||
4fa0efb4 | 13463 | if (!vcpu->arch.apf.send_always && |
b9595d1d | 13464 | (vcpu->arch.guest_state_protected || !kvm_x86_call(get_cpl)(vcpu))) |
1dfdb45e PB |
13465 | return false; |
13466 | ||
57cb3bb0 PB |
13467 | if (is_guest_mode(vcpu)) { |
13468 | /* | |
13469 | * L1 needs to opt into the special #PF vmexits that are | |
13470 | * used to deliver async page faults. | |
13471 | */ | |
13472 | return vcpu->arch.apf.delivery_as_pf_vmexit; | |
13473 | } else { | |
13474 | /* | |
13475 | * Play it safe in case the guest temporarily disables paging. | |
13476 | * The real mode IDT in particular is unlikely to have a #PF | |
13477 | * exception setup. | |
13478 | */ | |
13479 | return is_paging(vcpu); | |
13480 | } | |
1dfdb45e PB |
13481 | } |
13482 | ||
13483 | bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu) | |
13484 | { | |
13485 | if (unlikely(!lapic_in_kernel(vcpu) || | |
13486 | kvm_event_needs_reinjection(vcpu) || | |
7709aba8 | 13487 | kvm_is_exception_pending(vcpu))) |
1dfdb45e PB |
13488 | return false; |
13489 | ||
13490 | if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu)) | |
13491 | return false; | |
13492 | ||
13493 | /* | |
13494 | * If interrupts are off we cannot even use an artificial | |
13495 | * halt state. | |
13496 | */ | |
c300ab9f | 13497 | return kvm_arch_interrupt_allowed(vcpu); |
1dfdb45e PB |
13498 | } |
13499 | ||
2a18b7e7 | 13500 | bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu, |
af585b92 GN |
13501 | struct kvm_async_pf *work) |
13502 | { | |
6389ee94 AK |
13503 | struct x86_exception fault; |
13504 | ||
736c291c | 13505 | trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa); |
af585b92 | 13506 | kvm_add_async_pf_gfn(vcpu, work->arch.gfn); |
7c90705b | 13507 | |
1dfdb45e | 13508 | if (kvm_can_deliver_async_pf(vcpu) && |
68fd66f1 | 13509 | !apf_put_user_notpresent(vcpu)) { |
6389ee94 AK |
13510 | fault.vector = PF_VECTOR; |
13511 | fault.error_code_valid = true; | |
13512 | fault.error_code = 0; | |
13513 | fault.nested_page_fault = false; | |
13514 | fault.address = work->arch.token; | |
adfe20fb | 13515 | fault.async_page_fault = true; |
6389ee94 | 13516 | kvm_inject_page_fault(vcpu, &fault); |
2a18b7e7 | 13517 | return true; |
1dfdb45e PB |
13518 | } else { |
13519 | /* | |
13520 | * It is not possible to deliver a paravirtualized asynchronous | |
13521 | * page fault, but putting the guest in an artificial halt state | |
13522 | * can be beneficial nevertheless: if an interrupt arrives, we | |
13523 | * can deliver it timely and perhaps the guest will schedule | |
13524 | * another process. When the instruction that triggered a page | |
13525 | * fault is retried, hopefully the page will be ready in the host. | |
13526 | */ | |
13527 | kvm_make_request(KVM_REQ_APF_HALT, vcpu); | |
2a18b7e7 | 13528 | return false; |
7c90705b | 13529 | } |
af585b92 GN |
13530 | } |
13531 | ||
13532 | void kvm_arch_async_page_present(struct kvm_vcpu *vcpu, | |
13533 | struct kvm_async_pf *work) | |
13534 | { | |
2635b5c4 VK |
13535 | struct kvm_lapic_irq irq = { |
13536 | .delivery_mode = APIC_DM_FIXED, | |
13537 | .vector = vcpu->arch.apf.vec | |
13538 | }; | |
6389ee94 | 13539 | |
f2e10669 | 13540 | if (work->wakeup_all) |
7c90705b GN |
13541 | work->arch.token = ~0; /* broadcast wakeup */ |
13542 | else | |
13543 | kvm_del_async_pf_gfn(vcpu, work->arch.gfn); | |
736c291c | 13544 | trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa); |
7c90705b | 13545 | |
2a18b7e7 VK |
13546 | if ((work->wakeup_all || work->notpresent_injected) && |
13547 | kvm_pv_async_pf_enabled(vcpu) && | |
557a961a VK |
13548 | !apf_put_user_ready(vcpu, work->arch.token)) { |
13549 | vcpu->arch.apf.pageready_pending = true; | |
2635b5c4 | 13550 | kvm_apic_set_irq(vcpu, &irq, NULL); |
557a961a | 13551 | } |
2635b5c4 | 13552 | |
e6d53e3b | 13553 | vcpu->arch.apf.halted = false; |
c9e5f3fa | 13554 | kvm_set_mp_state(vcpu, KVM_MP_STATE_RUNNABLE); |
7c90705b GN |
13555 | } |
13556 | ||
557a961a VK |
13557 | void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu) |
13558 | { | |
13559 | kvm_make_request(KVM_REQ_APF_READY, vcpu); | |
13560 | if (!vcpu->arch.apf.pageready_pending) | |
13561 | kvm_vcpu_kick(vcpu); | |
13562 | } | |
13563 | ||
7c0ade6c | 13564 | bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu) |
7c90705b | 13565 | { |
2635b5c4 | 13566 | if (!kvm_pv_async_pf_enabled(vcpu)) |
7c90705b GN |
13567 | return true; |
13568 | else | |
2f15d027 | 13569 | return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu); |
af585b92 GN |
13570 | } |
13571 | ||
5544eb9b PB |
13572 | void kvm_arch_start_assignment(struct kvm *kvm) |
13573 | { | |
57ab8794 | 13574 | if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1) |
89604647 | 13575 | kvm_x86_call(pi_start_assignment)(kvm); |
5544eb9b PB |
13576 | } |
13577 | EXPORT_SYMBOL_GPL(kvm_arch_start_assignment); | |
13578 | ||
13579 | void kvm_arch_end_assignment(struct kvm *kvm) | |
13580 | { | |
13581 | atomic_dec(&kvm->arch.assigned_device_count); | |
13582 | } | |
13583 | EXPORT_SYMBOL_GPL(kvm_arch_end_assignment); | |
13584 | ||
742ab6df | 13585 | bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm) |
5544eb9b | 13586 | { |
0f613bfa | 13587 | return raw_atomic_read(&kvm->arch.assigned_device_count); |
5544eb9b PB |
13588 | } |
13589 | EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device); | |
13590 | ||
362ff6dc YZ |
13591 | static void kvm_noncoherent_dma_assignment_start_or_stop(struct kvm *kvm) |
13592 | { | |
13593 | /* | |
0a7b7355 SC |
13594 | * Non-coherent DMA assignment and de-assignment may affect whether or |
13595 | * not KVM honors guest PAT, and thus may cause changes in EPT SPTEs | |
13596 | * due to toggling the "ignore PAT" bit. Zap all SPTEs when the first | |
13597 | * (or last) non-coherent device is (un)registered to so that new SPTEs | |
13598 | * with the correct "ignore guest PAT" setting are created. | |
3fee4837 PB |
13599 | * |
13600 | * If KVM always honors guest PAT, however, there is nothing to do. | |
362ff6dc | 13601 | */ |
3fee4837 | 13602 | if (kvm_check_has_quirk(kvm, KVM_X86_QUIRK_IGNORE_GUEST_PAT)) |
362ff6dc YZ |
13603 | kvm_zap_gfn_range(kvm, gpa_to_gfn(0), gpa_to_gfn(~0ULL)); |
13604 | } | |
13605 | ||
e0f0bbc5 AW |
13606 | void kvm_arch_register_noncoherent_dma(struct kvm *kvm) |
13607 | { | |
362ff6dc YZ |
13608 | if (atomic_inc_return(&kvm->arch.noncoherent_dma_count) == 1) |
13609 | kvm_noncoherent_dma_assignment_start_or_stop(kvm); | |
e0f0bbc5 AW |
13610 | } |
13611 | EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma); | |
13612 | ||
13613 | void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm) | |
13614 | { | |
362ff6dc YZ |
13615 | if (!atomic_dec_return(&kvm->arch.noncoherent_dma_count)) |
13616 | kvm_noncoherent_dma_assignment_start_or_stop(kvm); | |
e0f0bbc5 AW |
13617 | } |
13618 | EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma); | |
13619 | ||
13620 | bool kvm_arch_has_noncoherent_dma(struct kvm *kvm) | |
13621 | { | |
13622 | return atomic_read(&kvm->arch.noncoherent_dma_count); | |
13623 | } | |
13624 | EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma); | |
13625 | ||
87276880 FW |
13626 | int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons, |
13627 | struct irq_bypass_producer *prod) | |
13628 | { | |
13629 | struct kvm_kernel_irqfd *irqfd = | |
13630 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
f1fb088d | 13631 | struct kvm *kvm = irqfd->kvm; |
2edd9cb7 | 13632 | int ret; |
87276880 | 13633 | |
2edd9cb7 | 13634 | kvm_arch_start_assignment(irqfd->kvm); |
f1fb088d SC |
13635 | |
13636 | spin_lock_irq(&kvm->irqfds.lock); | |
13637 | irqfd->producer = prod; | |
13638 | ||
89604647 WW |
13639 | ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, |
13640 | prod->irq, irqfd->gsi, 1); | |
2edd9cb7 ZL |
13641 | if (ret) |
13642 | kvm_arch_end_assignment(irqfd->kvm); | |
87276880 | 13643 | |
f1fb088d SC |
13644 | spin_unlock_irq(&kvm->irqfds.lock); |
13645 | ||
13646 | ||
2edd9cb7 | 13647 | return ret; |
87276880 FW |
13648 | } |
13649 | ||
13650 | void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons, | |
13651 | struct irq_bypass_producer *prod) | |
13652 | { | |
13653 | int ret; | |
13654 | struct kvm_kernel_irqfd *irqfd = | |
13655 | container_of(cons, struct kvm_kernel_irqfd, consumer); | |
f1fb088d | 13656 | struct kvm *kvm = irqfd->kvm; |
87276880 | 13657 | |
87276880 | 13658 | WARN_ON(irqfd->producer != prod); |
87276880 FW |
13659 | |
13660 | /* | |
13661 | * When producer of consumer is unregistered, we change back to | |
13662 | * remapped mode, so we can re-use the current implementation | |
bb3541f1 | 13663 | * when the irq is masked/disabled or the consumer side (KVM |
87276880 FW |
13664 | * int this case doesn't want to receive the interrupts. |
13665 | */ | |
f1fb088d SC |
13666 | spin_lock_irq(&kvm->irqfds.lock); |
13667 | irqfd->producer = NULL; | |
13668 | ||
89604647 WW |
13669 | ret = kvm_x86_call(pi_update_irte)(irqfd->kvm, |
13670 | prod->irq, irqfd->gsi, 0); | |
87276880 FW |
13671 | if (ret) |
13672 | printk(KERN_INFO "irq bypass consumer (token %p) unregistration" | |
13673 | " fails: %d\n", irqfd->consumer.token, ret); | |
2edd9cb7 | 13674 | |
f1fb088d SC |
13675 | spin_unlock_irq(&kvm->irqfds.lock); |
13676 | ||
13677 | ||
2edd9cb7 | 13678 | kvm_arch_end_assignment(irqfd->kvm); |
87276880 FW |
13679 | } |
13680 | ||
13681 | int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq, | |
13682 | uint32_t guest_irq, bool set) | |
13683 | { | |
89604647 | 13684 | return kvm_x86_call(pi_update_irte)(kvm, host_irq, guest_irq, set); |
87276880 FW |
13685 | } |
13686 | ||
515a0c79 LM |
13687 | bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old, |
13688 | struct kvm_kernel_irq_routing_entry *new) | |
13689 | { | |
bcda70c5 SC |
13690 | if (old->type != KVM_IRQ_ROUTING_MSI || |
13691 | new->type != KVM_IRQ_ROUTING_MSI) | |
515a0c79 LM |
13692 | return true; |
13693 | ||
13694 | return !!memcmp(&old->msi, &new->msi, sizeof(new->msi)); | |
13695 | } | |
13696 | ||
52004014 FW |
13697 | bool kvm_vector_hashing_enabled(void) |
13698 | { | |
13699 | return vector_hashing; | |
13700 | } | |
52004014 | 13701 | |
2d5ba19b MT |
13702 | bool kvm_arch_no_poll(struct kvm_vcpu *vcpu) |
13703 | { | |
13704 | return (vcpu->arch.msr_kvm_poll_control & 1) == 0; | |
13705 | } | |
13706 | EXPORT_SYMBOL_GPL(kvm_arch_no_poll); | |
13707 | ||
564429a6 | 13708 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_PREPARE |
3bb2531e PB |
13709 | int kvm_arch_gmem_prepare(struct kvm *kvm, gfn_t gfn, kvm_pfn_t pfn, int max_order) |
13710 | { | |
89604647 | 13711 | return kvm_x86_call(gmem_prepare)(kvm, pfn, gfn, max_order); |
3bb2531e PB |
13712 | } |
13713 | #endif | |
841c2be0 | 13714 | |
564429a6 | 13715 | #ifdef CONFIG_HAVE_KVM_ARCH_GMEM_INVALIDATE |
a90764f0 MR |
13716 | void kvm_arch_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end) |
13717 | { | |
89604647 | 13718 | kvm_x86_call(gmem_invalidate)(start, end); |
a90764f0 MR |
13719 | } |
13720 | #endif | |
841c2be0 ML |
13721 | |
13722 | int kvm_spec_ctrl_test_value(u64 value) | |
6441fa61 | 13723 | { |
841c2be0 ML |
13724 | /* |
13725 | * test that setting IA32_SPEC_CTRL to given value | |
13726 | * is allowed by the host processor | |
13727 | */ | |
6441fa61 | 13728 | |
841c2be0 ML |
13729 | u64 saved_value; |
13730 | unsigned long flags; | |
13731 | int ret = 0; | |
6441fa61 | 13732 | |
841c2be0 | 13733 | local_irq_save(flags); |
6441fa61 | 13734 | |
6fe22aba | 13735 | if (rdmsrq_safe(MSR_IA32_SPEC_CTRL, &saved_value)) |
841c2be0 | 13736 | ret = 1; |
6fa17efe | 13737 | else if (wrmsrq_safe(MSR_IA32_SPEC_CTRL, value)) |
841c2be0 ML |
13738 | ret = 1; |
13739 | else | |
78255eb2 | 13740 | wrmsrq(MSR_IA32_SPEC_CTRL, saved_value); |
6441fa61 | 13741 | |
841c2be0 | 13742 | local_irq_restore(flags); |
6441fa61 | 13743 | |
841c2be0 | 13744 | return ret; |
6441fa61 | 13745 | } |
841c2be0 | 13746 | EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value); |
2d5ba19b | 13747 | |
89786147 MG |
13748 | void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code) |
13749 | { | |
1f5a21ee | 13750 | struct kvm_mmu *mmu = vcpu->arch.walk_mmu; |
89786147 | 13751 | struct x86_exception fault; |
5b22bbe7 | 13752 | u64 access = error_code & |
19cf4b7e | 13753 | (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK); |
89786147 MG |
13754 | |
13755 | if (!(error_code & PFERR_PRESENT_MASK) || | |
6e1d2a3f | 13756 | mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) { |
89786147 MG |
13757 | /* |
13758 | * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page | |
13759 | * tables probably do not match the TLB. Just proceed | |
13760 | * with the error code that the processor gave. | |
13761 | */ | |
13762 | fault.vector = PF_VECTOR; | |
13763 | fault.error_code_valid = true; | |
13764 | fault.error_code = error_code; | |
13765 | fault.nested_page_fault = false; | |
13766 | fault.address = gva; | |
2bc685e6 | 13767 | fault.async_page_fault = false; |
89786147 MG |
13768 | } |
13769 | vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault); | |
6441fa61 | 13770 | } |
89786147 | 13771 | EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error); |
2d5ba19b | 13772 | |
3f3393b3 BM |
13773 | /* |
13774 | * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns | |
13775 | * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value | |
13776 | * indicates whether exit to userspace is needed. | |
13777 | */ | |
13778 | int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r, | |
13779 | struct x86_exception *e) | |
13780 | { | |
13781 | if (r == X86EMUL_PROPAGATE_FAULT) { | |
77b1908e SC |
13782 | if (KVM_BUG_ON(!e, vcpu->kvm)) |
13783 | return -EIO; | |
13784 | ||
3f3393b3 BM |
13785 | kvm_inject_emulated_page_fault(vcpu, e); |
13786 | return 1; | |
13787 | } | |
13788 | ||
13789 | /* | |
13790 | * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED | |
13791 | * while handling a VMX instruction KVM could've handled the request | |
13792 | * correctly by exiting to userspace and performing I/O but there | |
13793 | * doesn't seem to be a real use-case behind such requests, just return | |
13794 | * KVM_EXIT_INTERNAL_ERROR for now. | |
13795 | */ | |
e615e355 | 13796 | kvm_prepare_emulation_failure_exit(vcpu); |
3f3393b3 BM |
13797 | |
13798 | return 0; | |
13799 | } | |
13800 | EXPORT_SYMBOL_GPL(kvm_handle_memory_failure); | |
13801 | ||
9715092f BM |
13802 | int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva) |
13803 | { | |
13804 | bool pcid_enabled; | |
13805 | struct x86_exception e; | |
9715092f BM |
13806 | struct { |
13807 | u64 pcid; | |
13808 | u64 gla; | |
13809 | } operand; | |
13810 | int r; | |
13811 | ||
13812 | r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e); | |
13813 | if (r != X86EMUL_CONTINUE) | |
13814 | return kvm_handle_memory_failure(vcpu, r, &e); | |
13815 | ||
13816 | if (operand.pcid >> 12 != 0) { | |
13817 | kvm_inject_gp(vcpu, 0); | |
13818 | return 1; | |
13819 | } | |
13820 | ||
607475cf | 13821 | pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE); |
9715092f BM |
13822 | |
13823 | switch (type) { | |
13824 | case INVPCID_TYPE_INDIV_ADDR: | |
b39bd520 BW |
13825 | /* |
13826 | * LAM doesn't apply to addresses that are inputs to TLB | |
13827 | * invalidation. | |
13828 | */ | |
9715092f | 13829 | if ((!pcid_enabled && (operand.pcid != 0)) || |
9245fd6b | 13830 | is_noncanonical_invlpg_address(operand.gla, vcpu)) { |
9715092f BM |
13831 | kvm_inject_gp(vcpu, 0); |
13832 | return 1; | |
13833 | } | |
13834 | kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid); | |
13835 | return kvm_skip_emulated_instruction(vcpu); | |
13836 | ||
13837 | case INVPCID_TYPE_SINGLE_CTXT: | |
13838 | if (!pcid_enabled && (operand.pcid != 0)) { | |
13839 | kvm_inject_gp(vcpu, 0); | |
13840 | return 1; | |
13841 | } | |
13842 | ||
21823fbd | 13843 | kvm_invalidate_pcid(vcpu, operand.pcid); |
9715092f BM |
13844 | return kvm_skip_emulated_instruction(vcpu); |
13845 | ||
13846 | case INVPCID_TYPE_ALL_NON_GLOBAL: | |
13847 | /* | |
13848 | * Currently, KVM doesn't mark global entries in the shadow | |
13849 | * page tables, so a non-global flush just degenerates to a | |
13850 | * global flush. If needed, we could optimize this later by | |
13851 | * keeping track of global entries in shadow page tables. | |
13852 | */ | |
13853 | ||
13854 | fallthrough; | |
13855 | case INVPCID_TYPE_ALL_INCL_GLOBAL: | |
28f28d45 | 13856 | kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu); |
9715092f BM |
13857 | return kvm_skip_emulated_instruction(vcpu); |
13858 | ||
13859 | default: | |
796c83c5 VS |
13860 | kvm_inject_gp(vcpu, 0); |
13861 | return 1; | |
9715092f BM |
13862 | } |
13863 | } | |
13864 | EXPORT_SYMBOL_GPL(kvm_handle_invpcid); | |
13865 | ||
8f423a80 TL |
13866 | static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu) |
13867 | { | |
13868 | struct kvm_run *run = vcpu->run; | |
13869 | struct kvm_mmio_fragment *frag; | |
13870 | unsigned int len; | |
13871 | ||
13872 | BUG_ON(!vcpu->mmio_needed); | |
13873 | ||
13874 | /* Complete previous fragment */ | |
13875 | frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment]; | |
13876 | len = min(8u, frag->len); | |
13877 | if (!vcpu->mmio_is_write) | |
13878 | memcpy(frag->data, run->mmio.data, len); | |
13879 | ||
13880 | if (frag->len <= 8) { | |
13881 | /* Switch to the next fragment. */ | |
13882 | frag++; | |
13883 | vcpu->mmio_cur_fragment++; | |
13884 | } else { | |
13885 | /* Go forward to the next mmio piece. */ | |
13886 | frag->data += len; | |
13887 | frag->gpa += len; | |
13888 | frag->len -= len; | |
13889 | } | |
13890 | ||
13891 | if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) { | |
13892 | vcpu->mmio_needed = 0; | |
13893 | ||
13894 | // VMG change, at this point, we're always done | |
13895 | // RIP has already been advanced | |
13896 | return 1; | |
13897 | } | |
13898 | ||
13899 | // More MMIO is needed | |
13900 | run->mmio.phys_addr = frag->gpa; | |
13901 | run->mmio.len = min(8u, frag->len); | |
13902 | run->mmio.is_write = vcpu->mmio_is_write; | |
13903 | if (run->mmio.is_write) | |
13904 | memcpy(run->mmio.data, frag->data, min(8u, frag->len)); | |
13905 | run->exit_reason = KVM_EXIT_MMIO; | |
13906 | ||
13907 | vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | |
13908 | ||
13909 | return 0; | |
13910 | } | |
13911 | ||
13912 | int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, | |
13913 | void *data) | |
13914 | { | |
13915 | int handled; | |
13916 | struct kvm_mmio_fragment *frag; | |
13917 | ||
13918 | if (!data) | |
13919 | return -EINVAL; | |
13920 | ||
13921 | handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data); | |
13922 | if (handled == bytes) | |
13923 | return 1; | |
13924 | ||
13925 | bytes -= handled; | |
13926 | gpa += handled; | |
13927 | data += handled; | |
13928 | ||
13929 | /*TODO: Check if need to increment number of frags */ | |
13930 | frag = vcpu->mmio_fragments; | |
13931 | vcpu->mmio_nr_fragments = 1; | |
13932 | frag->len = bytes; | |
13933 | frag->gpa = gpa; | |
13934 | frag->data = data; | |
13935 | ||
13936 | vcpu->mmio_needed = 1; | |
13937 | vcpu->mmio_cur_fragment = 0; | |
13938 | ||
13939 | vcpu->run->mmio.phys_addr = gpa; | |
13940 | vcpu->run->mmio.len = min(8u, frag->len); | |
13941 | vcpu->run->mmio.is_write = 1; | |
13942 | memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len)); | |
13943 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
13944 | ||
13945 | vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | |
13946 | ||
13947 | return 0; | |
13948 | } | |
13949 | EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write); | |
13950 | ||
13951 | int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes, | |
13952 | void *data) | |
13953 | { | |
13954 | int handled; | |
13955 | struct kvm_mmio_fragment *frag; | |
13956 | ||
13957 | if (!data) | |
13958 | return -EINVAL; | |
13959 | ||
13960 | handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data); | |
13961 | if (handled == bytes) | |
13962 | return 1; | |
13963 | ||
13964 | bytes -= handled; | |
13965 | gpa += handled; | |
13966 | data += handled; | |
13967 | ||
13968 | /*TODO: Check if need to increment number of frags */ | |
13969 | frag = vcpu->mmio_fragments; | |
13970 | vcpu->mmio_nr_fragments = 1; | |
13971 | frag->len = bytes; | |
13972 | frag->gpa = gpa; | |
13973 | frag->data = data; | |
13974 | ||
13975 | vcpu->mmio_needed = 1; | |
13976 | vcpu->mmio_cur_fragment = 0; | |
13977 | ||
13978 | vcpu->run->mmio.phys_addr = gpa; | |
13979 | vcpu->run->mmio.len = min(8u, frag->len); | |
13980 | vcpu->run->mmio.is_write = 0; | |
13981 | vcpu->run->exit_reason = KVM_EXIT_MMIO; | |
13982 | ||
13983 | vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio; | |
13984 | ||
13985 | return 0; | |
13986 | } | |
13987 | EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read); | |
13988 | ||
db209369 PB |
13989 | static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size) |
13990 | { | |
13991 | vcpu->arch.sev_pio_count -= count; | |
13992 | vcpu->arch.sev_pio_data += count * size; | |
13993 | } | |
13994 | ||
7ed9abfe | 13995 | static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, |
95e16b47 PB |
13996 | unsigned int port); |
13997 | ||
13998 | static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu) | |
7ed9abfe | 13999 | { |
95e16b47 PB |
14000 | int size = vcpu->arch.pio.size; |
14001 | int port = vcpu->arch.pio.port; | |
14002 | ||
14003 | vcpu->arch.pio.count = 0; | |
14004 | if (vcpu->arch.sev_pio_count) | |
14005 | return kvm_sev_es_outs(vcpu, size, port); | |
14006 | return 1; | |
14007 | } | |
14008 | ||
14009 | static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size, | |
14010 | unsigned int port) | |
14011 | { | |
14012 | for (;;) { | |
14013 | unsigned int count = | |
14014 | min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); | |
14015 | int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count); | |
14016 | ||
14017 | /* memcpy done already by emulator_pio_out. */ | |
db209369 | 14018 | advance_sev_es_emulated_pio(vcpu, count, size); |
95e16b47 PB |
14019 | if (!ret) |
14020 | break; | |
7ed9abfe | 14021 | |
ea724ea4 | 14022 | /* Emulation done by the kernel. */ |
95e16b47 PB |
14023 | if (!vcpu->arch.sev_pio_count) |
14024 | return 1; | |
ea724ea4 | 14025 | } |
7ed9abfe | 14026 | |
95e16b47 | 14027 | vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs; |
7ed9abfe TL |
14028 | return 0; |
14029 | } | |
14030 | ||
95e16b47 PB |
14031 | static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, |
14032 | unsigned int port); | |
14033 | ||
4fa4b38d PB |
14034 | static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu) |
14035 | { | |
0c05e10b | 14036 | unsigned count = vcpu->arch.pio.count; |
95e16b47 PB |
14037 | int size = vcpu->arch.pio.size; |
14038 | int port = vcpu->arch.pio.port; | |
4fa4b38d | 14039 | |
0c05e10b | 14040 | complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data); |
db209369 | 14041 | advance_sev_es_emulated_pio(vcpu, count, size); |
95e16b47 PB |
14042 | if (vcpu->arch.sev_pio_count) |
14043 | return kvm_sev_es_ins(vcpu, size, port); | |
4fa4b38d PB |
14044 | return 1; |
14045 | } | |
14046 | ||
7ed9abfe | 14047 | static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size, |
95e16b47 | 14048 | unsigned int port) |
7ed9abfe | 14049 | { |
95e16b47 PB |
14050 | for (;;) { |
14051 | unsigned int count = | |
14052 | min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count); | |
f35cee4a | 14053 | if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count)) |
95e16b47 | 14054 | break; |
7ed9abfe | 14055 | |
ea724ea4 | 14056 | /* Emulation done by the kernel. */ |
db209369 | 14057 | advance_sev_es_emulated_pio(vcpu, count, size); |
95e16b47 PB |
14058 | if (!vcpu->arch.sev_pio_count) |
14059 | return 1; | |
7ed9abfe TL |
14060 | } |
14061 | ||
ea724ea4 | 14062 | vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins; |
7ed9abfe TL |
14063 | return 0; |
14064 | } | |
14065 | ||
14066 | int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size, | |
14067 | unsigned int port, void *data, unsigned int count, | |
14068 | int in) | |
14069 | { | |
ea724ea4 | 14070 | vcpu->arch.sev_pio_data = data; |
95e16b47 PB |
14071 | vcpu->arch.sev_pio_count = count; |
14072 | return in ? kvm_sev_es_ins(vcpu, size, port) | |
14073 | : kvm_sev_es_outs(vcpu, size, port); | |
7ed9abfe TL |
14074 | } |
14075 | EXPORT_SYMBOL_GPL(kvm_sev_es_string_io); | |
14076 | ||
d95df951 | 14077 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry); |
229456fc | 14078 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit); |
bb723beb | 14079 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_mmio); |
931c33b1 | 14080 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio); |
229456fc MT |
14081 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq); |
14082 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault); | |
14083 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr); | |
14084 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr); | |
89e54ec5 | 14085 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter); |
d8cabddf | 14086 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit); |
17897f36 | 14087 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject); |
236649de | 14088 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit); |
5497b955 | 14089 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed); |
ec1ff790 | 14090 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga); |
532a46b9 | 14091 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit); |
2e554e8d | 14092 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts); |
489223ed | 14093 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset); |
4f75bcc3 | 14094 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update); |
843e4330 | 14095 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full); |
efc64404 | 14096 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update); |
18f40c53 SS |
14097 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access); |
14098 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi); | |
ab56f8e6 | 14099 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log); |
9f084f7c | 14100 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath); |
39b6b8c3 | 14101 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell); |
8e819d75 | 14102 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq); |
d523ab6b TL |
14103 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter); |
14104 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit); | |
59e38b58 TL |
14105 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter); |
14106 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit); | |
c63cf135 | 14107 | EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_rmp_fault); |
1d0e8480 SC |
14108 | |
14109 | static int __init kvm_x86_init(void) | |
14110 | { | |
1201f226 SC |
14111 | kvm_init_xstate_sizes(); |
14112 | ||
1d0e8480 | 14113 | kvm_mmu_x86_module_init(); |
6f0f2d5e | 14114 | mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible(); |
1d0e8480 SC |
14115 | return 0; |
14116 | } | |
14117 | module_init(kvm_x86_init); | |
14118 | ||
14119 | static void __exit kvm_x86_exit(void) | |
14120 | { | |
fc3c9414 | 14121 | WARN_ON_ONCE(static_branch_unlikely(&kvm_has_noapic_vcpu)); |
1d0e8480 SC |
14122 | } |
14123 | module_exit(kvm_x86_exit); |