KVM: x86: introduce complete_emulated_msr callback
[linux-block.git] / arch / x86 / kvm / x86.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
043405e1
CO
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
4d5c5d0f
BAY
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
043405e1
CO
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
4d5c5d0f
BAY
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
043405e1
CO
17 */
18
edf88417 19#include <linux/kvm_host.h>
313a3dc7 20#include "irq.h"
88197e6a 21#include "ioapic.h"
1d737c8a 22#include "mmu.h"
7837699f 23#include "i8254.h"
37817f29 24#include "tss.h"
5fdbf976 25#include "kvm_cache_regs.h"
2f728d66 26#include "kvm_emulate.h"
26eef70c 27#include "x86.h"
00b27a3e 28#include "cpuid.h"
474a5bb9 29#include "pmu.h"
e83d5887 30#include "hyperv.h"
8df14af4 31#include "lapic.h"
313a3dc7 32
18068523 33#include <linux/clocksource.h>
4d5c5d0f 34#include <linux/interrupt.h>
313a3dc7
CO
35#include <linux/kvm.h>
36#include <linux/fs.h>
37#include <linux/vmalloc.h>
1767e931
PG
38#include <linux/export.h>
39#include <linux/moduleparam.h>
0de10343 40#include <linux/mman.h>
2bacc55c 41#include <linux/highmem.h>
19de40a8 42#include <linux/iommu.h>
62c476c7 43#include <linux/intel-iommu.h>
c8076604 44#include <linux/cpufreq.h>
18863bdd 45#include <linux/user-return-notifier.h>
a983fb23 46#include <linux/srcu.h>
5a0e3ad6 47#include <linux/slab.h>
ff9d07a0 48#include <linux/perf_event.h>
7bee342a 49#include <linux/uaccess.h>
af585b92 50#include <linux/hash.h>
a1b60c1c 51#include <linux/pci.h>
16e8d74d
MT
52#include <linux/timekeeper_internal.h>
53#include <linux/pvclock_gtod.h>
87276880
FW
54#include <linux/kvm_irqfd.h>
55#include <linux/irqbypass.h>
3905f9ad 56#include <linux/sched/stat.h>
0c5f81da 57#include <linux/sched/isolation.h>
d0ec49d4 58#include <linux/mem_encrypt.h>
72c3c0fe 59#include <linux/entry-kvm.h>
3905f9ad 60
aec51dc4 61#include <trace/events/kvm.h>
2ed152af 62
24f1e32c 63#include <asm/debugreg.h>
d825ed0a 64#include <asm/msr.h>
a5f61300 65#include <asm/desc.h>
890ca9ae 66#include <asm/mce.h>
f89e32e0 67#include <linux/kernel_stat.h>
78f7f1e5 68#include <asm/fpu/internal.h> /* Ugh! */
1d5f066e 69#include <asm/pvclock.h>
217fc9cf 70#include <asm/div64.h>
efc64404 71#include <asm/irq_remapping.h>
b0c39dc6 72#include <asm/mshyperv.h>
0092e434 73#include <asm/hypervisor.h>
9715092f 74#include <asm/tlbflush.h>
bf8c55d8 75#include <asm/intel_pt.h>
b3dc0695 76#include <asm/emulate_prefix.h>
dd2cb348 77#include <clocksource/hyperv_timer.h>
043405e1 78
d1898b73
DH
79#define CREATE_TRACE_POINTS
80#include "trace.h"
81
313a3dc7 82#define MAX_IO_MSRS 256
890ca9ae 83#define KVM_MAX_MCE_BANKS 32
c45dcc71
AR
84u64 __read_mostly kvm_mce_cap_supported = MCG_CTL_P | MCG_SER_P;
85EXPORT_SYMBOL_GPL(kvm_mce_cap_supported);
890ca9ae 86
0f65dd70 87#define emul_to_vcpu(ctxt) \
c9b8b07c 88 ((struct kvm_vcpu *)(ctxt)->vcpu)
0f65dd70 89
50a37eb4
JR
90/* EFER defaults:
91 * - enable syscall per default because its emulated by KVM
92 * - enable LME and LMA per default on 64 bit KVM
93 */
94#ifdef CONFIG_X86_64
1260edbe
LJ
95static
96u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
50a37eb4 97#else
1260edbe 98static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
50a37eb4 99#endif
313a3dc7 100
b11306b5
SC
101static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
102
c519265f
RK
103#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
104 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
37131313 105
cb142eb7 106static void update_cr8_intercept(struct kvm_vcpu *vcpu);
7460fb4a 107static void process_nmi(struct kvm_vcpu *vcpu);
ee2cd4b7 108static void enter_smm(struct kvm_vcpu *vcpu);
6addfc42 109static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
01643c51
KH
110static void store_regs(struct kvm_vcpu *vcpu);
111static int sync_regs(struct kvm_vcpu *vcpu);
674eea0f 112
afaf0b2f 113struct kvm_x86_ops kvm_x86_ops __read_mostly;
5fdbf976 114EXPORT_SYMBOL_GPL(kvm_x86_ops);
97896d04 115
893590c7 116static bool __read_mostly ignore_msrs = 0;
476bc001 117module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
ed85c068 118
fab0aa3b
EM
119static bool __read_mostly report_ignored_msrs = true;
120module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
121
4c27625b 122unsigned int min_timer_period_us = 200;
9ed96e87
MT
123module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
124
630994b3
MT
125static bool __read_mostly kvmclock_periodic_sync = true;
126module_param(kvmclock_periodic_sync, bool, S_IRUGO);
127
893590c7 128bool __read_mostly kvm_has_tsc_control;
92a1f12d 129EXPORT_SYMBOL_GPL(kvm_has_tsc_control);
893590c7 130u32 __read_mostly kvm_max_guest_tsc_khz;
92a1f12d 131EXPORT_SYMBOL_GPL(kvm_max_guest_tsc_khz);
bc9b961b
HZ
132u8 __read_mostly kvm_tsc_scaling_ratio_frac_bits;
133EXPORT_SYMBOL_GPL(kvm_tsc_scaling_ratio_frac_bits);
134u64 __read_mostly kvm_max_tsc_scaling_ratio;
135EXPORT_SYMBOL_GPL(kvm_max_tsc_scaling_ratio);
64672c95
YJ
136u64 __read_mostly kvm_default_tsc_scaling_ratio;
137EXPORT_SYMBOL_GPL(kvm_default_tsc_scaling_ratio);
92a1f12d 138
cc578287 139/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
893590c7 140static u32 __read_mostly tsc_tolerance_ppm = 250;
cc578287
ZA
141module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
142
c3941d9e
SC
143/*
144 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
145 * adaptive tuning starting from default advancment of 1000ns. '0' disables
146 * advancement entirely. Any other value is used as-is and disables adaptive
147 * tuning, i.e. allows priveleged userspace to set an exact advancement time.
148 */
149static int __read_mostly lapic_timer_advance_ns = -1;
0e6edceb 150module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
d0659d94 151
52004014
FW
152static bool __read_mostly vector_hashing = true;
153module_param(vector_hashing, bool, S_IRUGO);
154
c4ae60e4
LA
155bool __read_mostly enable_vmware_backdoor = false;
156module_param(enable_vmware_backdoor, bool, S_IRUGO);
157EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
158
6c86eedc
WL
159static bool __read_mostly force_emulation_prefix = false;
160module_param(force_emulation_prefix, bool, S_IRUGO);
161
0c5f81da
WL
162int __read_mostly pi_inject_timer = -1;
163module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
164
7e34fbd0
SC
165/*
166 * Restoring the host value for MSRs that are only consumed when running in
167 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
168 * returns to userspace, i.e. the kernel can run with the guest's value.
169 */
170#define KVM_MAX_NR_USER_RETURN_MSRS 16
18863bdd 171
7e34fbd0 172struct kvm_user_return_msrs_global {
18863bdd 173 int nr;
7e34fbd0 174 u32 msrs[KVM_MAX_NR_USER_RETURN_MSRS];
18863bdd
AK
175};
176
7e34fbd0 177struct kvm_user_return_msrs {
18863bdd
AK
178 struct user_return_notifier urn;
179 bool registered;
7e34fbd0 180 struct kvm_user_return_msr_values {
2bf78fa7
SY
181 u64 host;
182 u64 curr;
7e34fbd0 183 } values[KVM_MAX_NR_USER_RETURN_MSRS];
18863bdd
AK
184};
185
7e34fbd0
SC
186static struct kvm_user_return_msrs_global __read_mostly user_return_msrs_global;
187static struct kvm_user_return_msrs __percpu *user_return_msrs;
18863bdd 188
cfc48181
SC
189#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
190 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
191 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
192 | XFEATURE_MASK_PKRU)
193
91661989
SC
194u64 __read_mostly host_efer;
195EXPORT_SYMBOL_GPL(host_efer);
196
b96e6506 197bool __read_mostly allow_smaller_maxphyaddr = 0;
3edd6839
MG
198EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
199
139a12cf 200static u64 __read_mostly host_xss;
408e9a31
PB
201u64 __read_mostly supported_xss;
202EXPORT_SYMBOL_GPL(supported_xss);
139a12cf 203
417bc304 204struct kvm_stats_debugfs_item debugfs_entries[] = {
812756a8
EGE
205 VCPU_STAT("pf_fixed", pf_fixed),
206 VCPU_STAT("pf_guest", pf_guest),
207 VCPU_STAT("tlb_flush", tlb_flush),
208 VCPU_STAT("invlpg", invlpg),
209 VCPU_STAT("exits", exits),
210 VCPU_STAT("io_exits", io_exits),
211 VCPU_STAT("mmio_exits", mmio_exits),
212 VCPU_STAT("signal_exits", signal_exits),
213 VCPU_STAT("irq_window", irq_window_exits),
214 VCPU_STAT("nmi_window", nmi_window_exits),
215 VCPU_STAT("halt_exits", halt_exits),
216 VCPU_STAT("halt_successful_poll", halt_successful_poll),
217 VCPU_STAT("halt_attempted_poll", halt_attempted_poll),
218 VCPU_STAT("halt_poll_invalid", halt_poll_invalid),
219 VCPU_STAT("halt_wakeup", halt_wakeup),
220 VCPU_STAT("hypercalls", hypercalls),
221 VCPU_STAT("request_irq", request_irq_exits),
222 VCPU_STAT("irq_exits", irq_exits),
223 VCPU_STAT("host_state_reload", host_state_reload),
224 VCPU_STAT("fpu_reload", fpu_reload),
225 VCPU_STAT("insn_emulation", insn_emulation),
226 VCPU_STAT("insn_emulation_fail", insn_emulation_fail),
227 VCPU_STAT("irq_injections", irq_injections),
228 VCPU_STAT("nmi_injections", nmi_injections),
229 VCPU_STAT("req_event", req_event),
230 VCPU_STAT("l1d_flush", l1d_flush),
cb953129
DM
231 VCPU_STAT("halt_poll_success_ns", halt_poll_success_ns),
232 VCPU_STAT("halt_poll_fail_ns", halt_poll_fail_ns),
812756a8
EGE
233 VM_STAT("mmu_shadow_zapped", mmu_shadow_zapped),
234 VM_STAT("mmu_pte_write", mmu_pte_write),
235 VM_STAT("mmu_pte_updated", mmu_pte_updated),
236 VM_STAT("mmu_pde_zapped", mmu_pde_zapped),
237 VM_STAT("mmu_flooded", mmu_flooded),
238 VM_STAT("mmu_recycled", mmu_recycled),
239 VM_STAT("mmu_cache_miss", mmu_cache_miss),
240 VM_STAT("mmu_unsync", mmu_unsync),
241 VM_STAT("remote_tlb_flush", remote_tlb_flush),
242 VM_STAT("largepages", lpages, .mode = 0444),
243 VM_STAT("nx_largepages_splitted", nx_lpage_splits, .mode = 0444),
244 VM_STAT("max_mmu_page_hash_collisions", max_mmu_page_hash_collisions),
417bc304
HB
245 { NULL }
246};
247
2acf923e 248u64 __read_mostly host_xcr0;
cfc48181
SC
249u64 __read_mostly supported_xcr0;
250EXPORT_SYMBOL_GPL(supported_xcr0);
2acf923e 251
80fbd280 252static struct kmem_cache *x86_fpu_cache;
b666a4b6 253
c9b8b07c
SC
254static struct kmem_cache *x86_emulator_cache;
255
6abe9c13
PX
256/*
257 * When called, it means the previous get/set msr reached an invalid msr.
cc4cb017 258 * Return true if we want to ignore/silent this failed msr access.
6abe9c13 259 */
cc4cb017
ML
260static bool kvm_msr_ignored_check(struct kvm_vcpu *vcpu, u32 msr,
261 u64 data, bool write)
6abe9c13
PX
262{
263 const char *op = write ? "wrmsr" : "rdmsr";
264
265 if (ignore_msrs) {
266 if (report_ignored_msrs)
d383b314
TI
267 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
268 op, msr, data);
6abe9c13 269 /* Mask the error */
cc4cb017 270 return true;
6abe9c13 271 } else {
d383b314
TI
272 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
273 op, msr, data);
cc4cb017 274 return false;
6abe9c13
PX
275 }
276}
277
c9b8b07c
SC
278static struct kmem_cache *kvm_alloc_emulator_cache(void)
279{
06add254
SC
280 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
281 unsigned int size = sizeof(struct x86_emulate_ctxt);
282
283 return kmem_cache_create_usercopy("x86_emulator", size,
c9b8b07c 284 __alignof__(struct x86_emulate_ctxt),
06add254
SC
285 SLAB_ACCOUNT, useroffset,
286 size - useroffset, NULL);
c9b8b07c
SC
287}
288
b6785def 289static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
d6aa1000 290
af585b92
GN
291static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
292{
293 int i;
dd03bcaa 294 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
af585b92
GN
295 vcpu->arch.apf.gfns[i] = ~0;
296}
297
18863bdd
AK
298static void kvm_on_user_return(struct user_return_notifier *urn)
299{
300 unsigned slot;
7e34fbd0
SC
301 struct kvm_user_return_msrs *msrs
302 = container_of(urn, struct kvm_user_return_msrs, urn);
303 struct kvm_user_return_msr_values *values;
1650b4eb
IA
304 unsigned long flags;
305
306 /*
307 * Disabling irqs at this point since the following code could be
308 * interrupted and executed through kvm_arch_hardware_disable()
309 */
310 local_irq_save(flags);
7e34fbd0
SC
311 if (msrs->registered) {
312 msrs->registered = false;
1650b4eb
IA
313 user_return_notifier_unregister(urn);
314 }
315 local_irq_restore(flags);
7e34fbd0
SC
316 for (slot = 0; slot < user_return_msrs_global.nr; ++slot) {
317 values = &msrs->values[slot];
2bf78fa7 318 if (values->host != values->curr) {
7e34fbd0 319 wrmsrl(user_return_msrs_global.msrs[slot], values->host);
2bf78fa7 320 values->curr = values->host;
18863bdd
AK
321 }
322 }
18863bdd
AK
323}
324
7e34fbd0 325void kvm_define_user_return_msr(unsigned slot, u32 msr)
2bf78fa7 326{
7e34fbd0
SC
327 BUG_ON(slot >= KVM_MAX_NR_USER_RETURN_MSRS);
328 user_return_msrs_global.msrs[slot] = msr;
329 if (slot >= user_return_msrs_global.nr)
330 user_return_msrs_global.nr = slot + 1;
18863bdd 331}
7e34fbd0 332EXPORT_SYMBOL_GPL(kvm_define_user_return_msr);
18863bdd 333
7e34fbd0 334static void kvm_user_return_msr_cpu_online(void)
18863bdd 335{
05c19c2f 336 unsigned int cpu = smp_processor_id();
7e34fbd0 337 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
05c19c2f
SC
338 u64 value;
339 int i;
18863bdd 340
7e34fbd0
SC
341 for (i = 0; i < user_return_msrs_global.nr; ++i) {
342 rdmsrl_safe(user_return_msrs_global.msrs[i], &value);
343 msrs->values[i].host = value;
344 msrs->values[i].curr = value;
05c19c2f 345 }
18863bdd
AK
346}
347
7e34fbd0 348int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
18863bdd 349{
013f6a5d 350 unsigned int cpu = smp_processor_id();
7e34fbd0 351 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
8b3c3104 352 int err;
18863bdd 353
7e34fbd0
SC
354 value = (value & mask) | (msrs->values[slot].host & ~mask);
355 if (value == msrs->values[slot].curr)
8b3c3104 356 return 0;
7e34fbd0 357 err = wrmsrl_safe(user_return_msrs_global.msrs[slot], value);
8b3c3104
AH
358 if (err)
359 return 1;
360
7e34fbd0
SC
361 msrs->values[slot].curr = value;
362 if (!msrs->registered) {
363 msrs->urn.on_user_return = kvm_on_user_return;
364 user_return_notifier_register(&msrs->urn);
365 msrs->registered = true;
18863bdd 366 }
8b3c3104 367 return 0;
18863bdd 368}
7e34fbd0 369EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
18863bdd 370
13a34e06 371static void drop_user_return_notifiers(void)
3548bab5 372{
013f6a5d 373 unsigned int cpu = smp_processor_id();
7e34fbd0 374 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
3548bab5 375
7e34fbd0
SC
376 if (msrs->registered)
377 kvm_on_user_return(&msrs->urn);
3548bab5
AK
378}
379
6866b83e
CO
380u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
381{
8a5a87d9 382 return vcpu->arch.apic_base;
6866b83e
CO
383}
384EXPORT_SYMBOL_GPL(kvm_get_apic_base);
385
58871649
JM
386enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
387{
388 return kvm_apic_mode(kvm_get_apic_base(vcpu));
389}
390EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
391
58cb628d
JK
392int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
393{
58871649
JM
394 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
395 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
d6321d49
RK
396 u64 reserved_bits = ((~0ULL) << cpuid_maxphyaddr(vcpu)) | 0x2ff |
397 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
58cb628d 398
58871649 399 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
58cb628d 400 return 1;
58871649
JM
401 if (!msr_info->host_initiated) {
402 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
403 return 1;
404 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
405 return 1;
406 }
58cb628d
JK
407
408 kvm_lapic_set_base(vcpu, msr_info->data);
4abaffce 409 kvm_recalculate_apic_map(vcpu->kvm);
58cb628d 410 return 0;
6866b83e
CO
411}
412EXPORT_SYMBOL_GPL(kvm_set_apic_base);
413
3ebccdf3 414asmlinkage __visible noinstr void kvm_spurious_fault(void)
e3ba45b8
GL
415{
416 /* Fault while not rebooting. We want the trace. */
b4fdcf60 417 BUG_ON(!kvm_rebooting);
e3ba45b8
GL
418}
419EXPORT_SYMBOL_GPL(kvm_spurious_fault);
420
3fd28fce
ED
421#define EXCPT_BENIGN 0
422#define EXCPT_CONTRIBUTORY 1
423#define EXCPT_PF 2
424
425static int exception_class(int vector)
426{
427 switch (vector) {
428 case PF_VECTOR:
429 return EXCPT_PF;
430 case DE_VECTOR:
431 case TS_VECTOR:
432 case NP_VECTOR:
433 case SS_VECTOR:
434 case GP_VECTOR:
435 return EXCPT_CONTRIBUTORY;
436 default:
437 break;
438 }
439 return EXCPT_BENIGN;
440}
441
d6e8c854
NA
442#define EXCPT_FAULT 0
443#define EXCPT_TRAP 1
444#define EXCPT_ABORT 2
445#define EXCPT_INTERRUPT 3
446
447static int exception_type(int vector)
448{
449 unsigned int mask;
450
451 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
452 return EXCPT_INTERRUPT;
453
454 mask = 1 << vector;
455
456 /* #DB is trap, as instruction watchpoints are handled elsewhere */
457 if (mask & ((1 << DB_VECTOR) | (1 << BP_VECTOR) | (1 << OF_VECTOR)))
458 return EXCPT_TRAP;
459
460 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
461 return EXCPT_ABORT;
462
463 /* Reserved exceptions will result in fault */
464 return EXCPT_FAULT;
465}
466
da998b46
JM
467void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu)
468{
469 unsigned nr = vcpu->arch.exception.nr;
470 bool has_payload = vcpu->arch.exception.has_payload;
471 unsigned long payload = vcpu->arch.exception.payload;
472
473 if (!has_payload)
474 return;
475
476 switch (nr) {
f10c729f
JM
477 case DB_VECTOR:
478 /*
479 * "Certain debug exceptions may clear bit 0-3. The
480 * remaining contents of the DR6 register are never
481 * cleared by the processor".
482 */
483 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
484 /*
485 * DR6.RTM is set by all #DB exceptions that don't clear it.
486 */
487 vcpu->arch.dr6 |= DR6_RTM;
488 vcpu->arch.dr6 |= payload;
489 /*
490 * Bit 16 should be set in the payload whenever the #DB
491 * exception should clear DR6.RTM. This makes the payload
492 * compatible with the pending debug exceptions under VMX.
493 * Though not currently documented in the SDM, this also
494 * makes the payload compatible with the exit qualification
495 * for #DB exceptions under VMX.
496 */
497 vcpu->arch.dr6 ^= payload & DR6_RTM;
307f1cfa
OU
498
499 /*
500 * The #DB payload is defined as compatible with the 'pending
501 * debug exceptions' field under VMX, not DR6. While bit 12 is
502 * defined in the 'pending debug exceptions' field (enabled
503 * breakpoint), it is reserved and must be zero in DR6.
504 */
505 vcpu->arch.dr6 &= ~BIT(12);
f10c729f 506 break;
da998b46
JM
507 case PF_VECTOR:
508 vcpu->arch.cr2 = payload;
509 break;
510 }
511
512 vcpu->arch.exception.has_payload = false;
513 vcpu->arch.exception.payload = 0;
514}
515EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
516
3fd28fce 517static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
ce7ddec4 518 unsigned nr, bool has_error, u32 error_code,
91e86d22 519 bool has_payload, unsigned long payload, bool reinject)
3fd28fce
ED
520{
521 u32 prev_nr;
522 int class1, class2;
523
3842d135
AK
524 kvm_make_request(KVM_REQ_EVENT, vcpu);
525
664f8e26 526 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
3fd28fce 527 queue:
3ffb2468
NA
528 if (has_error && !is_protmode(vcpu))
529 has_error = false;
664f8e26
WL
530 if (reinject) {
531 /*
532 * On vmentry, vcpu->arch.exception.pending is only
533 * true if an event injection was blocked by
534 * nested_run_pending. In that case, however,
535 * vcpu_enter_guest requests an immediate exit,
536 * and the guest shouldn't proceed far enough to
537 * need reinjection.
538 */
539 WARN_ON_ONCE(vcpu->arch.exception.pending);
540 vcpu->arch.exception.injected = true;
91e86d22
JM
541 if (WARN_ON_ONCE(has_payload)) {
542 /*
543 * A reinjected event has already
544 * delivered its payload.
545 */
546 has_payload = false;
547 payload = 0;
548 }
664f8e26
WL
549 } else {
550 vcpu->arch.exception.pending = true;
551 vcpu->arch.exception.injected = false;
552 }
3fd28fce
ED
553 vcpu->arch.exception.has_error_code = has_error;
554 vcpu->arch.exception.nr = nr;
555 vcpu->arch.exception.error_code = error_code;
91e86d22
JM
556 vcpu->arch.exception.has_payload = has_payload;
557 vcpu->arch.exception.payload = payload;
a06230b6 558 if (!is_guest_mode(vcpu))
da998b46 559 kvm_deliver_exception_payload(vcpu);
3fd28fce
ED
560 return;
561 }
562
563 /* to check exception */
564 prev_nr = vcpu->arch.exception.nr;
565 if (prev_nr == DF_VECTOR) {
566 /* triple fault -> shutdown */
a8eeb04a 567 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3fd28fce
ED
568 return;
569 }
570 class1 = exception_class(prev_nr);
571 class2 = exception_class(nr);
572 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY)
573 || (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
664f8e26
WL
574 /*
575 * Generate double fault per SDM Table 5-5. Set
576 * exception.pending = true so that the double fault
577 * can trigger a nested vmexit.
578 */
3fd28fce 579 vcpu->arch.exception.pending = true;
664f8e26 580 vcpu->arch.exception.injected = false;
3fd28fce
ED
581 vcpu->arch.exception.has_error_code = true;
582 vcpu->arch.exception.nr = DF_VECTOR;
583 vcpu->arch.exception.error_code = 0;
c851436a
JM
584 vcpu->arch.exception.has_payload = false;
585 vcpu->arch.exception.payload = 0;
3fd28fce
ED
586 } else
587 /* replace previous exception with a new one in a hope
588 that instruction re-execution will regenerate lost
589 exception */
590 goto queue;
591}
592
298101da
AK
593void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
594{
91e86d22 595 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
298101da
AK
596}
597EXPORT_SYMBOL_GPL(kvm_queue_exception);
598
ce7ddec4
JR
599void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
600{
91e86d22 601 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
ce7ddec4
JR
602}
603EXPORT_SYMBOL_GPL(kvm_requeue_exception);
604
4d5523cf
PB
605void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
606 unsigned long payload)
f10c729f
JM
607{
608 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
609}
4d5523cf 610EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
f10c729f 611
da998b46
JM
612static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
613 u32 error_code, unsigned long payload)
614{
615 kvm_multiple_exception(vcpu, nr, true, error_code,
616 true, payload, false);
617}
618
6affcbed 619int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
c3c91fee 620{
db8fcefa
AP
621 if (err)
622 kvm_inject_gp(vcpu, 0);
623 else
6affcbed
KH
624 return kvm_skip_emulated_instruction(vcpu);
625
626 return 1;
db8fcefa
AP
627}
628EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
8df25a32 629
6389ee94 630void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
c3c91fee
AK
631{
632 ++vcpu->stat.pf_guest;
adfe20fb
WL
633 vcpu->arch.exception.nested_apf =
634 is_guest_mode(vcpu) && fault->async_page_fault;
da998b46 635 if (vcpu->arch.exception.nested_apf) {
adfe20fb 636 vcpu->arch.apf.nested_apf_token = fault->address;
da998b46
JM
637 kvm_queue_exception_e(vcpu, PF_VECTOR, fault->error_code);
638 } else {
639 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
640 fault->address);
641 }
c3c91fee 642}
27d6c865 643EXPORT_SYMBOL_GPL(kvm_inject_page_fault);
c3c91fee 644
53b3d8e9
SC
645bool kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
646 struct x86_exception *fault)
d4f8cf66 647{
0cd665bd 648 struct kvm_mmu *fault_mmu;
53b3d8e9
SC
649 WARN_ON_ONCE(fault->vector != PF_VECTOR);
650
0cd665bd
PB
651 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
652 vcpu->arch.walk_mmu;
ef54bcfe 653
ee1fa209
JS
654 /*
655 * Invalidate the TLB entry for the faulting address, if it exists,
656 * else the access will fault indefinitely (and to emulate hardware).
657 */
658 if ((fault->error_code & PFERR_PRESENT_MASK) &&
659 !(fault->error_code & PFERR_RSVD_MASK))
660 kvm_mmu_invalidate_gva(vcpu, fault_mmu, fault->address,
661 fault_mmu->root_hpa);
662
663 fault_mmu->inject_page_fault(vcpu, fault);
ef54bcfe 664 return fault->nested_page_fault;
d4f8cf66 665}
53b3d8e9 666EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
d4f8cf66 667
3419ffc8
SY
668void kvm_inject_nmi(struct kvm_vcpu *vcpu)
669{
7460fb4a
AK
670 atomic_inc(&vcpu->arch.nmi_queued);
671 kvm_make_request(KVM_REQ_NMI, vcpu);
3419ffc8
SY
672}
673EXPORT_SYMBOL_GPL(kvm_inject_nmi);
674
298101da
AK
675void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
676{
91e86d22 677 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
298101da
AK
678}
679EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
680
ce7ddec4
JR
681void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
682{
91e86d22 683 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
ce7ddec4
JR
684}
685EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
686
0a79b009
AK
687/*
688 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
689 * a #GP and return false.
690 */
691bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
298101da 692{
afaf0b2f 693 if (kvm_x86_ops.get_cpl(vcpu) <= required_cpl)
0a79b009
AK
694 return true;
695 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
696 return false;
298101da 697}
0a79b009 698EXPORT_SYMBOL_GPL(kvm_require_cpl);
298101da 699
16f8a6f9
NA
700bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
701{
702 if ((dr != 4 && dr != 5) || !kvm_read_cr4_bits(vcpu, X86_CR4_DE))
703 return true;
704
705 kvm_queue_exception(vcpu, UD_VECTOR);
706 return false;
707}
708EXPORT_SYMBOL_GPL(kvm_require_dr);
709
ec92fe44
JR
710/*
711 * This function will be used to read from the physical memory of the currently
54bf36aa 712 * running guest. The difference to kvm_vcpu_read_guest_page is that this function
ec92fe44
JR
713 * can read from guest physical or from the guest's guest physical memory.
714 */
715int kvm_read_guest_page_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
716 gfn_t ngfn, void *data, int offset, int len,
717 u32 access)
718{
54987b7a 719 struct x86_exception exception;
ec92fe44
JR
720 gfn_t real_gfn;
721 gpa_t ngpa;
722
723 ngpa = gfn_to_gpa(ngfn);
54987b7a 724 real_gfn = mmu->translate_gpa(vcpu, ngpa, access, &exception);
ec92fe44
JR
725 if (real_gfn == UNMAPPED_GVA)
726 return -EFAULT;
727
728 real_gfn = gpa_to_gfn(real_gfn);
729
54bf36aa 730 return kvm_vcpu_read_guest_page(vcpu, real_gfn, data, offset, len);
ec92fe44
JR
731}
732EXPORT_SYMBOL_GPL(kvm_read_guest_page_mmu);
733
69b0049a 734static int kvm_read_nested_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn,
3d06b8bf
JR
735 void *data, int offset, int len, u32 access)
736{
737 return kvm_read_guest_page_mmu(vcpu, vcpu->arch.walk_mmu, gfn,
738 data, offset, len, access);
739}
740
16cfacc8
SC
741static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
742{
743 return rsvd_bits(cpuid_maxphyaddr(vcpu), 63) | rsvd_bits(5, 8) |
744 rsvd_bits(1, 2);
745}
746
a03490ed 747/*
16cfacc8 748 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
a03490ed 749 */
ff03a073 750int load_pdptrs(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu, unsigned long cr3)
a03490ed
CO
751{
752 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
753 unsigned offset = ((cr3 & (PAGE_SIZE-1)) >> 5) << 2;
754 int i;
755 int ret;
ff03a073 756 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
a03490ed 757
ff03a073
JR
758 ret = kvm_read_guest_page_mmu(vcpu, mmu, pdpt_gfn, pdpte,
759 offset * sizeof(u64), sizeof(pdpte),
760 PFERR_USER_MASK|PFERR_WRITE_MASK);
a03490ed
CO
761 if (ret < 0) {
762 ret = 0;
763 goto out;
764 }
765 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812f30b2 766 if ((pdpte[i] & PT_PRESENT_MASK) &&
16cfacc8 767 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
a03490ed
CO
768 ret = 0;
769 goto out;
770 }
771 }
772 ret = 1;
773
ff03a073 774 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
cb3c1e2f
SC
775 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
776
a03490ed 777out:
a03490ed
CO
778
779 return ret;
780}
cc4b6871 781EXPORT_SYMBOL_GPL(load_pdptrs);
a03490ed 782
9ed38ffa 783bool pdptrs_changed(struct kvm_vcpu *vcpu)
d835dfec 784{
ff03a073 785 u64 pdpte[ARRAY_SIZE(vcpu->arch.walk_mmu->pdptrs)];
3d06b8bf
JR
786 int offset;
787 gfn_t gfn;
d835dfec
AK
788 int r;
789
bf03d4f9 790 if (!is_pae_paging(vcpu))
d835dfec
AK
791 return false;
792
cb3c1e2f 793 if (!kvm_register_is_available(vcpu, VCPU_EXREG_PDPTR))
6de4f3ad
AK
794 return true;
795
a512177e
PB
796 gfn = (kvm_read_cr3(vcpu) & 0xffffffe0ul) >> PAGE_SHIFT;
797 offset = (kvm_read_cr3(vcpu) & 0xffffffe0ul) & (PAGE_SIZE - 1);
3d06b8bf
JR
798 r = kvm_read_nested_guest_page(vcpu, gfn, pdpte, offset, sizeof(pdpte),
799 PFERR_USER_MASK | PFERR_WRITE_MASK);
d835dfec 800 if (r < 0)
7f7f0d9c 801 return true;
d835dfec 802
7f7f0d9c 803 return memcmp(pdpte, vcpu->arch.walk_mmu->pdptrs, sizeof(pdpte)) != 0;
d835dfec 804}
9ed38ffa 805EXPORT_SYMBOL_GPL(pdptrs_changed);
d835dfec 806
49a9b07e 807int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
a03490ed 808{
aad82703 809 unsigned long old_cr0 = kvm_read_cr0(vcpu);
d42e3fae 810 unsigned long pdptr_bits = X86_CR0_CD | X86_CR0_NW | X86_CR0_PG;
d81135a5 811 unsigned long update_bits = X86_CR0_PG | X86_CR0_WP;
aad82703 812
f9a48e6a
AK
813 cr0 |= X86_CR0_ET;
814
ab344828 815#ifdef CONFIG_X86_64
0f12244f
GN
816 if (cr0 & 0xffffffff00000000UL)
817 return 1;
ab344828
GN
818#endif
819
820 cr0 &= ~CR0_RESERVED_BITS;
a03490ed 821
0f12244f
GN
822 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
823 return 1;
a03490ed 824
0f12244f
GN
825 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
826 return 1;
a03490ed 827
a03490ed 828#ifdef CONFIG_X86_64
05487215
SC
829 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
830 (cr0 & X86_CR0_PG)) {
831 int cs_db, cs_l;
832
833 if (!is_pae(vcpu))
834 return 1;
835 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
836 if (cs_l)
0f12244f 837 return 1;
a03490ed 838 }
05487215
SC
839#endif
840 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
841 is_pae(vcpu) && ((cr0 ^ old_cr0) & pdptr_bits) &&
842 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu)))
843 return 1;
a03490ed 844
ad756a16
MJ
845 if (!(cr0 & X86_CR0_PG) && kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE))
846 return 1;
847
afaf0b2f 848 kvm_x86_ops.set_cr0(vcpu, cr0);
a03490ed 849
d170c419 850 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
e5f3f027 851 kvm_clear_async_pf_completion_queue(vcpu);
d170c419
LJ
852 kvm_async_pf_hash_reset(vcpu);
853 }
e5f3f027 854
aad82703
SY
855 if ((cr0 ^ old_cr0) & update_bits)
856 kvm_mmu_reset_context(vcpu);
b18d5431 857
879ae188
LE
858 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
859 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
860 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
b18d5431
XG
861 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
862
0f12244f
GN
863 return 0;
864}
2d3ad1f4 865EXPORT_SYMBOL_GPL(kvm_set_cr0);
a03490ed 866
2d3ad1f4 867void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
a03490ed 868{
49a9b07e 869 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
a03490ed 870}
2d3ad1f4 871EXPORT_SYMBOL_GPL(kvm_lmsw);
a03490ed 872
139a12cf 873void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 874{
139a12cf
AL
875 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
876
877 if (vcpu->arch.xcr0 != host_xcr0)
878 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
879
880 if (vcpu->arch.xsaves_enabled &&
881 vcpu->arch.ia32_xss != host_xss)
882 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
883 }
37486135
BM
884
885 if (static_cpu_has(X86_FEATURE_PKU) &&
886 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
887 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU)) &&
888 vcpu->arch.pkru != vcpu->arch.host_pkru)
889 __write_pkru(vcpu->arch.pkru);
42bdf991 890}
139a12cf 891EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
42bdf991 892
139a12cf 893void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 894{
37486135
BM
895 if (static_cpu_has(X86_FEATURE_PKU) &&
896 (kvm_read_cr4_bits(vcpu, X86_CR4_PKE) ||
897 (vcpu->arch.xcr0 & XFEATURE_MASK_PKRU))) {
898 vcpu->arch.pkru = rdpkru();
899 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
900 __write_pkru(vcpu->arch.host_pkru);
901 }
902
139a12cf
AL
903 if (kvm_read_cr4_bits(vcpu, X86_CR4_OSXSAVE)) {
904
905 if (vcpu->arch.xcr0 != host_xcr0)
906 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
907
908 if (vcpu->arch.xsaves_enabled &&
909 vcpu->arch.ia32_xss != host_xss)
910 wrmsrl(MSR_IA32_XSS, host_xss);
911 }
912
42bdf991 913}
139a12cf 914EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
42bdf991 915
69b0049a 916static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
2acf923e 917{
56c103ec
LJ
918 u64 xcr0 = xcr;
919 u64 old_xcr0 = vcpu->arch.xcr0;
46c34cb0 920 u64 valid_bits;
2acf923e
DC
921
922 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
923 if (index != XCR_XFEATURE_ENABLED_MASK)
924 return 1;
d91cab78 925 if (!(xcr0 & XFEATURE_MASK_FP))
2acf923e 926 return 1;
d91cab78 927 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
2acf923e 928 return 1;
46c34cb0
PB
929
930 /*
931 * Do not allow the guest to set bits that we do not support
932 * saving. However, xcr0 bit 0 is always set, even if the
933 * emulated CPU does not support XSAVE (see fx_init).
934 */
d91cab78 935 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
46c34cb0 936 if (xcr0 & ~valid_bits)
2acf923e 937 return 1;
46c34cb0 938
d91cab78
DH
939 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
940 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
390bd528
LJ
941 return 1;
942
d91cab78
DH
943 if (xcr0 & XFEATURE_MASK_AVX512) {
944 if (!(xcr0 & XFEATURE_MASK_YMM))
612263b3 945 return 1;
d91cab78 946 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
612263b3
CP
947 return 1;
948 }
2acf923e 949 vcpu->arch.xcr0 = xcr0;
56c103ec 950
d91cab78 951 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
aedbaf4f 952 kvm_update_cpuid_runtime(vcpu);
2acf923e
DC
953 return 0;
954}
955
956int kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
957{
afaf0b2f 958 if (kvm_x86_ops.get_cpl(vcpu) != 0 ||
764bcbc5 959 __kvm_set_xcr(vcpu, index, xcr)) {
2acf923e
DC
960 kvm_inject_gp(vcpu, 0);
961 return 1;
962 }
963 return 0;
964}
965EXPORT_SYMBOL_GPL(kvm_set_xcr);
966
ee69c92b 967bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
a03490ed 968{
b11306b5 969 if (cr4 & cr4_reserved_bits)
ee69c92b 970 return false;
b9baba86 971
b899c132 972 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
ee69c92b 973 return false;
c2fe3cd4 974
ee69c92b 975 return kvm_x86_ops.is_valid_cr4(vcpu, cr4);
3ca94192 976}
ee69c92b 977EXPORT_SYMBOL_GPL(kvm_is_valid_cr4);
3ca94192
WL
978
979int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
980{
981 unsigned long old_cr4 = kvm_read_cr4(vcpu);
982 unsigned long pdptr_bits = X86_CR4_PGE | X86_CR4_PSE | X86_CR4_PAE |
cb957adb 983 X86_CR4_SMEP;
8d214c48 984 unsigned long mmu_role_bits = pdptr_bits | X86_CR4_SMAP | X86_CR4_PKE;
3ca94192 985
ee69c92b 986 if (!kvm_is_valid_cr4(vcpu, cr4))
ae3e61e1
PB
987 return 1;
988
a03490ed 989 if (is_long_mode(vcpu)) {
0f12244f
GN
990 if (!(cr4 & X86_CR4_PAE))
991 return 1;
d74fcfc1
SC
992 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
993 return 1;
a2edf57f
AK
994 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
995 && ((cr4 ^ old_cr4) & pdptr_bits)
9f8fe504
AK
996 && !load_pdptrs(vcpu, vcpu->arch.walk_mmu,
997 kvm_read_cr3(vcpu)))
0f12244f
GN
998 return 1;
999
ad756a16 1000 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
d6321d49 1001 if (!guest_cpuid_has(vcpu, X86_FEATURE_PCID))
ad756a16
MJ
1002 return 1;
1003
1004 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1005 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1006 return 1;
1007 }
1008
c2fe3cd4 1009 kvm_x86_ops.set_cr4(vcpu, cr4);
a03490ed 1010
8d214c48 1011 if (((cr4 ^ old_cr4) & mmu_role_bits) ||
ad756a16 1012 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
aad82703 1013 kvm_mmu_reset_context(vcpu);
0f12244f
GN
1014
1015 return 0;
1016}
2d3ad1f4 1017EXPORT_SYMBOL_GPL(kvm_set_cr4);
a03490ed 1018
2390218b 1019int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
a03490ed 1020{
ade61e28 1021 bool skip_tlb_flush = false;
ac146235 1022#ifdef CONFIG_X86_64
c19986fe
JS
1023 bool pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
1024
ade61e28 1025 if (pcid_enabled) {
208320ba
JS
1026 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1027 cr3 &= ~X86_CR3_PCID_NOFLUSH;
ade61e28 1028 }
ac146235 1029#endif
9d88fca7 1030
9f8fe504 1031 if (cr3 == kvm_read_cr3(vcpu) && !pdptrs_changed(vcpu)) {
956bf353
JS
1032 if (!skip_tlb_flush) {
1033 kvm_mmu_sync_roots(vcpu);
eeeb4f67 1034 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
956bf353 1035 }
0f12244f 1036 return 0;
d835dfec
AK
1037 }
1038
d1cd3ce9 1039 if (is_long_mode(vcpu) &&
0107973a 1040 (cr3 & vcpu->arch.cr3_lm_rsvd_bits))
d1cd3ce9 1041 return 1;
bf03d4f9
PB
1042 else if (is_pae_paging(vcpu) &&
1043 !load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))
346874c9 1044 return 1;
a03490ed 1045
be01e8e2 1046 kvm_mmu_new_pgd(vcpu, cr3, skip_tlb_flush, skip_tlb_flush);
0f12244f 1047 vcpu->arch.cr3 = cr3;
cb3c1e2f 1048 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
7c390d35 1049
0f12244f
GN
1050 return 0;
1051}
2d3ad1f4 1052EXPORT_SYMBOL_GPL(kvm_set_cr3);
a03490ed 1053
eea1cff9 1054int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
a03490ed 1055{
0f12244f
GN
1056 if (cr8 & CR8_RESERVED_BITS)
1057 return 1;
35754c98 1058 if (lapic_in_kernel(vcpu))
a03490ed
CO
1059 kvm_lapic_set_tpr(vcpu, cr8);
1060 else
ad312c7c 1061 vcpu->arch.cr8 = cr8;
0f12244f
GN
1062 return 0;
1063}
2d3ad1f4 1064EXPORT_SYMBOL_GPL(kvm_set_cr8);
a03490ed 1065
2d3ad1f4 1066unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
a03490ed 1067{
35754c98 1068 if (lapic_in_kernel(vcpu))
a03490ed
CO
1069 return kvm_lapic_get_cr8(vcpu);
1070 else
ad312c7c 1071 return vcpu->arch.cr8;
a03490ed 1072}
2d3ad1f4 1073EXPORT_SYMBOL_GPL(kvm_get_cr8);
a03490ed 1074
ae561ede
NA
1075static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1076{
1077 int i;
1078
1079 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1080 for (i = 0; i < KVM_NR_DB_REGS; i++)
1081 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
1082 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_RELOAD;
1083 }
1084}
1085
7c86663b 1086void kvm_update_dr7(struct kvm_vcpu *vcpu)
c8639010
JK
1087{
1088 unsigned long dr7;
1089
1090 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1091 dr7 = vcpu->arch.guest_debug_dr7;
1092 else
1093 dr7 = vcpu->arch.dr7;
afaf0b2f 1094 kvm_x86_ops.set_dr7(vcpu, dr7);
360b948d
PB
1095 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1096 if (dr7 & DR7_BP_EN_MASK)
1097 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
c8639010 1098}
7c86663b 1099EXPORT_SYMBOL_GPL(kvm_update_dr7);
c8639010 1100
6f43ed01
NA
1101static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1102{
1103 u64 fixed = DR6_FIXED_1;
1104
d6321d49 1105 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
6f43ed01
NA
1106 fixed |= DR6_RTM;
1107 return fixed;
1108}
1109
338dbc97 1110static int __kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
020df079 1111{
ea740059
MP
1112 size_t size = ARRAY_SIZE(vcpu->arch.db);
1113
020df079
GN
1114 switch (dr) {
1115 case 0 ... 3:
ea740059 1116 vcpu->arch.db[array_index_nospec(dr, size)] = val;
020df079
GN
1117 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1118 vcpu->arch.eff_db[dr] = val;
1119 break;
1120 case 4:
020df079 1121 case 6:
f5f6145e 1122 if (!kvm_dr6_valid(val))
338dbc97 1123 return -1; /* #GP */
6f43ed01 1124 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
020df079
GN
1125 break;
1126 case 5:
020df079 1127 default: /* 7 */
b91991bf 1128 if (!kvm_dr7_valid(val))
338dbc97 1129 return -1; /* #GP */
020df079 1130 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
c8639010 1131 kvm_update_dr7(vcpu);
020df079
GN
1132 break;
1133 }
1134
1135 return 0;
1136}
338dbc97
GN
1137
1138int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
1139{
16f8a6f9 1140 if (__kvm_set_dr(vcpu, dr, val)) {
338dbc97 1141 kvm_inject_gp(vcpu, 0);
16f8a6f9
NA
1142 return 1;
1143 }
1144 return 0;
338dbc97 1145}
020df079
GN
1146EXPORT_SYMBOL_GPL(kvm_set_dr);
1147
16f8a6f9 1148int kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
020df079 1149{
ea740059
MP
1150 size_t size = ARRAY_SIZE(vcpu->arch.db);
1151
020df079
GN
1152 switch (dr) {
1153 case 0 ... 3:
ea740059 1154 *val = vcpu->arch.db[array_index_nospec(dr, size)];
020df079
GN
1155 break;
1156 case 4:
020df079 1157 case 6:
5679b803 1158 *val = vcpu->arch.dr6;
020df079
GN
1159 break;
1160 case 5:
020df079
GN
1161 default: /* 7 */
1162 *val = vcpu->arch.dr7;
1163 break;
1164 }
338dbc97
GN
1165 return 0;
1166}
020df079
GN
1167EXPORT_SYMBOL_GPL(kvm_get_dr);
1168
022cd0e8
AK
1169bool kvm_rdpmc(struct kvm_vcpu *vcpu)
1170{
de3cd117 1171 u32 ecx = kvm_rcx_read(vcpu);
022cd0e8
AK
1172 u64 data;
1173 int err;
1174
c6702c9d 1175 err = kvm_pmu_rdpmc(vcpu, ecx, &data);
022cd0e8
AK
1176 if (err)
1177 return err;
de3cd117
SC
1178 kvm_rax_write(vcpu, (u32)data);
1179 kvm_rdx_write(vcpu, data >> 32);
022cd0e8
AK
1180 return err;
1181}
1182EXPORT_SYMBOL_GPL(kvm_rdpmc);
1183
043405e1
CO
1184/*
1185 * List of msr numbers which we expose to userspace through KVM_GET_MSRS
1186 * and KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST.
1187 *
7a5ee6ed
CQ
1188 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features)
1189 * extract the supported MSRs from the related const lists.
1190 * msrs_to_save is selected from the msrs_to_save_all to reflect the
e3267cbb 1191 * capabilities of the host cpu. This capabilities test skips MSRs that are
7a5ee6ed 1192 * kvm-specific. Those are put in emulated_msrs_all; filtering of emulated_msrs
62ef68bb 1193 * may depend on host virtualization features rather than host cpu features.
043405e1 1194 */
e3267cbb 1195
7a5ee6ed 1196static const u32 msrs_to_save_all[] = {
043405e1 1197 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
8c06585d 1198 MSR_STAR,
043405e1
CO
1199#ifdef CONFIG_X86_64
1200 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1201#endif
b3897a49 1202 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
32ad73db 1203 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
2bdb76c0 1204 MSR_IA32_SPEC_CTRL,
bf8c55d8
CP
1205 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1206 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1207 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1208 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1209 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1210 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
6e3ba4ab
TX
1211 MSR_IA32_UMWAIT_CONTROL,
1212
e2ada66e
JM
1213 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
1214 MSR_ARCH_PERFMON_FIXED_CTR0 + 2, MSR_ARCH_PERFMON_FIXED_CTR0 + 3,
1215 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1216 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
1217 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1218 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1219 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1220 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
1221 MSR_ARCH_PERFMON_PERFCTR0 + 8, MSR_ARCH_PERFMON_PERFCTR0 + 9,
1222 MSR_ARCH_PERFMON_PERFCTR0 + 10, MSR_ARCH_PERFMON_PERFCTR0 + 11,
1223 MSR_ARCH_PERFMON_PERFCTR0 + 12, MSR_ARCH_PERFMON_PERFCTR0 + 13,
1224 MSR_ARCH_PERFMON_PERFCTR0 + 14, MSR_ARCH_PERFMON_PERFCTR0 + 15,
1225 MSR_ARCH_PERFMON_PERFCTR0 + 16, MSR_ARCH_PERFMON_PERFCTR0 + 17,
e2ada66e
JM
1226 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1227 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1228 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1229 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
1230 MSR_ARCH_PERFMON_EVENTSEL0 + 8, MSR_ARCH_PERFMON_EVENTSEL0 + 9,
1231 MSR_ARCH_PERFMON_EVENTSEL0 + 10, MSR_ARCH_PERFMON_EVENTSEL0 + 11,
1232 MSR_ARCH_PERFMON_EVENTSEL0 + 12, MSR_ARCH_PERFMON_EVENTSEL0 + 13,
1233 MSR_ARCH_PERFMON_EVENTSEL0 + 14, MSR_ARCH_PERFMON_EVENTSEL0 + 15,
1234 MSR_ARCH_PERFMON_EVENTSEL0 + 16, MSR_ARCH_PERFMON_EVENTSEL0 + 17,
043405e1
CO
1235};
1236
7a5ee6ed 1237static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_all)];
043405e1
CO
1238static unsigned num_msrs_to_save;
1239
7a5ee6ed 1240static const u32 emulated_msrs_all[] = {
62ef68bb
PB
1241 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1242 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1243 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1244 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
72c139ba 1245 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
e7d9513b
AS
1246 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1247 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
e516cebb 1248 HV_X64_MSR_RESET,
11c4b1ca 1249 HV_X64_MSR_VP_INDEX,
9eec50b8 1250 HV_X64_MSR_VP_RUNTIME,
5c919412 1251 HV_X64_MSR_SCONTROL,
1f4b34f8 1252 HV_X64_MSR_STIMER0_CONFIG,
d4abc577 1253 HV_X64_MSR_VP_ASSIST_PAGE,
a2e164e7
VK
1254 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
1255 HV_X64_MSR_TSC_EMULATION_STATUS,
f97f5a56
JD
1256 HV_X64_MSR_SYNDBG_OPTIONS,
1257 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1258 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1259 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
a2e164e7
VK
1260
1261 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
557a961a 1262 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
62ef68bb 1263
ba904635 1264 MSR_IA32_TSC_ADJUST,
a3e06bbe 1265 MSR_IA32_TSCDEADLINE,
2bdb76c0 1266 MSR_IA32_ARCH_CAPABILITIES,
27461da3 1267 MSR_IA32_PERF_CAPABILITIES,
043405e1 1268 MSR_IA32_MISC_ENABLE,
908e75f3
AK
1269 MSR_IA32_MCG_STATUS,
1270 MSR_IA32_MCG_CTL,
c45dcc71 1271 MSR_IA32_MCG_EXT_CTL,
64d60670 1272 MSR_IA32_SMBASE,
52797bf9 1273 MSR_SMI_COUNT,
db2336a8
KH
1274 MSR_PLATFORM_INFO,
1275 MSR_MISC_FEATURES_ENABLES,
bc226f07 1276 MSR_AMD64_VIRT_SPEC_CTRL,
6c6a2ab9 1277 MSR_IA32_POWER_CTL,
99634e3e 1278 MSR_IA32_UCODE_REV,
191c8137 1279
95c5c7c7
PB
1280 /*
1281 * The following list leaves out MSRs whose values are determined
1282 * by arch/x86/kvm/vmx/nested.c based on CPUID or other MSRs.
1283 * We always support the "true" VMX control MSRs, even if the host
1284 * processor does not, so I am putting these registers here rather
7a5ee6ed 1285 * than in msrs_to_save_all.
95c5c7c7
PB
1286 */
1287 MSR_IA32_VMX_BASIC,
1288 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1289 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1290 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1291 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1292 MSR_IA32_VMX_MISC,
1293 MSR_IA32_VMX_CR0_FIXED0,
1294 MSR_IA32_VMX_CR4_FIXED0,
1295 MSR_IA32_VMX_VMCS_ENUM,
1296 MSR_IA32_VMX_PROCBASED_CTLS2,
1297 MSR_IA32_VMX_EPT_VPID_CAP,
1298 MSR_IA32_VMX_VMFUNC,
1299
191c8137 1300 MSR_K7_HWCR,
2d5ba19b 1301 MSR_KVM_POLL_CONTROL,
043405e1
CO
1302};
1303
7a5ee6ed 1304static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
62ef68bb
PB
1305static unsigned num_emulated_msrs;
1306
801e459a
TL
1307/*
1308 * List of msr numbers which are used to expose MSR-based features that
1309 * can be used by a hypervisor to validate requested CPU features.
1310 */
7a5ee6ed 1311static const u32 msr_based_features_all[] = {
1389309c
PB
1312 MSR_IA32_VMX_BASIC,
1313 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1314 MSR_IA32_VMX_PINBASED_CTLS,
1315 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1316 MSR_IA32_VMX_PROCBASED_CTLS,
1317 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1318 MSR_IA32_VMX_EXIT_CTLS,
1319 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1320 MSR_IA32_VMX_ENTRY_CTLS,
1321 MSR_IA32_VMX_MISC,
1322 MSR_IA32_VMX_CR0_FIXED0,
1323 MSR_IA32_VMX_CR0_FIXED1,
1324 MSR_IA32_VMX_CR4_FIXED0,
1325 MSR_IA32_VMX_CR4_FIXED1,
1326 MSR_IA32_VMX_VMCS_ENUM,
1327 MSR_IA32_VMX_PROCBASED_CTLS2,
1328 MSR_IA32_VMX_EPT_VPID_CAP,
1329 MSR_IA32_VMX_VMFUNC,
1330
d1d93fa9 1331 MSR_F10H_DECFG,
518e7b94 1332 MSR_IA32_UCODE_REV,
cd283252 1333 MSR_IA32_ARCH_CAPABILITIES,
27461da3 1334 MSR_IA32_PERF_CAPABILITIES,
801e459a
TL
1335};
1336
7a5ee6ed 1337static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all)];
801e459a
TL
1338static unsigned int num_msr_based_features;
1339
4d22c17c 1340static u64 kvm_get_arch_capabilities(void)
5b76a3cf 1341{
4d22c17c 1342 u64 data = 0;
5b76a3cf 1343
4d22c17c
XL
1344 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1345 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
5b76a3cf 1346
b8e8c830
PB
1347 /*
1348 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1349 * the nested hypervisor runs with NX huge pages. If it is not,
1350 * L1 is anyway vulnerable to ITLB_MULTIHIT explots from other
1351 * L1 guests, so it need not worry about its own (L2) guests.
1352 */
1353 data |= ARCH_CAP_PSCHANGE_MC_NO;
1354
5b76a3cf
PB
1355 /*
1356 * If we're doing cache flushes (either "always" or "cond")
1357 * we will do one whenever the guest does a vmlaunch/vmresume.
1358 * If an outer hypervisor is doing the cache flush for us
1359 * (VMENTER_L1D_FLUSH_NESTED_VM), we can safely pass that
1360 * capability to the guest too, and if EPT is disabled we're not
1361 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1362 * require a nested hypervisor to do a flush of its own.
1363 */
1364 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1365 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1366
0c54914d
PB
1367 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1368 data |= ARCH_CAP_RDCL_NO;
1369 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1370 data |= ARCH_CAP_SSB_NO;
1371 if (!boot_cpu_has_bug(X86_BUG_MDS))
1372 data |= ARCH_CAP_MDS_NO;
1373
e1d38b63 1374 /*
c11f83e0
PB
1375 * On TAA affected systems:
1376 * - nothing to do if TSX is disabled on the host.
1377 * - we emulate TSX_CTRL if present on the host.
1378 * This lets the guest use VERW to clear CPU buffers.
e1d38b63 1379 */
cbbaa272 1380 if (!boot_cpu_has(X86_FEATURE_RTM))
c11f83e0 1381 data &= ~(ARCH_CAP_TAA_NO | ARCH_CAP_TSX_CTRL_MSR);
cbbaa272
PB
1382 else if (!boot_cpu_has_bug(X86_BUG_TAA))
1383 data |= ARCH_CAP_TAA_NO;
e1d38b63 1384
5b76a3cf
PB
1385 return data;
1386}
5b76a3cf 1387
66421c1e
WL
1388static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1389{
1390 switch (msr->index) {
cd283252 1391 case MSR_IA32_ARCH_CAPABILITIES:
5b76a3cf
PB
1392 msr->data = kvm_get_arch_capabilities();
1393 break;
1394 case MSR_IA32_UCODE_REV:
cd283252 1395 rdmsrl_safe(msr->index, &msr->data);
518e7b94 1396 break;
66421c1e 1397 default:
12bc2132 1398 return kvm_x86_ops.get_msr_feature(msr);
66421c1e
WL
1399 }
1400 return 0;
1401}
1402
801e459a
TL
1403static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1404{
1405 struct kvm_msr_entry msr;
66421c1e 1406 int r;
801e459a
TL
1407
1408 msr.index = index;
66421c1e 1409 r = kvm_get_msr_feature(&msr);
12bc2132
PX
1410
1411 if (r == KVM_MSR_RET_INVALID) {
1412 /* Unconditionally clear the output for simplicity */
1413 *data = 0;
cc4cb017
ML
1414 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1415 r = 0;
12bc2132
PX
1416 }
1417
66421c1e
WL
1418 if (r)
1419 return r;
801e459a
TL
1420
1421 *data = msr.data;
1422
1423 return 0;
1424}
1425
11988499 1426static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
15c4a640 1427{
1b4d56b8 1428 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
11988499 1429 return false;
1b2fd70c 1430
1b4d56b8 1431 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
11988499 1432 return false;
d8017474 1433
0a629563
SC
1434 if (efer & (EFER_LME | EFER_LMA) &&
1435 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1436 return false;
1437
1438 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1439 return false;
d8017474 1440
384bb783 1441 return true;
11988499
SC
1442
1443}
1444bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1445{
1446 if (efer & efer_reserved_bits)
1447 return false;
1448
1449 return __kvm_valid_efer(vcpu, efer);
384bb783
JK
1450}
1451EXPORT_SYMBOL_GPL(kvm_valid_efer);
1452
11988499 1453static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
384bb783
JK
1454{
1455 u64 old_efer = vcpu->arch.efer;
11988499 1456 u64 efer = msr_info->data;
72f211ec 1457 int r;
384bb783 1458
11988499 1459 if (efer & efer_reserved_bits)
66f61c92 1460 return 1;
384bb783 1461
11988499
SC
1462 if (!msr_info->host_initiated) {
1463 if (!__kvm_valid_efer(vcpu, efer))
1464 return 1;
1465
1466 if (is_paging(vcpu) &&
1467 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1468 return 1;
1469 }
384bb783 1470
15c4a640 1471 efer &= ~EFER_LMA;
f6801dff 1472 efer |= vcpu->arch.efer & EFER_LMA;
15c4a640 1473
72f211ec
ML
1474 r = kvm_x86_ops.set_efer(vcpu, efer);
1475 if (r) {
1476 WARN_ON(r > 0);
1477 return r;
1478 }
a3d204e2 1479
aad82703
SY
1480 /* Update reserved bits */
1481 if ((efer ^ old_efer) & EFER_NX)
1482 kvm_mmu_reset_context(vcpu);
1483
b69e8cae 1484 return 0;
15c4a640
CO
1485}
1486
f2b4b7dd
JR
1487void kvm_enable_efer_bits(u64 mask)
1488{
1489 efer_reserved_bits &= ~mask;
1490}
1491EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1492
51de8151
AG
1493bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1494{
1a155254
AG
1495 struct kvm *kvm = vcpu->kvm;
1496 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
1497 u32 count = kvm->arch.msr_filter.count;
1498 u32 i;
1499 bool r = kvm->arch.msr_filter.default_allow;
1500 int idx;
1501
9389b9d5
SC
1502 /* MSR filtering not set up or x2APIC enabled, allow everything */
1503 if (!count || (index >= 0x800 && index <= 0x8ff))
1a155254
AG
1504 return true;
1505
1506 /* Prevent collision with set_msr_filter */
1507 idx = srcu_read_lock(&kvm->srcu);
1508
1509 for (i = 0; i < count; i++) {
1510 u32 start = ranges[i].base;
1511 u32 end = start + ranges[i].nmsrs;
1512 u32 flags = ranges[i].flags;
1513 unsigned long *bitmap = ranges[i].bitmap;
1514
1515 if ((index >= start) && (index < end) && (flags & type)) {
1516 r = !!test_bit(index - start, bitmap);
1517 break;
1518 }
1519 }
1520
1521 srcu_read_unlock(&kvm->srcu, idx);
1522
1523 return r;
51de8151
AG
1524}
1525EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1526
15c4a640 1527/*
f20935d8
SC
1528 * Write @data into the MSR specified by @index. Select MSR specific fault
1529 * checks are bypassed if @host_initiated is %true.
15c4a640
CO
1530 * Returns 0 on success, non-0 otherwise.
1531 * Assumes vcpu_load() was already called.
1532 */
f20935d8
SC
1533static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1534 bool host_initiated)
15c4a640 1535{
f20935d8
SC
1536 struct msr_data msr;
1537
1a155254 1538 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
cc4cb017 1539 return KVM_MSR_RET_FILTERED;
1a155254 1540
f20935d8 1541 switch (index) {
854e8bb1
NA
1542 case MSR_FS_BASE:
1543 case MSR_GS_BASE:
1544 case MSR_KERNEL_GS_BASE:
1545 case MSR_CSTAR:
1546 case MSR_LSTAR:
f20935d8 1547 if (is_noncanonical_address(data, vcpu))
854e8bb1
NA
1548 return 1;
1549 break;
1550 case MSR_IA32_SYSENTER_EIP:
1551 case MSR_IA32_SYSENTER_ESP:
1552 /*
1553 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1554 * non-canonical address is written on Intel but not on
1555 * AMD (which ignores the top 32-bits, because it does
1556 * not implement 64-bit SYSENTER).
1557 *
1558 * 64-bit code should hence be able to write a non-canonical
1559 * value on AMD. Making the address canonical ensures that
1560 * vmentry does not fail on Intel after writing a non-canonical
1561 * value, and that something deterministic happens if the guest
1562 * invokes 64-bit SYSENTER.
1563 */
f20935d8 1564 data = get_canonical(data, vcpu_virt_addr_bits(vcpu));
854e8bb1 1565 }
f20935d8
SC
1566
1567 msr.data = data;
1568 msr.index = index;
1569 msr.host_initiated = host_initiated;
1570
afaf0b2f 1571 return kvm_x86_ops.set_msr(vcpu, &msr);
15c4a640
CO
1572}
1573
6abe9c13
PX
1574static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1575 u32 index, u64 data, bool host_initiated)
1576{
1577 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1578
1579 if (ret == KVM_MSR_RET_INVALID)
cc4cb017
ML
1580 if (kvm_msr_ignored_check(vcpu, index, data, true))
1581 ret = 0;
6abe9c13
PX
1582
1583 return ret;
1584}
1585
313a3dc7 1586/*
f20935d8
SC
1587 * Read the MSR specified by @index into @data. Select MSR specific fault
1588 * checks are bypassed if @host_initiated is %true.
1589 * Returns 0 on success, non-0 otherwise.
1590 * Assumes vcpu_load() was already called.
313a3dc7 1591 */
edef5c36
PB
1592int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1593 bool host_initiated)
609e36d3
PB
1594{
1595 struct msr_data msr;
f20935d8 1596 int ret;
609e36d3 1597
1a155254 1598 if (!host_initiated && !kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
cc4cb017 1599 return KVM_MSR_RET_FILTERED;
1a155254 1600
609e36d3 1601 msr.index = index;
f20935d8 1602 msr.host_initiated = host_initiated;
609e36d3 1603
afaf0b2f 1604 ret = kvm_x86_ops.get_msr(vcpu, &msr);
f20935d8
SC
1605 if (!ret)
1606 *data = msr.data;
1607 return ret;
609e36d3
PB
1608}
1609
6abe9c13
PX
1610static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1611 u32 index, u64 *data, bool host_initiated)
1612{
1613 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1614
1615 if (ret == KVM_MSR_RET_INVALID) {
1616 /* Unconditionally clear *data for simplicity */
1617 *data = 0;
cc4cb017
ML
1618 if (kvm_msr_ignored_check(vcpu, index, 0, false))
1619 ret = 0;
6abe9c13
PX
1620 }
1621
1622 return ret;
1623}
1624
f20935d8 1625int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
313a3dc7 1626{
6abe9c13 1627 return kvm_get_msr_ignored_check(vcpu, index, data, false);
f20935d8
SC
1628}
1629EXPORT_SYMBOL_GPL(kvm_get_msr);
8fe8ab46 1630
f20935d8
SC
1631int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1632{
6abe9c13 1633 return kvm_set_msr_ignored_check(vcpu, index, data, false);
f20935d8
SC
1634}
1635EXPORT_SYMBOL_GPL(kvm_set_msr);
1636
8b474427 1637static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
1ae09954 1638{
8b474427
PB
1639 int err = vcpu->run->msr.error;
1640 if (!err) {
1ae09954
AG
1641 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1642 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1643 }
1644
f9a4d621 1645 return kvm_x86_ops.complete_emulated_msr(vcpu, err);
1ae09954
AG
1646}
1647
1648static int complete_emulated_wrmsr(struct kvm_vcpu *vcpu)
1649{
f9a4d621 1650 return kvm_x86_ops.complete_emulated_msr(vcpu, vcpu->run->msr.error);
1ae09954
AG
1651}
1652
1653static u64 kvm_msr_reason(int r)
1654{
1655 switch (r) {
cc4cb017 1656 case KVM_MSR_RET_INVALID:
1ae09954 1657 return KVM_MSR_EXIT_REASON_UNKNOWN;
cc4cb017 1658 case KVM_MSR_RET_FILTERED:
1a155254 1659 return KVM_MSR_EXIT_REASON_FILTER;
1ae09954
AG
1660 default:
1661 return KVM_MSR_EXIT_REASON_INVAL;
1662 }
1663}
1664
1665static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
1666 u32 exit_reason, u64 data,
1667 int (*completion)(struct kvm_vcpu *vcpu),
1668 int r)
1669{
1670 u64 msr_reason = kvm_msr_reason(r);
1671
1672 /* Check if the user wanted to know about this MSR fault */
1673 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
1674 return 0;
1675
1676 vcpu->run->exit_reason = exit_reason;
1677 vcpu->run->msr.error = 0;
1678 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
1679 vcpu->run->msr.reason = msr_reason;
1680 vcpu->run->msr.index = index;
1681 vcpu->run->msr.data = data;
1682 vcpu->arch.complete_userspace_io = completion;
1683
1684 return 1;
1685}
1686
1687static int kvm_get_msr_user_space(struct kvm_vcpu *vcpu, u32 index, int r)
1688{
1689 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_RDMSR, 0,
1690 complete_emulated_rdmsr, r);
1691}
1692
1693static int kvm_set_msr_user_space(struct kvm_vcpu *vcpu, u32 index, u64 data, int r)
1694{
1695 return kvm_msr_user_space(vcpu, index, KVM_EXIT_X86_WRMSR, data,
1696 complete_emulated_wrmsr, r);
1697}
1698
1edce0a9
SC
1699int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
1700{
1701 u32 ecx = kvm_rcx_read(vcpu);
1702 u64 data;
1ae09954
AG
1703 int r;
1704
1705 r = kvm_get_msr(vcpu, ecx, &data);
1edce0a9 1706
1ae09954
AG
1707 /* MSR read failed? See if we should ask user space */
1708 if (r && kvm_get_msr_user_space(vcpu, ecx, r)) {
1709 /* Bounce to user space */
1710 return 0;
1711 }
1712
8b474427
PB
1713 if (!r) {
1714 trace_kvm_msr_read(ecx, data);
1715
1716 kvm_rax_write(vcpu, data & -1u);
1717 kvm_rdx_write(vcpu, (data >> 32) & -1u);
1718 } else {
1edce0a9 1719 trace_kvm_msr_read_ex(ecx);
1edce0a9
SC
1720 }
1721
f9a4d621 1722 return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1edce0a9
SC
1723}
1724EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
1725
1726int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
1727{
1728 u32 ecx = kvm_rcx_read(vcpu);
1729 u64 data = kvm_read_edx_eax(vcpu);
1ae09954 1730 int r;
1edce0a9 1731
1ae09954
AG
1732 r = kvm_set_msr(vcpu, ecx, data);
1733
1734 /* MSR write failed? See if we should ask user space */
7dffecaf 1735 if (r && kvm_set_msr_user_space(vcpu, ecx, data, r))
1ae09954
AG
1736 /* Bounce to user space */
1737 return 0;
7dffecaf
ML
1738
1739 /* Signal all other negative errors to userspace */
1740 if (r < 0)
1741 return r;
1ae09954 1742
8b474427
PB
1743 if (!r)
1744 trace_kvm_msr_write(ecx, data);
1745 else
1edce0a9 1746 trace_kvm_msr_write_ex(ecx, data);
1edce0a9 1747
f9a4d621 1748 return kvm_x86_ops.complete_emulated_msr(vcpu, r);
1edce0a9
SC
1749}
1750EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
1751
5a9f5443
WL
1752bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
1753{
1754 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
72c3c0fe 1755 xfer_to_guest_mode_work_pending();
5a9f5443
WL
1756}
1757EXPORT_SYMBOL_GPL(kvm_vcpu_exit_request);
1758
1e9e2622
WL
1759/*
1760 * The fast path for frequent and performance sensitive wrmsr emulation,
1761 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
1762 * the latency of virtual IPI by avoiding the expensive bits of transitioning
1763 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
1764 * other cases which must be called after interrupts are enabled on the host.
1765 */
1766static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
1767{
e1be9ac8
WL
1768 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
1769 return 1;
1770
1771 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
1e9e2622 1772 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
4064a4c6
WL
1773 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
1774 ((u32)(data >> 32) != X2APIC_BROADCAST)) {
1e9e2622 1775
d5361678
WL
1776 data &= ~(1 << 12);
1777 kvm_apic_send_ipi(vcpu->arch.apic, (u32)data, (u32)(data >> 32));
1e9e2622 1778 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR2, (u32)(data >> 32));
d5361678
WL
1779 kvm_lapic_set_reg(vcpu->arch.apic, APIC_ICR, (u32)data);
1780 trace_kvm_apic_write(APIC_ICR, (u32)data);
1781 return 0;
1e9e2622
WL
1782 }
1783
1784 return 1;
1785}
1786
ae95f566
WL
1787static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
1788{
1789 if (!kvm_can_use_hv_timer(vcpu))
1790 return 1;
1791
1792 kvm_set_lapic_tscdeadline_msr(vcpu, data);
1793 return 0;
1794}
1795
404d5d7b 1796fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1e9e2622
WL
1797{
1798 u32 msr = kvm_rcx_read(vcpu);
8a1038de 1799 u64 data;
404d5d7b 1800 fastpath_t ret = EXIT_FASTPATH_NONE;
1e9e2622
WL
1801
1802 switch (msr) {
1803 case APIC_BASE_MSR + (APIC_ICR >> 4):
8a1038de 1804 data = kvm_read_edx_eax(vcpu);
404d5d7b
WL
1805 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
1806 kvm_skip_emulated_instruction(vcpu);
1807 ret = EXIT_FASTPATH_EXIT_HANDLED;
80bc97f2 1808 }
1e9e2622 1809 break;
ae95f566
WL
1810 case MSR_IA32_TSCDEADLINE:
1811 data = kvm_read_edx_eax(vcpu);
1812 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
1813 kvm_skip_emulated_instruction(vcpu);
1814 ret = EXIT_FASTPATH_REENTER_GUEST;
1815 }
1816 break;
1e9e2622 1817 default:
404d5d7b 1818 break;
1e9e2622
WL
1819 }
1820
404d5d7b 1821 if (ret != EXIT_FASTPATH_NONE)
1e9e2622 1822 trace_kvm_msr_write(msr, data);
1e9e2622 1823
404d5d7b 1824 return ret;
1e9e2622
WL
1825}
1826EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
1827
f20935d8
SC
1828/*
1829 * Adapt set_msr() to msr_io()'s calling convention
1830 */
1831static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1832{
6abe9c13 1833 return kvm_get_msr_ignored_check(vcpu, index, data, true);
f20935d8
SC
1834}
1835
1836static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1837{
6abe9c13 1838 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
313a3dc7
CO
1839}
1840
16e8d74d 1841#ifdef CONFIG_X86_64
53fafdbb
MT
1842struct pvclock_clock {
1843 int vclock_mode;
1844 u64 cycle_last;
1845 u64 mask;
1846 u32 mult;
1847 u32 shift;
917f9475
PB
1848 u64 base_cycles;
1849 u64 offset;
53fafdbb
MT
1850};
1851
16e8d74d
MT
1852struct pvclock_gtod_data {
1853 seqcount_t seq;
1854
53fafdbb
MT
1855 struct pvclock_clock clock; /* extract of a clocksource struct */
1856 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
16e8d74d 1857
917f9475 1858 ktime_t offs_boot;
55dd00a7 1859 u64 wall_time_sec;
16e8d74d
MT
1860};
1861
1862static struct pvclock_gtod_data pvclock_gtod_data;
1863
1864static void update_pvclock_gtod(struct timekeeper *tk)
1865{
1866 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
1867
1868 write_seqcount_begin(&vdata->seq);
1869
1870 /* copy pvclock gtod data */
b95a8a27 1871 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
876e7881
PZ
1872 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
1873 vdata->clock.mask = tk->tkr_mono.mask;
1874 vdata->clock.mult = tk->tkr_mono.mult;
1875 vdata->clock.shift = tk->tkr_mono.shift;
917f9475
PB
1876 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
1877 vdata->clock.offset = tk->tkr_mono.base;
16e8d74d 1878
b95a8a27 1879 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
53fafdbb
MT
1880 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
1881 vdata->raw_clock.mask = tk->tkr_raw.mask;
1882 vdata->raw_clock.mult = tk->tkr_raw.mult;
1883 vdata->raw_clock.shift = tk->tkr_raw.shift;
917f9475
PB
1884 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
1885 vdata->raw_clock.offset = tk->tkr_raw.base;
16e8d74d 1886
55dd00a7
MT
1887 vdata->wall_time_sec = tk->xtime_sec;
1888
917f9475 1889 vdata->offs_boot = tk->offs_boot;
53fafdbb 1890
16e8d74d
MT
1891 write_seqcount_end(&vdata->seq);
1892}
8171cd68
PB
1893
1894static s64 get_kvmclock_base_ns(void)
1895{
1896 /* Count up from boot time, but with the frequency of the raw clock. */
1897 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
1898}
1899#else
1900static s64 get_kvmclock_base_ns(void)
1901{
1902 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
1903 return ktime_get_boottime_ns();
1904}
16e8d74d
MT
1905#endif
1906
18068523
GOC
1907static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock)
1908{
9ed3c444
AK
1909 int version;
1910 int r;
50d0a0f9 1911 struct pvclock_wall_clock wc;
8171cd68 1912 u64 wall_nsec;
18068523 1913
210dfd93
OU
1914 kvm->arch.wall_clock = wall_clock;
1915
18068523
GOC
1916 if (!wall_clock)
1917 return;
1918
9ed3c444
AK
1919 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
1920 if (r)
1921 return;
1922
1923 if (version & 1)
1924 ++version; /* first time write, random junk */
1925
1926 ++version;
18068523 1927
1dab1345
NK
1928 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
1929 return;
18068523 1930
50d0a0f9
GH
1931 /*
1932 * The guest calculates current wall clock time by adding
34c238a1 1933 * system time (updated by kvm_guest_time_update below) to the
8171cd68 1934 * wall clock specified here. We do the reverse here.
50d0a0f9 1935 */
8171cd68 1936 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
50d0a0f9 1937
8171cd68
PB
1938 wc.nsec = do_div(wall_nsec, 1000000000);
1939 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
50d0a0f9 1940 wc.version = version;
18068523
GOC
1941
1942 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
1943
1944 version++;
1945 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
18068523
GOC
1946}
1947
5b9bb0eb
OU
1948static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
1949 bool old_msr, bool host_initiated)
1950{
1951 struct kvm_arch *ka = &vcpu->kvm->arch;
1952
1953 if (vcpu->vcpu_id == 0 && !host_initiated) {
1e293d1a 1954 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
5b9bb0eb
OU
1955 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
1956
1957 ka->boot_vcpu_runs_old_kvmclock = old_msr;
1958 }
1959
1960 vcpu->arch.time = system_time;
1961 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
1962
1963 /* we verify if the enable bit is set... */
1964 vcpu->arch.pv_time_enabled = false;
1965 if (!(system_time & 1))
1966 return;
1967
1968 if (!kvm_gfn_to_hva_cache_init(vcpu->kvm,
1969 &vcpu->arch.pv_time, system_time & ~1ULL,
1970 sizeof(struct pvclock_vcpu_time_info)))
1971 vcpu->arch.pv_time_enabled = true;
1972
1973 return;
1974}
1975
50d0a0f9
GH
1976static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
1977{
b51012de
PB
1978 do_shl32_div32(dividend, divisor);
1979 return dividend;
50d0a0f9
GH
1980}
1981
3ae13faa 1982static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
5f4e3f88 1983 s8 *pshift, u32 *pmultiplier)
50d0a0f9 1984{
5f4e3f88 1985 uint64_t scaled64;
50d0a0f9
GH
1986 int32_t shift = 0;
1987 uint64_t tps64;
1988 uint32_t tps32;
1989
3ae13faa
PB
1990 tps64 = base_hz;
1991 scaled64 = scaled_hz;
50933623 1992 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
50d0a0f9
GH
1993 tps64 >>= 1;
1994 shift--;
1995 }
1996
1997 tps32 = (uint32_t)tps64;
50933623
JK
1998 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
1999 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
5f4e3f88
ZA
2000 scaled64 >>= 1;
2001 else
2002 tps32 <<= 1;
50d0a0f9
GH
2003 shift++;
2004 }
2005
5f4e3f88
ZA
2006 *pshift = shift;
2007 *pmultiplier = div_frac(scaled64, tps32);
50d0a0f9
GH
2008}
2009
d828199e 2010#ifdef CONFIG_X86_64
16e8d74d 2011static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
d828199e 2012#endif
16e8d74d 2013
c8076604 2014static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
69b0049a 2015static unsigned long max_tsc_khz;
c8076604 2016
cc578287 2017static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1e993611 2018{
cc578287
ZA
2019 u64 v = (u64)khz * (1000000 + ppm);
2020 do_div(v, 1000000);
2021 return v;
1e993611
JR
2022}
2023
381d585c
HZ
2024static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2025{
2026 u64 ratio;
2027
2028 /* Guest TSC same frequency as host TSC? */
2029 if (!scale) {
2030 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
2031 return 0;
2032 }
2033
2034 /* TSC scaling supported? */
2035 if (!kvm_has_tsc_control) {
2036 if (user_tsc_khz > tsc_khz) {
2037 vcpu->arch.tsc_catchup = 1;
2038 vcpu->arch.tsc_always_catchup = 1;
2039 return 0;
2040 } else {
3f16a5c3 2041 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
381d585c
HZ
2042 return -1;
2043 }
2044 }
2045
2046 /* TSC scaling required - calculate ratio */
2047 ratio = mul_u64_u32_div(1ULL << kvm_tsc_scaling_ratio_frac_bits,
2048 user_tsc_khz, tsc_khz);
2049
2050 if (ratio == 0 || ratio >= kvm_max_tsc_scaling_ratio) {
3f16a5c3
PB
2051 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2052 user_tsc_khz);
381d585c
HZ
2053 return -1;
2054 }
2055
2056 vcpu->arch.tsc_scaling_ratio = ratio;
2057 return 0;
2058}
2059
4941b8cb 2060static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
759379dd 2061{
cc578287
ZA
2062 u32 thresh_lo, thresh_hi;
2063 int use_scaling = 0;
217fc9cf 2064
03ba32ca 2065 /* tsc_khz can be zero if TSC calibration fails */
4941b8cb 2066 if (user_tsc_khz == 0) {
ad721883
HZ
2067 /* set tsc_scaling_ratio to a safe value */
2068 vcpu->arch.tsc_scaling_ratio = kvm_default_tsc_scaling_ratio;
381d585c 2069 return -1;
ad721883 2070 }
03ba32ca 2071
c285545f 2072 /* Compute a scale to convert nanoseconds in TSC cycles */
3ae13faa 2073 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
cc578287
ZA
2074 &vcpu->arch.virtual_tsc_shift,
2075 &vcpu->arch.virtual_tsc_mult);
4941b8cb 2076 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
cc578287
ZA
2077
2078 /*
2079 * Compute the variation in TSC rate which is acceptable
2080 * within the range of tolerance and decide if the
2081 * rate being applied is within that bounds of the hardware
2082 * rate. If so, no scaling or compensation need be done.
2083 */
2084 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2085 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
4941b8cb
PB
2086 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
2087 pr_debug("kvm: requested TSC rate %u falls outside tolerance [%u,%u]\n", user_tsc_khz, thresh_lo, thresh_hi);
cc578287
ZA
2088 use_scaling = 1;
2089 }
4941b8cb 2090 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
c285545f
ZA
2091}
2092
2093static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2094{
e26101b1 2095 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
cc578287
ZA
2096 vcpu->arch.virtual_tsc_mult,
2097 vcpu->arch.virtual_tsc_shift);
e26101b1 2098 tsc += vcpu->arch.this_tsc_write;
c285545f
ZA
2099 return tsc;
2100}
2101
b0c39dc6
VK
2102static inline int gtod_is_based_on_tsc(int mode)
2103{
b95a8a27 2104 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
b0c39dc6
VK
2105}
2106
69b0049a 2107static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
b48aa97e
MT
2108{
2109#ifdef CONFIG_X86_64
2110 bool vcpus_matched;
b48aa97e
MT
2111 struct kvm_arch *ka = &vcpu->kvm->arch;
2112 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2113
2114 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2115 atomic_read(&vcpu->kvm->online_vcpus));
2116
7f187922
MT
2117 /*
2118 * Once the masterclock is enabled, always perform request in
2119 * order to update it.
2120 *
2121 * In order to enable masterclock, the host clocksource must be TSC
2122 * and the vcpus need to have matched TSCs. When that happens,
2123 * perform request to enable masterclock.
2124 */
2125 if (ka->use_master_clock ||
b0c39dc6 2126 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
b48aa97e
MT
2127 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2128
2129 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2130 atomic_read(&vcpu->kvm->online_vcpus),
2131 ka->use_master_clock, gtod->clock.vclock_mode);
2132#endif
2133}
2134
35181e86
HZ
2135/*
2136 * Multiply tsc by a fixed point number represented by ratio.
2137 *
2138 * The most significant 64-N bits (mult) of ratio represent the
2139 * integral part of the fixed point number; the remaining N bits
2140 * (frac) represent the fractional part, ie. ratio represents a fixed
2141 * point number (mult + frac * 2^(-N)).
2142 *
2143 * N equals to kvm_tsc_scaling_ratio_frac_bits.
2144 */
2145static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2146{
2147 return mul_u64_u64_shr(tsc, ratio, kvm_tsc_scaling_ratio_frac_bits);
2148}
2149
2150u64 kvm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
2151{
2152 u64 _tsc = tsc;
2153 u64 ratio = vcpu->arch.tsc_scaling_ratio;
2154
2155 if (ratio != kvm_default_tsc_scaling_ratio)
2156 _tsc = __scale_tsc(ratio, tsc);
2157
2158 return _tsc;
2159}
2160EXPORT_SYMBOL_GPL(kvm_scale_tsc);
2161
07c1419a
HZ
2162static u64 kvm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2163{
2164 u64 tsc;
2165
2166 tsc = kvm_scale_tsc(vcpu, rdtsc());
2167
2168 return target_tsc - tsc;
2169}
2170
4ba76538
HZ
2171u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2172{
56ba77a4 2173 return vcpu->arch.l1_tsc_offset + kvm_scale_tsc(vcpu, host_tsc);
4ba76538
HZ
2174}
2175EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2176
a545ab6a
LC
2177static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2178{
56ba77a4 2179 vcpu->arch.l1_tsc_offset = offset;
afaf0b2f 2180 vcpu->arch.tsc_offset = kvm_x86_ops.write_l1_tsc_offset(vcpu, offset);
a545ab6a
LC
2181}
2182
b0c39dc6
VK
2183static inline bool kvm_check_tsc_unstable(void)
2184{
2185#ifdef CONFIG_X86_64
2186 /*
2187 * TSC is marked unstable when we're running on Hyper-V,
2188 * 'TSC page' clocksource is good.
2189 */
b95a8a27 2190 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
b0c39dc6
VK
2191 return false;
2192#endif
2193 return check_tsc_unstable();
2194}
2195
0c899c25 2196static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
99e3e30a
ZA
2197{
2198 struct kvm *kvm = vcpu->kvm;
f38e098f 2199 u64 offset, ns, elapsed;
99e3e30a 2200 unsigned long flags;
b48aa97e 2201 bool matched;
0d3da0d2 2202 bool already_matched;
c5e8ec8e 2203 bool synchronizing = false;
99e3e30a 2204
038f8c11 2205 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
07c1419a 2206 offset = kvm_compute_tsc_offset(vcpu, data);
8171cd68 2207 ns = get_kvmclock_base_ns();
f38e098f 2208 elapsed = ns - kvm->arch.last_tsc_nsec;
5d3cb0f6 2209
03ba32ca 2210 if (vcpu->arch.virtual_tsc_khz) {
0c899c25 2211 if (data == 0) {
bd8fab39
DP
2212 /*
2213 * detection of vcpu initialization -- need to sync
2214 * with other vCPUs. This particularly helps to keep
2215 * kvm_clock stable after CPU hotplug
2216 */
2217 synchronizing = true;
2218 } else {
2219 u64 tsc_exp = kvm->arch.last_tsc_write +
2220 nsec_to_cycles(vcpu, elapsed);
2221 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2222 /*
2223 * Special case: TSC write with a small delta (1 second)
2224 * of virtual cycle time against real time is
2225 * interpreted as an attempt to synchronize the CPU.
2226 */
2227 synchronizing = data < tsc_exp + tsc_hz &&
2228 data + tsc_hz > tsc_exp;
2229 }
c5e8ec8e 2230 }
f38e098f
ZA
2231
2232 /*
5d3cb0f6
ZA
2233 * For a reliable TSC, we can match TSC offsets, and for an unstable
2234 * TSC, we add elapsed time in this computation. We could let the
2235 * compensation code attempt to catch up if we fall behind, but
2236 * it's better to try to match offsets from the beginning.
2237 */
c5e8ec8e 2238 if (synchronizing &&
5d3cb0f6 2239 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
b0c39dc6 2240 if (!kvm_check_tsc_unstable()) {
e26101b1 2241 offset = kvm->arch.cur_tsc_offset;
f38e098f 2242 } else {
857e4099 2243 u64 delta = nsec_to_cycles(vcpu, elapsed);
5d3cb0f6 2244 data += delta;
07c1419a 2245 offset = kvm_compute_tsc_offset(vcpu, data);
f38e098f 2246 }
b48aa97e 2247 matched = true;
0d3da0d2 2248 already_matched = (vcpu->arch.this_tsc_generation == kvm->arch.cur_tsc_generation);
e26101b1
ZA
2249 } else {
2250 /*
2251 * We split periods of matched TSC writes into generations.
2252 * For each generation, we track the original measured
2253 * nanosecond time, offset, and write, so if TSCs are in
2254 * sync, we can match exact offset, and if not, we can match
4a969980 2255 * exact software computation in compute_guest_tsc()
e26101b1
ZA
2256 *
2257 * These values are tracked in kvm->arch.cur_xxx variables.
2258 */
2259 kvm->arch.cur_tsc_generation++;
2260 kvm->arch.cur_tsc_nsec = ns;
2261 kvm->arch.cur_tsc_write = data;
2262 kvm->arch.cur_tsc_offset = offset;
b48aa97e 2263 matched = false;
f38e098f 2264 }
e26101b1
ZA
2265
2266 /*
2267 * We also track th most recent recorded KHZ, write and time to
2268 * allow the matching interval to be extended at each write.
2269 */
f38e098f
ZA
2270 kvm->arch.last_tsc_nsec = ns;
2271 kvm->arch.last_tsc_write = data;
5d3cb0f6 2272 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
99e3e30a 2273
b183aa58 2274 vcpu->arch.last_guest_tsc = data;
e26101b1
ZA
2275
2276 /* Keep track of which generation this VCPU has synchronized to */
2277 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2278 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2279 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2280
a545ab6a 2281 kvm_vcpu_write_tsc_offset(vcpu, offset);
e26101b1 2282 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
b48aa97e
MT
2283
2284 spin_lock(&kvm->arch.pvclock_gtod_sync_lock);
0d3da0d2 2285 if (!matched) {
b48aa97e 2286 kvm->arch.nr_vcpus_matched_tsc = 0;
0d3da0d2
TG
2287 } else if (!already_matched) {
2288 kvm->arch.nr_vcpus_matched_tsc++;
2289 }
b48aa97e
MT
2290
2291 kvm_track_tsc_matching(vcpu);
2292 spin_unlock(&kvm->arch.pvclock_gtod_sync_lock);
99e3e30a 2293}
e26101b1 2294
58ea6767
HZ
2295static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2296 s64 adjustment)
2297{
56ba77a4 2298 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
326e7425 2299 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
58ea6767
HZ
2300}
2301
2302static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2303{
2304 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio)
2305 WARN_ON(adjustment < 0);
2306 adjustment = kvm_scale_tsc(vcpu, (u64) adjustment);
ea26e4ec 2307 adjust_tsc_offset_guest(vcpu, adjustment);
58ea6767
HZ
2308}
2309
d828199e
MT
2310#ifdef CONFIG_X86_64
2311
a5a1d1c2 2312static u64 read_tsc(void)
d828199e 2313{
a5a1d1c2 2314 u64 ret = (u64)rdtsc_ordered();
03b9730b 2315 u64 last = pvclock_gtod_data.clock.cycle_last;
d828199e
MT
2316
2317 if (likely(ret >= last))
2318 return ret;
2319
2320 /*
2321 * GCC likes to generate cmov here, but this branch is extremely
6a6256f9 2322 * predictable (it's just a function of time and the likely is
d828199e
MT
2323 * very likely) and there's a data dependence, so force GCC
2324 * to generate a branch instead. I don't barrier() because
2325 * we don't actually need a barrier, and if this function
2326 * ever gets inlined it will generate worse code.
2327 */
2328 asm volatile ("");
2329 return last;
2330}
2331
53fafdbb
MT
2332static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2333 int *mode)
d828199e
MT
2334{
2335 long v;
b0c39dc6
VK
2336 u64 tsc_pg_val;
2337
53fafdbb 2338 switch (clock->vclock_mode) {
b95a8a27 2339 case VDSO_CLOCKMODE_HVCLOCK:
b0c39dc6
VK
2340 tsc_pg_val = hv_read_tsc_page_tsc(hv_get_tsc_page(),
2341 tsc_timestamp);
2342 if (tsc_pg_val != U64_MAX) {
2343 /* TSC page valid */
b95a8a27 2344 *mode = VDSO_CLOCKMODE_HVCLOCK;
53fafdbb
MT
2345 v = (tsc_pg_val - clock->cycle_last) &
2346 clock->mask;
b0c39dc6
VK
2347 } else {
2348 /* TSC page invalid */
b95a8a27 2349 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6
VK
2350 }
2351 break;
b95a8a27
TG
2352 case VDSO_CLOCKMODE_TSC:
2353 *mode = VDSO_CLOCKMODE_TSC;
b0c39dc6 2354 *tsc_timestamp = read_tsc();
53fafdbb
MT
2355 v = (*tsc_timestamp - clock->cycle_last) &
2356 clock->mask;
b0c39dc6
VK
2357 break;
2358 default:
b95a8a27 2359 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6 2360 }
d828199e 2361
b95a8a27 2362 if (*mode == VDSO_CLOCKMODE_NONE)
b0c39dc6 2363 *tsc_timestamp = v = 0;
d828199e 2364
53fafdbb 2365 return v * clock->mult;
d828199e
MT
2366}
2367
53fafdbb 2368static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
d828199e 2369{
cbcf2dd3 2370 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
d828199e 2371 unsigned long seq;
d828199e 2372 int mode;
cbcf2dd3 2373 u64 ns;
d828199e 2374
d828199e
MT
2375 do {
2376 seq = read_seqcount_begin(&gtod->seq);
917f9475 2377 ns = gtod->raw_clock.base_cycles;
53fafdbb 2378 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
917f9475
PB
2379 ns >>= gtod->raw_clock.shift;
2380 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
d828199e 2381 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
cbcf2dd3 2382 *t = ns;
d828199e
MT
2383
2384 return mode;
2385}
2386
899a31f5 2387static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
55dd00a7
MT
2388{
2389 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2390 unsigned long seq;
2391 int mode;
2392 u64 ns;
2393
2394 do {
2395 seq = read_seqcount_begin(&gtod->seq);
55dd00a7 2396 ts->tv_sec = gtod->wall_time_sec;
917f9475 2397 ns = gtod->clock.base_cycles;
53fafdbb 2398 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
55dd00a7
MT
2399 ns >>= gtod->clock.shift;
2400 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2401
2402 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2403 ts->tv_nsec = ns;
2404
2405 return mode;
2406}
2407
b0c39dc6
VK
2408/* returns true if host is using TSC based clocksource */
2409static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
d828199e 2410{
d828199e 2411 /* checked again under seqlock below */
b0c39dc6 2412 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
d828199e
MT
2413 return false;
2414
53fafdbb 2415 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
b0c39dc6 2416 tsc_timestamp));
d828199e 2417}
55dd00a7 2418
b0c39dc6 2419/* returns true if host is using TSC based clocksource */
899a31f5 2420static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
b0c39dc6 2421 u64 *tsc_timestamp)
55dd00a7
MT
2422{
2423 /* checked again under seqlock below */
b0c39dc6 2424 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
55dd00a7
MT
2425 return false;
2426
b0c39dc6 2427 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
55dd00a7 2428}
d828199e
MT
2429#endif
2430
2431/*
2432 *
b48aa97e
MT
2433 * Assuming a stable TSC across physical CPUS, and a stable TSC
2434 * across virtual CPUs, the following condition is possible.
2435 * Each numbered line represents an event visible to both
d828199e
MT
2436 * CPUs at the next numbered event.
2437 *
2438 * "timespecX" represents host monotonic time. "tscX" represents
2439 * RDTSC value.
2440 *
2441 * VCPU0 on CPU0 | VCPU1 on CPU1
2442 *
2443 * 1. read timespec0,tsc0
2444 * 2. | timespec1 = timespec0 + N
2445 * | tsc1 = tsc0 + M
2446 * 3. transition to guest | transition to guest
2447 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2448 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2449 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2450 *
2451 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2452 *
2453 * - ret0 < ret1
2454 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2455 * ...
2456 * - 0 < N - M => M < N
2457 *
2458 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2459 * always the case (the difference between two distinct xtime instances
2460 * might be smaller then the difference between corresponding TSC reads,
2461 * when updating guest vcpus pvclock areas).
2462 *
2463 * To avoid that problem, do not allow visibility of distinct
2464 * system_timestamp/tsc_timestamp values simultaneously: use a master
2465 * copy of host monotonic time values. Update that master copy
2466 * in lockstep.
2467 *
b48aa97e 2468 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
d828199e
MT
2469 *
2470 */
2471
2472static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2473{
2474#ifdef CONFIG_X86_64
2475 struct kvm_arch *ka = &kvm->arch;
2476 int vclock_mode;
b48aa97e
MT
2477 bool host_tsc_clocksource, vcpus_matched;
2478
2479 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2480 atomic_read(&kvm->online_vcpus));
d828199e
MT
2481
2482 /*
2483 * If the host uses TSC clock, then passthrough TSC as stable
2484 * to the guest.
2485 */
b48aa97e 2486 host_tsc_clocksource = kvm_get_time_and_clockread(
d828199e
MT
2487 &ka->master_kernel_ns,
2488 &ka->master_cycle_now);
2489
16a96021 2490 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
a826faf1 2491 && !ka->backwards_tsc_observed
54750f2c 2492 && !ka->boot_vcpu_runs_old_kvmclock;
b48aa97e 2493
d828199e
MT
2494 if (ka->use_master_clock)
2495 atomic_set(&kvm_guest_has_master_clock, 1);
2496
2497 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
b48aa97e
MT
2498 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2499 vcpus_matched);
d828199e
MT
2500#endif
2501}
2502
2860c4b1
PB
2503void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2504{
2505 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2506}
2507
2e762ff7
MT
2508static void kvm_gen_update_masterclock(struct kvm *kvm)
2509{
2510#ifdef CONFIG_X86_64
2511 int i;
2512 struct kvm_vcpu *vcpu;
2513 struct kvm_arch *ka = &kvm->arch;
2514
2515 spin_lock(&ka->pvclock_gtod_sync_lock);
2516 kvm_make_mclock_inprogress_request(kvm);
2517 /* no guest entries from this point */
2518 pvclock_update_vm_gtod_copy(kvm);
2519
2520 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 2521 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2e762ff7
MT
2522
2523 /* guest entries allowed */
2524 kvm_for_each_vcpu(i, vcpu, kvm)
72875d8a 2525 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2e762ff7
MT
2526
2527 spin_unlock(&ka->pvclock_gtod_sync_lock);
2528#endif
2529}
2530
e891a32e 2531u64 get_kvmclock_ns(struct kvm *kvm)
108b249c 2532{
108b249c 2533 struct kvm_arch *ka = &kvm->arch;
8b953440 2534 struct pvclock_vcpu_time_info hv_clock;
e2c2206a 2535 u64 ret;
108b249c 2536
8b953440
PB
2537 spin_lock(&ka->pvclock_gtod_sync_lock);
2538 if (!ka->use_master_clock) {
2539 spin_unlock(&ka->pvclock_gtod_sync_lock);
8171cd68 2540 return get_kvmclock_base_ns() + ka->kvmclock_offset;
108b249c
PB
2541 }
2542
8b953440
PB
2543 hv_clock.tsc_timestamp = ka->master_cycle_now;
2544 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
2545 spin_unlock(&ka->pvclock_gtod_sync_lock);
2546
e2c2206a
WL
2547 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
2548 get_cpu();
2549
e70b57a6
WL
2550 if (__this_cpu_read(cpu_tsc_khz)) {
2551 kvm_get_time_scale(NSEC_PER_SEC, __this_cpu_read(cpu_tsc_khz) * 1000LL,
2552 &hv_clock.tsc_shift,
2553 &hv_clock.tsc_to_system_mul);
2554 ret = __pvclock_read_cycles(&hv_clock, rdtsc());
2555 } else
8171cd68 2556 ret = get_kvmclock_base_ns() + ka->kvmclock_offset;
e2c2206a
WL
2557
2558 put_cpu();
2559
2560 return ret;
108b249c
PB
2561}
2562
0d6dd2ff
PB
2563static void kvm_setup_pvclock_page(struct kvm_vcpu *v)
2564{
2565 struct kvm_vcpu_arch *vcpu = &v->arch;
2566 struct pvclock_vcpu_time_info guest_hv_clock;
2567
4e335d9e 2568 if (unlikely(kvm_read_guest_cached(v->kvm, &vcpu->pv_time,
0d6dd2ff
PB
2569 &guest_hv_clock, sizeof(guest_hv_clock))))
2570 return;
2571
2572 /* This VCPU is paused, but it's legal for a guest to read another
2573 * VCPU's kvmclock, so we really have to follow the specification where
2574 * it says that version is odd if data is being modified, and even after
2575 * it is consistent.
2576 *
2577 * Version field updates must be kept separate. This is because
2578 * kvm_write_guest_cached might use a "rep movs" instruction, and
2579 * writes within a string instruction are weakly ordered. So there
2580 * are three writes overall.
2581 *
2582 * As a small optimization, only write the version field in the first
2583 * and third write. The vcpu->pv_time cache is still valid, because the
2584 * version field is the first in the struct.
2585 */
2586 BUILD_BUG_ON(offsetof(struct pvclock_vcpu_time_info, version) != 0);
2587
51c4b8bb
LA
2588 if (guest_hv_clock.version & 1)
2589 ++guest_hv_clock.version; /* first time write, random junk */
2590
0d6dd2ff 2591 vcpu->hv_clock.version = guest_hv_clock.version + 1;
4e335d9e
PB
2592 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2593 &vcpu->hv_clock,
2594 sizeof(vcpu->hv_clock.version));
0d6dd2ff
PB
2595
2596 smp_wmb();
2597
2598 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
2599 vcpu->hv_clock.flags |= (guest_hv_clock.flags & PVCLOCK_GUEST_STOPPED);
2600
2601 if (vcpu->pvclock_set_guest_stopped_request) {
2602 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
2603 vcpu->pvclock_set_guest_stopped_request = false;
2604 }
2605
2606 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
2607
4e335d9e
PB
2608 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2609 &vcpu->hv_clock,
2610 sizeof(vcpu->hv_clock));
0d6dd2ff
PB
2611
2612 smp_wmb();
2613
2614 vcpu->hv_clock.version++;
4e335d9e
PB
2615 kvm_write_guest_cached(v->kvm, &vcpu->pv_time,
2616 &vcpu->hv_clock,
2617 sizeof(vcpu->hv_clock.version));
0d6dd2ff
PB
2618}
2619
34c238a1 2620static int kvm_guest_time_update(struct kvm_vcpu *v)
18068523 2621{
78db6a50 2622 unsigned long flags, tgt_tsc_khz;
18068523 2623 struct kvm_vcpu_arch *vcpu = &v->arch;
d828199e 2624 struct kvm_arch *ka = &v->kvm->arch;
f25e656d 2625 s64 kernel_ns;
d828199e 2626 u64 tsc_timestamp, host_tsc;
51d59c6b 2627 u8 pvclock_flags;
d828199e
MT
2628 bool use_master_clock;
2629
2630 kernel_ns = 0;
2631 host_tsc = 0;
18068523 2632
d828199e
MT
2633 /*
2634 * If the host uses TSC clock, then passthrough TSC as stable
2635 * to the guest.
2636 */
2637 spin_lock(&ka->pvclock_gtod_sync_lock);
2638 use_master_clock = ka->use_master_clock;
2639 if (use_master_clock) {
2640 host_tsc = ka->master_cycle_now;
2641 kernel_ns = ka->master_kernel_ns;
2642 }
2643 spin_unlock(&ka->pvclock_gtod_sync_lock);
c09664bb
MT
2644
2645 /* Keep irq disabled to prevent changes to the clock */
2646 local_irq_save(flags);
78db6a50
PB
2647 tgt_tsc_khz = __this_cpu_read(cpu_tsc_khz);
2648 if (unlikely(tgt_tsc_khz == 0)) {
c09664bb
MT
2649 local_irq_restore(flags);
2650 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
2651 return 1;
2652 }
d828199e 2653 if (!use_master_clock) {
4ea1636b 2654 host_tsc = rdtsc();
8171cd68 2655 kernel_ns = get_kvmclock_base_ns();
d828199e
MT
2656 }
2657
4ba76538 2658 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
d828199e 2659
c285545f
ZA
2660 /*
2661 * We may have to catch up the TSC to match elapsed wall clock
2662 * time for two reasons, even if kvmclock is used.
2663 * 1) CPU could have been running below the maximum TSC rate
2664 * 2) Broken TSC compensation resets the base at each VCPU
2665 * entry to avoid unknown leaps of TSC even when running
2666 * again on the same CPU. This may cause apparent elapsed
2667 * time to disappear, and the guest to stand still or run
2668 * very slowly.
2669 */
2670 if (vcpu->tsc_catchup) {
2671 u64 tsc = compute_guest_tsc(v, kernel_ns);
2672 if (tsc > tsc_timestamp) {
f1e2b260 2673 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
c285545f
ZA
2674 tsc_timestamp = tsc;
2675 }
50d0a0f9
GH
2676 }
2677
18068523
GOC
2678 local_irq_restore(flags);
2679
0d6dd2ff 2680 /* With all the info we got, fill in the values */
18068523 2681
78db6a50
PB
2682 if (kvm_has_tsc_control)
2683 tgt_tsc_khz = kvm_scale_tsc(v, tgt_tsc_khz);
2684
2685 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3ae13faa 2686 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
5f4e3f88
ZA
2687 &vcpu->hv_clock.tsc_shift,
2688 &vcpu->hv_clock.tsc_to_system_mul);
78db6a50 2689 vcpu->hw_tsc_khz = tgt_tsc_khz;
8cfdc000
ZA
2690 }
2691
1d5f066e 2692 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
759379dd 2693 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
28e4639a 2694 vcpu->last_guest_tsc = tsc_timestamp;
51d59c6b 2695
d828199e 2696 /* If the host uses TSC clocksource, then it is stable */
0d6dd2ff 2697 pvclock_flags = 0;
d828199e
MT
2698 if (use_master_clock)
2699 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
2700
78c0337a
MT
2701 vcpu->hv_clock.flags = pvclock_flags;
2702
095cf55d
PB
2703 if (vcpu->pv_time_enabled)
2704 kvm_setup_pvclock_page(v);
2705 if (v == kvm_get_vcpu(v->kvm, 0))
2706 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
8cfdc000 2707 return 0;
c8076604
GH
2708}
2709
0061d53d
MT
2710/*
2711 * kvmclock updates which are isolated to a given vcpu, such as
2712 * vcpu->cpu migration, should not allow system_timestamp from
2713 * the rest of the vcpus to remain static. Otherwise ntp frequency
2714 * correction applies to one vcpu's system_timestamp but not
2715 * the others.
2716 *
2717 * So in those cases, request a kvmclock update for all vcpus.
7e44e449
AJ
2718 * We need to rate-limit these requests though, as they can
2719 * considerably slow guests that have a large number of vcpus.
2720 * The time for a remote vcpu to update its kvmclock is bound
2721 * by the delay we use to rate-limit the updates.
0061d53d
MT
2722 */
2723
7e44e449
AJ
2724#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
2725
2726static void kvmclock_update_fn(struct work_struct *work)
0061d53d
MT
2727{
2728 int i;
7e44e449
AJ
2729 struct delayed_work *dwork = to_delayed_work(work);
2730 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2731 kvmclock_update_work);
2732 struct kvm *kvm = container_of(ka, struct kvm, arch);
0061d53d
MT
2733 struct kvm_vcpu *vcpu;
2734
2735 kvm_for_each_vcpu(i, vcpu, kvm) {
105b21bb 2736 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0061d53d
MT
2737 kvm_vcpu_kick(vcpu);
2738 }
2739}
2740
7e44e449
AJ
2741static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
2742{
2743 struct kvm *kvm = v->kvm;
2744
105b21bb 2745 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
7e44e449
AJ
2746 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
2747 KVMCLOCK_UPDATE_DELAY);
2748}
2749
332967a3
AJ
2750#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
2751
2752static void kvmclock_sync_fn(struct work_struct *work)
2753{
2754 struct delayed_work *dwork = to_delayed_work(work);
2755 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
2756 kvmclock_sync_work);
2757 struct kvm *kvm = container_of(ka, struct kvm, arch);
2758
630994b3
MT
2759 if (!kvmclock_periodic_sync)
2760 return;
2761
332967a3
AJ
2762 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
2763 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
2764 KVMCLOCK_SYNC_PERIOD);
2765}
2766
191c8137
BP
2767/*
2768 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
2769 */
2770static bool can_set_mci_status(struct kvm_vcpu *vcpu)
2771{
2772 /* McStatusWrEn enabled? */
23493d0a 2773 if (guest_cpuid_is_amd_or_hygon(vcpu))
191c8137
BP
2774 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
2775
2776 return false;
2777}
2778
9ffd986c 2779static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 2780{
890ca9ae
HY
2781 u64 mcg_cap = vcpu->arch.mcg_cap;
2782 unsigned bank_num = mcg_cap & 0xff;
9ffd986c
WL
2783 u32 msr = msr_info->index;
2784 u64 data = msr_info->data;
890ca9ae 2785
15c4a640 2786 switch (msr) {
15c4a640 2787 case MSR_IA32_MCG_STATUS:
890ca9ae 2788 vcpu->arch.mcg_status = data;
15c4a640 2789 break;
c7ac679c 2790 case MSR_IA32_MCG_CTL:
44883f01
PB
2791 if (!(mcg_cap & MCG_CTL_P) &&
2792 (data || !msr_info->host_initiated))
890ca9ae
HY
2793 return 1;
2794 if (data != 0 && data != ~(u64)0)
44883f01 2795 return 1;
890ca9ae
HY
2796 vcpu->arch.mcg_ctl = data;
2797 break;
2798 default:
2799 if (msr >= MSR_IA32_MC0_CTL &&
81760dcc 2800 msr < MSR_IA32_MCx_CTL(bank_num)) {
6ec4c5ee
MP
2801 u32 offset = array_index_nospec(
2802 msr - MSR_IA32_MC0_CTL,
2803 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
2804
114be429
AP
2805 /* only 0 or all 1s can be written to IA32_MCi_CTL
2806 * some Linux kernels though clear bit 10 in bank 4 to
2807 * workaround a BIOS/GART TBL issue on AMD K8s, ignore
2808 * this to avoid an uncatched #GP in the guest
2809 */
890ca9ae 2810 if ((offset & 0x3) == 0 &&
114be429 2811 data != 0 && (data | (1 << 10)) != ~(u64)0)
890ca9ae 2812 return -1;
191c8137
BP
2813
2814 /* MCi_STATUS */
9ffd986c 2815 if (!msr_info->host_initiated &&
191c8137
BP
2816 (offset & 0x3) == 1 && data != 0) {
2817 if (!can_set_mci_status(vcpu))
2818 return -1;
2819 }
2820
890ca9ae
HY
2821 vcpu->arch.mce_banks[offset] = data;
2822 break;
2823 }
2824 return 1;
2825 }
2826 return 0;
2827}
2828
ffde22ac
ES
2829static int xen_hvm_config(struct kvm_vcpu *vcpu, u64 data)
2830{
2831 struct kvm *kvm = vcpu->kvm;
2832 int lm = is_long_mode(vcpu);
2833 u8 *blob_addr = lm ? (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_64
2834 : (u8 *)(long)kvm->arch.xen_hvm_config.blob_addr_32;
2835 u8 blob_size = lm ? kvm->arch.xen_hvm_config.blob_size_64
2836 : kvm->arch.xen_hvm_config.blob_size_32;
2837 u32 page_num = data & ~PAGE_MASK;
2838 u64 page_addr = data & PAGE_MASK;
2839 u8 *page;
ffde22ac 2840
ffde22ac 2841 if (page_num >= blob_size)
36385ccc
ML
2842 return 1;
2843
ff5c2c03 2844 page = memdup_user(blob_addr + (page_num * PAGE_SIZE), PAGE_SIZE);
36385ccc
ML
2845 if (IS_ERR(page))
2846 return PTR_ERR(page);
2847
2848 if (kvm_vcpu_write_guest(vcpu, page_addr, page, PAGE_SIZE)) {
2849 kfree(page);
2850 return 1;
ff5c2c03 2851 }
36385ccc 2852 return 0;
ffde22ac
ES
2853}
2854
2635b5c4
VK
2855static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
2856{
2857 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
2858
2859 return (vcpu->arch.apf.msr_en_val & mask) == mask;
2860}
2861
344d9588
GN
2862static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
2863{
2864 gpa_t gpa = data & ~0x3f;
2865
2635b5c4
VK
2866 /* Bits 4:5 are reserved, Should be zero */
2867 if (data & 0x30)
344d9588
GN
2868 return 1;
2869
66570e96
OU
2870 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
2871 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
2872 return 1;
2873
2874 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
2875 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
2876 return 1;
2877
9d3c447c 2878 if (!lapic_in_kernel(vcpu))
d831de17 2879 return data ? 1 : 0;
9d3c447c 2880
2635b5c4 2881 vcpu->arch.apf.msr_en_val = data;
344d9588 2882
2635b5c4 2883 if (!kvm_pv_async_pf_enabled(vcpu)) {
344d9588
GN
2884 kvm_clear_async_pf_completion_queue(vcpu);
2885 kvm_async_pf_hash_reset(vcpu);
2886 return 0;
2887 }
2888
4e335d9e 2889 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
68fd66f1 2890 sizeof(u64)))
344d9588
GN
2891 return 1;
2892
6adba527 2893 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
52a5c155 2894 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2635b5c4 2895
344d9588 2896 kvm_async_pf_wakeup_all(vcpu);
2635b5c4
VK
2897
2898 return 0;
2899}
2900
2901static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
2902{
2903 /* Bits 8-63 are reserved */
2904 if (data >> 8)
2905 return 1;
2906
2907 if (!lapic_in_kernel(vcpu))
2908 return 1;
2909
2910 vcpu->arch.apf.msr_int_val = data;
2911
2912 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
2913
344d9588
GN
2914 return 0;
2915}
2916
12f9a48f
GC
2917static void kvmclock_reset(struct kvm_vcpu *vcpu)
2918{
0b79459b 2919 vcpu->arch.pv_time_enabled = false;
49dedf0d 2920 vcpu->arch.time = 0;
12f9a48f
GC
2921}
2922
7780938c 2923static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
f38a7b75
WL
2924{
2925 ++vcpu->stat.tlb_flush;
7780938c 2926 kvm_x86_ops.tlb_flush_all(vcpu);
f38a7b75
WL
2927}
2928
0baedd79
VK
2929static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
2930{
2931 ++vcpu->stat.tlb_flush;
2932 kvm_x86_ops.tlb_flush_guest(vcpu);
2933}
2934
c9aaa895
GC
2935static void record_steal_time(struct kvm_vcpu *vcpu)
2936{
b0431382
BO
2937 struct kvm_host_map map;
2938 struct kvm_steal_time *st;
2939
c9aaa895
GC
2940 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
2941 return;
2942
b0431382
BO
2943 /* -EAGAIN is returned in atomic context so we can just return. */
2944 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT,
2945 &map, &vcpu->arch.st.cache, false))
c9aaa895
GC
2946 return;
2947
b0431382
BO
2948 st = map.hva +
2949 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
2950
f38a7b75
WL
2951 /*
2952 * Doing a TLB flush here, on the guest's behalf, can avoid
2953 * expensive IPIs.
2954 */
66570e96
OU
2955 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
2956 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
2957 st->preempted & KVM_VCPU_FLUSH_TLB);
2958 if (xchg(&st->preempted, 0) & KVM_VCPU_FLUSH_TLB)
2959 kvm_vcpu_flush_tlb_guest(vcpu);
2960 }
0b9f6c46 2961
a6bd811f 2962 vcpu->arch.st.preempted = 0;
35f3fae1 2963
b0431382
BO
2964 if (st->version & 1)
2965 st->version += 1; /* first time write, random junk */
35f3fae1 2966
b0431382 2967 st->version += 1;
35f3fae1
WL
2968
2969 smp_wmb();
2970
b0431382 2971 st->steal += current->sched_info.run_delay -
c54cdf14
LC
2972 vcpu->arch.st.last_steal;
2973 vcpu->arch.st.last_steal = current->sched_info.run_delay;
35f3fae1 2974
35f3fae1
WL
2975 smp_wmb();
2976
b0431382 2977 st->version += 1;
c9aaa895 2978
b0431382 2979 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, false);
c9aaa895
GC
2980}
2981
8fe8ab46 2982int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 2983{
5753785f 2984 bool pr = false;
8fe8ab46
WA
2985 u32 msr = msr_info->index;
2986 u64 data = msr_info->data;
5753785f 2987
15c4a640 2988 switch (msr) {
2e32b719 2989 case MSR_AMD64_NB_CFG:
2e32b719
BP
2990 case MSR_IA32_UCODE_WRITE:
2991 case MSR_VM_HSAVE_PA:
2992 case MSR_AMD64_PATCH_LOADER:
2993 case MSR_AMD64_BU_CFG2:
405a353a 2994 case MSR_AMD64_DC_CFG:
0e1b869f 2995 case MSR_F15H_EX_CFG:
2e32b719
BP
2996 break;
2997
518e7b94
WL
2998 case MSR_IA32_UCODE_REV:
2999 if (msr_info->host_initiated)
3000 vcpu->arch.microcode_version = data;
3001 break;
0cf9135b
SC
3002 case MSR_IA32_ARCH_CAPABILITIES:
3003 if (!msr_info->host_initiated)
3004 return 1;
3005 vcpu->arch.arch_capabilities = data;
3006 break;
d574c539
VK
3007 case MSR_IA32_PERF_CAPABILITIES: {
3008 struct kvm_msr_entry msr_ent = {.index = msr, .data = 0};
3009
3010 if (!msr_info->host_initiated)
3011 return 1;
3012 if (guest_cpuid_has(vcpu, X86_FEATURE_PDCM) && kvm_get_msr_feature(&msr_ent))
3013 return 1;
3014 if (data & ~msr_ent.data)
3015 return 1;
3016
3017 vcpu->arch.perf_capabilities = data;
3018
3019 return 0;
3020 }
15c4a640 3021 case MSR_EFER:
11988499 3022 return set_efer(vcpu, msr_info);
8f1589d9
AP
3023 case MSR_K7_HWCR:
3024 data &= ~(u64)0x40; /* ignore flush filter disable */
82494028 3025 data &= ~(u64)0x100; /* ignore ignne emulation enable */
a223c313 3026 data &= ~(u64)0x8; /* ignore TLB cache disable */
191c8137
BP
3027
3028 /* Handle McStatusWrEn */
3029 if (data == BIT_ULL(18)) {
3030 vcpu->arch.msr_hwcr = data;
3031 } else if (data != 0) {
a737f256
CD
3032 vcpu_unimpl(vcpu, "unimplemented HWCR wrmsr: 0x%llx\n",
3033 data);
8f1589d9
AP
3034 return 1;
3035 }
15c4a640 3036 break;
f7c6d140
AP
3037 case MSR_FAM10H_MMIO_CONF_BASE:
3038 if (data != 0) {
a737f256
CD
3039 vcpu_unimpl(vcpu, "unimplemented MMIO_CONF_BASE wrmsr: "
3040 "0x%llx\n", data);
f7c6d140
AP
3041 return 1;
3042 }
15c4a640 3043 break;
b5e2fec0
AG
3044 case MSR_IA32_DEBUGCTLMSR:
3045 if (!data) {
3046 /* We support the non-activated case already */
3047 break;
3048 } else if (data & ~(DEBUGCTLMSR_LBR | DEBUGCTLMSR_BTF)) {
3049 /* Values other than LBR and BTF are vendor-specific,
3050 thus reserved and should throw a #GP */
3051 return 1;
2cdef91c
PG
3052 } else if (report_ignored_msrs)
3053 vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTLMSR 0x%llx, nop\n",
3054 __func__, data);
b5e2fec0 3055 break;
9ba075a6 3056 case 0x200 ... 0x2ff:
ff53604b 3057 return kvm_mtrr_set_msr(vcpu, msr, data);
15c4a640 3058 case MSR_IA32_APICBASE:
58cb628d 3059 return kvm_set_apic_base(vcpu, msr_info);
bf10bd0b 3060 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
0105d1a5 3061 return kvm_x2apic_msr_write(vcpu, msr, data);
a3e06bbe
LJ
3062 case MSR_IA32_TSCDEADLINE:
3063 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3064 break;
ba904635 3065 case MSR_IA32_TSC_ADJUST:
d6321d49 3066 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
ba904635 3067 if (!msr_info->host_initiated) {
d913b904 3068 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
d7add054 3069 adjust_tsc_offset_guest(vcpu, adj);
ba904635
WA
3070 }
3071 vcpu->arch.ia32_tsc_adjust_msr = data;
3072 }
3073 break;
15c4a640 3074 case MSR_IA32_MISC_ENABLE:
511a8556
WL
3075 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
3076 ((vcpu->arch.ia32_misc_enable_msr ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
3077 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3078 return 1;
3079 vcpu->arch.ia32_misc_enable_msr = data;
aedbaf4f 3080 kvm_update_cpuid_runtime(vcpu);
511a8556
WL
3081 } else {
3082 vcpu->arch.ia32_misc_enable_msr = data;
3083 }
15c4a640 3084 break;
64d60670
PB
3085 case MSR_IA32_SMBASE:
3086 if (!msr_info->host_initiated)
3087 return 1;
3088 vcpu->arch.smbase = data;
3089 break;
73f624f4
PB
3090 case MSR_IA32_POWER_CTL:
3091 vcpu->arch.msr_ia32_power_ctl = data;
3092 break;
dd259935 3093 case MSR_IA32_TSC:
0c899c25
PB
3094 if (msr_info->host_initiated) {
3095 kvm_synchronize_tsc(vcpu, data);
3096 } else {
3097 u64 adj = kvm_compute_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
3098 adjust_tsc_offset_guest(vcpu, adj);
3099 vcpu->arch.ia32_tsc_adjust_msr += adj;
3100 }
dd259935 3101 break;
864e2ab2
AL
3102 case MSR_IA32_XSS:
3103 if (!msr_info->host_initiated &&
3104 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3105 return 1;
3106 /*
a1bead2a
SC
3107 * KVM supports exposing PT to the guest, but does not support
3108 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3109 * XSAVES/XRSTORS to save/restore PT MSRs.
864e2ab2 3110 */
408e9a31 3111 if (data & ~supported_xss)
864e2ab2
AL
3112 return 1;
3113 vcpu->arch.ia32_xss = data;
3114 break;
52797bf9
LA
3115 case MSR_SMI_COUNT:
3116 if (!msr_info->host_initiated)
3117 return 1;
3118 vcpu->arch.smi_count = data;
3119 break;
11c6bffa 3120 case MSR_KVM_WALL_CLOCK_NEW:
66570e96
OU
3121 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3122 return 1;
3123
3124 kvm_write_wall_clock(vcpu->kvm, data);
3125 break;
18068523 3126 case MSR_KVM_WALL_CLOCK:
66570e96
OU
3127 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3128 return 1;
3129
18068523
GOC
3130 kvm_write_wall_clock(vcpu->kvm, data);
3131 break;
11c6bffa 3132 case MSR_KVM_SYSTEM_TIME_NEW:
66570e96
OU
3133 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3134 return 1;
3135
5b9bb0eb
OU
3136 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3137 break;
3138 case MSR_KVM_SYSTEM_TIME:
66570e96
OU
3139 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3140 return 1;
3141
3142 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
18068523 3143 break;
344d9588 3144 case MSR_KVM_ASYNC_PF_EN:
66570e96
OU
3145 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3146 return 1;
3147
344d9588
GN
3148 if (kvm_pv_enable_async_pf(vcpu, data))
3149 return 1;
3150 break;
2635b5c4 3151 case MSR_KVM_ASYNC_PF_INT:
66570e96
OU
3152 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3153 return 1;
3154
2635b5c4
VK
3155 if (kvm_pv_enable_async_pf_int(vcpu, data))
3156 return 1;
3157 break;
557a961a 3158 case MSR_KVM_ASYNC_PF_ACK:
66570e96
OU
3159 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3160 return 1;
557a961a
VK
3161 if (data & 0x1) {
3162 vcpu->arch.apf.pageready_pending = false;
3163 kvm_check_async_pf_completion(vcpu);
3164 }
3165 break;
c9aaa895 3166 case MSR_KVM_STEAL_TIME:
66570e96
OU
3167 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3168 return 1;
c9aaa895
GC
3169
3170 if (unlikely(!sched_info_on()))
3171 return 1;
3172
3173 if (data & KVM_STEAL_RESERVED_MASK)
3174 return 1;
3175
c9aaa895
GC
3176 vcpu->arch.st.msr_val = data;
3177
3178 if (!(data & KVM_MSR_ENABLED))
3179 break;
3180
c9aaa895
GC
3181 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3182
3183 break;
ae7a2a3f 3184 case MSR_KVM_PV_EOI_EN:
66570e96
OU
3185 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3186 return 1;
3187
72bbf935 3188 if (kvm_lapic_enable_pv_eoi(vcpu, data, sizeof(u8)))
ae7a2a3f
MT
3189 return 1;
3190 break;
c9aaa895 3191
2d5ba19b 3192 case MSR_KVM_POLL_CONTROL:
66570e96
OU
3193 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3194 return 1;
3195
2d5ba19b
MT
3196 /* only enable bit supported */
3197 if (data & (-1ULL << 1))
3198 return 1;
3199
3200 vcpu->arch.msr_kvm_poll_control = data;
3201 break;
3202
890ca9ae
HY
3203 case MSR_IA32_MCG_CTL:
3204 case MSR_IA32_MCG_STATUS:
81760dcc 3205 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
9ffd986c 3206 return set_msr_mce(vcpu, msr_info);
71db6023 3207
6912ac32
WH
3208 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3209 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
df561f66
GS
3210 pr = true;
3211 fallthrough;
6912ac32
WH
3212 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3213 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 3214 if (kvm_pmu_is_valid_msr(vcpu, msr))
afd80d85 3215 return kvm_pmu_set_msr(vcpu, msr_info);
5753785f
GN
3216
3217 if (pr || data != 0)
a737f256
CD
3218 vcpu_unimpl(vcpu, "disabled perfctr wrmsr: "
3219 "0x%x data 0x%llx\n", msr, data);
5753785f 3220 break;
84e0cefa
JS
3221 case MSR_K7_CLK_CTL:
3222 /*
3223 * Ignore all writes to this no longer documented MSR.
3224 * Writes are only relevant for old K7 processors,
3225 * all pre-dating SVM, but a recommended workaround from
4a969980 3226 * AMD for these chips. It is possible to specify the
84e0cefa
JS
3227 * affected processor models on the command line, hence
3228 * the need to ignore the workaround.
3229 */
3230 break;
55cd8e5a 3231 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
f97f5a56
JD
3232 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3233 case HV_X64_MSR_SYNDBG_OPTIONS:
e7d9513b
AS
3234 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3235 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 3236 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
3237 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3238 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3239 case HV_X64_MSR_TSC_EMULATION_STATUS:
e7d9513b
AS
3240 return kvm_hv_set_msr_common(vcpu, msr, data,
3241 msr_info->host_initiated);
91c9c3ed 3242 case MSR_IA32_BBL_CR_CTL3:
3243 /* Drop writes to this legacy MSR -- see rdmsr
3244 * counterpart for further detail.
3245 */
fab0aa3b
EM
3246 if (report_ignored_msrs)
3247 vcpu_unimpl(vcpu, "ignored wrmsr: 0x%x data 0x%llx\n",
3248 msr, data);
91c9c3ed 3249 break;
2b036c6b 3250 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 3251 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
3252 return 1;
3253 vcpu->arch.osvw.length = data;
3254 break;
3255 case MSR_AMD64_OSVW_STATUS:
d6321d49 3256 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
3257 return 1;
3258 vcpu->arch.osvw.status = data;
3259 break;
db2336a8
KH
3260 case MSR_PLATFORM_INFO:
3261 if (!msr_info->host_initiated ||
db2336a8
KH
3262 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3263 cpuid_fault_enabled(vcpu)))
3264 return 1;
3265 vcpu->arch.msr_platform_info = data;
3266 break;
3267 case MSR_MISC_FEATURES_ENABLES:
3268 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3269 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3270 !supports_cpuid_fault(vcpu)))
3271 return 1;
3272 vcpu->arch.msr_misc_features_enables = data;
3273 break;
15c4a640 3274 default:
ffde22ac
ES
3275 if (msr && (msr == vcpu->kvm->arch.xen_hvm_config.msr))
3276 return xen_hvm_config(vcpu, data);
c6702c9d 3277 if (kvm_pmu_is_valid_msr(vcpu, msr))
afd80d85 3278 return kvm_pmu_set_msr(vcpu, msr_info);
6abe9c13 3279 return KVM_MSR_RET_INVALID;
15c4a640
CO
3280 }
3281 return 0;
3282}
3283EXPORT_SYMBOL_GPL(kvm_set_msr_common);
3284
44883f01 3285static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
15c4a640
CO
3286{
3287 u64 data;
890ca9ae
HY
3288 u64 mcg_cap = vcpu->arch.mcg_cap;
3289 unsigned bank_num = mcg_cap & 0xff;
15c4a640
CO
3290
3291 switch (msr) {
15c4a640
CO
3292 case MSR_IA32_P5_MC_ADDR:
3293 case MSR_IA32_P5_MC_TYPE:
890ca9ae
HY
3294 data = 0;
3295 break;
15c4a640 3296 case MSR_IA32_MCG_CAP:
890ca9ae
HY
3297 data = vcpu->arch.mcg_cap;
3298 break;
c7ac679c 3299 case MSR_IA32_MCG_CTL:
44883f01 3300 if (!(mcg_cap & MCG_CTL_P) && !host)
890ca9ae
HY
3301 return 1;
3302 data = vcpu->arch.mcg_ctl;
3303 break;
3304 case MSR_IA32_MCG_STATUS:
3305 data = vcpu->arch.mcg_status;
3306 break;
3307 default:
3308 if (msr >= MSR_IA32_MC0_CTL &&
81760dcc 3309 msr < MSR_IA32_MCx_CTL(bank_num)) {
6ec4c5ee
MP
3310 u32 offset = array_index_nospec(
3311 msr - MSR_IA32_MC0_CTL,
3312 MSR_IA32_MCx_CTL(bank_num) - MSR_IA32_MC0_CTL);
3313
890ca9ae
HY
3314 data = vcpu->arch.mce_banks[offset];
3315 break;
3316 }
3317 return 1;
3318 }
3319 *pdata = data;
3320 return 0;
3321}
3322
609e36d3 3323int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
890ca9ae 3324{
609e36d3 3325 switch (msr_info->index) {
890ca9ae 3326 case MSR_IA32_PLATFORM_ID:
15c4a640 3327 case MSR_IA32_EBL_CR_POWERON:
b5e2fec0
AG
3328 case MSR_IA32_DEBUGCTLMSR:
3329 case MSR_IA32_LASTBRANCHFROMIP:
3330 case MSR_IA32_LASTBRANCHTOIP:
3331 case MSR_IA32_LASTINTFROMIP:
3332 case MSR_IA32_LASTINTTOIP:
60af2ecd 3333 case MSR_K8_SYSCFG:
3afb1121
PB
3334 case MSR_K8_TSEG_ADDR:
3335 case MSR_K8_TSEG_MASK:
61a6bd67 3336 case MSR_VM_HSAVE_PA:
1fdbd48c 3337 case MSR_K8_INT_PENDING_MSG:
c323c0e5 3338 case MSR_AMD64_NB_CFG:
f7c6d140 3339 case MSR_FAM10H_MMIO_CONF_BASE:
2e32b719 3340 case MSR_AMD64_BU_CFG2:
0c2df2a1 3341 case MSR_IA32_PERF_CTL:
405a353a 3342 case MSR_AMD64_DC_CFG:
0e1b869f 3343 case MSR_F15H_EX_CFG:
2ca1a06a
VS
3344 /*
3345 * Intel Sandy Bridge CPUs must support the RAPL (running average power
3346 * limit) MSRs. Just return 0, as we do not want to expose the host
3347 * data here. Do not conditionalize this on CPUID, as KVM does not do
3348 * so for existing CPU-specific MSRs.
3349 */
3350 case MSR_RAPL_POWER_UNIT:
3351 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
3352 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
3353 case MSR_PKG_ENERGY_STATUS: /* Total package */
3354 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
609e36d3 3355 msr_info->data = 0;
15c4a640 3356 break;
c51eb52b 3357 case MSR_F15H_PERF_CTL0 ... MSR_F15H_PERF_CTR5:
6912ac32
WH
3358 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3359 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3360 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
3361 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 3362 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
cbd71758 3363 return kvm_pmu_get_msr(vcpu, msr_info);
609e36d3 3364 msr_info->data = 0;
5753785f 3365 break;
742bc670 3366 case MSR_IA32_UCODE_REV:
518e7b94 3367 msr_info->data = vcpu->arch.microcode_version;
742bc670 3368 break;
0cf9135b
SC
3369 case MSR_IA32_ARCH_CAPABILITIES:
3370 if (!msr_info->host_initiated &&
3371 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3372 return 1;
3373 msr_info->data = vcpu->arch.arch_capabilities;
3374 break;
d574c539
VK
3375 case MSR_IA32_PERF_CAPABILITIES:
3376 if (!msr_info->host_initiated &&
3377 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
3378 return 1;
3379 msr_info->data = vcpu->arch.perf_capabilities;
3380 break;
73f624f4
PB
3381 case MSR_IA32_POWER_CTL:
3382 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
3383 break;
cc5b54dd
ML
3384 case MSR_IA32_TSC: {
3385 /*
3386 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
3387 * even when not intercepted. AMD manual doesn't explicitly
3388 * state this but appears to behave the same.
3389 *
ee6fa053 3390 * On userspace reads and writes, however, we unconditionally
c0623f5e 3391 * return L1's TSC value to ensure backwards-compatible
ee6fa053 3392 * behavior for migration.
cc5b54dd
ML
3393 */
3394 u64 tsc_offset = msr_info->host_initiated ? vcpu->arch.l1_tsc_offset :
3395 vcpu->arch.tsc_offset;
3396
3397 msr_info->data = kvm_scale_tsc(vcpu, rdtsc()) + tsc_offset;
dd259935 3398 break;
cc5b54dd 3399 }
9ba075a6 3400 case MSR_MTRRcap:
9ba075a6 3401 case 0x200 ... 0x2ff:
ff53604b 3402 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
15c4a640 3403 case 0xcd: /* fsb frequency */
609e36d3 3404 msr_info->data = 3;
15c4a640 3405 break;
7b914098
JS
3406 /*
3407 * MSR_EBC_FREQUENCY_ID
3408 * Conservative value valid for even the basic CPU models.
3409 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
3410 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
3411 * and 266MHz for model 3, or 4. Set Core Clock
3412 * Frequency to System Bus Frequency Ratio to 1 (bits
3413 * 31:24) even though these are only valid for CPU
3414 * models > 2, however guests may end up dividing or
3415 * multiplying by zero otherwise.
3416 */
3417 case MSR_EBC_FREQUENCY_ID:
609e36d3 3418 msr_info->data = 1 << 24;
7b914098 3419 break;
15c4a640 3420 case MSR_IA32_APICBASE:
609e36d3 3421 msr_info->data = kvm_get_apic_base(vcpu);
15c4a640 3422 break;
bf10bd0b 3423 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
609e36d3 3424 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
a3e06bbe 3425 case MSR_IA32_TSCDEADLINE:
609e36d3 3426 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
a3e06bbe 3427 break;
ba904635 3428 case MSR_IA32_TSC_ADJUST:
609e36d3 3429 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
ba904635 3430 break;
15c4a640 3431 case MSR_IA32_MISC_ENABLE:
609e36d3 3432 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
15c4a640 3433 break;
64d60670
PB
3434 case MSR_IA32_SMBASE:
3435 if (!msr_info->host_initiated)
3436 return 1;
3437 msr_info->data = vcpu->arch.smbase;
15c4a640 3438 break;
52797bf9
LA
3439 case MSR_SMI_COUNT:
3440 msr_info->data = vcpu->arch.smi_count;
3441 break;
847f0ad8
AG
3442 case MSR_IA32_PERF_STATUS:
3443 /* TSC increment by tick */
609e36d3 3444 msr_info->data = 1000ULL;
847f0ad8 3445 /* CPU multiplier */
b0996ae4 3446 msr_info->data |= (((uint64_t)4ULL) << 40);
847f0ad8 3447 break;
15c4a640 3448 case MSR_EFER:
609e36d3 3449 msr_info->data = vcpu->arch.efer;
15c4a640 3450 break;
18068523 3451 case MSR_KVM_WALL_CLOCK:
1930e5dd
OU
3452 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3453 return 1;
3454
3455 msr_info->data = vcpu->kvm->arch.wall_clock;
3456 break;
11c6bffa 3457 case MSR_KVM_WALL_CLOCK_NEW:
1930e5dd
OU
3458 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3459 return 1;
3460
609e36d3 3461 msr_info->data = vcpu->kvm->arch.wall_clock;
18068523
GOC
3462 break;
3463 case MSR_KVM_SYSTEM_TIME:
1930e5dd
OU
3464 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3465 return 1;
3466
3467 msr_info->data = vcpu->arch.time;
3468 break;
11c6bffa 3469 case MSR_KVM_SYSTEM_TIME_NEW:
1930e5dd
OU
3470 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3471 return 1;
3472
609e36d3 3473 msr_info->data = vcpu->arch.time;
18068523 3474 break;
344d9588 3475 case MSR_KVM_ASYNC_PF_EN:
1930e5dd
OU
3476 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3477 return 1;
3478
2635b5c4
VK
3479 msr_info->data = vcpu->arch.apf.msr_en_val;
3480 break;
3481 case MSR_KVM_ASYNC_PF_INT:
1930e5dd
OU
3482 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3483 return 1;
3484
2635b5c4 3485 msr_info->data = vcpu->arch.apf.msr_int_val;
344d9588 3486 break;
557a961a 3487 case MSR_KVM_ASYNC_PF_ACK:
1930e5dd
OU
3488 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3489 return 1;
3490
557a961a
VK
3491 msr_info->data = 0;
3492 break;
c9aaa895 3493 case MSR_KVM_STEAL_TIME:
1930e5dd
OU
3494 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3495 return 1;
3496
609e36d3 3497 msr_info->data = vcpu->arch.st.msr_val;
c9aaa895 3498 break;
1d92128f 3499 case MSR_KVM_PV_EOI_EN:
1930e5dd
OU
3500 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3501 return 1;
3502
609e36d3 3503 msr_info->data = vcpu->arch.pv_eoi.msr_val;
1d92128f 3504 break;
2d5ba19b 3505 case MSR_KVM_POLL_CONTROL:
1930e5dd
OU
3506 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3507 return 1;
3508
2d5ba19b
MT
3509 msr_info->data = vcpu->arch.msr_kvm_poll_control;
3510 break;
890ca9ae
HY
3511 case MSR_IA32_P5_MC_ADDR:
3512 case MSR_IA32_P5_MC_TYPE:
3513 case MSR_IA32_MCG_CAP:
3514 case MSR_IA32_MCG_CTL:
3515 case MSR_IA32_MCG_STATUS:
81760dcc 3516 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
44883f01
PB
3517 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
3518 msr_info->host_initiated);
864e2ab2
AL
3519 case MSR_IA32_XSS:
3520 if (!msr_info->host_initiated &&
3521 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3522 return 1;
3523 msr_info->data = vcpu->arch.ia32_xss;
3524 break;
84e0cefa
JS
3525 case MSR_K7_CLK_CTL:
3526 /*
3527 * Provide expected ramp-up count for K7. All other
3528 * are set to zero, indicating minimum divisors for
3529 * every field.
3530 *
3531 * This prevents guest kernels on AMD host with CPU
3532 * type 6, model 8 and higher from exploding due to
3533 * the rdmsr failing.
3534 */
609e36d3 3535 msr_info->data = 0x20000000;
84e0cefa 3536 break;
55cd8e5a 3537 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
f97f5a56
JD
3538 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3539 case HV_X64_MSR_SYNDBG_OPTIONS:
e7d9513b
AS
3540 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3541 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 3542 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
3543 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3544 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3545 case HV_X64_MSR_TSC_EMULATION_STATUS:
e83d5887 3546 return kvm_hv_get_msr_common(vcpu,
44883f01
PB
3547 msr_info->index, &msr_info->data,
3548 msr_info->host_initiated);
91c9c3ed 3549 case MSR_IA32_BBL_CR_CTL3:
3550 /* This legacy MSR exists but isn't fully documented in current
3551 * silicon. It is however accessed by winxp in very narrow
3552 * scenarios where it sets bit #19, itself documented as
3553 * a "reserved" bit. Best effort attempt to source coherent
3554 * read data here should the balance of the register be
3555 * interpreted by the guest:
3556 *
3557 * L2 cache control register 3: 64GB range, 256KB size,
3558 * enabled, latency 0x1, configured
3559 */
609e36d3 3560 msr_info->data = 0xbe702111;
91c9c3ed 3561 break;
2b036c6b 3562 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 3563 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 3564 return 1;
609e36d3 3565 msr_info->data = vcpu->arch.osvw.length;
2b036c6b
BO
3566 break;
3567 case MSR_AMD64_OSVW_STATUS:
d6321d49 3568 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 3569 return 1;
609e36d3 3570 msr_info->data = vcpu->arch.osvw.status;
2b036c6b 3571 break;
db2336a8 3572 case MSR_PLATFORM_INFO:
6fbbde9a
DS
3573 if (!msr_info->host_initiated &&
3574 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
3575 return 1;
db2336a8
KH
3576 msr_info->data = vcpu->arch.msr_platform_info;
3577 break;
3578 case MSR_MISC_FEATURES_ENABLES:
3579 msr_info->data = vcpu->arch.msr_misc_features_enables;
3580 break;
191c8137
BP
3581 case MSR_K7_HWCR:
3582 msr_info->data = vcpu->arch.msr_hwcr;
3583 break;
15c4a640 3584 default:
c6702c9d 3585 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
cbd71758 3586 return kvm_pmu_get_msr(vcpu, msr_info);
6abe9c13 3587 return KVM_MSR_RET_INVALID;
15c4a640 3588 }
15c4a640
CO
3589 return 0;
3590}
3591EXPORT_SYMBOL_GPL(kvm_get_msr_common);
3592
313a3dc7
CO
3593/*
3594 * Read or write a bunch of msrs. All parameters are kernel addresses.
3595 *
3596 * @return number of msrs set successfully.
3597 */
3598static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
3599 struct kvm_msr_entry *entries,
3600 int (*do_msr)(struct kvm_vcpu *vcpu,
3601 unsigned index, u64 *data))
3602{
801e459a 3603 int i;
313a3dc7 3604
313a3dc7
CO
3605 for (i = 0; i < msrs->nmsrs; ++i)
3606 if (do_msr(vcpu, entries[i].index, &entries[i].data))
3607 break;
3608
313a3dc7
CO
3609 return i;
3610}
3611
3612/*
3613 * Read or write a bunch of msrs. Parameters are user addresses.
3614 *
3615 * @return number of msrs set successfully.
3616 */
3617static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
3618 int (*do_msr)(struct kvm_vcpu *vcpu,
3619 unsigned index, u64 *data),
3620 int writeback)
3621{
3622 struct kvm_msrs msrs;
3623 struct kvm_msr_entry *entries;
3624 int r, n;
3625 unsigned size;
3626
3627 r = -EFAULT;
0e96f31e 3628 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
313a3dc7
CO
3629 goto out;
3630
3631 r = -E2BIG;
3632 if (msrs.nmsrs >= MAX_IO_MSRS)
3633 goto out;
3634
313a3dc7 3635 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
ff5c2c03
SL
3636 entries = memdup_user(user_msrs->entries, size);
3637 if (IS_ERR(entries)) {
3638 r = PTR_ERR(entries);
313a3dc7 3639 goto out;
ff5c2c03 3640 }
313a3dc7
CO
3641
3642 r = n = __msr_io(vcpu, &msrs, entries, do_msr);
3643 if (r < 0)
3644 goto out_free;
3645
3646 r = -EFAULT;
3647 if (writeback && copy_to_user(user_msrs->entries, entries, size))
3648 goto out_free;
3649
3650 r = n;
3651
3652out_free:
7a73c028 3653 kfree(entries);
313a3dc7
CO
3654out:
3655 return r;
3656}
3657
4d5422ce
WL
3658static inline bool kvm_can_mwait_in_guest(void)
3659{
3660 return boot_cpu_has(X86_FEATURE_MWAIT) &&
8e9b29b6
KA
3661 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
3662 boot_cpu_has(X86_FEATURE_ARAT);
4d5422ce
WL
3663}
3664
c21d54f0
VK
3665static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
3666 struct kvm_cpuid2 __user *cpuid_arg)
3667{
3668 struct kvm_cpuid2 cpuid;
3669 int r;
3670
3671 r = -EFAULT;
3672 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
3673 return r;
3674
3675 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
3676 if (r)
3677 return r;
3678
3679 r = -EFAULT;
3680 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
3681 return r;
3682
3683 return 0;
3684}
3685
784aa3d7 3686int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
018d00d2 3687{
4d5422ce 3688 int r = 0;
018d00d2
ZX
3689
3690 switch (ext) {
3691 case KVM_CAP_IRQCHIP:
3692 case KVM_CAP_HLT:
3693 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
018d00d2 3694 case KVM_CAP_SET_TSS_ADDR:
07716717 3695 case KVM_CAP_EXT_CPUID:
9c15bb1d 3696 case KVM_CAP_EXT_EMUL_CPUID:
c8076604 3697 case KVM_CAP_CLOCKSOURCE:
7837699f 3698 case KVM_CAP_PIT:
a28e4f5a 3699 case KVM_CAP_NOP_IO_DELAY:
62d9f0db 3700 case KVM_CAP_MP_STATE:
ed848624 3701 case KVM_CAP_SYNC_MMU:
a355c85c 3702 case KVM_CAP_USER_NMI:
52d939a0 3703 case KVM_CAP_REINJECT_CONTROL:
4925663a 3704 case KVM_CAP_IRQ_INJECT_STATUS:
d34e6b17 3705 case KVM_CAP_IOEVENTFD:
f848a5a8 3706 case KVM_CAP_IOEVENTFD_NO_LENGTH:
c5ff41ce 3707 case KVM_CAP_PIT2:
e9f42757 3708 case KVM_CAP_PIT_STATE2:
b927a3ce 3709 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
ffde22ac 3710 case KVM_CAP_XEN_HVM:
3cfc3092 3711 case KVM_CAP_VCPU_EVENTS:
55cd8e5a 3712 case KVM_CAP_HYPERV:
10388a07 3713 case KVM_CAP_HYPERV_VAPIC:
c25bc163 3714 case KVM_CAP_HYPERV_SPIN:
5c919412 3715 case KVM_CAP_HYPERV_SYNIC:
efc479e6 3716 case KVM_CAP_HYPERV_SYNIC2:
d3457c87 3717 case KVM_CAP_HYPERV_VP_INDEX:
faeb7833 3718 case KVM_CAP_HYPERV_EVENTFD:
c1aea919 3719 case KVM_CAP_HYPERV_TLBFLUSH:
214ff83d 3720 case KVM_CAP_HYPERV_SEND_IPI:
2bc39970 3721 case KVM_CAP_HYPERV_CPUID:
c21d54f0 3722 case KVM_CAP_SYS_HYPERV_CPUID:
ab9f4ecb 3723 case KVM_CAP_PCI_SEGMENT:
a1efbe77 3724 case KVM_CAP_DEBUGREGS:
d2be1651 3725 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2d5b5a66 3726 case KVM_CAP_XSAVE:
344d9588 3727 case KVM_CAP_ASYNC_PF:
72de5fa4 3728 case KVM_CAP_ASYNC_PF_INT:
92a1f12d 3729 case KVM_CAP_GET_TSC_KHZ:
1c0b28c2 3730 case KVM_CAP_KVMCLOCK_CTRL:
4d8b81ab 3731 case KVM_CAP_READONLY_MEM:
5f66b620 3732 case KVM_CAP_HYPERV_TIME:
100943c5 3733 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
defcf51f 3734 case KVM_CAP_TSC_DEADLINE_TIMER:
90de4a18 3735 case KVM_CAP_DISABLE_QUIRKS:
d71ba788 3736 case KVM_CAP_SET_BOOT_CPU_ID:
49df6397 3737 case KVM_CAP_SPLIT_IRQCHIP:
460df4c1 3738 case KVM_CAP_IMMEDIATE_EXIT:
66bb8a06 3739 case KVM_CAP_PMU_EVENT_FILTER:
801e459a 3740 case KVM_CAP_GET_MSR_FEATURES:
6fbbde9a 3741 case KVM_CAP_MSR_PLATFORM_INFO:
c4f55198 3742 case KVM_CAP_EXCEPTION_PAYLOAD:
b9b2782c 3743 case KVM_CAP_SET_GUEST_DEBUG:
1aa561b1 3744 case KVM_CAP_LAST_CPU:
1ae09954 3745 case KVM_CAP_X86_USER_SPACE_MSR:
1a155254 3746 case KVM_CAP_X86_MSR_FILTER:
66570e96 3747 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
018d00d2
ZX
3748 r = 1;
3749 break;
01643c51
KH
3750 case KVM_CAP_SYNC_REGS:
3751 r = KVM_SYNC_X86_VALID_FIELDS;
3752 break;
e3fd9a93
PB
3753 case KVM_CAP_ADJUST_CLOCK:
3754 r = KVM_CLOCK_TSC_STABLE;
3755 break;
4d5422ce 3756 case KVM_CAP_X86_DISABLE_EXITS:
b5170063
WL
3757 r |= KVM_X86_DISABLE_EXITS_HLT | KVM_X86_DISABLE_EXITS_PAUSE |
3758 KVM_X86_DISABLE_EXITS_CSTATE;
4d5422ce
WL
3759 if(kvm_can_mwait_in_guest())
3760 r |= KVM_X86_DISABLE_EXITS_MWAIT;
668fffa3 3761 break;
6d396b55
PB
3762 case KVM_CAP_X86_SMM:
3763 /* SMBASE is usually relocated above 1M on modern chipsets,
3764 * and SMM handlers might indeed rely on 4G segment limits,
3765 * so do not report SMM to be available if real mode is
3766 * emulated via vm86 mode. Still, do not go to great lengths
3767 * to avoid userspace's usage of the feature, because it is a
3768 * fringe case that is not enabled except via specific settings
3769 * of the module parameters.
3770 */
afaf0b2f 3771 r = kvm_x86_ops.has_emulated_msr(MSR_IA32_SMBASE);
6d396b55 3772 break;
774ead3a 3773 case KVM_CAP_VAPIC:
afaf0b2f 3774 r = !kvm_x86_ops.cpu_has_accelerated_tpr();
774ead3a 3775 break;
f725230a 3776 case KVM_CAP_NR_VCPUS:
8c3ba334
SL
3777 r = KVM_SOFT_MAX_VCPUS;
3778 break;
3779 case KVM_CAP_MAX_VCPUS:
f725230a
AK
3780 r = KVM_MAX_VCPUS;
3781 break;
a86cb413
TH
3782 case KVM_CAP_MAX_VCPU_ID:
3783 r = KVM_MAX_VCPU_ID;
3784 break;
a68a6a72
MT
3785 case KVM_CAP_PV_MMU: /* obsolete */
3786 r = 0;
2f333bcb 3787 break;
890ca9ae
HY
3788 case KVM_CAP_MCE:
3789 r = KVM_MAX_MCE_BANKS;
3790 break;
2d5b5a66 3791 case KVM_CAP_XCRS:
d366bf7e 3792 r = boot_cpu_has(X86_FEATURE_XSAVE);
2d5b5a66 3793 break;
92a1f12d
JR
3794 case KVM_CAP_TSC_CONTROL:
3795 r = kvm_has_tsc_control;
3796 break;
37131313
RK
3797 case KVM_CAP_X2APIC_API:
3798 r = KVM_X2APIC_API_VALID_FLAGS;
3799 break;
8fcc4b59 3800 case KVM_CAP_NESTED_STATE:
33b22172
PB
3801 r = kvm_x86_ops.nested_ops->get_state ?
3802 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
8fcc4b59 3803 break;
344c6c80 3804 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
afaf0b2f 3805 r = kvm_x86_ops.enable_direct_tlbflush != NULL;
5a0165f6
VK
3806 break;
3807 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
33b22172 3808 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
344c6c80 3809 break;
3edd6839
MG
3810 case KVM_CAP_SMALLER_MAXPHYADDR:
3811 r = (int) allow_smaller_maxphyaddr;
3812 break;
004a0124
AJ
3813 case KVM_CAP_STEAL_TIME:
3814 r = sched_info_on();
3815 break;
018d00d2 3816 default:
018d00d2
ZX
3817 break;
3818 }
3819 return r;
3820
3821}
3822
043405e1
CO
3823long kvm_arch_dev_ioctl(struct file *filp,
3824 unsigned int ioctl, unsigned long arg)
3825{
3826 void __user *argp = (void __user *)arg;
3827 long r;
3828
3829 switch (ioctl) {
3830 case KVM_GET_MSR_INDEX_LIST: {
3831 struct kvm_msr_list __user *user_msr_list = argp;
3832 struct kvm_msr_list msr_list;
3833 unsigned n;
3834
3835 r = -EFAULT;
0e96f31e 3836 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
043405e1
CO
3837 goto out;
3838 n = msr_list.nmsrs;
62ef68bb 3839 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
0e96f31e 3840 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
043405e1
CO
3841 goto out;
3842 r = -E2BIG;
e125e7b6 3843 if (n < msr_list.nmsrs)
043405e1
CO
3844 goto out;
3845 r = -EFAULT;
3846 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
3847 num_msrs_to_save * sizeof(u32)))
3848 goto out;
e125e7b6 3849 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
043405e1 3850 &emulated_msrs,
62ef68bb 3851 num_emulated_msrs * sizeof(u32)))
043405e1
CO
3852 goto out;
3853 r = 0;
3854 break;
3855 }
9c15bb1d
BP
3856 case KVM_GET_SUPPORTED_CPUID:
3857 case KVM_GET_EMULATED_CPUID: {
674eea0f
AK
3858 struct kvm_cpuid2 __user *cpuid_arg = argp;
3859 struct kvm_cpuid2 cpuid;
3860
3861 r = -EFAULT;
0e96f31e 3862 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
674eea0f 3863 goto out;
9c15bb1d
BP
3864
3865 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
3866 ioctl);
674eea0f
AK
3867 if (r)
3868 goto out;
3869
3870 r = -EFAULT;
0e96f31e 3871 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
674eea0f
AK
3872 goto out;
3873 r = 0;
3874 break;
3875 }
cf6c26ec 3876 case KVM_X86_GET_MCE_CAP_SUPPORTED:
890ca9ae 3877 r = -EFAULT;
c45dcc71
AR
3878 if (copy_to_user(argp, &kvm_mce_cap_supported,
3879 sizeof(kvm_mce_cap_supported)))
890ca9ae
HY
3880 goto out;
3881 r = 0;
3882 break;
801e459a
TL
3883 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
3884 struct kvm_msr_list __user *user_msr_list = argp;
3885 struct kvm_msr_list msr_list;
3886 unsigned int n;
3887
3888 r = -EFAULT;
3889 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
3890 goto out;
3891 n = msr_list.nmsrs;
3892 msr_list.nmsrs = num_msr_based_features;
3893 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
3894 goto out;
3895 r = -E2BIG;
3896 if (n < msr_list.nmsrs)
3897 goto out;
3898 r = -EFAULT;
3899 if (copy_to_user(user_msr_list->indices, &msr_based_features,
3900 num_msr_based_features * sizeof(u32)))
3901 goto out;
3902 r = 0;
3903 break;
3904 }
3905 case KVM_GET_MSRS:
3906 r = msr_io(NULL, argp, do_get_msr_feature, 1);
3907 break;
c21d54f0
VK
3908 case KVM_GET_SUPPORTED_HV_CPUID:
3909 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
3910 break;
043405e1
CO
3911 default:
3912 r = -EINVAL;
cf6c26ec 3913 break;
043405e1
CO
3914 }
3915out:
3916 return r;
3917}
3918
f5f48ee1
SY
3919static void wbinvd_ipi(void *garbage)
3920{
3921 wbinvd();
3922}
3923
3924static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
3925{
e0f0bbc5 3926 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
f5f48ee1
SY
3927}
3928
313a3dc7
CO
3929void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
3930{
f5f48ee1
SY
3931 /* Address WBINVD may be executed by guest */
3932 if (need_emulate_wbinvd(vcpu)) {
afaf0b2f 3933 if (kvm_x86_ops.has_wbinvd_exit())
f5f48ee1
SY
3934 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
3935 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
3936 smp_call_function_single(vcpu->cpu,
3937 wbinvd_ipi, NULL, 1);
3938 }
3939
afaf0b2f 3940 kvm_x86_ops.vcpu_load(vcpu, cpu);
8f6055cb 3941
37486135
BM
3942 /* Save host pkru register if supported */
3943 vcpu->arch.host_pkru = read_pkru();
3944
0dd6a6ed
ZA
3945 /* Apply any externally detected TSC adjustments (due to suspend) */
3946 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
3947 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
3948 vcpu->arch.tsc_offset_adjustment = 0;
105b21bb 3949 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed 3950 }
8f6055cb 3951
b0c39dc6 3952 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
6f526ec5 3953 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4ea1636b 3954 rdtsc() - vcpu->arch.last_host_tsc;
e48672fa
ZA
3955 if (tsc_delta < 0)
3956 mark_tsc_unstable("KVM discovered backwards TSC");
ce7a058a 3957
b0c39dc6 3958 if (kvm_check_tsc_unstable()) {
07c1419a 3959 u64 offset = kvm_compute_tsc_offset(vcpu,
b183aa58 3960 vcpu->arch.last_guest_tsc);
a545ab6a 3961 kvm_vcpu_write_tsc_offset(vcpu, offset);
c285545f 3962 vcpu->arch.tsc_catchup = 1;
c285545f 3963 }
a749e247
PB
3964
3965 if (kvm_lapic_hv_timer_in_use(vcpu))
3966 kvm_lapic_restart_hv_timer(vcpu);
3967
d98d07ca
MT
3968 /*
3969 * On a host with synchronized TSC, there is no need to update
3970 * kvmclock on vcpu->cpu migration
3971 */
3972 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
0061d53d 3973 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
c285545f 3974 if (vcpu->cpu != cpu)
1bd2009e 3975 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
e48672fa 3976 vcpu->cpu = cpu;
6b7d7e76 3977 }
c9aaa895 3978
c9aaa895 3979 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
313a3dc7
CO
3980}
3981
0b9f6c46
PX
3982static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
3983{
b0431382
BO
3984 struct kvm_host_map map;
3985 struct kvm_steal_time *st;
3986
0b9f6c46
PX
3987 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3988 return;
3989
a6bd811f 3990 if (vcpu->arch.st.preempted)
8c6de56a
BO
3991 return;
3992
b0431382
BO
3993 if (kvm_map_gfn(vcpu, vcpu->arch.st.msr_val >> PAGE_SHIFT, &map,
3994 &vcpu->arch.st.cache, true))
3995 return;
3996
3997 st = map.hva +
3998 offset_in_page(vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS);
0b9f6c46 3999
a6bd811f 4000 st->preempted = vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
0b9f6c46 4001
b0431382 4002 kvm_unmap_gfn(vcpu, &map, &vcpu->arch.st.cache, true, true);
0b9f6c46
PX
4003}
4004
313a3dc7
CO
4005void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4006{
cc0d907c 4007 int idx;
de63ad4c
LM
4008
4009 if (vcpu->preempted)
afaf0b2f 4010 vcpu->arch.preempted_in_kernel = !kvm_x86_ops.get_cpl(vcpu);
de63ad4c 4011
931f261b
AA
4012 /*
4013 * Disable page faults because we're in atomic context here.
4014 * kvm_write_guest_offset_cached() would call might_fault()
4015 * that relies on pagefault_disable() to tell if there's a
4016 * bug. NOTE: the write to guest memory may not go through if
4017 * during postcopy live migration or if there's heavy guest
4018 * paging.
4019 */
4020 pagefault_disable();
cc0d907c
AA
4021 /*
4022 * kvm_memslots() will be called by
4023 * kvm_write_guest_offset_cached() so take the srcu lock.
4024 */
4025 idx = srcu_read_lock(&vcpu->kvm->srcu);
0b9f6c46 4026 kvm_steal_time_set_preempted(vcpu);
cc0d907c 4027 srcu_read_unlock(&vcpu->kvm->srcu, idx);
931f261b 4028 pagefault_enable();
afaf0b2f 4029 kvm_x86_ops.vcpu_put(vcpu);
4ea1636b 4030 vcpu->arch.last_host_tsc = rdtsc();
efdab992 4031 /*
f9dcf08e
RK
4032 * If userspace has set any breakpoints or watchpoints, dr6 is restored
4033 * on every vmexit, but if not, we might have a stale dr6 from the
4034 * guest. do_debug expects dr6 to be cleared after it runs, do the same.
efdab992 4035 */
f9dcf08e 4036 set_debugreg(0, 6);
313a3dc7
CO
4037}
4038
313a3dc7
CO
4039static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4040 struct kvm_lapic_state *s)
4041{
fa59cc00 4042 if (vcpu->arch.apicv_active)
afaf0b2f 4043 kvm_x86_ops.sync_pir_to_irr(vcpu);
d62caabb 4044
a92e2543 4045 return kvm_apic_get_state(vcpu, s);
313a3dc7
CO
4046}
4047
4048static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4049 struct kvm_lapic_state *s)
4050{
a92e2543
RK
4051 int r;
4052
4053 r = kvm_apic_set_state(vcpu, s);
4054 if (r)
4055 return r;
cb142eb7 4056 update_cr8_intercept(vcpu);
313a3dc7
CO
4057
4058 return 0;
4059}
4060
127a457a
MG
4061static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4062{
4063 return (!lapic_in_kernel(vcpu) ||
4064 kvm_apic_accept_pic_intr(vcpu));
4065}
4066
782d422b
MG
4067/*
4068 * if userspace requested an interrupt window, check that the
4069 * interrupt window is open.
4070 *
4071 * No need to exit to userspace if we already have an interrupt queued.
4072 */
4073static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4074{
4075 return kvm_arch_interrupt_allowed(vcpu) &&
4076 !kvm_cpu_has_interrupt(vcpu) &&
4077 !kvm_event_needs_reinjection(vcpu) &&
4078 kvm_cpu_accept_dm_intr(vcpu);
4079}
4080
f77bc6a4
ZX
4081static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4082 struct kvm_interrupt *irq)
4083{
02cdb50f 4084 if (irq->irq >= KVM_NR_INTERRUPTS)
f77bc6a4 4085 return -EINVAL;
1c1a9ce9
SR
4086
4087 if (!irqchip_in_kernel(vcpu->kvm)) {
4088 kvm_queue_interrupt(vcpu, irq->irq, false);
4089 kvm_make_request(KVM_REQ_EVENT, vcpu);
4090 return 0;
4091 }
4092
4093 /*
4094 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4095 * fail for in-kernel 8259.
4096 */
4097 if (pic_in_kernel(vcpu->kvm))
f77bc6a4 4098 return -ENXIO;
f77bc6a4 4099
1c1a9ce9
SR
4100 if (vcpu->arch.pending_external_vector != -1)
4101 return -EEXIST;
f77bc6a4 4102
1c1a9ce9 4103 vcpu->arch.pending_external_vector = irq->irq;
934bf653 4104 kvm_make_request(KVM_REQ_EVENT, vcpu);
f77bc6a4
ZX
4105 return 0;
4106}
4107
c4abb7c9
JK
4108static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
4109{
c4abb7c9 4110 kvm_inject_nmi(vcpu);
c4abb7c9
JK
4111
4112 return 0;
4113}
4114
f077825a
PB
4115static int kvm_vcpu_ioctl_smi(struct kvm_vcpu *vcpu)
4116{
64d60670
PB
4117 kvm_make_request(KVM_REQ_SMI, vcpu);
4118
f077825a
PB
4119 return 0;
4120}
4121
b209749f
AK
4122static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
4123 struct kvm_tpr_access_ctl *tac)
4124{
4125 if (tac->flags)
4126 return -EINVAL;
4127 vcpu->arch.tpr_access_reporting = !!tac->enabled;
4128 return 0;
4129}
4130
890ca9ae
HY
4131static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
4132 u64 mcg_cap)
4133{
4134 int r;
4135 unsigned bank_num = mcg_cap & 0xff, bank;
4136
4137 r = -EINVAL;
c4e0e4ab 4138 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
890ca9ae 4139 goto out;
c45dcc71 4140 if (mcg_cap & ~(kvm_mce_cap_supported | 0xff | 0xff0000))
890ca9ae
HY
4141 goto out;
4142 r = 0;
4143 vcpu->arch.mcg_cap = mcg_cap;
4144 /* Init IA32_MCG_CTL to all 1s */
4145 if (mcg_cap & MCG_CTL_P)
4146 vcpu->arch.mcg_ctl = ~(u64)0;
4147 /* Init IA32_MCi_CTL to all 1s */
4148 for (bank = 0; bank < bank_num; bank++)
4149 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
c45dcc71 4150
afaf0b2f 4151 kvm_x86_ops.setup_mce(vcpu);
890ca9ae
HY
4152out:
4153 return r;
4154}
4155
4156static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
4157 struct kvm_x86_mce *mce)
4158{
4159 u64 mcg_cap = vcpu->arch.mcg_cap;
4160 unsigned bank_num = mcg_cap & 0xff;
4161 u64 *banks = vcpu->arch.mce_banks;
4162
4163 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
4164 return -EINVAL;
4165 /*
4166 * if IA32_MCG_CTL is not all 1s, the uncorrected error
4167 * reporting is disabled
4168 */
4169 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
4170 vcpu->arch.mcg_ctl != ~(u64)0)
4171 return 0;
4172 banks += 4 * mce->bank;
4173 /*
4174 * if IA32_MCi_CTL is not all 1s, the uncorrected error
4175 * reporting is disabled for the bank
4176 */
4177 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
4178 return 0;
4179 if (mce->status & MCI_STATUS_UC) {
4180 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
fc78f519 4181 !kvm_read_cr4_bits(vcpu, X86_CR4_MCE)) {
a8eeb04a 4182 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
890ca9ae
HY
4183 return 0;
4184 }
4185 if (banks[1] & MCI_STATUS_VAL)
4186 mce->status |= MCI_STATUS_OVER;
4187 banks[2] = mce->addr;
4188 banks[3] = mce->misc;
4189 vcpu->arch.mcg_status = mce->mcg_status;
4190 banks[1] = mce->status;
4191 kvm_queue_exception(vcpu, MC_VECTOR);
4192 } else if (!(banks[1] & MCI_STATUS_VAL)
4193 || !(banks[1] & MCI_STATUS_UC)) {
4194 if (banks[1] & MCI_STATUS_VAL)
4195 mce->status |= MCI_STATUS_OVER;
4196 banks[2] = mce->addr;
4197 banks[3] = mce->misc;
4198 banks[1] = mce->status;
4199 } else
4200 banks[1] |= MCI_STATUS_OVER;
4201 return 0;
4202}
4203
3cfc3092
JK
4204static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
4205 struct kvm_vcpu_events *events)
4206{
7460fb4a 4207 process_nmi(vcpu);
59073aaf 4208
a06230b6
OU
4209 /*
4210 * In guest mode, payload delivery should be deferred,
4211 * so that the L1 hypervisor can intercept #PF before
4212 * CR2 is modified (or intercept #DB before DR6 is
4213 * modified under nVMX). Unless the per-VM capability,
4214 * KVM_CAP_EXCEPTION_PAYLOAD, is set, we may not defer the delivery of
4215 * an exception payload and handle after a KVM_GET_VCPU_EVENTS. Since we
4216 * opportunistically defer the exception payload, deliver it if the
4217 * capability hasn't been requested before processing a
4218 * KVM_GET_VCPU_EVENTS.
4219 */
4220 if (!vcpu->kvm->arch.exception_payload_enabled &&
4221 vcpu->arch.exception.pending && vcpu->arch.exception.has_payload)
4222 kvm_deliver_exception_payload(vcpu);
4223
664f8e26 4224 /*
59073aaf
JM
4225 * The API doesn't provide the instruction length for software
4226 * exceptions, so don't report them. As long as the guest RIP
4227 * isn't advanced, we should expect to encounter the exception
4228 * again.
664f8e26 4229 */
59073aaf
JM
4230 if (kvm_exception_is_soft(vcpu->arch.exception.nr)) {
4231 events->exception.injected = 0;
4232 events->exception.pending = 0;
4233 } else {
4234 events->exception.injected = vcpu->arch.exception.injected;
4235 events->exception.pending = vcpu->arch.exception.pending;
4236 /*
4237 * For ABI compatibility, deliberately conflate
4238 * pending and injected exceptions when
4239 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
4240 */
4241 if (!vcpu->kvm->arch.exception_payload_enabled)
4242 events->exception.injected |=
4243 vcpu->arch.exception.pending;
4244 }
3cfc3092
JK
4245 events->exception.nr = vcpu->arch.exception.nr;
4246 events->exception.has_error_code = vcpu->arch.exception.has_error_code;
4247 events->exception.error_code = vcpu->arch.exception.error_code;
59073aaf
JM
4248 events->exception_has_payload = vcpu->arch.exception.has_payload;
4249 events->exception_payload = vcpu->arch.exception.payload;
3cfc3092 4250
03b82a30 4251 events->interrupt.injected =
04140b41 4252 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3cfc3092 4253 events->interrupt.nr = vcpu->arch.interrupt.nr;
03b82a30 4254 events->interrupt.soft = 0;
afaf0b2f 4255 events->interrupt.shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
3cfc3092
JK
4256
4257 events->nmi.injected = vcpu->arch.nmi_injected;
7460fb4a 4258 events->nmi.pending = vcpu->arch.nmi_pending != 0;
afaf0b2f 4259 events->nmi.masked = kvm_x86_ops.get_nmi_mask(vcpu);
97e69aa6 4260 events->nmi.pad = 0;
3cfc3092 4261
66450a21 4262 events->sipi_vector = 0; /* never valid when reporting to user space */
3cfc3092 4263
f077825a
PB
4264 events->smi.smm = is_smm(vcpu);
4265 events->smi.pending = vcpu->arch.smi_pending;
4266 events->smi.smm_inside_nmi =
4267 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
4268 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
4269
dab4b911 4270 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
f077825a
PB
4271 | KVM_VCPUEVENT_VALID_SHADOW
4272 | KVM_VCPUEVENT_VALID_SMM);
59073aaf
JM
4273 if (vcpu->kvm->arch.exception_payload_enabled)
4274 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
4275
97e69aa6 4276 memset(&events->reserved, 0, sizeof(events->reserved));
3cfc3092
JK
4277}
4278
c5833c7a 4279static void kvm_smm_changed(struct kvm_vcpu *vcpu);
6ef4e07e 4280
3cfc3092
JK
4281static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
4282 struct kvm_vcpu_events *events)
4283{
dab4b911 4284 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
48005f64 4285 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
f077825a 4286 | KVM_VCPUEVENT_VALID_SHADOW
59073aaf
JM
4287 | KVM_VCPUEVENT_VALID_SMM
4288 | KVM_VCPUEVENT_VALID_PAYLOAD))
3cfc3092
JK
4289 return -EINVAL;
4290
59073aaf
JM
4291 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
4292 if (!vcpu->kvm->arch.exception_payload_enabled)
4293 return -EINVAL;
4294 if (events->exception.pending)
4295 events->exception.injected = 0;
4296 else
4297 events->exception_has_payload = 0;
4298 } else {
4299 events->exception.pending = 0;
4300 events->exception_has_payload = 0;
4301 }
4302
4303 if ((events->exception.injected || events->exception.pending) &&
4304 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
78e546c8
PB
4305 return -EINVAL;
4306
28bf2888
DH
4307 /* INITs are latched while in SMM */
4308 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
4309 (events->smi.smm || events->smi.pending) &&
4310 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4311 return -EINVAL;
4312
7460fb4a 4313 process_nmi(vcpu);
59073aaf
JM
4314 vcpu->arch.exception.injected = events->exception.injected;
4315 vcpu->arch.exception.pending = events->exception.pending;
3cfc3092
JK
4316 vcpu->arch.exception.nr = events->exception.nr;
4317 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
4318 vcpu->arch.exception.error_code = events->exception.error_code;
59073aaf
JM
4319 vcpu->arch.exception.has_payload = events->exception_has_payload;
4320 vcpu->arch.exception.payload = events->exception_payload;
3cfc3092 4321
04140b41 4322 vcpu->arch.interrupt.injected = events->interrupt.injected;
3cfc3092
JK
4323 vcpu->arch.interrupt.nr = events->interrupt.nr;
4324 vcpu->arch.interrupt.soft = events->interrupt.soft;
48005f64 4325 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
afaf0b2f 4326 kvm_x86_ops.set_interrupt_shadow(vcpu,
48005f64 4327 events->interrupt.shadow);
3cfc3092
JK
4328
4329 vcpu->arch.nmi_injected = events->nmi.injected;
dab4b911
JK
4330 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING)
4331 vcpu->arch.nmi_pending = events->nmi.pending;
afaf0b2f 4332 kvm_x86_ops.set_nmi_mask(vcpu, events->nmi.masked);
3cfc3092 4333
66450a21 4334 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
bce87cce 4335 lapic_in_kernel(vcpu))
66450a21 4336 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3cfc3092 4337
f077825a 4338 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
c5833c7a
SC
4339 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
4340 if (events->smi.smm)
4341 vcpu->arch.hflags |= HF_SMM_MASK;
4342 else
4343 vcpu->arch.hflags &= ~HF_SMM_MASK;
4344 kvm_smm_changed(vcpu);
4345 }
6ef4e07e 4346
f077825a 4347 vcpu->arch.smi_pending = events->smi.pending;
f4ef1910
WL
4348
4349 if (events->smi.smm) {
4350 if (events->smi.smm_inside_nmi)
4351 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
f077825a 4352 else
f4ef1910 4353 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
ff90afa7
LA
4354 }
4355
4356 if (lapic_in_kernel(vcpu)) {
4357 if (events->smi.latched_init)
4358 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
4359 else
4360 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
f077825a
PB
4361 }
4362 }
4363
3842d135
AK
4364 kvm_make_request(KVM_REQ_EVENT, vcpu);
4365
3cfc3092
JK
4366 return 0;
4367}
4368
a1efbe77
JK
4369static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
4370 struct kvm_debugregs *dbgregs)
4371{
73aaf249
JK
4372 unsigned long val;
4373
a1efbe77 4374 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
16f8a6f9 4375 kvm_get_dr(vcpu, 6, &val);
73aaf249 4376 dbgregs->dr6 = val;
a1efbe77
JK
4377 dbgregs->dr7 = vcpu->arch.dr7;
4378 dbgregs->flags = 0;
97e69aa6 4379 memset(&dbgregs->reserved, 0, sizeof(dbgregs->reserved));
a1efbe77
JK
4380}
4381
4382static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
4383 struct kvm_debugregs *dbgregs)
4384{
4385 if (dbgregs->flags)
4386 return -EINVAL;
4387
d14bdb55
PB
4388 if (dbgregs->dr6 & ~0xffffffffull)
4389 return -EINVAL;
4390 if (dbgregs->dr7 & ~0xffffffffull)
4391 return -EINVAL;
4392
a1efbe77 4393 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
ae561ede 4394 kvm_update_dr0123(vcpu);
a1efbe77
JK
4395 vcpu->arch.dr6 = dbgregs->dr6;
4396 vcpu->arch.dr7 = dbgregs->dr7;
9926c9fd 4397 kvm_update_dr7(vcpu);
a1efbe77 4398
a1efbe77
JK
4399 return 0;
4400}
4401
df1daba7
PB
4402#define XSTATE_COMPACTION_ENABLED (1ULL << 63)
4403
4404static void fill_xsave(u8 *dest, struct kvm_vcpu *vcpu)
4405{
b666a4b6 4406 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
400e4b20 4407 u64 xstate_bv = xsave->header.xfeatures;
df1daba7
PB
4408 u64 valid;
4409
4410 /*
4411 * Copy legacy XSAVE area, to avoid complications with CPUID
4412 * leaves 0 and 1 in the loop below.
4413 */
4414 memcpy(dest, xsave, XSAVE_HDR_OFFSET);
4415
4416 /* Set XSTATE_BV */
00c87e9a 4417 xstate_bv &= vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FPSSE;
df1daba7
PB
4418 *(u64 *)(dest + XSAVE_HDR_OFFSET) = xstate_bv;
4419
4420 /*
4421 * Copy each region from the possibly compacted offset to the
4422 * non-compacted offset.
4423 */
d91cab78 4424 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
df1daba7 4425 while (valid) {
abd16d68
SAS
4426 u64 xfeature_mask = valid & -valid;
4427 int xfeature_nr = fls64(xfeature_mask) - 1;
4428 void *src = get_xsave_addr(xsave, xfeature_nr);
df1daba7
PB
4429
4430 if (src) {
4431 u32 size, offset, ecx, edx;
abd16d68 4432 cpuid_count(XSTATE_CPUID, xfeature_nr,
df1daba7 4433 &size, &offset, &ecx, &edx);
abd16d68 4434 if (xfeature_nr == XFEATURE_PKRU)
38cfd5e3
PB
4435 memcpy(dest + offset, &vcpu->arch.pkru,
4436 sizeof(vcpu->arch.pkru));
4437 else
4438 memcpy(dest + offset, src, size);
4439
df1daba7
PB
4440 }
4441
abd16d68 4442 valid -= xfeature_mask;
df1daba7
PB
4443 }
4444}
4445
4446static void load_xsave(struct kvm_vcpu *vcpu, u8 *src)
4447{
b666a4b6 4448 struct xregs_state *xsave = &vcpu->arch.guest_fpu->state.xsave;
df1daba7
PB
4449 u64 xstate_bv = *(u64 *)(src + XSAVE_HDR_OFFSET);
4450 u64 valid;
4451
4452 /*
4453 * Copy legacy XSAVE area, to avoid complications with CPUID
4454 * leaves 0 and 1 in the loop below.
4455 */
4456 memcpy(xsave, src, XSAVE_HDR_OFFSET);
4457
4458 /* Set XSTATE_BV and possibly XCOMP_BV. */
400e4b20 4459 xsave->header.xfeatures = xstate_bv;
782511b0 4460 if (boot_cpu_has(X86_FEATURE_XSAVES))
3a54450b 4461 xsave->header.xcomp_bv = host_xcr0 | XSTATE_COMPACTION_ENABLED;
df1daba7
PB
4462
4463 /*
4464 * Copy each region from the non-compacted offset to the
4465 * possibly compacted offset.
4466 */
d91cab78 4467 valid = xstate_bv & ~XFEATURE_MASK_FPSSE;
df1daba7 4468 while (valid) {
abd16d68
SAS
4469 u64 xfeature_mask = valid & -valid;
4470 int xfeature_nr = fls64(xfeature_mask) - 1;
4471 void *dest = get_xsave_addr(xsave, xfeature_nr);
df1daba7
PB
4472
4473 if (dest) {
4474 u32 size, offset, ecx, edx;
abd16d68 4475 cpuid_count(XSTATE_CPUID, xfeature_nr,
df1daba7 4476 &size, &offset, &ecx, &edx);
abd16d68 4477 if (xfeature_nr == XFEATURE_PKRU)
38cfd5e3
PB
4478 memcpy(&vcpu->arch.pkru, src + offset,
4479 sizeof(vcpu->arch.pkru));
4480 else
4481 memcpy(dest, src + offset, size);
ee4100da 4482 }
df1daba7 4483
abd16d68 4484 valid -= xfeature_mask;
df1daba7
PB
4485 }
4486}
4487
2d5b5a66
SY
4488static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
4489 struct kvm_xsave *guest_xsave)
4490{
d366bf7e 4491 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
df1daba7
PB
4492 memset(guest_xsave, 0, sizeof(struct kvm_xsave));
4493 fill_xsave((u8 *) guest_xsave->region, vcpu);
4344ee98 4494 } else {
2d5b5a66 4495 memcpy(guest_xsave->region,
b666a4b6 4496 &vcpu->arch.guest_fpu->state.fxsave,
c47ada30 4497 sizeof(struct fxregs_state));
2d5b5a66 4498 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)] =
d91cab78 4499 XFEATURE_MASK_FPSSE;
2d5b5a66
SY
4500 }
4501}
4502
a575813b
WL
4503#define XSAVE_MXCSR_OFFSET 24
4504
2d5b5a66
SY
4505static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
4506 struct kvm_xsave *guest_xsave)
4507{
4508 u64 xstate_bv =
4509 *(u64 *)&guest_xsave->region[XSAVE_HDR_OFFSET / sizeof(u32)];
a575813b 4510 u32 mxcsr = *(u32 *)&guest_xsave->region[XSAVE_MXCSR_OFFSET / sizeof(u32)];
2d5b5a66 4511
d366bf7e 4512 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
d7876f1b
PB
4513 /*
4514 * Here we allow setting states that are not present in
4515 * CPUID leaf 0xD, index 0, EDX:EAX. This is for compatibility
4516 * with old userspace.
4517 */
cfc48181 4518 if (xstate_bv & ~supported_xcr0 || mxcsr & ~mxcsr_feature_mask)
d7876f1b 4519 return -EINVAL;
df1daba7 4520 load_xsave(vcpu, (u8 *)guest_xsave->region);
d7876f1b 4521 } else {
a575813b
WL
4522 if (xstate_bv & ~XFEATURE_MASK_FPSSE ||
4523 mxcsr & ~mxcsr_feature_mask)
2d5b5a66 4524 return -EINVAL;
b666a4b6 4525 memcpy(&vcpu->arch.guest_fpu->state.fxsave,
c47ada30 4526 guest_xsave->region, sizeof(struct fxregs_state));
2d5b5a66
SY
4527 }
4528 return 0;
4529}
4530
4531static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
4532 struct kvm_xcrs *guest_xcrs)
4533{
d366bf7e 4534 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
2d5b5a66
SY
4535 guest_xcrs->nr_xcrs = 0;
4536 return;
4537 }
4538
4539 guest_xcrs->nr_xcrs = 1;
4540 guest_xcrs->flags = 0;
4541 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
4542 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
4543}
4544
4545static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
4546 struct kvm_xcrs *guest_xcrs)
4547{
4548 int i, r = 0;
4549
d366bf7e 4550 if (!boot_cpu_has(X86_FEATURE_XSAVE))
2d5b5a66
SY
4551 return -EINVAL;
4552
4553 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
4554 return -EINVAL;
4555
4556 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
4557 /* Only support XCR0 currently */
c67a04cb 4558 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
2d5b5a66 4559 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
c67a04cb 4560 guest_xcrs->xcrs[i].value);
2d5b5a66
SY
4561 break;
4562 }
4563 if (r)
4564 r = -EINVAL;
4565 return r;
4566}
4567
1c0b28c2
EM
4568/*
4569 * kvm_set_guest_paused() indicates to the guest kernel that it has been
4570 * stopped by the hypervisor. This function will be called from the host only.
4571 * EINVAL is returned when the host attempts to set the flag for a guest that
4572 * does not support pv clocks.
4573 */
4574static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
4575{
0b79459b 4576 if (!vcpu->arch.pv_time_enabled)
1c0b28c2 4577 return -EINVAL;
51d59c6b 4578 vcpu->arch.pvclock_set_guest_stopped_request = true;
1c0b28c2
EM
4579 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
4580 return 0;
4581}
4582
5c919412
AS
4583static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
4584 struct kvm_enable_cap *cap)
4585{
57b119da
VK
4586 int r;
4587 uint16_t vmcs_version;
4588 void __user *user_ptr;
4589
5c919412
AS
4590 if (cap->flags)
4591 return -EINVAL;
4592
4593 switch (cap->cap) {
efc479e6
RK
4594 case KVM_CAP_HYPERV_SYNIC2:
4595 if (cap->args[0])
4596 return -EINVAL;
df561f66 4597 fallthrough;
b2869f28 4598
5c919412 4599 case KVM_CAP_HYPERV_SYNIC:
546d87e5
WL
4600 if (!irqchip_in_kernel(vcpu->kvm))
4601 return -EINVAL;
efc479e6
RK
4602 return kvm_hv_activate_synic(vcpu, cap->cap ==
4603 KVM_CAP_HYPERV_SYNIC2);
57b119da 4604 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
33b22172 4605 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5158917c 4606 return -ENOTTY;
33b22172 4607 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
57b119da
VK
4608 if (!r) {
4609 user_ptr = (void __user *)(uintptr_t)cap->args[0];
4610 if (copy_to_user(user_ptr, &vmcs_version,
4611 sizeof(vmcs_version)))
4612 r = -EFAULT;
4613 }
4614 return r;
344c6c80 4615 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
afaf0b2f 4616 if (!kvm_x86_ops.enable_direct_tlbflush)
344c6c80
TL
4617 return -ENOTTY;
4618
afaf0b2f 4619 return kvm_x86_ops.enable_direct_tlbflush(vcpu);
57b119da 4620
66570e96
OU
4621 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
4622 vcpu->arch.pv_cpuid.enforce = cap->args[0];
01b4f510
OU
4623 if (vcpu->arch.pv_cpuid.enforce)
4624 kvm_update_pv_runtime(vcpu);
66570e96
OU
4625
4626 return 0;
4627
5c919412
AS
4628 default:
4629 return -EINVAL;
4630 }
4631}
4632
313a3dc7
CO
4633long kvm_arch_vcpu_ioctl(struct file *filp,
4634 unsigned int ioctl, unsigned long arg)
4635{
4636 struct kvm_vcpu *vcpu = filp->private_data;
4637 void __user *argp = (void __user *)arg;
4638 int r;
d1ac91d8
AK
4639 union {
4640 struct kvm_lapic_state *lapic;
4641 struct kvm_xsave *xsave;
4642 struct kvm_xcrs *xcrs;
4643 void *buffer;
4644 } u;
4645
9b062471
CD
4646 vcpu_load(vcpu);
4647
d1ac91d8 4648 u.buffer = NULL;
313a3dc7
CO
4649 switch (ioctl) {
4650 case KVM_GET_LAPIC: {
2204ae3c 4651 r = -EINVAL;
bce87cce 4652 if (!lapic_in_kernel(vcpu))
2204ae3c 4653 goto out;
254272ce
BG
4654 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
4655 GFP_KERNEL_ACCOUNT);
313a3dc7 4656
b772ff36 4657 r = -ENOMEM;
d1ac91d8 4658 if (!u.lapic)
b772ff36 4659 goto out;
d1ac91d8 4660 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
313a3dc7
CO
4661 if (r)
4662 goto out;
4663 r = -EFAULT;
d1ac91d8 4664 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
313a3dc7
CO
4665 goto out;
4666 r = 0;
4667 break;
4668 }
4669 case KVM_SET_LAPIC: {
2204ae3c 4670 r = -EINVAL;
bce87cce 4671 if (!lapic_in_kernel(vcpu))
2204ae3c 4672 goto out;
ff5c2c03 4673 u.lapic = memdup_user(argp, sizeof(*u.lapic));
9b062471
CD
4674 if (IS_ERR(u.lapic)) {
4675 r = PTR_ERR(u.lapic);
4676 goto out_nofree;
4677 }
ff5c2c03 4678
d1ac91d8 4679 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
313a3dc7
CO
4680 break;
4681 }
f77bc6a4
ZX
4682 case KVM_INTERRUPT: {
4683 struct kvm_interrupt irq;
4684
4685 r = -EFAULT;
0e96f31e 4686 if (copy_from_user(&irq, argp, sizeof(irq)))
f77bc6a4
ZX
4687 goto out;
4688 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
f77bc6a4
ZX
4689 break;
4690 }
c4abb7c9
JK
4691 case KVM_NMI: {
4692 r = kvm_vcpu_ioctl_nmi(vcpu);
c4abb7c9
JK
4693 break;
4694 }
f077825a
PB
4695 case KVM_SMI: {
4696 r = kvm_vcpu_ioctl_smi(vcpu);
4697 break;
4698 }
313a3dc7
CO
4699 case KVM_SET_CPUID: {
4700 struct kvm_cpuid __user *cpuid_arg = argp;
4701 struct kvm_cpuid cpuid;
4702
4703 r = -EFAULT;
0e96f31e 4704 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
313a3dc7
CO
4705 goto out;
4706 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
313a3dc7
CO
4707 break;
4708 }
07716717
DK
4709 case KVM_SET_CPUID2: {
4710 struct kvm_cpuid2 __user *cpuid_arg = argp;
4711 struct kvm_cpuid2 cpuid;
4712
4713 r = -EFAULT;
0e96f31e 4714 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
4715 goto out;
4716 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
19355475 4717 cpuid_arg->entries);
07716717
DK
4718 break;
4719 }
4720 case KVM_GET_CPUID2: {
4721 struct kvm_cpuid2 __user *cpuid_arg = argp;
4722 struct kvm_cpuid2 cpuid;
4723
4724 r = -EFAULT;
0e96f31e 4725 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
4726 goto out;
4727 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
19355475 4728 cpuid_arg->entries);
07716717
DK
4729 if (r)
4730 goto out;
4731 r = -EFAULT;
0e96f31e 4732 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
07716717
DK
4733 goto out;
4734 r = 0;
4735 break;
4736 }
801e459a
TL
4737 case KVM_GET_MSRS: {
4738 int idx = srcu_read_lock(&vcpu->kvm->srcu);
609e36d3 4739 r = msr_io(vcpu, argp, do_get_msr, 1);
801e459a 4740 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 4741 break;
801e459a
TL
4742 }
4743 case KVM_SET_MSRS: {
4744 int idx = srcu_read_lock(&vcpu->kvm->srcu);
313a3dc7 4745 r = msr_io(vcpu, argp, do_set_msr, 0);
801e459a 4746 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 4747 break;
801e459a 4748 }
b209749f
AK
4749 case KVM_TPR_ACCESS_REPORTING: {
4750 struct kvm_tpr_access_ctl tac;
4751
4752 r = -EFAULT;
0e96f31e 4753 if (copy_from_user(&tac, argp, sizeof(tac)))
b209749f
AK
4754 goto out;
4755 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
4756 if (r)
4757 goto out;
4758 r = -EFAULT;
0e96f31e 4759 if (copy_to_user(argp, &tac, sizeof(tac)))
b209749f
AK
4760 goto out;
4761 r = 0;
4762 break;
4763 };
b93463aa
AK
4764 case KVM_SET_VAPIC_ADDR: {
4765 struct kvm_vapic_addr va;
7301d6ab 4766 int idx;
b93463aa
AK
4767
4768 r = -EINVAL;
35754c98 4769 if (!lapic_in_kernel(vcpu))
b93463aa
AK
4770 goto out;
4771 r = -EFAULT;
0e96f31e 4772 if (copy_from_user(&va, argp, sizeof(va)))
b93463aa 4773 goto out;
7301d6ab 4774 idx = srcu_read_lock(&vcpu->kvm->srcu);
fda4e2e8 4775 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
7301d6ab 4776 srcu_read_unlock(&vcpu->kvm->srcu, idx);
b93463aa
AK
4777 break;
4778 }
890ca9ae
HY
4779 case KVM_X86_SETUP_MCE: {
4780 u64 mcg_cap;
4781
4782 r = -EFAULT;
0e96f31e 4783 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
890ca9ae
HY
4784 goto out;
4785 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
4786 break;
4787 }
4788 case KVM_X86_SET_MCE: {
4789 struct kvm_x86_mce mce;
4790
4791 r = -EFAULT;
0e96f31e 4792 if (copy_from_user(&mce, argp, sizeof(mce)))
890ca9ae
HY
4793 goto out;
4794 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
4795 break;
4796 }
3cfc3092
JK
4797 case KVM_GET_VCPU_EVENTS: {
4798 struct kvm_vcpu_events events;
4799
4800 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
4801
4802 r = -EFAULT;
4803 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
4804 break;
4805 r = 0;
4806 break;
4807 }
4808 case KVM_SET_VCPU_EVENTS: {
4809 struct kvm_vcpu_events events;
4810
4811 r = -EFAULT;
4812 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
4813 break;
4814
4815 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
4816 break;
4817 }
a1efbe77
JK
4818 case KVM_GET_DEBUGREGS: {
4819 struct kvm_debugregs dbgregs;
4820
4821 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
4822
4823 r = -EFAULT;
4824 if (copy_to_user(argp, &dbgregs,
4825 sizeof(struct kvm_debugregs)))
4826 break;
4827 r = 0;
4828 break;
4829 }
4830 case KVM_SET_DEBUGREGS: {
4831 struct kvm_debugregs dbgregs;
4832
4833 r = -EFAULT;
4834 if (copy_from_user(&dbgregs, argp,
4835 sizeof(struct kvm_debugregs)))
4836 break;
4837
4838 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
4839 break;
4840 }
2d5b5a66 4841 case KVM_GET_XSAVE: {
254272ce 4842 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
2d5b5a66 4843 r = -ENOMEM;
d1ac91d8 4844 if (!u.xsave)
2d5b5a66
SY
4845 break;
4846
d1ac91d8 4847 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2d5b5a66
SY
4848
4849 r = -EFAULT;
d1ac91d8 4850 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2d5b5a66
SY
4851 break;
4852 r = 0;
4853 break;
4854 }
4855 case KVM_SET_XSAVE: {
ff5c2c03 4856 u.xsave = memdup_user(argp, sizeof(*u.xsave));
9b062471
CD
4857 if (IS_ERR(u.xsave)) {
4858 r = PTR_ERR(u.xsave);
4859 goto out_nofree;
4860 }
2d5b5a66 4861
d1ac91d8 4862 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2d5b5a66
SY
4863 break;
4864 }
4865 case KVM_GET_XCRS: {
254272ce 4866 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
2d5b5a66 4867 r = -ENOMEM;
d1ac91d8 4868 if (!u.xcrs)
2d5b5a66
SY
4869 break;
4870
d1ac91d8 4871 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
4872
4873 r = -EFAULT;
d1ac91d8 4874 if (copy_to_user(argp, u.xcrs,
2d5b5a66
SY
4875 sizeof(struct kvm_xcrs)))
4876 break;
4877 r = 0;
4878 break;
4879 }
4880 case KVM_SET_XCRS: {
ff5c2c03 4881 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
9b062471
CD
4882 if (IS_ERR(u.xcrs)) {
4883 r = PTR_ERR(u.xcrs);
4884 goto out_nofree;
4885 }
2d5b5a66 4886
d1ac91d8 4887 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
4888 break;
4889 }
92a1f12d
JR
4890 case KVM_SET_TSC_KHZ: {
4891 u32 user_tsc_khz;
4892
4893 r = -EINVAL;
92a1f12d
JR
4894 user_tsc_khz = (u32)arg;
4895
26769f96
MT
4896 if (kvm_has_tsc_control &&
4897 user_tsc_khz >= kvm_max_guest_tsc_khz)
92a1f12d
JR
4898 goto out;
4899
cc578287
ZA
4900 if (user_tsc_khz == 0)
4901 user_tsc_khz = tsc_khz;
4902
381d585c
HZ
4903 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
4904 r = 0;
92a1f12d 4905
92a1f12d
JR
4906 goto out;
4907 }
4908 case KVM_GET_TSC_KHZ: {
cc578287 4909 r = vcpu->arch.virtual_tsc_khz;
92a1f12d
JR
4910 goto out;
4911 }
1c0b28c2
EM
4912 case KVM_KVMCLOCK_CTRL: {
4913 r = kvm_set_guest_paused(vcpu);
4914 goto out;
4915 }
5c919412
AS
4916 case KVM_ENABLE_CAP: {
4917 struct kvm_enable_cap cap;
4918
4919 r = -EFAULT;
4920 if (copy_from_user(&cap, argp, sizeof(cap)))
4921 goto out;
4922 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
4923 break;
4924 }
8fcc4b59
JM
4925 case KVM_GET_NESTED_STATE: {
4926 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4927 u32 user_data_size;
4928
4929 r = -EINVAL;
33b22172 4930 if (!kvm_x86_ops.nested_ops->get_state)
8fcc4b59
JM
4931 break;
4932
4933 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
26b471c7 4934 r = -EFAULT;
8fcc4b59 4935 if (get_user(user_data_size, &user_kvm_nested_state->size))
26b471c7 4936 break;
8fcc4b59 4937
33b22172
PB
4938 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
4939 user_data_size);
8fcc4b59 4940 if (r < 0)
26b471c7 4941 break;
8fcc4b59
JM
4942
4943 if (r > user_data_size) {
4944 if (put_user(r, &user_kvm_nested_state->size))
26b471c7
LA
4945 r = -EFAULT;
4946 else
4947 r = -E2BIG;
4948 break;
8fcc4b59 4949 }
26b471c7 4950
8fcc4b59
JM
4951 r = 0;
4952 break;
4953 }
4954 case KVM_SET_NESTED_STATE: {
4955 struct kvm_nested_state __user *user_kvm_nested_state = argp;
4956 struct kvm_nested_state kvm_state;
ad5996d9 4957 int idx;
8fcc4b59
JM
4958
4959 r = -EINVAL;
33b22172 4960 if (!kvm_x86_ops.nested_ops->set_state)
8fcc4b59
JM
4961 break;
4962
26b471c7 4963 r = -EFAULT;
8fcc4b59 4964 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
26b471c7 4965 break;
8fcc4b59 4966
26b471c7 4967 r = -EINVAL;
8fcc4b59 4968 if (kvm_state.size < sizeof(kvm_state))
26b471c7 4969 break;
8fcc4b59
JM
4970
4971 if (kvm_state.flags &
8cab6507 4972 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
cc440cda
PB
4973 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
4974 | KVM_STATE_NESTED_GIF_SET))
26b471c7 4975 break;
8fcc4b59
JM
4976
4977 /* nested_run_pending implies guest_mode. */
8cab6507
VK
4978 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
4979 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
26b471c7 4980 break;
8fcc4b59 4981
ad5996d9 4982 idx = srcu_read_lock(&vcpu->kvm->srcu);
33b22172 4983 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
ad5996d9 4984 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8fcc4b59
JM
4985 break;
4986 }
c21d54f0
VK
4987 case KVM_GET_SUPPORTED_HV_CPUID:
4988 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
2bc39970 4989 break;
313a3dc7
CO
4990 default:
4991 r = -EINVAL;
4992 }
4993out:
d1ac91d8 4994 kfree(u.buffer);
9b062471
CD
4995out_nofree:
4996 vcpu_put(vcpu);
313a3dc7
CO
4997 return r;
4998}
4999
1499fa80 5000vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5b1c1493
CO
5001{
5002 return VM_FAULT_SIGBUS;
5003}
5004
1fe779f8
CO
5005static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
5006{
5007 int ret;
5008
5009 if (addr > (unsigned int)(-3 * PAGE_SIZE))
951179ce 5010 return -EINVAL;
afaf0b2f 5011 ret = kvm_x86_ops.set_tss_addr(kvm, addr);
1fe779f8
CO
5012 return ret;
5013}
5014
b927a3ce
SY
5015static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
5016 u64 ident_addr)
5017{
afaf0b2f 5018 return kvm_x86_ops.set_identity_map_addr(kvm, ident_addr);
b927a3ce
SY
5019}
5020
1fe779f8 5021static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
bc8a3d89 5022 unsigned long kvm_nr_mmu_pages)
1fe779f8
CO
5023{
5024 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
5025 return -EINVAL;
5026
79fac95e 5027 mutex_lock(&kvm->slots_lock);
1fe779f8
CO
5028
5029 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
f05e70ac 5030 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1fe779f8 5031
79fac95e 5032 mutex_unlock(&kvm->slots_lock);
1fe779f8
CO
5033 return 0;
5034}
5035
bc8a3d89 5036static unsigned long kvm_vm_ioctl_get_nr_mmu_pages(struct kvm *kvm)
1fe779f8 5037{
39de71ec 5038 return kvm->arch.n_max_mmu_pages;
1fe779f8
CO
5039}
5040
1fe779f8
CO
5041static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5042{
90bca052 5043 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
5044 int r;
5045
5046 r = 0;
5047 switch (chip->chip_id) {
5048 case KVM_IRQCHIP_PIC_MASTER:
90bca052 5049 memcpy(&chip->chip.pic, &pic->pics[0],
1fe779f8
CO
5050 sizeof(struct kvm_pic_state));
5051 break;
5052 case KVM_IRQCHIP_PIC_SLAVE:
90bca052 5053 memcpy(&chip->chip.pic, &pic->pics[1],
1fe779f8
CO
5054 sizeof(struct kvm_pic_state));
5055 break;
5056 case KVM_IRQCHIP_IOAPIC:
33392b49 5057 kvm_get_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
5058 break;
5059 default:
5060 r = -EINVAL;
5061 break;
5062 }
5063 return r;
5064}
5065
5066static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
5067{
90bca052 5068 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
5069 int r;
5070
5071 r = 0;
5072 switch (chip->chip_id) {
5073 case KVM_IRQCHIP_PIC_MASTER:
90bca052
DH
5074 spin_lock(&pic->lock);
5075 memcpy(&pic->pics[0], &chip->chip.pic,
1fe779f8 5076 sizeof(struct kvm_pic_state));
90bca052 5077 spin_unlock(&pic->lock);
1fe779f8
CO
5078 break;
5079 case KVM_IRQCHIP_PIC_SLAVE:
90bca052
DH
5080 spin_lock(&pic->lock);
5081 memcpy(&pic->pics[1], &chip->chip.pic,
1fe779f8 5082 sizeof(struct kvm_pic_state));
90bca052 5083 spin_unlock(&pic->lock);
1fe779f8
CO
5084 break;
5085 case KVM_IRQCHIP_IOAPIC:
33392b49 5086 kvm_set_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
5087 break;
5088 default:
5089 r = -EINVAL;
5090 break;
5091 }
90bca052 5092 kvm_pic_update_irq(pic);
1fe779f8
CO
5093 return r;
5094}
5095
e0f63cb9
SY
5096static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5097{
34f3941c
RK
5098 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
5099
5100 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
5101
5102 mutex_lock(&kps->lock);
5103 memcpy(ps, &kps->channels, sizeof(*ps));
5104 mutex_unlock(&kps->lock);
2da29bcc 5105 return 0;
e0f63cb9
SY
5106}
5107
5108static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
5109{
0185604c 5110 int i;
09edea72
RK
5111 struct kvm_pit *pit = kvm->arch.vpit;
5112
5113 mutex_lock(&pit->pit_state.lock);
34f3941c 5114 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
0185604c 5115 for (i = 0; i < 3; i++)
09edea72
RK
5116 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
5117 mutex_unlock(&pit->pit_state.lock);
2da29bcc 5118 return 0;
e9f42757
BK
5119}
5120
5121static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5122{
e9f42757
BK
5123 mutex_lock(&kvm->arch.vpit->pit_state.lock);
5124 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
5125 sizeof(ps->channels));
5126 ps->flags = kvm->arch.vpit->pit_state.flags;
5127 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
97e69aa6 5128 memset(&ps->reserved, 0, sizeof(ps->reserved));
2da29bcc 5129 return 0;
e9f42757
BK
5130}
5131
5132static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
5133{
2da29bcc 5134 int start = 0;
0185604c 5135 int i;
e9f42757 5136 u32 prev_legacy, cur_legacy;
09edea72
RK
5137 struct kvm_pit *pit = kvm->arch.vpit;
5138
5139 mutex_lock(&pit->pit_state.lock);
5140 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
e9f42757
BK
5141 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
5142 if (!prev_legacy && cur_legacy)
5143 start = 1;
09edea72
RK
5144 memcpy(&pit->pit_state.channels, &ps->channels,
5145 sizeof(pit->pit_state.channels));
5146 pit->pit_state.flags = ps->flags;
0185604c 5147 for (i = 0; i < 3; i++)
09edea72 5148 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
e5e57e7a 5149 start && i == 0);
09edea72 5150 mutex_unlock(&pit->pit_state.lock);
2da29bcc 5151 return 0;
e0f63cb9
SY
5152}
5153
52d939a0
MT
5154static int kvm_vm_ioctl_reinject(struct kvm *kvm,
5155 struct kvm_reinject_control *control)
5156{
71474e2f
RK
5157 struct kvm_pit *pit = kvm->arch.vpit;
5158
71474e2f
RK
5159 /* pit->pit_state.lock was overloaded to prevent userspace from getting
5160 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
5161 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
5162 */
5163 mutex_lock(&pit->pit_state.lock);
5164 kvm_pit_set_reinject(pit, control->pit_reinject);
5165 mutex_unlock(&pit->pit_state.lock);
b39c90b6 5166
52d939a0
MT
5167 return 0;
5168}
5169
0dff0846 5170void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5bb064dc 5171{
88178fd4
KH
5172 /*
5173 * Flush potentially hardware-cached dirty pages to dirty_bitmap.
5174 */
afaf0b2f
SC
5175 if (kvm_x86_ops.flush_log_dirty)
5176 kvm_x86_ops.flush_log_dirty(kvm);
5bb064dc
ZX
5177}
5178
aa2fbe6d
YZ
5179int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
5180 bool line_status)
23d43cf9
CD
5181{
5182 if (!irqchip_in_kernel(kvm))
5183 return -ENXIO;
5184
5185 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
aa2fbe6d
YZ
5186 irq_event->irq, irq_event->level,
5187 line_status);
23d43cf9
CD
5188 return 0;
5189}
5190
e5d83c74
PB
5191int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
5192 struct kvm_enable_cap *cap)
90de4a18
NA
5193{
5194 int r;
5195
5196 if (cap->flags)
5197 return -EINVAL;
5198
5199 switch (cap->cap) {
5200 case KVM_CAP_DISABLE_QUIRKS:
5201 kvm->arch.disabled_quirks = cap->args[0];
5202 r = 0;
5203 break;
49df6397
SR
5204 case KVM_CAP_SPLIT_IRQCHIP: {
5205 mutex_lock(&kvm->lock);
b053b2ae
SR
5206 r = -EINVAL;
5207 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
5208 goto split_irqchip_unlock;
49df6397
SR
5209 r = -EEXIST;
5210 if (irqchip_in_kernel(kvm))
5211 goto split_irqchip_unlock;
557abc40 5212 if (kvm->created_vcpus)
49df6397
SR
5213 goto split_irqchip_unlock;
5214 r = kvm_setup_empty_irq_routing(kvm);
5c0aea0e 5215 if (r)
49df6397
SR
5216 goto split_irqchip_unlock;
5217 /* Pairs with irqchip_in_kernel. */
5218 smp_wmb();
49776faf 5219 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
b053b2ae 5220 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
49df6397
SR
5221 r = 0;
5222split_irqchip_unlock:
5223 mutex_unlock(&kvm->lock);
5224 break;
5225 }
37131313
RK
5226 case KVM_CAP_X2APIC_API:
5227 r = -EINVAL;
5228 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
5229 break;
5230
5231 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
5232 kvm->arch.x2apic_format = true;
c519265f
RK
5233 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
5234 kvm->arch.x2apic_broadcast_quirk_disabled = true;
37131313
RK
5235
5236 r = 0;
5237 break;
4d5422ce
WL
5238 case KVM_CAP_X86_DISABLE_EXITS:
5239 r = -EINVAL;
5240 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
5241 break;
5242
5243 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
5244 kvm_can_mwait_in_guest())
5245 kvm->arch.mwait_in_guest = true;
766d3571 5246 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
caa057a2 5247 kvm->arch.hlt_in_guest = true;
b31c114b
WL
5248 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
5249 kvm->arch.pause_in_guest = true;
b5170063
WL
5250 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
5251 kvm->arch.cstate_in_guest = true;
4d5422ce
WL
5252 r = 0;
5253 break;
6fbbde9a
DS
5254 case KVM_CAP_MSR_PLATFORM_INFO:
5255 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
5256 r = 0;
c4f55198
JM
5257 break;
5258 case KVM_CAP_EXCEPTION_PAYLOAD:
5259 kvm->arch.exception_payload_enabled = cap->args[0];
5260 r = 0;
6fbbde9a 5261 break;
1ae09954
AG
5262 case KVM_CAP_X86_USER_SPACE_MSR:
5263 kvm->arch.user_space_msr_mask = cap->args[0];
5264 r = 0;
5265 break;
90de4a18
NA
5266 default:
5267 r = -EINVAL;
5268 break;
5269 }
5270 return r;
5271}
5272
1a155254
AG
5273static void kvm_clear_msr_filter(struct kvm *kvm)
5274{
5275 u32 i;
5276 u32 count = kvm->arch.msr_filter.count;
5277 struct msr_bitmap_range ranges[16];
5278
5279 mutex_lock(&kvm->lock);
5280 kvm->arch.msr_filter.count = 0;
5281 memcpy(ranges, kvm->arch.msr_filter.ranges, count * sizeof(ranges[0]));
5282 mutex_unlock(&kvm->lock);
5283 synchronize_srcu(&kvm->srcu);
5284
5285 for (i = 0; i < count; i++)
5286 kfree(ranges[i].bitmap);
5287}
5288
5289static int kvm_add_msr_filter(struct kvm *kvm, struct kvm_msr_filter_range *user_range)
5290{
5291 struct msr_bitmap_range *ranges = kvm->arch.msr_filter.ranges;
5292 struct msr_bitmap_range range;
5293 unsigned long *bitmap = NULL;
5294 size_t bitmap_size;
5295 int r;
5296
5297 if (!user_range->nmsrs)
5298 return 0;
5299
5300 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
5301 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
5302 return -EINVAL;
5303
5304 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
5305 if (IS_ERR(bitmap))
5306 return PTR_ERR(bitmap);
5307
5308 range = (struct msr_bitmap_range) {
5309 .flags = user_range->flags,
5310 .base = user_range->base,
5311 .nmsrs = user_range->nmsrs,
5312 .bitmap = bitmap,
5313 };
5314
5315 if (range.flags & ~(KVM_MSR_FILTER_READ | KVM_MSR_FILTER_WRITE)) {
5316 r = -EINVAL;
5317 goto err;
5318 }
5319
5320 if (!range.flags) {
5321 r = -EINVAL;
5322 goto err;
5323 }
5324
5325 /* Everything ok, add this range identifier to our global pool */
5326 ranges[kvm->arch.msr_filter.count] = range;
5327 /* Make sure we filled the array before we tell anyone to walk it */
5328 smp_wmb();
5329 kvm->arch.msr_filter.count++;
5330
5331 return 0;
5332err:
5333 kfree(bitmap);
5334 return r;
5335}
5336
5337static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm, void __user *argp)
5338{
5339 struct kvm_msr_filter __user *user_msr_filter = argp;
5340 struct kvm_msr_filter filter;
5341 bool default_allow;
5342 int r = 0;
043248b3 5343 bool empty = true;
1a155254
AG
5344 u32 i;
5345
5346 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
5347 return -EFAULT;
5348
043248b3
PB
5349 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++)
5350 empty &= !filter.ranges[i].nmsrs;
1a155254
AG
5351
5352 default_allow = !(filter.flags & KVM_MSR_FILTER_DEFAULT_DENY);
043248b3
PB
5353 if (empty && !default_allow)
5354 return -EINVAL;
5355
5356 kvm_clear_msr_filter(kvm);
5357
1a155254
AG
5358 kvm->arch.msr_filter.default_allow = default_allow;
5359
5360 /*
5361 * Protect from concurrent calls to this function that could trigger
5362 * a TOCTOU violation on kvm->arch.msr_filter.count.
5363 */
5364 mutex_lock(&kvm->lock);
5365 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
5366 r = kvm_add_msr_filter(kvm, &filter.ranges[i]);
5367 if (r)
5368 break;
5369 }
5370
5371 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
5372 mutex_unlock(&kvm->lock);
5373
5374 return r;
5375}
5376
1fe779f8
CO
5377long kvm_arch_vm_ioctl(struct file *filp,
5378 unsigned int ioctl, unsigned long arg)
5379{
5380 struct kvm *kvm = filp->private_data;
5381 void __user *argp = (void __user *)arg;
367e1319 5382 int r = -ENOTTY;
f0d66275
DH
5383 /*
5384 * This union makes it completely explicit to gcc-3.x
5385 * that these two variables' stack usage should be
5386 * combined, not added together.
5387 */
5388 union {
5389 struct kvm_pit_state ps;
e9f42757 5390 struct kvm_pit_state2 ps2;
c5ff41ce 5391 struct kvm_pit_config pit_config;
f0d66275 5392 } u;
1fe779f8
CO
5393
5394 switch (ioctl) {
5395 case KVM_SET_TSS_ADDR:
5396 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1fe779f8 5397 break;
b927a3ce
SY
5398 case KVM_SET_IDENTITY_MAP_ADDR: {
5399 u64 ident_addr;
5400
1af1ac91
DH
5401 mutex_lock(&kvm->lock);
5402 r = -EINVAL;
5403 if (kvm->created_vcpus)
5404 goto set_identity_unlock;
b927a3ce 5405 r = -EFAULT;
0e96f31e 5406 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
1af1ac91 5407 goto set_identity_unlock;
b927a3ce 5408 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
1af1ac91
DH
5409set_identity_unlock:
5410 mutex_unlock(&kvm->lock);
b927a3ce
SY
5411 break;
5412 }
1fe779f8
CO
5413 case KVM_SET_NR_MMU_PAGES:
5414 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1fe779f8
CO
5415 break;
5416 case KVM_GET_NR_MMU_PAGES:
5417 r = kvm_vm_ioctl_get_nr_mmu_pages(kvm);
5418 break;
3ddea128 5419 case KVM_CREATE_IRQCHIP: {
3ddea128 5420 mutex_lock(&kvm->lock);
09941366 5421
3ddea128 5422 r = -EEXIST;
35e6eaa3 5423 if (irqchip_in_kernel(kvm))
3ddea128 5424 goto create_irqchip_unlock;
09941366 5425
3e515705 5426 r = -EINVAL;
557abc40 5427 if (kvm->created_vcpus)
3e515705 5428 goto create_irqchip_unlock;
09941366
RK
5429
5430 r = kvm_pic_init(kvm);
5431 if (r)
3ddea128 5432 goto create_irqchip_unlock;
09941366
RK
5433
5434 r = kvm_ioapic_init(kvm);
5435 if (r) {
09941366 5436 kvm_pic_destroy(kvm);
3ddea128 5437 goto create_irqchip_unlock;
09941366
RK
5438 }
5439
399ec807
AK
5440 r = kvm_setup_default_irq_routing(kvm);
5441 if (r) {
72bb2fcd 5442 kvm_ioapic_destroy(kvm);
09941366 5443 kvm_pic_destroy(kvm);
71ba994c 5444 goto create_irqchip_unlock;
399ec807 5445 }
49776faf 5446 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
71ba994c 5447 smp_wmb();
49776faf 5448 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
3ddea128
MT
5449 create_irqchip_unlock:
5450 mutex_unlock(&kvm->lock);
1fe779f8 5451 break;
3ddea128 5452 }
7837699f 5453 case KVM_CREATE_PIT:
c5ff41ce
JK
5454 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
5455 goto create_pit;
5456 case KVM_CREATE_PIT2:
5457 r = -EFAULT;
5458 if (copy_from_user(&u.pit_config, argp,
5459 sizeof(struct kvm_pit_config)))
5460 goto out;
5461 create_pit:
250715a6 5462 mutex_lock(&kvm->lock);
269e05e4
AK
5463 r = -EEXIST;
5464 if (kvm->arch.vpit)
5465 goto create_pit_unlock;
7837699f 5466 r = -ENOMEM;
c5ff41ce 5467 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7837699f
SY
5468 if (kvm->arch.vpit)
5469 r = 0;
269e05e4 5470 create_pit_unlock:
250715a6 5471 mutex_unlock(&kvm->lock);
7837699f 5472 break;
1fe779f8
CO
5473 case KVM_GET_IRQCHIP: {
5474 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 5475 struct kvm_irqchip *chip;
1fe779f8 5476
ff5c2c03
SL
5477 chip = memdup_user(argp, sizeof(*chip));
5478 if (IS_ERR(chip)) {
5479 r = PTR_ERR(chip);
1fe779f8 5480 goto out;
ff5c2c03
SL
5481 }
5482
1fe779f8 5483 r = -ENXIO;
826da321 5484 if (!irqchip_kernel(kvm))
f0d66275
DH
5485 goto get_irqchip_out;
5486 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1fe779f8 5487 if (r)
f0d66275 5488 goto get_irqchip_out;
1fe779f8 5489 r = -EFAULT;
0e96f31e 5490 if (copy_to_user(argp, chip, sizeof(*chip)))
f0d66275 5491 goto get_irqchip_out;
1fe779f8 5492 r = 0;
f0d66275
DH
5493 get_irqchip_out:
5494 kfree(chip);
1fe779f8
CO
5495 break;
5496 }
5497 case KVM_SET_IRQCHIP: {
5498 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 5499 struct kvm_irqchip *chip;
1fe779f8 5500
ff5c2c03
SL
5501 chip = memdup_user(argp, sizeof(*chip));
5502 if (IS_ERR(chip)) {
5503 r = PTR_ERR(chip);
1fe779f8 5504 goto out;
ff5c2c03
SL
5505 }
5506
1fe779f8 5507 r = -ENXIO;
826da321 5508 if (!irqchip_kernel(kvm))
f0d66275
DH
5509 goto set_irqchip_out;
5510 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
f0d66275
DH
5511 set_irqchip_out:
5512 kfree(chip);
1fe779f8
CO
5513 break;
5514 }
e0f63cb9 5515 case KVM_GET_PIT: {
e0f63cb9 5516 r = -EFAULT;
f0d66275 5517 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
5518 goto out;
5519 r = -ENXIO;
5520 if (!kvm->arch.vpit)
5521 goto out;
f0d66275 5522 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
e0f63cb9
SY
5523 if (r)
5524 goto out;
5525 r = -EFAULT;
f0d66275 5526 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
5527 goto out;
5528 r = 0;
5529 break;
5530 }
5531 case KVM_SET_PIT: {
e0f63cb9 5532 r = -EFAULT;
0e96f31e 5533 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
e0f63cb9 5534 goto out;
7289fdb5 5535 mutex_lock(&kvm->lock);
e0f63cb9
SY
5536 r = -ENXIO;
5537 if (!kvm->arch.vpit)
7289fdb5 5538 goto set_pit_out;
f0d66275 5539 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7289fdb5
SR
5540set_pit_out:
5541 mutex_unlock(&kvm->lock);
e0f63cb9
SY
5542 break;
5543 }
e9f42757
BK
5544 case KVM_GET_PIT2: {
5545 r = -ENXIO;
5546 if (!kvm->arch.vpit)
5547 goto out;
5548 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
5549 if (r)
5550 goto out;
5551 r = -EFAULT;
5552 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
5553 goto out;
5554 r = 0;
5555 break;
5556 }
5557 case KVM_SET_PIT2: {
5558 r = -EFAULT;
5559 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
5560 goto out;
7289fdb5 5561 mutex_lock(&kvm->lock);
e9f42757
BK
5562 r = -ENXIO;
5563 if (!kvm->arch.vpit)
7289fdb5 5564 goto set_pit2_out;
e9f42757 5565 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7289fdb5
SR
5566set_pit2_out:
5567 mutex_unlock(&kvm->lock);
e9f42757
BK
5568 break;
5569 }
52d939a0
MT
5570 case KVM_REINJECT_CONTROL: {
5571 struct kvm_reinject_control control;
5572 r = -EFAULT;
5573 if (copy_from_user(&control, argp, sizeof(control)))
5574 goto out;
cad23e72
ML
5575 r = -ENXIO;
5576 if (!kvm->arch.vpit)
5577 goto out;
52d939a0 5578 r = kvm_vm_ioctl_reinject(kvm, &control);
52d939a0
MT
5579 break;
5580 }
d71ba788
PB
5581 case KVM_SET_BOOT_CPU_ID:
5582 r = 0;
5583 mutex_lock(&kvm->lock);
557abc40 5584 if (kvm->created_vcpus)
d71ba788
PB
5585 r = -EBUSY;
5586 else
5587 kvm->arch.bsp_vcpu_id = arg;
5588 mutex_unlock(&kvm->lock);
5589 break;
ffde22ac 5590 case KVM_XEN_HVM_CONFIG: {
51776043 5591 struct kvm_xen_hvm_config xhc;
ffde22ac 5592 r = -EFAULT;
51776043 5593 if (copy_from_user(&xhc, argp, sizeof(xhc)))
ffde22ac
ES
5594 goto out;
5595 r = -EINVAL;
51776043 5596 if (xhc.flags)
ffde22ac 5597 goto out;
51776043 5598 memcpy(&kvm->arch.xen_hvm_config, &xhc, sizeof(xhc));
ffde22ac
ES
5599 r = 0;
5600 break;
5601 }
afbcf7ab 5602 case KVM_SET_CLOCK: {
afbcf7ab
GC
5603 struct kvm_clock_data user_ns;
5604 u64 now_ns;
afbcf7ab
GC
5605
5606 r = -EFAULT;
5607 if (copy_from_user(&user_ns, argp, sizeof(user_ns)))
5608 goto out;
5609
5610 r = -EINVAL;
5611 if (user_ns.flags)
5612 goto out;
5613
5614 r = 0;
0bc48bea
RK
5615 /*
5616 * TODO: userspace has to take care of races with VCPU_RUN, so
5617 * kvm_gen_update_masterclock() can be cut down to locked
5618 * pvclock_update_vm_gtod_copy().
5619 */
5620 kvm_gen_update_masterclock(kvm);
e891a32e 5621 now_ns = get_kvmclock_ns(kvm);
108b249c 5622 kvm->arch.kvmclock_offset += user_ns.clock - now_ns;
0bc48bea 5623 kvm_make_all_cpus_request(kvm, KVM_REQ_CLOCK_UPDATE);
afbcf7ab
GC
5624 break;
5625 }
5626 case KVM_GET_CLOCK: {
afbcf7ab
GC
5627 struct kvm_clock_data user_ns;
5628 u64 now_ns;
5629
e891a32e 5630 now_ns = get_kvmclock_ns(kvm);
108b249c 5631 user_ns.clock = now_ns;
e3fd9a93 5632 user_ns.flags = kvm->arch.use_master_clock ? KVM_CLOCK_TSC_STABLE : 0;
97e69aa6 5633 memset(&user_ns.pad, 0, sizeof(user_ns.pad));
afbcf7ab
GC
5634
5635 r = -EFAULT;
5636 if (copy_to_user(argp, &user_ns, sizeof(user_ns)))
5637 goto out;
5638 r = 0;
5639 break;
5640 }
5acc5c06
BS
5641 case KVM_MEMORY_ENCRYPT_OP: {
5642 r = -ENOTTY;
afaf0b2f
SC
5643 if (kvm_x86_ops.mem_enc_op)
5644 r = kvm_x86_ops.mem_enc_op(kvm, argp);
5acc5c06
BS
5645 break;
5646 }
69eaedee
BS
5647 case KVM_MEMORY_ENCRYPT_REG_REGION: {
5648 struct kvm_enc_region region;
5649
5650 r = -EFAULT;
5651 if (copy_from_user(&region, argp, sizeof(region)))
5652 goto out;
5653
5654 r = -ENOTTY;
afaf0b2f
SC
5655 if (kvm_x86_ops.mem_enc_reg_region)
5656 r = kvm_x86_ops.mem_enc_reg_region(kvm, &region);
69eaedee
BS
5657 break;
5658 }
5659 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
5660 struct kvm_enc_region region;
5661
5662 r = -EFAULT;
5663 if (copy_from_user(&region, argp, sizeof(region)))
5664 goto out;
5665
5666 r = -ENOTTY;
afaf0b2f
SC
5667 if (kvm_x86_ops.mem_enc_unreg_region)
5668 r = kvm_x86_ops.mem_enc_unreg_region(kvm, &region);
69eaedee
BS
5669 break;
5670 }
faeb7833
RK
5671 case KVM_HYPERV_EVENTFD: {
5672 struct kvm_hyperv_eventfd hvevfd;
5673
5674 r = -EFAULT;
5675 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
5676 goto out;
5677 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
5678 break;
5679 }
66bb8a06
EH
5680 case KVM_SET_PMU_EVENT_FILTER:
5681 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
5682 break;
1a155254
AG
5683 case KVM_X86_SET_MSR_FILTER:
5684 r = kvm_vm_ioctl_set_msr_filter(kvm, argp);
5685 break;
1fe779f8 5686 default:
ad6260da 5687 r = -ENOTTY;
1fe779f8
CO
5688 }
5689out:
5690 return r;
5691}
5692
a16b043c 5693static void kvm_init_msr_list(void)
043405e1 5694{
24c29b7a 5695 struct x86_pmu_capability x86_pmu;
043405e1 5696 u32 dummy[2];
7a5ee6ed 5697 unsigned i;
043405e1 5698
e2ada66e 5699 BUILD_BUG_ON_MSG(INTEL_PMC_MAX_FIXED != 4,
7a5ee6ed 5700 "Please update the fixed PMCs in msrs_to_saved_all[]");
24c29b7a
PB
5701
5702 perf_get_x86_pmu_capability(&x86_pmu);
e2ada66e 5703
6cbee2b9
XL
5704 num_msrs_to_save = 0;
5705 num_emulated_msrs = 0;
5706 num_msr_based_features = 0;
5707
7a5ee6ed
CQ
5708 for (i = 0; i < ARRAY_SIZE(msrs_to_save_all); i++) {
5709 if (rdmsr_safe(msrs_to_save_all[i], &dummy[0], &dummy[1]) < 0)
043405e1 5710 continue;
93c4adc7
PB
5711
5712 /*
5713 * Even MSRs that are valid in the host may not be exposed
9dbe6cf9 5714 * to the guests in some cases.
93c4adc7 5715 */
7a5ee6ed 5716 switch (msrs_to_save_all[i]) {
93c4adc7 5717 case MSR_IA32_BNDCFGS:
503234b3 5718 if (!kvm_mpx_supported())
93c4adc7
PB
5719 continue;
5720 break;
9dbe6cf9 5721 case MSR_TSC_AUX:
13908510 5722 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP))
9dbe6cf9
PB
5723 continue;
5724 break;
f4cfcd2d
ML
5725 case MSR_IA32_UMWAIT_CONTROL:
5726 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
5727 continue;
5728 break;
bf8c55d8
CP
5729 case MSR_IA32_RTIT_CTL:
5730 case MSR_IA32_RTIT_STATUS:
7b874c26 5731 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
bf8c55d8
CP
5732 continue;
5733 break;
5734 case MSR_IA32_RTIT_CR3_MATCH:
7b874c26 5735 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
bf8c55d8
CP
5736 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
5737 continue;
5738 break;
5739 case MSR_IA32_RTIT_OUTPUT_BASE:
5740 case MSR_IA32_RTIT_OUTPUT_MASK:
7b874c26 5741 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
bf8c55d8
CP
5742 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
5743 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
5744 continue;
5745 break;
7cb85fc4 5746 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7b874c26 5747 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7a5ee6ed 5748 msrs_to_save_all[i] - MSR_IA32_RTIT_ADDR0_A >=
bf8c55d8
CP
5749 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2)
5750 continue;
5751 break;
cf05a67b 5752 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR0 + 17:
7a5ee6ed 5753 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_PERFCTR0 >=
24c29b7a
PB
5754 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5755 continue;
5756 break;
cf05a67b 5757 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL0 + 17:
7a5ee6ed 5758 if (msrs_to_save_all[i] - MSR_ARCH_PERFMON_EVENTSEL0 >=
24c29b7a
PB
5759 min(INTEL_PMC_MAX_GENERIC, x86_pmu.num_counters_gp))
5760 continue;
7cb85fc4 5761 break;
93c4adc7
PB
5762 default:
5763 break;
5764 }
5765
7a5ee6ed 5766 msrs_to_save[num_msrs_to_save++] = msrs_to_save_all[i];
043405e1 5767 }
62ef68bb 5768
7a5ee6ed 5769 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
afaf0b2f 5770 if (!kvm_x86_ops.has_emulated_msr(emulated_msrs_all[i]))
bc226f07 5771 continue;
62ef68bb 5772
7a5ee6ed 5773 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
62ef68bb 5774 }
801e459a 5775
7a5ee6ed 5776 for (i = 0; i < ARRAY_SIZE(msr_based_features_all); i++) {
801e459a
TL
5777 struct kvm_msr_entry msr;
5778
7a5ee6ed 5779 msr.index = msr_based_features_all[i];
66421c1e 5780 if (kvm_get_msr_feature(&msr))
801e459a
TL
5781 continue;
5782
7a5ee6ed 5783 msr_based_features[num_msr_based_features++] = msr_based_features_all[i];
801e459a 5784 }
043405e1
CO
5785}
5786
bda9020e
MT
5787static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
5788 const void *v)
bbd9b64e 5789{
70252a10
AK
5790 int handled = 0;
5791 int n;
5792
5793 do {
5794 n = min(len, 8);
bce87cce 5795 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
5796 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
5797 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10
AK
5798 break;
5799 handled += n;
5800 addr += n;
5801 len -= n;
5802 v += n;
5803 } while (len);
bbd9b64e 5804
70252a10 5805 return handled;
bbd9b64e
CO
5806}
5807
bda9020e 5808static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
bbd9b64e 5809{
70252a10
AK
5810 int handled = 0;
5811 int n;
5812
5813 do {
5814 n = min(len, 8);
bce87cce 5815 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
5816 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
5817 addr, n, v))
5818 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10 5819 break;
e39d200f 5820 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
70252a10
AK
5821 handled += n;
5822 addr += n;
5823 len -= n;
5824 v += n;
5825 } while (len);
bbd9b64e 5826
70252a10 5827 return handled;
bbd9b64e
CO
5828}
5829
2dafc6c2
GN
5830static void kvm_set_segment(struct kvm_vcpu *vcpu,
5831 struct kvm_segment *var, int seg)
5832{
afaf0b2f 5833 kvm_x86_ops.set_segment(vcpu, var, seg);
2dafc6c2
GN
5834}
5835
5836void kvm_get_segment(struct kvm_vcpu *vcpu,
5837 struct kvm_segment *var, int seg)
5838{
afaf0b2f 5839 kvm_x86_ops.get_segment(vcpu, var, seg);
2dafc6c2
GN
5840}
5841
54987b7a
PB
5842gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u32 access,
5843 struct x86_exception *exception)
02f59dc9
JR
5844{
5845 gpa_t t_gpa;
02f59dc9
JR
5846
5847 BUG_ON(!mmu_is_nested(vcpu));
5848
5849 /* NPT walks are always user-walks */
5850 access |= PFERR_USER_MASK;
44dd3ffa 5851 t_gpa = vcpu->arch.mmu->gva_to_gpa(vcpu, gpa, access, exception);
02f59dc9
JR
5852
5853 return t_gpa;
5854}
5855
ab9ae313
AK
5856gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
5857 struct x86_exception *exception)
1871c602 5858{
afaf0b2f 5859 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
ab9ae313 5860 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5861}
5862
ab9ae313
AK
5863 gpa_t kvm_mmu_gva_to_gpa_fetch(struct kvm_vcpu *vcpu, gva_t gva,
5864 struct x86_exception *exception)
1871c602 5865{
afaf0b2f 5866 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
1871c602 5867 access |= PFERR_FETCH_MASK;
ab9ae313 5868 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5869}
5870
ab9ae313
AK
5871gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
5872 struct x86_exception *exception)
1871c602 5873{
afaf0b2f 5874 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
1871c602 5875 access |= PFERR_WRITE_MASK;
ab9ae313 5876 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
1871c602
GN
5877}
5878
5879/* uses this to access any guest's mapped memory without checking CPL */
ab9ae313
AK
5880gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
5881 struct x86_exception *exception)
1871c602 5882{
ab9ae313 5883 return vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, 0, exception);
1871c602
GN
5884}
5885
5886static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5887 struct kvm_vcpu *vcpu, u32 access,
bcc55cba 5888 struct x86_exception *exception)
bbd9b64e
CO
5889{
5890 void *data = val;
10589a46 5891 int r = X86EMUL_CONTINUE;
bbd9b64e
CO
5892
5893 while (bytes) {
14dfe855 5894 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access,
ab9ae313 5895 exception);
bbd9b64e 5896 unsigned offset = addr & (PAGE_SIZE-1);
77c2002e 5897 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
bbd9b64e
CO
5898 int ret;
5899
bcc55cba 5900 if (gpa == UNMAPPED_GVA)
ab9ae313 5901 return X86EMUL_PROPAGATE_FAULT;
54bf36aa
PB
5902 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
5903 offset, toread);
10589a46 5904 if (ret < 0) {
c3cd7ffa 5905 r = X86EMUL_IO_NEEDED;
10589a46
MT
5906 goto out;
5907 }
bbd9b64e 5908
77c2002e
IE
5909 bytes -= toread;
5910 data += toread;
5911 addr += toread;
bbd9b64e 5912 }
10589a46 5913out:
10589a46 5914 return r;
bbd9b64e 5915}
77c2002e 5916
1871c602 5917/* used for instruction fetching */
0f65dd70
AK
5918static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
5919 gva_t addr, void *val, unsigned int bytes,
bcc55cba 5920 struct x86_exception *exception)
1871c602 5921{
0f65dd70 5922 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
afaf0b2f 5923 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
44583cba
PB
5924 unsigned offset;
5925 int ret;
0f65dd70 5926
44583cba
PB
5927 /* Inline kvm_read_guest_virt_helper for speed. */
5928 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr, access|PFERR_FETCH_MASK,
5929 exception);
5930 if (unlikely(gpa == UNMAPPED_GVA))
5931 return X86EMUL_PROPAGATE_FAULT;
5932
5933 offset = addr & (PAGE_SIZE-1);
5934 if (WARN_ON(offset + bytes > PAGE_SIZE))
5935 bytes = (unsigned)PAGE_SIZE - offset;
54bf36aa
PB
5936 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
5937 offset, bytes);
44583cba
PB
5938 if (unlikely(ret < 0))
5939 return X86EMUL_IO_NEEDED;
5940
5941 return X86EMUL_CONTINUE;
1871c602
GN
5942}
5943
ce14e868 5944int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
0f65dd70 5945 gva_t addr, void *val, unsigned int bytes,
bcc55cba 5946 struct x86_exception *exception)
1871c602 5947{
afaf0b2f 5948 u32 access = (kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0;
0f65dd70 5949
353c0956
PB
5950 /*
5951 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
5952 * is returned, but our callers are not ready for that and they blindly
5953 * call kvm_inject_page_fault. Ensure that they at least do not leak
5954 * uninitialized kernel stack memory into cr2 and error code.
5955 */
5956 memset(exception, 0, sizeof(*exception));
1871c602 5957 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
bcc55cba 5958 exception);
1871c602 5959}
064aea77 5960EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
1871c602 5961
ce14e868
PB
5962static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
5963 gva_t addr, void *val, unsigned int bytes,
3c9fa24c 5964 struct x86_exception *exception, bool system)
1871c602 5965{
0f65dd70 5966 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3c9fa24c
PB
5967 u32 access = 0;
5968
afaf0b2f 5969 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
3c9fa24c
PB
5970 access |= PFERR_USER_MASK;
5971
5972 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
1871c602
GN
5973}
5974
7a036a6f
RK
5975static int kvm_read_guest_phys_system(struct x86_emulate_ctxt *ctxt,
5976 unsigned long addr, void *val, unsigned int bytes)
5977{
5978 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5979 int r = kvm_vcpu_read_guest(vcpu, addr, val, bytes);
5980
5981 return r < 0 ? X86EMUL_IO_NEEDED : X86EMUL_CONTINUE;
5982}
5983
ce14e868
PB
5984static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5985 struct kvm_vcpu *vcpu, u32 access,
5986 struct x86_exception *exception)
77c2002e
IE
5987{
5988 void *data = val;
5989 int r = X86EMUL_CONTINUE;
5990
5991 while (bytes) {
14dfe855 5992 gpa_t gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, addr,
ce14e868 5993 access,
ab9ae313 5994 exception);
77c2002e
IE
5995 unsigned offset = addr & (PAGE_SIZE-1);
5996 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
5997 int ret;
5998
bcc55cba 5999 if (gpa == UNMAPPED_GVA)
ab9ae313 6000 return X86EMUL_PROPAGATE_FAULT;
54bf36aa 6001 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
77c2002e 6002 if (ret < 0) {
c3cd7ffa 6003 r = X86EMUL_IO_NEEDED;
77c2002e
IE
6004 goto out;
6005 }
6006
6007 bytes -= towrite;
6008 data += towrite;
6009 addr += towrite;
6010 }
6011out:
6012 return r;
6013}
ce14e868
PB
6014
6015static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
3c9fa24c
PB
6016 unsigned int bytes, struct x86_exception *exception,
6017 bool system)
ce14e868
PB
6018{
6019 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3c9fa24c
PB
6020 u32 access = PFERR_WRITE_MASK;
6021
afaf0b2f 6022 if (!system && kvm_x86_ops.get_cpl(vcpu) == 3)
3c9fa24c 6023 access |= PFERR_USER_MASK;
ce14e868
PB
6024
6025 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
3c9fa24c 6026 access, exception);
ce14e868
PB
6027}
6028
6029int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
6030 unsigned int bytes, struct x86_exception *exception)
6031{
c595ceee
PB
6032 /* kvm_write_guest_virt_system can pull in tons of pages. */
6033 vcpu->arch.l1tf_flush_l1d = true;
6034
ce14e868
PB
6035 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
6036 PFERR_WRITE_MASK, exception);
6037}
6a4d7550 6038EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
77c2002e 6039
082d06ed
WL
6040int handle_ud(struct kvm_vcpu *vcpu)
6041{
b3dc0695 6042 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
6c86eedc 6043 int emul_type = EMULTYPE_TRAP_UD;
6c86eedc
WL
6044 char sig[5]; /* ud2; .ascii "kvm" */
6045 struct x86_exception e;
6046
09e3e2a1
SC
6047 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, NULL, 0)))
6048 return 1;
6049
6c86eedc 6050 if (force_emulation_prefix &&
3c9fa24c
PB
6051 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
6052 sig, sizeof(sig), &e) == 0 &&
b3dc0695 6053 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
6c86eedc 6054 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
b4000606 6055 emul_type = EMULTYPE_TRAP_UD_FORCED;
6c86eedc 6056 }
082d06ed 6057
60fc3d02 6058 return kvm_emulate_instruction(vcpu, emul_type);
082d06ed
WL
6059}
6060EXPORT_SYMBOL_GPL(handle_ud);
6061
0f89b207
TL
6062static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6063 gpa_t gpa, bool write)
6064{
6065 /* For APIC access vmexit */
6066 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6067 return 1;
6068
6069 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
6070 trace_vcpu_match_mmio(gva, gpa, write, true);
6071 return 1;
6072 }
6073
6074 return 0;
6075}
6076
af7cc7d1
XG
6077static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
6078 gpa_t *gpa, struct x86_exception *exception,
6079 bool write)
6080{
afaf0b2f 6081 u32 access = ((kvm_x86_ops.get_cpl(vcpu) == 3) ? PFERR_USER_MASK : 0)
97d64b78 6082 | (write ? PFERR_WRITE_MASK : 0);
af7cc7d1 6083
be94f6b7
HH
6084 /*
6085 * currently PKRU is only applied to ept enabled guest so
6086 * there is no pkey in EPT page table for L1 guest or EPT
6087 * shadow page table for L2 guest.
6088 */
97d64b78 6089 if (vcpu_match_mmio_gva(vcpu, gva)
97ec8c06 6090 && !permission_fault(vcpu, vcpu->arch.walk_mmu,
871bd034 6091 vcpu->arch.mmio_access, 0, access)) {
bebb106a
XG
6092 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
6093 (gva & (PAGE_SIZE - 1));
4f022648 6094 trace_vcpu_match_mmio(gva, *gpa, write, false);
bebb106a
XG
6095 return 1;
6096 }
6097
af7cc7d1
XG
6098 *gpa = vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, exception);
6099
6100 if (*gpa == UNMAPPED_GVA)
6101 return -1;
6102
0f89b207 6103 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
af7cc7d1
XG
6104}
6105
3200f405 6106int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
bcc55cba 6107 const void *val, int bytes)
bbd9b64e
CO
6108{
6109 int ret;
6110
54bf36aa 6111 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
9f811285 6112 if (ret < 0)
bbd9b64e 6113 return 0;
0eb05bf2 6114 kvm_page_track_write(vcpu, gpa, val, bytes);
bbd9b64e
CO
6115 return 1;
6116}
6117
77d197b2
XG
6118struct read_write_emulator_ops {
6119 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
6120 int bytes);
6121 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
6122 void *val, int bytes);
6123 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6124 int bytes, void *val);
6125 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
6126 void *val, int bytes);
6127 bool write;
6128};
6129
6130static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
6131{
6132 if (vcpu->mmio_read_completed) {
77d197b2 6133 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
e39d200f 6134 vcpu->mmio_fragments[0].gpa, val);
77d197b2
XG
6135 vcpu->mmio_read_completed = 0;
6136 return 1;
6137 }
6138
6139 return 0;
6140}
6141
6142static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6143 void *val, int bytes)
6144{
54bf36aa 6145 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
77d197b2
XG
6146}
6147
6148static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
6149 void *val, int bytes)
6150{
6151 return emulator_write_phys(vcpu, gpa, val, bytes);
6152}
6153
6154static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
6155{
e39d200f 6156 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
77d197b2
XG
6157 return vcpu_mmio_write(vcpu, gpa, bytes, val);
6158}
6159
6160static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6161 void *val, int bytes)
6162{
e39d200f 6163 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
77d197b2
XG
6164 return X86EMUL_IO_NEEDED;
6165}
6166
6167static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
6168 void *val, int bytes)
6169{
f78146b0
AK
6170 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
6171
87da7e66 6172 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
77d197b2
XG
6173 return X86EMUL_CONTINUE;
6174}
6175
0fbe9b0b 6176static const struct read_write_emulator_ops read_emultor = {
77d197b2
XG
6177 .read_write_prepare = read_prepare,
6178 .read_write_emulate = read_emulate,
6179 .read_write_mmio = vcpu_mmio_read,
6180 .read_write_exit_mmio = read_exit_mmio,
6181};
6182
0fbe9b0b 6183static const struct read_write_emulator_ops write_emultor = {
77d197b2
XG
6184 .read_write_emulate = write_emulate,
6185 .read_write_mmio = write_mmio,
6186 .read_write_exit_mmio = write_exit_mmio,
6187 .write = true,
6188};
6189
22388a3c
XG
6190static int emulator_read_write_onepage(unsigned long addr, void *val,
6191 unsigned int bytes,
6192 struct x86_exception *exception,
6193 struct kvm_vcpu *vcpu,
0fbe9b0b 6194 const struct read_write_emulator_ops *ops)
bbd9b64e 6195{
af7cc7d1
XG
6196 gpa_t gpa;
6197 int handled, ret;
22388a3c 6198 bool write = ops->write;
f78146b0 6199 struct kvm_mmio_fragment *frag;
c9b8b07c 6200 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
0f89b207
TL
6201
6202 /*
6203 * If the exit was due to a NPF we may already have a GPA.
6204 * If the GPA is present, use it to avoid the GVA to GPA table walk.
6205 * Note, this cannot be used on string operations since string
6206 * operation using rep will only have the initial GPA from the NPF
6207 * occurred.
6208 */
744e699c
SC
6209 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
6210 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
6211 gpa = ctxt->gpa_val;
618232e2
BS
6212 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
6213 } else {
6214 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
6215 if (ret < 0)
6216 return X86EMUL_PROPAGATE_FAULT;
0f89b207 6217 }
10589a46 6218
618232e2 6219 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
bbd9b64e
CO
6220 return X86EMUL_CONTINUE;
6221
bbd9b64e
CO
6222 /*
6223 * Is this MMIO handled locally?
6224 */
22388a3c 6225 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
70252a10 6226 if (handled == bytes)
bbd9b64e 6227 return X86EMUL_CONTINUE;
bbd9b64e 6228
70252a10
AK
6229 gpa += handled;
6230 bytes -= handled;
6231 val += handled;
6232
87da7e66
XG
6233 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
6234 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
6235 frag->gpa = gpa;
6236 frag->data = val;
6237 frag->len = bytes;
f78146b0 6238 return X86EMUL_CONTINUE;
bbd9b64e
CO
6239}
6240
52eb5a6d
XL
6241static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
6242 unsigned long addr,
22388a3c
XG
6243 void *val, unsigned int bytes,
6244 struct x86_exception *exception,
0fbe9b0b 6245 const struct read_write_emulator_ops *ops)
bbd9b64e 6246{
0f65dd70 6247 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
f78146b0
AK
6248 gpa_t gpa;
6249 int rc;
6250
6251 if (ops->read_write_prepare &&
6252 ops->read_write_prepare(vcpu, val, bytes))
6253 return X86EMUL_CONTINUE;
6254
6255 vcpu->mmio_nr_fragments = 0;
0f65dd70 6256
bbd9b64e
CO
6257 /* Crossing a page boundary? */
6258 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
f78146b0 6259 int now;
bbd9b64e
CO
6260
6261 now = -addr & ~PAGE_MASK;
22388a3c
XG
6262 rc = emulator_read_write_onepage(addr, val, now, exception,
6263 vcpu, ops);
6264
bbd9b64e
CO
6265 if (rc != X86EMUL_CONTINUE)
6266 return rc;
6267 addr += now;
bac15531
NA
6268 if (ctxt->mode != X86EMUL_MODE_PROT64)
6269 addr = (u32)addr;
bbd9b64e
CO
6270 val += now;
6271 bytes -= now;
6272 }
22388a3c 6273
f78146b0
AK
6274 rc = emulator_read_write_onepage(addr, val, bytes, exception,
6275 vcpu, ops);
6276 if (rc != X86EMUL_CONTINUE)
6277 return rc;
6278
6279 if (!vcpu->mmio_nr_fragments)
6280 return rc;
6281
6282 gpa = vcpu->mmio_fragments[0].gpa;
6283
6284 vcpu->mmio_needed = 1;
6285 vcpu->mmio_cur_fragment = 0;
6286
87da7e66 6287 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
f78146b0
AK
6288 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
6289 vcpu->run->exit_reason = KVM_EXIT_MMIO;
6290 vcpu->run->mmio.phys_addr = gpa;
6291
6292 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
22388a3c
XG
6293}
6294
6295static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
6296 unsigned long addr,
6297 void *val,
6298 unsigned int bytes,
6299 struct x86_exception *exception)
6300{
6301 return emulator_read_write(ctxt, addr, val, bytes,
6302 exception, &read_emultor);
6303}
6304
52eb5a6d 6305static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
22388a3c
XG
6306 unsigned long addr,
6307 const void *val,
6308 unsigned int bytes,
6309 struct x86_exception *exception)
6310{
6311 return emulator_read_write(ctxt, addr, (void *)val, bytes,
6312 exception, &write_emultor);
bbd9b64e 6313}
bbd9b64e 6314
daea3e73
AK
6315#define CMPXCHG_TYPE(t, ptr, old, new) \
6316 (cmpxchg((t *)(ptr), *(t *)(old), *(t *)(new)) == *(t *)(old))
6317
6318#ifdef CONFIG_X86_64
6319# define CMPXCHG64(ptr, old, new) CMPXCHG_TYPE(u64, ptr, old, new)
6320#else
6321# define CMPXCHG64(ptr, old, new) \
9749a6c0 6322 (cmpxchg64((u64 *)(ptr), *(u64 *)(old), *(u64 *)(new)) == *(u64 *)(old))
daea3e73
AK
6323#endif
6324
0f65dd70
AK
6325static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
6326 unsigned long addr,
bbd9b64e
CO
6327 const void *old,
6328 const void *new,
6329 unsigned int bytes,
0f65dd70 6330 struct x86_exception *exception)
bbd9b64e 6331{
42e35f80 6332 struct kvm_host_map map;
0f65dd70 6333 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9de6fe3c 6334 u64 page_line_mask;
daea3e73 6335 gpa_t gpa;
daea3e73
AK
6336 char *kaddr;
6337 bool exchanged;
2bacc55c 6338
daea3e73
AK
6339 /* guests cmpxchg8b have to be emulated atomically */
6340 if (bytes > 8 || (bytes & (bytes - 1)))
6341 goto emul_write;
10589a46 6342
daea3e73 6343 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
2bacc55c 6344
daea3e73
AK
6345 if (gpa == UNMAPPED_GVA ||
6346 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
6347 goto emul_write;
2bacc55c 6348
9de6fe3c
XL
6349 /*
6350 * Emulate the atomic as a straight write to avoid #AC if SLD is
6351 * enabled in the host and the access splits a cache line.
6352 */
6353 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
6354 page_line_mask = ~(cache_line_size() - 1);
6355 else
6356 page_line_mask = PAGE_MASK;
6357
6358 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
daea3e73 6359 goto emul_write;
72dc67a6 6360
42e35f80 6361 if (kvm_vcpu_map(vcpu, gpa_to_gfn(gpa), &map))
c19b8bd6 6362 goto emul_write;
72dc67a6 6363
42e35f80
KA
6364 kaddr = map.hva + offset_in_page(gpa);
6365
daea3e73
AK
6366 switch (bytes) {
6367 case 1:
6368 exchanged = CMPXCHG_TYPE(u8, kaddr, old, new);
6369 break;
6370 case 2:
6371 exchanged = CMPXCHG_TYPE(u16, kaddr, old, new);
6372 break;
6373 case 4:
6374 exchanged = CMPXCHG_TYPE(u32, kaddr, old, new);
6375 break;
6376 case 8:
6377 exchanged = CMPXCHG64(kaddr, old, new);
6378 break;
6379 default:
6380 BUG();
2bacc55c 6381 }
42e35f80
KA
6382
6383 kvm_vcpu_unmap(vcpu, &map, true);
daea3e73
AK
6384
6385 if (!exchanged)
6386 return X86EMUL_CMPXCHG_FAILED;
6387
0eb05bf2 6388 kvm_page_track_write(vcpu, gpa, new, bytes);
8f6abd06
GN
6389
6390 return X86EMUL_CONTINUE;
4a5f48f6 6391
3200f405 6392emul_write:
daea3e73 6393 printk_once(KERN_WARNING "kvm: emulating exchange as write\n");
2bacc55c 6394
0f65dd70 6395 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
bbd9b64e
CO
6396}
6397
cf8f70bf
GN
6398static int kernel_pio(struct kvm_vcpu *vcpu, void *pd)
6399{
cbfc6c91 6400 int r = 0, i;
cf8f70bf 6401
cbfc6c91
WL
6402 for (i = 0; i < vcpu->arch.pio.count; i++) {
6403 if (vcpu->arch.pio.in)
6404 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, vcpu->arch.pio.port,
6405 vcpu->arch.pio.size, pd);
6406 else
6407 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS,
6408 vcpu->arch.pio.port, vcpu->arch.pio.size,
6409 pd);
6410 if (r)
6411 break;
6412 pd += vcpu->arch.pio.size;
6413 }
cf8f70bf
GN
6414 return r;
6415}
6416
6f6fbe98
XG
6417static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
6418 unsigned short port, void *val,
6419 unsigned int count, bool in)
cf8f70bf 6420{
cf8f70bf 6421 vcpu->arch.pio.port = port;
6f6fbe98 6422 vcpu->arch.pio.in = in;
7972995b 6423 vcpu->arch.pio.count = count;
cf8f70bf
GN
6424 vcpu->arch.pio.size = size;
6425
6426 if (!kernel_pio(vcpu, vcpu->arch.pio_data)) {
7972995b 6427 vcpu->arch.pio.count = 0;
cf8f70bf
GN
6428 return 1;
6429 }
6430
6431 vcpu->run->exit_reason = KVM_EXIT_IO;
6f6fbe98 6432 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
cf8f70bf
GN
6433 vcpu->run->io.size = size;
6434 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
6435 vcpu->run->io.count = count;
6436 vcpu->run->io.port = port;
6437
6438 return 0;
6439}
6440
2e3bb4d8
SC
6441static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
6442 unsigned short port, void *val, unsigned int count)
cf8f70bf 6443{
6f6fbe98 6444 int ret;
ca1d4a9e 6445
6f6fbe98
XG
6446 if (vcpu->arch.pio.count)
6447 goto data_avail;
cf8f70bf 6448
cbfc6c91
WL
6449 memset(vcpu->arch.pio_data, 0, size * count);
6450
6f6fbe98
XG
6451 ret = emulator_pio_in_out(vcpu, size, port, val, count, true);
6452 if (ret) {
6453data_avail:
6454 memcpy(val, vcpu->arch.pio_data, size * count);
1171903d 6455 trace_kvm_pio(KVM_PIO_IN, port, size, count, vcpu->arch.pio_data);
7972995b 6456 vcpu->arch.pio.count = 0;
cf8f70bf
GN
6457 return 1;
6458 }
6459
cf8f70bf
GN
6460 return 0;
6461}
6462
2e3bb4d8
SC
6463static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
6464 int size, unsigned short port, void *val,
6465 unsigned int count)
6f6fbe98 6466{
2e3bb4d8 6467 return emulator_pio_in(emul_to_vcpu(ctxt), size, port, val, count);
6f6fbe98 6468
2e3bb4d8 6469}
6f6fbe98 6470
2e3bb4d8
SC
6471static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
6472 unsigned short port, const void *val,
6473 unsigned int count)
6474{
6f6fbe98 6475 memcpy(vcpu->arch.pio_data, val, size * count);
1171903d 6476 trace_kvm_pio(KVM_PIO_OUT, port, size, count, vcpu->arch.pio_data);
6f6fbe98
XG
6477 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6478}
6479
2e3bb4d8
SC
6480static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
6481 int size, unsigned short port,
6482 const void *val, unsigned int count)
6483{
6484 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
6485}
6486
bbd9b64e
CO
6487static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
6488{
afaf0b2f 6489 return kvm_x86_ops.get_segment_base(vcpu, seg);
bbd9b64e
CO
6490}
6491
3cb16fe7 6492static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
bbd9b64e 6493{
3cb16fe7 6494 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
bbd9b64e
CO
6495}
6496
ae6a2375 6497static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
f5f48ee1
SY
6498{
6499 if (!need_emulate_wbinvd(vcpu))
6500 return X86EMUL_CONTINUE;
6501
afaf0b2f 6502 if (kvm_x86_ops.has_wbinvd_exit()) {
2eec7343
JK
6503 int cpu = get_cpu();
6504
6505 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
f5f48ee1
SY
6506 smp_call_function_many(vcpu->arch.wbinvd_dirty_mask,
6507 wbinvd_ipi, NULL, 1);
2eec7343 6508 put_cpu();
f5f48ee1 6509 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
2eec7343
JK
6510 } else
6511 wbinvd();
f5f48ee1
SY
6512 return X86EMUL_CONTINUE;
6513}
5cb56059
JS
6514
6515int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
6516{
6affcbed
KH
6517 kvm_emulate_wbinvd_noskip(vcpu);
6518 return kvm_skip_emulated_instruction(vcpu);
5cb56059 6519}
f5f48ee1
SY
6520EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
6521
5cb56059
JS
6522
6523
bcaf5cc5
AK
6524static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
6525{
5cb56059 6526 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
bcaf5cc5
AK
6527}
6528
52eb5a6d
XL
6529static int emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
6530 unsigned long *dest)
bbd9b64e 6531{
16f8a6f9 6532 return kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
bbd9b64e
CO
6533}
6534
52eb5a6d
XL
6535static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
6536 unsigned long value)
bbd9b64e 6537{
338dbc97 6538
717746e3 6539 return __kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
bbd9b64e
CO
6540}
6541
52a46617 6542static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5fdbf976 6543{
52a46617 6544 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5fdbf976
MT
6545}
6546
717746e3 6547static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
bbd9b64e 6548{
717746e3 6549 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
52a46617
GN
6550 unsigned long value;
6551
6552 switch (cr) {
6553 case 0:
6554 value = kvm_read_cr0(vcpu);
6555 break;
6556 case 2:
6557 value = vcpu->arch.cr2;
6558 break;
6559 case 3:
9f8fe504 6560 value = kvm_read_cr3(vcpu);
52a46617
GN
6561 break;
6562 case 4:
6563 value = kvm_read_cr4(vcpu);
6564 break;
6565 case 8:
6566 value = kvm_get_cr8(vcpu);
6567 break;
6568 default:
a737f256 6569 kvm_err("%s: unexpected cr %u\n", __func__, cr);
52a46617
GN
6570 return 0;
6571 }
6572
6573 return value;
6574}
6575
717746e3 6576static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
52a46617 6577{
717746e3 6578 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
0f12244f
GN
6579 int res = 0;
6580
52a46617
GN
6581 switch (cr) {
6582 case 0:
49a9b07e 6583 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
52a46617
GN
6584 break;
6585 case 2:
6586 vcpu->arch.cr2 = val;
6587 break;
6588 case 3:
2390218b 6589 res = kvm_set_cr3(vcpu, val);
52a46617
GN
6590 break;
6591 case 4:
a83b29c6 6592 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
52a46617
GN
6593 break;
6594 case 8:
eea1cff9 6595 res = kvm_set_cr8(vcpu, val);
52a46617
GN
6596 break;
6597 default:
a737f256 6598 kvm_err("%s: unexpected cr %u\n", __func__, cr);
0f12244f 6599 res = -1;
52a46617 6600 }
0f12244f
GN
6601
6602 return res;
52a46617
GN
6603}
6604
717746e3 6605static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
9c537244 6606{
afaf0b2f 6607 return kvm_x86_ops.get_cpl(emul_to_vcpu(ctxt));
9c537244
GN
6608}
6609
4bff1e86 6610static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
2dafc6c2 6611{
afaf0b2f 6612 kvm_x86_ops.get_gdt(emul_to_vcpu(ctxt), dt);
2dafc6c2
GN
6613}
6614
4bff1e86 6615static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
160ce1f1 6616{
afaf0b2f 6617 kvm_x86_ops.get_idt(emul_to_vcpu(ctxt), dt);
160ce1f1
MG
6618}
6619
1ac9d0cf
AK
6620static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6621{
afaf0b2f 6622 kvm_x86_ops.set_gdt(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
6623}
6624
6625static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
6626{
afaf0b2f 6627 kvm_x86_ops.set_idt(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
6628}
6629
4bff1e86
AK
6630static unsigned long emulator_get_cached_segment_base(
6631 struct x86_emulate_ctxt *ctxt, int seg)
5951c442 6632{
4bff1e86 6633 return get_segment_base(emul_to_vcpu(ctxt), seg);
5951c442
GN
6634}
6635
1aa36616
AK
6636static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
6637 struct desc_struct *desc, u32 *base3,
6638 int seg)
2dafc6c2
GN
6639{
6640 struct kvm_segment var;
6641
4bff1e86 6642 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
1aa36616 6643 *selector = var.selector;
2dafc6c2 6644
378a8b09
GN
6645 if (var.unusable) {
6646 memset(desc, 0, sizeof(*desc));
f0367ee1
RK
6647 if (base3)
6648 *base3 = 0;
2dafc6c2 6649 return false;
378a8b09 6650 }
2dafc6c2
GN
6651
6652 if (var.g)
6653 var.limit >>= 12;
6654 set_desc_limit(desc, var.limit);
6655 set_desc_base(desc, (unsigned long)var.base);
5601d05b
GN
6656#ifdef CONFIG_X86_64
6657 if (base3)
6658 *base3 = var.base >> 32;
6659#endif
2dafc6c2
GN
6660 desc->type = var.type;
6661 desc->s = var.s;
6662 desc->dpl = var.dpl;
6663 desc->p = var.present;
6664 desc->avl = var.avl;
6665 desc->l = var.l;
6666 desc->d = var.db;
6667 desc->g = var.g;
6668
6669 return true;
6670}
6671
1aa36616
AK
6672static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
6673 struct desc_struct *desc, u32 base3,
6674 int seg)
2dafc6c2 6675{
4bff1e86 6676 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
2dafc6c2
GN
6677 struct kvm_segment var;
6678
1aa36616 6679 var.selector = selector;
2dafc6c2 6680 var.base = get_desc_base(desc);
5601d05b
GN
6681#ifdef CONFIG_X86_64
6682 var.base |= ((u64)base3) << 32;
6683#endif
2dafc6c2
GN
6684 var.limit = get_desc_limit(desc);
6685 if (desc->g)
6686 var.limit = (var.limit << 12) | 0xfff;
6687 var.type = desc->type;
2dafc6c2
GN
6688 var.dpl = desc->dpl;
6689 var.db = desc->d;
6690 var.s = desc->s;
6691 var.l = desc->l;
6692 var.g = desc->g;
6693 var.avl = desc->avl;
6694 var.present = desc->p;
6695 var.unusable = !var.present;
6696 var.padding = 0;
6697
6698 kvm_set_segment(vcpu, &var, seg);
6699 return;
6700}
6701
717746e3
AK
6702static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
6703 u32 msr_index, u64 *pdata)
6704{
1ae09954
AG
6705 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6706 int r;
6707
6708 r = kvm_get_msr(vcpu, msr_index, pdata);
6709
6710 if (r && kvm_get_msr_user_space(vcpu, msr_index, r)) {
6711 /* Bounce to user space */
6712 return X86EMUL_IO_NEEDED;
6713 }
6714
6715 return r;
717746e3
AK
6716}
6717
6718static int emulator_set_msr(struct x86_emulate_ctxt *ctxt,
6719 u32 msr_index, u64 data)
6720{
1ae09954
AG
6721 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6722 int r;
6723
6724 r = kvm_set_msr(vcpu, msr_index, data);
6725
6726 if (r && kvm_set_msr_user_space(vcpu, msr_index, data, r)) {
6727 /* Bounce to user space */
6728 return X86EMUL_IO_NEEDED;
6729 }
6730
6731 return r;
717746e3
AK
6732}
6733
64d60670
PB
6734static u64 emulator_get_smbase(struct x86_emulate_ctxt *ctxt)
6735{
6736 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6737
6738 return vcpu->arch.smbase;
6739}
6740
6741static void emulator_set_smbase(struct x86_emulate_ctxt *ctxt, u64 smbase)
6742{
6743 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
6744
6745 vcpu->arch.smbase = smbase;
6746}
6747
67f4d428
NA
6748static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
6749 u32 pmc)
6750{
98ff80f5 6751 return kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc);
67f4d428
NA
6752}
6753
222d21aa
AK
6754static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
6755 u32 pmc, u64 *pdata)
6756{
c6702c9d 6757 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
222d21aa
AK
6758}
6759
6c3287f7
AK
6760static void emulator_halt(struct x86_emulate_ctxt *ctxt)
6761{
6762 emul_to_vcpu(ctxt)->arch.halt_request = 1;
6763}
6764
2953538e 6765static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8a76d7f2 6766 struct x86_instruction_info *info,
c4f035c6
AK
6767 enum x86_intercept_stage stage)
6768{
afaf0b2f 6769 return kvm_x86_ops.check_intercept(emul_to_vcpu(ctxt), info, stage,
21f1b8f2 6770 &ctxt->exception);
c4f035c6
AK
6771}
6772
e911eb3b 6773static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
f91af517
SC
6774 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
6775 bool exact_only)
bdb42f5a 6776{
f91af517 6777 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
bdb42f5a
SB
6778}
6779
5ae78e95
SC
6780static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
6781{
6782 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
6783}
6784
6785static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
6786{
6787 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
6788}
6789
6790static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
6791{
6792 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
6793}
6794
dd856efa
AK
6795static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
6796{
6797 return kvm_register_read(emul_to_vcpu(ctxt), reg);
6798}
6799
6800static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
6801{
6802 kvm_register_write(emul_to_vcpu(ctxt), reg, val);
6803}
6804
801806d9
NA
6805static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
6806{
afaf0b2f 6807 kvm_x86_ops.set_nmi_mask(emul_to_vcpu(ctxt), masked);
801806d9
NA
6808}
6809
6ed071f0
LP
6810static unsigned emulator_get_hflags(struct x86_emulate_ctxt *ctxt)
6811{
6812 return emul_to_vcpu(ctxt)->arch.hflags;
6813}
6814
6815static void emulator_set_hflags(struct x86_emulate_ctxt *ctxt, unsigned emul_flags)
6816{
c5833c7a 6817 emul_to_vcpu(ctxt)->arch.hflags = emul_flags;
6ed071f0
LP
6818}
6819
ed19321f
SC
6820static int emulator_pre_leave_smm(struct x86_emulate_ctxt *ctxt,
6821 const char *smstate)
0234bf88 6822{
afaf0b2f 6823 return kvm_x86_ops.pre_leave_smm(emul_to_vcpu(ctxt), smstate);
0234bf88
LP
6824}
6825
c5833c7a
SC
6826static void emulator_post_leave_smm(struct x86_emulate_ctxt *ctxt)
6827{
6828 kvm_smm_changed(emul_to_vcpu(ctxt));
6829}
6830
02d4160f
VK
6831static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
6832{
6833 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
6834}
6835
0225fb50 6836static const struct x86_emulate_ops emulate_ops = {
dd856efa
AK
6837 .read_gpr = emulator_read_gpr,
6838 .write_gpr = emulator_write_gpr,
ce14e868
PB
6839 .read_std = emulator_read_std,
6840 .write_std = emulator_write_std,
7a036a6f 6841 .read_phys = kvm_read_guest_phys_system,
1871c602 6842 .fetch = kvm_fetch_guest_virt,
bbd9b64e
CO
6843 .read_emulated = emulator_read_emulated,
6844 .write_emulated = emulator_write_emulated,
6845 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3cb16fe7 6846 .invlpg = emulator_invlpg,
cf8f70bf
GN
6847 .pio_in_emulated = emulator_pio_in_emulated,
6848 .pio_out_emulated = emulator_pio_out_emulated,
1aa36616
AK
6849 .get_segment = emulator_get_segment,
6850 .set_segment = emulator_set_segment,
5951c442 6851 .get_cached_segment_base = emulator_get_cached_segment_base,
2dafc6c2 6852 .get_gdt = emulator_get_gdt,
160ce1f1 6853 .get_idt = emulator_get_idt,
1ac9d0cf
AK
6854 .set_gdt = emulator_set_gdt,
6855 .set_idt = emulator_set_idt,
52a46617
GN
6856 .get_cr = emulator_get_cr,
6857 .set_cr = emulator_set_cr,
9c537244 6858 .cpl = emulator_get_cpl,
35aa5375
GN
6859 .get_dr = emulator_get_dr,
6860 .set_dr = emulator_set_dr,
64d60670
PB
6861 .get_smbase = emulator_get_smbase,
6862 .set_smbase = emulator_set_smbase,
717746e3
AK
6863 .set_msr = emulator_set_msr,
6864 .get_msr = emulator_get_msr,
67f4d428 6865 .check_pmc = emulator_check_pmc,
222d21aa 6866 .read_pmc = emulator_read_pmc,
6c3287f7 6867 .halt = emulator_halt,
bcaf5cc5 6868 .wbinvd = emulator_wbinvd,
d6aa1000 6869 .fix_hypercall = emulator_fix_hypercall,
c4f035c6 6870 .intercept = emulator_intercept,
bdb42f5a 6871 .get_cpuid = emulator_get_cpuid,
5ae78e95
SC
6872 .guest_has_long_mode = emulator_guest_has_long_mode,
6873 .guest_has_movbe = emulator_guest_has_movbe,
6874 .guest_has_fxsr = emulator_guest_has_fxsr,
801806d9 6875 .set_nmi_mask = emulator_set_nmi_mask,
6ed071f0
LP
6876 .get_hflags = emulator_get_hflags,
6877 .set_hflags = emulator_set_hflags,
0234bf88 6878 .pre_leave_smm = emulator_pre_leave_smm,
c5833c7a 6879 .post_leave_smm = emulator_post_leave_smm,
02d4160f 6880 .set_xcr = emulator_set_xcr,
bbd9b64e
CO
6881};
6882
95cb2295
GN
6883static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
6884{
afaf0b2f 6885 u32 int_shadow = kvm_x86_ops.get_interrupt_shadow(vcpu);
95cb2295
GN
6886 /*
6887 * an sti; sti; sequence only disable interrupts for the first
6888 * instruction. So, if the last instruction, be it emulated or
6889 * not, left the system with the INT_STI flag enabled, it
6890 * means that the last instruction is an sti. We should not
6891 * leave the flag on in this case. The same goes for mov ss
6892 */
37ccdcbe
PB
6893 if (int_shadow & mask)
6894 mask = 0;
6addfc42 6895 if (unlikely(int_shadow || mask)) {
afaf0b2f 6896 kvm_x86_ops.set_interrupt_shadow(vcpu, mask);
6addfc42
PB
6897 if (!mask)
6898 kvm_make_request(KVM_REQ_EVENT, vcpu);
6899 }
95cb2295
GN
6900}
6901
ef54bcfe 6902static bool inject_emulated_exception(struct kvm_vcpu *vcpu)
54b8486f 6903{
c9b8b07c 6904 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
da9cb575 6905 if (ctxt->exception.vector == PF_VECTOR)
53b3d8e9 6906 return kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
ef54bcfe
PB
6907
6908 if (ctxt->exception.error_code_valid)
da9cb575
AK
6909 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
6910 ctxt->exception.error_code);
54b8486f 6911 else
da9cb575 6912 kvm_queue_exception(vcpu, ctxt->exception.vector);
ef54bcfe 6913 return false;
54b8486f
GN
6914}
6915
c9b8b07c
SC
6916static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
6917{
6918 struct x86_emulate_ctxt *ctxt;
6919
6920 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
6921 if (!ctxt) {
6922 pr_err("kvm: failed to allocate vcpu's emulator\n");
6923 return NULL;
6924 }
6925
6926 ctxt->vcpu = vcpu;
6927 ctxt->ops = &emulate_ops;
6928 vcpu->arch.emulate_ctxt = ctxt;
6929
6930 return ctxt;
6931}
6932
8ec4722d
MG
6933static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
6934{
c9b8b07c 6935 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d
MG
6936 int cs_db, cs_l;
6937
afaf0b2f 6938 kvm_x86_ops.get_cs_db_l_bits(vcpu, &cs_db, &cs_l);
8ec4722d 6939
744e699c 6940 ctxt->gpa_available = false;
adf52235 6941 ctxt->eflags = kvm_get_rflags(vcpu);
c8401dda
PB
6942 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
6943
adf52235
TY
6944 ctxt->eip = kvm_rip_read(vcpu);
6945 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
6946 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
42bf549f 6947 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
adf52235
TY
6948 cs_db ? X86EMUL_MODE_PROT32 :
6949 X86EMUL_MODE_PROT16;
a584539b 6950 BUILD_BUG_ON(HF_GUEST_MASK != X86EMUL_GUEST_MASK);
64d60670
PB
6951 BUILD_BUG_ON(HF_SMM_MASK != X86EMUL_SMM_MASK);
6952 BUILD_BUG_ON(HF_SMM_INSIDE_NMI_MASK != X86EMUL_SMM_INSIDE_NMI_MASK);
adf52235 6953
dd856efa 6954 init_decode_cache(ctxt);
7ae441ea 6955 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8ec4722d
MG
6956}
6957
9497e1f2 6958void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
63995653 6959{
c9b8b07c 6960 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
63995653
MG
6961 int ret;
6962
6963 init_emulate_ctxt(vcpu);
6964
9dac77fa
AK
6965 ctxt->op_bytes = 2;
6966 ctxt->ad_bytes = 2;
6967 ctxt->_eip = ctxt->eip + inc_eip;
9d74191a 6968 ret = emulate_int_real(ctxt, irq);
63995653 6969
9497e1f2
SC
6970 if (ret != X86EMUL_CONTINUE) {
6971 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6972 } else {
6973 ctxt->eip = ctxt->_eip;
6974 kvm_rip_write(vcpu, ctxt->eip);
6975 kvm_set_rflags(vcpu, ctxt->eflags);
6976 }
63995653
MG
6977}
6978EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
6979
e2366171 6980static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6d77dbfc 6981{
6d77dbfc
GN
6982 ++vcpu->stat.insn_emulation_fail;
6983 trace_kvm_emulate_insn_failed(vcpu);
e2366171 6984
42cbf068
SC
6985 if (emulation_type & EMULTYPE_VMWARE_GP) {
6986 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 6987 return 1;
42cbf068 6988 }
e2366171 6989
738fece4
SC
6990 if (emulation_type & EMULTYPE_SKIP) {
6991 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6992 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6993 vcpu->run->internal.ndata = 0;
60fc3d02 6994 return 0;
738fece4
SC
6995 }
6996
22da61c9
SC
6997 kvm_queue_exception(vcpu, UD_VECTOR);
6998
afaf0b2f 6999 if (!is_guest_mode(vcpu) && kvm_x86_ops.get_cpl(vcpu) == 0) {
fc3a9157
JR
7000 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7001 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7002 vcpu->run->internal.ndata = 0;
60fc3d02 7003 return 0;
fc3a9157 7004 }
e2366171 7005
60fc3d02 7006 return 1;
6d77dbfc
GN
7007}
7008
736c291c 7009static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
991eebf9
GN
7010 bool write_fault_to_shadow_pgtable,
7011 int emulation_type)
a6f177ef 7012{
736c291c 7013 gpa_t gpa = cr2_or_gpa;
ba049e93 7014 kvm_pfn_t pfn;
a6f177ef 7015
92daa48b 7016 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
991eebf9
GN
7017 return false;
7018
92daa48b
SC
7019 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7020 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
7021 return false;
7022
44dd3ffa 7023 if (!vcpu->arch.mmu->direct_map) {
95b3cf69
XG
7024 /*
7025 * Write permission should be allowed since only
7026 * write access need to be emulated.
7027 */
736c291c 7028 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
a6f177ef 7029
95b3cf69
XG
7030 /*
7031 * If the mapping is invalid in guest, let cpu retry
7032 * it to generate fault.
7033 */
7034 if (gpa == UNMAPPED_GVA)
7035 return true;
7036 }
a6f177ef 7037
8e3d9d06
XG
7038 /*
7039 * Do not retry the unhandleable instruction if it faults on the
7040 * readonly host memory, otherwise it will goto a infinite loop:
7041 * retry instruction -> write #PF -> emulation fail -> retry
7042 * instruction -> ...
7043 */
7044 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
95b3cf69
XG
7045
7046 /*
7047 * If the instruction failed on the error pfn, it can not be fixed,
7048 * report the error to userspace.
7049 */
7050 if (is_error_noslot_pfn(pfn))
7051 return false;
7052
7053 kvm_release_pfn_clean(pfn);
7054
7055 /* The instructions are well-emulated on direct mmu. */
44dd3ffa 7056 if (vcpu->arch.mmu->direct_map) {
95b3cf69
XG
7057 unsigned int indirect_shadow_pages;
7058
7059 spin_lock(&vcpu->kvm->mmu_lock);
7060 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
7061 spin_unlock(&vcpu->kvm->mmu_lock);
7062
7063 if (indirect_shadow_pages)
7064 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
7065
a6f177ef 7066 return true;
8e3d9d06 7067 }
a6f177ef 7068
95b3cf69
XG
7069 /*
7070 * if emulation was due to access to shadowed page table
7071 * and it failed try to unshadow page and re-enter the
7072 * guest to let CPU execute the instruction.
7073 */
7074 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
93c05d3e
XG
7075
7076 /*
7077 * If the access faults on its page table, it can not
7078 * be fixed by unprotecting shadow page and it should
7079 * be reported to userspace.
7080 */
7081 return !write_fault_to_shadow_pgtable;
a6f177ef
GN
7082}
7083
1cb3f3ae 7084static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
736c291c 7085 gpa_t cr2_or_gpa, int emulation_type)
1cb3f3ae
XG
7086{
7087 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
736c291c 7088 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
1cb3f3ae
XG
7089
7090 last_retry_eip = vcpu->arch.last_retry_eip;
7091 last_retry_addr = vcpu->arch.last_retry_addr;
7092
7093 /*
7094 * If the emulation is caused by #PF and it is non-page_table
7095 * writing instruction, it means the VM-EXIT is caused by shadow
7096 * page protected, we can zap the shadow page and retry this
7097 * instruction directly.
7098 *
7099 * Note: if the guest uses a non-page-table modifying instruction
7100 * on the PDE that points to the instruction, then we will unmap
7101 * the instruction and go to an infinite loop. So, we cache the
7102 * last retried eip and the last fault address, if we meet the eip
7103 * and the address again, we can break out of the potential infinite
7104 * loop.
7105 */
7106 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
7107
92daa48b 7108 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
1cb3f3ae
XG
7109 return false;
7110
92daa48b
SC
7111 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
7112 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
7113 return false;
7114
1cb3f3ae
XG
7115 if (x86_page_table_writing_insn(ctxt))
7116 return false;
7117
736c291c 7118 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
1cb3f3ae
XG
7119 return false;
7120
7121 vcpu->arch.last_retry_eip = ctxt->eip;
736c291c 7122 vcpu->arch.last_retry_addr = cr2_or_gpa;
1cb3f3ae 7123
44dd3ffa 7124 if (!vcpu->arch.mmu->direct_map)
736c291c 7125 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
1cb3f3ae 7126
22368028 7127 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
1cb3f3ae
XG
7128
7129 return true;
7130}
7131
716d51ab
GN
7132static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
7133static int complete_emulated_pio(struct kvm_vcpu *vcpu);
7134
64d60670 7135static void kvm_smm_changed(struct kvm_vcpu *vcpu)
a584539b 7136{
64d60670 7137 if (!(vcpu->arch.hflags & HF_SMM_MASK)) {
660a5d51
PB
7138 /* This is a good place to trace that we are exiting SMM. */
7139 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, false);
7140
c43203ca
PB
7141 /* Process a latched INIT or SMI, if any. */
7142 kvm_make_request(KVM_REQ_EVENT, vcpu);
64d60670 7143 }
699023e2
PB
7144
7145 kvm_mmu_reset_context(vcpu);
64d60670
PB
7146}
7147
4a1e10d5
PB
7148static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
7149 unsigned long *db)
7150{
7151 u32 dr6 = 0;
7152 int i;
7153 u32 enable, rwlen;
7154
7155 enable = dr7;
7156 rwlen = dr7 >> 16;
7157 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
7158 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
7159 dr6 |= (1 << i);
7160 return dr6;
7161}
7162
120c2c4f 7163static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
663f4c61
PB
7164{
7165 struct kvm_run *kvm_run = vcpu->run;
7166
c8401dda
PB
7167 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
7168 kvm_run->debug.arch.dr6 = DR6_BS | DR6_FIXED_1 | DR6_RTM;
d5d260c5 7169 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
c8401dda
PB
7170 kvm_run->debug.arch.exception = DB_VECTOR;
7171 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 7172 return 0;
663f4c61 7173 }
120c2c4f 7174 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
60fc3d02 7175 return 1;
663f4c61
PB
7176}
7177
6affcbed
KH
7178int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
7179{
afaf0b2f 7180 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
f8ea7c60 7181 int r;
6affcbed 7182
afaf0b2f 7183 r = kvm_x86_ops.skip_emulated_instruction(vcpu);
60fc3d02 7184 if (unlikely(!r))
f8ea7c60 7185 return 0;
c8401dda
PB
7186
7187 /*
7188 * rflags is the old, "raw" value of the flags. The new value has
7189 * not been saved yet.
7190 *
7191 * This is correct even for TF set by the guest, because "the
7192 * processor will not generate this exception after the instruction
7193 * that sets the TF flag".
7194 */
7195 if (unlikely(rflags & X86_EFLAGS_TF))
120c2c4f 7196 r = kvm_vcpu_do_singlestep(vcpu);
60fc3d02 7197 return r;
6affcbed
KH
7198}
7199EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
7200
4a1e10d5
PB
7201static bool kvm_vcpu_check_breakpoint(struct kvm_vcpu *vcpu, int *r)
7202{
4a1e10d5
PB
7203 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
7204 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
82b32774
NA
7205 struct kvm_run *kvm_run = vcpu->run;
7206 unsigned long eip = kvm_get_linear_rip(vcpu);
7207 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
7208 vcpu->arch.guest_debug_dr7,
7209 vcpu->arch.eff_db);
7210
7211 if (dr6 != 0) {
6f43ed01 7212 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1 | DR6_RTM;
82b32774 7213 kvm_run->debug.arch.pc = eip;
4a1e10d5
PB
7214 kvm_run->debug.arch.exception = DB_VECTOR;
7215 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 7216 *r = 0;
4a1e10d5
PB
7217 return true;
7218 }
7219 }
7220
4161a569
NA
7221 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
7222 !(kvm_get_rflags(vcpu) & X86_EFLAGS_RF)) {
82b32774
NA
7223 unsigned long eip = kvm_get_linear_rip(vcpu);
7224 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
7225 vcpu->arch.dr7,
7226 vcpu->arch.db);
7227
7228 if (dr6 != 0) {
4d5523cf 7229 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
60fc3d02 7230 *r = 1;
4a1e10d5
PB
7231 return true;
7232 }
7233 }
7234
7235 return false;
7236}
7237
04789b66
LA
7238static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
7239{
2d7921c4
AM
7240 switch (ctxt->opcode_len) {
7241 case 1:
7242 switch (ctxt->b) {
7243 case 0xe4: /* IN */
7244 case 0xe5:
7245 case 0xec:
7246 case 0xed:
7247 case 0xe6: /* OUT */
7248 case 0xe7:
7249 case 0xee:
7250 case 0xef:
7251 case 0x6c: /* INS */
7252 case 0x6d:
7253 case 0x6e: /* OUTS */
7254 case 0x6f:
7255 return true;
7256 }
7257 break;
7258 case 2:
7259 switch (ctxt->b) {
7260 case 0x33: /* RDPMC */
7261 return true;
7262 }
7263 break;
04789b66
LA
7264 }
7265
7266 return false;
7267}
7268
736c291c
SC
7269int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
7270 int emulation_type, void *insn, int insn_len)
bbd9b64e 7271{
95cb2295 7272 int r;
c9b8b07c 7273 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7ae441ea 7274 bool writeback = true;
09e3e2a1
SC
7275 bool write_fault_to_spt;
7276
7277 if (unlikely(!kvm_x86_ops.can_emulate_instruction(vcpu, insn, insn_len)))
7278 return 1;
bbd9b64e 7279
c595ceee
PB
7280 vcpu->arch.l1tf_flush_l1d = true;
7281
93c05d3e
XG
7282 /*
7283 * Clear write_fault_to_shadow_pgtable here to ensure it is
7284 * never reused.
7285 */
09e3e2a1 7286 write_fault_to_spt = vcpu->arch.write_fault_to_shadow_pgtable;
93c05d3e 7287 vcpu->arch.write_fault_to_shadow_pgtable = false;
26eef70c 7288 kvm_clear_exception_queue(vcpu);
8d7d8102 7289
571008da 7290 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
8ec4722d 7291 init_emulate_ctxt(vcpu);
4a1e10d5
PB
7292
7293 /*
7294 * We will reenter on the same instruction since
7295 * we do not set complete_userspace_io. This does not
7296 * handle watchpoints yet, those would be handled in
7297 * the emulate_ops.
7298 */
d391f120
VK
7299 if (!(emulation_type & EMULTYPE_SKIP) &&
7300 kvm_vcpu_check_breakpoint(vcpu, &r))
4a1e10d5
PB
7301 return r;
7302
9d74191a
TY
7303 ctxt->interruptibility = 0;
7304 ctxt->have_exception = false;
e0ad0b47 7305 ctxt->exception.vector = -1;
9d74191a 7306 ctxt->perm_ok = false;
bbd9b64e 7307
b51e974f 7308 ctxt->ud = emulation_type & EMULTYPE_TRAP_UD;
4005996e 7309
9d74191a 7310 r = x86_decode_insn(ctxt, insn, insn_len);
bbd9b64e 7311
e46479f8 7312 trace_kvm_emulate_insn_start(vcpu);
f2b5756b 7313 ++vcpu->stat.insn_emulation;
1d2887e2 7314 if (r != EMULATION_OK) {
b4000606 7315 if ((emulation_type & EMULTYPE_TRAP_UD) ||
c83fad65
SC
7316 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
7317 kvm_queue_exception(vcpu, UD_VECTOR);
60fc3d02 7318 return 1;
c83fad65 7319 }
736c291c
SC
7320 if (reexecute_instruction(vcpu, cr2_or_gpa,
7321 write_fault_to_spt,
7322 emulation_type))
60fc3d02 7323 return 1;
8530a79c 7324 if (ctxt->have_exception) {
c8848cee
JD
7325 /*
7326 * #UD should result in just EMULATION_FAILED, and trap-like
7327 * exception should not be encountered during decode.
7328 */
7329 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
7330 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8530a79c 7331 inject_emulated_exception(vcpu);
60fc3d02 7332 return 1;
8530a79c 7333 }
e2366171 7334 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
7335 }
7336 }
7337
42cbf068
SC
7338 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
7339 !is_vmware_backdoor_opcode(ctxt)) {
7340 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 7341 return 1;
42cbf068 7342 }
04789b66 7343
1957aa63
SC
7344 /*
7345 * Note, EMULTYPE_SKIP is intended for use *only* by vendor callbacks
7346 * for kvm_skip_emulated_instruction(). The caller is responsible for
7347 * updating interruptibility state and injecting single-step #DBs.
7348 */
ba8afb6b 7349 if (emulation_type & EMULTYPE_SKIP) {
9dac77fa 7350 kvm_rip_write(vcpu, ctxt->_eip);
bb663c7a
NA
7351 if (ctxt->eflags & X86_EFLAGS_RF)
7352 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
60fc3d02 7353 return 1;
ba8afb6b
GN
7354 }
7355
736c291c 7356 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
60fc3d02 7357 return 1;
1cb3f3ae 7358
7ae441ea 7359 /* this is needed for vmware backdoor interface to work since it
4d2179e1 7360 changes registers values during IO operation */
7ae441ea
GN
7361 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
7362 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
dd856efa 7363 emulator_invalidate_register_cache(ctxt);
7ae441ea 7364 }
4d2179e1 7365
5cd21917 7366restart:
92daa48b
SC
7367 if (emulation_type & EMULTYPE_PF) {
7368 /* Save the faulting GPA (cr2) in the address field */
7369 ctxt->exception.address = cr2_or_gpa;
7370
7371 /* With shadow page tables, cr2 contains a GVA or nGPA. */
7372 if (vcpu->arch.mmu->direct_map) {
744e699c
SC
7373 ctxt->gpa_available = true;
7374 ctxt->gpa_val = cr2_or_gpa;
92daa48b
SC
7375 }
7376 } else {
7377 /* Sanitize the address out of an abundance of paranoia. */
7378 ctxt->exception.address = 0;
7379 }
0f89b207 7380
9d74191a 7381 r = x86_emulate_insn(ctxt);
bbd9b64e 7382
775fde86 7383 if (r == EMULATION_INTERCEPTED)
60fc3d02 7384 return 1;
775fde86 7385
d2ddd1c4 7386 if (r == EMULATION_FAILED) {
736c291c 7387 if (reexecute_instruction(vcpu, cr2_or_gpa, write_fault_to_spt,
991eebf9 7388 emulation_type))
60fc3d02 7389 return 1;
c3cd7ffa 7390
e2366171 7391 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
7392 }
7393
9d74191a 7394 if (ctxt->have_exception) {
60fc3d02 7395 r = 1;
ef54bcfe
PB
7396 if (inject_emulated_exception(vcpu))
7397 return r;
d2ddd1c4 7398 } else if (vcpu->arch.pio.count) {
0912c977
PB
7399 if (!vcpu->arch.pio.in) {
7400 /* FIXME: return into emulator if single-stepping. */
3457e419 7401 vcpu->arch.pio.count = 0;
0912c977 7402 } else {
7ae441ea 7403 writeback = false;
716d51ab
GN
7404 vcpu->arch.complete_userspace_io = complete_emulated_pio;
7405 }
60fc3d02 7406 r = 0;
7ae441ea 7407 } else if (vcpu->mmio_needed) {
bc8a0aaf
SC
7408 ++vcpu->stat.mmio_exits;
7409
7ae441ea
GN
7410 if (!vcpu->mmio_is_write)
7411 writeback = false;
60fc3d02 7412 r = 0;
716d51ab 7413 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
7ae441ea 7414 } else if (r == EMULATION_RESTART)
5cd21917 7415 goto restart;
d2ddd1c4 7416 else
60fc3d02 7417 r = 1;
f850e2e6 7418
7ae441ea 7419 if (writeback) {
afaf0b2f 7420 unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
9d74191a 7421 toggle_interruptibility(vcpu, ctxt->interruptibility);
7ae441ea 7422 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
38827dbd 7423 if (!ctxt->have_exception ||
75ee23b3
SC
7424 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
7425 kvm_rip_write(vcpu, ctxt->eip);
384dea1c 7426 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
120c2c4f 7427 r = kvm_vcpu_do_singlestep(vcpu);
afaf0b2f
SC
7428 if (kvm_x86_ops.update_emulated_instruction)
7429 kvm_x86_ops.update_emulated_instruction(vcpu);
38827dbd 7430 __kvm_set_rflags(vcpu, ctxt->eflags);
75ee23b3 7431 }
6addfc42
PB
7432
7433 /*
7434 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
7435 * do nothing, and it will be requested again as soon as
7436 * the shadow expires. But we still need to check here,
7437 * because POPF has no interrupt shadow.
7438 */
7439 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
7440 kvm_make_request(KVM_REQ_EVENT, vcpu);
7ae441ea
GN
7441 } else
7442 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
e85d28f8
GN
7443
7444 return r;
de7d789a 7445}
c60658d1
SC
7446
7447int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
7448{
7449 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
7450}
7451EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
7452
7453int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
7454 void *insn, int insn_len)
7455{
7456 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
7457}
7458EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
de7d789a 7459
8764ed55
SC
7460static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
7461{
7462 vcpu->arch.pio.count = 0;
7463 return 1;
7464}
7465
45def77e
SC
7466static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
7467{
7468 vcpu->arch.pio.count = 0;
7469
7470 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
7471 return 1;
7472
7473 return kvm_skip_emulated_instruction(vcpu);
7474}
7475
dca7f128
SC
7476static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
7477 unsigned short port)
de7d789a 7478{
de3cd117 7479 unsigned long val = kvm_rax_read(vcpu);
2e3bb4d8
SC
7480 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
7481
8764ed55
SC
7482 if (ret)
7483 return ret;
45def77e 7484
8764ed55
SC
7485 /*
7486 * Workaround userspace that relies on old KVM behavior of %rip being
7487 * incremented prior to exiting to userspace to handle "OUT 0x7e".
7488 */
7489 if (port == 0x7e &&
7490 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
7491 vcpu->arch.complete_userspace_io =
7492 complete_fast_pio_out_port_0x7e;
7493 kvm_skip_emulated_instruction(vcpu);
7494 } else {
45def77e
SC
7495 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
7496 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
7497 }
8764ed55 7498 return 0;
de7d789a 7499}
de7d789a 7500
8370c3d0
TL
7501static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
7502{
7503 unsigned long val;
7504
7505 /* We should only ever be called with arch.pio.count equal to 1 */
7506 BUG_ON(vcpu->arch.pio.count != 1);
7507
45def77e
SC
7508 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
7509 vcpu->arch.pio.count = 0;
7510 return 1;
7511 }
7512
8370c3d0 7513 /* For size less than 4 we merge, else we zero extend */
de3cd117 7514 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0
TL
7515
7516 /*
2e3bb4d8 7517 * Since vcpu->arch.pio.count == 1 let emulator_pio_in perform
8370c3d0
TL
7518 * the copy and tracing
7519 */
2e3bb4d8 7520 emulator_pio_in(vcpu, vcpu->arch.pio.size, vcpu->arch.pio.port, &val, 1);
de3cd117 7521 kvm_rax_write(vcpu, val);
8370c3d0 7522
45def77e 7523 return kvm_skip_emulated_instruction(vcpu);
8370c3d0
TL
7524}
7525
dca7f128
SC
7526static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
7527 unsigned short port)
8370c3d0
TL
7528{
7529 unsigned long val;
7530 int ret;
7531
7532 /* For size less than 4 we merge, else we zero extend */
de3cd117 7533 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0 7534
2e3bb4d8 7535 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8370c3d0 7536 if (ret) {
de3cd117 7537 kvm_rax_write(vcpu, val);
8370c3d0
TL
7538 return ret;
7539 }
7540
45def77e 7541 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8370c3d0
TL
7542 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
7543
7544 return 0;
7545}
dca7f128
SC
7546
7547int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
7548{
45def77e 7549 int ret;
dca7f128 7550
dca7f128 7551 if (in)
45def77e 7552 ret = kvm_fast_pio_in(vcpu, size, port);
dca7f128 7553 else
45def77e
SC
7554 ret = kvm_fast_pio_out(vcpu, size, port);
7555 return ret && kvm_skip_emulated_instruction(vcpu);
dca7f128
SC
7556}
7557EXPORT_SYMBOL_GPL(kvm_fast_pio);
8370c3d0 7558
251a5fd6 7559static int kvmclock_cpu_down_prep(unsigned int cpu)
8cfdc000 7560{
0a3aee0d 7561 __this_cpu_write(cpu_tsc_khz, 0);
251a5fd6 7562 return 0;
8cfdc000
ZA
7563}
7564
7565static void tsc_khz_changed(void *data)
c8076604 7566{
8cfdc000
ZA
7567 struct cpufreq_freqs *freq = data;
7568 unsigned long khz = 0;
7569
7570 if (data)
7571 khz = freq->new;
7572 else if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7573 khz = cpufreq_quick_get(raw_smp_processor_id());
7574 if (!khz)
7575 khz = tsc_khz;
0a3aee0d 7576 __this_cpu_write(cpu_tsc_khz, khz);
c8076604
GH
7577}
7578
5fa4ec9c 7579#ifdef CONFIG_X86_64
0092e434
VK
7580static void kvm_hyperv_tsc_notifier(void)
7581{
0092e434
VK
7582 struct kvm *kvm;
7583 struct kvm_vcpu *vcpu;
7584 int cpu;
7585
0d9ce162 7586 mutex_lock(&kvm_lock);
0092e434
VK
7587 list_for_each_entry(kvm, &vm_list, vm_list)
7588 kvm_make_mclock_inprogress_request(kvm);
7589
7590 hyperv_stop_tsc_emulation();
7591
7592 /* TSC frequency always matches when on Hyper-V */
7593 for_each_present_cpu(cpu)
7594 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
7595 kvm_max_guest_tsc_khz = tsc_khz;
7596
7597 list_for_each_entry(kvm, &vm_list, vm_list) {
7598 struct kvm_arch *ka = &kvm->arch;
7599
7600 spin_lock(&ka->pvclock_gtod_sync_lock);
7601
7602 pvclock_update_vm_gtod_copy(kvm);
7603
7604 kvm_for_each_vcpu(cpu, vcpu, kvm)
7605 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
7606
7607 kvm_for_each_vcpu(cpu, vcpu, kvm)
7608 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
7609
7610 spin_unlock(&ka->pvclock_gtod_sync_lock);
7611 }
0d9ce162 7612 mutex_unlock(&kvm_lock);
0092e434 7613}
5fa4ec9c 7614#endif
0092e434 7615
df24014a 7616static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
c8076604 7617{
c8076604
GH
7618 struct kvm *kvm;
7619 struct kvm_vcpu *vcpu;
7620 int i, send_ipi = 0;
7621
8cfdc000
ZA
7622 /*
7623 * We allow guests to temporarily run on slowing clocks,
7624 * provided we notify them after, or to run on accelerating
7625 * clocks, provided we notify them before. Thus time never
7626 * goes backwards.
7627 *
7628 * However, we have a problem. We can't atomically update
7629 * the frequency of a given CPU from this function; it is
7630 * merely a notifier, which can be called from any CPU.
7631 * Changing the TSC frequency at arbitrary points in time
7632 * requires a recomputation of local variables related to
7633 * the TSC for each VCPU. We must flag these local variables
7634 * to be updated and be sure the update takes place with the
7635 * new frequency before any guests proceed.
7636 *
7637 * Unfortunately, the combination of hotplug CPU and frequency
7638 * change creates an intractable locking scenario; the order
7639 * of when these callouts happen is undefined with respect to
7640 * CPU hotplug, and they can race with each other. As such,
7641 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
7642 * undefined; you can actually have a CPU frequency change take
7643 * place in between the computation of X and the setting of the
7644 * variable. To protect against this problem, all updates of
7645 * the per_cpu tsc_khz variable are done in an interrupt
7646 * protected IPI, and all callers wishing to update the value
7647 * must wait for a synchronous IPI to complete (which is trivial
7648 * if the caller is on the CPU already). This establishes the
7649 * necessary total order on variable updates.
7650 *
7651 * Note that because a guest time update may take place
7652 * anytime after the setting of the VCPU's request bit, the
7653 * correct TSC value must be set before the request. However,
7654 * to ensure the update actually makes it to any guest which
7655 * starts running in hardware virtualization between the set
7656 * and the acquisition of the spinlock, we must also ping the
7657 * CPU after setting the request bit.
7658 *
7659 */
7660
df24014a 7661 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 7662
0d9ce162 7663 mutex_lock(&kvm_lock);
c8076604 7664 list_for_each_entry(kvm, &vm_list, vm_list) {
988a2cae 7665 kvm_for_each_vcpu(i, vcpu, kvm) {
df24014a 7666 if (vcpu->cpu != cpu)
c8076604 7667 continue;
c285545f 7668 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0d9ce162 7669 if (vcpu->cpu != raw_smp_processor_id())
8cfdc000 7670 send_ipi = 1;
c8076604
GH
7671 }
7672 }
0d9ce162 7673 mutex_unlock(&kvm_lock);
c8076604
GH
7674
7675 if (freq->old < freq->new && send_ipi) {
7676 /*
7677 * We upscale the frequency. Must make the guest
7678 * doesn't see old kvmclock values while running with
7679 * the new frequency, otherwise we risk the guest sees
7680 * time go backwards.
7681 *
7682 * In case we update the frequency for another cpu
7683 * (which might be in guest context) send an interrupt
7684 * to kick the cpu out of guest context. Next time
7685 * guest context is entered kvmclock will be updated,
7686 * so the guest will not see stale values.
7687 */
df24014a 7688 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 7689 }
df24014a
VK
7690}
7691
7692static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
7693 void *data)
7694{
7695 struct cpufreq_freqs *freq = data;
7696 int cpu;
7697
7698 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
7699 return 0;
7700 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
7701 return 0;
7702
7703 for_each_cpu(cpu, freq->policy->cpus)
7704 __kvmclock_cpufreq_notifier(freq, cpu);
7705
c8076604
GH
7706 return 0;
7707}
7708
7709static struct notifier_block kvmclock_cpufreq_notifier_block = {
8cfdc000
ZA
7710 .notifier_call = kvmclock_cpufreq_notifier
7711};
7712
251a5fd6 7713static int kvmclock_cpu_online(unsigned int cpu)
8cfdc000 7714{
251a5fd6
SAS
7715 tsc_khz_changed(NULL);
7716 return 0;
8cfdc000
ZA
7717}
7718
b820cc0c
ZA
7719static void kvm_timer_init(void)
7720{
c285545f 7721 max_tsc_khz = tsc_khz;
460dd42e 7722
b820cc0c 7723 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
c285545f 7724#ifdef CONFIG_CPU_FREQ
aaec7c03 7725 struct cpufreq_policy *policy;
758f588d
BP
7726 int cpu;
7727
3e26f230 7728 cpu = get_cpu();
aaec7c03 7729 policy = cpufreq_cpu_get(cpu);
9a11997e
WL
7730 if (policy) {
7731 if (policy->cpuinfo.max_freq)
7732 max_tsc_khz = policy->cpuinfo.max_freq;
7733 cpufreq_cpu_put(policy);
7734 }
3e26f230 7735 put_cpu();
c285545f 7736#endif
b820cc0c
ZA
7737 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
7738 CPUFREQ_TRANSITION_NOTIFIER);
7739 }
460dd42e 7740
73c1b41e 7741 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
251a5fd6 7742 kvmclock_cpu_online, kvmclock_cpu_down_prep);
b820cc0c
ZA
7743}
7744
dd60d217
AK
7745DEFINE_PER_CPU(struct kvm_vcpu *, current_vcpu);
7746EXPORT_PER_CPU_SYMBOL_GPL(current_vcpu);
ff9d07a0 7747
f5132b01 7748int kvm_is_in_guest(void)
ff9d07a0 7749{
086c9855 7750 return __this_cpu_read(current_vcpu) != NULL;
ff9d07a0
ZY
7751}
7752
7753static int kvm_is_user_mode(void)
7754{
7755 int user_mode = 3;
dcf46b94 7756
086c9855 7757 if (__this_cpu_read(current_vcpu))
afaf0b2f 7758 user_mode = kvm_x86_ops.get_cpl(__this_cpu_read(current_vcpu));
dcf46b94 7759
ff9d07a0
ZY
7760 return user_mode != 0;
7761}
7762
7763static unsigned long kvm_get_guest_ip(void)
7764{
7765 unsigned long ip = 0;
dcf46b94 7766
086c9855
AS
7767 if (__this_cpu_read(current_vcpu))
7768 ip = kvm_rip_read(__this_cpu_read(current_vcpu));
dcf46b94 7769
ff9d07a0
ZY
7770 return ip;
7771}
7772
8479e04e
LK
7773static void kvm_handle_intel_pt_intr(void)
7774{
7775 struct kvm_vcpu *vcpu = __this_cpu_read(current_vcpu);
7776
7777 kvm_make_request(KVM_REQ_PMI, vcpu);
7778 __set_bit(MSR_CORE_PERF_GLOBAL_OVF_CTRL_TRACE_TOPA_PMI_BIT,
7779 (unsigned long *)&vcpu->arch.pmu.global_status);
7780}
7781
ff9d07a0
ZY
7782static struct perf_guest_info_callbacks kvm_guest_cbs = {
7783 .is_in_guest = kvm_is_in_guest,
7784 .is_user_mode = kvm_is_user_mode,
7785 .get_guest_ip = kvm_get_guest_ip,
8479e04e 7786 .handle_intel_pt_intr = kvm_handle_intel_pt_intr,
ff9d07a0
ZY
7787};
7788
16e8d74d
MT
7789#ifdef CONFIG_X86_64
7790static void pvclock_gtod_update_fn(struct work_struct *work)
7791{
d828199e
MT
7792 struct kvm *kvm;
7793
7794 struct kvm_vcpu *vcpu;
7795 int i;
7796
0d9ce162 7797 mutex_lock(&kvm_lock);
d828199e
MT
7798 list_for_each_entry(kvm, &vm_list, vm_list)
7799 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 7800 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
d828199e 7801 atomic_set(&kvm_guest_has_master_clock, 0);
0d9ce162 7802 mutex_unlock(&kvm_lock);
16e8d74d
MT
7803}
7804
7805static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
7806
7807/*
7808 * Notification about pvclock gtod data update.
7809 */
7810static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
7811 void *priv)
7812{
7813 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
7814 struct timekeeper *tk = priv;
7815
7816 update_pvclock_gtod(tk);
7817
7818 /* disable master clock if host does not trust, or does not
b0c39dc6 7819 * use, TSC based clocksource.
16e8d74d 7820 */
b0c39dc6 7821 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
16e8d74d
MT
7822 atomic_read(&kvm_guest_has_master_clock) != 0)
7823 queue_work(system_long_wq, &pvclock_gtod_work);
7824
7825 return 0;
7826}
7827
7828static struct notifier_block pvclock_gtod_notifier = {
7829 .notifier_call = pvclock_gtod_notify,
7830};
7831#endif
7832
f8c16bba 7833int kvm_arch_init(void *opaque)
043405e1 7834{
d008dfdb 7835 struct kvm_x86_init_ops *ops = opaque;
b820cc0c 7836 int r;
f8c16bba 7837
afaf0b2f 7838 if (kvm_x86_ops.hardware_enable) {
f8c16bba 7839 printk(KERN_ERR "kvm: already loaded the other module\n");
56c6d28a
ZX
7840 r = -EEXIST;
7841 goto out;
f8c16bba
ZX
7842 }
7843
7844 if (!ops->cpu_has_kvm_support()) {
ef935c25 7845 pr_err_ratelimited("kvm: no hardware support\n");
56c6d28a
ZX
7846 r = -EOPNOTSUPP;
7847 goto out;
f8c16bba
ZX
7848 }
7849 if (ops->disabled_by_bios()) {
ef935c25 7850 pr_err_ratelimited("kvm: disabled by bios\n");
56c6d28a
ZX
7851 r = -EOPNOTSUPP;
7852 goto out;
f8c16bba
ZX
7853 }
7854
b666a4b6
MO
7855 /*
7856 * KVM explicitly assumes that the guest has an FPU and
7857 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
7858 * vCPU's FPU state as a fxregs_state struct.
7859 */
7860 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
7861 printk(KERN_ERR "kvm: inadequate fpu\n");
7862 r = -EOPNOTSUPP;
7863 goto out;
7864 }
7865
013f6a5d 7866 r = -ENOMEM;
ed8e4812 7867 x86_fpu_cache = kmem_cache_create("x86_fpu", sizeof(struct fpu),
b666a4b6
MO
7868 __alignof__(struct fpu), SLAB_ACCOUNT,
7869 NULL);
7870 if (!x86_fpu_cache) {
7871 printk(KERN_ERR "kvm: failed to allocate cache for x86 fpu\n");
7872 goto out;
7873 }
7874
c9b8b07c
SC
7875 x86_emulator_cache = kvm_alloc_emulator_cache();
7876 if (!x86_emulator_cache) {
7877 pr_err("kvm: failed to allocate cache for x86 emulator\n");
7878 goto out_free_x86_fpu_cache;
7879 }
7880
7e34fbd0
SC
7881 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
7882 if (!user_return_msrs) {
7883 printk(KERN_ERR "kvm: failed to allocate percpu kvm_user_return_msrs\n");
c9b8b07c 7884 goto out_free_x86_emulator_cache;
013f6a5d
MT
7885 }
7886
97db56ce
AK
7887 r = kvm_mmu_module_init();
7888 if (r)
013f6a5d 7889 goto out_free_percpu;
97db56ce 7890
7b52345e 7891 kvm_mmu_set_mask_ptes(PT_USER_MASK, PT_ACCESSED_MASK,
ffb128c8 7892 PT_DIRTY_MASK, PT64_NX_MASK, 0,
d0ec49d4 7893 PT_PRESENT_MASK, 0, sme_me_mask);
b820cc0c 7894 kvm_timer_init();
c8076604 7895
ff9d07a0
ZY
7896 perf_register_guest_info_callbacks(&kvm_guest_cbs);
7897
cfc48181 7898 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
2acf923e 7899 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
cfc48181
SC
7900 supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
7901 }
2acf923e 7902
c5cc421b 7903 kvm_lapic_init();
0c5f81da
WL
7904 if (pi_inject_timer == -1)
7905 pi_inject_timer = housekeeping_enabled(HK_FLAG_TIMER);
16e8d74d
MT
7906#ifdef CONFIG_X86_64
7907 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
0092e434 7908
5fa4ec9c 7909 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434 7910 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
16e8d74d
MT
7911#endif
7912
f8c16bba 7913 return 0;
56c6d28a 7914
013f6a5d 7915out_free_percpu:
7e34fbd0 7916 free_percpu(user_return_msrs);
c9b8b07c
SC
7917out_free_x86_emulator_cache:
7918 kmem_cache_destroy(x86_emulator_cache);
b666a4b6
MO
7919out_free_x86_fpu_cache:
7920 kmem_cache_destroy(x86_fpu_cache);
56c6d28a 7921out:
56c6d28a 7922 return r;
043405e1 7923}
8776e519 7924
f8c16bba
ZX
7925void kvm_arch_exit(void)
7926{
0092e434 7927#ifdef CONFIG_X86_64
5fa4ec9c 7928 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434
VK
7929 clear_hv_tscchange_cb();
7930#endif
cef84c30 7931 kvm_lapic_exit();
ff9d07a0
ZY
7932 perf_unregister_guest_info_callbacks(&kvm_guest_cbs);
7933
888d256e
JK
7934 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
7935 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
7936 CPUFREQ_TRANSITION_NOTIFIER);
251a5fd6 7937 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
16e8d74d
MT
7938#ifdef CONFIG_X86_64
7939 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
7940#endif
afaf0b2f 7941 kvm_x86_ops.hardware_enable = NULL;
56c6d28a 7942 kvm_mmu_module_exit();
7e34fbd0 7943 free_percpu(user_return_msrs);
b666a4b6 7944 kmem_cache_destroy(x86_fpu_cache);
56c6d28a 7945}
f8c16bba 7946
5cb56059 7947int kvm_vcpu_halt(struct kvm_vcpu *vcpu)
8776e519
HB
7948{
7949 ++vcpu->stat.halt_exits;
35754c98 7950 if (lapic_in_kernel(vcpu)) {
a4535290 7951 vcpu->arch.mp_state = KVM_MP_STATE_HALTED;
8776e519
HB
7952 return 1;
7953 } else {
7954 vcpu->run->exit_reason = KVM_EXIT_HLT;
7955 return 0;
7956 }
7957}
5cb56059
JS
7958EXPORT_SYMBOL_GPL(kvm_vcpu_halt);
7959
7960int kvm_emulate_halt(struct kvm_vcpu *vcpu)
7961{
6affcbed
KH
7962 int ret = kvm_skip_emulated_instruction(vcpu);
7963 /*
7964 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
7965 * KVM_EXIT_DEBUG here.
7966 */
7967 return kvm_vcpu_halt(vcpu) && ret;
5cb56059 7968}
8776e519
HB
7969EXPORT_SYMBOL_GPL(kvm_emulate_halt);
7970
8ef81a9a 7971#ifdef CONFIG_X86_64
55dd00a7
MT
7972static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
7973 unsigned long clock_type)
7974{
7975 struct kvm_clock_pairing clock_pairing;
899a31f5 7976 struct timespec64 ts;
80fbd89c 7977 u64 cycle;
55dd00a7
MT
7978 int ret;
7979
7980 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
7981 return -KVM_EOPNOTSUPP;
7982
7983 if (kvm_get_walltime_and_clockread(&ts, &cycle) == false)
7984 return -KVM_EOPNOTSUPP;
7985
7986 clock_pairing.sec = ts.tv_sec;
7987 clock_pairing.nsec = ts.tv_nsec;
7988 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
7989 clock_pairing.flags = 0;
bcbfbd8e 7990 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
55dd00a7
MT
7991
7992 ret = 0;
7993 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
7994 sizeof(struct kvm_clock_pairing)))
7995 ret = -KVM_EFAULT;
7996
7997 return ret;
7998}
8ef81a9a 7999#endif
55dd00a7 8000
6aef266c
SV
8001/*
8002 * kvm_pv_kick_cpu_op: Kick a vcpu.
8003 *
8004 * @apicid - apicid of vcpu to be kicked.
8005 */
8006static void kvm_pv_kick_cpu_op(struct kvm *kvm, unsigned long flags, int apicid)
8007{
24d2166b 8008 struct kvm_lapic_irq lapic_irq;
6aef266c 8009
150a84fe 8010 lapic_irq.shorthand = APIC_DEST_NOSHORT;
c96001c5 8011 lapic_irq.dest_mode = APIC_DEST_PHYSICAL;
ebd28fcb 8012 lapic_irq.level = 0;
24d2166b 8013 lapic_irq.dest_id = apicid;
93bbf0b8 8014 lapic_irq.msi_redir_hint = false;
6aef266c 8015
24d2166b 8016 lapic_irq.delivery_mode = APIC_DM_REMRD;
795a149e 8017 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6aef266c
SV
8018}
8019
4e19c36f
SS
8020bool kvm_apicv_activated(struct kvm *kvm)
8021{
8022 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
8023}
8024EXPORT_SYMBOL_GPL(kvm_apicv_activated);
8025
8026void kvm_apicv_init(struct kvm *kvm, bool enable)
8027{
8028 if (enable)
8029 clear_bit(APICV_INHIBIT_REASON_DISABLE,
8030 &kvm->arch.apicv_inhibit_reasons);
8031 else
8032 set_bit(APICV_INHIBIT_REASON_DISABLE,
8033 &kvm->arch.apicv_inhibit_reasons);
8034}
8035EXPORT_SYMBOL_GPL(kvm_apicv_init);
8036
71506297
WL
8037static void kvm_sched_yield(struct kvm *kvm, unsigned long dest_id)
8038{
8039 struct kvm_vcpu *target = NULL;
8040 struct kvm_apic_map *map;
8041
8042 rcu_read_lock();
8043 map = rcu_dereference(kvm->arch.apic_map);
8044
8045 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
8046 target = map->phys_map[dest_id]->vcpu;
8047
8048 rcu_read_unlock();
8049
266e85a5 8050 if (target && READ_ONCE(target->ready))
71506297
WL
8051 kvm_vcpu_yield_to(target);
8052}
8053
8776e519
HB
8054int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
8055{
8056 unsigned long nr, a0, a1, a2, a3, ret;
6356ee0c 8057 int op_64_bit;
8776e519 8058
696ca779
RK
8059 if (kvm_hv_hypercall_enabled(vcpu->kvm))
8060 return kvm_hv_hypercall(vcpu);
55cd8e5a 8061
de3cd117
SC
8062 nr = kvm_rax_read(vcpu);
8063 a0 = kvm_rbx_read(vcpu);
8064 a1 = kvm_rcx_read(vcpu);
8065 a2 = kvm_rdx_read(vcpu);
8066 a3 = kvm_rsi_read(vcpu);
8776e519 8067
229456fc 8068 trace_kvm_hypercall(nr, a0, a1, a2, a3);
2714d1d3 8069
a449c7aa
NA
8070 op_64_bit = is_64_bit_mode(vcpu);
8071 if (!op_64_bit) {
8776e519
HB
8072 nr &= 0xFFFFFFFF;
8073 a0 &= 0xFFFFFFFF;
8074 a1 &= 0xFFFFFFFF;
8075 a2 &= 0xFFFFFFFF;
8076 a3 &= 0xFFFFFFFF;
8077 }
8078
afaf0b2f 8079 if (kvm_x86_ops.get_cpl(vcpu) != 0) {
07708c4a 8080 ret = -KVM_EPERM;
696ca779 8081 goto out;
07708c4a
JK
8082 }
8083
66570e96
OU
8084 ret = -KVM_ENOSYS;
8085
8776e519 8086 switch (nr) {
b93463aa
AK
8087 case KVM_HC_VAPIC_POLL_IRQ:
8088 ret = 0;
8089 break;
6aef266c 8090 case KVM_HC_KICK_CPU:
66570e96
OU
8091 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
8092 break;
8093
6aef266c 8094 kvm_pv_kick_cpu_op(vcpu->kvm, a0, a1);
266e85a5 8095 kvm_sched_yield(vcpu->kvm, a1);
6aef266c
SV
8096 ret = 0;
8097 break;
8ef81a9a 8098#ifdef CONFIG_X86_64
55dd00a7
MT
8099 case KVM_HC_CLOCK_PAIRING:
8100 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
8101 break;
1ed199a4 8102#endif
4180bf1b 8103 case KVM_HC_SEND_IPI:
66570e96
OU
8104 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
8105 break;
8106
4180bf1b
WL
8107 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
8108 break;
71506297 8109 case KVM_HC_SCHED_YIELD:
66570e96
OU
8110 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
8111 break;
8112
71506297
WL
8113 kvm_sched_yield(vcpu->kvm, a0);
8114 ret = 0;
8115 break;
8776e519
HB
8116 default:
8117 ret = -KVM_ENOSYS;
8118 break;
8119 }
696ca779 8120out:
a449c7aa
NA
8121 if (!op_64_bit)
8122 ret = (u32)ret;
de3cd117 8123 kvm_rax_write(vcpu, ret);
6356ee0c 8124
f11c3a8d 8125 ++vcpu->stat.hypercalls;
6356ee0c 8126 return kvm_skip_emulated_instruction(vcpu);
8776e519
HB
8127}
8128EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
8129
b6785def 8130static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8776e519 8131{
d6aa1000 8132 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8776e519 8133 char instruction[3];
5fdbf976 8134 unsigned long rip = kvm_rip_read(vcpu);
8776e519 8135
afaf0b2f 8136 kvm_x86_ops.patch_hypercall(vcpu, instruction);
8776e519 8137
ce2e852e
DV
8138 return emulator_write_emulated(ctxt, rip, instruction, 3,
8139 &ctxt->exception);
8776e519
HB
8140}
8141
851ba692 8142static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
b6c7a5dc 8143{
782d422b
MG
8144 return vcpu->run->request_interrupt_window &&
8145 likely(!pic_in_kernel(vcpu->kvm));
b6c7a5dc
HB
8146}
8147
851ba692 8148static void post_kvm_run_save(struct kvm_vcpu *vcpu)
b6c7a5dc 8149{
851ba692
AK
8150 struct kvm_run *kvm_run = vcpu->run;
8151
91586a3b 8152 kvm_run->if_flag = (kvm_get_rflags(vcpu) & X86_EFLAGS_IF) != 0;
f077825a 8153 kvm_run->flags = is_smm(vcpu) ? KVM_RUN_X86_SMM : 0;
2d3ad1f4 8154 kvm_run->cr8 = kvm_get_cr8(vcpu);
b6c7a5dc 8155 kvm_run->apic_base = kvm_get_apic_base(vcpu);
127a457a
MG
8156 kvm_run->ready_for_interrupt_injection =
8157 pic_in_kernel(vcpu->kvm) ||
782d422b 8158 kvm_vcpu_ready_for_interrupt_injection(vcpu);
b6c7a5dc
HB
8159}
8160
95ba8273
GN
8161static void update_cr8_intercept(struct kvm_vcpu *vcpu)
8162{
8163 int max_irr, tpr;
8164
afaf0b2f 8165 if (!kvm_x86_ops.update_cr8_intercept)
95ba8273
GN
8166 return;
8167
bce87cce 8168 if (!lapic_in_kernel(vcpu))
88c808fd
AK
8169 return;
8170
d62caabb
AS
8171 if (vcpu->arch.apicv_active)
8172 return;
8173
8db3baa2
GN
8174 if (!vcpu->arch.apic->vapic_addr)
8175 max_irr = kvm_lapic_find_highest_irr(vcpu);
8176 else
8177 max_irr = -1;
95ba8273
GN
8178
8179 if (max_irr != -1)
8180 max_irr >>= 4;
8181
8182 tpr = kvm_lapic_get_cr8(vcpu);
8183
afaf0b2f 8184 kvm_x86_ops.update_cr8_intercept(vcpu, tpr, max_irr);
95ba8273
GN
8185}
8186
c9d40913 8187static void inject_pending_event(struct kvm_vcpu *vcpu, bool *req_immediate_exit)
95ba8273 8188{
b6b8a145 8189 int r;
c6b22f59 8190 bool can_inject = true;
b6b8a145 8191
95ba8273 8192 /* try to reinject previous events if any */
664f8e26 8193
c6b22f59 8194 if (vcpu->arch.exception.injected) {
afaf0b2f 8195 kvm_x86_ops.queue_exception(vcpu);
c6b22f59
PB
8196 can_inject = false;
8197 }
664f8e26 8198 /*
a042c26f
LA
8199 * Do not inject an NMI or interrupt if there is a pending
8200 * exception. Exceptions and interrupts are recognized at
8201 * instruction boundaries, i.e. the start of an instruction.
8202 * Trap-like exceptions, e.g. #DB, have higher priority than
8203 * NMIs and interrupts, i.e. traps are recognized before an
8204 * NMI/interrupt that's pending on the same instruction.
8205 * Fault-like exceptions, e.g. #GP and #PF, are the lowest
8206 * priority, but are only generated (pended) during instruction
8207 * execution, i.e. a pending fault-like exception means the
8208 * fault occurred on the *previous* instruction and must be
8209 * serviced prior to recognizing any new events in order to
8210 * fully complete the previous instruction.
664f8e26 8211 */
1a680e35 8212 else if (!vcpu->arch.exception.pending) {
c6b22f59 8213 if (vcpu->arch.nmi_injected) {
afaf0b2f 8214 kvm_x86_ops.set_nmi(vcpu);
c6b22f59
PB
8215 can_inject = false;
8216 } else if (vcpu->arch.interrupt.injected) {
afaf0b2f 8217 kvm_x86_ops.set_irq(vcpu);
c6b22f59
PB
8218 can_inject = false;
8219 }
664f8e26
WL
8220 }
8221
3b82b8d7
SC
8222 WARN_ON_ONCE(vcpu->arch.exception.injected &&
8223 vcpu->arch.exception.pending);
8224
1a680e35
LA
8225 /*
8226 * Call check_nested_events() even if we reinjected a previous event
8227 * in order for caller to determine if it should require immediate-exit
8228 * from L2 to L1 due to pending L1 events which require exit
8229 * from L2 to L1.
8230 */
56083bdf 8231 if (is_guest_mode(vcpu)) {
33b22172 8232 r = kvm_x86_ops.nested_ops->check_events(vcpu);
c9d40913
PB
8233 if (r < 0)
8234 goto busy;
664f8e26
WL
8235 }
8236
8237 /* try to inject new event if pending */
b59bb7bd 8238 if (vcpu->arch.exception.pending) {
5c1c85d0
AK
8239 trace_kvm_inj_exception(vcpu->arch.exception.nr,
8240 vcpu->arch.exception.has_error_code,
8241 vcpu->arch.exception.error_code);
d6e8c854 8242
664f8e26
WL
8243 vcpu->arch.exception.pending = false;
8244 vcpu->arch.exception.injected = true;
8245
d6e8c854
NA
8246 if (exception_type(vcpu->arch.exception.nr) == EXCPT_FAULT)
8247 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
8248 X86_EFLAGS_RF);
8249
f10c729f 8250 if (vcpu->arch.exception.nr == DB_VECTOR) {
f10c729f
JM
8251 kvm_deliver_exception_payload(vcpu);
8252 if (vcpu->arch.dr7 & DR7_GD) {
8253 vcpu->arch.dr7 &= ~DR7_GD;
8254 kvm_update_dr7(vcpu);
8255 }
6bdf0662
NA
8256 }
8257
afaf0b2f 8258 kvm_x86_ops.queue_exception(vcpu);
c6b22f59 8259 can_inject = false;
1a680e35
LA
8260 }
8261
c9d40913
PB
8262 /*
8263 * Finally, inject interrupt events. If an event cannot be injected
8264 * due to architectural conditions (e.g. IF=0) a window-open exit
8265 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
8266 * and can architecturally be injected, but we cannot do it right now:
8267 * an interrupt could have arrived just now and we have to inject it
8268 * as a vmexit, or there could already an event in the queue, which is
8269 * indicated by can_inject. In that case we request an immediate exit
8270 * in order to make progress and get back here for another iteration.
8271 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
8272 */
8273 if (vcpu->arch.smi_pending) {
8274 r = can_inject ? kvm_x86_ops.smi_allowed(vcpu, true) : -EBUSY;
8275 if (r < 0)
8276 goto busy;
8277 if (r) {
8278 vcpu->arch.smi_pending = false;
8279 ++vcpu->arch.smi_count;
8280 enter_smm(vcpu);
8281 can_inject = false;
8282 } else
8283 kvm_x86_ops.enable_smi_window(vcpu);
8284 }
8285
8286 if (vcpu->arch.nmi_pending) {
8287 r = can_inject ? kvm_x86_ops.nmi_allowed(vcpu, true) : -EBUSY;
8288 if (r < 0)
8289 goto busy;
8290 if (r) {
8291 --vcpu->arch.nmi_pending;
8292 vcpu->arch.nmi_injected = true;
8293 kvm_x86_ops.set_nmi(vcpu);
8294 can_inject = false;
8295 WARN_ON(kvm_x86_ops.nmi_allowed(vcpu, true) < 0);
8296 }
8297 if (vcpu->arch.nmi_pending)
8298 kvm_x86_ops.enable_nmi_window(vcpu);
8299 }
1a680e35 8300
c9d40913
PB
8301 if (kvm_cpu_has_injectable_intr(vcpu)) {
8302 r = can_inject ? kvm_x86_ops.interrupt_allowed(vcpu, true) : -EBUSY;
8303 if (r < 0)
8304 goto busy;
8305 if (r) {
8306 kvm_queue_interrupt(vcpu, kvm_cpu_get_interrupt(vcpu), false);
8307 kvm_x86_ops.set_irq(vcpu);
8308 WARN_ON(kvm_x86_ops.interrupt_allowed(vcpu, true) < 0);
8309 }
8310 if (kvm_cpu_has_injectable_intr(vcpu))
8311 kvm_x86_ops.enable_irq_window(vcpu);
95ba8273 8312 }
ee2cd4b7 8313
c9d40913
PB
8314 if (is_guest_mode(vcpu) &&
8315 kvm_x86_ops.nested_ops->hv_timer_pending &&
8316 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
8317 *req_immediate_exit = true;
8318
8319 WARN_ON(vcpu->arch.exception.pending);
8320 return;
8321
8322busy:
8323 *req_immediate_exit = true;
8324 return;
95ba8273
GN
8325}
8326
7460fb4a
AK
8327static void process_nmi(struct kvm_vcpu *vcpu)
8328{
8329 unsigned limit = 2;
8330
8331 /*
8332 * x86 is limited to one NMI running, and one NMI pending after it.
8333 * If an NMI is already in progress, limit further NMIs to just one.
8334 * Otherwise, allow two (and we'll inject the first one immediately).
8335 */
afaf0b2f 8336 if (kvm_x86_ops.get_nmi_mask(vcpu) || vcpu->arch.nmi_injected)
7460fb4a
AK
8337 limit = 1;
8338
8339 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
8340 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
8341 kvm_make_request(KVM_REQ_EVENT, vcpu);
8342}
8343
ee2cd4b7 8344static u32 enter_smm_get_segment_flags(struct kvm_segment *seg)
660a5d51
PB
8345{
8346 u32 flags = 0;
8347 flags |= seg->g << 23;
8348 flags |= seg->db << 22;
8349 flags |= seg->l << 21;
8350 flags |= seg->avl << 20;
8351 flags |= seg->present << 15;
8352 flags |= seg->dpl << 13;
8353 flags |= seg->s << 12;
8354 flags |= seg->type << 8;
8355 return flags;
8356}
8357
ee2cd4b7 8358static void enter_smm_save_seg_32(struct kvm_vcpu *vcpu, char *buf, int n)
660a5d51
PB
8359{
8360 struct kvm_segment seg;
8361 int offset;
8362
8363 kvm_get_segment(vcpu, &seg, n);
8364 put_smstate(u32, buf, 0x7fa8 + n * 4, seg.selector);
8365
8366 if (n < 3)
8367 offset = 0x7f84 + n * 12;
8368 else
8369 offset = 0x7f2c + (n - 3) * 12;
8370
8371 put_smstate(u32, buf, offset + 8, seg.base);
8372 put_smstate(u32, buf, offset + 4, seg.limit);
ee2cd4b7 8373 put_smstate(u32, buf, offset, enter_smm_get_segment_flags(&seg));
660a5d51
PB
8374}
8375
efbb288a 8376#ifdef CONFIG_X86_64
ee2cd4b7 8377static void enter_smm_save_seg_64(struct kvm_vcpu *vcpu, char *buf, int n)
660a5d51
PB
8378{
8379 struct kvm_segment seg;
8380 int offset;
8381 u16 flags;
8382
8383 kvm_get_segment(vcpu, &seg, n);
8384 offset = 0x7e00 + n * 16;
8385
ee2cd4b7 8386 flags = enter_smm_get_segment_flags(&seg) >> 8;
660a5d51
PB
8387 put_smstate(u16, buf, offset, seg.selector);
8388 put_smstate(u16, buf, offset + 2, flags);
8389 put_smstate(u32, buf, offset + 4, seg.limit);
8390 put_smstate(u64, buf, offset + 8, seg.base);
8391}
efbb288a 8392#endif
660a5d51 8393
ee2cd4b7 8394static void enter_smm_save_state_32(struct kvm_vcpu *vcpu, char *buf)
660a5d51
PB
8395{
8396 struct desc_ptr dt;
8397 struct kvm_segment seg;
8398 unsigned long val;
8399 int i;
8400
8401 put_smstate(u32, buf, 0x7ffc, kvm_read_cr0(vcpu));
8402 put_smstate(u32, buf, 0x7ff8, kvm_read_cr3(vcpu));
8403 put_smstate(u32, buf, 0x7ff4, kvm_get_rflags(vcpu));
8404 put_smstate(u32, buf, 0x7ff0, kvm_rip_read(vcpu));
8405
8406 for (i = 0; i < 8; i++)
8407 put_smstate(u32, buf, 0x7fd0 + i * 4, kvm_register_read(vcpu, i));
8408
8409 kvm_get_dr(vcpu, 6, &val);
8410 put_smstate(u32, buf, 0x7fcc, (u32)val);
8411 kvm_get_dr(vcpu, 7, &val);
8412 put_smstate(u32, buf, 0x7fc8, (u32)val);
8413
8414 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8415 put_smstate(u32, buf, 0x7fc4, seg.selector);
8416 put_smstate(u32, buf, 0x7f64, seg.base);
8417 put_smstate(u32, buf, 0x7f60, seg.limit);
ee2cd4b7 8418 put_smstate(u32, buf, 0x7f5c, enter_smm_get_segment_flags(&seg));
660a5d51
PB
8419
8420 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8421 put_smstate(u32, buf, 0x7fc0, seg.selector);
8422 put_smstate(u32, buf, 0x7f80, seg.base);
8423 put_smstate(u32, buf, 0x7f7c, seg.limit);
ee2cd4b7 8424 put_smstate(u32, buf, 0x7f78, enter_smm_get_segment_flags(&seg));
660a5d51 8425
afaf0b2f 8426 kvm_x86_ops.get_gdt(vcpu, &dt);
660a5d51
PB
8427 put_smstate(u32, buf, 0x7f74, dt.address);
8428 put_smstate(u32, buf, 0x7f70, dt.size);
8429
afaf0b2f 8430 kvm_x86_ops.get_idt(vcpu, &dt);
660a5d51
PB
8431 put_smstate(u32, buf, 0x7f58, dt.address);
8432 put_smstate(u32, buf, 0x7f54, dt.size);
8433
8434 for (i = 0; i < 6; i++)
ee2cd4b7 8435 enter_smm_save_seg_32(vcpu, buf, i);
660a5d51
PB
8436
8437 put_smstate(u32, buf, 0x7f14, kvm_read_cr4(vcpu));
8438
8439 /* revision id */
8440 put_smstate(u32, buf, 0x7efc, 0x00020000);
8441 put_smstate(u32, buf, 0x7ef8, vcpu->arch.smbase);
8442}
8443
b68f3cc7 8444#ifdef CONFIG_X86_64
ee2cd4b7 8445static void enter_smm_save_state_64(struct kvm_vcpu *vcpu, char *buf)
660a5d51 8446{
660a5d51
PB
8447 struct desc_ptr dt;
8448 struct kvm_segment seg;
8449 unsigned long val;
8450 int i;
8451
8452 for (i = 0; i < 16; i++)
8453 put_smstate(u64, buf, 0x7ff8 - i * 8, kvm_register_read(vcpu, i));
8454
8455 put_smstate(u64, buf, 0x7f78, kvm_rip_read(vcpu));
8456 put_smstate(u32, buf, 0x7f70, kvm_get_rflags(vcpu));
8457
8458 kvm_get_dr(vcpu, 6, &val);
8459 put_smstate(u64, buf, 0x7f68, val);
8460 kvm_get_dr(vcpu, 7, &val);
8461 put_smstate(u64, buf, 0x7f60, val);
8462
8463 put_smstate(u64, buf, 0x7f58, kvm_read_cr0(vcpu));
8464 put_smstate(u64, buf, 0x7f50, kvm_read_cr3(vcpu));
8465 put_smstate(u64, buf, 0x7f48, kvm_read_cr4(vcpu));
8466
8467 put_smstate(u32, buf, 0x7f00, vcpu->arch.smbase);
8468
8469 /* revision id */
8470 put_smstate(u32, buf, 0x7efc, 0x00020064);
8471
8472 put_smstate(u64, buf, 0x7ed0, vcpu->arch.efer);
8473
8474 kvm_get_segment(vcpu, &seg, VCPU_SREG_TR);
8475 put_smstate(u16, buf, 0x7e90, seg.selector);
ee2cd4b7 8476 put_smstate(u16, buf, 0x7e92, enter_smm_get_segment_flags(&seg) >> 8);
660a5d51
PB
8477 put_smstate(u32, buf, 0x7e94, seg.limit);
8478 put_smstate(u64, buf, 0x7e98, seg.base);
8479
afaf0b2f 8480 kvm_x86_ops.get_idt(vcpu, &dt);
660a5d51
PB
8481 put_smstate(u32, buf, 0x7e84, dt.size);
8482 put_smstate(u64, buf, 0x7e88, dt.address);
8483
8484 kvm_get_segment(vcpu, &seg, VCPU_SREG_LDTR);
8485 put_smstate(u16, buf, 0x7e70, seg.selector);
ee2cd4b7 8486 put_smstate(u16, buf, 0x7e72, enter_smm_get_segment_flags(&seg) >> 8);
660a5d51
PB
8487 put_smstate(u32, buf, 0x7e74, seg.limit);
8488 put_smstate(u64, buf, 0x7e78, seg.base);
8489
afaf0b2f 8490 kvm_x86_ops.get_gdt(vcpu, &dt);
660a5d51
PB
8491 put_smstate(u32, buf, 0x7e64, dt.size);
8492 put_smstate(u64, buf, 0x7e68, dt.address);
8493
8494 for (i = 0; i < 6; i++)
ee2cd4b7 8495 enter_smm_save_seg_64(vcpu, buf, i);
660a5d51 8496}
b68f3cc7 8497#endif
660a5d51 8498
ee2cd4b7 8499static void enter_smm(struct kvm_vcpu *vcpu)
64d60670 8500{
660a5d51 8501 struct kvm_segment cs, ds;
18c3626e 8502 struct desc_ptr dt;
660a5d51
PB
8503 char buf[512];
8504 u32 cr0;
8505
660a5d51 8506 trace_kvm_enter_smm(vcpu->vcpu_id, vcpu->arch.smbase, true);
660a5d51 8507 memset(buf, 0, 512);
b68f3cc7 8508#ifdef CONFIG_X86_64
d6321d49 8509 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
ee2cd4b7 8510 enter_smm_save_state_64(vcpu, buf);
660a5d51 8511 else
b68f3cc7 8512#endif
ee2cd4b7 8513 enter_smm_save_state_32(vcpu, buf);
660a5d51 8514
0234bf88
LP
8515 /*
8516 * Give pre_enter_smm() a chance to make ISA-specific changes to the
8517 * vCPU state (e.g. leave guest mode) after we've saved the state into
8518 * the SMM state-save area.
8519 */
afaf0b2f 8520 kvm_x86_ops.pre_enter_smm(vcpu, buf);
0234bf88
LP
8521
8522 vcpu->arch.hflags |= HF_SMM_MASK;
54bf36aa 8523 kvm_vcpu_write_guest(vcpu, vcpu->arch.smbase + 0xfe00, buf, sizeof(buf));
660a5d51 8524
afaf0b2f 8525 if (kvm_x86_ops.get_nmi_mask(vcpu))
660a5d51
PB
8526 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
8527 else
afaf0b2f 8528 kvm_x86_ops.set_nmi_mask(vcpu, true);
660a5d51
PB
8529
8530 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
8531 kvm_rip_write(vcpu, 0x8000);
8532
8533 cr0 = vcpu->arch.cr0 & ~(X86_CR0_PE | X86_CR0_EM | X86_CR0_TS | X86_CR0_PG);
afaf0b2f 8534 kvm_x86_ops.set_cr0(vcpu, cr0);
660a5d51
PB
8535 vcpu->arch.cr0 = cr0;
8536
afaf0b2f 8537 kvm_x86_ops.set_cr4(vcpu, 0);
660a5d51 8538
18c3626e
PB
8539 /* Undocumented: IDT limit is set to zero on entry to SMM. */
8540 dt.address = dt.size = 0;
afaf0b2f 8541 kvm_x86_ops.set_idt(vcpu, &dt);
18c3626e 8542
660a5d51
PB
8543 __kvm_set_dr(vcpu, 7, DR7_FIXED_1);
8544
8545 cs.selector = (vcpu->arch.smbase >> 4) & 0xffff;
8546 cs.base = vcpu->arch.smbase;
8547
8548 ds.selector = 0;
8549 ds.base = 0;
8550
8551 cs.limit = ds.limit = 0xffffffff;
8552 cs.type = ds.type = 0x3;
8553 cs.dpl = ds.dpl = 0;
8554 cs.db = ds.db = 0;
8555 cs.s = ds.s = 1;
8556 cs.l = ds.l = 0;
8557 cs.g = ds.g = 1;
8558 cs.avl = ds.avl = 0;
8559 cs.present = ds.present = 1;
8560 cs.unusable = ds.unusable = 0;
8561 cs.padding = ds.padding = 0;
8562
8563 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
8564 kvm_set_segment(vcpu, &ds, VCPU_SREG_DS);
8565 kvm_set_segment(vcpu, &ds, VCPU_SREG_ES);
8566 kvm_set_segment(vcpu, &ds, VCPU_SREG_FS);
8567 kvm_set_segment(vcpu, &ds, VCPU_SREG_GS);
8568 kvm_set_segment(vcpu, &ds, VCPU_SREG_SS);
8569
b68f3cc7 8570#ifdef CONFIG_X86_64
d6321d49 8571 if (guest_cpuid_has(vcpu, X86_FEATURE_LM))
afaf0b2f 8572 kvm_x86_ops.set_efer(vcpu, 0);
b68f3cc7 8573#endif
660a5d51 8574
aedbaf4f 8575 kvm_update_cpuid_runtime(vcpu);
660a5d51 8576 kvm_mmu_reset_context(vcpu);
64d60670
PB
8577}
8578
ee2cd4b7 8579static void process_smi(struct kvm_vcpu *vcpu)
c43203ca
PB
8580{
8581 vcpu->arch.smi_pending = true;
8582 kvm_make_request(KVM_REQ_EVENT, vcpu);
8583}
8584
7ee30bc1
NNL
8585void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
8586 unsigned long *vcpu_bitmap)
8587{
8588 cpumask_var_t cpus;
7ee30bc1
NNL
8589
8590 zalloc_cpumask_var(&cpus, GFP_ATOMIC);
8591
db5a95ec 8592 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC,
54163a34 8593 NULL, vcpu_bitmap, cpus);
7ee30bc1
NNL
8594
8595 free_cpumask_var(cpus);
8596}
8597
2860c4b1
PB
8598void kvm_make_scan_ioapic_request(struct kvm *kvm)
8599{
8600 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
8601}
8602
8df14af4
SS
8603void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8604{
8605 if (!lapic_in_kernel(vcpu))
8606 return;
8607
8608 vcpu->arch.apicv_active = kvm_apicv_activated(vcpu->kvm);
8609 kvm_apic_update_apicv(vcpu);
afaf0b2f 8610 kvm_x86_ops.refresh_apicv_exec_ctrl(vcpu);
8df14af4
SS
8611}
8612EXPORT_SYMBOL_GPL(kvm_vcpu_update_apicv);
8613
8614/*
8615 * NOTE: Do not hold any lock prior to calling this.
8616 *
8617 * In particular, kvm_request_apicv_update() expects kvm->srcu not to be
8618 * locked, because it calls __x86_set_memory_region() which does
8619 * synchronize_srcu(&kvm->srcu).
8620 */
8621void kvm_request_apicv_update(struct kvm *kvm, bool activate, ulong bit)
8622{
7d611233 8623 struct kvm_vcpu *except;
8e205a6b
PB
8624 unsigned long old, new, expected;
8625
afaf0b2f
SC
8626 if (!kvm_x86_ops.check_apicv_inhibit_reasons ||
8627 !kvm_x86_ops.check_apicv_inhibit_reasons(bit))
ef8efd7a
SS
8628 return;
8629
8e205a6b
PB
8630 old = READ_ONCE(kvm->arch.apicv_inhibit_reasons);
8631 do {
8632 expected = new = old;
8633 if (activate)
8634 __clear_bit(bit, &new);
8635 else
8636 __set_bit(bit, &new);
8637 if (new == old)
8638 break;
8639 old = cmpxchg(&kvm->arch.apicv_inhibit_reasons, expected, new);
8640 } while (old != expected);
8641
8642 if (!!old == !!new)
8643 return;
8df14af4 8644
24bbf74c 8645 trace_kvm_apicv_update_request(activate, bit);
afaf0b2f
SC
8646 if (kvm_x86_ops.pre_update_apicv_exec_ctrl)
8647 kvm_x86_ops.pre_update_apicv_exec_ctrl(kvm, activate);
7d611233
SS
8648
8649 /*
8650 * Sending request to update APICV for all other vcpus,
8651 * while update the calling vcpu immediately instead of
8652 * waiting for another #VMEXIT to handle the request.
8653 */
8654 except = kvm_get_running_vcpu();
8655 kvm_make_all_cpus_request_except(kvm, KVM_REQ_APICV_UPDATE,
8656 except);
8657 if (except)
8658 kvm_vcpu_update_apicv(except);
8df14af4
SS
8659}
8660EXPORT_SYMBOL_GPL(kvm_request_apicv_update);
8661
3d81bc7e 8662static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
c7c9c56c 8663{
dcbd3e49 8664 if (!kvm_apic_present(vcpu))
3d81bc7e 8665 return;
c7c9c56c 8666
6308630b 8667 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
c7c9c56c 8668
b053b2ae 8669 if (irqchip_split(vcpu->kvm))
6308630b 8670 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 8671 else {
fa59cc00 8672 if (vcpu->arch.apicv_active)
afaf0b2f 8673 kvm_x86_ops.sync_pir_to_irr(vcpu);
e97f852f
WL
8674 if (ioapic_in_kernel(vcpu->kvm))
8675 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 8676 }
e40ff1d6
LA
8677
8678 if (is_guest_mode(vcpu))
8679 vcpu->arch.load_eoi_exitmap_pending = true;
8680 else
8681 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
8682}
8683
8684static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
8685{
8686 u64 eoi_exit_bitmap[4];
8687
8688 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
8689 return;
8690
5c919412
AS
8691 bitmap_or((ulong *)eoi_exit_bitmap, vcpu->arch.ioapic_handled_vectors,
8692 vcpu_to_synic(vcpu)->vec_bitmap, 256);
afaf0b2f 8693 kvm_x86_ops.load_eoi_exitmap(vcpu, eoi_exit_bitmap);
c7c9c56c
YZ
8694}
8695
e649b3f0
ET
8696void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
8697 unsigned long start, unsigned long end)
b1394e74
RK
8698{
8699 unsigned long apic_address;
8700
8701 /*
8702 * The physical address of apic access page is stored in the VMCS.
8703 * Update it when it becomes invalid.
8704 */
8705 apic_address = gfn_to_hva(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
8706 if (start <= apic_address && apic_address < end)
8707 kvm_make_all_cpus_request(kvm, KVM_REQ_APIC_PAGE_RELOAD);
8708}
8709
4256f43f
TC
8710void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
8711{
35754c98 8712 if (!lapic_in_kernel(vcpu))
f439ed27
PB
8713 return;
8714
afaf0b2f 8715 if (!kvm_x86_ops.set_apic_access_page_addr)
4256f43f
TC
8716 return;
8717
a4148b7c 8718 kvm_x86_ops.set_apic_access_page_addr(vcpu);
4256f43f 8719}
4256f43f 8720
d264ee0c
SC
8721void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
8722{
8723 smp_send_reschedule(vcpu->cpu);
8724}
8725EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
8726
9357d939 8727/*
362c698f 8728 * Returns 1 to let vcpu_run() continue the guest execution loop without
9357d939
TY
8729 * exiting to the userspace. Otherwise, the value will be returned to the
8730 * userspace.
8731 */
851ba692 8732static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
b6c7a5dc
HB
8733{
8734 int r;
62a193ed
MG
8735 bool req_int_win =
8736 dm_request_for_irq_injection(vcpu) &&
8737 kvm_cpu_accept_dm_intr(vcpu);
404d5d7b 8738 fastpath_t exit_fastpath;
62a193ed 8739
730dca42 8740 bool req_immediate_exit = false;
b6c7a5dc 8741
fb04a1ed
PX
8742 /* Forbid vmenter if vcpu dirty ring is soft-full */
8743 if (unlikely(vcpu->kvm->dirty_ring_size &&
8744 kvm_dirty_ring_soft_full(&vcpu->dirty_ring))) {
8745 vcpu->run->exit_reason = KVM_EXIT_DIRTY_RING_FULL;
8746 trace_kvm_dirty_ring_exit(vcpu);
8747 r = 0;
8748 goto out;
8749 }
8750
2fa6e1e1 8751 if (kvm_request_pending(vcpu)) {
729c15c2
PB
8752 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
8753 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
671ddc70
JM
8754 r = 0;
8755 goto out;
8756 }
8757 }
a8eeb04a 8758 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu))
2e53d63a 8759 kvm_mmu_unload(vcpu);
a8eeb04a 8760 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
2f599714 8761 __kvm_migrate_timers(vcpu);
d828199e
MT
8762 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
8763 kvm_gen_update_masterclock(vcpu->kvm);
0061d53d
MT
8764 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
8765 kvm_gen_kvmclock_update(vcpu);
34c238a1
ZA
8766 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
8767 r = kvm_guest_time_update(vcpu);
8cfdc000
ZA
8768 if (unlikely(r))
8769 goto out;
8770 }
a8eeb04a 8771 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4731d4c7 8772 kvm_mmu_sync_roots(vcpu);
727a7e27
PB
8773 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
8774 kvm_mmu_load_pgd(vcpu);
eeeb4f67 8775 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
7780938c 8776 kvm_vcpu_flush_tlb_all(vcpu);
eeeb4f67
SC
8777
8778 /* Flushing all ASIDs flushes the current ASID... */
8779 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
8780 }
8781 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
8782 kvm_vcpu_flush_tlb_current(vcpu);
0baedd79
VK
8783 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu))
8784 kvm_vcpu_flush_tlb_guest(vcpu);
eeeb4f67 8785
a8eeb04a 8786 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
851ba692 8787 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
b93463aa
AK
8788 r = 0;
8789 goto out;
8790 }
a8eeb04a 8791 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
851ba692 8792 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 8793 vcpu->mmio_needed = 0;
71c4dfaf
JR
8794 r = 0;
8795 goto out;
8796 }
af585b92
GN
8797 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
8798 /* Page is swapped out. Do synthetic halt */
8799 vcpu->arch.apf.halted = true;
8800 r = 1;
8801 goto out;
8802 }
c9aaa895
GC
8803 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
8804 record_steal_time(vcpu);
64d60670
PB
8805 if (kvm_check_request(KVM_REQ_SMI, vcpu))
8806 process_smi(vcpu);
7460fb4a
AK
8807 if (kvm_check_request(KVM_REQ_NMI, vcpu))
8808 process_nmi(vcpu);
f5132b01 8809 if (kvm_check_request(KVM_REQ_PMU, vcpu))
c6702c9d 8810 kvm_pmu_handle_event(vcpu);
f5132b01 8811 if (kvm_check_request(KVM_REQ_PMI, vcpu))
c6702c9d 8812 kvm_pmu_deliver_pmi(vcpu);
7543a635
SR
8813 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
8814 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
8815 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6308630b 8816 vcpu->arch.ioapic_handled_vectors)) {
7543a635
SR
8817 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
8818 vcpu->run->eoi.vector =
8819 vcpu->arch.pending_ioapic_eoi;
8820 r = 0;
8821 goto out;
8822 }
8823 }
3d81bc7e
YZ
8824 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
8825 vcpu_scan_ioapic(vcpu);
e40ff1d6
LA
8826 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
8827 vcpu_load_eoi_exitmap(vcpu);
4256f43f
TC
8828 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
8829 kvm_vcpu_reload_apic_access_page(vcpu);
2ce79189
AS
8830 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
8831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
8833 r = 0;
8834 goto out;
8835 }
e516cebb
AS
8836 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
8837 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
8838 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
8839 r = 0;
8840 goto out;
8841 }
db397571
AS
8842 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
8843 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
8844 vcpu->run->hyperv = vcpu->arch.hyperv.exit;
8845 r = 0;
8846 goto out;
8847 }
f3b138c5
AS
8848
8849 /*
8850 * KVM_REQ_HV_STIMER has to be processed after
8851 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
8852 * depend on the guest clock being up-to-date
8853 */
1f4b34f8
AS
8854 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
8855 kvm_hv_process_stimers(vcpu);
8df14af4
SS
8856 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
8857 kvm_vcpu_update_apicv(vcpu);
557a961a
VK
8858 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
8859 kvm_check_async_pf_completion(vcpu);
1a155254
AG
8860 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
8861 kvm_x86_ops.msr_filter_changed(vcpu);
2f52d58c 8862 }
b93463aa 8863
b463a6f7 8864 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win) {
0f1e261e 8865 ++vcpu->stat.req_event;
66450a21
JK
8866 kvm_apic_accept_events(vcpu);
8867 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
8868 r = 1;
8869 goto out;
8870 }
8871
c9d40913
PB
8872 inject_pending_event(vcpu, &req_immediate_exit);
8873 if (req_int_win)
8874 kvm_x86_ops.enable_irq_window(vcpu);
b463a6f7
AK
8875
8876 if (kvm_lapic_enabled(vcpu)) {
8877 update_cr8_intercept(vcpu);
8878 kvm_lapic_sync_to_vapic(vcpu);
8879 }
8880 }
8881
d8368af8
AK
8882 r = kvm_mmu_reload(vcpu);
8883 if (unlikely(r)) {
d905c069 8884 goto cancel_injection;
d8368af8
AK
8885 }
8886
b6c7a5dc
HB
8887 preempt_disable();
8888
afaf0b2f 8889 kvm_x86_ops.prepare_guest_switch(vcpu);
b95234c8
PB
8890
8891 /*
8892 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
8893 * IPI are then delayed after guest entry, which ensures that they
8894 * result in virtual interrupt delivery.
8895 */
8896 local_irq_disable();
6b7e2d09
XG
8897 vcpu->mode = IN_GUEST_MODE;
8898
01b71917
MT
8899 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
8900
0f127d12 8901 /*
b95234c8 8902 * 1) We should set ->mode before checking ->requests. Please see
cde9af6e 8903 * the comment in kvm_vcpu_exiting_guest_mode().
b95234c8 8904 *
81b01667 8905 * 2) For APICv, we should set ->mode before checking PID.ON. This
b95234c8
PB
8906 * pairs with the memory barrier implicit in pi_test_and_set_on
8907 * (see vmx_deliver_posted_interrupt).
8908 *
8909 * 3) This also orders the write to mode from any reads to the page
8910 * tables done while the VCPU is running. Please see the comment
8911 * in kvm_flush_remote_tlbs.
6b7e2d09 8912 */
01b71917 8913 smp_mb__after_srcu_read_unlock();
b6c7a5dc 8914
b95234c8
PB
8915 /*
8916 * This handles the case where a posted interrupt was
8917 * notified with kvm_vcpu_kick.
8918 */
fa59cc00 8919 if (kvm_lapic_enabled(vcpu) && vcpu->arch.apicv_active)
afaf0b2f 8920 kvm_x86_ops.sync_pir_to_irr(vcpu);
32f88400 8921
5a9f5443 8922 if (kvm_vcpu_exit_request(vcpu)) {
6b7e2d09 8923 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 8924 smp_wmb();
6c142801
AK
8925 local_irq_enable();
8926 preempt_enable();
01b71917 8927 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
6c142801 8928 r = 1;
d905c069 8929 goto cancel_injection;
6c142801
AK
8930 }
8931
c43203ca
PB
8932 if (req_immediate_exit) {
8933 kvm_make_request(KVM_REQ_EVENT, vcpu);
afaf0b2f 8934 kvm_x86_ops.request_immediate_exit(vcpu);
c43203ca 8935 }
d6185f20 8936
b2d52255 8937 trace_kvm_entry(vcpu);
b6c7a5dc 8938
2620fe26
SC
8939 fpregs_assert_state_consistent();
8940 if (test_thread_flag(TIF_NEED_FPU_LOAD))
8941 switch_fpu_return();
5f409e20 8942
42dbaa5a 8943 if (unlikely(vcpu->arch.switch_db_regs)) {
42dbaa5a
JK
8944 set_debugreg(0, 7);
8945 set_debugreg(vcpu->arch.eff_db[0], 0);
8946 set_debugreg(vcpu->arch.eff_db[1], 1);
8947 set_debugreg(vcpu->arch.eff_db[2], 2);
8948 set_debugreg(vcpu->arch.eff_db[3], 3);
c77fb5fe 8949 set_debugreg(vcpu->arch.dr6, 6);
ae561ede 8950 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
42dbaa5a 8951 }
b6c7a5dc 8952
a9ab13ff 8953 exit_fastpath = kvm_x86_ops.run(vcpu);
b6c7a5dc 8954
c77fb5fe
PB
8955 /*
8956 * Do this here before restoring debug registers on the host. And
8957 * since we do this before handling the vmexit, a DR access vmexit
8958 * can (a) read the correct value of the debug registers, (b) set
8959 * KVM_DEBUGREG_WONT_EXIT again.
8960 */
8961 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
c77fb5fe 8962 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
afaf0b2f 8963 kvm_x86_ops.sync_dirty_debug_regs(vcpu);
70e4da7a 8964 kvm_update_dr0123(vcpu);
70e4da7a
PB
8965 kvm_update_dr7(vcpu);
8966 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_RELOAD;
c77fb5fe
PB
8967 }
8968
24f1e32c
FW
8969 /*
8970 * If the guest has used debug registers, at least dr7
8971 * will be disabled while returning to the host.
8972 * If we don't have active breakpoints in the host, we don't
8973 * care about the messed up debug address registers. But if
8974 * we have some of them active, restore the old state.
8975 */
59d8eb53 8976 if (hw_breakpoint_active())
24f1e32c 8977 hw_breakpoint_restore();
42dbaa5a 8978
c967118d 8979 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
4ba76538 8980 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1d5f066e 8981
6b7e2d09 8982 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 8983 smp_wmb();
a547c6db 8984
a9ab13ff 8985 kvm_x86_ops.handle_exit_irqoff(vcpu);
b6c7a5dc 8986
d7a08882
SC
8987 /*
8988 * Consume any pending interrupts, including the possible source of
8989 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
8990 * An instruction is required after local_irq_enable() to fully unblock
8991 * interrupts on processors that implement an interrupt shadow, the
8992 * stat.exits increment will do nicely.
8993 */
8994 kvm_before_interrupt(vcpu);
8995 local_irq_enable();
b6c7a5dc 8996 ++vcpu->stat.exits;
d7a08882
SC
8997 local_irq_disable();
8998 kvm_after_interrupt(vcpu);
b6c7a5dc 8999
ec0671d5
WL
9000 if (lapic_in_kernel(vcpu)) {
9001 s64 delta = vcpu->arch.apic->lapic_timer.advance_expire_delta;
9002 if (delta != S64_MIN) {
9003 trace_kvm_wait_lapic_expire(vcpu->vcpu_id, delta);
9004 vcpu->arch.apic->lapic_timer.advance_expire_delta = S64_MIN;
9005 }
9006 }
b6c7a5dc 9007
f2485b3e 9008 local_irq_enable();
b6c7a5dc
HB
9009 preempt_enable();
9010
f656ce01 9011 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3200f405 9012
b6c7a5dc
HB
9013 /*
9014 * Profile KVM exit RIPs:
9015 */
9016 if (unlikely(prof_on == KVM_PROFILING)) {
5fdbf976
MT
9017 unsigned long rip = kvm_rip_read(vcpu);
9018 profile_hit(KVM_PROFILING, (void *)rip);
b6c7a5dc
HB
9019 }
9020
cc578287
ZA
9021 if (unlikely(vcpu->arch.tsc_always_catchup))
9022 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
298101da 9023
5cfb1d5a
MT
9024 if (vcpu->arch.apic_attention)
9025 kvm_lapic_sync_from_vapic(vcpu);
b93463aa 9026
afaf0b2f 9027 r = kvm_x86_ops.handle_exit(vcpu, exit_fastpath);
d905c069
MT
9028 return r;
9029
9030cancel_injection:
8081ad06
SC
9031 if (req_immediate_exit)
9032 kvm_make_request(KVM_REQ_EVENT, vcpu);
afaf0b2f 9033 kvm_x86_ops.cancel_injection(vcpu);
ae7a2a3f
MT
9034 if (unlikely(vcpu->arch.apic_attention))
9035 kvm_lapic_sync_from_vapic(vcpu);
d7690175
MT
9036out:
9037 return r;
9038}
b6c7a5dc 9039
362c698f
PB
9040static inline int vcpu_block(struct kvm *kvm, struct kvm_vcpu *vcpu)
9041{
bf9f6ac8 9042 if (!kvm_arch_vcpu_runnable(vcpu) &&
afaf0b2f 9043 (!kvm_x86_ops.pre_block || kvm_x86_ops.pre_block(vcpu) == 0)) {
9c8fd1ba
PB
9044 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
9045 kvm_vcpu_block(vcpu);
9046 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
bf9f6ac8 9047
afaf0b2f
SC
9048 if (kvm_x86_ops.post_block)
9049 kvm_x86_ops.post_block(vcpu);
bf9f6ac8 9050
9c8fd1ba
PB
9051 if (!kvm_check_request(KVM_REQ_UNHALT, vcpu))
9052 return 1;
9053 }
362c698f
PB
9054
9055 kvm_apic_accept_events(vcpu);
9056 switch(vcpu->arch.mp_state) {
9057 case KVM_MP_STATE_HALTED:
9058 vcpu->arch.pv.pv_unhalted = false;
9059 vcpu->arch.mp_state =
9060 KVM_MP_STATE_RUNNABLE;
df561f66 9061 fallthrough;
362c698f
PB
9062 case KVM_MP_STATE_RUNNABLE:
9063 vcpu->arch.apf.halted = false;
9064 break;
9065 case KVM_MP_STATE_INIT_RECEIVED:
9066 break;
9067 default:
9068 return -EINTR;
362c698f
PB
9069 }
9070 return 1;
9071}
09cec754 9072
5d9bc648
PB
9073static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
9074{
56083bdf 9075 if (is_guest_mode(vcpu))
33b22172 9076 kvm_x86_ops.nested_ops->check_events(vcpu);
0ad3bed6 9077
5d9bc648
PB
9078 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
9079 !vcpu->arch.apf.halted);
9080}
9081
362c698f 9082static int vcpu_run(struct kvm_vcpu *vcpu)
d7690175
MT
9083{
9084 int r;
f656ce01 9085 struct kvm *kvm = vcpu->kvm;
d7690175 9086
f656ce01 9087 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
c595ceee 9088 vcpu->arch.l1tf_flush_l1d = true;
d7690175 9089
362c698f 9090 for (;;) {
58f800d5 9091 if (kvm_vcpu_running(vcpu)) {
851ba692 9092 r = vcpu_enter_guest(vcpu);
bf9f6ac8 9093 } else {
362c698f 9094 r = vcpu_block(kvm, vcpu);
bf9f6ac8
FW
9095 }
9096
09cec754
GN
9097 if (r <= 0)
9098 break;
9099
72875d8a 9100 kvm_clear_request(KVM_REQ_PENDING_TIMER, vcpu);
09cec754
GN
9101 if (kvm_cpu_has_pending_timer(vcpu))
9102 kvm_inject_pending_timer_irqs(vcpu);
9103
782d422b
MG
9104 if (dm_request_for_irq_injection(vcpu) &&
9105 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
4ca7dd8c
PB
9106 r = 0;
9107 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
09cec754 9108 ++vcpu->stat.request_irq_exits;
362c698f 9109 break;
09cec754 9110 }
af585b92 9111
f3020b88 9112 if (__xfer_to_guest_mode_work_pending()) {
f656ce01 9113 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
72c3c0fe
TG
9114 r = xfer_to_guest_mode_handle_work(vcpu);
9115 if (r)
9116 return r;
f656ce01 9117 vcpu->srcu_idx = srcu_read_lock(&kvm->srcu);
d7690175 9118 }
b6c7a5dc
HB
9119 }
9120
f656ce01 9121 srcu_read_unlock(&kvm->srcu, vcpu->srcu_idx);
b6c7a5dc
HB
9122
9123 return r;
9124}
9125
716d51ab
GN
9126static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
9127{
9128 int r;
60fc3d02 9129
716d51ab 9130 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
0ce97a2b 9131 r = kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
716d51ab 9132 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
60fc3d02 9133 return r;
716d51ab
GN
9134}
9135
9136static int complete_emulated_pio(struct kvm_vcpu *vcpu)
9137{
9138 BUG_ON(!vcpu->arch.pio.count);
9139
9140 return complete_emulated_io(vcpu);
9141}
9142
f78146b0
AK
9143/*
9144 * Implements the following, as a state machine:
9145 *
9146 * read:
9147 * for each fragment
87da7e66
XG
9148 * for each mmio piece in the fragment
9149 * write gpa, len
9150 * exit
9151 * copy data
f78146b0
AK
9152 * execute insn
9153 *
9154 * write:
9155 * for each fragment
87da7e66
XG
9156 * for each mmio piece in the fragment
9157 * write gpa, len
9158 * copy data
9159 * exit
f78146b0 9160 */
716d51ab 9161static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5287f194
AK
9162{
9163 struct kvm_run *run = vcpu->run;
f78146b0 9164 struct kvm_mmio_fragment *frag;
87da7e66 9165 unsigned len;
5287f194 9166
716d51ab 9167 BUG_ON(!vcpu->mmio_needed);
5287f194 9168
716d51ab 9169 /* Complete previous fragment */
87da7e66
XG
9170 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
9171 len = min(8u, frag->len);
716d51ab 9172 if (!vcpu->mmio_is_write)
87da7e66
XG
9173 memcpy(frag->data, run->mmio.data, len);
9174
9175 if (frag->len <= 8) {
9176 /* Switch to the next fragment. */
9177 frag++;
9178 vcpu->mmio_cur_fragment++;
9179 } else {
9180 /* Go forward to the next mmio piece. */
9181 frag->data += len;
9182 frag->gpa += len;
9183 frag->len -= len;
9184 }
9185
a08d3b3b 9186 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
716d51ab 9187 vcpu->mmio_needed = 0;
0912c977
PB
9188
9189 /* FIXME: return into emulator if single-stepping. */
cef4dea0 9190 if (vcpu->mmio_is_write)
716d51ab
GN
9191 return 1;
9192 vcpu->mmio_read_completed = 1;
9193 return complete_emulated_io(vcpu);
9194 }
87da7e66 9195
716d51ab
GN
9196 run->exit_reason = KVM_EXIT_MMIO;
9197 run->mmio.phys_addr = frag->gpa;
9198 if (vcpu->mmio_is_write)
87da7e66
XG
9199 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
9200 run->mmio.len = min(8u, frag->len);
716d51ab
GN
9201 run->mmio.is_write = vcpu->mmio_is_write;
9202 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
9203 return 0;
5287f194
AK
9204}
9205
c9aef3b8
SC
9206static void kvm_save_current_fpu(struct fpu *fpu)
9207{
9208 /*
9209 * If the target FPU state is not resident in the CPU registers, just
9210 * memcpy() from current, else save CPU state directly to the target.
9211 */
9212 if (test_thread_flag(TIF_NEED_FPU_LOAD))
9213 memcpy(&fpu->state, &current->thread.fpu.state,
9214 fpu_kernel_xstate_size);
9215 else
9216 copy_fpregs_to_fpstate(fpu);
9217}
9218
822f312d
SAS
9219/* Swap (qemu) user FPU context for the guest FPU context. */
9220static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
9221{
5f409e20
RR
9222 fpregs_lock();
9223
c9aef3b8
SC
9224 kvm_save_current_fpu(vcpu->arch.user_fpu);
9225
afaf0b2f 9226 /* PKRU is separately restored in kvm_x86_ops.run. */
b666a4b6 9227 __copy_kernel_to_fpregs(&vcpu->arch.guest_fpu->state,
822f312d 9228 ~XFEATURE_MASK_PKRU);
5f409e20
RR
9229
9230 fpregs_mark_activate();
9231 fpregs_unlock();
9232
822f312d
SAS
9233 trace_kvm_fpu(1);
9234}
9235
9236/* When vcpu_run ends, restore user space FPU context. */
9237static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
9238{
5f409e20
RR
9239 fpregs_lock();
9240
c9aef3b8
SC
9241 kvm_save_current_fpu(vcpu->arch.guest_fpu);
9242
d9a710e5 9243 copy_kernel_to_fpregs(&vcpu->arch.user_fpu->state);
5f409e20
RR
9244
9245 fpregs_mark_activate();
9246 fpregs_unlock();
9247
822f312d
SAS
9248 ++vcpu->stat.fpu_reload;
9249 trace_kvm_fpu(0);
9250}
9251
1b94f6f8 9252int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
b6c7a5dc 9253{
1b94f6f8 9254 struct kvm_run *kvm_run = vcpu->run;
b6c7a5dc 9255 int r;
b6c7a5dc 9256
accb757d 9257 vcpu_load(vcpu);
20b7035c 9258 kvm_sigset_activate(vcpu);
5663d8f9
PX
9259 kvm_load_guest_fpu(vcpu);
9260
a4535290 9261 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2f173d26
JS
9262 if (kvm_run->immediate_exit) {
9263 r = -EINTR;
9264 goto out;
9265 }
b6c7a5dc 9266 kvm_vcpu_block(vcpu);
66450a21 9267 kvm_apic_accept_events(vcpu);
72875d8a 9268 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
ac9f6dc0 9269 r = -EAGAIN;
a0595000
JS
9270 if (signal_pending(current)) {
9271 r = -EINTR;
1b94f6f8 9272 kvm_run->exit_reason = KVM_EXIT_INTR;
a0595000
JS
9273 ++vcpu->stat.signal_exits;
9274 }
ac9f6dc0 9275 goto out;
b6c7a5dc
HB
9276 }
9277
1b94f6f8 9278 if (kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) {
01643c51
KH
9279 r = -EINVAL;
9280 goto out;
9281 }
9282
1b94f6f8 9283 if (kvm_run->kvm_dirty_regs) {
01643c51
KH
9284 r = sync_regs(vcpu);
9285 if (r != 0)
9286 goto out;
9287 }
9288
b6c7a5dc 9289 /* re-sync apic's tpr */
35754c98 9290 if (!lapic_in_kernel(vcpu)) {
eea1cff9
AP
9291 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
9292 r = -EINVAL;
9293 goto out;
9294 }
9295 }
b6c7a5dc 9296
716d51ab
GN
9297 if (unlikely(vcpu->arch.complete_userspace_io)) {
9298 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
9299 vcpu->arch.complete_userspace_io = NULL;
9300 r = cui(vcpu);
9301 if (r <= 0)
5663d8f9 9302 goto out;
716d51ab
GN
9303 } else
9304 WARN_ON(vcpu->arch.pio.count || vcpu->mmio_needed);
5287f194 9305
460df4c1
PB
9306 if (kvm_run->immediate_exit)
9307 r = -EINTR;
9308 else
9309 r = vcpu_run(vcpu);
b6c7a5dc
HB
9310
9311out:
5663d8f9 9312 kvm_put_guest_fpu(vcpu);
1b94f6f8 9313 if (kvm_run->kvm_valid_regs)
01643c51 9314 store_regs(vcpu);
f1d86e46 9315 post_kvm_run_save(vcpu);
20b7035c 9316 kvm_sigset_deactivate(vcpu);
b6c7a5dc 9317
accb757d 9318 vcpu_put(vcpu);
b6c7a5dc
HB
9319 return r;
9320}
9321
01643c51 9322static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 9323{
7ae441ea
GN
9324 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
9325 /*
9326 * We are here if userspace calls get_regs() in the middle of
9327 * instruction emulation. Registers state needs to be copied
4a969980 9328 * back from emulation context to vcpu. Userspace shouldn't do
7ae441ea
GN
9329 * that usually, but some bad designed PV devices (vmware
9330 * backdoor interface) need this to work
9331 */
c9b8b07c 9332 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
7ae441ea
GN
9333 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9334 }
de3cd117
SC
9335 regs->rax = kvm_rax_read(vcpu);
9336 regs->rbx = kvm_rbx_read(vcpu);
9337 regs->rcx = kvm_rcx_read(vcpu);
9338 regs->rdx = kvm_rdx_read(vcpu);
9339 regs->rsi = kvm_rsi_read(vcpu);
9340 regs->rdi = kvm_rdi_read(vcpu);
e9c16c78 9341 regs->rsp = kvm_rsp_read(vcpu);
de3cd117 9342 regs->rbp = kvm_rbp_read(vcpu);
b6c7a5dc 9343#ifdef CONFIG_X86_64
de3cd117
SC
9344 regs->r8 = kvm_r8_read(vcpu);
9345 regs->r9 = kvm_r9_read(vcpu);
9346 regs->r10 = kvm_r10_read(vcpu);
9347 regs->r11 = kvm_r11_read(vcpu);
9348 regs->r12 = kvm_r12_read(vcpu);
9349 regs->r13 = kvm_r13_read(vcpu);
9350 regs->r14 = kvm_r14_read(vcpu);
9351 regs->r15 = kvm_r15_read(vcpu);
b6c7a5dc
HB
9352#endif
9353
5fdbf976 9354 regs->rip = kvm_rip_read(vcpu);
91586a3b 9355 regs->rflags = kvm_get_rflags(vcpu);
01643c51 9356}
b6c7a5dc 9357
01643c51
KH
9358int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9359{
9360 vcpu_load(vcpu);
9361 __get_regs(vcpu, regs);
1fc9b76b 9362 vcpu_put(vcpu);
b6c7a5dc
HB
9363 return 0;
9364}
9365
01643c51 9366static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 9367{
7ae441ea
GN
9368 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
9369 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
9370
de3cd117
SC
9371 kvm_rax_write(vcpu, regs->rax);
9372 kvm_rbx_write(vcpu, regs->rbx);
9373 kvm_rcx_write(vcpu, regs->rcx);
9374 kvm_rdx_write(vcpu, regs->rdx);
9375 kvm_rsi_write(vcpu, regs->rsi);
9376 kvm_rdi_write(vcpu, regs->rdi);
e9c16c78 9377 kvm_rsp_write(vcpu, regs->rsp);
de3cd117 9378 kvm_rbp_write(vcpu, regs->rbp);
b6c7a5dc 9379#ifdef CONFIG_X86_64
de3cd117
SC
9380 kvm_r8_write(vcpu, regs->r8);
9381 kvm_r9_write(vcpu, regs->r9);
9382 kvm_r10_write(vcpu, regs->r10);
9383 kvm_r11_write(vcpu, regs->r11);
9384 kvm_r12_write(vcpu, regs->r12);
9385 kvm_r13_write(vcpu, regs->r13);
9386 kvm_r14_write(vcpu, regs->r14);
9387 kvm_r15_write(vcpu, regs->r15);
b6c7a5dc
HB
9388#endif
9389
5fdbf976 9390 kvm_rip_write(vcpu, regs->rip);
d73235d1 9391 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
b6c7a5dc 9392
b4f14abd
JK
9393 vcpu->arch.exception.pending = false;
9394
3842d135 9395 kvm_make_request(KVM_REQ_EVENT, vcpu);
01643c51 9396}
3842d135 9397
01643c51
KH
9398int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
9399{
9400 vcpu_load(vcpu);
9401 __set_regs(vcpu, regs);
875656fe 9402 vcpu_put(vcpu);
b6c7a5dc
HB
9403 return 0;
9404}
9405
b6c7a5dc
HB
9406void kvm_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
9407{
9408 struct kvm_segment cs;
9409
3e6e0aab 9410 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
b6c7a5dc
HB
9411 *db = cs.db;
9412 *l = cs.l;
9413}
9414EXPORT_SYMBOL_GPL(kvm_get_cs_db_l_bits);
9415
01643c51 9416static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
b6c7a5dc 9417{
89a27f4d 9418 struct desc_ptr dt;
b6c7a5dc 9419
3e6e0aab
GT
9420 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9421 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9422 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9423 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9424 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9425 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 9426
3e6e0aab
GT
9427 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9428 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 9429
afaf0b2f 9430 kvm_x86_ops.get_idt(vcpu, &dt);
89a27f4d
GN
9431 sregs->idt.limit = dt.size;
9432 sregs->idt.base = dt.address;
afaf0b2f 9433 kvm_x86_ops.get_gdt(vcpu, &dt);
89a27f4d
GN
9434 sregs->gdt.limit = dt.size;
9435 sregs->gdt.base = dt.address;
b6c7a5dc 9436
4d4ec087 9437 sregs->cr0 = kvm_read_cr0(vcpu);
ad312c7c 9438 sregs->cr2 = vcpu->arch.cr2;
9f8fe504 9439 sregs->cr3 = kvm_read_cr3(vcpu);
fc78f519 9440 sregs->cr4 = kvm_read_cr4(vcpu);
2d3ad1f4 9441 sregs->cr8 = kvm_get_cr8(vcpu);
f6801dff 9442 sregs->efer = vcpu->arch.efer;
b6c7a5dc
HB
9443 sregs->apic_base = kvm_get_apic_base(vcpu);
9444
0e96f31e 9445 memset(sregs->interrupt_bitmap, 0, sizeof(sregs->interrupt_bitmap));
b6c7a5dc 9446
04140b41 9447 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
14d0bc1f
GN
9448 set_bit(vcpu->arch.interrupt.nr,
9449 (unsigned long *)sregs->interrupt_bitmap);
01643c51 9450}
16d7a191 9451
01643c51
KH
9452int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
9453 struct kvm_sregs *sregs)
9454{
9455 vcpu_load(vcpu);
9456 __get_sregs(vcpu, sregs);
bcdec41c 9457 vcpu_put(vcpu);
b6c7a5dc
HB
9458 return 0;
9459}
9460
62d9f0db
MT
9461int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
9462 struct kvm_mp_state *mp_state)
9463{
fd232561 9464 vcpu_load(vcpu);
f958bd23
SC
9465 if (kvm_mpx_supported())
9466 kvm_load_guest_fpu(vcpu);
fd232561 9467
66450a21 9468 kvm_apic_accept_events(vcpu);
6aef266c
SV
9469 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED &&
9470 vcpu->arch.pv.pv_unhalted)
9471 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
9472 else
9473 mp_state->mp_state = vcpu->arch.mp_state;
9474
f958bd23
SC
9475 if (kvm_mpx_supported())
9476 kvm_put_guest_fpu(vcpu);
fd232561 9477 vcpu_put(vcpu);
62d9f0db
MT
9478 return 0;
9479}
9480
9481int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
9482 struct kvm_mp_state *mp_state)
9483{
e83dff5e
CD
9484 int ret = -EINVAL;
9485
9486 vcpu_load(vcpu);
9487
bce87cce 9488 if (!lapic_in_kernel(vcpu) &&
66450a21 9489 mp_state->mp_state != KVM_MP_STATE_RUNNABLE)
e83dff5e 9490 goto out;
66450a21 9491
27cbe7d6
LA
9492 /*
9493 * KVM_MP_STATE_INIT_RECEIVED means the processor is in
9494 * INIT state; latched init should be reported using
9495 * KVM_SET_VCPU_EVENTS, so reject it here.
9496 */
9497 if ((kvm_vcpu_latch_init(vcpu) || vcpu->arch.smi_pending) &&
28bf2888
DH
9498 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
9499 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
e83dff5e 9500 goto out;
28bf2888 9501
66450a21
JK
9502 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
9503 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
9504 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
9505 } else
9506 vcpu->arch.mp_state = mp_state->mp_state;
3842d135 9507 kvm_make_request(KVM_REQ_EVENT, vcpu);
e83dff5e
CD
9508
9509 ret = 0;
9510out:
9511 vcpu_put(vcpu);
9512 return ret;
62d9f0db
MT
9513}
9514
7f3d35fd
KW
9515int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
9516 int reason, bool has_error_code, u32 error_code)
b6c7a5dc 9517{
c9b8b07c 9518 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d 9519 int ret;
e01c2426 9520
8ec4722d 9521 init_emulate_ctxt(vcpu);
c697518a 9522
7f3d35fd 9523 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9d74191a 9524 has_error_code, error_code);
1051778f
SC
9525 if (ret) {
9526 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9527 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
9528 vcpu->run->internal.ndata = 0;
60fc3d02 9529 return 0;
1051778f 9530 }
37817f29 9531
9d74191a
TY
9532 kvm_rip_write(vcpu, ctxt->eip);
9533 kvm_set_rflags(vcpu, ctxt->eflags);
60fc3d02 9534 return 1;
37817f29
IE
9535}
9536EXPORT_SYMBOL_GPL(kvm_task_switch);
9537
ee69c92b 9538static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
f2981033 9539{
37b95951 9540 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
f2981033
LT
9541 /*
9542 * When EFER.LME and CR0.PG are set, the processor is in
9543 * 64-bit mode (though maybe in a 32-bit code segment).
9544 * CR4.PAE and EFER.LMA must be set.
9545 */
ee69c92b
SC
9546 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
9547 return false;
f2981033
LT
9548 } else {
9549 /*
9550 * Not in 64-bit mode: EFER.LMA is clear and the code
9551 * segment cannot be 64-bit.
9552 */
9553 if (sregs->efer & EFER_LMA || sregs->cs.l)
ee69c92b 9554 return false;
f2981033
LT
9555 }
9556
ee69c92b 9557 return kvm_is_valid_cr4(vcpu, sregs->cr4);
f2981033
LT
9558}
9559
01643c51 9560static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
b6c7a5dc 9561{
58cb628d 9562 struct msr_data apic_base_msr;
b6c7a5dc 9563 int mmu_reset_needed = 0;
63f42e02 9564 int pending_vec, max_bits, idx;
89a27f4d 9565 struct desc_ptr dt;
b4ef9d4e
CD
9566 int ret = -EINVAL;
9567
ee69c92b 9568 if (!kvm_is_valid_sregs(vcpu, sregs))
8dbfb2bf 9569 goto out;
f2981033 9570
d3802286
JM
9571 apic_base_msr.data = sregs->apic_base;
9572 apic_base_msr.host_initiated = true;
9573 if (kvm_set_apic_base(vcpu, &apic_base_msr))
b4ef9d4e 9574 goto out;
6d1068b3 9575
89a27f4d
GN
9576 dt.size = sregs->idt.limit;
9577 dt.address = sregs->idt.base;
afaf0b2f 9578 kvm_x86_ops.set_idt(vcpu, &dt);
89a27f4d
GN
9579 dt.size = sregs->gdt.limit;
9580 dt.address = sregs->gdt.base;
afaf0b2f 9581 kvm_x86_ops.set_gdt(vcpu, &dt);
b6c7a5dc 9582
ad312c7c 9583 vcpu->arch.cr2 = sregs->cr2;
9f8fe504 9584 mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
dc7e795e 9585 vcpu->arch.cr3 = sregs->cr3;
cb3c1e2f 9586 kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
b6c7a5dc 9587
2d3ad1f4 9588 kvm_set_cr8(vcpu, sregs->cr8);
b6c7a5dc 9589
f6801dff 9590 mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
afaf0b2f 9591 kvm_x86_ops.set_efer(vcpu, sregs->efer);
b6c7a5dc 9592
4d4ec087 9593 mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
afaf0b2f 9594 kvm_x86_ops.set_cr0(vcpu, sregs->cr0);
d7306163 9595 vcpu->arch.cr0 = sregs->cr0;
b6c7a5dc 9596
fc78f519 9597 mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
afaf0b2f 9598 kvm_x86_ops.set_cr4(vcpu, sregs->cr4);
63f42e02
XG
9599
9600 idx = srcu_read_lock(&vcpu->kvm->srcu);
bf03d4f9 9601 if (is_pae_paging(vcpu)) {
9f8fe504 9602 load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
7c93be44
MT
9603 mmu_reset_needed = 1;
9604 }
63f42e02 9605 srcu_read_unlock(&vcpu->kvm->srcu, idx);
b6c7a5dc
HB
9606
9607 if (mmu_reset_needed)
9608 kvm_mmu_reset_context(vcpu);
9609
a50abc3b 9610 max_bits = KVM_NR_INTERRUPTS;
923c61bb
GN
9611 pending_vec = find_first_bit(
9612 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
9613 if (pending_vec < max_bits) {
66fd3f7f 9614 kvm_queue_interrupt(vcpu, pending_vec, false);
923c61bb 9615 pr_debug("Set back pending irq %d\n", pending_vec);
b6c7a5dc
HB
9616 }
9617
3e6e0aab
GT
9618 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
9619 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
9620 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
9621 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
9622 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
9623 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 9624
3e6e0aab
GT
9625 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
9626 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 9627
5f0269f5
ME
9628 update_cr8_intercept(vcpu);
9629
9c3e4aab 9630 /* Older userspace won't unhalt the vcpu on reset. */
c5af89b6 9631 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9c3e4aab 9632 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3eeb3288 9633 !is_protmode(vcpu))
9c3e4aab
MT
9634 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9635
3842d135
AK
9636 kvm_make_request(KVM_REQ_EVENT, vcpu);
9637
b4ef9d4e
CD
9638 ret = 0;
9639out:
01643c51
KH
9640 return ret;
9641}
9642
9643int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
9644 struct kvm_sregs *sregs)
9645{
9646 int ret;
9647
9648 vcpu_load(vcpu);
9649 ret = __set_sregs(vcpu, sregs);
b4ef9d4e
CD
9650 vcpu_put(vcpu);
9651 return ret;
b6c7a5dc
HB
9652}
9653
d0bfb940
JK
9654int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
9655 struct kvm_guest_debug *dbg)
b6c7a5dc 9656{
355be0b9 9657 unsigned long rflags;
ae675ef0 9658 int i, r;
b6c7a5dc 9659
66b56562
CD
9660 vcpu_load(vcpu);
9661
4f926bf2
JK
9662 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
9663 r = -EBUSY;
9664 if (vcpu->arch.exception.pending)
2122ff5e 9665 goto out;
4f926bf2
JK
9666 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
9667 kvm_queue_exception(vcpu, DB_VECTOR);
9668 else
9669 kvm_queue_exception(vcpu, BP_VECTOR);
9670 }
9671
91586a3b
JK
9672 /*
9673 * Read rflags as long as potentially injected trace flags are still
9674 * filtered out.
9675 */
9676 rflags = kvm_get_rflags(vcpu);
355be0b9
JK
9677
9678 vcpu->guest_debug = dbg->control;
9679 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
9680 vcpu->guest_debug = 0;
9681
9682 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
ae675ef0
JK
9683 for (i = 0; i < KVM_NR_DB_REGS; ++i)
9684 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
c8639010 9685 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
ae675ef0
JK
9686 } else {
9687 for (i = 0; i < KVM_NR_DB_REGS; i++)
9688 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
ae675ef0 9689 }
c8639010 9690 kvm_update_dr7(vcpu);
ae675ef0 9691
f92653ee
JK
9692 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9693 vcpu->arch.singlestep_rip = kvm_rip_read(vcpu) +
9694 get_segment_base(vcpu, VCPU_SREG_CS);
94fe45da 9695
91586a3b
JK
9696 /*
9697 * Trigger an rflags update that will inject or remove the trace
9698 * flags.
9699 */
9700 kvm_set_rflags(vcpu, rflags);
b6c7a5dc 9701
6986982f 9702 kvm_x86_ops.update_exception_bitmap(vcpu);
b6c7a5dc 9703
4f926bf2 9704 r = 0;
d0bfb940 9705
2122ff5e 9706out:
66b56562 9707 vcpu_put(vcpu);
b6c7a5dc
HB
9708 return r;
9709}
9710
8b006791
ZX
9711/*
9712 * Translate a guest virtual address to a guest physical address.
9713 */
9714int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
9715 struct kvm_translation *tr)
9716{
9717 unsigned long vaddr = tr->linear_address;
9718 gpa_t gpa;
f656ce01 9719 int idx;
8b006791 9720
1da5b61d
CD
9721 vcpu_load(vcpu);
9722
f656ce01 9723 idx = srcu_read_lock(&vcpu->kvm->srcu);
1871c602 9724 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
f656ce01 9725 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8b006791
ZX
9726 tr->physical_address = gpa;
9727 tr->valid = gpa != UNMAPPED_GVA;
9728 tr->writeable = 1;
9729 tr->usermode = 0;
8b006791 9730
1da5b61d 9731 vcpu_put(vcpu);
8b006791
ZX
9732 return 0;
9733}
9734
d0752060
HB
9735int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9736{
1393123e 9737 struct fxregs_state *fxsave;
d0752060 9738
1393123e 9739 vcpu_load(vcpu);
d0752060 9740
b666a4b6 9741 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
d0752060
HB
9742 memcpy(fpu->fpr, fxsave->st_space, 128);
9743 fpu->fcw = fxsave->cwd;
9744 fpu->fsw = fxsave->swd;
9745 fpu->ftwx = fxsave->twd;
9746 fpu->last_opcode = fxsave->fop;
9747 fpu->last_ip = fxsave->rip;
9748 fpu->last_dp = fxsave->rdp;
0e96f31e 9749 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
d0752060 9750
1393123e 9751 vcpu_put(vcpu);
d0752060
HB
9752 return 0;
9753}
9754
9755int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
9756{
6a96bc7f
CD
9757 struct fxregs_state *fxsave;
9758
9759 vcpu_load(vcpu);
9760
b666a4b6 9761 fxsave = &vcpu->arch.guest_fpu->state.fxsave;
d0752060 9762
d0752060
HB
9763 memcpy(fxsave->st_space, fpu->fpr, 128);
9764 fxsave->cwd = fpu->fcw;
9765 fxsave->swd = fpu->fsw;
9766 fxsave->twd = fpu->ftwx;
9767 fxsave->fop = fpu->last_opcode;
9768 fxsave->rip = fpu->last_ip;
9769 fxsave->rdp = fpu->last_dp;
0e96f31e 9770 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
d0752060 9771
6a96bc7f 9772 vcpu_put(vcpu);
d0752060
HB
9773 return 0;
9774}
9775
01643c51
KH
9776static void store_regs(struct kvm_vcpu *vcpu)
9777{
9778 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
9779
9780 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
9781 __get_regs(vcpu, &vcpu->run->s.regs.regs);
9782
9783 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
9784 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
9785
9786 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
9787 kvm_vcpu_ioctl_x86_get_vcpu_events(
9788 vcpu, &vcpu->run->s.regs.events);
9789}
9790
9791static int sync_regs(struct kvm_vcpu *vcpu)
9792{
9793 if (vcpu->run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)
9794 return -EINVAL;
9795
9796 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
9797 __set_regs(vcpu, &vcpu->run->s.regs.regs);
9798 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
9799 }
9800 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
9801 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
9802 return -EINVAL;
9803 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
9804 }
9805 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
9806 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
9807 vcpu, &vcpu->run->s.regs.events))
9808 return -EINVAL;
9809 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
9810 }
9811
9812 return 0;
9813}
9814
0ee6a517 9815static void fx_init(struct kvm_vcpu *vcpu)
d0752060 9816{
b666a4b6 9817 fpstate_init(&vcpu->arch.guest_fpu->state);
782511b0 9818 if (boot_cpu_has(X86_FEATURE_XSAVES))
b666a4b6 9819 vcpu->arch.guest_fpu->state.xsave.header.xcomp_bv =
df1daba7 9820 host_xcr0 | XSTATE_COMPACTION_ENABLED;
d0752060 9821
2acf923e
DC
9822 /*
9823 * Ensure guest xcr0 is valid for loading
9824 */
d91cab78 9825 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
2acf923e 9826
ad312c7c 9827 vcpu->arch.cr0 |= X86_CR0_ET;
d0752060 9828}
d0752060 9829
897cc38e 9830int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
e9b11c17 9831{
897cc38e
SC
9832 if (kvm_check_tsc_unstable() && atomic_read(&kvm->online_vcpus) != 0)
9833 pr_warn_once("kvm: SMP vm created on host with unstable TSC; "
9834 "guest TSC will not be reliable\n");
7f1ea208 9835
897cc38e 9836 return 0;
e9b11c17
ZX
9837}
9838
e529ef66 9839int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
e9b11c17 9840{
95a0d01e
SC
9841 struct page *page;
9842 int r;
c447e76b 9843
95a0d01e
SC
9844 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
9845 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
9846 else
9847 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
c447e76b 9848
95a0d01e 9849 kvm_set_tsc_khz(vcpu, max_tsc_khz);
c447e76b 9850
95a0d01e
SC
9851 r = kvm_mmu_create(vcpu);
9852 if (r < 0)
9853 return r;
9854
9855 if (irqchip_in_kernel(vcpu->kvm)) {
95a0d01e
SC
9856 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
9857 if (r < 0)
9858 goto fail_mmu_destroy;
4e19c36f
SS
9859 if (kvm_apicv_activated(vcpu->kvm))
9860 vcpu->arch.apicv_active = true;
95a0d01e
SC
9861 } else
9862 static_key_slow_inc(&kvm_no_apic_vcpu);
9863
9864 r = -ENOMEM;
9865
9866 page = alloc_page(GFP_KERNEL | __GFP_ZERO);
9867 if (!page)
9868 goto fail_free_lapic;
9869 vcpu->arch.pio_data = page_address(page);
9870
9871 vcpu->arch.mce_banks = kzalloc(KVM_MAX_MCE_BANKS * sizeof(u64) * 4,
9872 GFP_KERNEL_ACCOUNT);
9873 if (!vcpu->arch.mce_banks)
9874 goto fail_free_pio_data;
9875 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
9876
9877 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
9878 GFP_KERNEL_ACCOUNT))
9879 goto fail_free_mce_banks;
9880
c9b8b07c
SC
9881 if (!alloc_emulate_ctxt(vcpu))
9882 goto free_wbinvd_dirty_mask;
9883
95a0d01e
SC
9884 vcpu->arch.user_fpu = kmem_cache_zalloc(x86_fpu_cache,
9885 GFP_KERNEL_ACCOUNT);
9886 if (!vcpu->arch.user_fpu) {
9887 pr_err("kvm: failed to allocate userspace's fpu\n");
c9b8b07c 9888 goto free_emulate_ctxt;
95a0d01e
SC
9889 }
9890
9891 vcpu->arch.guest_fpu = kmem_cache_zalloc(x86_fpu_cache,
9892 GFP_KERNEL_ACCOUNT);
9893 if (!vcpu->arch.guest_fpu) {
9894 pr_err("kvm: failed to allocate vcpu's fpu\n");
9895 goto free_user_fpu;
9896 }
9897 fx_init(vcpu);
9898
95a0d01e
SC
9899 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
9900
9901 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
9902
9903 kvm_async_pf_hash_reset(vcpu);
9904 kvm_pmu_init(vcpu);
9905
9906 vcpu->arch.pending_external_vector = -1;
9907 vcpu->arch.preempted_in_kernel = false;
9908
9909 kvm_hv_vcpu_init(vcpu);
9910
afaf0b2f 9911 r = kvm_x86_ops.vcpu_create(vcpu);
95a0d01e
SC
9912 if (r)
9913 goto free_guest_fpu;
e9b11c17 9914
0cf9135b 9915 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
e53d88af 9916 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
19efffa2 9917 kvm_vcpu_mtrr_init(vcpu);
ec7660cc 9918 vcpu_load(vcpu);
d28bc9dd 9919 kvm_vcpu_reset(vcpu, false);
e1732991 9920 kvm_init_mmu(vcpu, false);
e9b11c17 9921 vcpu_put(vcpu);
ec7660cc 9922 return 0;
95a0d01e
SC
9923
9924free_guest_fpu:
9925 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
9926free_user_fpu:
9927 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
c9b8b07c
SC
9928free_emulate_ctxt:
9929 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
95a0d01e
SC
9930free_wbinvd_dirty_mask:
9931 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9932fail_free_mce_banks:
9933 kfree(vcpu->arch.mce_banks);
9934fail_free_pio_data:
9935 free_page((unsigned long)vcpu->arch.pio_data);
9936fail_free_lapic:
9937 kvm_free_lapic(vcpu);
9938fail_mmu_destroy:
9939 kvm_mmu_destroy(vcpu);
9940 return r;
e9b11c17
ZX
9941}
9942
31928aa5 9943void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
42897d86 9944{
332967a3 9945 struct kvm *kvm = vcpu->kvm;
42897d86 9946
d3457c87
RK
9947 kvm_hv_vcpu_postcreate(vcpu);
9948
ec7660cc 9949 if (mutex_lock_killable(&vcpu->mutex))
31928aa5 9950 return;
ec7660cc 9951 vcpu_load(vcpu);
0c899c25 9952 kvm_synchronize_tsc(vcpu, 0);
42897d86 9953 vcpu_put(vcpu);
2d5ba19b
MT
9954
9955 /* poll control enabled by default */
9956 vcpu->arch.msr_kvm_poll_control = 1;
9957
ec7660cc 9958 mutex_unlock(&vcpu->mutex);
42897d86 9959
b34de572
WL
9960 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
9961 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
9962 KVMCLOCK_SYNC_PERIOD);
42897d86
MT
9963}
9964
d40ccc62 9965void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
e9b11c17 9966{
4cbc418a 9967 struct gfn_to_pfn_cache *cache = &vcpu->arch.st.cache;
95a0d01e 9968 int idx;
344d9588 9969
4cbc418a
PB
9970 kvm_release_pfn(cache->pfn, cache->dirty, cache);
9971
50b143e1 9972 kvmclock_reset(vcpu);
e9b11c17 9973
afaf0b2f 9974 kvm_x86_ops.vcpu_free(vcpu);
50b143e1 9975
c9b8b07c 9976 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
50b143e1
SC
9977 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
9978 kmem_cache_free(x86_fpu_cache, vcpu->arch.user_fpu);
9979 kmem_cache_free(x86_fpu_cache, vcpu->arch.guest_fpu);
95a0d01e
SC
9980
9981 kvm_hv_vcpu_uninit(vcpu);
9982 kvm_pmu_destroy(vcpu);
9983 kfree(vcpu->arch.mce_banks);
9984 kvm_free_lapic(vcpu);
9985 idx = srcu_read_lock(&vcpu->kvm->srcu);
9986 kvm_mmu_destroy(vcpu);
9987 srcu_read_unlock(&vcpu->kvm->srcu, idx);
9988 free_page((unsigned long)vcpu->arch.pio_data);
255cbecf 9989 kvfree(vcpu->arch.cpuid_entries);
95a0d01e
SC
9990 if (!lapic_in_kernel(vcpu))
9991 static_key_slow_dec(&kvm_no_apic_vcpu);
e9b11c17
ZX
9992}
9993
d28bc9dd 9994void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e9b11c17 9995{
b7e31be3
RK
9996 kvm_lapic_reset(vcpu, init_event);
9997
e69fab5d
PB
9998 vcpu->arch.hflags = 0;
9999
c43203ca 10000 vcpu->arch.smi_pending = 0;
52797bf9 10001 vcpu->arch.smi_count = 0;
7460fb4a
AK
10002 atomic_set(&vcpu->arch.nmi_queued, 0);
10003 vcpu->arch.nmi_pending = 0;
448fa4a9 10004 vcpu->arch.nmi_injected = false;
5f7552d4
NA
10005 kvm_clear_interrupt_queue(vcpu);
10006 kvm_clear_exception_queue(vcpu);
448fa4a9 10007
42dbaa5a 10008 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
ae561ede 10009 kvm_update_dr0123(vcpu);
6f43ed01 10010 vcpu->arch.dr6 = DR6_INIT;
42dbaa5a 10011 vcpu->arch.dr7 = DR7_FIXED_1;
c8639010 10012 kvm_update_dr7(vcpu);
42dbaa5a 10013
1119022c
NA
10014 vcpu->arch.cr2 = 0;
10015
3842d135 10016 kvm_make_request(KVM_REQ_EVENT, vcpu);
2635b5c4
VK
10017 vcpu->arch.apf.msr_en_val = 0;
10018 vcpu->arch.apf.msr_int_val = 0;
c9aaa895 10019 vcpu->arch.st.msr_val = 0;
3842d135 10020
12f9a48f
GC
10021 kvmclock_reset(vcpu);
10022
af585b92
GN
10023 kvm_clear_async_pf_completion_queue(vcpu);
10024 kvm_async_pf_hash_reset(vcpu);
10025 vcpu->arch.apf.halted = false;
3842d135 10026
a554d207
WL
10027 if (kvm_mpx_supported()) {
10028 void *mpx_state_buffer;
10029
10030 /*
10031 * To avoid have the INIT path from kvm_apic_has_events() that be
10032 * called with loaded FPU and does not let userspace fix the state.
10033 */
f775b13e
RR
10034 if (init_event)
10035 kvm_put_guest_fpu(vcpu);
b666a4b6 10036 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
abd16d68 10037 XFEATURE_BNDREGS);
a554d207
WL
10038 if (mpx_state_buffer)
10039 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndreg_state));
b666a4b6 10040 mpx_state_buffer = get_xsave_addr(&vcpu->arch.guest_fpu->state.xsave,
abd16d68 10041 XFEATURE_BNDCSR);
a554d207
WL
10042 if (mpx_state_buffer)
10043 memset(mpx_state_buffer, 0, sizeof(struct mpx_bndcsr));
f775b13e
RR
10044 if (init_event)
10045 kvm_load_guest_fpu(vcpu);
a554d207
WL
10046 }
10047
64d60670 10048 if (!init_event) {
d28bc9dd 10049 kvm_pmu_reset(vcpu);
64d60670 10050 vcpu->arch.smbase = 0x30000;
db2336a8 10051
db2336a8 10052 vcpu->arch.msr_misc_features_enables = 0;
a554d207
WL
10053
10054 vcpu->arch.xcr0 = XFEATURE_MASK_FP;
64d60670 10055 }
f5132b01 10056
66f7b72e
JS
10057 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
10058 vcpu->arch.regs_avail = ~0;
10059 vcpu->arch.regs_dirty = ~0;
10060
a554d207
WL
10061 vcpu->arch.ia32_xss = 0;
10062
afaf0b2f 10063 kvm_x86_ops.vcpu_reset(vcpu, init_event);
e9b11c17
ZX
10064}
10065
2b4a273b 10066void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
66450a21
JK
10067{
10068 struct kvm_segment cs;
10069
10070 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
10071 cs.selector = vector << 8;
10072 cs.base = vector << 12;
10073 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
10074 kvm_rip_write(vcpu, 0);
e9b11c17
ZX
10075}
10076
13a34e06 10077int kvm_arch_hardware_enable(void)
e9b11c17 10078{
ca84d1a2
ZA
10079 struct kvm *kvm;
10080 struct kvm_vcpu *vcpu;
10081 int i;
0dd6a6ed
ZA
10082 int ret;
10083 u64 local_tsc;
10084 u64 max_tsc = 0;
10085 bool stable, backwards_tsc = false;
18863bdd 10086
7e34fbd0 10087 kvm_user_return_msr_cpu_online();
afaf0b2f 10088 ret = kvm_x86_ops.hardware_enable();
0dd6a6ed
ZA
10089 if (ret != 0)
10090 return ret;
10091
4ea1636b 10092 local_tsc = rdtsc();
b0c39dc6 10093 stable = !kvm_check_tsc_unstable();
0dd6a6ed
ZA
10094 list_for_each_entry(kvm, &vm_list, vm_list) {
10095 kvm_for_each_vcpu(i, vcpu, kvm) {
10096 if (!stable && vcpu->cpu == smp_processor_id())
105b21bb 10097 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
10098 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
10099 backwards_tsc = true;
10100 if (vcpu->arch.last_host_tsc > max_tsc)
10101 max_tsc = vcpu->arch.last_host_tsc;
10102 }
10103 }
10104 }
10105
10106 /*
10107 * Sometimes, even reliable TSCs go backwards. This happens on
10108 * platforms that reset TSC during suspend or hibernate actions, but
10109 * maintain synchronization. We must compensate. Fortunately, we can
10110 * detect that condition here, which happens early in CPU bringup,
10111 * before any KVM threads can be running. Unfortunately, we can't
10112 * bring the TSCs fully up to date with real time, as we aren't yet far
10113 * enough into CPU bringup that we know how much real time has actually
9285ec4c 10114 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
0dd6a6ed
ZA
10115 * variables that haven't been updated yet.
10116 *
10117 * So we simply find the maximum observed TSC above, then record the
10118 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
10119 * the adjustment will be applied. Note that we accumulate
10120 * adjustments, in case multiple suspend cycles happen before some VCPU
10121 * gets a chance to run again. In the event that no KVM threads get a
10122 * chance to run, we will miss the entire elapsed period, as we'll have
10123 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
10124 * loose cycle time. This isn't too big a deal, since the loss will be
10125 * uniform across all VCPUs (not to mention the scenario is extremely
10126 * unlikely). It is possible that a second hibernate recovery happens
10127 * much faster than a first, causing the observed TSC here to be
10128 * smaller; this would require additional padding adjustment, which is
10129 * why we set last_host_tsc to the local tsc observed here.
10130 *
10131 * N.B. - this code below runs only on platforms with reliable TSC,
10132 * as that is the only way backwards_tsc is set above. Also note
10133 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
10134 * have the same delta_cyc adjustment applied if backwards_tsc
10135 * is detected. Note further, this adjustment is only done once,
10136 * as we reset last_host_tsc on all VCPUs to stop this from being
10137 * called multiple times (one for each physical CPU bringup).
10138 *
4a969980 10139 * Platforms with unreliable TSCs don't have to deal with this, they
0dd6a6ed
ZA
10140 * will be compensated by the logic in vcpu_load, which sets the TSC to
10141 * catchup mode. This will catchup all VCPUs to real time, but cannot
10142 * guarantee that they stay in perfect synchronization.
10143 */
10144 if (backwards_tsc) {
10145 u64 delta_cyc = max_tsc - local_tsc;
10146 list_for_each_entry(kvm, &vm_list, vm_list) {
a826faf1 10147 kvm->arch.backwards_tsc_observed = true;
0dd6a6ed
ZA
10148 kvm_for_each_vcpu(i, vcpu, kvm) {
10149 vcpu->arch.tsc_offset_adjustment += delta_cyc;
10150 vcpu->arch.last_host_tsc = local_tsc;
105b21bb 10151 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
10152 }
10153
10154 /*
10155 * We have to disable TSC offset matching.. if you were
10156 * booting a VM while issuing an S4 host suspend....
10157 * you may have some problem. Solving this issue is
10158 * left as an exercise to the reader.
10159 */
10160 kvm->arch.last_tsc_nsec = 0;
10161 kvm->arch.last_tsc_write = 0;
10162 }
10163
10164 }
10165 return 0;
e9b11c17
ZX
10166}
10167
13a34e06 10168void kvm_arch_hardware_disable(void)
e9b11c17 10169{
afaf0b2f 10170 kvm_x86_ops.hardware_disable();
13a34e06 10171 drop_user_return_notifiers();
e9b11c17
ZX
10172}
10173
b9904085 10174int kvm_arch_hardware_setup(void *opaque)
e9b11c17 10175{
d008dfdb 10176 struct kvm_x86_init_ops *ops = opaque;
9e9c3fe4
NA
10177 int r;
10178
91661989
SC
10179 rdmsrl_safe(MSR_EFER, &host_efer);
10180
408e9a31
PB
10181 if (boot_cpu_has(X86_FEATURE_XSAVES))
10182 rdmsrl(MSR_IA32_XSS, host_xss);
10183
d008dfdb 10184 r = ops->hardware_setup();
9e9c3fe4
NA
10185 if (r != 0)
10186 return r;
10187
afaf0b2f 10188 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
69c6f69a 10189
408e9a31
PB
10190 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
10191 supported_xss = 0;
10192
139f7425
PB
10193#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
10194 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
10195#undef __kvm_cpu_cap_has
b11306b5 10196
35181e86
HZ
10197 if (kvm_has_tsc_control) {
10198 /*
10199 * Make sure the user can only configure tsc_khz values that
10200 * fit into a signed integer.
273ba457 10201 * A min value is not calculated because it will always
35181e86
HZ
10202 * be 1 on all machines.
10203 */
10204 u64 max = min(0x7fffffffULL,
10205 __scale_tsc(kvm_max_tsc_scaling_ratio, tsc_khz));
10206 kvm_max_guest_tsc_khz = max;
10207
ad721883 10208 kvm_default_tsc_scaling_ratio = 1ULL << kvm_tsc_scaling_ratio_frac_bits;
35181e86 10209 }
ad721883 10210
9e9c3fe4
NA
10211 kvm_init_msr_list();
10212 return 0;
e9b11c17
ZX
10213}
10214
10215void kvm_arch_hardware_unsetup(void)
10216{
afaf0b2f 10217 kvm_x86_ops.hardware_unsetup();
e9b11c17
ZX
10218}
10219
b9904085 10220int kvm_arch_check_processor_compat(void *opaque)
e9b11c17 10221{
f1cdecf5 10222 struct cpuinfo_x86 *c = &cpu_data(smp_processor_id());
d008dfdb 10223 struct kvm_x86_init_ops *ops = opaque;
f1cdecf5
SC
10224
10225 WARN_ON(!irqs_disabled());
10226
139f7425
PB
10227 if (__cr4_reserved_bits(cpu_has, c) !=
10228 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
f1cdecf5
SC
10229 return -EIO;
10230
d008dfdb 10231 return ops->check_processor_compatibility();
d71ba788
PB
10232}
10233
10234bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
10235{
10236 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
10237}
10238EXPORT_SYMBOL_GPL(kvm_vcpu_is_reset_bsp);
10239
10240bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
10241{
10242 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
e9b11c17
ZX
10243}
10244
54e9818f 10245struct static_key kvm_no_apic_vcpu __read_mostly;
bce87cce 10246EXPORT_SYMBOL_GPL(kvm_no_apic_vcpu);
54e9818f 10247
e790d9ef
RK
10248void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
10249{
b35e5548
LX
10250 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
10251
c595ceee 10252 vcpu->arch.l1tf_flush_l1d = true;
b35e5548
LX
10253 if (pmu->version && unlikely(pmu->event_count)) {
10254 pmu->need_cleanup = true;
10255 kvm_make_request(KVM_REQ_PMU, vcpu);
10256 }
afaf0b2f 10257 kvm_x86_ops.sched_in(vcpu, cpu);
e790d9ef
RK
10258}
10259
562b6b08
SC
10260void kvm_arch_free_vm(struct kvm *kvm)
10261{
10262 kfree(kvm->arch.hyperv.hv_pa_pg);
10263 vfree(kvm);
e790d9ef
RK
10264}
10265
562b6b08 10266
e08b9637 10267int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
d19a9cd2 10268{
e08b9637
CO
10269 if (type)
10270 return -EINVAL;
10271
6ef768fa 10272 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
f05e70ac 10273 INIT_LIST_HEAD(&kvm->arch.active_mmu_pages);
10605204 10274 INIT_LIST_HEAD(&kvm->arch.zapped_obsolete_pages);
1aa9b957 10275 INIT_LIST_HEAD(&kvm->arch.lpage_disallowed_mmu_pages);
4d5c5d0f 10276 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
e0f0bbc5 10277 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
d19a9cd2 10278
5550af4d
SY
10279 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
10280 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7a84428a
AW
10281 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
10282 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
10283 &kvm->arch.irq_sources_bitmap);
5550af4d 10284
038f8c11 10285 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
1e08ec4a 10286 mutex_init(&kvm->arch.apic_map_lock);
d828199e
MT
10287 spin_lock_init(&kvm->arch.pvclock_gtod_sync_lock);
10288
8171cd68 10289 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
d828199e 10290 pvclock_update_vm_gtod_copy(kvm);
53f658b3 10291
6fbbde9a
DS
10292 kvm->arch.guest_can_read_msr_platform_info = true;
10293
7e44e449 10294 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
332967a3 10295 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7e44e449 10296
cbc0236a 10297 kvm_hv_init_vm(kvm);
0eb05bf2 10298 kvm_page_track_init(kvm);
13d268ca 10299 kvm_mmu_init_vm(kvm);
0eb05bf2 10300
afaf0b2f 10301 return kvm_x86_ops.vm_init(kvm);
d19a9cd2
ZX
10302}
10303
1aa9b957
JS
10304int kvm_arch_post_init_vm(struct kvm *kvm)
10305{
10306 return kvm_mmu_post_init_vm(kvm);
10307}
10308
d19a9cd2
ZX
10309static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
10310{
ec7660cc 10311 vcpu_load(vcpu);
d19a9cd2
ZX
10312 kvm_mmu_unload(vcpu);
10313 vcpu_put(vcpu);
10314}
10315
10316static void kvm_free_vcpus(struct kvm *kvm)
10317{
10318 unsigned int i;
988a2cae 10319 struct kvm_vcpu *vcpu;
d19a9cd2
ZX
10320
10321 /*
10322 * Unpin any mmu pages first.
10323 */
af585b92
GN
10324 kvm_for_each_vcpu(i, vcpu, kvm) {
10325 kvm_clear_async_pf_completion_queue(vcpu);
988a2cae 10326 kvm_unload_vcpu_mmu(vcpu);
af585b92 10327 }
988a2cae 10328 kvm_for_each_vcpu(i, vcpu, kvm)
4543bdc0 10329 kvm_vcpu_destroy(vcpu);
988a2cae
GN
10330
10331 mutex_lock(&kvm->lock);
10332 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
10333 kvm->vcpus[i] = NULL;
d19a9cd2 10334
988a2cae
GN
10335 atomic_set(&kvm->online_vcpus, 0);
10336 mutex_unlock(&kvm->lock);
d19a9cd2
ZX
10337}
10338
ad8ba2cd
SY
10339void kvm_arch_sync_events(struct kvm *kvm)
10340{
332967a3 10341 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7e44e449 10342 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
aea924f6 10343 kvm_free_pit(kvm);
ad8ba2cd
SY
10344}
10345
ff5a983c
PX
10346#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
10347
10348/**
10349 * __x86_set_memory_region: Setup KVM internal memory slot
10350 *
10351 * @kvm: the kvm pointer to the VM.
10352 * @id: the slot ID to setup.
10353 * @gpa: the GPA to install the slot (unused when @size == 0).
10354 * @size: the size of the slot. Set to zero to uninstall a slot.
10355 *
10356 * This function helps to setup a KVM internal memory slot. Specify
10357 * @size > 0 to install a new slot, while @size == 0 to uninstall a
10358 * slot. The return code can be one of the following:
10359 *
10360 * HVA: on success (uninstall will return a bogus HVA)
10361 * -errno: on error
10362 *
10363 * The caller should always use IS_ERR() to check the return value
10364 * before use. Note, the KVM internal memory slots are guaranteed to
10365 * remain valid and unchanged until the VM is destroyed, i.e., the
10366 * GPA->HVA translation will not change. However, the HVA is a user
10367 * address, i.e. its accessibility is not guaranteed, and must be
10368 * accessed via __copy_{to,from}_user().
10369 */
10370void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
10371 u32 size)
9da0e4d5
PB
10372{
10373 int i, r;
3f649ab7 10374 unsigned long hva, old_npages;
f0d648bd 10375 struct kvm_memslots *slots = kvm_memslots(kvm);
0577d1ab 10376 struct kvm_memory_slot *slot;
9da0e4d5
PB
10377
10378 /* Called with kvm->slots_lock held. */
1d8007bd 10379 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
ff5a983c 10380 return ERR_PTR_USR(-EINVAL);
9da0e4d5 10381
f0d648bd
PB
10382 slot = id_to_memslot(slots, id);
10383 if (size) {
0577d1ab 10384 if (slot && slot->npages)
ff5a983c 10385 return ERR_PTR_USR(-EEXIST);
f0d648bd
PB
10386
10387 /*
10388 * MAP_SHARED to prevent internal slot pages from being moved
10389 * by fork()/COW.
10390 */
10391 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
10392 MAP_SHARED | MAP_ANONYMOUS, 0);
10393 if (IS_ERR((void *)hva))
ff5a983c 10394 return (void __user *)hva;
f0d648bd 10395 } else {
0577d1ab 10396 if (!slot || !slot->npages)
f0d648bd
PB
10397 return 0;
10398
0577d1ab 10399 old_npages = slot->npages;
e0135a10 10400 hva = 0;
f0d648bd
PB
10401 }
10402
9da0e4d5 10403 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1d8007bd 10404 struct kvm_userspace_memory_region m;
9da0e4d5 10405
1d8007bd
PB
10406 m.slot = id | (i << 16);
10407 m.flags = 0;
10408 m.guest_phys_addr = gpa;
f0d648bd 10409 m.userspace_addr = hva;
1d8007bd 10410 m.memory_size = size;
9da0e4d5
PB
10411 r = __kvm_set_memory_region(kvm, &m);
10412 if (r < 0)
ff5a983c 10413 return ERR_PTR_USR(r);
9da0e4d5
PB
10414 }
10415
103c763c 10416 if (!size)
0577d1ab 10417 vm_munmap(hva, old_npages * PAGE_SIZE);
f0d648bd 10418
ff5a983c 10419 return (void __user *)hva;
9da0e4d5
PB
10420}
10421EXPORT_SYMBOL_GPL(__x86_set_memory_region);
10422
1aa9b957
JS
10423void kvm_arch_pre_destroy_vm(struct kvm *kvm)
10424{
10425 kvm_mmu_pre_destroy_vm(kvm);
10426}
10427
d19a9cd2
ZX
10428void kvm_arch_destroy_vm(struct kvm *kvm)
10429{
1a155254
AG
10430 u32 i;
10431
27469d29
AH
10432 if (current->mm == kvm->mm) {
10433 /*
10434 * Free memory regions allocated on behalf of userspace,
10435 * unless the the memory map has changed due to process exit
10436 * or fd copying.
10437 */
6a3c623b
PX
10438 mutex_lock(&kvm->slots_lock);
10439 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
10440 0, 0);
10441 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
10442 0, 0);
10443 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
10444 mutex_unlock(&kvm->slots_lock);
27469d29 10445 }
afaf0b2f
SC
10446 if (kvm_x86_ops.vm_destroy)
10447 kvm_x86_ops.vm_destroy(kvm);
1a155254
AG
10448 for (i = 0; i < kvm->arch.msr_filter.count; i++)
10449 kfree(kvm->arch.msr_filter.ranges[i].bitmap);
c761159c
PX
10450 kvm_pic_destroy(kvm);
10451 kvm_ioapic_destroy(kvm);
d19a9cd2 10452 kvm_free_vcpus(kvm);
af1bae54 10453 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
66bb8a06 10454 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13d268ca 10455 kvm_mmu_uninit_vm(kvm);
2beb6dad 10456 kvm_page_track_cleanup(kvm);
cbc0236a 10457 kvm_hv_destroy_vm(kvm);
d19a9cd2 10458}
0de10343 10459
e96c81ee 10460void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
db3fe4eb
TY
10461{
10462 int i;
10463
d89cc617 10464 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
e96c81ee
SC
10465 kvfree(slot->arch.rmap[i]);
10466 slot->arch.rmap[i] = NULL;
10467
d89cc617
TY
10468 if (i == 0)
10469 continue;
10470
e96c81ee
SC
10471 kvfree(slot->arch.lpage_info[i - 1]);
10472 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb 10473 }
21ebbeda 10474
e96c81ee 10475 kvm_page_track_free_memslot(slot);
db3fe4eb
TY
10476}
10477
0dab98b7
SC
10478static int kvm_alloc_memslot_metadata(struct kvm_memory_slot *slot,
10479 unsigned long npages)
db3fe4eb
TY
10480{
10481 int i;
10482
edd4fa37
SC
10483 /*
10484 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
10485 * old arrays will be freed by __kvm_set_memory_region() if installing
10486 * the new memslot is successful.
10487 */
10488 memset(&slot->arch, 0, sizeof(slot->arch));
10489
d89cc617 10490 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
92f94f1e 10491 struct kvm_lpage_info *linfo;
db3fe4eb
TY
10492 unsigned long ugfn;
10493 int lpages;
d89cc617 10494 int level = i + 1;
db3fe4eb
TY
10495
10496 lpages = gfn_to_index(slot->base_gfn + npages - 1,
10497 slot->base_gfn, level) + 1;
10498
d89cc617 10499 slot->arch.rmap[i] =
778e1cdd 10500 kvcalloc(lpages, sizeof(*slot->arch.rmap[i]),
254272ce 10501 GFP_KERNEL_ACCOUNT);
d89cc617 10502 if (!slot->arch.rmap[i])
77d11309 10503 goto out_free;
d89cc617
TY
10504 if (i == 0)
10505 continue;
77d11309 10506
254272ce 10507 linfo = kvcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
92f94f1e 10508 if (!linfo)
db3fe4eb
TY
10509 goto out_free;
10510
92f94f1e
XG
10511 slot->arch.lpage_info[i - 1] = linfo;
10512
db3fe4eb 10513 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 10514 linfo[0].disallow_lpage = 1;
db3fe4eb 10515 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 10516 linfo[lpages - 1].disallow_lpage = 1;
db3fe4eb
TY
10517 ugfn = slot->userspace_addr >> PAGE_SHIFT;
10518 /*
10519 * If the gfn and userspace address are not aligned wrt each
600087b6 10520 * other, disable large page support for this slot.
db3fe4eb 10521 */
600087b6 10522 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
db3fe4eb
TY
10523 unsigned long j;
10524
10525 for (j = 0; j < lpages; ++j)
92f94f1e 10526 linfo[j].disallow_lpage = 1;
db3fe4eb
TY
10527 }
10528 }
10529
21ebbeda
XG
10530 if (kvm_page_track_create_memslot(slot, npages))
10531 goto out_free;
10532
db3fe4eb
TY
10533 return 0;
10534
10535out_free:
d89cc617 10536 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
548ef284 10537 kvfree(slot->arch.rmap[i]);
d89cc617
TY
10538 slot->arch.rmap[i] = NULL;
10539 if (i == 0)
10540 continue;
10541
548ef284 10542 kvfree(slot->arch.lpage_info[i - 1]);
d89cc617 10543 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb
TY
10544 }
10545 return -ENOMEM;
10546}
10547
15248258 10548void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
e59dbe09 10549{
91724814
BO
10550 struct kvm_vcpu *vcpu;
10551 int i;
10552
e6dff7d1
TY
10553 /*
10554 * memslots->generation has been incremented.
10555 * mmio generation may have reached its maximum value.
10556 */
15248258 10557 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
91724814
BO
10558
10559 /* Force re-initialization of steal_time cache */
10560 kvm_for_each_vcpu(i, vcpu, kvm)
10561 kvm_vcpu_kick(vcpu);
e59dbe09
TY
10562}
10563
f7784b8e
MT
10564int kvm_arch_prepare_memory_region(struct kvm *kvm,
10565 struct kvm_memory_slot *memslot,
09170a49 10566 const struct kvm_userspace_memory_region *mem,
7b6195a9 10567 enum kvm_mr_change change)
0de10343 10568{
0dab98b7
SC
10569 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE)
10570 return kvm_alloc_memslot_metadata(memslot,
10571 mem->memory_size >> PAGE_SHIFT);
f7784b8e
MT
10572 return 0;
10573}
10574
88178fd4 10575static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
3741679b
AY
10576 struct kvm_memory_slot *old,
10577 struct kvm_memory_slot *new,
10578 enum kvm_mr_change change)
88178fd4 10579{
3741679b
AY
10580 /*
10581 * Nothing to do for RO slots or CREATE/MOVE/DELETE of a slot.
10582 * See comments below.
10583 */
10584 if ((change != KVM_MR_FLAGS_ONLY) || (new->flags & KVM_MEM_READONLY))
88178fd4 10585 return;
88178fd4
KH
10586
10587 /*
3741679b
AY
10588 * Dirty logging tracks sptes in 4k granularity, meaning that large
10589 * sptes have to be split. If live migration is successful, the guest
10590 * in the source machine will be destroyed and large sptes will be
10591 * created in the destination. However, if the guest continues to run
10592 * in the source machine (for example if live migration fails), small
10593 * sptes will remain around and cause bad performance.
88178fd4 10594 *
3741679b
AY
10595 * Scan sptes if dirty logging has been stopped, dropping those
10596 * which can be collapsed into a single large-page spte. Later
10597 * page faults will create the large-page sptes.
88178fd4 10598 *
3741679b
AY
10599 * There is no need to do this in any of the following cases:
10600 * CREATE: No dirty mappings will already exist.
10601 * MOVE/DELETE: The old mappings will already have been cleaned up by
10602 * kvm_arch_flush_shadow_memslot()
10603 */
10604 if ((old->flags & KVM_MEM_LOG_DIRTY_PAGES) &&
10605 !(new->flags & KVM_MEM_LOG_DIRTY_PAGES))
10606 kvm_mmu_zap_collapsible_sptes(kvm, new);
10607
10608 /*
10609 * Enable or disable dirty logging for the slot.
88178fd4 10610 *
3741679b
AY
10611 * For KVM_MR_DELETE and KVM_MR_MOVE, the shadow pages of the old
10612 * slot have been zapped so no dirty logging updates are needed for
10613 * the old slot.
10614 * For KVM_MR_CREATE and KVM_MR_MOVE, once the new slot is visible
10615 * any mappings that might be created in it will consume the
10616 * properties of the new slot and do not need to be updated here.
88178fd4 10617 *
3741679b
AY
10618 * When PML is enabled, the kvm_x86_ops dirty logging hooks are
10619 * called to enable/disable dirty logging.
88178fd4 10620 *
3741679b
AY
10621 * When disabling dirty logging with PML enabled, the D-bit is set
10622 * for sptes in the slot in order to prevent unnecessary GPA
10623 * logging in the PML buffer (and potential PML buffer full VMEXIT).
10624 * This guarantees leaving PML enabled for the guest's lifetime
10625 * won't have any additional overhead from PML when the guest is
10626 * running with dirty logging disabled.
88178fd4 10627 *
3741679b
AY
10628 * When enabling dirty logging, large sptes are write-protected
10629 * so they can be split on first write. New large sptes cannot
10630 * be created for this slot until the end of the logging.
88178fd4 10631 * See the comments in fast_page_fault().
3741679b
AY
10632 * For small sptes, nothing is done if the dirty log is in the
10633 * initial-all-set state. Otherwise, depending on whether pml
10634 * is enabled the D-bit or the W-bit will be cleared.
88178fd4
KH
10635 */
10636 if (new->flags & KVM_MEM_LOG_DIRTY_PAGES) {
afaf0b2f
SC
10637 if (kvm_x86_ops.slot_enable_log_dirty) {
10638 kvm_x86_ops.slot_enable_log_dirty(kvm, new);
3c9bd400
JZ
10639 } else {
10640 int level =
10641 kvm_dirty_log_manual_protect_and_init_set(kvm) ?
3bae0459 10642 PG_LEVEL_2M : PG_LEVEL_4K;
3c9bd400
JZ
10643
10644 /*
10645 * If we're with initial-all-set, we don't need
10646 * to write protect any small page because
10647 * they're reported as dirty already. However
10648 * we still need to write-protect huge pages
10649 * so that the page split can happen lazily on
10650 * the first write to the huge page.
10651 */
10652 kvm_mmu_slot_remove_write_access(kvm, new, level);
10653 }
88178fd4 10654 } else {
afaf0b2f
SC
10655 if (kvm_x86_ops.slot_disable_log_dirty)
10656 kvm_x86_ops.slot_disable_log_dirty(kvm, new);
88178fd4
KH
10657 }
10658}
10659
f7784b8e 10660void kvm_arch_commit_memory_region(struct kvm *kvm,
09170a49 10661 const struct kvm_userspace_memory_region *mem,
9d4c197c 10662 struct kvm_memory_slot *old,
f36f3f28 10663 const struct kvm_memory_slot *new,
8482644a 10664 enum kvm_mr_change change)
f7784b8e 10665{
48c0e4e9 10666 if (!kvm->arch.n_requested_mmu_pages)
4d66623c
WY
10667 kvm_mmu_change_mmu_pages(kvm,
10668 kvm_mmu_calculate_default_mmu_pages(kvm));
1c91cad4 10669
3ea3b7fa 10670 /*
f36f3f28 10671 * FIXME: const-ify all uses of struct kvm_memory_slot.
c972f3b1 10672 */
3741679b 10673 kvm_mmu_slot_apply_flags(kvm, old, (struct kvm_memory_slot *) new, change);
21198846
SC
10674
10675 /* Free the arrays associated with the old memslot. */
10676 if (change == KVM_MR_MOVE)
e96c81ee 10677 kvm_arch_free_memslot(kvm, old);
0de10343 10678}
1d737c8a 10679
2df72e9b 10680void kvm_arch_flush_shadow_all(struct kvm *kvm)
34d4cb8f 10681{
7390de1e 10682 kvm_mmu_zap_all(kvm);
34d4cb8f
MT
10683}
10684
2df72e9b
MT
10685void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
10686 struct kvm_memory_slot *slot)
10687{
ae7cd873 10688 kvm_page_track_flush_slot(kvm, slot);
2df72e9b
MT
10689}
10690
e6c67d8c
LA
10691static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
10692{
10693 return (is_guest_mode(vcpu) &&
afaf0b2f
SC
10694 kvm_x86_ops.guest_apic_has_interrupt &&
10695 kvm_x86_ops.guest_apic_has_interrupt(vcpu));
e6c67d8c
LA
10696}
10697
5d9bc648
PB
10698static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
10699{
10700 if (!list_empty_careful(&vcpu->async_pf.done))
10701 return true;
10702
10703 if (kvm_apic_has_events(vcpu))
10704 return true;
10705
10706 if (vcpu->arch.pv.pv_unhalted)
10707 return true;
10708
a5f01f8e
WL
10709 if (vcpu->arch.exception.pending)
10710 return true;
10711
47a66eed
Z
10712 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10713 (vcpu->arch.nmi_pending &&
c300ab9f 10714 kvm_x86_ops.nmi_allowed(vcpu, false)))
5d9bc648
PB
10715 return true;
10716
47a66eed 10717 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
a9fa7cb6 10718 (vcpu->arch.smi_pending &&
c300ab9f 10719 kvm_x86_ops.smi_allowed(vcpu, false)))
73917739
PB
10720 return true;
10721
5d9bc648 10722 if (kvm_arch_interrupt_allowed(vcpu) &&
e6c67d8c
LA
10723 (kvm_cpu_has_interrupt(vcpu) ||
10724 kvm_guest_apic_has_interrupt(vcpu)))
5d9bc648
PB
10725 return true;
10726
1f4b34f8
AS
10727 if (kvm_hv_has_stimer_pending(vcpu))
10728 return true;
10729
d2060bd4
SC
10730 if (is_guest_mode(vcpu) &&
10731 kvm_x86_ops.nested_ops->hv_timer_pending &&
10732 kvm_x86_ops.nested_ops->hv_timer_pending(vcpu))
10733 return true;
10734
5d9bc648
PB
10735 return false;
10736}
10737
1d737c8a
ZX
10738int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
10739{
5d9bc648 10740 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
1d737c8a 10741}
5736199a 10742
17e433b5
WL
10743bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
10744{
10745 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
10746 return true;
10747
10748 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
10749 kvm_test_request(KVM_REQ_SMI, vcpu) ||
10750 kvm_test_request(KVM_REQ_EVENT, vcpu))
10751 return true;
10752
afaf0b2f 10753 if (vcpu->arch.apicv_active && kvm_x86_ops.dy_apicv_has_pending_interrupt(vcpu))
17e433b5
WL
10754 return true;
10755
10756 return false;
10757}
10758
199b5763
LM
10759bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
10760{
de63ad4c 10761 return vcpu->arch.preempted_in_kernel;
199b5763
LM
10762}
10763
b6d33834 10764int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
5736199a 10765{
b6d33834 10766 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
5736199a 10767}
78646121
GN
10768
10769int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
10770{
c300ab9f 10771 return kvm_x86_ops.interrupt_allowed(vcpu, false);
78646121 10772}
229456fc 10773
82b32774 10774unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
f92653ee 10775{
82b32774
NA
10776 if (is_64_bit_mode(vcpu))
10777 return kvm_rip_read(vcpu);
10778 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
10779 kvm_rip_read(vcpu));
10780}
10781EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
f92653ee 10782
82b32774
NA
10783bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
10784{
10785 return kvm_get_linear_rip(vcpu) == linear_rip;
f92653ee
JK
10786}
10787EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
10788
94fe45da
JK
10789unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
10790{
10791 unsigned long rflags;
10792
afaf0b2f 10793 rflags = kvm_x86_ops.get_rflags(vcpu);
94fe45da 10794 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
c310bac5 10795 rflags &= ~X86_EFLAGS_TF;
94fe45da
JK
10796 return rflags;
10797}
10798EXPORT_SYMBOL_GPL(kvm_get_rflags);
10799
6addfc42 10800static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
94fe45da
JK
10801{
10802 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
f92653ee 10803 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
c310bac5 10804 rflags |= X86_EFLAGS_TF;
afaf0b2f 10805 kvm_x86_ops.set_rflags(vcpu, rflags);
6addfc42
PB
10806}
10807
10808void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
10809{
10810 __kvm_set_rflags(vcpu, rflags);
3842d135 10811 kvm_make_request(KVM_REQ_EVENT, vcpu);
94fe45da
JK
10812}
10813EXPORT_SYMBOL_GPL(kvm_set_rflags);
10814
56028d08
GN
10815void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu, struct kvm_async_pf *work)
10816{
10817 int r;
10818
44dd3ffa 10819 if ((vcpu->arch.mmu->direct_map != work->arch.direct_map) ||
f2e10669 10820 work->wakeup_all)
56028d08
GN
10821 return;
10822
10823 r = kvm_mmu_reload(vcpu);
10824 if (unlikely(r))
10825 return;
10826
44dd3ffa 10827 if (!vcpu->arch.mmu->direct_map &&
d8dd54e0 10828 work->arch.cr3 != vcpu->arch.mmu->get_guest_pgd(vcpu))
fb67e14f
XG
10829 return;
10830
7a02674d 10831 kvm_mmu_do_page_fault(vcpu, work->cr2_or_gpa, 0, true);
56028d08
GN
10832}
10833
af585b92
GN
10834static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
10835{
dd03bcaa
PX
10836 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
10837
af585b92
GN
10838 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
10839}
10840
10841static inline u32 kvm_async_pf_next_probe(u32 key)
10842{
dd03bcaa 10843 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
af585b92
GN
10844}
10845
10846static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10847{
10848 u32 key = kvm_async_pf_hash_fn(gfn);
10849
10850 while (vcpu->arch.apf.gfns[key] != ~0)
10851 key = kvm_async_pf_next_probe(key);
10852
10853 vcpu->arch.apf.gfns[key] = gfn;
10854}
10855
10856static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
10857{
10858 int i;
10859 u32 key = kvm_async_pf_hash_fn(gfn);
10860
dd03bcaa 10861 for (i = 0; i < ASYNC_PF_PER_VCPU &&
c7d28c24
XG
10862 (vcpu->arch.apf.gfns[key] != gfn &&
10863 vcpu->arch.apf.gfns[key] != ~0); i++)
af585b92
GN
10864 key = kvm_async_pf_next_probe(key);
10865
10866 return key;
10867}
10868
10869bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10870{
10871 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
10872}
10873
10874static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
10875{
10876 u32 i, j, k;
10877
10878 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
0fd46044
PX
10879
10880 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
10881 return;
10882
af585b92
GN
10883 while (true) {
10884 vcpu->arch.apf.gfns[i] = ~0;
10885 do {
10886 j = kvm_async_pf_next_probe(j);
10887 if (vcpu->arch.apf.gfns[j] == ~0)
10888 return;
10889 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
10890 /*
10891 * k lies cyclically in ]i,j]
10892 * | i.k.j |
10893 * |....j i.k.| or |.k..j i...|
10894 */
10895 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
10896 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
10897 i = j;
10898 }
10899}
10900
68fd66f1 10901static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
7c90705b 10902{
68fd66f1
VK
10903 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
10904
10905 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
10906 sizeof(reason));
10907}
10908
10909static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
10910{
2635b5c4 10911 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
4e335d9e 10912
2635b5c4
VK
10913 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10914 &token, offset, sizeof(token));
10915}
10916
10917static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
10918{
10919 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
10920 u32 val;
10921
10922 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
10923 &val, offset, sizeof(val)))
10924 return false;
10925
10926 return !val;
7c90705b
GN
10927}
10928
1dfdb45e
PB
10929static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
10930{
10931 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
10932 return false;
10933
2635b5c4
VK
10934 if (!kvm_pv_async_pf_enabled(vcpu) ||
10935 (vcpu->arch.apf.send_user_only && kvm_x86_ops.get_cpl(vcpu) == 0))
1dfdb45e
PB
10936 return false;
10937
10938 return true;
10939}
10940
10941bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
10942{
10943 if (unlikely(!lapic_in_kernel(vcpu) ||
10944 kvm_event_needs_reinjection(vcpu) ||
10945 vcpu->arch.exception.pending))
10946 return false;
10947
10948 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
10949 return false;
10950
10951 /*
10952 * If interrupts are off we cannot even use an artificial
10953 * halt state.
10954 */
c300ab9f 10955 return kvm_arch_interrupt_allowed(vcpu);
1dfdb45e
PB
10956}
10957
2a18b7e7 10958bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
af585b92
GN
10959 struct kvm_async_pf *work)
10960{
6389ee94
AK
10961 struct x86_exception fault;
10962
736c291c 10963 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
af585b92 10964 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7c90705b 10965
1dfdb45e 10966 if (kvm_can_deliver_async_pf(vcpu) &&
68fd66f1 10967 !apf_put_user_notpresent(vcpu)) {
6389ee94
AK
10968 fault.vector = PF_VECTOR;
10969 fault.error_code_valid = true;
10970 fault.error_code = 0;
10971 fault.nested_page_fault = false;
10972 fault.address = work->arch.token;
adfe20fb 10973 fault.async_page_fault = true;
6389ee94 10974 kvm_inject_page_fault(vcpu, &fault);
2a18b7e7 10975 return true;
1dfdb45e
PB
10976 } else {
10977 /*
10978 * It is not possible to deliver a paravirtualized asynchronous
10979 * page fault, but putting the guest in an artificial halt state
10980 * can be beneficial nevertheless: if an interrupt arrives, we
10981 * can deliver it timely and perhaps the guest will schedule
10982 * another process. When the instruction that triggered a page
10983 * fault is retried, hopefully the page will be ready in the host.
10984 */
10985 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2a18b7e7 10986 return false;
7c90705b 10987 }
af585b92
GN
10988}
10989
10990void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
10991 struct kvm_async_pf *work)
10992{
2635b5c4
VK
10993 struct kvm_lapic_irq irq = {
10994 .delivery_mode = APIC_DM_FIXED,
10995 .vector = vcpu->arch.apf.vec
10996 };
6389ee94 10997
f2e10669 10998 if (work->wakeup_all)
7c90705b
GN
10999 work->arch.token = ~0; /* broadcast wakeup */
11000 else
11001 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
736c291c 11002 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
7c90705b 11003
2a18b7e7
VK
11004 if ((work->wakeup_all || work->notpresent_injected) &&
11005 kvm_pv_async_pf_enabled(vcpu) &&
557a961a
VK
11006 !apf_put_user_ready(vcpu, work->arch.token)) {
11007 vcpu->arch.apf.pageready_pending = true;
2635b5c4 11008 kvm_apic_set_irq(vcpu, &irq, NULL);
557a961a 11009 }
2635b5c4 11010
e6d53e3b 11011 vcpu->arch.apf.halted = false;
a4fa1635 11012 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7c90705b
GN
11013}
11014
557a961a
VK
11015void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
11016{
11017 kvm_make_request(KVM_REQ_APF_READY, vcpu);
11018 if (!vcpu->arch.apf.pageready_pending)
11019 kvm_vcpu_kick(vcpu);
11020}
11021
7c0ade6c 11022bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
7c90705b 11023{
2635b5c4 11024 if (!kvm_pv_async_pf_enabled(vcpu))
7c90705b
GN
11025 return true;
11026 else
2635b5c4 11027 return apf_pageready_slot_free(vcpu);
af585b92
GN
11028}
11029
5544eb9b
PB
11030void kvm_arch_start_assignment(struct kvm *kvm)
11031{
11032 atomic_inc(&kvm->arch.assigned_device_count);
11033}
11034EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
11035
11036void kvm_arch_end_assignment(struct kvm *kvm)
11037{
11038 atomic_dec(&kvm->arch.assigned_device_count);
11039}
11040EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
11041
11042bool kvm_arch_has_assigned_device(struct kvm *kvm)
11043{
11044 return atomic_read(&kvm->arch.assigned_device_count);
11045}
11046EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
11047
e0f0bbc5
AW
11048void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
11049{
11050 atomic_inc(&kvm->arch.noncoherent_dma_count);
11051}
11052EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
11053
11054void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
11055{
11056 atomic_dec(&kvm->arch.noncoherent_dma_count);
11057}
11058EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
11059
11060bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
11061{
11062 return atomic_read(&kvm->arch.noncoherent_dma_count);
11063}
11064EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
11065
14717e20
AW
11066bool kvm_arch_has_irq_bypass(void)
11067{
92735b1b 11068 return true;
14717e20
AW
11069}
11070
87276880
FW
11071int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
11072 struct irq_bypass_producer *prod)
11073{
11074 struct kvm_kernel_irqfd *irqfd =
11075 container_of(cons, struct kvm_kernel_irqfd, consumer);
2edd9cb7 11076 int ret;
87276880 11077
14717e20 11078 irqfd->producer = prod;
2edd9cb7
ZL
11079 kvm_arch_start_assignment(irqfd->kvm);
11080 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm,
11081 prod->irq, irqfd->gsi, 1);
11082
11083 if (ret)
11084 kvm_arch_end_assignment(irqfd->kvm);
87276880 11085
2edd9cb7 11086 return ret;
87276880
FW
11087}
11088
11089void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
11090 struct irq_bypass_producer *prod)
11091{
11092 int ret;
11093 struct kvm_kernel_irqfd *irqfd =
11094 container_of(cons, struct kvm_kernel_irqfd, consumer);
11095
87276880
FW
11096 WARN_ON(irqfd->producer != prod);
11097 irqfd->producer = NULL;
11098
11099 /*
11100 * When producer of consumer is unregistered, we change back to
11101 * remapped mode, so we can re-use the current implementation
bb3541f1 11102 * when the irq is masked/disabled or the consumer side (KVM
87276880
FW
11103 * int this case doesn't want to receive the interrupts.
11104 */
afaf0b2f 11105 ret = kvm_x86_ops.update_pi_irte(irqfd->kvm, prod->irq, irqfd->gsi, 0);
87276880
FW
11106 if (ret)
11107 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
11108 " fails: %d\n", irqfd->consumer.token, ret);
2edd9cb7
ZL
11109
11110 kvm_arch_end_assignment(irqfd->kvm);
87276880
FW
11111}
11112
11113int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
11114 uint32_t guest_irq, bool set)
11115{
afaf0b2f 11116 return kvm_x86_ops.update_pi_irte(kvm, host_irq, guest_irq, set);
87276880
FW
11117}
11118
52004014
FW
11119bool kvm_vector_hashing_enabled(void)
11120{
11121 return vector_hashing;
11122}
52004014 11123
2d5ba19b
MT
11124bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
11125{
11126 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
11127}
11128EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
11129
841c2be0
ML
11130
11131int kvm_spec_ctrl_test_value(u64 value)
6441fa61 11132{
841c2be0
ML
11133 /*
11134 * test that setting IA32_SPEC_CTRL to given value
11135 * is allowed by the host processor
11136 */
6441fa61 11137
841c2be0
ML
11138 u64 saved_value;
11139 unsigned long flags;
11140 int ret = 0;
6441fa61 11141
841c2be0 11142 local_irq_save(flags);
6441fa61 11143
841c2be0
ML
11144 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
11145 ret = 1;
11146 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
11147 ret = 1;
11148 else
11149 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
6441fa61 11150
841c2be0 11151 local_irq_restore(flags);
6441fa61 11152
841c2be0 11153 return ret;
6441fa61 11154}
841c2be0 11155EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
2d5ba19b 11156
89786147
MG
11157void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
11158{
11159 struct x86_exception fault;
19cf4b7e
PB
11160 u32 access = error_code &
11161 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
89786147
MG
11162
11163 if (!(error_code & PFERR_PRESENT_MASK) ||
19cf4b7e 11164 vcpu->arch.walk_mmu->gva_to_gpa(vcpu, gva, access, &fault) != UNMAPPED_GVA) {
89786147
MG
11165 /*
11166 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
11167 * tables probably do not match the TLB. Just proceed
11168 * with the error code that the processor gave.
11169 */
11170 fault.vector = PF_VECTOR;
11171 fault.error_code_valid = true;
11172 fault.error_code = error_code;
11173 fault.nested_page_fault = false;
11174 fault.address = gva;
11175 }
11176 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
6441fa61 11177}
89786147 11178EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
2d5ba19b 11179
3f3393b3
BM
11180/*
11181 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
11182 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
11183 * indicates whether exit to userspace is needed.
11184 */
11185int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
11186 struct x86_exception *e)
11187{
11188 if (r == X86EMUL_PROPAGATE_FAULT) {
11189 kvm_inject_emulated_page_fault(vcpu, e);
11190 return 1;
11191 }
11192
11193 /*
11194 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
11195 * while handling a VMX instruction KVM could've handled the request
11196 * correctly by exiting to userspace and performing I/O but there
11197 * doesn't seem to be a real use-case behind such requests, just return
11198 * KVM_EXIT_INTERNAL_ERROR for now.
11199 */
11200 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11201 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11202 vcpu->run->internal.ndata = 0;
11203
11204 return 0;
11205}
11206EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
11207
9715092f
BM
11208int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
11209{
11210 bool pcid_enabled;
11211 struct x86_exception e;
11212 unsigned i;
11213 unsigned long roots_to_free = 0;
11214 struct {
11215 u64 pcid;
11216 u64 gla;
11217 } operand;
11218 int r;
11219
11220 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
11221 if (r != X86EMUL_CONTINUE)
11222 return kvm_handle_memory_failure(vcpu, r, &e);
11223
11224 if (operand.pcid >> 12 != 0) {
11225 kvm_inject_gp(vcpu, 0);
11226 return 1;
11227 }
11228
11229 pcid_enabled = kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE);
11230
11231 switch (type) {
11232 case INVPCID_TYPE_INDIV_ADDR:
11233 if ((!pcid_enabled && (operand.pcid != 0)) ||
11234 is_noncanonical_address(operand.gla, vcpu)) {
11235 kvm_inject_gp(vcpu, 0);
11236 return 1;
11237 }
11238 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
11239 return kvm_skip_emulated_instruction(vcpu);
11240
11241 case INVPCID_TYPE_SINGLE_CTXT:
11242 if (!pcid_enabled && (operand.pcid != 0)) {
11243 kvm_inject_gp(vcpu, 0);
11244 return 1;
11245 }
11246
11247 if (kvm_get_active_pcid(vcpu) == operand.pcid) {
11248 kvm_mmu_sync_roots(vcpu);
11249 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
11250 }
11251
11252 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
11253 if (kvm_get_pcid(vcpu, vcpu->arch.mmu->prev_roots[i].pgd)
11254 == operand.pcid)
11255 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
11256
11257 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu, roots_to_free);
11258 /*
11259 * If neither the current cr3 nor any of the prev_roots use the
11260 * given PCID, then nothing needs to be done here because a
11261 * resync will happen anyway before switching to any other CR3.
11262 */
11263
11264 return kvm_skip_emulated_instruction(vcpu);
11265
11266 case INVPCID_TYPE_ALL_NON_GLOBAL:
11267 /*
11268 * Currently, KVM doesn't mark global entries in the shadow
11269 * page tables, so a non-global flush just degenerates to a
11270 * global flush. If needed, we could optimize this later by
11271 * keeping track of global entries in shadow page tables.
11272 */
11273
11274 fallthrough;
11275 case INVPCID_TYPE_ALL_INCL_GLOBAL:
11276 kvm_mmu_unload(vcpu);
11277 return kvm_skip_emulated_instruction(vcpu);
11278
11279 default:
11280 BUG(); /* We have already checked above that type <= 3 */
11281 }
11282}
11283EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
11284
229456fc 11285EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
931c33b1 11286EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
229456fc
MT
11287EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
11288EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
11289EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
11290EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
0ac406de 11291EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmrun);
d8cabddf 11292EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
17897f36 11293EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
236649de 11294EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5497b955 11295EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
ec1ff790 11296EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
532a46b9 11297EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
2e554e8d 11298EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
489223ed 11299EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
4f75bcc3 11300EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
843e4330 11301EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
efc64404 11302EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
18f40c53
SS
11303EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
11304EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
ab56f8e6 11305EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
24bbf74c 11306EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_update_request);