Merge tag 'cgroup-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
[linux-block.git] / arch / x86 / kvm / x86.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
043405e1
CO
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * derived from drivers/kvm/kvm_main.c
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
4d5c5d0f
BAY
8 * Copyright (C) 2008 Qumranet, Inc.
9 * Copyright IBM Corporation, 2008
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
043405e1
CO
11 *
12 * Authors:
13 * Avi Kivity <avi@qumranet.com>
14 * Yaniv Kamay <yaniv@qumranet.com>
4d5c5d0f
BAY
15 * Amit Shah <amit.shah@qumranet.com>
16 * Ben-Ami Yassour <benami@il.ibm.com>
043405e1 17 */
8d20bd63 18#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
043405e1 19
edf88417 20#include <linux/kvm_host.h>
313a3dc7 21#include "irq.h"
88197e6a 22#include "ioapic.h"
1d737c8a 23#include "mmu.h"
7837699f 24#include "i8254.h"
37817f29 25#include "tss.h"
5fdbf976 26#include "kvm_cache_regs.h"
2f728d66 27#include "kvm_emulate.h"
26eef70c 28#include "x86.h"
00b27a3e 29#include "cpuid.h"
474a5bb9 30#include "pmu.h"
e83d5887 31#include "hyperv.h"
8df14af4 32#include "lapic.h"
23200b7a 33#include "xen.h"
b0b42197 34#include "smm.h"
313a3dc7 35
18068523 36#include <linux/clocksource.h>
4d5c5d0f 37#include <linux/interrupt.h>
313a3dc7
CO
38#include <linux/kvm.h>
39#include <linux/fs.h>
40#include <linux/vmalloc.h>
1767e931
PG
41#include <linux/export.h>
42#include <linux/moduleparam.h>
0de10343 43#include <linux/mman.h>
2bacc55c 44#include <linux/highmem.h>
19de40a8 45#include <linux/iommu.h>
c8076604 46#include <linux/cpufreq.h>
18863bdd 47#include <linux/user-return-notifier.h>
a983fb23 48#include <linux/srcu.h>
5a0e3ad6 49#include <linux/slab.h>
ff9d07a0 50#include <linux/perf_event.h>
7bee342a 51#include <linux/uaccess.h>
af585b92 52#include <linux/hash.h>
a1b60c1c 53#include <linux/pci.h>
16e8d74d
MT
54#include <linux/timekeeper_internal.h>
55#include <linux/pvclock_gtod.h>
87276880
FW
56#include <linux/kvm_irqfd.h>
57#include <linux/irqbypass.h>
3905f9ad 58#include <linux/sched/stat.h>
0c5f81da 59#include <linux/sched/isolation.h>
d0ec49d4 60#include <linux/mem_encrypt.h>
72c3c0fe 61#include <linux/entry-kvm.h>
7d62874f 62#include <linux/suspend.h>
4c8c3c7f 63#include <linux/smp.h>
3905f9ad 64
4c8c3c7f 65#include <trace/events/ipi.h>
aec51dc4 66#include <trace/events/kvm.h>
2ed152af 67
24f1e32c 68#include <asm/debugreg.h>
d825ed0a 69#include <asm/msr.h>
a5f61300 70#include <asm/desc.h>
890ca9ae 71#include <asm/mce.h>
784a4661 72#include <asm/pkru.h>
f89e32e0 73#include <linux/kernel_stat.h>
a0ff0611
TG
74#include <asm/fpu/api.h>
75#include <asm/fpu/xcr.h>
76#include <asm/fpu/xstate.h>
1d5f066e 77#include <asm/pvclock.h>
217fc9cf 78#include <asm/div64.h>
efc64404 79#include <asm/irq_remapping.h>
b0c39dc6 80#include <asm/mshyperv.h>
0092e434 81#include <asm/hypervisor.h>
9715092f 82#include <asm/tlbflush.h>
bf8c55d8 83#include <asm/intel_pt.h>
b3dc0695 84#include <asm/emulate_prefix.h>
fe7e9488 85#include <asm/sgx.h>
dd2cb348 86#include <clocksource/hyperv_timer.h>
043405e1 87
d1898b73
DH
88#define CREATE_TRACE_POINTS
89#include "trace.h"
90
313a3dc7 91#define MAX_IO_MSRS 256
890ca9ae 92#define KVM_MAX_MCE_BANKS 32
938c8745
SC
93
94struct kvm_caps kvm_caps __read_mostly = {
95 .supported_mce_cap = MCG_CTL_P | MCG_SER_P,
96};
97EXPORT_SYMBOL_GPL(kvm_caps);
890ca9ae 98
6e37ec88
SC
99#define ERR_PTR_USR(e) ((void __user *)ERR_PTR(e))
100
0f65dd70 101#define emul_to_vcpu(ctxt) \
c9b8b07c 102 ((struct kvm_vcpu *)(ctxt)->vcpu)
0f65dd70 103
50a37eb4
JR
104/* EFER defaults:
105 * - enable syscall per default because its emulated by KVM
106 * - enable LME and LMA per default on 64 bit KVM
107 */
108#ifdef CONFIG_X86_64
1260edbe
LJ
109static
110u64 __read_mostly efer_reserved_bits = ~((u64)(EFER_SCE | EFER_LME | EFER_LMA));
50a37eb4 111#else
1260edbe 112static u64 __read_mostly efer_reserved_bits = ~((u64)EFER_SCE);
50a37eb4 113#endif
313a3dc7 114
b11306b5
SC
115static u64 __read_mostly cr4_reserved_bits = CR4_RESERVED_BITS;
116
0dbb1123
AK
117#define KVM_EXIT_HYPERCALL_VALID_MASK (1 << KVM_HC_MAP_GPA_RANGE)
118
ba7bb663
DD
119#define KVM_CAP_PMU_VALID_MASK KVM_PMU_CAP_DISABLE
120
c519265f
RK
121#define KVM_X2APIC_API_VALID_FLAGS (KVM_X2APIC_API_USE_32BIT_IDS | \
122 KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
37131313 123
cb142eb7 124static void update_cr8_intercept(struct kvm_vcpu *vcpu);
7460fb4a 125static void process_nmi(struct kvm_vcpu *vcpu);
6addfc42 126static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
01643c51
KH
127static void store_regs(struct kvm_vcpu *vcpu);
128static int sync_regs(struct kvm_vcpu *vcpu);
d2f7d498 129static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu);
674eea0f 130
6dba9403
ML
131static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
132static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2);
133
3af4a9e6 134static DEFINE_MUTEX(vendor_module_lock);
afaf0b2f 135struct kvm_x86_ops kvm_x86_ops __read_mostly;
97896d04 136
9af5471b
JB
137#define KVM_X86_OP(func) \
138 DEFINE_STATIC_CALL_NULL(kvm_x86_##func, \
139 *(((struct kvm_x86_ops *)0)->func));
e4fc23ba 140#define KVM_X86_OP_OPTIONAL KVM_X86_OP
5be2226f 141#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
9af5471b
JB
142#include <asm/kvm-x86-ops.h>
143EXPORT_STATIC_CALL_GPL(kvm_x86_get_cs_db_l_bits);
144EXPORT_STATIC_CALL_GPL(kvm_x86_cache_reg);
9af5471b 145
893590c7 146static bool __read_mostly ignore_msrs = 0;
476bc001 147module_param(ignore_msrs, bool, S_IRUGO | S_IWUSR);
ed85c068 148
d855066f 149bool __read_mostly report_ignored_msrs = true;
fab0aa3b 150module_param(report_ignored_msrs, bool, S_IRUGO | S_IWUSR);
d855066f 151EXPORT_SYMBOL_GPL(report_ignored_msrs);
fab0aa3b 152
4c27625b 153unsigned int min_timer_period_us = 200;
9ed96e87
MT
154module_param(min_timer_period_us, uint, S_IRUGO | S_IWUSR);
155
630994b3
MT
156static bool __read_mostly kvmclock_periodic_sync = true;
157module_param(kvmclock_periodic_sync, bool, S_IRUGO);
158
cc578287 159/* tsc tolerance in parts per million - default to 1/2 of the NTP threshold */
893590c7 160static u32 __read_mostly tsc_tolerance_ppm = 250;
cc578287
ZA
161module_param(tsc_tolerance_ppm, uint, S_IRUGO | S_IWUSR);
162
c3941d9e
SC
163/*
164 * lapic timer advance (tscdeadline mode only) in nanoseconds. '-1' enables
d9f6e12f 165 * adaptive tuning starting from default advancement of 1000ns. '0' disables
c3941d9e 166 * advancement entirely. Any other value is used as-is and disables adaptive
d9f6e12f 167 * tuning, i.e. allows privileged userspace to set an exact advancement time.
c3941d9e
SC
168 */
169static int __read_mostly lapic_timer_advance_ns = -1;
0e6edceb 170module_param(lapic_timer_advance_ns, int, S_IRUGO | S_IWUSR);
d0659d94 171
52004014
FW
172static bool __read_mostly vector_hashing = true;
173module_param(vector_hashing, bool, S_IRUGO);
174
c4ae60e4
LA
175bool __read_mostly enable_vmware_backdoor = false;
176module_param(enable_vmware_backdoor, bool, S_IRUGO);
177EXPORT_SYMBOL_GPL(enable_vmware_backdoor);
178
d500e1ed
SC
179/*
180 * Flags to manipulate forced emulation behavior (any non-zero value will
181 * enable forced emulation).
182 */
183#define KVM_FEP_CLEAR_RFLAGS_RF BIT(1)
184static int __read_mostly force_emulation_prefix;
40aaa5b6 185module_param(force_emulation_prefix, int, 0644);
6c86eedc 186
0c5f81da
WL
187int __read_mostly pi_inject_timer = -1;
188module_param(pi_inject_timer, bint, S_IRUGO | S_IWUSR);
189
4732f244
LX
190/* Enable/disable PMU virtualization */
191bool __read_mostly enable_pmu = true;
192EXPORT_SYMBOL_GPL(enable_pmu);
193module_param(enable_pmu, bool, 0444);
194
cb00a70b 195bool __read_mostly eager_page_split = true;
a3fe5dbd
DM
196module_param(eager_page_split, bool, 0644);
197
6f0f2d5e 198/* Enable/disable SMT_RSB bug mitigation */
944a8dad 199static bool __read_mostly mitigate_smt_rsb;
6f0f2d5e
TL
200module_param(mitigate_smt_rsb, bool, 0444);
201
7e34fbd0
SC
202/*
203 * Restoring the host value for MSRs that are only consumed when running in
204 * usermode, e.g. SYSCALL MSRs and TSC_AUX, can be deferred until the CPU
205 * returns to userspace, i.e. the kernel can run with the guest's value.
206 */
207#define KVM_MAX_NR_USER_RETURN_MSRS 16
18863bdd 208
7e34fbd0 209struct kvm_user_return_msrs {
18863bdd
AK
210 struct user_return_notifier urn;
211 bool registered;
7e34fbd0 212 struct kvm_user_return_msr_values {
2bf78fa7
SY
213 u64 host;
214 u64 curr;
7e34fbd0 215 } values[KVM_MAX_NR_USER_RETURN_MSRS];
18863bdd
AK
216};
217
9cc39a5a
SC
218u32 __read_mostly kvm_nr_uret_msrs;
219EXPORT_SYMBOL_GPL(kvm_nr_uret_msrs);
220static u32 __read_mostly kvm_uret_msrs_list[KVM_MAX_NR_USER_RETURN_MSRS];
7e34fbd0 221static struct kvm_user_return_msrs __percpu *user_return_msrs;
18863bdd 222
cfc48181
SC
223#define KVM_SUPPORTED_XCR0 (XFEATURE_MASK_FP | XFEATURE_MASK_SSE \
224 | XFEATURE_MASK_YMM | XFEATURE_MASK_BNDREGS \
225 | XFEATURE_MASK_BNDCSR | XFEATURE_MASK_AVX512 \
86aff7a4 226 | XFEATURE_MASK_PKRU | XFEATURE_MASK_XTILE)
cfc48181 227
91661989
SC
228u64 __read_mostly host_efer;
229EXPORT_SYMBOL_GPL(host_efer);
230
b96e6506 231bool __read_mostly allow_smaller_maxphyaddr = 0;
3edd6839
MG
232EXPORT_SYMBOL_GPL(allow_smaller_maxphyaddr);
233
fdf513e3
VK
234bool __read_mostly enable_apicv = true;
235EXPORT_SYMBOL_GPL(enable_apicv);
236
86137773
TL
237u64 __read_mostly host_xss;
238EXPORT_SYMBOL_GPL(host_xss);
139a12cf 239
fcfe1bae
JZ
240const struct _kvm_stats_desc kvm_vm_stats_desc[] = {
241 KVM_GENERIC_VM_STATS(),
242 STATS_DESC_COUNTER(VM, mmu_shadow_zapped),
243 STATS_DESC_COUNTER(VM, mmu_pte_write),
244 STATS_DESC_COUNTER(VM, mmu_pde_zapped),
245 STATS_DESC_COUNTER(VM, mmu_flooded),
246 STATS_DESC_COUNTER(VM, mmu_recycled),
247 STATS_DESC_COUNTER(VM, mmu_cache_miss),
248 STATS_DESC_ICOUNTER(VM, mmu_unsync),
71f51d2c
MZ
249 STATS_DESC_ICOUNTER(VM, pages_4k),
250 STATS_DESC_ICOUNTER(VM, pages_2m),
251 STATS_DESC_ICOUNTER(VM, pages_1g),
fcfe1bae 252 STATS_DESC_ICOUNTER(VM, nx_lpage_splits),
ec1cf69c 253 STATS_DESC_PCOUNTER(VM, max_mmu_rmap_size),
bc9e9e67 254 STATS_DESC_PCOUNTER(VM, max_mmu_page_hash_collisions)
fcfe1bae 255};
fcfe1bae
JZ
256
257const struct kvm_stats_header kvm_vm_stats_header = {
258 .name_size = KVM_STATS_NAME_SIZE,
259 .num_desc = ARRAY_SIZE(kvm_vm_stats_desc),
260 .id_offset = sizeof(struct kvm_stats_header),
261 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
262 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
263 sizeof(kvm_vm_stats_desc),
264};
265
ce55c049
JZ
266const struct _kvm_stats_desc kvm_vcpu_stats_desc[] = {
267 KVM_GENERIC_VCPU_STATS(),
1075d41e 268 STATS_DESC_COUNTER(VCPU, pf_taken),
ce55c049 269 STATS_DESC_COUNTER(VCPU, pf_fixed),
1075d41e
SC
270 STATS_DESC_COUNTER(VCPU, pf_emulate),
271 STATS_DESC_COUNTER(VCPU, pf_spurious),
272 STATS_DESC_COUNTER(VCPU, pf_fast),
273 STATS_DESC_COUNTER(VCPU, pf_mmio_spte_created),
ce55c049
JZ
274 STATS_DESC_COUNTER(VCPU, pf_guest),
275 STATS_DESC_COUNTER(VCPU, tlb_flush),
276 STATS_DESC_COUNTER(VCPU, invlpg),
277 STATS_DESC_COUNTER(VCPU, exits),
278 STATS_DESC_COUNTER(VCPU, io_exits),
279 STATS_DESC_COUNTER(VCPU, mmio_exits),
280 STATS_DESC_COUNTER(VCPU, signal_exits),
281 STATS_DESC_COUNTER(VCPU, irq_window_exits),
282 STATS_DESC_COUNTER(VCPU, nmi_window_exits),
283 STATS_DESC_COUNTER(VCPU, l1d_flush),
284 STATS_DESC_COUNTER(VCPU, halt_exits),
285 STATS_DESC_COUNTER(VCPU, request_irq_exits),
286 STATS_DESC_COUNTER(VCPU, irq_exits),
287 STATS_DESC_COUNTER(VCPU, host_state_reload),
288 STATS_DESC_COUNTER(VCPU, fpu_reload),
289 STATS_DESC_COUNTER(VCPU, insn_emulation),
290 STATS_DESC_COUNTER(VCPU, insn_emulation_fail),
291 STATS_DESC_COUNTER(VCPU, hypercalls),
292 STATS_DESC_COUNTER(VCPU, irq_injections),
293 STATS_DESC_COUNTER(VCPU, nmi_injections),
294 STATS_DESC_COUNTER(VCPU, req_event),
295 STATS_DESC_COUNTER(VCPU, nested_run),
296 STATS_DESC_COUNTER(VCPU, directed_yield_attempted),
297 STATS_DESC_COUNTER(VCPU, directed_yield_successful),
6cd88243
PB
298 STATS_DESC_COUNTER(VCPU, preemption_reported),
299 STATS_DESC_COUNTER(VCPU, preemption_other),
63f4b210 300 STATS_DESC_IBOOLEAN(VCPU, guest_mode),
2f4073e0 301 STATS_DESC_COUNTER(VCPU, notify_window_exits),
ce55c049 302};
ce55c049
JZ
303
304const struct kvm_stats_header kvm_vcpu_stats_header = {
305 .name_size = KVM_STATS_NAME_SIZE,
306 .num_desc = ARRAY_SIZE(kvm_vcpu_stats_desc),
307 .id_offset = sizeof(struct kvm_stats_header),
308 .desc_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE,
309 .data_offset = sizeof(struct kvm_stats_header) + KVM_STATS_NAME_SIZE +
310 sizeof(kvm_vcpu_stats_desc),
311};
312
2acf923e
DC
313u64 __read_mostly host_xcr0;
314
c9b8b07c
SC
315static struct kmem_cache *x86_emulator_cache;
316
6abe9c13
PX
317/*
318 * When called, it means the previous get/set msr reached an invalid msr.
cc4cb017 319 * Return true if we want to ignore/silent this failed msr access.
6abe9c13 320 */
d632826f 321static bool kvm_msr_ignored_check(u32 msr, u64 data, bool write)
6abe9c13
PX
322{
323 const char *op = write ? "wrmsr" : "rdmsr";
324
325 if (ignore_msrs) {
326 if (report_ignored_msrs)
d383b314
TI
327 kvm_pr_unimpl("ignored %s: 0x%x data 0x%llx\n",
328 op, msr, data);
6abe9c13 329 /* Mask the error */
cc4cb017 330 return true;
6abe9c13 331 } else {
d383b314
TI
332 kvm_debug_ratelimited("unhandled %s: 0x%x data 0x%llx\n",
333 op, msr, data);
cc4cb017 334 return false;
6abe9c13
PX
335 }
336}
337
c9b8b07c
SC
338static struct kmem_cache *kvm_alloc_emulator_cache(void)
339{
06add254
SC
340 unsigned int useroffset = offsetof(struct x86_emulate_ctxt, src);
341 unsigned int size = sizeof(struct x86_emulate_ctxt);
342
343 return kmem_cache_create_usercopy("x86_emulator", size,
c9b8b07c 344 __alignof__(struct x86_emulate_ctxt),
06add254
SC
345 SLAB_ACCOUNT, useroffset,
346 size - useroffset, NULL);
c9b8b07c
SC
347}
348
b6785def 349static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt);
d6aa1000 350
af585b92
GN
351static inline void kvm_async_pf_hash_reset(struct kvm_vcpu *vcpu)
352{
353 int i;
dd03bcaa 354 for (i = 0; i < ASYNC_PF_PER_VCPU; i++)
af585b92
GN
355 vcpu->arch.apf.gfns[i] = ~0;
356}
357
18863bdd
AK
358static void kvm_on_user_return(struct user_return_notifier *urn)
359{
360 unsigned slot;
7e34fbd0
SC
361 struct kvm_user_return_msrs *msrs
362 = container_of(urn, struct kvm_user_return_msrs, urn);
363 struct kvm_user_return_msr_values *values;
1650b4eb
IA
364 unsigned long flags;
365
366 /*
367 * Disabling irqs at this point since the following code could be
368 * interrupted and executed through kvm_arch_hardware_disable()
369 */
370 local_irq_save(flags);
7e34fbd0
SC
371 if (msrs->registered) {
372 msrs->registered = false;
1650b4eb
IA
373 user_return_notifier_unregister(urn);
374 }
375 local_irq_restore(flags);
9cc39a5a 376 for (slot = 0; slot < kvm_nr_uret_msrs; ++slot) {
7e34fbd0 377 values = &msrs->values[slot];
2bf78fa7 378 if (values->host != values->curr) {
9cc39a5a 379 wrmsrl(kvm_uret_msrs_list[slot], values->host);
2bf78fa7 380 values->curr = values->host;
18863bdd
AK
381 }
382 }
18863bdd
AK
383}
384
e5fda4bb 385static int kvm_probe_user_return_msr(u32 msr)
5104d7ff
SC
386{
387 u64 val;
388 int ret;
389
390 preempt_disable();
391 ret = rdmsrl_safe(msr, &val);
392 if (ret)
393 goto out;
394 ret = wrmsrl_safe(msr, val);
395out:
396 preempt_enable();
397 return ret;
398}
5104d7ff 399
e5fda4bb 400int kvm_add_user_return_msr(u32 msr)
2bf78fa7 401{
e5fda4bb
SC
402 BUG_ON(kvm_nr_uret_msrs >= KVM_MAX_NR_USER_RETURN_MSRS);
403
404 if (kvm_probe_user_return_msr(msr))
405 return -1;
406
407 kvm_uret_msrs_list[kvm_nr_uret_msrs] = msr;
408 return kvm_nr_uret_msrs++;
18863bdd 409}
e5fda4bb 410EXPORT_SYMBOL_GPL(kvm_add_user_return_msr);
18863bdd 411
8ea8b8d6
SC
412int kvm_find_user_return_msr(u32 msr)
413{
414 int i;
415
9cc39a5a
SC
416 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
417 if (kvm_uret_msrs_list[i] == msr)
8ea8b8d6
SC
418 return i;
419 }
420 return -1;
421}
422EXPORT_SYMBOL_GPL(kvm_find_user_return_msr);
423
7e34fbd0 424static void kvm_user_return_msr_cpu_online(void)
18863bdd 425{
05c19c2f 426 unsigned int cpu = smp_processor_id();
7e34fbd0 427 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
05c19c2f
SC
428 u64 value;
429 int i;
18863bdd 430
9cc39a5a
SC
431 for (i = 0; i < kvm_nr_uret_msrs; ++i) {
432 rdmsrl_safe(kvm_uret_msrs_list[i], &value);
7e34fbd0
SC
433 msrs->values[i].host = value;
434 msrs->values[i].curr = value;
05c19c2f 435 }
18863bdd
AK
436}
437
7e34fbd0 438int kvm_set_user_return_msr(unsigned slot, u64 value, u64 mask)
18863bdd 439{
013f6a5d 440 unsigned int cpu = smp_processor_id();
7e34fbd0 441 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
8b3c3104 442 int err;
18863bdd 443
7e34fbd0
SC
444 value = (value & mask) | (msrs->values[slot].host & ~mask);
445 if (value == msrs->values[slot].curr)
8b3c3104 446 return 0;
9cc39a5a 447 err = wrmsrl_safe(kvm_uret_msrs_list[slot], value);
8b3c3104
AH
448 if (err)
449 return 1;
450
7e34fbd0
SC
451 msrs->values[slot].curr = value;
452 if (!msrs->registered) {
453 msrs->urn.on_user_return = kvm_on_user_return;
454 user_return_notifier_register(&msrs->urn);
455 msrs->registered = true;
18863bdd 456 }
8b3c3104 457 return 0;
18863bdd 458}
7e34fbd0 459EXPORT_SYMBOL_GPL(kvm_set_user_return_msr);
18863bdd 460
13a34e06 461static void drop_user_return_notifiers(void)
3548bab5 462{
013f6a5d 463 unsigned int cpu = smp_processor_id();
7e34fbd0 464 struct kvm_user_return_msrs *msrs = per_cpu_ptr(user_return_msrs, cpu);
3548bab5 465
7e34fbd0
SC
466 if (msrs->registered)
467 kvm_on_user_return(&msrs->urn);
3548bab5
AK
468}
469
6866b83e
CO
470u64 kvm_get_apic_base(struct kvm_vcpu *vcpu)
471{
8a5a87d9 472 return vcpu->arch.apic_base;
6866b83e 473}
6866b83e 474
58871649
JM
475enum lapic_mode kvm_get_apic_mode(struct kvm_vcpu *vcpu)
476{
477 return kvm_apic_mode(kvm_get_apic_base(vcpu));
478}
479EXPORT_SYMBOL_GPL(kvm_get_apic_mode);
480
58cb628d
JK
481int kvm_set_apic_base(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
482{
58871649
JM
483 enum lapic_mode old_mode = kvm_get_apic_mode(vcpu);
484 enum lapic_mode new_mode = kvm_apic_mode(msr_info->data);
a8ac864a 485 u64 reserved_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu) | 0x2ff |
d6321d49 486 (guest_cpuid_has(vcpu, X86_FEATURE_X2APIC) ? 0 : X2APIC_ENABLE);
58cb628d 487
58871649 488 if ((msr_info->data & reserved_bits) != 0 || new_mode == LAPIC_MODE_INVALID)
58cb628d 489 return 1;
58871649
JM
490 if (!msr_info->host_initiated) {
491 if (old_mode == LAPIC_MODE_X2APIC && new_mode == LAPIC_MODE_XAPIC)
492 return 1;
493 if (old_mode == LAPIC_MODE_DISABLED && new_mode == LAPIC_MODE_X2APIC)
494 return 1;
495 }
58cb628d
JK
496
497 kvm_lapic_set_base(vcpu, msr_info->data);
4abaffce 498 kvm_recalculate_apic_map(vcpu->kvm);
58cb628d 499 return 0;
6866b83e 500}
6866b83e 501
ad0577c3
SC
502/*
503 * Handle a fault on a hardware virtualization (VMX or SVM) instruction.
504 *
505 * Hardware virtualization extension instructions may fault if a reboot turns
506 * off virtualization while processes are running. Usually after catching the
507 * fault we just panic; during reboot instead the instruction is ignored.
508 */
509noinstr void kvm_spurious_fault(void)
e3ba45b8
GL
510{
511 /* Fault while not rebooting. We want the trace. */
b4fdcf60 512 BUG_ON(!kvm_rebooting);
e3ba45b8
GL
513}
514EXPORT_SYMBOL_GPL(kvm_spurious_fault);
515
3fd28fce
ED
516#define EXCPT_BENIGN 0
517#define EXCPT_CONTRIBUTORY 1
518#define EXCPT_PF 2
519
520static int exception_class(int vector)
521{
522 switch (vector) {
523 case PF_VECTOR:
524 return EXCPT_PF;
525 case DE_VECTOR:
526 case TS_VECTOR:
527 case NP_VECTOR:
528 case SS_VECTOR:
529 case GP_VECTOR:
530 return EXCPT_CONTRIBUTORY;
531 default:
532 break;
533 }
534 return EXCPT_BENIGN;
535}
536
d6e8c854
NA
537#define EXCPT_FAULT 0
538#define EXCPT_TRAP 1
539#define EXCPT_ABORT 2
540#define EXCPT_INTERRUPT 3
5623f751 541#define EXCPT_DB 4
d6e8c854
NA
542
543static int exception_type(int vector)
544{
545 unsigned int mask;
546
547 if (WARN_ON(vector > 31 || vector == NMI_VECTOR))
548 return EXCPT_INTERRUPT;
549
550 mask = 1 << vector;
551
5623f751
SC
552 /*
553 * #DBs can be trap-like or fault-like, the caller must check other CPU
554 * state, e.g. DR6, to determine whether a #DB is a trap or fault.
555 */
556 if (mask & (1 << DB_VECTOR))
557 return EXCPT_DB;
558
559 if (mask & ((1 << BP_VECTOR) | (1 << OF_VECTOR)))
d6e8c854
NA
560 return EXCPT_TRAP;
561
562 if (mask & ((1 << DF_VECTOR) | (1 << MC_VECTOR)))
563 return EXCPT_ABORT;
564
565 /* Reserved exceptions will result in fault */
566 return EXCPT_FAULT;
567}
568
d4963e31
SC
569void kvm_deliver_exception_payload(struct kvm_vcpu *vcpu,
570 struct kvm_queued_exception *ex)
da998b46 571{
d4963e31 572 if (!ex->has_payload)
da998b46
JM
573 return;
574
d4963e31 575 switch (ex->vector) {
f10c729f
JM
576 case DB_VECTOR:
577 /*
578 * "Certain debug exceptions may clear bit 0-3. The
579 * remaining contents of the DR6 register are never
580 * cleared by the processor".
581 */
582 vcpu->arch.dr6 &= ~DR_TRAP_BITS;
583 /*
9a3ecd5e
CQ
584 * In order to reflect the #DB exception payload in guest
585 * dr6, three components need to be considered: active low
586 * bit, FIXED_1 bits and active high bits (e.g. DR6_BD,
587 * DR6_BS and DR6_BT)
588 * DR6_ACTIVE_LOW contains the FIXED_1 and active low bits.
589 * In the target guest dr6:
590 * FIXED_1 bits should always be set.
591 * Active low bits should be cleared if 1-setting in payload.
592 * Active high bits should be set if 1-setting in payload.
593 *
594 * Note, the payload is compatible with the pending debug
595 * exceptions/exit qualification under VMX, that active_low bits
596 * are active high in payload.
597 * So they need to be flipped for DR6.
f10c729f 598 */
9a3ecd5e 599 vcpu->arch.dr6 |= DR6_ACTIVE_LOW;
d4963e31
SC
600 vcpu->arch.dr6 |= ex->payload;
601 vcpu->arch.dr6 ^= ex->payload & DR6_ACTIVE_LOW;
307f1cfa
OU
602
603 /*
604 * The #DB payload is defined as compatible with the 'pending
605 * debug exceptions' field under VMX, not DR6. While bit 12 is
606 * defined in the 'pending debug exceptions' field (enabled
607 * breakpoint), it is reserved and must be zero in DR6.
608 */
609 vcpu->arch.dr6 &= ~BIT(12);
f10c729f 610 break;
da998b46 611 case PF_VECTOR:
d4963e31 612 vcpu->arch.cr2 = ex->payload;
da998b46
JM
613 break;
614 }
615
d4963e31
SC
616 ex->has_payload = false;
617 ex->payload = 0;
da998b46
JM
618}
619EXPORT_SYMBOL_GPL(kvm_deliver_exception_payload);
620
7709aba8
SC
621static void kvm_queue_exception_vmexit(struct kvm_vcpu *vcpu, unsigned int vector,
622 bool has_error_code, u32 error_code,
623 bool has_payload, unsigned long payload)
624{
625 struct kvm_queued_exception *ex = &vcpu->arch.exception_vmexit;
626
627 ex->vector = vector;
628 ex->injected = false;
629 ex->pending = true;
630 ex->has_error_code = has_error_code;
631 ex->error_code = error_code;
632 ex->has_payload = has_payload;
633 ex->payload = payload;
634}
635
f9697df2
ML
636/* Forcibly leave the nested mode in cases like a vCPU reset */
637static void kvm_leave_nested(struct kvm_vcpu *vcpu)
638{
639 kvm_x86_ops.nested_ops->leave_nested(vcpu);
640}
641
3fd28fce 642static void kvm_multiple_exception(struct kvm_vcpu *vcpu,
ce7ddec4 643 unsigned nr, bool has_error, u32 error_code,
91e86d22 644 bool has_payload, unsigned long payload, bool reinject)
3fd28fce
ED
645{
646 u32 prev_nr;
647 int class1, class2;
648
3842d135
AK
649 kvm_make_request(KVM_REQ_EVENT, vcpu);
650
7709aba8
SC
651 /*
652 * If the exception is destined for L2 and isn't being reinjected,
653 * morph it to a VM-Exit if L1 wants to intercept the exception. A
654 * previously injected exception is not checked because it was checked
655 * when it was original queued, and re-checking is incorrect if _L1_
656 * injected the exception, in which case it's exempt from interception.
657 */
658 if (!reinject && is_guest_mode(vcpu) &&
659 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, nr, error_code)) {
660 kvm_queue_exception_vmexit(vcpu, nr, has_error, error_code,
661 has_payload, payload);
662 return;
663 }
664
664f8e26 665 if (!vcpu->arch.exception.pending && !vcpu->arch.exception.injected) {
3fd28fce 666 queue:
664f8e26
WL
667 if (reinject) {
668 /*
7709aba8
SC
669 * On VM-Entry, an exception can be pending if and only
670 * if event injection was blocked by nested_run_pending.
671 * In that case, however, vcpu_enter_guest() requests an
672 * immediate exit, and the guest shouldn't proceed far
673 * enough to need reinjection.
664f8e26 674 */
7709aba8 675 WARN_ON_ONCE(kvm_is_exception_pending(vcpu));
664f8e26 676 vcpu->arch.exception.injected = true;
91e86d22
JM
677 if (WARN_ON_ONCE(has_payload)) {
678 /*
679 * A reinjected event has already
680 * delivered its payload.
681 */
682 has_payload = false;
683 payload = 0;
684 }
664f8e26
WL
685 } else {
686 vcpu->arch.exception.pending = true;
687 vcpu->arch.exception.injected = false;
688 }
3fd28fce 689 vcpu->arch.exception.has_error_code = has_error;
d4963e31 690 vcpu->arch.exception.vector = nr;
3fd28fce 691 vcpu->arch.exception.error_code = error_code;
91e86d22
JM
692 vcpu->arch.exception.has_payload = has_payload;
693 vcpu->arch.exception.payload = payload;
a06230b6 694 if (!is_guest_mode(vcpu))
d4963e31
SC
695 kvm_deliver_exception_payload(vcpu,
696 &vcpu->arch.exception);
3fd28fce
ED
697 return;
698 }
699
700 /* to check exception */
d4963e31 701 prev_nr = vcpu->arch.exception.vector;
3fd28fce
ED
702 if (prev_nr == DF_VECTOR) {
703 /* triple fault -> shutdown */
a8eeb04a 704 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
3fd28fce
ED
705 return;
706 }
707 class1 = exception_class(prev_nr);
708 class2 = exception_class(nr);
81601495
SC
709 if ((class1 == EXCPT_CONTRIBUTORY && class2 == EXCPT_CONTRIBUTORY) ||
710 (class1 == EXCPT_PF && class2 != EXCPT_BENIGN)) {
664f8e26 711 /*
81601495
SC
712 * Synthesize #DF. Clear the previously injected or pending
713 * exception so as not to incorrectly trigger shutdown.
664f8e26 714 */
664f8e26 715 vcpu->arch.exception.injected = false;
81601495
SC
716 vcpu->arch.exception.pending = false;
717
718 kvm_queue_exception_e(vcpu, DF_VECTOR, 0);
719 } else {
3fd28fce
ED
720 /* replace previous exception with a new one in a hope
721 that instruction re-execution will regenerate lost
722 exception */
723 goto queue;
81601495 724 }
3fd28fce
ED
725}
726
298101da
AK
727void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr)
728{
91e86d22 729 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, false);
298101da
AK
730}
731EXPORT_SYMBOL_GPL(kvm_queue_exception);
732
ce7ddec4
JR
733void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr)
734{
91e86d22 735 kvm_multiple_exception(vcpu, nr, false, 0, false, 0, true);
ce7ddec4
JR
736}
737EXPORT_SYMBOL_GPL(kvm_requeue_exception);
738
4d5523cf
PB
739void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr,
740 unsigned long payload)
f10c729f
JM
741{
742 kvm_multiple_exception(vcpu, nr, false, 0, true, payload, false);
743}
4d5523cf 744EXPORT_SYMBOL_GPL(kvm_queue_exception_p);
f10c729f 745
da998b46
JM
746static void kvm_queue_exception_e_p(struct kvm_vcpu *vcpu, unsigned nr,
747 u32 error_code, unsigned long payload)
748{
749 kvm_multiple_exception(vcpu, nr, true, error_code,
750 true, payload, false);
751}
752
6affcbed 753int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err)
c3c91fee 754{
db8fcefa
AP
755 if (err)
756 kvm_inject_gp(vcpu, 0);
757 else
6affcbed
KH
758 return kvm_skip_emulated_instruction(vcpu);
759
760 return 1;
db8fcefa
AP
761}
762EXPORT_SYMBOL_GPL(kvm_complete_insn_gp);
8df25a32 763
d2f7d498
HW
764static int complete_emulated_insn_gp(struct kvm_vcpu *vcpu, int err)
765{
766 if (err) {
767 kvm_inject_gp(vcpu, 0);
768 return 1;
769 }
770
771 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
772 EMULTYPE_COMPLETE_USER_EXIT);
773}
774
6389ee94 775void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault)
c3c91fee
AK
776{
777 ++vcpu->stat.pf_guest;
7709aba8
SC
778
779 /*
780 * Async #PF in L2 is always forwarded to L1 as a VM-Exit regardless of
781 * whether or not L1 wants to intercept "regular" #PF.
782 */
783 if (is_guest_mode(vcpu) && fault->async_page_fault)
784 kvm_queue_exception_vmexit(vcpu, PF_VECTOR,
785 true, fault->error_code,
786 true, fault->address);
787 else
da998b46
JM
788 kvm_queue_exception_e_p(vcpu, PF_VECTOR, fault->error_code,
789 fault->address);
c3c91fee
AK
790}
791
7709aba8 792void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
53b3d8e9 793 struct x86_exception *fault)
d4f8cf66 794{
0cd665bd 795 struct kvm_mmu *fault_mmu;
53b3d8e9
SC
796 WARN_ON_ONCE(fault->vector != PF_VECTOR);
797
0cd665bd
PB
798 fault_mmu = fault->nested_page_fault ? vcpu->arch.mmu :
799 vcpu->arch.walk_mmu;
ef54bcfe 800
ee1fa209
JS
801 /*
802 * Invalidate the TLB entry for the faulting address, if it exists,
803 * else the access will fault indefinitely (and to emulate hardware).
804 */
805 if ((fault->error_code & PFERR_PRESENT_MASK) &&
806 !(fault->error_code & PFERR_RSVD_MASK))
753b43c9 807 kvm_mmu_invalidate_addr(vcpu, fault_mmu, fault->address,
cd42853e 808 KVM_MMU_ROOT_CURRENT);
ee1fa209
JS
809
810 fault_mmu->inject_page_fault(vcpu, fault);
d4f8cf66 811}
53b3d8e9 812EXPORT_SYMBOL_GPL(kvm_inject_emulated_page_fault);
d4f8cf66 813
3419ffc8
SY
814void kvm_inject_nmi(struct kvm_vcpu *vcpu)
815{
7460fb4a
AK
816 atomic_inc(&vcpu->arch.nmi_queued);
817 kvm_make_request(KVM_REQ_NMI, vcpu);
3419ffc8 818}
3419ffc8 819
298101da
AK
820void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
821{
91e86d22 822 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, false);
298101da
AK
823}
824EXPORT_SYMBOL_GPL(kvm_queue_exception_e);
825
ce7ddec4
JR
826void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code)
827{
91e86d22 828 kvm_multiple_exception(vcpu, nr, true, error_code, false, 0, true);
ce7ddec4
JR
829}
830EXPORT_SYMBOL_GPL(kvm_requeue_exception_e);
831
0a79b009
AK
832/*
833 * Checks if cpl <= required_cpl; if true, return true. Otherwise queue
834 * a #GP and return false.
835 */
836bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl)
298101da 837{
b3646477 838 if (static_call(kvm_x86_get_cpl)(vcpu) <= required_cpl)
0a79b009
AK
839 return true;
840 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
841 return false;
298101da
AK
842}
843
16f8a6f9
NA
844bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr)
845{
607475cf 846 if ((dr != 4 && dr != 5) || !kvm_is_cr4_bit_set(vcpu, X86_CR4_DE))
16f8a6f9
NA
847 return true;
848
849 kvm_queue_exception(vcpu, UD_VECTOR);
850 return false;
851}
852EXPORT_SYMBOL_GPL(kvm_require_dr);
853
16cfacc8
SC
854static inline u64 pdptr_rsvd_bits(struct kvm_vcpu *vcpu)
855{
5b7f575c 856 return vcpu->arch.reserved_gpa_bits | rsvd_bits(5, 8) | rsvd_bits(1, 2);
16cfacc8
SC
857}
858
a03490ed 859/*
16cfacc8 860 * Load the pae pdptrs. Return 1 if they are all valid, 0 otherwise.
a03490ed 861 */
2df4a5eb 862int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3)
a03490ed 863{
2df4a5eb 864 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
a03490ed 865 gfn_t pdpt_gfn = cr3 >> PAGE_SHIFT;
15cabbc2 866 gpa_t real_gpa;
a03490ed
CO
867 int i;
868 int ret;
ff03a073 869 u64 pdpte[ARRAY_SIZE(mmu->pdptrs)];
a03490ed 870
15cabbc2
SC
871 /*
872 * If the MMU is nested, CR3 holds an L2 GPA and needs to be translated
873 * to an L1 GPA.
874 */
c59a0f57
LJ
875 real_gpa = kvm_translate_gpa(vcpu, mmu, gfn_to_gpa(pdpt_gfn),
876 PFERR_USER_MASK | PFERR_WRITE_MASK, NULL);
6e1d2a3f 877 if (real_gpa == INVALID_GPA)
15cabbc2
SC
878 return 0;
879
94c641ba 880 /* Note the offset, PDPTRs are 32 byte aligned when using PAE paging. */
15cabbc2 881 ret = kvm_vcpu_read_guest_page(vcpu, gpa_to_gfn(real_gpa), pdpte,
94c641ba 882 cr3 & GENMASK(11, 5), sizeof(pdpte));
15cabbc2
SC
883 if (ret < 0)
884 return 0;
885
a03490ed 886 for (i = 0; i < ARRAY_SIZE(pdpte); ++i) {
812f30b2 887 if ((pdpte[i] & PT_PRESENT_MASK) &&
16cfacc8 888 (pdpte[i] & pdptr_rsvd_bits(vcpu))) {
15cabbc2 889 return 0;
a03490ed
CO
890 }
891 }
a03490ed 892
6b123c3a
LJ
893 /*
894 * Marking VCPU_EXREG_PDPTR dirty doesn't work for !tdp_enabled.
895 * Shadow page roots need to be reconstructed instead.
896 */
897 if (!tdp_enabled && memcmp(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs)))
0c1c92f1 898 kvm_mmu_free_roots(vcpu->kvm, mmu, KVM_MMU_ROOT_CURRENT);
6b123c3a 899
46cbc040
PB
900 memcpy(mmu->pdptrs, pdpte, sizeof(mmu->pdptrs));
901 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
902 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
158a48ec
ML
903 vcpu->arch.pdptrs_from_userspace = false;
904
15cabbc2 905 return 1;
a03490ed 906}
cc4b6871 907EXPORT_SYMBOL_GPL(load_pdptrs);
a03490ed 908
26a0652c
SC
909static bool kvm_is_valid_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
910{
911#ifdef CONFIG_X86_64
912 if (cr0 & 0xffffffff00000000UL)
913 return false;
914#endif
915
916 if ((cr0 & X86_CR0_NW) && !(cr0 & X86_CR0_CD))
917 return false;
918
919 if ((cr0 & X86_CR0_PG) && !(cr0 & X86_CR0_PE))
920 return false;
921
922 return static_call(kvm_x86_is_valid_cr0)(vcpu, cr0);
923}
924
f27ad38a
TL
925void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0)
926{
01b31714
MK
927 /*
928 * CR0.WP is incorporated into the MMU role, but only for non-nested,
e40bcf9f
MK
929 * indirect shadow MMUs. If paging is disabled, no updates are needed
930 * as there are no permission bits to emulate. If TDP is enabled, the
931 * MMU's metadata needs to be updated, e.g. so that emulating guest
932 * translations does the right thing, but there's no need to unload the
933 * root as CR0.WP doesn't affect SPTEs.
01b31714 934 */
e40bcf9f
MK
935 if ((cr0 ^ old_cr0) == X86_CR0_WP) {
936 if (!(cr0 & X86_CR0_PG))
937 return;
938
939 if (tdp_enabled) {
940 kvm_init_mmu(vcpu);
941 return;
942 }
01b31714
MK
943 }
944
f27ad38a
TL
945 if ((cr0 ^ old_cr0) & X86_CR0_PG) {
946 kvm_clear_async_pf_completion_queue(vcpu);
947 kvm_async_pf_hash_reset(vcpu);
b5f61c03
PB
948
949 /*
950 * Clearing CR0.PG is defined to flush the TLB from the guest's
951 * perspective.
952 */
953 if (!(cr0 & X86_CR0_PG))
954 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
f27ad38a
TL
955 }
956
20f632bd 957 if ((cr0 ^ old_cr0) & KVM_MMU_CR0_ROLE_BITS)
f27ad38a
TL
958 kvm_mmu_reset_context(vcpu);
959
960 if (((cr0 ^ old_cr0) & X86_CR0_CD) &&
961 kvm_arch_has_noncoherent_dma(vcpu->kvm) &&
962 !kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
963 kvm_zap_gfn_range(vcpu->kvm, 0, ~0ULL);
964}
965EXPORT_SYMBOL_GPL(kvm_post_set_cr0);
966
49a9b07e 967int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
a03490ed 968{
aad82703 969 unsigned long old_cr0 = kvm_read_cr0(vcpu);
aad82703 970
26a0652c 971 if (!kvm_is_valid_cr0(vcpu, cr0))
0f12244f 972 return 1;
a03490ed 973
26a0652c 974 cr0 |= X86_CR0_ET;
a03490ed 975
26a0652c
SC
976 /* Write to CR0 reserved bits are ignored, even on Intel. */
977 cr0 &= ~CR0_RESERVED_BITS;
a03490ed 978
a03490ed 979#ifdef CONFIG_X86_64
05487215
SC
980 if ((vcpu->arch.efer & EFER_LME) && !is_paging(vcpu) &&
981 (cr0 & X86_CR0_PG)) {
982 int cs_db, cs_l;
983
984 if (!is_pae(vcpu))
985 return 1;
b3646477 986 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
05487215 987 if (cs_l)
0f12244f 988 return 1;
a03490ed 989 }
05487215
SC
990#endif
991 if (!(vcpu->arch.efer & EFER_LME) && (cr0 & X86_CR0_PG) &&
e63f315d 992 is_pae(vcpu) && ((cr0 ^ old_cr0) & X86_CR0_PDPTR_BITS) &&
2df4a5eb 993 !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
05487215 994 return 1;
a03490ed 995
777ab82d 996 if (!(cr0 & X86_CR0_PG) &&
607475cf 997 (is_64_bit_mode(vcpu) || kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)))
ad756a16
MJ
998 return 1;
999
b3646477 1000 static_call(kvm_x86_set_cr0)(vcpu, cr0);
a03490ed 1001
f27ad38a 1002 kvm_post_set_cr0(vcpu, old_cr0, cr0);
b18d5431 1003
0f12244f
GN
1004 return 0;
1005}
2d3ad1f4 1006EXPORT_SYMBOL_GPL(kvm_set_cr0);
a03490ed 1007
2d3ad1f4 1008void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw)
a03490ed 1009{
49a9b07e 1010 (void)kvm_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~0x0eul) | (msw & 0x0f));
a03490ed 1011}
2d3ad1f4 1012EXPORT_SYMBOL_GPL(kvm_lmsw);
a03490ed 1013
139a12cf 1014void kvm_load_guest_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 1015{
16809ecd
TL
1016 if (vcpu->arch.guest_state_protected)
1017 return;
1018
607475cf 1019 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
139a12cf
AL
1020
1021 if (vcpu->arch.xcr0 != host_xcr0)
1022 xsetbv(XCR_XFEATURE_ENABLED_MASK, vcpu->arch.xcr0);
1023
1024 if (vcpu->arch.xsaves_enabled &&
1025 vcpu->arch.ia32_xss != host_xss)
1026 wrmsrl(MSR_IA32_XSS, vcpu->arch.ia32_xss);
1027 }
37486135 1028
056b9919 1029 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
945024d7
JK
1030 vcpu->arch.pkru != vcpu->arch.host_pkru &&
1031 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
607475cf 1032 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE)))
72a6c08c 1033 write_pkru(vcpu->arch.pkru);
42bdf991 1034}
139a12cf 1035EXPORT_SYMBOL_GPL(kvm_load_guest_xsave_state);
42bdf991 1036
139a12cf 1037void kvm_load_host_xsave_state(struct kvm_vcpu *vcpu)
42bdf991 1038{
16809ecd
TL
1039 if (vcpu->arch.guest_state_protected)
1040 return;
1041
056b9919 1042 if (cpu_feature_enabled(X86_FEATURE_PKU) &&
945024d7 1043 ((vcpu->arch.xcr0 & XFEATURE_MASK_PKRU) ||
607475cf 1044 kvm_is_cr4_bit_set(vcpu, X86_CR4_PKE))) {
37486135
BM
1045 vcpu->arch.pkru = rdpkru();
1046 if (vcpu->arch.pkru != vcpu->arch.host_pkru)
72a6c08c 1047 write_pkru(vcpu->arch.host_pkru);
37486135
BM
1048 }
1049
607475cf 1050 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_OSXSAVE)) {
139a12cf
AL
1051
1052 if (vcpu->arch.xcr0 != host_xcr0)
1053 xsetbv(XCR_XFEATURE_ENABLED_MASK, host_xcr0);
1054
1055 if (vcpu->arch.xsaves_enabled &&
1056 vcpu->arch.ia32_xss != host_xss)
1057 wrmsrl(MSR_IA32_XSS, host_xss);
1058 }
1059
42bdf991 1060}
139a12cf 1061EXPORT_SYMBOL_GPL(kvm_load_host_xsave_state);
42bdf991 1062
ba1f77c5 1063#ifdef CONFIG_X86_64
988896bb
LB
1064static inline u64 kvm_guest_supported_xfd(struct kvm_vcpu *vcpu)
1065{
ee519b3a 1066 return vcpu->arch.guest_supported_xcr0 & XFEATURE_MASK_USER_DYNAMIC;
988896bb 1067}
ba1f77c5 1068#endif
988896bb 1069
69b0049a 1070static int __kvm_set_xcr(struct kvm_vcpu *vcpu, u32 index, u64 xcr)
2acf923e 1071{
56c103ec
LJ
1072 u64 xcr0 = xcr;
1073 u64 old_xcr0 = vcpu->arch.xcr0;
46c34cb0 1074 u64 valid_bits;
2acf923e
DC
1075
1076 /* Only support XCR_XFEATURE_ENABLED_MASK(xcr0) now */
1077 if (index != XCR_XFEATURE_ENABLED_MASK)
1078 return 1;
d91cab78 1079 if (!(xcr0 & XFEATURE_MASK_FP))
2acf923e 1080 return 1;
d91cab78 1081 if ((xcr0 & XFEATURE_MASK_YMM) && !(xcr0 & XFEATURE_MASK_SSE))
2acf923e 1082 return 1;
46c34cb0
PB
1083
1084 /*
1085 * Do not allow the guest to set bits that we do not support
1086 * saving. However, xcr0 bit 0 is always set, even if the
e8f65b9b 1087 * emulated CPU does not support XSAVE (see kvm_vcpu_reset()).
46c34cb0 1088 */
ee519b3a 1089 valid_bits = vcpu->arch.guest_supported_xcr0 | XFEATURE_MASK_FP;
46c34cb0 1090 if (xcr0 & ~valid_bits)
2acf923e 1091 return 1;
46c34cb0 1092
d91cab78
DH
1093 if ((!(xcr0 & XFEATURE_MASK_BNDREGS)) !=
1094 (!(xcr0 & XFEATURE_MASK_BNDCSR)))
390bd528
LJ
1095 return 1;
1096
d91cab78
DH
1097 if (xcr0 & XFEATURE_MASK_AVX512) {
1098 if (!(xcr0 & XFEATURE_MASK_YMM))
612263b3 1099 return 1;
d91cab78 1100 if ((xcr0 & XFEATURE_MASK_AVX512) != XFEATURE_MASK_AVX512)
612263b3
CP
1101 return 1;
1102 }
86aff7a4
JL
1103
1104 if ((xcr0 & XFEATURE_MASK_XTILE) &&
1105 ((xcr0 & XFEATURE_MASK_XTILE) != XFEATURE_MASK_XTILE))
1106 return 1;
1107
2acf923e 1108 vcpu->arch.xcr0 = xcr0;
56c103ec 1109
d91cab78 1110 if ((xcr0 ^ old_xcr0) & XFEATURE_MASK_EXTEND)
aedbaf4f 1111 kvm_update_cpuid_runtime(vcpu);
2acf923e
DC
1112 return 0;
1113}
1114
92f9895c 1115int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu)
2acf923e 1116{
50b2d49b 1117 /* Note, #UD due to CR4.OSXSAVE=0 has priority over the intercept. */
92f9895c
SC
1118 if (static_call(kvm_x86_get_cpl)(vcpu) != 0 ||
1119 __kvm_set_xcr(vcpu, kvm_rcx_read(vcpu), kvm_read_edx_eax(vcpu))) {
1120 kvm_inject_gp(vcpu, 0);
1121 return 1;
1122 }
bbefd4fc 1123
92f9895c 1124 return kvm_skip_emulated_instruction(vcpu);
2acf923e 1125}
92f9895c 1126EXPORT_SYMBOL_GPL(kvm_emulate_xsetbv);
2acf923e 1127
c33f6f22 1128bool __kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
a03490ed 1129{
b11306b5 1130 if (cr4 & cr4_reserved_bits)
ee69c92b 1131 return false;
b9baba86 1132
b899c132 1133 if (cr4 & vcpu->arch.cr4_guest_rsvd_bits)
ee69c92b 1134 return false;
3ca94192 1135
c33f6f22
SC
1136 return true;
1137}
1138EXPORT_SYMBOL_GPL(__kvm_is_valid_cr4);
1139
1140static bool kvm_is_valid_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1141{
1142 return __kvm_is_valid_cr4(vcpu, cr4) &&
1143 static_call(kvm_x86_is_valid_cr4)(vcpu, cr4);
3ca94192
WL
1144}
1145
5b51cb13
TL
1146void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4)
1147{
b5f61c03
PB
1148 if ((cr4 ^ old_cr4) & KVM_MMU_CR4_ROLE_BITS)
1149 kvm_mmu_reset_context(vcpu);
1150
509bfe3d 1151 /*
509bfe3d
LJ
1152 * If CR4.PCIDE is changed 0 -> 1, there is no need to flush the TLB
1153 * according to the SDM; however, stale prev_roots could be reused
1154 * incorrectly in the future after a MOV to CR3 with NOFLUSH=1, so we
b5f61c03
PB
1155 * free them all. This is *not* a superset of KVM_REQ_TLB_FLUSH_GUEST
1156 * or KVM_REQ_TLB_FLUSH_CURRENT, because the hardware TLB is not flushed,
1157 * so fall through.
509bfe3d 1158 */
b5f61c03
PB
1159 if (!tdp_enabled &&
1160 (cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE))
f6d0a252 1161 kvm_mmu_unload(vcpu);
b5f61c03
PB
1162
1163 /*
1164 * The TLB has to be flushed for all PCIDs if any of the following
1165 * (architecturally required) changes happen:
1166 * - CR4.PCIDE is changed from 1 to 0
1167 * - CR4.PGE is toggled
509bfe3d 1168 *
b5f61c03 1169 * This is a superset of KVM_REQ_TLB_FLUSH_CURRENT.
509bfe3d 1170 */
b5f61c03
PB
1171 if (((cr4 ^ old_cr4) & X86_CR4_PGE) ||
1172 (!(cr4 & X86_CR4_PCIDE) && (old_cr4 & X86_CR4_PCIDE)))
55261738 1173 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
b5f61c03
PB
1174
1175 /*
1176 * The TLB has to be flushed for the current PCID if any of the
1177 * following (architecturally required) changes happen:
1178 * - CR4.SMEP is changed from 0 to 1
1179 * - CR4.PAE is toggled
1180 */
1181 else if (((cr4 ^ old_cr4) & X86_CR4_PAE) ||
1182 ((cr4 & X86_CR4_SMEP) && !(old_cr4 & X86_CR4_SMEP)))
1183 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1184
3ca94192 1185}
5b51cb13 1186EXPORT_SYMBOL_GPL(kvm_post_set_cr4);
3ca94192
WL
1187
1188int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1189{
1190 unsigned long old_cr4 = kvm_read_cr4(vcpu);
3ca94192 1191
ee69c92b 1192 if (!kvm_is_valid_cr4(vcpu, cr4))
ae3e61e1
PB
1193 return 1;
1194
a03490ed 1195 if (is_long_mode(vcpu)) {
0f12244f
GN
1196 if (!(cr4 & X86_CR4_PAE))
1197 return 1;
d74fcfc1
SC
1198 if ((cr4 ^ old_cr4) & X86_CR4_LA57)
1199 return 1;
a2edf57f 1200 } else if (is_paging(vcpu) && (cr4 & X86_CR4_PAE)
a37ebdce 1201 && ((cr4 ^ old_cr4) & X86_CR4_PDPTR_BITS)
2df4a5eb 1202 && !load_pdptrs(vcpu, kvm_read_cr3(vcpu)))
0f12244f
GN
1203 return 1;
1204
ad756a16 1205 if ((cr4 & X86_CR4_PCIDE) && !(old_cr4 & X86_CR4_PCIDE)) {
ad756a16
MJ
1206 /* PCID can not be enabled when cr3[11:0]!=000H or EFER.LMA=0 */
1207 if ((kvm_read_cr3(vcpu) & X86_CR3_PCID_MASK) || !is_long_mode(vcpu))
1208 return 1;
1209 }
1210
b3646477 1211 static_call(kvm_x86_set_cr4)(vcpu, cr4);
a03490ed 1212
5b51cb13 1213 kvm_post_set_cr4(vcpu, old_cr4, cr4);
2acf923e 1214
0f12244f
GN
1215 return 0;
1216}
2d3ad1f4 1217EXPORT_SYMBOL_GPL(kvm_set_cr4);
a03490ed 1218
21823fbd
SC
1219static void kvm_invalidate_pcid(struct kvm_vcpu *vcpu, unsigned long pcid)
1220{
1221 struct kvm_mmu *mmu = vcpu->arch.mmu;
1222 unsigned long roots_to_free = 0;
1223 int i;
1224
e45e9e39
LJ
1225 /*
1226 * MOV CR3 and INVPCID are usually not intercepted when using TDP, but
1227 * this is reachable when running EPT=1 and unrestricted_guest=0, and
1228 * also via the emulator. KVM's TDP page tables are not in the scope of
1229 * the invalidation, but the guest's TLB entries need to be flushed as
1230 * the CPU may have cached entries in its TLB for the target PCID.
1231 */
1232 if (unlikely(tdp_enabled)) {
1233 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1234 return;
1235 }
1236
21823fbd
SC
1237 /*
1238 * If neither the current CR3 nor any of the prev_roots use the given
1239 * PCID, then nothing needs to be done here because a resync will
1240 * happen anyway before switching to any other CR3.
1241 */
1242 if (kvm_get_active_pcid(vcpu) == pcid) {
e62f1aa8 1243 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
21823fbd
SC
1244 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1245 }
1246
509bfe3d
LJ
1247 /*
1248 * If PCID is disabled, there is no need to free prev_roots even if the
1249 * PCIDs for them are also 0, because MOV to CR3 always flushes the TLB
1250 * with PCIDE=0.
1251 */
607475cf 1252 if (!kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE))
509bfe3d
LJ
1253 return;
1254
21823fbd
SC
1255 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
1256 if (kvm_get_pcid(vcpu, mmu->prev_roots[i].pgd) == pcid)
1257 roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
1258
0c1c92f1 1259 kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
21823fbd
SC
1260}
1261
2390218b 1262int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
a03490ed 1263{
ade61e28 1264 bool skip_tlb_flush = false;
21823fbd 1265 unsigned long pcid = 0;
ac146235 1266#ifdef CONFIG_X86_64
607475cf 1267 if (kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)) {
208320ba
JS
1268 skip_tlb_flush = cr3 & X86_CR3_PCID_NOFLUSH;
1269 cr3 &= ~X86_CR3_PCID_NOFLUSH;
21823fbd 1270 pcid = cr3 & X86_CR3_PCID_MASK;
ade61e28 1271 }
ac146235 1272#endif
9d88fca7 1273
c7313155 1274 /* PDPTRs are always reloaded for PAE paging. */
21823fbd
SC
1275 if (cr3 == kvm_read_cr3(vcpu) && !is_pae_paging(vcpu))
1276 goto handle_tlb_flush;
d835dfec 1277
886bbcc7
SC
1278 /*
1279 * Do not condition the GPA check on long mode, this helper is used to
1280 * stuff CR3, e.g. for RSM emulation, and there is no guarantee that
1281 * the current vCPU mode is accurate.
1282 */
1283 if (kvm_vcpu_is_illegal_gpa(vcpu, cr3))
d1cd3ce9 1284 return 1;
886bbcc7 1285
2df4a5eb 1286 if (is_pae_paging(vcpu) && !load_pdptrs(vcpu, cr3))
346874c9 1287 return 1;
a03490ed 1288
21823fbd 1289 if (cr3 != kvm_read_cr3(vcpu))
b5129100 1290 kvm_mmu_new_pgd(vcpu, cr3);
21823fbd 1291
0f12244f 1292 vcpu->arch.cr3 = cr3;
3883bc9d 1293 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
405329fc 1294 /* Do not call post_set_cr3, we do not get here for confidential guests. */
7c390d35 1295
21823fbd
SC
1296handle_tlb_flush:
1297 /*
1298 * A load of CR3 that flushes the TLB flushes only the current PCID,
1299 * even if PCID is disabled, in which case PCID=0 is flushed. It's a
1300 * moot point in the end because _disabling_ PCID will flush all PCIDs,
1301 * and it's impossible to use a non-zero PCID when PCID is disabled,
1302 * i.e. only PCID=0 can be relevant.
1303 */
1304 if (!skip_tlb_flush)
1305 kvm_invalidate_pcid(vcpu, pcid);
1306
0f12244f
GN
1307 return 0;
1308}
2d3ad1f4 1309EXPORT_SYMBOL_GPL(kvm_set_cr3);
a03490ed 1310
eea1cff9 1311int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8)
a03490ed 1312{
0f12244f
GN
1313 if (cr8 & CR8_RESERVED_BITS)
1314 return 1;
35754c98 1315 if (lapic_in_kernel(vcpu))
a03490ed
CO
1316 kvm_lapic_set_tpr(vcpu, cr8);
1317 else
ad312c7c 1318 vcpu->arch.cr8 = cr8;
0f12244f
GN
1319 return 0;
1320}
2d3ad1f4 1321EXPORT_SYMBOL_GPL(kvm_set_cr8);
a03490ed 1322
2d3ad1f4 1323unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu)
a03490ed 1324{
35754c98 1325 if (lapic_in_kernel(vcpu))
a03490ed
CO
1326 return kvm_lapic_get_cr8(vcpu);
1327 else
ad312c7c 1328 return vcpu->arch.cr8;
a03490ed 1329}
2d3ad1f4 1330EXPORT_SYMBOL_GPL(kvm_get_cr8);
a03490ed 1331
ae561ede
NA
1332static void kvm_update_dr0123(struct kvm_vcpu *vcpu)
1333{
1334 int i;
1335
1336 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)) {
1337 for (i = 0; i < KVM_NR_DB_REGS; i++)
1338 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
ae561ede
NA
1339 }
1340}
1341
7c86663b 1342void kvm_update_dr7(struct kvm_vcpu *vcpu)
c8639010
JK
1343{
1344 unsigned long dr7;
1345
1346 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
1347 dr7 = vcpu->arch.guest_debug_dr7;
1348 else
1349 dr7 = vcpu->arch.dr7;
b3646477 1350 static_call(kvm_x86_set_dr7)(vcpu, dr7);
360b948d
PB
1351 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_BP_ENABLED;
1352 if (dr7 & DR7_BP_EN_MASK)
1353 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_BP_ENABLED;
c8639010 1354}
7c86663b 1355EXPORT_SYMBOL_GPL(kvm_update_dr7);
c8639010 1356
6f43ed01
NA
1357static u64 kvm_dr6_fixed(struct kvm_vcpu *vcpu)
1358{
1359 u64 fixed = DR6_FIXED_1;
1360
d6321d49 1361 if (!guest_cpuid_has(vcpu, X86_FEATURE_RTM))
6f43ed01 1362 fixed |= DR6_RTM;
e8ea85fb
CQ
1363
1364 if (!guest_cpuid_has(vcpu, X86_FEATURE_BUS_LOCK_DETECT))
1365 fixed |= DR6_BUS_LOCK;
6f43ed01
NA
1366 return fixed;
1367}
1368
996ff542 1369int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val)
020df079 1370{
ea740059
MP
1371 size_t size = ARRAY_SIZE(vcpu->arch.db);
1372
020df079
GN
1373 switch (dr) {
1374 case 0 ... 3:
ea740059 1375 vcpu->arch.db[array_index_nospec(dr, size)] = val;
020df079
GN
1376 if (!(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP))
1377 vcpu->arch.eff_db[dr] = val;
1378 break;
1379 case 4:
020df079 1380 case 6:
f5f6145e 1381 if (!kvm_dr6_valid(val))
996ff542 1382 return 1; /* #GP */
6f43ed01 1383 vcpu->arch.dr6 = (val & DR6_VOLATILE) | kvm_dr6_fixed(vcpu);
020df079
GN
1384 break;
1385 case 5:
020df079 1386 default: /* 7 */
b91991bf 1387 if (!kvm_dr7_valid(val))
996ff542 1388 return 1; /* #GP */
020df079 1389 vcpu->arch.dr7 = (val & DR7_VOLATILE) | DR7_FIXED_1;
c8639010 1390 kvm_update_dr7(vcpu);
020df079
GN
1391 break;
1392 }
1393
1394 return 0;
1395}
1396EXPORT_SYMBOL_GPL(kvm_set_dr);
1397
29d6ca41 1398void kvm_get_dr(struct kvm_vcpu *vcpu, int dr, unsigned long *val)
020df079 1399{
ea740059
MP
1400 size_t size = ARRAY_SIZE(vcpu->arch.db);
1401
020df079
GN
1402 switch (dr) {
1403 case 0 ... 3:
ea740059 1404 *val = vcpu->arch.db[array_index_nospec(dr, size)];
020df079
GN
1405 break;
1406 case 4:
020df079 1407 case 6:
5679b803 1408 *val = vcpu->arch.dr6;
020df079
GN
1409 break;
1410 case 5:
020df079
GN
1411 default: /* 7 */
1412 *val = vcpu->arch.dr7;
1413 break;
1414 }
338dbc97 1415}
020df079
GN
1416EXPORT_SYMBOL_GPL(kvm_get_dr);
1417
c483c454 1418int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu)
022cd0e8 1419{
de3cd117 1420 u32 ecx = kvm_rcx_read(vcpu);
022cd0e8 1421 u64 data;
022cd0e8 1422
c483c454
SC
1423 if (kvm_pmu_rdpmc(vcpu, ecx, &data)) {
1424 kvm_inject_gp(vcpu, 0);
1425 return 1;
1426 }
1427
de3cd117
SC
1428 kvm_rax_write(vcpu, (u32)data);
1429 kvm_rdx_write(vcpu, data >> 32);
c483c454 1430 return kvm_skip_emulated_instruction(vcpu);
022cd0e8 1431}
c483c454 1432EXPORT_SYMBOL_GPL(kvm_emulate_rdpmc);
022cd0e8 1433
043405e1 1434/*
a3064257
SC
1435 * The three MSR lists(msrs_to_save, emulated_msrs, msr_based_features) track
1436 * the set of MSRs that KVM exposes to userspace through KVM_GET_MSRS,
1437 * KVM_SET_MSRS, and KVM_GET_MSR_INDEX_LIST. msrs_to_save holds MSRs that
1438 * require host support, i.e. should be probed via RDMSR. emulated_msrs holds
1439 * MSRs that KVM emulates without strictly requiring host support.
1440 * msr_based_features holds MSRs that enumerate features, i.e. are effectively
1441 * CPUID leafs. Note, msr_based_features isn't mutually exclusive with
1442 * msrs_to_save and emulated_msrs.
043405e1 1443 */
e3267cbb 1444
2374b731 1445static const u32 msrs_to_save_base[] = {
043405e1 1446 MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
8c06585d 1447 MSR_STAR,
043405e1
CO
1448#ifdef CONFIG_X86_64
1449 MSR_CSTAR, MSR_KERNEL_GS_BASE, MSR_SYSCALL_MASK, MSR_LSTAR,
1450#endif
b3897a49 1451 MSR_IA32_TSC, MSR_IA32_CR_PAT, MSR_VM_HSAVE_PA,
32ad73db 1452 MSR_IA32_FEAT_CTL, MSR_IA32_BNDCFGS, MSR_TSC_AUX,
b9846a69 1453 MSR_IA32_SPEC_CTRL, MSR_IA32_TSX_CTRL,
bf8c55d8
CP
1454 MSR_IA32_RTIT_CTL, MSR_IA32_RTIT_STATUS, MSR_IA32_RTIT_CR3_MATCH,
1455 MSR_IA32_RTIT_OUTPUT_BASE, MSR_IA32_RTIT_OUTPUT_MASK,
1456 MSR_IA32_RTIT_ADDR0_A, MSR_IA32_RTIT_ADDR0_B,
1457 MSR_IA32_RTIT_ADDR1_A, MSR_IA32_RTIT_ADDR1_B,
1458 MSR_IA32_RTIT_ADDR2_A, MSR_IA32_RTIT_ADDR2_B,
1459 MSR_IA32_RTIT_ADDR3_A, MSR_IA32_RTIT_ADDR3_B,
6e3ba4ab
TX
1460 MSR_IA32_UMWAIT_CONTROL,
1461
2374b731
SC
1462 MSR_IA32_XFD, MSR_IA32_XFD_ERR,
1463};
1464
1465static const u32 msrs_to_save_pmu[] = {
e2ada66e 1466 MSR_ARCH_PERFMON_FIXED_CTR0, MSR_ARCH_PERFMON_FIXED_CTR1,
9fb12fe5 1467 MSR_ARCH_PERFMON_FIXED_CTR0 + 2,
e2ada66e
JM
1468 MSR_CORE_PERF_FIXED_CTR_CTRL, MSR_CORE_PERF_GLOBAL_STATUS,
1469 MSR_CORE_PERF_GLOBAL_CTRL, MSR_CORE_PERF_GLOBAL_OVF_CTRL,
4f1fa2a1
LX
1470 MSR_IA32_PEBS_ENABLE, MSR_IA32_DS_AREA, MSR_PEBS_DATA_CFG,
1471
1472 /* This part of MSRs should match KVM_INTEL_PMC_MAX_GENERIC. */
e2ada66e
JM
1473 MSR_ARCH_PERFMON_PERFCTR0, MSR_ARCH_PERFMON_PERFCTR1,
1474 MSR_ARCH_PERFMON_PERFCTR0 + 2, MSR_ARCH_PERFMON_PERFCTR0 + 3,
1475 MSR_ARCH_PERFMON_PERFCTR0 + 4, MSR_ARCH_PERFMON_PERFCTR0 + 5,
1476 MSR_ARCH_PERFMON_PERFCTR0 + 6, MSR_ARCH_PERFMON_PERFCTR0 + 7,
e2ada66e
JM
1477 MSR_ARCH_PERFMON_EVENTSEL0, MSR_ARCH_PERFMON_EVENTSEL1,
1478 MSR_ARCH_PERFMON_EVENTSEL0 + 2, MSR_ARCH_PERFMON_EVENTSEL0 + 3,
1479 MSR_ARCH_PERFMON_EVENTSEL0 + 4, MSR_ARCH_PERFMON_EVENTSEL0 + 5,
1480 MSR_ARCH_PERFMON_EVENTSEL0 + 6, MSR_ARCH_PERFMON_EVENTSEL0 + 7,
e1fc1553
FM
1481
1482 MSR_K7_EVNTSEL0, MSR_K7_EVNTSEL1, MSR_K7_EVNTSEL2, MSR_K7_EVNTSEL3,
1483 MSR_K7_PERFCTR0, MSR_K7_PERFCTR1, MSR_K7_PERFCTR2, MSR_K7_PERFCTR3,
556f3c9a
LX
1484
1485 /* This part of MSRs should match KVM_AMD_PMC_MAX_GENERIC. */
e1fc1553
FM
1486 MSR_F15H_PERF_CTL0, MSR_F15H_PERF_CTL1, MSR_F15H_PERF_CTL2,
1487 MSR_F15H_PERF_CTL3, MSR_F15H_PERF_CTL4, MSR_F15H_PERF_CTL5,
1488 MSR_F15H_PERF_CTR0, MSR_F15H_PERF_CTR1, MSR_F15H_PERF_CTR2,
1489 MSR_F15H_PERF_CTR3, MSR_F15H_PERF_CTR4, MSR_F15H_PERF_CTR5,
4a277189
LX
1490
1491 MSR_AMD64_PERF_CNTR_GLOBAL_CTL,
1492 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS,
1493 MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR,
043405e1
CO
1494};
1495
2374b731
SC
1496static u32 msrs_to_save[ARRAY_SIZE(msrs_to_save_base) +
1497 ARRAY_SIZE(msrs_to_save_pmu)];
043405e1
CO
1498static unsigned num_msrs_to_save;
1499
7a5ee6ed 1500static const u32 emulated_msrs_all[] = {
62ef68bb
PB
1501 MSR_KVM_SYSTEM_TIME, MSR_KVM_WALL_CLOCK,
1502 MSR_KVM_SYSTEM_TIME_NEW, MSR_KVM_WALL_CLOCK_NEW,
1503 HV_X64_MSR_GUEST_OS_ID, HV_X64_MSR_HYPERCALL,
1504 HV_X64_MSR_TIME_REF_COUNT, HV_X64_MSR_REFERENCE_TSC,
72c139ba 1505 HV_X64_MSR_TSC_FREQUENCY, HV_X64_MSR_APIC_FREQUENCY,
e7d9513b
AS
1506 HV_X64_MSR_CRASH_P0, HV_X64_MSR_CRASH_P1, HV_X64_MSR_CRASH_P2,
1507 HV_X64_MSR_CRASH_P3, HV_X64_MSR_CRASH_P4, HV_X64_MSR_CRASH_CTL,
e516cebb 1508 HV_X64_MSR_RESET,
11c4b1ca 1509 HV_X64_MSR_VP_INDEX,
9eec50b8 1510 HV_X64_MSR_VP_RUNTIME,
5c919412 1511 HV_X64_MSR_SCONTROL,
1f4b34f8 1512 HV_X64_MSR_STIMER0_CONFIG,
d4abc577 1513 HV_X64_MSR_VP_ASSIST_PAGE,
a2e164e7 1514 HV_X64_MSR_REENLIGHTENMENT_CONTROL, HV_X64_MSR_TSC_EMULATION_CONTROL,
2be1bd3a 1515 HV_X64_MSR_TSC_EMULATION_STATUS, HV_X64_MSR_TSC_INVARIANT_CONTROL,
f97f5a56
JD
1516 HV_X64_MSR_SYNDBG_OPTIONS,
1517 HV_X64_MSR_SYNDBG_CONTROL, HV_X64_MSR_SYNDBG_STATUS,
1518 HV_X64_MSR_SYNDBG_SEND_BUFFER, HV_X64_MSR_SYNDBG_RECV_BUFFER,
1519 HV_X64_MSR_SYNDBG_PENDING_BUFFER,
a2e164e7
VK
1520
1521 MSR_KVM_ASYNC_PF_EN, MSR_KVM_STEAL_TIME,
557a961a 1522 MSR_KVM_PV_EOI_EN, MSR_KVM_ASYNC_PF_INT, MSR_KVM_ASYNC_PF_ACK,
62ef68bb 1523
ba904635 1524 MSR_IA32_TSC_ADJUST,
09141ec0 1525 MSR_IA32_TSC_DEADLINE,
2bdb76c0 1526 MSR_IA32_ARCH_CAPABILITIES,
27461da3 1527 MSR_IA32_PERF_CAPABILITIES,
043405e1 1528 MSR_IA32_MISC_ENABLE,
908e75f3
AK
1529 MSR_IA32_MCG_STATUS,
1530 MSR_IA32_MCG_CTL,
c45dcc71 1531 MSR_IA32_MCG_EXT_CTL,
64d60670 1532 MSR_IA32_SMBASE,
52797bf9 1533 MSR_SMI_COUNT,
db2336a8
KH
1534 MSR_PLATFORM_INFO,
1535 MSR_MISC_FEATURES_ENABLES,
bc226f07 1536 MSR_AMD64_VIRT_SPEC_CTRL,
5228eb96 1537 MSR_AMD64_TSC_RATIO,
6c6a2ab9 1538 MSR_IA32_POWER_CTL,
99634e3e 1539 MSR_IA32_UCODE_REV,
191c8137 1540
95c5c7c7 1541 /*
a3064257
SC
1542 * KVM always supports the "true" VMX control MSRs, even if the host
1543 * does not. The VMX MSRs as a whole are considered "emulated" as KVM
1544 * doesn't strictly require them to exist in the host (ignoring that
1545 * KVM would refuse to load in the first place if the core set of MSRs
1546 * aren't supported).
95c5c7c7
PB
1547 */
1548 MSR_IA32_VMX_BASIC,
1549 MSR_IA32_VMX_TRUE_PINBASED_CTLS,
1550 MSR_IA32_VMX_TRUE_PROCBASED_CTLS,
1551 MSR_IA32_VMX_TRUE_EXIT_CTLS,
1552 MSR_IA32_VMX_TRUE_ENTRY_CTLS,
1553 MSR_IA32_VMX_MISC,
1554 MSR_IA32_VMX_CR0_FIXED0,
1555 MSR_IA32_VMX_CR4_FIXED0,
1556 MSR_IA32_VMX_VMCS_ENUM,
1557 MSR_IA32_VMX_PROCBASED_CTLS2,
1558 MSR_IA32_VMX_EPT_VPID_CAP,
1559 MSR_IA32_VMX_VMFUNC,
1560
191c8137 1561 MSR_K7_HWCR,
2d5ba19b 1562 MSR_KVM_POLL_CONTROL,
043405e1
CO
1563};
1564
7a5ee6ed 1565static u32 emulated_msrs[ARRAY_SIZE(emulated_msrs_all)];
62ef68bb
PB
1566static unsigned num_emulated_msrs;
1567
801e459a 1568/*
9eb6ba31
SC
1569 * List of MSRs that control the existence of MSR-based features, i.e. MSRs
1570 * that are effectively CPUID leafs. VMX MSRs are also included in the set of
1571 * feature MSRs, but are handled separately to allow expedited lookups.
801e459a 1572 */
9eb6ba31 1573static const u32 msr_based_features_all_except_vmx[] = {
2632daeb 1574 MSR_AMD64_DE_CFG,
518e7b94 1575 MSR_IA32_UCODE_REV,
cd283252 1576 MSR_IA32_ARCH_CAPABILITIES,
27461da3 1577 MSR_IA32_PERF_CAPABILITIES,
801e459a
TL
1578};
1579
9eb6ba31
SC
1580static u32 msr_based_features[ARRAY_SIZE(msr_based_features_all_except_vmx) +
1581 (KVM_LAST_EMULATED_VMX_MSR - KVM_FIRST_EMULATED_VMX_MSR + 1)];
801e459a
TL
1582static unsigned int num_msr_based_features;
1583
0094f62c
SC
1584/*
1585 * All feature MSRs except uCode revID, which tracks the currently loaded uCode
1586 * patch, are immutable once the vCPU model is defined.
1587 */
1588static bool kvm_is_immutable_feature_msr(u32 msr)
1589{
1590 int i;
1591
1592 if (msr >= KVM_FIRST_EMULATED_VMX_MSR && msr <= KVM_LAST_EMULATED_VMX_MSR)
1593 return true;
1594
1595 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++) {
1596 if (msr == msr_based_features_all_except_vmx[i])
1597 return msr != MSR_IA32_UCODE_REV;
1598 }
1599
1600 return false;
1601}
1602
0204750b
JM
1603/*
1604 * Some IA32_ARCH_CAPABILITIES bits have dependencies on MSRs that KVM
1605 * does not yet virtualize. These include:
1606 * 10 - MISC_PACKAGE_CTRLS
1607 * 11 - ENERGY_FILTERING_CTL
1608 * 12 - DOITM
1609 * 18 - FB_CLEAR_CTRL
1610 * 21 - XAPIC_DISABLE_STATUS
1611 * 23 - OVERCLOCKING_STATUS
1612 */
1613
1614#define KVM_SUPPORTED_ARCH_CAP \
1615 (ARCH_CAP_RDCL_NO | ARCH_CAP_IBRS_ALL | ARCH_CAP_RSBA | \
1616 ARCH_CAP_SKIP_VMENTRY_L1DFLUSH | ARCH_CAP_SSB_NO | ARCH_CAP_MDS_NO | \
1617 ARCH_CAP_PSCHANGE_MC_NO | ARCH_CAP_TSX_CTRL_MSR | ARCH_CAP_TAA_NO | \
1618 ARCH_CAP_SBDR_SSDP_NO | ARCH_CAP_FBSDP_NO | ARCH_CAP_PSDP_NO | \
81ac7e5d 1619 ARCH_CAP_FB_CLEAR | ARCH_CAP_RRSBA | ARCH_CAP_PBRSB_NO | ARCH_CAP_GDS_NO)
0204750b 1620
4d22c17c 1621static u64 kvm_get_arch_capabilities(void)
5b76a3cf 1622{
4d22c17c 1623 u64 data = 0;
5b76a3cf 1624
0204750b 1625 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES)) {
4d22c17c 1626 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, data);
0204750b
JM
1627 data &= KVM_SUPPORTED_ARCH_CAP;
1628 }
5b76a3cf 1629
b8e8c830
PB
1630 /*
1631 * If nx_huge_pages is enabled, KVM's shadow paging will ensure that
1632 * the nested hypervisor runs with NX huge pages. If it is not,
d9f6e12f 1633 * L1 is anyway vulnerable to ITLB_MULTIHIT exploits from other
b8e8c830
PB
1634 * L1 guests, so it need not worry about its own (L2) guests.
1635 */
1636 data |= ARCH_CAP_PSCHANGE_MC_NO;
1637
5b76a3cf
PB
1638 /*
1639 * If we're doing cache flushes (either "always" or "cond")
1640 * we will do one whenever the guest does a vmlaunch/vmresume.
1641 * If an outer hypervisor is doing the cache flush for us
02f1b0b7 1642 * (ARCH_CAP_SKIP_VMENTRY_L1DFLUSH), we can safely pass that
5b76a3cf
PB
1643 * capability to the guest too, and if EPT is disabled we're not
1644 * vulnerable. Overall, only VMENTER_L1D_FLUSH_NEVER will
1645 * require a nested hypervisor to do a flush of its own.
1646 */
1647 if (l1tf_vmx_mitigation != VMENTER_L1D_FLUSH_NEVER)
1648 data |= ARCH_CAP_SKIP_VMENTRY_L1DFLUSH;
1649
0c54914d
PB
1650 if (!boot_cpu_has_bug(X86_BUG_CPU_MELTDOWN))
1651 data |= ARCH_CAP_RDCL_NO;
1652 if (!boot_cpu_has_bug(X86_BUG_SPEC_STORE_BYPASS))
1653 data |= ARCH_CAP_SSB_NO;
1654 if (!boot_cpu_has_bug(X86_BUG_MDS))
1655 data |= ARCH_CAP_MDS_NO;
1656
7131636e
PB
1657 if (!boot_cpu_has(X86_FEATURE_RTM)) {
1658 /*
1659 * If RTM=0 because the kernel has disabled TSX, the host might
1660 * have TAA_NO or TSX_CTRL. Clear TAA_NO (the guest sees RTM=0
1661 * and therefore knows that there cannot be TAA) but keep
1662 * TSX_CTRL: some buggy userspaces leave it set on tsx=on hosts,
1663 * and we want to allow migrating those guests to tsx=off hosts.
1664 */
1665 data &= ~ARCH_CAP_TAA_NO;
1666 } else if (!boot_cpu_has_bug(X86_BUG_TAA)) {
cbbaa272 1667 data |= ARCH_CAP_TAA_NO;
7131636e
PB
1668 } else {
1669 /*
1670 * Nothing to do here; we emulate TSX_CTRL if present on the
1671 * host so the guest can choose between disabling TSX or
1672 * using VERW to clear CPU buffers.
1673 */
1674 }
e1d38b63 1675
81ac7e5d
DS
1676 if (!boot_cpu_has_bug(X86_BUG_GDS) || gds_ucode_mitigated())
1677 data |= ARCH_CAP_GDS_NO;
1678
5b76a3cf
PB
1679 return data;
1680}
5b76a3cf 1681
66421c1e
WL
1682static int kvm_get_msr_feature(struct kvm_msr_entry *msr)
1683{
1684 switch (msr->index) {
cd283252 1685 case MSR_IA32_ARCH_CAPABILITIES:
5b76a3cf
PB
1686 msr->data = kvm_get_arch_capabilities();
1687 break;
5fe9805d
SC
1688 case MSR_IA32_PERF_CAPABILITIES:
1689 msr->data = kvm_caps.supported_perf_cap;
1690 break;
5b76a3cf 1691 case MSR_IA32_UCODE_REV:
cd283252 1692 rdmsrl_safe(msr->index, &msr->data);
518e7b94 1693 break;
66421c1e 1694 default:
b3646477 1695 return static_call(kvm_x86_get_msr_feature)(msr);
66421c1e
WL
1696 }
1697 return 0;
1698}
1699
801e459a
TL
1700static int do_get_msr_feature(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
1701{
1702 struct kvm_msr_entry msr;
66421c1e 1703 int r;
801e459a
TL
1704
1705 msr.index = index;
66421c1e 1706 r = kvm_get_msr_feature(&msr);
12bc2132
PX
1707
1708 if (r == KVM_MSR_RET_INVALID) {
1709 /* Unconditionally clear the output for simplicity */
1710 *data = 0;
d632826f 1711 if (kvm_msr_ignored_check(index, 0, false))
cc4cb017 1712 r = 0;
12bc2132
PX
1713 }
1714
66421c1e
WL
1715 if (r)
1716 return r;
801e459a
TL
1717
1718 *data = msr.data;
1719
1720 return 0;
1721}
1722
11988499 1723static bool __kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
15c4a640 1724{
8c19b6f2
KP
1725 if (efer & EFER_AUTOIBRS && !guest_cpuid_has(vcpu, X86_FEATURE_AUTOIBRS))
1726 return false;
1727
1b4d56b8 1728 if (efer & EFER_FFXSR && !guest_cpuid_has(vcpu, X86_FEATURE_FXSR_OPT))
11988499 1729 return false;
1b2fd70c 1730
1b4d56b8 1731 if (efer & EFER_SVME && !guest_cpuid_has(vcpu, X86_FEATURE_SVM))
11988499 1732 return false;
d8017474 1733
0a629563
SC
1734 if (efer & (EFER_LME | EFER_LMA) &&
1735 !guest_cpuid_has(vcpu, X86_FEATURE_LM))
1736 return false;
1737
1738 if (efer & EFER_NX && !guest_cpuid_has(vcpu, X86_FEATURE_NX))
1739 return false;
d8017474 1740
384bb783 1741 return true;
11988499
SC
1742
1743}
1744bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer)
1745{
1746 if (efer & efer_reserved_bits)
1747 return false;
1748
1749 return __kvm_valid_efer(vcpu, efer);
384bb783
JK
1750}
1751EXPORT_SYMBOL_GPL(kvm_valid_efer);
1752
11988499 1753static int set_efer(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
384bb783
JK
1754{
1755 u64 old_efer = vcpu->arch.efer;
11988499 1756 u64 efer = msr_info->data;
72f211ec 1757 int r;
384bb783 1758
11988499 1759 if (efer & efer_reserved_bits)
66f61c92 1760 return 1;
384bb783 1761
11988499
SC
1762 if (!msr_info->host_initiated) {
1763 if (!__kvm_valid_efer(vcpu, efer))
1764 return 1;
1765
1766 if (is_paging(vcpu) &&
1767 (vcpu->arch.efer & EFER_LME) != (efer & EFER_LME))
1768 return 1;
1769 }
384bb783 1770
15c4a640 1771 efer &= ~EFER_LMA;
f6801dff 1772 efer |= vcpu->arch.efer & EFER_LMA;
15c4a640 1773
b3646477 1774 r = static_call(kvm_x86_set_efer)(vcpu, efer);
72f211ec
ML
1775 if (r) {
1776 WARN_ON(r > 0);
1777 return r;
1778 }
a3d204e2 1779
d6174299 1780 if ((efer ^ old_efer) & KVM_MMU_EFER_ROLE_BITS)
aad82703
SY
1781 kvm_mmu_reset_context(vcpu);
1782
b69e8cae 1783 return 0;
15c4a640
CO
1784}
1785
f2b4b7dd
JR
1786void kvm_enable_efer_bits(u64 mask)
1787{
1788 efer_reserved_bits &= ~mask;
1789}
1790EXPORT_SYMBOL_GPL(kvm_enable_efer_bits);
1791
51de8151
AG
1792bool kvm_msr_allowed(struct kvm_vcpu *vcpu, u32 index, u32 type)
1793{
b318e8de
SC
1794 struct kvm_x86_msr_filter *msr_filter;
1795 struct msr_bitmap_range *ranges;
1a155254 1796 struct kvm *kvm = vcpu->kvm;
b318e8de 1797 bool allowed;
1a155254 1798 int idx;
b318e8de 1799 u32 i;
1a155254 1800
b318e8de
SC
1801 /* x2APIC MSRs do not support filtering. */
1802 if (index >= 0x800 && index <= 0x8ff)
1a155254
AG
1803 return true;
1804
1a155254
AG
1805 idx = srcu_read_lock(&kvm->srcu);
1806
b318e8de
SC
1807 msr_filter = srcu_dereference(kvm->arch.msr_filter, &kvm->srcu);
1808 if (!msr_filter) {
1809 allowed = true;
1810 goto out;
1811 }
1812
1813 allowed = msr_filter->default_allow;
1814 ranges = msr_filter->ranges;
1815
1816 for (i = 0; i < msr_filter->count; i++) {
1a155254
AG
1817 u32 start = ranges[i].base;
1818 u32 end = start + ranges[i].nmsrs;
1819 u32 flags = ranges[i].flags;
1820 unsigned long *bitmap = ranges[i].bitmap;
1821
1822 if ((index >= start) && (index < end) && (flags & type)) {
e12fa4b9 1823 allowed = test_bit(index - start, bitmap);
1a155254
AG
1824 break;
1825 }
1826 }
1827
b318e8de 1828out:
1a155254
AG
1829 srcu_read_unlock(&kvm->srcu, idx);
1830
b318e8de 1831 return allowed;
51de8151
AG
1832}
1833EXPORT_SYMBOL_GPL(kvm_msr_allowed);
1834
15c4a640 1835/*
f20935d8
SC
1836 * Write @data into the MSR specified by @index. Select MSR specific fault
1837 * checks are bypassed if @host_initiated is %true.
15c4a640
CO
1838 * Returns 0 on success, non-0 otherwise.
1839 * Assumes vcpu_load() was already called.
1840 */
f20935d8
SC
1841static int __kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data,
1842 bool host_initiated)
15c4a640 1843{
f20935d8
SC
1844 struct msr_data msr;
1845
1846 switch (index) {
854e8bb1
NA
1847 case MSR_FS_BASE:
1848 case MSR_GS_BASE:
1849 case MSR_KERNEL_GS_BASE:
1850 case MSR_CSTAR:
1851 case MSR_LSTAR:
f20935d8 1852 if (is_noncanonical_address(data, vcpu))
854e8bb1
NA
1853 return 1;
1854 break;
1855 case MSR_IA32_SYSENTER_EIP:
1856 case MSR_IA32_SYSENTER_ESP:
1857 /*
1858 * IA32_SYSENTER_ESP and IA32_SYSENTER_EIP cause #GP if
1859 * non-canonical address is written on Intel but not on
1860 * AMD (which ignores the top 32-bits, because it does
1861 * not implement 64-bit SYSENTER).
1862 *
1863 * 64-bit code should hence be able to write a non-canonical
1864 * value on AMD. Making the address canonical ensures that
1865 * vmentry does not fail on Intel after writing a non-canonical
1866 * value, and that something deterministic happens if the guest
1867 * invokes 64-bit SYSENTER.
1868 */
1fb85d06 1869 data = __canonical_address(data, vcpu_virt_addr_bits(vcpu));
61a05d44
SC
1870 break;
1871 case MSR_TSC_AUX:
1872 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1873 return 1;
1874
1875 if (!host_initiated &&
1876 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1877 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1878 return 1;
1879
1880 /*
1881 * Per Intel's SDM, bits 63:32 are reserved, but AMD's APM has
1882 * incomplete and conflicting architectural behavior. Current
1883 * AMD CPUs completely ignore bits 63:32, i.e. they aren't
1884 * reserved and always read as zeros. Enforce Intel's reserved
1885 * bits check if and only if the guest CPU is Intel, and clear
1886 * the bits in all other cases. This ensures cross-vendor
1887 * migration will provide consistent behavior for the guest.
1888 */
1889 if (guest_cpuid_is_intel(vcpu) && (data >> 32) != 0)
1890 return 1;
1891
1892 data = (u32)data;
1893 break;
854e8bb1 1894 }
f20935d8
SC
1895
1896 msr.data = data;
1897 msr.index = index;
1898 msr.host_initiated = host_initiated;
1899
b3646477 1900 return static_call(kvm_x86_set_msr)(vcpu, &msr);
15c4a640
CO
1901}
1902
6abe9c13
PX
1903static int kvm_set_msr_ignored_check(struct kvm_vcpu *vcpu,
1904 u32 index, u64 data, bool host_initiated)
1905{
1906 int ret = __kvm_set_msr(vcpu, index, data, host_initiated);
1907
1908 if (ret == KVM_MSR_RET_INVALID)
d632826f 1909 if (kvm_msr_ignored_check(index, data, true))
cc4cb017 1910 ret = 0;
6abe9c13
PX
1911
1912 return ret;
1913}
1914
313a3dc7 1915/*
f20935d8
SC
1916 * Read the MSR specified by @index into @data. Select MSR specific fault
1917 * checks are bypassed if @host_initiated is %true.
1918 * Returns 0 on success, non-0 otherwise.
1919 * Assumes vcpu_load() was already called.
313a3dc7 1920 */
edef5c36
PB
1921int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data,
1922 bool host_initiated)
609e36d3
PB
1923{
1924 struct msr_data msr;
f20935d8 1925 int ret;
609e36d3 1926
61a05d44
SC
1927 switch (index) {
1928 case MSR_TSC_AUX:
1929 if (!kvm_is_supported_user_return_msr(MSR_TSC_AUX))
1930 return 1;
1931
1932 if (!host_initiated &&
1933 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) &&
1934 !guest_cpuid_has(vcpu, X86_FEATURE_RDPID))
1935 return 1;
1936 break;
1937 }
1938
609e36d3 1939 msr.index = index;
f20935d8 1940 msr.host_initiated = host_initiated;
609e36d3 1941
b3646477 1942 ret = static_call(kvm_x86_get_msr)(vcpu, &msr);
f20935d8
SC
1943 if (!ret)
1944 *data = msr.data;
1945 return ret;
609e36d3
PB
1946}
1947
6abe9c13
PX
1948static int kvm_get_msr_ignored_check(struct kvm_vcpu *vcpu,
1949 u32 index, u64 *data, bool host_initiated)
1950{
1951 int ret = __kvm_get_msr(vcpu, index, data, host_initiated);
1952
1953 if (ret == KVM_MSR_RET_INVALID) {
1954 /* Unconditionally clear *data for simplicity */
1955 *data = 0;
d632826f 1956 if (kvm_msr_ignored_check(index, 0, false))
cc4cb017 1957 ret = 0;
6abe9c13
PX
1958 }
1959
1960 return ret;
1961}
1962
ac8d6cad
HW
1963static int kvm_get_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 *data)
1964{
1965 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_READ))
1966 return KVM_MSR_RET_FILTERED;
1967 return kvm_get_msr_ignored_check(vcpu, index, data, false);
1968}
1969
1970static int kvm_set_msr_with_filter(struct kvm_vcpu *vcpu, u32 index, u64 data)
1971{
1972 if (!kvm_msr_allowed(vcpu, index, KVM_MSR_FILTER_WRITE))
1973 return KVM_MSR_RET_FILTERED;
1974 return kvm_set_msr_ignored_check(vcpu, index, data, false);
1975}
1976
f20935d8 1977int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data)
313a3dc7 1978{
6abe9c13 1979 return kvm_get_msr_ignored_check(vcpu, index, data, false);
f20935d8
SC
1980}
1981EXPORT_SYMBOL_GPL(kvm_get_msr);
8fe8ab46 1982
f20935d8
SC
1983int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data)
1984{
6abe9c13 1985 return kvm_set_msr_ignored_check(vcpu, index, data, false);
f20935d8
SC
1986}
1987EXPORT_SYMBOL_GPL(kvm_set_msr);
1988
d2f7d498 1989static void complete_userspace_rdmsr(struct kvm_vcpu *vcpu)
1ae09954 1990{
d2f7d498 1991 if (!vcpu->run->msr.error) {
1ae09954
AG
1992 kvm_rax_write(vcpu, (u32)vcpu->run->msr.data);
1993 kvm_rdx_write(vcpu, vcpu->run->msr.data >> 32);
1994 }
d2f7d498 1995}
1ae09954 1996
d2f7d498
HW
1997static int complete_emulated_msr_access(struct kvm_vcpu *vcpu)
1998{
1999 return complete_emulated_insn_gp(vcpu, vcpu->run->msr.error);
1ae09954
AG
2000}
2001
d2f7d498
HW
2002static int complete_emulated_rdmsr(struct kvm_vcpu *vcpu)
2003{
2004 complete_userspace_rdmsr(vcpu);
2005 return complete_emulated_msr_access(vcpu);
2006}
2007
2008static int complete_fast_msr_access(struct kvm_vcpu *vcpu)
1ae09954 2009{
b3646477 2010 return static_call(kvm_x86_complete_emulated_msr)(vcpu, vcpu->run->msr.error);
1ae09954
AG
2011}
2012
d2f7d498
HW
2013static int complete_fast_rdmsr(struct kvm_vcpu *vcpu)
2014{
2015 complete_userspace_rdmsr(vcpu);
2016 return complete_fast_msr_access(vcpu);
2017}
2018
1ae09954
AG
2019static u64 kvm_msr_reason(int r)
2020{
2021 switch (r) {
cc4cb017 2022 case KVM_MSR_RET_INVALID:
1ae09954 2023 return KVM_MSR_EXIT_REASON_UNKNOWN;
cc4cb017 2024 case KVM_MSR_RET_FILTERED:
1a155254 2025 return KVM_MSR_EXIT_REASON_FILTER;
1ae09954
AG
2026 default:
2027 return KVM_MSR_EXIT_REASON_INVAL;
2028 }
2029}
2030
2031static int kvm_msr_user_space(struct kvm_vcpu *vcpu, u32 index,
2032 u32 exit_reason, u64 data,
2033 int (*completion)(struct kvm_vcpu *vcpu),
2034 int r)
2035{
2036 u64 msr_reason = kvm_msr_reason(r);
2037
2038 /* Check if the user wanted to know about this MSR fault */
2039 if (!(vcpu->kvm->arch.user_space_msr_mask & msr_reason))
2040 return 0;
2041
2042 vcpu->run->exit_reason = exit_reason;
2043 vcpu->run->msr.error = 0;
2044 memset(vcpu->run->msr.pad, 0, sizeof(vcpu->run->msr.pad));
2045 vcpu->run->msr.reason = msr_reason;
2046 vcpu->run->msr.index = index;
2047 vcpu->run->msr.data = data;
2048 vcpu->arch.complete_userspace_io = completion;
2049
2050 return 1;
2051}
2052
1edce0a9
SC
2053int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu)
2054{
2055 u32 ecx = kvm_rcx_read(vcpu);
2056 u64 data;
1ae09954
AG
2057 int r;
2058
ac8d6cad 2059 r = kvm_get_msr_with_filter(vcpu, ecx, &data);
1edce0a9 2060
8b474427
PB
2061 if (!r) {
2062 trace_kvm_msr_read(ecx, data);
2063
2064 kvm_rax_write(vcpu, data & -1u);
2065 kvm_rdx_write(vcpu, (data >> 32) & -1u);
2066 } else {
d2f7d498
HW
2067 /* MSR read failed? See if we should ask user space */
2068 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_RDMSR, 0,
2069 complete_fast_rdmsr, r))
2070 return 0;
1edce0a9 2071 trace_kvm_msr_read_ex(ecx);
1edce0a9
SC
2072 }
2073
b3646477 2074 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1edce0a9
SC
2075}
2076EXPORT_SYMBOL_GPL(kvm_emulate_rdmsr);
2077
2078int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu)
2079{
2080 u32 ecx = kvm_rcx_read(vcpu);
2081 u64 data = kvm_read_edx_eax(vcpu);
1ae09954 2082 int r;
1edce0a9 2083
ac8d6cad 2084 r = kvm_set_msr_with_filter(vcpu, ecx, data);
1ae09954 2085
d2f7d498 2086 if (!r) {
8b474427 2087 trace_kvm_msr_write(ecx, data);
d2f7d498
HW
2088 } else {
2089 /* MSR write failed? See if we should ask user space */
2090 if (kvm_msr_user_space(vcpu, ecx, KVM_EXIT_X86_WRMSR, data,
2091 complete_fast_msr_access, r))
2092 return 0;
2093 /* Signal all other negative errors to userspace */
2094 if (r < 0)
2095 return r;
1edce0a9 2096 trace_kvm_msr_write_ex(ecx, data);
d2f7d498 2097 }
1edce0a9 2098
b3646477 2099 return static_call(kvm_x86_complete_emulated_msr)(vcpu, r);
1edce0a9
SC
2100}
2101EXPORT_SYMBOL_GPL(kvm_emulate_wrmsr);
2102
5ff3a351
SC
2103int kvm_emulate_as_nop(struct kvm_vcpu *vcpu)
2104{
2105 return kvm_skip_emulated_instruction(vcpu);
2106}
5ff3a351
SC
2107
2108int kvm_emulate_invd(struct kvm_vcpu *vcpu)
2109{
2110 /* Treat an INVD instruction as a NOP and just skip it. */
2111 return kvm_emulate_as_nop(vcpu);
2112}
2113EXPORT_SYMBOL_GPL(kvm_emulate_invd);
2114
5ff3a351
SC
2115int kvm_handle_invalid_op(struct kvm_vcpu *vcpu)
2116{
2117 kvm_queue_exception(vcpu, UD_VECTOR);
2118 return 1;
2119}
2120EXPORT_SYMBOL_GPL(kvm_handle_invalid_op);
2121
bfbcc81b
SC
2122
2123static int kvm_emulate_monitor_mwait(struct kvm_vcpu *vcpu, const char *insn)
5ff3a351 2124{
43bb9e00 2125 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS) &&
bfbcc81b
SC
2126 !guest_cpuid_has(vcpu, X86_FEATURE_MWAIT))
2127 return kvm_handle_invalid_op(vcpu);
2128
8d20bd63 2129 pr_warn_once("%s instruction emulated as NOP!\n", insn);
5ff3a351
SC
2130 return kvm_emulate_as_nop(vcpu);
2131}
bfbcc81b
SC
2132int kvm_emulate_mwait(struct kvm_vcpu *vcpu)
2133{
2134 return kvm_emulate_monitor_mwait(vcpu, "MWAIT");
2135}
2136EXPORT_SYMBOL_GPL(kvm_emulate_mwait);
2137
2138int kvm_emulate_monitor(struct kvm_vcpu *vcpu)
2139{
2140 return kvm_emulate_monitor_mwait(vcpu, "MONITOR");
2141}
5ff3a351
SC
2142EXPORT_SYMBOL_GPL(kvm_emulate_monitor);
2143
d89d04ab 2144static inline bool kvm_vcpu_exit_request(struct kvm_vcpu *vcpu)
5a9f5443 2145{
4ae7dc97 2146 xfer_to_guest_mode_prepare();
5a9f5443 2147 return vcpu->mode == EXITING_GUEST_MODE || kvm_request_pending(vcpu) ||
72c3c0fe 2148 xfer_to_guest_mode_work_pending();
5a9f5443 2149}
5a9f5443 2150
1e9e2622
WL
2151/*
2152 * The fast path for frequent and performance sensitive wrmsr emulation,
2153 * i.e. the sending of IPI, sending IPI early in the VM-Exit flow reduces
2154 * the latency of virtual IPI by avoiding the expensive bits of transitioning
2155 * from guest to host, e.g. reacquiring KVM's SRCU lock. In contrast to the
2156 * other cases which must be called after interrupts are enabled on the host.
2157 */
2158static int handle_fastpath_set_x2apic_icr_irqoff(struct kvm_vcpu *vcpu, u64 data)
2159{
e1be9ac8
WL
2160 if (!lapic_in_kernel(vcpu) || !apic_x2apic_mode(vcpu->arch.apic))
2161 return 1;
2162
2163 if (((data & APIC_SHORT_MASK) == APIC_DEST_NOSHORT) &&
bd17f417
SC
2164 ((data & APIC_DEST_MASK) == APIC_DEST_PHYSICAL) &&
2165 ((data & APIC_MODE_MASK) == APIC_DM_FIXED) &&
b9964ee3
SC
2166 ((u32)(data >> 32) != X2APIC_BROADCAST))
2167 return kvm_x2apic_icr_write(vcpu->arch.apic, data);
1e9e2622
WL
2168
2169 return 1;
2170}
2171
ae95f566
WL
2172static int handle_fastpath_set_tscdeadline(struct kvm_vcpu *vcpu, u64 data)
2173{
2174 if (!kvm_can_use_hv_timer(vcpu))
2175 return 1;
2176
2177 kvm_set_lapic_tscdeadline_msr(vcpu, data);
2178 return 0;
2179}
2180
404d5d7b 2181fastpath_t handle_fastpath_set_msr_irqoff(struct kvm_vcpu *vcpu)
1e9e2622
WL
2182{
2183 u32 msr = kvm_rcx_read(vcpu);
8a1038de 2184 u64 data;
404d5d7b 2185 fastpath_t ret = EXIT_FASTPATH_NONE;
1e9e2622 2186
3f2739bd
SC
2187 kvm_vcpu_srcu_read_lock(vcpu);
2188
1e9e2622
WL
2189 switch (msr) {
2190 case APIC_BASE_MSR + (APIC_ICR >> 4):
8a1038de 2191 data = kvm_read_edx_eax(vcpu);
404d5d7b
WL
2192 if (!handle_fastpath_set_x2apic_icr_irqoff(vcpu, data)) {
2193 kvm_skip_emulated_instruction(vcpu);
2194 ret = EXIT_FASTPATH_EXIT_HANDLED;
80bc97f2 2195 }
1e9e2622 2196 break;
09141ec0 2197 case MSR_IA32_TSC_DEADLINE:
ae95f566
WL
2198 data = kvm_read_edx_eax(vcpu);
2199 if (!handle_fastpath_set_tscdeadline(vcpu, data)) {
2200 kvm_skip_emulated_instruction(vcpu);
2201 ret = EXIT_FASTPATH_REENTER_GUEST;
2202 }
2203 break;
1e9e2622 2204 default:
404d5d7b 2205 break;
1e9e2622
WL
2206 }
2207
404d5d7b 2208 if (ret != EXIT_FASTPATH_NONE)
1e9e2622 2209 trace_kvm_msr_write(msr, data);
1e9e2622 2210
3f2739bd
SC
2211 kvm_vcpu_srcu_read_unlock(vcpu);
2212
404d5d7b 2213 return ret;
1e9e2622
WL
2214}
2215EXPORT_SYMBOL_GPL(handle_fastpath_set_msr_irqoff);
2216
f20935d8
SC
2217/*
2218 * Adapt set_msr() to msr_io()'s calling convention
2219 */
2220static int do_get_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2221{
6abe9c13 2222 return kvm_get_msr_ignored_check(vcpu, index, data, true);
f20935d8
SC
2223}
2224
2225static int do_set_msr(struct kvm_vcpu *vcpu, unsigned index, u64 *data)
2226{
0094f62c
SC
2227 u64 val;
2228
2229 /*
2230 * Disallow writes to immutable feature MSRs after KVM_RUN. KVM does
2231 * not support modifying the guest vCPU model on the fly, e.g. changing
2232 * the nVMX capabilities while L2 is running is nonsensical. Ignore
2233 * writes of the same value, e.g. to allow userspace to blindly stuff
2234 * all MSRs when emulating RESET.
2235 */
2236 if (kvm_vcpu_has_run(vcpu) && kvm_is_immutable_feature_msr(index)) {
2237 if (do_get_msr(vcpu, index, &val) || *data != val)
2238 return -EINVAL;
2239
2240 return 0;
2241 }
2242
6abe9c13 2243 return kvm_set_msr_ignored_check(vcpu, index, *data, true);
313a3dc7
CO
2244}
2245
16e8d74d 2246#ifdef CONFIG_X86_64
53fafdbb
MT
2247struct pvclock_clock {
2248 int vclock_mode;
2249 u64 cycle_last;
2250 u64 mask;
2251 u32 mult;
2252 u32 shift;
917f9475
PB
2253 u64 base_cycles;
2254 u64 offset;
53fafdbb
MT
2255};
2256
16e8d74d
MT
2257struct pvclock_gtod_data {
2258 seqcount_t seq;
2259
53fafdbb
MT
2260 struct pvclock_clock clock; /* extract of a clocksource struct */
2261 struct pvclock_clock raw_clock; /* extract of a clocksource struct */
16e8d74d 2262
917f9475 2263 ktime_t offs_boot;
55dd00a7 2264 u64 wall_time_sec;
16e8d74d
MT
2265};
2266
2267static struct pvclock_gtod_data pvclock_gtod_data;
2268
2269static void update_pvclock_gtod(struct timekeeper *tk)
2270{
2271 struct pvclock_gtod_data *vdata = &pvclock_gtod_data;
2272
2273 write_seqcount_begin(&vdata->seq);
2274
2275 /* copy pvclock gtod data */
b95a8a27 2276 vdata->clock.vclock_mode = tk->tkr_mono.clock->vdso_clock_mode;
876e7881
PZ
2277 vdata->clock.cycle_last = tk->tkr_mono.cycle_last;
2278 vdata->clock.mask = tk->tkr_mono.mask;
2279 vdata->clock.mult = tk->tkr_mono.mult;
2280 vdata->clock.shift = tk->tkr_mono.shift;
917f9475
PB
2281 vdata->clock.base_cycles = tk->tkr_mono.xtime_nsec;
2282 vdata->clock.offset = tk->tkr_mono.base;
16e8d74d 2283
b95a8a27 2284 vdata->raw_clock.vclock_mode = tk->tkr_raw.clock->vdso_clock_mode;
53fafdbb
MT
2285 vdata->raw_clock.cycle_last = tk->tkr_raw.cycle_last;
2286 vdata->raw_clock.mask = tk->tkr_raw.mask;
2287 vdata->raw_clock.mult = tk->tkr_raw.mult;
2288 vdata->raw_clock.shift = tk->tkr_raw.shift;
917f9475
PB
2289 vdata->raw_clock.base_cycles = tk->tkr_raw.xtime_nsec;
2290 vdata->raw_clock.offset = tk->tkr_raw.base;
16e8d74d 2291
55dd00a7
MT
2292 vdata->wall_time_sec = tk->xtime_sec;
2293
917f9475 2294 vdata->offs_boot = tk->offs_boot;
53fafdbb 2295
16e8d74d
MT
2296 write_seqcount_end(&vdata->seq);
2297}
8171cd68
PB
2298
2299static s64 get_kvmclock_base_ns(void)
2300{
2301 /* Count up from boot time, but with the frequency of the raw clock. */
2302 return ktime_to_ns(ktime_add(ktime_get_raw(), pvclock_gtod_data.offs_boot));
2303}
2304#else
2305static s64 get_kvmclock_base_ns(void)
2306{
2307 /* Master clock not used, so we can just use CLOCK_BOOTTIME. */
2308 return ktime_get_boottime_ns();
2309}
16e8d74d
MT
2310#endif
2311
55749769 2312static void kvm_write_wall_clock(struct kvm *kvm, gpa_t wall_clock, int sec_hi_ofs)
18068523 2313{
9ed3c444
AK
2314 int version;
2315 int r;
50d0a0f9 2316 struct pvclock_wall_clock wc;
629b5348 2317 u32 wc_sec_hi;
8171cd68 2318 u64 wall_nsec;
18068523
GOC
2319
2320 if (!wall_clock)
2321 return;
2322
9ed3c444
AK
2323 r = kvm_read_guest(kvm, wall_clock, &version, sizeof(version));
2324 if (r)
2325 return;
2326
2327 if (version & 1)
2328 ++version; /* first time write, random junk */
2329
2330 ++version;
18068523 2331
1dab1345
NK
2332 if (kvm_write_guest(kvm, wall_clock, &version, sizeof(version)))
2333 return;
18068523 2334
50d0a0f9
GH
2335 /*
2336 * The guest calculates current wall clock time by adding
34c238a1 2337 * system time (updated by kvm_guest_time_update below) to the
8171cd68 2338 * wall clock specified here. We do the reverse here.
50d0a0f9 2339 */
8171cd68 2340 wall_nsec = ktime_get_real_ns() - get_kvmclock_ns(kvm);
50d0a0f9 2341
8171cd68
PB
2342 wc.nsec = do_div(wall_nsec, 1000000000);
2343 wc.sec = (u32)wall_nsec; /* overflow in 2106 guest time */
50d0a0f9 2344 wc.version = version;
18068523
GOC
2345
2346 kvm_write_guest(kvm, wall_clock, &wc, sizeof(wc));
2347
629b5348
JM
2348 if (sec_hi_ofs) {
2349 wc_sec_hi = wall_nsec >> 32;
2350 kvm_write_guest(kvm, wall_clock + sec_hi_ofs,
2351 &wc_sec_hi, sizeof(wc_sec_hi));
2352 }
2353
18068523
GOC
2354 version++;
2355 kvm_write_guest(kvm, wall_clock, &version, sizeof(version));
18068523
GOC
2356}
2357
5b9bb0eb
OU
2358static void kvm_write_system_time(struct kvm_vcpu *vcpu, gpa_t system_time,
2359 bool old_msr, bool host_initiated)
2360{
2361 struct kvm_arch *ka = &vcpu->kvm->arch;
2362
2363 if (vcpu->vcpu_id == 0 && !host_initiated) {
1e293d1a 2364 if (ka->boot_vcpu_runs_old_kvmclock != old_msr)
5b9bb0eb
OU
2365 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2366
2367 ka->boot_vcpu_runs_old_kvmclock = old_msr;
2368 }
2369
2370 vcpu->arch.time = system_time;
2371 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
2372
2373 /* we verify if the enable bit is set... */
8c82a0b3
ML
2374 if (system_time & 1)
2375 kvm_gpc_activate(&vcpu->arch.pv_time, system_time & ~1ULL,
52491a38 2376 sizeof(struct pvclock_vcpu_time_info));
8c82a0b3
ML
2377 else
2378 kvm_gpc_deactivate(&vcpu->arch.pv_time);
5b9bb0eb
OU
2379
2380 return;
2381}
2382
50d0a0f9
GH
2383static uint32_t div_frac(uint32_t dividend, uint32_t divisor)
2384{
b51012de
PB
2385 do_shl32_div32(dividend, divisor);
2386 return dividend;
50d0a0f9
GH
2387}
2388
3ae13faa 2389static void kvm_get_time_scale(uint64_t scaled_hz, uint64_t base_hz,
5f4e3f88 2390 s8 *pshift, u32 *pmultiplier)
50d0a0f9 2391{
5f4e3f88 2392 uint64_t scaled64;
50d0a0f9
GH
2393 int32_t shift = 0;
2394 uint64_t tps64;
2395 uint32_t tps32;
2396
3ae13faa
PB
2397 tps64 = base_hz;
2398 scaled64 = scaled_hz;
50933623 2399 while (tps64 > scaled64*2 || tps64 & 0xffffffff00000000ULL) {
50d0a0f9
GH
2400 tps64 >>= 1;
2401 shift--;
2402 }
2403
2404 tps32 = (uint32_t)tps64;
50933623
JK
2405 while (tps32 <= scaled64 || scaled64 & 0xffffffff00000000ULL) {
2406 if (scaled64 & 0xffffffff00000000ULL || tps32 & 0x80000000)
5f4e3f88
ZA
2407 scaled64 >>= 1;
2408 else
2409 tps32 <<= 1;
50d0a0f9
GH
2410 shift++;
2411 }
2412
5f4e3f88
ZA
2413 *pshift = shift;
2414 *pmultiplier = div_frac(scaled64, tps32);
50d0a0f9
GH
2415}
2416
d828199e 2417#ifdef CONFIG_X86_64
16e8d74d 2418static atomic_t kvm_guest_has_master_clock = ATOMIC_INIT(0);
d828199e 2419#endif
16e8d74d 2420
c8076604 2421static DEFINE_PER_CPU(unsigned long, cpu_tsc_khz);
69b0049a 2422static unsigned long max_tsc_khz;
c8076604 2423
cc578287 2424static u32 adjust_tsc_khz(u32 khz, s32 ppm)
1e993611 2425{
cc578287
ZA
2426 u64 v = (u64)khz * (1000000 + ppm);
2427 do_div(v, 1000000);
2428 return v;
1e993611
JR
2429}
2430
1ab9287a
IS
2431static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier);
2432
381d585c
HZ
2433static int set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2434{
2435 u64 ratio;
2436
2437 /* Guest TSC same frequency as host TSC? */
2438 if (!scale) {
938c8745 2439 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
381d585c
HZ
2440 return 0;
2441 }
2442
2443 /* TSC scaling supported? */
938c8745 2444 if (!kvm_caps.has_tsc_control) {
381d585c
HZ
2445 if (user_tsc_khz > tsc_khz) {
2446 vcpu->arch.tsc_catchup = 1;
2447 vcpu->arch.tsc_always_catchup = 1;
2448 return 0;
2449 } else {
3f16a5c3 2450 pr_warn_ratelimited("user requested TSC rate below hardware speed\n");
381d585c
HZ
2451 return -1;
2452 }
2453 }
2454
2455 /* TSC scaling required - calculate ratio */
938c8745 2456 ratio = mul_u64_u32_div(1ULL << kvm_caps.tsc_scaling_ratio_frac_bits,
381d585c
HZ
2457 user_tsc_khz, tsc_khz);
2458
938c8745 2459 if (ratio == 0 || ratio >= kvm_caps.max_tsc_scaling_ratio) {
3f16a5c3
PB
2460 pr_warn_ratelimited("Invalid TSC scaling ratio - virtual-tsc-khz=%u\n",
2461 user_tsc_khz);
381d585c
HZ
2462 return -1;
2463 }
2464
1ab9287a 2465 kvm_vcpu_write_tsc_multiplier(vcpu, ratio);
381d585c
HZ
2466 return 0;
2467}
2468
4941b8cb 2469static int kvm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz)
759379dd 2470{
cc578287
ZA
2471 u32 thresh_lo, thresh_hi;
2472 int use_scaling = 0;
217fc9cf 2473
03ba32ca 2474 /* tsc_khz can be zero if TSC calibration fails */
4941b8cb 2475 if (user_tsc_khz == 0) {
ad721883 2476 /* set tsc_scaling_ratio to a safe value */
938c8745 2477 kvm_vcpu_write_tsc_multiplier(vcpu, kvm_caps.default_tsc_scaling_ratio);
381d585c 2478 return -1;
ad721883 2479 }
03ba32ca 2480
c285545f 2481 /* Compute a scale to convert nanoseconds in TSC cycles */
3ae13faa 2482 kvm_get_time_scale(user_tsc_khz * 1000LL, NSEC_PER_SEC,
cc578287
ZA
2483 &vcpu->arch.virtual_tsc_shift,
2484 &vcpu->arch.virtual_tsc_mult);
4941b8cb 2485 vcpu->arch.virtual_tsc_khz = user_tsc_khz;
cc578287
ZA
2486
2487 /*
2488 * Compute the variation in TSC rate which is acceptable
2489 * within the range of tolerance and decide if the
2490 * rate being applied is within that bounds of the hardware
2491 * rate. If so, no scaling or compensation need be done.
2492 */
2493 thresh_lo = adjust_tsc_khz(tsc_khz, -tsc_tolerance_ppm);
2494 thresh_hi = adjust_tsc_khz(tsc_khz, tsc_tolerance_ppm);
4941b8cb 2495 if (user_tsc_khz < thresh_lo || user_tsc_khz > thresh_hi) {
8d20bd63
SC
2496 pr_debug("requested TSC rate %u falls outside tolerance [%u,%u]\n",
2497 user_tsc_khz, thresh_lo, thresh_hi);
cc578287
ZA
2498 use_scaling = 1;
2499 }
4941b8cb 2500 return set_tsc_khz(vcpu, user_tsc_khz, use_scaling);
c285545f
ZA
2501}
2502
2503static u64 compute_guest_tsc(struct kvm_vcpu *vcpu, s64 kernel_ns)
2504{
e26101b1 2505 u64 tsc = pvclock_scale_delta(kernel_ns-vcpu->arch.this_tsc_nsec,
cc578287
ZA
2506 vcpu->arch.virtual_tsc_mult,
2507 vcpu->arch.virtual_tsc_shift);
e26101b1 2508 tsc += vcpu->arch.this_tsc_write;
c285545f
ZA
2509 return tsc;
2510}
2511
ba1f77c5 2512#ifdef CONFIG_X86_64
b0c39dc6
VK
2513static inline int gtod_is_based_on_tsc(int mode)
2514{
b95a8a27 2515 return mode == VDSO_CLOCKMODE_TSC || mode == VDSO_CLOCKMODE_HVCLOCK;
b0c39dc6 2516}
ba1f77c5 2517#endif
b0c39dc6 2518
69b0049a 2519static void kvm_track_tsc_matching(struct kvm_vcpu *vcpu)
b48aa97e
MT
2520{
2521#ifdef CONFIG_X86_64
2522 bool vcpus_matched;
b48aa97e
MT
2523 struct kvm_arch *ka = &vcpu->kvm->arch;
2524 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2525
2526 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2527 atomic_read(&vcpu->kvm->online_vcpus));
2528
7f187922
MT
2529 /*
2530 * Once the masterclock is enabled, always perform request in
2531 * order to update it.
2532 *
2533 * In order to enable masterclock, the host clocksource must be TSC
2534 * and the vcpus need to have matched TSCs. When that happens,
2535 * perform request to enable masterclock.
2536 */
2537 if (ka->use_master_clock ||
b0c39dc6 2538 (gtod_is_based_on_tsc(gtod->clock.vclock_mode) && vcpus_matched))
b48aa97e
MT
2539 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
2540
2541 trace_kvm_track_tsc(vcpu->vcpu_id, ka->nr_vcpus_matched_tsc,
2542 atomic_read(&vcpu->kvm->online_vcpus),
2543 ka->use_master_clock, gtod->clock.vclock_mode);
2544#endif
2545}
2546
35181e86
HZ
2547/*
2548 * Multiply tsc by a fixed point number represented by ratio.
2549 *
2550 * The most significant 64-N bits (mult) of ratio represent the
2551 * integral part of the fixed point number; the remaining N bits
2552 * (frac) represent the fractional part, ie. ratio represents a fixed
2553 * point number (mult + frac * 2^(-N)).
2554 *
938c8745 2555 * N equals to kvm_caps.tsc_scaling_ratio_frac_bits.
35181e86
HZ
2556 */
2557static inline u64 __scale_tsc(u64 ratio, u64 tsc)
2558{
938c8745 2559 return mul_u64_u64_shr(tsc, ratio, kvm_caps.tsc_scaling_ratio_frac_bits);
35181e86
HZ
2560}
2561
62711e5a 2562u64 kvm_scale_tsc(u64 tsc, u64 ratio)
35181e86
HZ
2563{
2564 u64 _tsc = tsc;
35181e86 2565
938c8745 2566 if (ratio != kvm_caps.default_tsc_scaling_ratio)
35181e86
HZ
2567 _tsc = __scale_tsc(ratio, tsc);
2568
2569 return _tsc;
2570}
35181e86 2571
9b399dfd 2572static u64 kvm_compute_l1_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
07c1419a
HZ
2573{
2574 u64 tsc;
2575
62711e5a 2576 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio);
07c1419a
HZ
2577
2578 return target_tsc - tsc;
2579}
2580
4ba76538
HZ
2581u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2582{
fe3eb504 2583 return vcpu->arch.l1_tsc_offset +
62711e5a 2584 kvm_scale_tsc(host_tsc, vcpu->arch.l1_tsc_scaling_ratio);
4ba76538
HZ
2585}
2586EXPORT_SYMBOL_GPL(kvm_read_l1_tsc);
2587
83150f29
IS
2588u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier)
2589{
2590 u64 nested_offset;
2591
938c8745 2592 if (l2_multiplier == kvm_caps.default_tsc_scaling_ratio)
83150f29
IS
2593 nested_offset = l1_offset;
2594 else
2595 nested_offset = mul_s64_u64_shr((s64) l1_offset, l2_multiplier,
938c8745 2596 kvm_caps.tsc_scaling_ratio_frac_bits);
83150f29
IS
2597
2598 nested_offset += l2_offset;
2599 return nested_offset;
2600}
2601EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_offset);
2602
2603u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier)
2604{
938c8745 2605 if (l2_multiplier != kvm_caps.default_tsc_scaling_ratio)
83150f29 2606 return mul_u64_u64_shr(l1_multiplier, l2_multiplier,
938c8745 2607 kvm_caps.tsc_scaling_ratio_frac_bits);
83150f29
IS
2608
2609 return l1_multiplier;
2610}
2611EXPORT_SYMBOL_GPL(kvm_calc_nested_tsc_multiplier);
2612
edcfe540 2613static void kvm_vcpu_write_tsc_offset(struct kvm_vcpu *vcpu, u64 l1_offset)
a545ab6a 2614{
edcfe540
IS
2615 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2616 vcpu->arch.l1_tsc_offset,
2617 l1_offset);
2618
2619 vcpu->arch.l1_tsc_offset = l1_offset;
2620
2621 /*
2622 * If we are here because L1 chose not to trap WRMSR to TSC then
2623 * according to the spec this should set L1's TSC (as opposed to
2624 * setting L1's offset for L2).
2625 */
2626 if (is_guest_mode(vcpu))
2627 vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2628 l1_offset,
2629 static_call(kvm_x86_get_l2_tsc_offset)(vcpu),
2630 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2631 else
2632 vcpu->arch.tsc_offset = l1_offset;
2633
2634 static_call(kvm_x86_write_tsc_offset)(vcpu, vcpu->arch.tsc_offset);
a545ab6a
LC
2635}
2636
1ab9287a
IS
2637static void kvm_vcpu_write_tsc_multiplier(struct kvm_vcpu *vcpu, u64 l1_multiplier)
2638{
2639 vcpu->arch.l1_tsc_scaling_ratio = l1_multiplier;
2640
2641 /* Userspace is changing the multiplier while L2 is active */
2642 if (is_guest_mode(vcpu))
2643 vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2644 l1_multiplier,
2645 static_call(kvm_x86_get_l2_tsc_multiplier)(vcpu));
2646 else
2647 vcpu->arch.tsc_scaling_ratio = l1_multiplier;
2648
938c8745 2649 if (kvm_caps.has_tsc_control)
1ab9287a
IS
2650 static_call(kvm_x86_write_tsc_multiplier)(
2651 vcpu, vcpu->arch.tsc_scaling_ratio);
2652}
2653
b0c39dc6
VK
2654static inline bool kvm_check_tsc_unstable(void)
2655{
2656#ifdef CONFIG_X86_64
2657 /*
2658 * TSC is marked unstable when we're running on Hyper-V,
2659 * 'TSC page' clocksource is good.
2660 */
b95a8a27 2661 if (pvclock_gtod_data.clock.vclock_mode == VDSO_CLOCKMODE_HVCLOCK)
b0c39dc6
VK
2662 return false;
2663#endif
2664 return check_tsc_unstable();
2665}
2666
58d4277b
OU
2667/*
2668 * Infers attempts to synchronize the guest's tsc from host writes. Sets the
2669 * offset for the vcpu and tracks the TSC matching generation that the vcpu
2670 * participates in.
2671 */
2672static void __kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 offset, u64 tsc,
2673 u64 ns, bool matched)
2674{
2675 struct kvm *kvm = vcpu->kvm;
2676
2677 lockdep_assert_held(&kvm->arch.tsc_write_lock);
2678
2679 /*
2680 * We also track th most recent recorded KHZ, write and time to
2681 * allow the matching interval to be extended at each write.
2682 */
2683 kvm->arch.last_tsc_nsec = ns;
2684 kvm->arch.last_tsc_write = tsc;
2685 kvm->arch.last_tsc_khz = vcpu->arch.virtual_tsc_khz;
828ca896 2686 kvm->arch.last_tsc_offset = offset;
58d4277b
OU
2687
2688 vcpu->arch.last_guest_tsc = tsc;
2689
2690 kvm_vcpu_write_tsc_offset(vcpu, offset);
2691
2692 if (!matched) {
2693 /*
2694 * We split periods of matched TSC writes into generations.
2695 * For each generation, we track the original measured
2696 * nanosecond time, offset, and write, so if TSCs are in
2697 * sync, we can match exact offset, and if not, we can match
2698 * exact software computation in compute_guest_tsc()
2699 *
2700 * These values are tracked in kvm->arch.cur_xxx variables.
2701 */
2702 kvm->arch.cur_tsc_generation++;
2703 kvm->arch.cur_tsc_nsec = ns;
2704 kvm->arch.cur_tsc_write = tsc;
2705 kvm->arch.cur_tsc_offset = offset;
2706 kvm->arch.nr_vcpus_matched_tsc = 0;
2707 } else if (vcpu->arch.this_tsc_generation != kvm->arch.cur_tsc_generation) {
2708 kvm->arch.nr_vcpus_matched_tsc++;
2709 }
2710
2711 /* Keep track of which generation this VCPU has synchronized to */
2712 vcpu->arch.this_tsc_generation = kvm->arch.cur_tsc_generation;
2713 vcpu->arch.this_tsc_nsec = kvm->arch.cur_tsc_nsec;
2714 vcpu->arch.this_tsc_write = kvm->arch.cur_tsc_write;
2715
2716 kvm_track_tsc_matching(vcpu);
2717}
2718
0c899c25 2719static void kvm_synchronize_tsc(struct kvm_vcpu *vcpu, u64 data)
99e3e30a
ZA
2720{
2721 struct kvm *kvm = vcpu->kvm;
f38e098f 2722 u64 offset, ns, elapsed;
99e3e30a 2723 unsigned long flags;
58d4277b 2724 bool matched = false;
c5e8ec8e 2725 bool synchronizing = false;
99e3e30a 2726
038f8c11 2727 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
9b399dfd 2728 offset = kvm_compute_l1_tsc_offset(vcpu, data);
8171cd68 2729 ns = get_kvmclock_base_ns();
f38e098f 2730 elapsed = ns - kvm->arch.last_tsc_nsec;
5d3cb0f6 2731
03ba32ca 2732 if (vcpu->arch.virtual_tsc_khz) {
0c899c25 2733 if (data == 0) {
bd8fab39
DP
2734 /*
2735 * detection of vcpu initialization -- need to sync
2736 * with other vCPUs. This particularly helps to keep
2737 * kvm_clock stable after CPU hotplug
2738 */
2739 synchronizing = true;
2740 } else {
2741 u64 tsc_exp = kvm->arch.last_tsc_write +
2742 nsec_to_cycles(vcpu, elapsed);
2743 u64 tsc_hz = vcpu->arch.virtual_tsc_khz * 1000LL;
2744 /*
2745 * Special case: TSC write with a small delta (1 second)
2746 * of virtual cycle time against real time is
2747 * interpreted as an attempt to synchronize the CPU.
2748 */
2749 synchronizing = data < tsc_exp + tsc_hz &&
2750 data + tsc_hz > tsc_exp;
2751 }
c5e8ec8e 2752 }
f38e098f
ZA
2753
2754 /*
5d3cb0f6
ZA
2755 * For a reliable TSC, we can match TSC offsets, and for an unstable
2756 * TSC, we add elapsed time in this computation. We could let the
2757 * compensation code attempt to catch up if we fall behind, but
2758 * it's better to try to match offsets from the beginning.
2759 */
c5e8ec8e 2760 if (synchronizing &&
5d3cb0f6 2761 vcpu->arch.virtual_tsc_khz == kvm->arch.last_tsc_khz) {
b0c39dc6 2762 if (!kvm_check_tsc_unstable()) {
e26101b1 2763 offset = kvm->arch.cur_tsc_offset;
f38e098f 2764 } else {
857e4099 2765 u64 delta = nsec_to_cycles(vcpu, elapsed);
5d3cb0f6 2766 data += delta;
9b399dfd 2767 offset = kvm_compute_l1_tsc_offset(vcpu, data);
f38e098f 2768 }
b48aa97e 2769 matched = true;
f38e098f 2770 }
e26101b1 2771
58d4277b 2772 __kvm_synchronize_tsc(vcpu, offset, data, ns, matched);
e26101b1 2773 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
99e3e30a 2774}
e26101b1 2775
58ea6767
HZ
2776static inline void adjust_tsc_offset_guest(struct kvm_vcpu *vcpu,
2777 s64 adjustment)
2778{
56ba77a4 2779 u64 tsc_offset = vcpu->arch.l1_tsc_offset;
326e7425 2780 kvm_vcpu_write_tsc_offset(vcpu, tsc_offset + adjustment);
58ea6767
HZ
2781}
2782
2783static inline void adjust_tsc_offset_host(struct kvm_vcpu *vcpu, s64 adjustment)
2784{
938c8745 2785 if (vcpu->arch.l1_tsc_scaling_ratio != kvm_caps.default_tsc_scaling_ratio)
58ea6767 2786 WARN_ON(adjustment < 0);
62711e5a 2787 adjustment = kvm_scale_tsc((u64) adjustment,
fe3eb504 2788 vcpu->arch.l1_tsc_scaling_ratio);
ea26e4ec 2789 adjust_tsc_offset_guest(vcpu, adjustment);
58ea6767
HZ
2790}
2791
d828199e
MT
2792#ifdef CONFIG_X86_64
2793
a5a1d1c2 2794static u64 read_tsc(void)
d828199e 2795{
a5a1d1c2 2796 u64 ret = (u64)rdtsc_ordered();
03b9730b 2797 u64 last = pvclock_gtod_data.clock.cycle_last;
d828199e
MT
2798
2799 if (likely(ret >= last))
2800 return ret;
2801
2802 /*
2803 * GCC likes to generate cmov here, but this branch is extremely
6a6256f9 2804 * predictable (it's just a function of time and the likely is
d828199e
MT
2805 * very likely) and there's a data dependence, so force GCC
2806 * to generate a branch instead. I don't barrier() because
2807 * we don't actually need a barrier, and if this function
2808 * ever gets inlined it will generate worse code.
2809 */
2810 asm volatile ("");
2811 return last;
2812}
2813
53fafdbb
MT
2814static inline u64 vgettsc(struct pvclock_clock *clock, u64 *tsc_timestamp,
2815 int *mode)
d828199e 2816{
b0c39dc6 2817 u64 tsc_pg_val;
9397fa2e 2818 long v;
b0c39dc6 2819
53fafdbb 2820 switch (clock->vclock_mode) {
b95a8a27 2821 case VDSO_CLOCKMODE_HVCLOCK:
9397fa2e
PZ
2822 if (hv_read_tsc_page_tsc(hv_get_tsc_page(),
2823 tsc_timestamp, &tsc_pg_val)) {
b0c39dc6 2824 /* TSC page valid */
b95a8a27 2825 *mode = VDSO_CLOCKMODE_HVCLOCK;
53fafdbb
MT
2826 v = (tsc_pg_val - clock->cycle_last) &
2827 clock->mask;
b0c39dc6
VK
2828 } else {
2829 /* TSC page invalid */
b95a8a27 2830 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6
VK
2831 }
2832 break;
b95a8a27
TG
2833 case VDSO_CLOCKMODE_TSC:
2834 *mode = VDSO_CLOCKMODE_TSC;
b0c39dc6 2835 *tsc_timestamp = read_tsc();
53fafdbb
MT
2836 v = (*tsc_timestamp - clock->cycle_last) &
2837 clock->mask;
b0c39dc6
VK
2838 break;
2839 default:
b95a8a27 2840 *mode = VDSO_CLOCKMODE_NONE;
b0c39dc6 2841 }
d828199e 2842
b95a8a27 2843 if (*mode == VDSO_CLOCKMODE_NONE)
b0c39dc6 2844 *tsc_timestamp = v = 0;
d828199e 2845
53fafdbb 2846 return v * clock->mult;
d828199e
MT
2847}
2848
53fafdbb 2849static int do_monotonic_raw(s64 *t, u64 *tsc_timestamp)
d828199e 2850{
cbcf2dd3 2851 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
d828199e 2852 unsigned long seq;
d828199e 2853 int mode;
cbcf2dd3 2854 u64 ns;
d828199e 2855
d828199e
MT
2856 do {
2857 seq = read_seqcount_begin(&gtod->seq);
917f9475 2858 ns = gtod->raw_clock.base_cycles;
53fafdbb 2859 ns += vgettsc(&gtod->raw_clock, tsc_timestamp, &mode);
917f9475
PB
2860 ns >>= gtod->raw_clock.shift;
2861 ns += ktime_to_ns(ktime_add(gtod->raw_clock.offset, gtod->offs_boot));
d828199e 2862 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
cbcf2dd3 2863 *t = ns;
d828199e
MT
2864
2865 return mode;
2866}
2867
899a31f5 2868static int do_realtime(struct timespec64 *ts, u64 *tsc_timestamp)
55dd00a7
MT
2869{
2870 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
2871 unsigned long seq;
2872 int mode;
2873 u64 ns;
2874
2875 do {
2876 seq = read_seqcount_begin(&gtod->seq);
55dd00a7 2877 ts->tv_sec = gtod->wall_time_sec;
917f9475 2878 ns = gtod->clock.base_cycles;
53fafdbb 2879 ns += vgettsc(&gtod->clock, tsc_timestamp, &mode);
55dd00a7
MT
2880 ns >>= gtod->clock.shift;
2881 } while (unlikely(read_seqcount_retry(&gtod->seq, seq)));
2882
2883 ts->tv_sec += __iter_div_u64_rem(ns, NSEC_PER_SEC, &ns);
2884 ts->tv_nsec = ns;
2885
2886 return mode;
2887}
2888
b0c39dc6
VK
2889/* returns true if host is using TSC based clocksource */
2890static bool kvm_get_time_and_clockread(s64 *kernel_ns, u64 *tsc_timestamp)
d828199e 2891{
d828199e 2892 /* checked again under seqlock below */
b0c39dc6 2893 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
d828199e
MT
2894 return false;
2895
53fafdbb 2896 return gtod_is_based_on_tsc(do_monotonic_raw(kernel_ns,
b0c39dc6 2897 tsc_timestamp));
d828199e 2898}
55dd00a7 2899
b0c39dc6 2900/* returns true if host is using TSC based clocksource */
899a31f5 2901static bool kvm_get_walltime_and_clockread(struct timespec64 *ts,
b0c39dc6 2902 u64 *tsc_timestamp)
55dd00a7
MT
2903{
2904 /* checked again under seqlock below */
b0c39dc6 2905 if (!gtod_is_based_on_tsc(pvclock_gtod_data.clock.vclock_mode))
55dd00a7
MT
2906 return false;
2907
b0c39dc6 2908 return gtod_is_based_on_tsc(do_realtime(ts, tsc_timestamp));
55dd00a7 2909}
d828199e
MT
2910#endif
2911
2912/*
2913 *
b48aa97e
MT
2914 * Assuming a stable TSC across physical CPUS, and a stable TSC
2915 * across virtual CPUs, the following condition is possible.
2916 * Each numbered line represents an event visible to both
d828199e
MT
2917 * CPUs at the next numbered event.
2918 *
2919 * "timespecX" represents host monotonic time. "tscX" represents
2920 * RDTSC value.
2921 *
2922 * VCPU0 on CPU0 | VCPU1 on CPU1
2923 *
2924 * 1. read timespec0,tsc0
2925 * 2. | timespec1 = timespec0 + N
2926 * | tsc1 = tsc0 + M
2927 * 3. transition to guest | transition to guest
2928 * 4. ret0 = timespec0 + (rdtsc - tsc0) |
2929 * 5. | ret1 = timespec1 + (rdtsc - tsc1)
2930 * | ret1 = timespec0 + N + (rdtsc - (tsc0 + M))
2931 *
2932 * Since ret0 update is visible to VCPU1 at time 5, to obey monotonicity:
2933 *
2934 * - ret0 < ret1
2935 * - timespec0 + (rdtsc - tsc0) < timespec0 + N + (rdtsc - (tsc0 + M))
2936 * ...
2937 * - 0 < N - M => M < N
2938 *
2939 * That is, when timespec0 != timespec1, M < N. Unfortunately that is not
2940 * always the case (the difference between two distinct xtime instances
2941 * might be smaller then the difference between corresponding TSC reads,
2942 * when updating guest vcpus pvclock areas).
2943 *
2944 * To avoid that problem, do not allow visibility of distinct
2945 * system_timestamp/tsc_timestamp values simultaneously: use a master
2946 * copy of host monotonic time values. Update that master copy
2947 * in lockstep.
2948 *
b48aa97e 2949 * Rely on synchronization of host TSCs and guest TSCs for monotonicity.
d828199e
MT
2950 *
2951 */
2952
2953static void pvclock_update_vm_gtod_copy(struct kvm *kvm)
2954{
2955#ifdef CONFIG_X86_64
2956 struct kvm_arch *ka = &kvm->arch;
2957 int vclock_mode;
b48aa97e
MT
2958 bool host_tsc_clocksource, vcpus_matched;
2959
869b4421 2960 lockdep_assert_held(&kvm->arch.tsc_write_lock);
b48aa97e
MT
2961 vcpus_matched = (ka->nr_vcpus_matched_tsc + 1 ==
2962 atomic_read(&kvm->online_vcpus));
d828199e
MT
2963
2964 /*
2965 * If the host uses TSC clock, then passthrough TSC as stable
2966 * to the guest.
2967 */
b48aa97e 2968 host_tsc_clocksource = kvm_get_time_and_clockread(
d828199e
MT
2969 &ka->master_kernel_ns,
2970 &ka->master_cycle_now);
2971
16a96021 2972 ka->use_master_clock = host_tsc_clocksource && vcpus_matched
a826faf1 2973 && !ka->backwards_tsc_observed
54750f2c 2974 && !ka->boot_vcpu_runs_old_kvmclock;
b48aa97e 2975
d828199e
MT
2976 if (ka->use_master_clock)
2977 atomic_set(&kvm_guest_has_master_clock, 1);
2978
2979 vclock_mode = pvclock_gtod_data.clock.vclock_mode;
b48aa97e
MT
2980 trace_kvm_update_master_clock(ka->use_master_clock, vclock_mode,
2981 vcpus_matched);
d828199e
MT
2982#endif
2983}
2984
6b6fcd28 2985static void kvm_make_mclock_inprogress_request(struct kvm *kvm)
2860c4b1
PB
2986{
2987 kvm_make_all_cpus_request(kvm, KVM_REQ_MCLOCK_INPROGRESS);
2988}
2989
869b4421 2990static void __kvm_start_pvclock_update(struct kvm *kvm)
2e762ff7 2991{
869b4421
PB
2992 raw_spin_lock_irq(&kvm->arch.tsc_write_lock);
2993 write_seqcount_begin(&kvm->arch.pvclock_sc);
2994}
e880c6ea 2995
869b4421
PB
2996static void kvm_start_pvclock_update(struct kvm *kvm)
2997{
2e762ff7 2998 kvm_make_mclock_inprogress_request(kvm);
c2c647f9 2999
2e762ff7 3000 /* no guest entries from this point */
869b4421 3001 __kvm_start_pvclock_update(kvm);
6b6fcd28 3002}
2e762ff7 3003
6b6fcd28
PB
3004static void kvm_end_pvclock_update(struct kvm *kvm)
3005{
3006 struct kvm_arch *ka = &kvm->arch;
3007 struct kvm_vcpu *vcpu;
46808a4c 3008 unsigned long i;
2e762ff7 3009
869b4421
PB
3010 write_seqcount_end(&ka->pvclock_sc);
3011 raw_spin_unlock_irq(&ka->tsc_write_lock);
2e762ff7 3012 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 3013 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
2e762ff7
MT
3014
3015 /* guest entries allowed */
3016 kvm_for_each_vcpu(i, vcpu, kvm)
72875d8a 3017 kvm_clear_request(KVM_REQ_MCLOCK_INPROGRESS, vcpu);
2e762ff7
MT
3018}
3019
6b6fcd28
PB
3020static void kvm_update_masterclock(struct kvm *kvm)
3021{
42dcbe7d 3022 kvm_hv_request_tsc_page_update(kvm);
6b6fcd28
PB
3023 kvm_start_pvclock_update(kvm);
3024 pvclock_update_vm_gtod_copy(kvm);
3025 kvm_end_pvclock_update(kvm);
2e762ff7
MT
3026}
3027
3ebcbd22
AR
3028/*
3029 * Use the kernel's tsc_khz directly if the TSC is constant, otherwise use KVM's
3030 * per-CPU value (which may be zero if a CPU is going offline). Note, tsc_khz
3031 * can change during boot even if the TSC is constant, as it's possible for KVM
3032 * to be loaded before TSC calibration completes. Ideally, KVM would get a
3033 * notification when calibration completes, but practically speaking calibration
3034 * will complete before userspace is alive enough to create VMs.
3035 */
3036static unsigned long get_cpu_tsc_khz(void)
3037{
3038 if (static_cpu_has(X86_FEATURE_CONSTANT_TSC))
3039 return tsc_khz;
3040 else
3041 return __this_cpu_read(cpu_tsc_khz);
3042}
3043
869b4421
PB
3044/* Called within read_seqcount_begin/retry for kvm->pvclock_sc. */
3045static void __get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
108b249c 3046{
108b249c 3047 struct kvm_arch *ka = &kvm->arch;
8b953440 3048 struct pvclock_vcpu_time_info hv_clock;
8b953440 3049
e2c2206a
WL
3050 /* both __this_cpu_read() and rdtsc() should be on the same cpu */
3051 get_cpu();
3052
869b4421 3053 data->flags = 0;
3ebcbd22
AR
3054 if (ka->use_master_clock &&
3055 (static_cpu_has(X86_FEATURE_CONSTANT_TSC) || __this_cpu_read(cpu_tsc_khz))) {
c68dc1b5
OU
3056#ifdef CONFIG_X86_64
3057 struct timespec64 ts;
3058
3059 if (kvm_get_walltime_and_clockread(&ts, &data->host_tsc)) {
3060 data->realtime = ts.tv_nsec + NSEC_PER_SEC * ts.tv_sec;
3061 data->flags |= KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC;
3062 } else
3063#endif
3064 data->host_tsc = rdtsc();
3065
869b4421
PB
3066 data->flags |= KVM_CLOCK_TSC_STABLE;
3067 hv_clock.tsc_timestamp = ka->master_cycle_now;
3068 hv_clock.system_time = ka->master_kernel_ns + ka->kvmclock_offset;
3ebcbd22 3069 kvm_get_time_scale(NSEC_PER_SEC, get_cpu_tsc_khz() * 1000LL,
e70b57a6
WL
3070 &hv_clock.tsc_shift,
3071 &hv_clock.tsc_to_system_mul);
c68dc1b5 3072 data->clock = __pvclock_read_cycles(&hv_clock, data->host_tsc);
55c0cefb
OU
3073 } else {
3074 data->clock = get_kvmclock_base_ns() + ka->kvmclock_offset;
3075 }
e2c2206a
WL
3076
3077 put_cpu();
55c0cefb 3078}
e2c2206a 3079
869b4421
PB
3080static void get_kvmclock(struct kvm *kvm, struct kvm_clock_data *data)
3081{
3082 struct kvm_arch *ka = &kvm->arch;
3083 unsigned seq;
3084
3085 do {
3086 seq = read_seqcount_begin(&ka->pvclock_sc);
3087 __get_kvmclock(kvm, data);
3088 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
3089}
3090
55c0cefb
OU
3091u64 get_kvmclock_ns(struct kvm *kvm)
3092{
3093 struct kvm_clock_data data;
3094
55c0cefb
OU
3095 get_kvmclock(kvm, &data);
3096 return data.clock;
108b249c
PB
3097}
3098
916d3608
DW
3099static void kvm_setup_guest_pvclock(struct kvm_vcpu *v,
3100 struct gfn_to_pfn_cache *gpc,
3101 unsigned int offset)
0d6dd2ff
PB
3102{
3103 struct kvm_vcpu_arch *vcpu = &v->arch;
916d3608
DW
3104 struct pvclock_vcpu_time_info *guest_hv_clock;
3105 unsigned long flags;
0d6dd2ff 3106
916d3608 3107 read_lock_irqsave(&gpc->lock, flags);
58f5ee5f 3108 while (!kvm_gpc_check(gpc, offset + sizeof(*guest_hv_clock))) {
916d3608
DW
3109 read_unlock_irqrestore(&gpc->lock, flags);
3110
58f5ee5f 3111 if (kvm_gpc_refresh(gpc, offset + sizeof(*guest_hv_clock)))
916d3608 3112 return;
0d6dd2ff 3113
916d3608
DW
3114 read_lock_irqsave(&gpc->lock, flags);
3115 }
3116
3117 guest_hv_clock = (void *)(gpc->khva + offset);
3118
3119 /*
3120 * This VCPU is paused, but it's legal for a guest to read another
0d6dd2ff
PB
3121 * VCPU's kvmclock, so we really have to follow the specification where
3122 * it says that version is odd if data is being modified, and even after
3123 * it is consistent.
0d6dd2ff 3124 */
0d6dd2ff 3125
916d3608 3126 guest_hv_clock->version = vcpu->hv_clock.version = (guest_hv_clock->version + 1) | 1;
0d6dd2ff
PB
3127 smp_wmb();
3128
3129 /* retain PVCLOCK_GUEST_STOPPED if set in guest copy */
916d3608 3130 vcpu->hv_clock.flags |= (guest_hv_clock->flags & PVCLOCK_GUEST_STOPPED);
0d6dd2ff
PB
3131
3132 if (vcpu->pvclock_set_guest_stopped_request) {
3133 vcpu->hv_clock.flags |= PVCLOCK_GUEST_STOPPED;
3134 vcpu->pvclock_set_guest_stopped_request = false;
3135 }
3136
916d3608
DW
3137 memcpy(guest_hv_clock, &vcpu->hv_clock, sizeof(*guest_hv_clock));
3138 smp_wmb();
0d6dd2ff 3139
916d3608 3140 guest_hv_clock->version = ++vcpu->hv_clock.version;
0d6dd2ff 3141
916d3608
DW
3142 mark_page_dirty_in_slot(v->kvm, gpc->memslot, gpc->gpa >> PAGE_SHIFT);
3143 read_unlock_irqrestore(&gpc->lock, flags);
0d6dd2ff 3144
916d3608 3145 trace_kvm_pvclock_update(v->vcpu_id, &vcpu->hv_clock);
0d6dd2ff
PB
3146}
3147
34c238a1 3148static int kvm_guest_time_update(struct kvm_vcpu *v)
18068523 3149{
78db6a50 3150 unsigned long flags, tgt_tsc_khz;
869b4421 3151 unsigned seq;
18068523 3152 struct kvm_vcpu_arch *vcpu = &v->arch;
d828199e 3153 struct kvm_arch *ka = &v->kvm->arch;
f25e656d 3154 s64 kernel_ns;
d828199e 3155 u64 tsc_timestamp, host_tsc;
51d59c6b 3156 u8 pvclock_flags;
d828199e
MT
3157 bool use_master_clock;
3158
3159 kernel_ns = 0;
3160 host_tsc = 0;
18068523 3161
d828199e
MT
3162 /*
3163 * If the host uses TSC clock, then passthrough TSC as stable
3164 * to the guest.
3165 */
869b4421
PB
3166 do {
3167 seq = read_seqcount_begin(&ka->pvclock_sc);
3168 use_master_clock = ka->use_master_clock;
3169 if (use_master_clock) {
3170 host_tsc = ka->master_cycle_now;
3171 kernel_ns = ka->master_kernel_ns;
3172 }
3173 } while (read_seqcount_retry(&ka->pvclock_sc, seq));
c09664bb
MT
3174
3175 /* Keep irq disabled to prevent changes to the clock */
3176 local_irq_save(flags);
3ebcbd22 3177 tgt_tsc_khz = get_cpu_tsc_khz();
78db6a50 3178 if (unlikely(tgt_tsc_khz == 0)) {
c09664bb
MT
3179 local_irq_restore(flags);
3180 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
3181 return 1;
3182 }
d828199e 3183 if (!use_master_clock) {
4ea1636b 3184 host_tsc = rdtsc();
8171cd68 3185 kernel_ns = get_kvmclock_base_ns();
d828199e
MT
3186 }
3187
4ba76538 3188 tsc_timestamp = kvm_read_l1_tsc(v, host_tsc);
d828199e 3189
c285545f
ZA
3190 /*
3191 * We may have to catch up the TSC to match elapsed wall clock
3192 * time for two reasons, even if kvmclock is used.
3193 * 1) CPU could have been running below the maximum TSC rate
3194 * 2) Broken TSC compensation resets the base at each VCPU
3195 * entry to avoid unknown leaps of TSC even when running
3196 * again on the same CPU. This may cause apparent elapsed
3197 * time to disappear, and the guest to stand still or run
3198 * very slowly.
3199 */
3200 if (vcpu->tsc_catchup) {
3201 u64 tsc = compute_guest_tsc(v, kernel_ns);
3202 if (tsc > tsc_timestamp) {
f1e2b260 3203 adjust_tsc_offset_guest(v, tsc - tsc_timestamp);
c285545f
ZA
3204 tsc_timestamp = tsc;
3205 }
50d0a0f9
GH
3206 }
3207
18068523
GOC
3208 local_irq_restore(flags);
3209
0d6dd2ff 3210 /* With all the info we got, fill in the values */
18068523 3211
938c8745 3212 if (kvm_caps.has_tsc_control)
62711e5a 3213 tgt_tsc_khz = kvm_scale_tsc(tgt_tsc_khz,
fe3eb504 3214 v->arch.l1_tsc_scaling_ratio);
78db6a50
PB
3215
3216 if (unlikely(vcpu->hw_tsc_khz != tgt_tsc_khz)) {
3ae13faa 3217 kvm_get_time_scale(NSEC_PER_SEC, tgt_tsc_khz * 1000LL,
5f4e3f88
ZA
3218 &vcpu->hv_clock.tsc_shift,
3219 &vcpu->hv_clock.tsc_to_system_mul);
78db6a50 3220 vcpu->hw_tsc_khz = tgt_tsc_khz;
f422f853 3221 kvm_xen_update_tsc_info(v);
8cfdc000
ZA
3222 }
3223
1d5f066e 3224 vcpu->hv_clock.tsc_timestamp = tsc_timestamp;
759379dd 3225 vcpu->hv_clock.system_time = kernel_ns + v->kvm->arch.kvmclock_offset;
28e4639a 3226 vcpu->last_guest_tsc = tsc_timestamp;
51d59c6b 3227
d828199e 3228 /* If the host uses TSC clocksource, then it is stable */
0d6dd2ff 3229 pvclock_flags = 0;
d828199e
MT
3230 if (use_master_clock)
3231 pvclock_flags |= PVCLOCK_TSC_STABLE_BIT;
3232
78c0337a
MT
3233 vcpu->hv_clock.flags = pvclock_flags;
3234
916d3608
DW
3235 if (vcpu->pv_time.active)
3236 kvm_setup_guest_pvclock(v, &vcpu->pv_time, 0);
7caf9571
DW
3237 if (vcpu->xen.vcpu_info_cache.active)
3238 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_info_cache,
3239 offsetof(struct compat_vcpu_info, time));
69d413cf
DW
3240 if (vcpu->xen.vcpu_time_info_cache.active)
3241 kvm_setup_guest_pvclock(v, &vcpu->xen.vcpu_time_info_cache, 0);
42dcbe7d 3242 kvm_hv_setup_tsc_page(v->kvm, &vcpu->hv_clock);
8cfdc000 3243 return 0;
c8076604
GH
3244}
3245
0061d53d
MT
3246/*
3247 * kvmclock updates which are isolated to a given vcpu, such as
3248 * vcpu->cpu migration, should not allow system_timestamp from
3249 * the rest of the vcpus to remain static. Otherwise ntp frequency
3250 * correction applies to one vcpu's system_timestamp but not
3251 * the others.
3252 *
3253 * So in those cases, request a kvmclock update for all vcpus.
7e44e449
AJ
3254 * We need to rate-limit these requests though, as they can
3255 * considerably slow guests that have a large number of vcpus.
3256 * The time for a remote vcpu to update its kvmclock is bound
3257 * by the delay we use to rate-limit the updates.
0061d53d
MT
3258 */
3259
7e44e449
AJ
3260#define KVMCLOCK_UPDATE_DELAY msecs_to_jiffies(100)
3261
3262static void kvmclock_update_fn(struct work_struct *work)
0061d53d 3263{
46808a4c 3264 unsigned long i;
7e44e449
AJ
3265 struct delayed_work *dwork = to_delayed_work(work);
3266 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3267 kvmclock_update_work);
3268 struct kvm *kvm = container_of(ka, struct kvm, arch);
0061d53d
MT
3269 struct kvm_vcpu *vcpu;
3270
3271 kvm_for_each_vcpu(i, vcpu, kvm) {
105b21bb 3272 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0061d53d
MT
3273 kvm_vcpu_kick(vcpu);
3274 }
3275}
3276
7e44e449
AJ
3277static void kvm_gen_kvmclock_update(struct kvm_vcpu *v)
3278{
3279 struct kvm *kvm = v->kvm;
3280
105b21bb 3281 kvm_make_request(KVM_REQ_CLOCK_UPDATE, v);
7e44e449
AJ
3282 schedule_delayed_work(&kvm->arch.kvmclock_update_work,
3283 KVMCLOCK_UPDATE_DELAY);
3284}
3285
332967a3
AJ
3286#define KVMCLOCK_SYNC_PERIOD (300 * HZ)
3287
3288static void kvmclock_sync_fn(struct work_struct *work)
3289{
3290 struct delayed_work *dwork = to_delayed_work(work);
3291 struct kvm_arch *ka = container_of(dwork, struct kvm_arch,
3292 kvmclock_sync_work);
3293 struct kvm *kvm = container_of(ka, struct kvm, arch);
3294
630994b3
MT
3295 if (!kvmclock_periodic_sync)
3296 return;
3297
332967a3
AJ
3298 schedule_delayed_work(&kvm->arch.kvmclock_update_work, 0);
3299 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
3300 KVMCLOCK_SYNC_PERIOD);
3301}
3302
281b5278
JW
3303/* These helpers are safe iff @msr is known to be an MCx bank MSR. */
3304static bool is_mci_control_msr(u32 msr)
3305{
3306 return (msr & 3) == 0;
3307}
3308static bool is_mci_status_msr(u32 msr)
3309{
3310 return (msr & 3) == 1;
3311}
3312
191c8137
BP
3313/*
3314 * On AMD, HWCR[McStatusWrEn] controls whether setting MCi_STATUS results in #GP.
3315 */
3316static bool can_set_mci_status(struct kvm_vcpu *vcpu)
3317{
3318 /* McStatusWrEn enabled? */
23493d0a 3319 if (guest_cpuid_is_amd_or_hygon(vcpu))
191c8137
BP
3320 return !!(vcpu->arch.msr_hwcr & BIT_ULL(18));
3321
3322 return false;
3323}
3324
9ffd986c 3325static int set_msr_mce(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 3326{
890ca9ae
HY
3327 u64 mcg_cap = vcpu->arch.mcg_cap;
3328 unsigned bank_num = mcg_cap & 0xff;
9ffd986c
WL
3329 u32 msr = msr_info->index;
3330 u64 data = msr_info->data;
281b5278 3331 u32 offset, last_msr;
890ca9ae 3332
15c4a640 3333 switch (msr) {
15c4a640 3334 case MSR_IA32_MCG_STATUS:
890ca9ae 3335 vcpu->arch.mcg_status = data;
15c4a640 3336 break;
c7ac679c 3337 case MSR_IA32_MCG_CTL:
44883f01
PB
3338 if (!(mcg_cap & MCG_CTL_P) &&
3339 (data || !msr_info->host_initiated))
890ca9ae
HY
3340 return 1;
3341 if (data != 0 && data != ~(u64)0)
44883f01 3342 return 1;
890ca9ae
HY
3343 vcpu->arch.mcg_ctl = data;
3344 break;
281b5278
JW
3345 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
3346 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
3347 if (msr > last_msr)
3348 return 1;
191c8137 3349
281b5278
JW
3350 if (!(mcg_cap & MCG_CMCI_P) && (data || !msr_info->host_initiated))
3351 return 1;
3352 /* An attempt to write a 1 to a reserved bit raises #GP */
3353 if (data & ~(MCI_CTL2_CMCI_EN | MCI_CTL2_CMCI_THRESHOLD_MASK))
3354 return 1;
3355 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
3356 last_msr + 1 - MSR_IA32_MC0_CTL2);
3357 vcpu->arch.mci_ctl2_banks[offset] = data;
3358 break;
3359 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
3360 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
3361 if (msr > last_msr)
3362 return 1;
3363
3364 /*
3365 * Only 0 or all 1s can be written to IA32_MCi_CTL, all other
3366 * values are architecturally undefined. But, some Linux
3367 * kernels clear bit 10 in bank 4 to workaround a BIOS/GART TLB
3368 * issue on AMD K8s, allow bit 10 to be clear when setting all
3369 * other bits in order to avoid an uncaught #GP in the guest.
f5223a33
SC
3370 *
3371 * UNIXWARE clears bit 0 of MC1_CTL to ignore correctable,
3372 * single-bit ECC data errors.
281b5278
JW
3373 */
3374 if (is_mci_control_msr(msr) &&
3375 data != 0 && (data | (1 << 10) | 1) != ~(u64)0)
3376 return 1;
191c8137 3377
281b5278
JW
3378 /*
3379 * All CPUs allow writing 0 to MCi_STATUS MSRs to clear the MSR.
3380 * AMD-based CPUs allow non-zero values, but if and only if
3381 * HWCR[McStatusWrEn] is set.
3382 */
3383 if (!msr_info->host_initiated && is_mci_status_msr(msr) &&
3384 data != 0 && !can_set_mci_status(vcpu))
3385 return 1;
3386
3387 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
3388 last_msr + 1 - MSR_IA32_MC0_CTL);
3389 vcpu->arch.mce_banks[offset] = data;
3390 break;
3391 default:
890ca9ae
HY
3392 return 1;
3393 }
3394 return 0;
3395}
3396
2635b5c4
VK
3397static inline bool kvm_pv_async_pf_enabled(struct kvm_vcpu *vcpu)
3398{
3399 u64 mask = KVM_ASYNC_PF_ENABLED | KVM_ASYNC_PF_DELIVERY_AS_INT;
3400
3401 return (vcpu->arch.apf.msr_en_val & mask) == mask;
3402}
3403
344d9588
GN
3404static int kvm_pv_enable_async_pf(struct kvm_vcpu *vcpu, u64 data)
3405{
3406 gpa_t gpa = data & ~0x3f;
3407
2635b5c4
VK
3408 /* Bits 4:5 are reserved, Should be zero */
3409 if (data & 0x30)
344d9588
GN
3410 return 1;
3411
66570e96
OU
3412 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_VMEXIT) &&
3413 (data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT))
3414 return 1;
3415
3416 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT) &&
3417 (data & KVM_ASYNC_PF_DELIVERY_AS_INT))
3418 return 1;
3419
9d3c447c 3420 if (!lapic_in_kernel(vcpu))
d831de17 3421 return data ? 1 : 0;
9d3c447c 3422
2635b5c4 3423 vcpu->arch.apf.msr_en_val = data;
344d9588 3424
2635b5c4 3425 if (!kvm_pv_async_pf_enabled(vcpu)) {
344d9588
GN
3426 kvm_clear_async_pf_completion_queue(vcpu);
3427 kvm_async_pf_hash_reset(vcpu);
3428 return 0;
3429 }
3430
4e335d9e 3431 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, &vcpu->arch.apf.data, gpa,
68fd66f1 3432 sizeof(u64)))
344d9588
GN
3433 return 1;
3434
6adba527 3435 vcpu->arch.apf.send_user_only = !(data & KVM_ASYNC_PF_SEND_ALWAYS);
52a5c155 3436 vcpu->arch.apf.delivery_as_pf_vmexit = data & KVM_ASYNC_PF_DELIVERY_AS_PF_VMEXIT;
2635b5c4 3437
344d9588 3438 kvm_async_pf_wakeup_all(vcpu);
2635b5c4
VK
3439
3440 return 0;
3441}
3442
3443static int kvm_pv_enable_async_pf_int(struct kvm_vcpu *vcpu, u64 data)
3444{
3445 /* Bits 8-63 are reserved */
3446 if (data >> 8)
3447 return 1;
3448
3449 if (!lapic_in_kernel(vcpu))
3450 return 1;
3451
3452 vcpu->arch.apf.msr_int_val = data;
3453
3454 vcpu->arch.apf.vec = data & KVM_ASYNC_PF_VEC_MASK;
3455
344d9588
GN
3456 return 0;
3457}
3458
12f9a48f
GC
3459static void kvmclock_reset(struct kvm_vcpu *vcpu)
3460{
8c82a0b3 3461 kvm_gpc_deactivate(&vcpu->arch.pv_time);
49dedf0d 3462 vcpu->arch.time = 0;
12f9a48f
GC
3463}
3464
7780938c 3465static void kvm_vcpu_flush_tlb_all(struct kvm_vcpu *vcpu)
f38a7b75
WL
3466{
3467 ++vcpu->stat.tlb_flush;
e27bc044 3468 static_call(kvm_x86_flush_tlb_all)(vcpu);
e94cea09
SC
3469
3470 /* Flushing all ASIDs flushes the current ASID... */
3471 kvm_clear_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
f38a7b75
WL
3472}
3473
0baedd79
VK
3474static void kvm_vcpu_flush_tlb_guest(struct kvm_vcpu *vcpu)
3475{
3476 ++vcpu->stat.tlb_flush;
b53e84ee
LJ
3477
3478 if (!tdp_enabled) {
61b05a9f 3479 /*
b53e84ee
LJ
3480 * A TLB flush on behalf of the guest is equivalent to
3481 * INVPCID(all), toggling CR4.PGE, etc., which requires
61b05a9f
LJ
3482 * a forced sync of the shadow page tables. Ensure all the
3483 * roots are synced and the guest TLB in hardware is clean.
b53e84ee 3484 */
61b05a9f
LJ
3485 kvm_mmu_sync_roots(vcpu);
3486 kvm_mmu_sync_prev_roots(vcpu);
b53e84ee
LJ
3487 }
3488
e27bc044 3489 static_call(kvm_x86_flush_tlb_guest)(vcpu);
adc43caa
VK
3490
3491 /*
3492 * Flushing all "guest" TLB is always a superset of Hyper-V's fine
3493 * grained flushing.
3494 */
0823570f 3495 kvm_hv_vcpu_purge_flush_tlb(vcpu);
0baedd79
VK
3496}
3497
40e5f908
SC
3498
3499static inline void kvm_vcpu_flush_tlb_current(struct kvm_vcpu *vcpu)
3500{
3501 ++vcpu->stat.tlb_flush;
e27bc044 3502 static_call(kvm_x86_flush_tlb_current)(vcpu);
40e5f908
SC
3503}
3504
3505/*
3506 * Service "local" TLB flush requests, which are specific to the current MMU
3507 * context. In addition to the generic event handling in vcpu_enter_guest(),
3508 * TLB flushes that are targeted at an MMU context also need to be serviced
3509 * prior before nested VM-Enter/VM-Exit.
3510 */
3511void kvm_service_local_tlb_flush_requests(struct kvm_vcpu *vcpu)
3512{
3513 if (kvm_check_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu))
3514 kvm_vcpu_flush_tlb_current(vcpu);
3515
3516 if (kvm_check_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu))
3517 kvm_vcpu_flush_tlb_guest(vcpu);
3518}
3519EXPORT_SYMBOL_GPL(kvm_service_local_tlb_flush_requests);
3520
c9aaa895
GC
3521static void record_steal_time(struct kvm_vcpu *vcpu)
3522{
7e2175eb
DW
3523 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
3524 struct kvm_steal_time __user *st;
3525 struct kvm_memslots *slots;
901d3765 3526 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
7e2175eb
DW
3527 u64 steal;
3528 u32 version;
b0431382 3529
30b5c851
DW
3530 if (kvm_xen_msr_enabled(vcpu->kvm)) {
3531 kvm_xen_runstate_set_running(vcpu);
3532 return;
3533 }
3534
c9aaa895
GC
3535 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
3536 return;
3537
7e2175eb 3538 if (WARN_ON_ONCE(current->mm != vcpu->kvm->mm))
c9aaa895
GC
3539 return;
3540
7e2175eb
DW
3541 slots = kvm_memslots(vcpu->kvm);
3542
3543 if (unlikely(slots->generation != ghc->generation ||
901d3765 3544 gpa != ghc->gpa ||
7e2175eb 3545 kvm_is_error_hva(ghc->hva) || !ghc->memslot)) {
7e2175eb
DW
3546 /* We rely on the fact that it fits in a single page. */
3547 BUILD_BUG_ON((sizeof(*st) - 1) & KVM_STEAL_VALID_BITS);
3548
901d3765 3549 if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, gpa, sizeof(*st)) ||
7e2175eb
DW
3550 kvm_is_error_hva(ghc->hva) || !ghc->memslot)
3551 return;
3552 }
3553
3554 st = (struct kvm_steal_time __user *)ghc->hva;
f38a7b75
WL
3555 /*
3556 * Doing a TLB flush here, on the guest's behalf, can avoid
3557 * expensive IPIs.
3558 */
66570e96 3559 if (guest_pv_has(vcpu, KVM_FEATURE_PV_TLB_FLUSH)) {
7e2175eb
DW
3560 u8 st_preempted = 0;
3561 int err = -EFAULT;
3562
3e067fd8
PB
3563 if (!user_access_begin(st, sizeof(*st)))
3564 return;
3565
7e2175eb
DW
3566 asm volatile("1: xchgb %0, %2\n"
3567 "xor %1, %1\n"
3568 "2:\n"
3569 _ASM_EXTABLE_UA(1b, 2b)
964b7aa0
DW
3570 : "+q" (st_preempted),
3571 "+&r" (err),
3572 "+m" (st->preempted));
7e2175eb
DW
3573 if (err)
3574 goto out;
3575
3576 user_access_end();
3577
3578 vcpu->arch.st.preempted = 0;
af3511ff 3579
66570e96 3580 trace_kvm_pv_tlb_flush(vcpu->vcpu_id,
af3511ff
LJ
3581 st_preempted & KVM_VCPU_FLUSH_TLB);
3582 if (st_preempted & KVM_VCPU_FLUSH_TLB)
66570e96 3583 kvm_vcpu_flush_tlb_guest(vcpu);
7e2175eb
DW
3584
3585 if (!user_access_begin(st, sizeof(*st)))
3586 goto dirty;
1eff0ada 3587 } else {
3e067fd8
PB
3588 if (!user_access_begin(st, sizeof(*st)))
3589 return;
3590
7e2175eb
DW
3591 unsafe_put_user(0, &st->preempted, out);
3592 vcpu->arch.st.preempted = 0;
66570e96 3593 }
0b9f6c46 3594
7e2175eb
DW
3595 unsafe_get_user(version, &st->version, out);
3596 if (version & 1)
3597 version += 1; /* first time write, random junk */
35f3fae1 3598
7e2175eb
DW
3599 version += 1;
3600 unsafe_put_user(version, &st->version, out);
35f3fae1
WL
3601
3602 smp_wmb();
3603
7e2175eb
DW
3604 unsafe_get_user(steal, &st->steal, out);
3605 steal += current->sched_info.run_delay -
c54cdf14
LC
3606 vcpu->arch.st.last_steal;
3607 vcpu->arch.st.last_steal = current->sched_info.run_delay;
7e2175eb 3608 unsafe_put_user(steal, &st->steal, out);
35f3fae1 3609
7e2175eb
DW
3610 version += 1;
3611 unsafe_put_user(version, &st->version, out);
35f3fae1 3612
7e2175eb
DW
3613 out:
3614 user_access_end();
3615 dirty:
3616 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
c9aaa895
GC
3617}
3618
2de154f5
SC
3619static bool kvm_is_msr_to_save(u32 msr_index)
3620{
3621 unsigned int i;
3622
3623 for (i = 0; i < num_msrs_to_save; i++) {
3624 if (msrs_to_save[i] == msr_index)
3625 return true;
3626 }
3627
3628 return false;
3629}
3630
8fe8ab46 3631int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
15c4a640 3632{
8fe8ab46
WA
3633 u32 msr = msr_info->index;
3634 u64 data = msr_info->data;
5753785f 3635
1232f8e6 3636 if (msr && msr == vcpu->kvm->arch.xen_hvm_config.msr)
23200b7a 3637 return kvm_xen_write_hypercall_page(vcpu, data);
1232f8e6 3638
15c4a640 3639 switch (msr) {
2e32b719 3640 case MSR_AMD64_NB_CFG:
2e32b719
BP
3641 case MSR_IA32_UCODE_WRITE:
3642 case MSR_VM_HSAVE_PA:
3643 case MSR_AMD64_PATCH_LOADER:
3644 case MSR_AMD64_BU_CFG2:
405a353a 3645 case MSR_AMD64_DC_CFG:
0e1b869f 3646 case MSR_F15H_EX_CFG:
2e32b719
BP
3647 break;
3648
518e7b94
WL
3649 case MSR_IA32_UCODE_REV:
3650 if (msr_info->host_initiated)
3651 vcpu->arch.microcode_version = data;
3652 break;
0cf9135b
SC
3653 case MSR_IA32_ARCH_CAPABILITIES:
3654 if (!msr_info->host_initiated)
3655 return 1;
3656 vcpu->arch.arch_capabilities = data;
3657 break;
686e0f03 3658 case MSR_IA32_PERF_CAPABILITIES:
d574c539
VK
3659 if (!msr_info->host_initiated)
3660 return 1;
686e0f03 3661 if (data & ~kvm_caps.supported_perf_cap)
d574c539
VK
3662 return 1;
3663
3a6de51a
SC
3664 /*
3665 * Note, this is not just a performance optimization! KVM
3666 * disallows changing feature MSRs after the vCPU has run; PMU
3667 * refresh will bug the VM if called after the vCPU has run.
3668 */
3669 if (vcpu->arch.perf_capabilities == data)
3670 break;
3671
d574c539 3672 vcpu->arch.perf_capabilities = data;
17a024a8 3673 kvm_pmu_refresh(vcpu);
3a6de51a 3674 break;
903358c7
SC
3675 case MSR_IA32_PRED_CMD:
3676 if (!msr_info->host_initiated && !guest_has_pred_cmd_msr(vcpu))
3677 return 1;
3678
3679 if (!boot_cpu_has(X86_FEATURE_IBPB) || (data & ~PRED_CMD_IBPB))
3680 return 1;
3681 if (!data)
3682 break;
3683
3684 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3685 break;
da3db168
SC
3686 case MSR_IA32_FLUSH_CMD:
3687 if (!msr_info->host_initiated &&
3688 !guest_cpuid_has(vcpu, X86_FEATURE_FLUSH_L1D))
3689 return 1;
3690
3691 if (!boot_cpu_has(X86_FEATURE_FLUSH_L1D) || (data & ~L1D_FLUSH))
3692 return 1;
3693 if (!data)
3694 break;
3695
3696 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
3697 break;
15c4a640 3698 case MSR_EFER:
11988499 3699 return set_efer(vcpu, msr_info);
8f1589d9
AP
3700 case MSR_K7_HWCR:
3701 data &= ~(u64)0x40; /* ignore flush filter disable */
82494028 3702 data &= ~(u64)0x100; /* ignore ignne emulation enable */
a223c313 3703 data &= ~(u64)0x8; /* ignore TLB cache disable */
191c8137
BP
3704
3705 /* Handle McStatusWrEn */
3706 if (data == BIT_ULL(18)) {
3707 vcpu->arch.msr_hwcr = data;
3708 } else if (data != 0) {
e76ae527 3709 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
8f1589d9
AP
3710 return 1;
3711 }
15c4a640 3712 break;
f7c6d140
AP
3713 case MSR_FAM10H_MMIO_CONF_BASE:
3714 if (data != 0) {
e76ae527 3715 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
f7c6d140
AP
3716 return 1;
3717 }
15c4a640 3718 break;
34a83dea 3719 case MSR_IA32_CR_PAT:
bc7fe2f0
SC
3720 if (!kvm_pat_valid(data))
3721 return 1;
3722
3723 vcpu->arch.pat = data;
3724 break;
34a83dea
SC
3725 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
3726 case MSR_MTRRdefType:
ff53604b 3727 return kvm_mtrr_set_msr(vcpu, msr, data);
15c4a640 3728 case MSR_IA32_APICBASE:
58cb628d 3729 return kvm_set_apic_base(vcpu, msr_info);
bf10bd0b 3730 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
0105d1a5 3731 return kvm_x2apic_msr_write(vcpu, msr, data);
09141ec0 3732 case MSR_IA32_TSC_DEADLINE:
a3e06bbe
LJ
3733 kvm_set_lapic_tscdeadline_msr(vcpu, data);
3734 break;
ba904635 3735 case MSR_IA32_TSC_ADJUST:
d6321d49 3736 if (guest_cpuid_has(vcpu, X86_FEATURE_TSC_ADJUST)) {
ba904635 3737 if (!msr_info->host_initiated) {
d913b904 3738 s64 adj = data - vcpu->arch.ia32_tsc_adjust_msr;
d7add054 3739 adjust_tsc_offset_guest(vcpu, adj);
d9130a2d
ZD
3740 /* Before back to guest, tsc_timestamp must be adjusted
3741 * as well, otherwise guest's percpu pvclock time could jump.
3742 */
3743 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
ba904635
WA
3744 }
3745 vcpu->arch.ia32_tsc_adjust_msr = data;
3746 }
3747 break;
bef6ecca
LX
3748 case MSR_IA32_MISC_ENABLE: {
3749 u64 old_val = vcpu->arch.ia32_misc_enable_msr;
d1055173 3750
9fc22296
SC
3751 if (!msr_info->host_initiated) {
3752 /* RO bits */
3753 if ((old_val ^ data) & MSR_IA32_MISC_ENABLE_PMU_RO_MASK)
3754 return 1;
3755
3756 /* R bits, i.e. writes are ignored, but don't fault. */
3757 data = data & ~MSR_IA32_MISC_ENABLE_EMON;
3758 data |= old_val & MSR_IA32_MISC_ENABLE_EMON;
3759 }
bef6ecca 3760
511a8556 3761 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT) &&
bef6ecca 3762 ((old_val ^ data) & MSR_IA32_MISC_ENABLE_MWAIT)) {
511a8556
WL
3763 if (!guest_cpuid_has(vcpu, X86_FEATURE_XMM3))
3764 return 1;
3765 vcpu->arch.ia32_misc_enable_msr = data;
aedbaf4f 3766 kvm_update_cpuid_runtime(vcpu);
511a8556
WL
3767 } else {
3768 vcpu->arch.ia32_misc_enable_msr = data;
3769 }
15c4a640 3770 break;
bef6ecca 3771 }
64d60670 3772 case MSR_IA32_SMBASE:
4b8e1b32 3773 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
64d60670
PB
3774 return 1;
3775 vcpu->arch.smbase = data;
3776 break;
73f624f4
PB
3777 case MSR_IA32_POWER_CTL:
3778 vcpu->arch.msr_ia32_power_ctl = data;
3779 break;
dd259935 3780 case MSR_IA32_TSC:
0c899c25
PB
3781 if (msr_info->host_initiated) {
3782 kvm_synchronize_tsc(vcpu, data);
3783 } else {
9b399dfd 3784 u64 adj = kvm_compute_l1_tsc_offset(vcpu, data) - vcpu->arch.l1_tsc_offset;
0c899c25
PB
3785 adjust_tsc_offset_guest(vcpu, adj);
3786 vcpu->arch.ia32_tsc_adjust_msr += adj;
3787 }
dd259935 3788 break;
864e2ab2
AL
3789 case MSR_IA32_XSS:
3790 if (!msr_info->host_initiated &&
3791 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3792 return 1;
3793 /*
a1bead2a
SC
3794 * KVM supports exposing PT to the guest, but does not support
3795 * IA32_XSS[bit 8]. Guests have to use RDMSR/WRMSR rather than
3796 * XSAVES/XRSTORS to save/restore PT MSRs.
864e2ab2 3797 */
938c8745 3798 if (data & ~kvm_caps.supported_xss)
864e2ab2
AL
3799 return 1;
3800 vcpu->arch.ia32_xss = data;
4c282e51 3801 kvm_update_cpuid_runtime(vcpu);
864e2ab2 3802 break;
52797bf9
LA
3803 case MSR_SMI_COUNT:
3804 if (!msr_info->host_initiated)
3805 return 1;
3806 vcpu->arch.smi_count = data;
3807 break;
11c6bffa 3808 case MSR_KVM_WALL_CLOCK_NEW:
66570e96
OU
3809 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3810 return 1;
3811
629b5348
JM
3812 vcpu->kvm->arch.wall_clock = data;
3813 kvm_write_wall_clock(vcpu->kvm, data, 0);
66570e96 3814 break;
18068523 3815 case MSR_KVM_WALL_CLOCK:
66570e96
OU
3816 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3817 return 1;
3818
629b5348
JM
3819 vcpu->kvm->arch.wall_clock = data;
3820 kvm_write_wall_clock(vcpu->kvm, data, 0);
18068523 3821 break;
11c6bffa 3822 case MSR_KVM_SYSTEM_TIME_NEW:
66570e96
OU
3823 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
3824 return 1;
3825
5b9bb0eb
OU
3826 kvm_write_system_time(vcpu, data, false, msr_info->host_initiated);
3827 break;
3828 case MSR_KVM_SYSTEM_TIME:
66570e96
OU
3829 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
3830 return 1;
3831
3832 kvm_write_system_time(vcpu, data, true, msr_info->host_initiated);
18068523 3833 break;
344d9588 3834 case MSR_KVM_ASYNC_PF_EN:
66570e96
OU
3835 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
3836 return 1;
3837
344d9588
GN
3838 if (kvm_pv_enable_async_pf(vcpu, data))
3839 return 1;
3840 break;
2635b5c4 3841 case MSR_KVM_ASYNC_PF_INT:
66570e96
OU
3842 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
3843 return 1;
3844
2635b5c4
VK
3845 if (kvm_pv_enable_async_pf_int(vcpu, data))
3846 return 1;
3847 break;
557a961a 3848 case MSR_KVM_ASYNC_PF_ACK:
0a31df68 3849 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
66570e96 3850 return 1;
557a961a
VK
3851 if (data & 0x1) {
3852 vcpu->arch.apf.pageready_pending = false;
3853 kvm_check_async_pf_completion(vcpu);
3854 }
3855 break;
c9aaa895 3856 case MSR_KVM_STEAL_TIME:
66570e96
OU
3857 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
3858 return 1;
c9aaa895
GC
3859
3860 if (unlikely(!sched_info_on()))
3861 return 1;
3862
3863 if (data & KVM_STEAL_RESERVED_MASK)
3864 return 1;
3865
c9aaa895
GC
3866 vcpu->arch.st.msr_val = data;
3867
3868 if (!(data & KVM_MSR_ENABLED))
3869 break;
3870
c9aaa895
GC
3871 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
3872
3873 break;
ae7a2a3f 3874 case MSR_KVM_PV_EOI_EN:
66570e96
OU
3875 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
3876 return 1;
3877
77c3323f 3878 if (kvm_lapic_set_pv_eoi(vcpu, data, sizeof(u8)))
ae7a2a3f
MT
3879 return 1;
3880 break;
c9aaa895 3881
2d5ba19b 3882 case MSR_KVM_POLL_CONTROL:
66570e96
OU
3883 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
3884 return 1;
3885
2d5ba19b
MT
3886 /* only enable bit supported */
3887 if (data & (-1ULL << 1))
3888 return 1;
3889
3890 vcpu->arch.msr_kvm_poll_control = data;
3891 break;
3892
890ca9ae
HY
3893 case MSR_IA32_MCG_CTL:
3894 case MSR_IA32_MCG_STATUS:
81760dcc 3895 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
281b5278 3896 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
9ffd986c 3897 return set_msr_mce(vcpu, msr_info);
71db6023 3898
6912ac32
WH
3899 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
3900 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
6912ac32
WH
3901 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
3902 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 3903 if (kvm_pmu_is_valid_msr(vcpu, msr))
afd80d85 3904 return kvm_pmu_set_msr(vcpu, msr_info);
5753785f 3905
e76ae527
SC
3906 if (data)
3907 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
5753785f 3908 break;
84e0cefa
JS
3909 case MSR_K7_CLK_CTL:
3910 /*
3911 * Ignore all writes to this no longer documented MSR.
3912 * Writes are only relevant for old K7 processors,
3913 * all pre-dating SVM, but a recommended workaround from
4a969980 3914 * AMD for these chips. It is possible to specify the
84e0cefa
JS
3915 * affected processor models on the command line, hence
3916 * the need to ignore the workaround.
3917 */
3918 break;
55cd8e5a 3919 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
f97f5a56
JD
3920 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
3921 case HV_X64_MSR_SYNDBG_OPTIONS:
e7d9513b
AS
3922 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
3923 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 3924 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
3925 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
3926 case HV_X64_MSR_TSC_EMULATION_CONTROL:
3927 case HV_X64_MSR_TSC_EMULATION_STATUS:
2be1bd3a 3928 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
e7d9513b
AS
3929 return kvm_hv_set_msr_common(vcpu, msr, data,
3930 msr_info->host_initiated);
91c9c3ed 3931 case MSR_IA32_BBL_CR_CTL3:
3932 /* Drop writes to this legacy MSR -- see rdmsr
3933 * counterpart for further detail.
3934 */
e76ae527 3935 kvm_pr_unimpl_wrmsr(vcpu, msr, data);
91c9c3ed 3936 break;
2b036c6b 3937 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 3938 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
3939 return 1;
3940 vcpu->arch.osvw.length = data;
3941 break;
3942 case MSR_AMD64_OSVW_STATUS:
d6321d49 3943 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b
BO
3944 return 1;
3945 vcpu->arch.osvw.status = data;
3946 break;
db2336a8
KH
3947 case MSR_PLATFORM_INFO:
3948 if (!msr_info->host_initiated ||
db2336a8
KH
3949 (!(data & MSR_PLATFORM_INFO_CPUID_FAULT) &&
3950 cpuid_fault_enabled(vcpu)))
3951 return 1;
3952 vcpu->arch.msr_platform_info = data;
3953 break;
3954 case MSR_MISC_FEATURES_ENABLES:
3955 if (data & ~MSR_MISC_FEATURES_ENABLES_CPUID_FAULT ||
3956 (data & MSR_MISC_FEATURES_ENABLES_CPUID_FAULT &&
3957 !supports_cpuid_fault(vcpu)))
3958 return 1;
3959 vcpu->arch.msr_misc_features_enables = data;
3960 break;
820a6ee9
JL
3961#ifdef CONFIG_X86_64
3962 case MSR_IA32_XFD:
3963 if (!msr_info->host_initiated &&
3964 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3965 return 1;
3966
988896bb 3967 if (data & ~kvm_guest_supported_xfd(vcpu))
820a6ee9
JL
3968 return 1;
3969
3970 fpu_update_guest_xfd(&vcpu->arch.guest_fpu, data);
3971 break;
548e8365
JL
3972 case MSR_IA32_XFD_ERR:
3973 if (!msr_info->host_initiated &&
3974 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
3975 return 1;
3976
988896bb 3977 if (data & ~kvm_guest_supported_xfd(vcpu))
548e8365
JL
3978 return 1;
3979
3980 vcpu->arch.guest_fpu.xfd_err = data;
3981 break;
820a6ee9 3982#endif
2de154f5 3983 default:
157fc497
SC
3984 if (kvm_pmu_is_valid_msr(vcpu, msr))
3985 return kvm_pmu_set_msr(vcpu, msr_info);
2de154f5 3986
157fc497
SC
3987 /*
3988 * Userspace is allowed to write '0' to MSRs that KVM reports
3989 * as to-be-saved, even if an MSRs isn't fully supported.
3990 */
2de154f5
SC
3991 if (msr_info->host_initiated && !data &&
3992 kvm_is_msr_to_save(msr))
3993 break;
3994
6abe9c13 3995 return KVM_MSR_RET_INVALID;
15c4a640
CO
3996 }
3997 return 0;
3998}
3999EXPORT_SYMBOL_GPL(kvm_set_msr_common);
4000
44883f01 4001static int get_msr_mce(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata, bool host)
15c4a640
CO
4002{
4003 u64 data;
890ca9ae
HY
4004 u64 mcg_cap = vcpu->arch.mcg_cap;
4005 unsigned bank_num = mcg_cap & 0xff;
281b5278 4006 u32 offset, last_msr;
15c4a640
CO
4007
4008 switch (msr) {
15c4a640
CO
4009 case MSR_IA32_P5_MC_ADDR:
4010 case MSR_IA32_P5_MC_TYPE:
890ca9ae
HY
4011 data = 0;
4012 break;
15c4a640 4013 case MSR_IA32_MCG_CAP:
890ca9ae
HY
4014 data = vcpu->arch.mcg_cap;
4015 break;
c7ac679c 4016 case MSR_IA32_MCG_CTL:
44883f01 4017 if (!(mcg_cap & MCG_CTL_P) && !host)
890ca9ae
HY
4018 return 1;
4019 data = vcpu->arch.mcg_ctl;
4020 break;
4021 case MSR_IA32_MCG_STATUS:
4022 data = vcpu->arch.mcg_status;
4023 break;
281b5278
JW
4024 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
4025 last_msr = MSR_IA32_MCx_CTL2(bank_num) - 1;
4026 if (msr > last_msr)
4027 return 1;
6ec4c5ee 4028
281b5278
JW
4029 if (!(mcg_cap & MCG_CMCI_P) && !host)
4030 return 1;
4031 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL2,
4032 last_msr + 1 - MSR_IA32_MC0_CTL2);
4033 data = vcpu->arch.mci_ctl2_banks[offset];
4034 break;
4035 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
4036 last_msr = MSR_IA32_MCx_CTL(bank_num) - 1;
4037 if (msr > last_msr)
4038 return 1;
4039
4040 offset = array_index_nospec(msr - MSR_IA32_MC0_CTL,
4041 last_msr + 1 - MSR_IA32_MC0_CTL);
4042 data = vcpu->arch.mce_banks[offset];
4043 break;
4044 default:
890ca9ae
HY
4045 return 1;
4046 }
4047 *pdata = data;
4048 return 0;
4049}
4050
609e36d3 4051int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
890ca9ae 4052{
609e36d3 4053 switch (msr_info->index) {
890ca9ae 4054 case MSR_IA32_PLATFORM_ID:
15c4a640 4055 case MSR_IA32_EBL_CR_POWERON:
b5e2fec0
AG
4056 case MSR_IA32_LASTBRANCHFROMIP:
4057 case MSR_IA32_LASTBRANCHTOIP:
4058 case MSR_IA32_LASTINTFROMIP:
4059 case MSR_IA32_LASTINTTOIP:
059e5c32 4060 case MSR_AMD64_SYSCFG:
3afb1121
PB
4061 case MSR_K8_TSEG_ADDR:
4062 case MSR_K8_TSEG_MASK:
61a6bd67 4063 case MSR_VM_HSAVE_PA:
1fdbd48c 4064 case MSR_K8_INT_PENDING_MSG:
c323c0e5 4065 case MSR_AMD64_NB_CFG:
f7c6d140 4066 case MSR_FAM10H_MMIO_CONF_BASE:
2e32b719 4067 case MSR_AMD64_BU_CFG2:
0c2df2a1 4068 case MSR_IA32_PERF_CTL:
405a353a 4069 case MSR_AMD64_DC_CFG:
0e1b869f 4070 case MSR_F15H_EX_CFG:
2ca1a06a
VS
4071 /*
4072 * Intel Sandy Bridge CPUs must support the RAPL (running average power
4073 * limit) MSRs. Just return 0, as we do not want to expose the host
4074 * data here. Do not conditionalize this on CPUID, as KVM does not do
4075 * so for existing CPU-specific MSRs.
4076 */
4077 case MSR_RAPL_POWER_UNIT:
4078 case MSR_PP0_ENERGY_STATUS: /* Power plane 0 (core) */
4079 case MSR_PP1_ENERGY_STATUS: /* Power plane 1 (graphics uncore) */
4080 case MSR_PKG_ENERGY_STATUS: /* Total package */
4081 case MSR_DRAM_ENERGY_STATUS: /* DRAM controller */
609e36d3 4082 msr_info->data = 0;
15c4a640 4083 break;
6912ac32
WH
4084 case MSR_K7_EVNTSEL0 ... MSR_K7_EVNTSEL3:
4085 case MSR_K7_PERFCTR0 ... MSR_K7_PERFCTR3:
4086 case MSR_P6_PERFCTR0 ... MSR_P6_PERFCTR1:
4087 case MSR_P6_EVNTSEL0 ... MSR_P6_EVNTSEL1:
c6702c9d 4088 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
cbd71758 4089 return kvm_pmu_get_msr(vcpu, msr_info);
609e36d3 4090 msr_info->data = 0;
5753785f 4091 break;
742bc670 4092 case MSR_IA32_UCODE_REV:
518e7b94 4093 msr_info->data = vcpu->arch.microcode_version;
742bc670 4094 break;
0cf9135b
SC
4095 case MSR_IA32_ARCH_CAPABILITIES:
4096 if (!msr_info->host_initiated &&
4097 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
4098 return 1;
4099 msr_info->data = vcpu->arch.arch_capabilities;
4100 break;
d574c539
VK
4101 case MSR_IA32_PERF_CAPABILITIES:
4102 if (!msr_info->host_initiated &&
4103 !guest_cpuid_has(vcpu, X86_FEATURE_PDCM))
4104 return 1;
4105 msr_info->data = vcpu->arch.perf_capabilities;
4106 break;
73f624f4
PB
4107 case MSR_IA32_POWER_CTL:
4108 msr_info->data = vcpu->arch.msr_ia32_power_ctl;
4109 break;
cc5b54dd
ML
4110 case MSR_IA32_TSC: {
4111 /*
4112 * Intel SDM states that MSR_IA32_TSC read adds the TSC offset
4113 * even when not intercepted. AMD manual doesn't explicitly
4114 * state this but appears to behave the same.
4115 *
ee6fa053 4116 * On userspace reads and writes, however, we unconditionally
c0623f5e 4117 * return L1's TSC value to ensure backwards-compatible
ee6fa053 4118 * behavior for migration.
cc5b54dd 4119 */
fe3eb504 4120 u64 offset, ratio;
cc5b54dd 4121
fe3eb504
IS
4122 if (msr_info->host_initiated) {
4123 offset = vcpu->arch.l1_tsc_offset;
4124 ratio = vcpu->arch.l1_tsc_scaling_ratio;
4125 } else {
4126 offset = vcpu->arch.tsc_offset;
4127 ratio = vcpu->arch.tsc_scaling_ratio;
4128 }
4129
62711e5a 4130 msr_info->data = kvm_scale_tsc(rdtsc(), ratio) + offset;
dd259935 4131 break;
cc5b54dd 4132 }
34a83dea 4133 case MSR_IA32_CR_PAT:
bc7fe2f0
SC
4134 msr_info->data = vcpu->arch.pat;
4135 break;
9ba075a6 4136 case MSR_MTRRcap:
34a83dea
SC
4137 case MTRRphysBase_MSR(0) ... MSR_MTRRfix4K_F8000:
4138 case MSR_MTRRdefType:
ff53604b 4139 return kvm_mtrr_get_msr(vcpu, msr_info->index, &msr_info->data);
15c4a640 4140 case 0xcd: /* fsb frequency */
609e36d3 4141 msr_info->data = 3;
15c4a640 4142 break;
7b914098
JS
4143 /*
4144 * MSR_EBC_FREQUENCY_ID
4145 * Conservative value valid for even the basic CPU models.
4146 * Models 0,1: 000 in bits 23:21 indicating a bus speed of
4147 * 100MHz, model 2 000 in bits 18:16 indicating 100MHz,
4148 * and 266MHz for model 3, or 4. Set Core Clock
4149 * Frequency to System Bus Frequency Ratio to 1 (bits
4150 * 31:24) even though these are only valid for CPU
4151 * models > 2, however guests may end up dividing or
4152 * multiplying by zero otherwise.
4153 */
4154 case MSR_EBC_FREQUENCY_ID:
609e36d3 4155 msr_info->data = 1 << 24;
7b914098 4156 break;
15c4a640 4157 case MSR_IA32_APICBASE:
609e36d3 4158 msr_info->data = kvm_get_apic_base(vcpu);
15c4a640 4159 break;
bf10bd0b 4160 case APIC_BASE_MSR ... APIC_BASE_MSR + 0xff:
609e36d3 4161 return kvm_x2apic_msr_read(vcpu, msr_info->index, &msr_info->data);
09141ec0 4162 case MSR_IA32_TSC_DEADLINE:
609e36d3 4163 msr_info->data = kvm_get_lapic_tscdeadline_msr(vcpu);
a3e06bbe 4164 break;
ba904635 4165 case MSR_IA32_TSC_ADJUST:
609e36d3 4166 msr_info->data = (u64)vcpu->arch.ia32_tsc_adjust_msr;
ba904635 4167 break;
15c4a640 4168 case MSR_IA32_MISC_ENABLE:
609e36d3 4169 msr_info->data = vcpu->arch.ia32_misc_enable_msr;
15c4a640 4170 break;
64d60670 4171 case MSR_IA32_SMBASE:
4b8e1b32 4172 if (!IS_ENABLED(CONFIG_KVM_SMM) || !msr_info->host_initiated)
64d60670
PB
4173 return 1;
4174 msr_info->data = vcpu->arch.smbase;
15c4a640 4175 break;
52797bf9
LA
4176 case MSR_SMI_COUNT:
4177 msr_info->data = vcpu->arch.smi_count;
4178 break;
847f0ad8
AG
4179 case MSR_IA32_PERF_STATUS:
4180 /* TSC increment by tick */
609e36d3 4181 msr_info->data = 1000ULL;
847f0ad8 4182 /* CPU multiplier */
b0996ae4 4183 msr_info->data |= (((uint64_t)4ULL) << 40);
847f0ad8 4184 break;
15c4a640 4185 case MSR_EFER:
609e36d3 4186 msr_info->data = vcpu->arch.efer;
15c4a640 4187 break;
18068523 4188 case MSR_KVM_WALL_CLOCK:
1930e5dd
OU
4189 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4190 return 1;
4191
4192 msr_info->data = vcpu->kvm->arch.wall_clock;
4193 break;
11c6bffa 4194 case MSR_KVM_WALL_CLOCK_NEW:
1930e5dd
OU
4195 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4196 return 1;
4197
609e36d3 4198 msr_info->data = vcpu->kvm->arch.wall_clock;
18068523
GOC
4199 break;
4200 case MSR_KVM_SYSTEM_TIME:
1930e5dd
OU
4201 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE))
4202 return 1;
4203
4204 msr_info->data = vcpu->arch.time;
4205 break;
11c6bffa 4206 case MSR_KVM_SYSTEM_TIME_NEW:
1930e5dd
OU
4207 if (!guest_pv_has(vcpu, KVM_FEATURE_CLOCKSOURCE2))
4208 return 1;
4209
609e36d3 4210 msr_info->data = vcpu->arch.time;
18068523 4211 break;
344d9588 4212 case MSR_KVM_ASYNC_PF_EN:
1930e5dd
OU
4213 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF))
4214 return 1;
4215
2635b5c4
VK
4216 msr_info->data = vcpu->arch.apf.msr_en_val;
4217 break;
4218 case MSR_KVM_ASYNC_PF_INT:
1930e5dd
OU
4219 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
4220 return 1;
4221
2635b5c4 4222 msr_info->data = vcpu->arch.apf.msr_int_val;
344d9588 4223 break;
557a961a 4224 case MSR_KVM_ASYNC_PF_ACK:
0a31df68 4225 if (!guest_pv_has(vcpu, KVM_FEATURE_ASYNC_PF_INT))
1930e5dd
OU
4226 return 1;
4227
557a961a
VK
4228 msr_info->data = 0;
4229 break;
c9aaa895 4230 case MSR_KVM_STEAL_TIME:
1930e5dd
OU
4231 if (!guest_pv_has(vcpu, KVM_FEATURE_STEAL_TIME))
4232 return 1;
4233
609e36d3 4234 msr_info->data = vcpu->arch.st.msr_val;
c9aaa895 4235 break;
1d92128f 4236 case MSR_KVM_PV_EOI_EN:
1930e5dd
OU
4237 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_EOI))
4238 return 1;
4239
609e36d3 4240 msr_info->data = vcpu->arch.pv_eoi.msr_val;
1d92128f 4241 break;
2d5ba19b 4242 case MSR_KVM_POLL_CONTROL:
1930e5dd
OU
4243 if (!guest_pv_has(vcpu, KVM_FEATURE_POLL_CONTROL))
4244 return 1;
4245
2d5ba19b
MT
4246 msr_info->data = vcpu->arch.msr_kvm_poll_control;
4247 break;
890ca9ae
HY
4248 case MSR_IA32_P5_MC_ADDR:
4249 case MSR_IA32_P5_MC_TYPE:
4250 case MSR_IA32_MCG_CAP:
4251 case MSR_IA32_MCG_CTL:
4252 case MSR_IA32_MCG_STATUS:
81760dcc 4253 case MSR_IA32_MC0_CTL ... MSR_IA32_MCx_CTL(KVM_MAX_MCE_BANKS) - 1:
281b5278 4254 case MSR_IA32_MC0_CTL2 ... MSR_IA32_MCx_CTL2(KVM_MAX_MCE_BANKS) - 1:
44883f01
PB
4255 return get_msr_mce(vcpu, msr_info->index, &msr_info->data,
4256 msr_info->host_initiated);
864e2ab2
AL
4257 case MSR_IA32_XSS:
4258 if (!msr_info->host_initiated &&
4259 !guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
4260 return 1;
4261 msr_info->data = vcpu->arch.ia32_xss;
4262 break;
84e0cefa
JS
4263 case MSR_K7_CLK_CTL:
4264 /*
4265 * Provide expected ramp-up count for K7. All other
4266 * are set to zero, indicating minimum divisors for
4267 * every field.
4268 *
4269 * This prevents guest kernels on AMD host with CPU
4270 * type 6, model 8 and higher from exploding due to
4271 * the rdmsr failing.
4272 */
609e36d3 4273 msr_info->data = 0x20000000;
84e0cefa 4274 break;
55cd8e5a 4275 case HV_X64_MSR_GUEST_OS_ID ... HV_X64_MSR_SINT15:
f97f5a56
JD
4276 case HV_X64_MSR_SYNDBG_CONTROL ... HV_X64_MSR_SYNDBG_PENDING_BUFFER:
4277 case HV_X64_MSR_SYNDBG_OPTIONS:
e7d9513b
AS
4278 case HV_X64_MSR_CRASH_P0 ... HV_X64_MSR_CRASH_P4:
4279 case HV_X64_MSR_CRASH_CTL:
1f4b34f8 4280 case HV_X64_MSR_STIMER0_CONFIG ... HV_X64_MSR_STIMER3_COUNT:
a2e164e7
VK
4281 case HV_X64_MSR_REENLIGHTENMENT_CONTROL:
4282 case HV_X64_MSR_TSC_EMULATION_CONTROL:
4283 case HV_X64_MSR_TSC_EMULATION_STATUS:
2be1bd3a 4284 case HV_X64_MSR_TSC_INVARIANT_CONTROL:
e83d5887 4285 return kvm_hv_get_msr_common(vcpu,
44883f01
PB
4286 msr_info->index, &msr_info->data,
4287 msr_info->host_initiated);
91c9c3ed 4288 case MSR_IA32_BBL_CR_CTL3:
4289 /* This legacy MSR exists but isn't fully documented in current
4290 * silicon. It is however accessed by winxp in very narrow
4291 * scenarios where it sets bit #19, itself documented as
4292 * a "reserved" bit. Best effort attempt to source coherent
4293 * read data here should the balance of the register be
4294 * interpreted by the guest:
4295 *
4296 * L2 cache control register 3: 64GB range, 256KB size,
4297 * enabled, latency 0x1, configured
4298 */
609e36d3 4299 msr_info->data = 0xbe702111;
91c9c3ed 4300 break;
2b036c6b 4301 case MSR_AMD64_OSVW_ID_LENGTH:
d6321d49 4302 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 4303 return 1;
609e36d3 4304 msr_info->data = vcpu->arch.osvw.length;
2b036c6b
BO
4305 break;
4306 case MSR_AMD64_OSVW_STATUS:
d6321d49 4307 if (!guest_cpuid_has(vcpu, X86_FEATURE_OSVW))
2b036c6b 4308 return 1;
609e36d3 4309 msr_info->data = vcpu->arch.osvw.status;
2b036c6b 4310 break;
db2336a8 4311 case MSR_PLATFORM_INFO:
6fbbde9a
DS
4312 if (!msr_info->host_initiated &&
4313 !vcpu->kvm->arch.guest_can_read_msr_platform_info)
4314 return 1;
db2336a8
KH
4315 msr_info->data = vcpu->arch.msr_platform_info;
4316 break;
4317 case MSR_MISC_FEATURES_ENABLES:
4318 msr_info->data = vcpu->arch.msr_misc_features_enables;
4319 break;
191c8137
BP
4320 case MSR_K7_HWCR:
4321 msr_info->data = vcpu->arch.msr_hwcr;
4322 break;
820a6ee9
JL
4323#ifdef CONFIG_X86_64
4324 case MSR_IA32_XFD:
4325 if (!msr_info->host_initiated &&
4326 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4327 return 1;
4328
4329 msr_info->data = vcpu->arch.guest_fpu.fpstate->xfd;
4330 break;
548e8365
JL
4331 case MSR_IA32_XFD_ERR:
4332 if (!msr_info->host_initiated &&
4333 !guest_cpuid_has(vcpu, X86_FEATURE_XFD))
4334 return 1;
4335
4336 msr_info->data = vcpu->arch.guest_fpu.xfd_err;
4337 break;
820a6ee9 4338#endif
15c4a640 4339 default:
c6702c9d 4340 if (kvm_pmu_is_valid_msr(vcpu, msr_info->index))
cbd71758 4341 return kvm_pmu_get_msr(vcpu, msr_info);
2de154f5
SC
4342
4343 /*
4344 * Userspace is allowed to read MSRs that KVM reports as
4345 * to-be-saved, even if an MSR isn't fully supported.
4346 */
4347 if (msr_info->host_initiated &&
4348 kvm_is_msr_to_save(msr_info->index)) {
4349 msr_info->data = 0;
4350 break;
4351 }
4352
6abe9c13 4353 return KVM_MSR_RET_INVALID;
15c4a640 4354 }
15c4a640
CO
4355 return 0;
4356}
4357EXPORT_SYMBOL_GPL(kvm_get_msr_common);
4358
313a3dc7
CO
4359/*
4360 * Read or write a bunch of msrs. All parameters are kernel addresses.
4361 *
4362 * @return number of msrs set successfully.
4363 */
4364static int __msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs *msrs,
4365 struct kvm_msr_entry *entries,
4366 int (*do_msr)(struct kvm_vcpu *vcpu,
4367 unsigned index, u64 *data))
4368{
801e459a 4369 int i;
313a3dc7 4370
313a3dc7
CO
4371 for (i = 0; i < msrs->nmsrs; ++i)
4372 if (do_msr(vcpu, entries[i].index, &entries[i].data))
4373 break;
4374
313a3dc7
CO
4375 return i;
4376}
4377
4378/*
4379 * Read or write a bunch of msrs. Parameters are user addresses.
4380 *
4381 * @return number of msrs set successfully.
4382 */
4383static int msr_io(struct kvm_vcpu *vcpu, struct kvm_msrs __user *user_msrs,
4384 int (*do_msr)(struct kvm_vcpu *vcpu,
4385 unsigned index, u64 *data),
4386 int writeback)
4387{
4388 struct kvm_msrs msrs;
4389 struct kvm_msr_entry *entries;
313a3dc7 4390 unsigned size;
e73ba25f 4391 int r;
313a3dc7
CO
4392
4393 r = -EFAULT;
0e96f31e 4394 if (copy_from_user(&msrs, user_msrs, sizeof(msrs)))
313a3dc7
CO
4395 goto out;
4396
4397 r = -E2BIG;
4398 if (msrs.nmsrs >= MAX_IO_MSRS)
4399 goto out;
4400
313a3dc7 4401 size = sizeof(struct kvm_msr_entry) * msrs.nmsrs;
ff5c2c03
SL
4402 entries = memdup_user(user_msrs->entries, size);
4403 if (IS_ERR(entries)) {
4404 r = PTR_ERR(entries);
313a3dc7 4405 goto out;
ff5c2c03 4406 }
313a3dc7 4407
e73ba25f 4408 r = __msr_io(vcpu, &msrs, entries, do_msr);
313a3dc7 4409
313a3dc7 4410 if (writeback && copy_to_user(user_msrs->entries, entries, size))
e73ba25f 4411 r = -EFAULT;
313a3dc7 4412
7a73c028 4413 kfree(entries);
313a3dc7
CO
4414out:
4415 return r;
4416}
4417
4d5422ce
WL
4418static inline bool kvm_can_mwait_in_guest(void)
4419{
4420 return boot_cpu_has(X86_FEATURE_MWAIT) &&
8e9b29b6
KA
4421 !boot_cpu_has_bug(X86_BUG_MONITOR) &&
4422 boot_cpu_has(X86_FEATURE_ARAT);
4d5422ce
WL
4423}
4424
c21d54f0
VK
4425static int kvm_ioctl_get_supported_hv_cpuid(struct kvm_vcpu *vcpu,
4426 struct kvm_cpuid2 __user *cpuid_arg)
4427{
4428 struct kvm_cpuid2 cpuid;
4429 int r;
4430
4431 r = -EFAULT;
4432 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
4433 return r;
4434
4435 r = kvm_get_hv_cpuid(vcpu, &cpuid, cpuid_arg->entries);
4436 if (r)
4437 return r;
4438
4439 r = -EFAULT;
4440 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
4441 return r;
4442
4443 return 0;
4444}
4445
784aa3d7 4446int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
018d00d2 4447{
4d5422ce 4448 int r = 0;
018d00d2
ZX
4449
4450 switch (ext) {
4451 case KVM_CAP_IRQCHIP:
4452 case KVM_CAP_HLT:
4453 case KVM_CAP_MMU_SHADOW_CACHE_CONTROL:
018d00d2 4454 case KVM_CAP_SET_TSS_ADDR:
07716717 4455 case KVM_CAP_EXT_CPUID:
9c15bb1d 4456 case KVM_CAP_EXT_EMUL_CPUID:
c8076604 4457 case KVM_CAP_CLOCKSOURCE:
7837699f 4458 case KVM_CAP_PIT:
a28e4f5a 4459 case KVM_CAP_NOP_IO_DELAY:
62d9f0db 4460 case KVM_CAP_MP_STATE:
ed848624 4461 case KVM_CAP_SYNC_MMU:
a355c85c 4462 case KVM_CAP_USER_NMI:
52d939a0 4463 case KVM_CAP_REINJECT_CONTROL:
4925663a 4464 case KVM_CAP_IRQ_INJECT_STATUS:
d34e6b17 4465 case KVM_CAP_IOEVENTFD:
f848a5a8 4466 case KVM_CAP_IOEVENTFD_NO_LENGTH:
c5ff41ce 4467 case KVM_CAP_PIT2:
e9f42757 4468 case KVM_CAP_PIT_STATE2:
b927a3ce 4469 case KVM_CAP_SET_IDENTITY_MAP_ADDR:
3cfc3092 4470 case KVM_CAP_VCPU_EVENTS:
55cd8e5a 4471 case KVM_CAP_HYPERV:
10388a07 4472 case KVM_CAP_HYPERV_VAPIC:
c25bc163 4473 case KVM_CAP_HYPERV_SPIN:
5c919412 4474 case KVM_CAP_HYPERV_SYNIC:
efc479e6 4475 case KVM_CAP_HYPERV_SYNIC2:
d3457c87 4476 case KVM_CAP_HYPERV_VP_INDEX:
faeb7833 4477 case KVM_CAP_HYPERV_EVENTFD:
c1aea919 4478 case KVM_CAP_HYPERV_TLBFLUSH:
214ff83d 4479 case KVM_CAP_HYPERV_SEND_IPI:
2bc39970 4480 case KVM_CAP_HYPERV_CPUID:
644f7067 4481 case KVM_CAP_HYPERV_ENFORCE_CPUID:
c21d54f0 4482 case KVM_CAP_SYS_HYPERV_CPUID:
ab9f4ecb 4483 case KVM_CAP_PCI_SEGMENT:
a1efbe77 4484 case KVM_CAP_DEBUGREGS:
d2be1651 4485 case KVM_CAP_X86_ROBUST_SINGLESTEP:
2d5b5a66 4486 case KVM_CAP_XSAVE:
344d9588 4487 case KVM_CAP_ASYNC_PF:
72de5fa4 4488 case KVM_CAP_ASYNC_PF_INT:
92a1f12d 4489 case KVM_CAP_GET_TSC_KHZ:
1c0b28c2 4490 case KVM_CAP_KVMCLOCK_CTRL:
4d8b81ab 4491 case KVM_CAP_READONLY_MEM:
5f66b620 4492 case KVM_CAP_HYPERV_TIME:
100943c5 4493 case KVM_CAP_IOAPIC_POLARITY_IGNORED:
defcf51f 4494 case KVM_CAP_TSC_DEADLINE_TIMER:
90de4a18 4495 case KVM_CAP_DISABLE_QUIRKS:
d71ba788 4496 case KVM_CAP_SET_BOOT_CPU_ID:
49df6397 4497 case KVM_CAP_SPLIT_IRQCHIP:
460df4c1 4498 case KVM_CAP_IMMEDIATE_EXIT:
66bb8a06 4499 case KVM_CAP_PMU_EVENT_FILTER:
14329b82 4500 case KVM_CAP_PMU_EVENT_MASKED_EVENTS:
801e459a 4501 case KVM_CAP_GET_MSR_FEATURES:
6fbbde9a 4502 case KVM_CAP_MSR_PLATFORM_INFO:
c4f55198 4503 case KVM_CAP_EXCEPTION_PAYLOAD:
ed235117 4504 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
b9b2782c 4505 case KVM_CAP_SET_GUEST_DEBUG:
1aa561b1 4506 case KVM_CAP_LAST_CPU:
1ae09954 4507 case KVM_CAP_X86_USER_SPACE_MSR:
1a155254 4508 case KVM_CAP_X86_MSR_FILTER:
66570e96 4509 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
fe7e9488
SC
4510#ifdef CONFIG_X86_SGX_KVM
4511 case KVM_CAP_SGX_ATTRIBUTE:
4512#endif
54526d1f 4513 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
30d7c5d6 4514 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6dba9403 4515 case KVM_CAP_SREGS2:
19238e75 4516 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
828ca896 4517 case KVM_CAP_VCPU_ATTRIBUTES:
dd6e6312 4518 case KVM_CAP_SYS_ATTRIBUTES:
8a289785 4519 case KVM_CAP_VAPIC:
127770ac 4520 case KVM_CAP_ENABLE_CAP:
084cc29f 4521 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
52882b9c 4522 case KVM_CAP_IRQFD_RESAMPLE:
018d00d2
ZX
4523 r = 1;
4524 break;
0dbb1123
AK
4525 case KVM_CAP_EXIT_HYPERCALL:
4526 r = KVM_EXIT_HYPERCALL_VALID_MASK;
4527 break;
7e582ccb
ML
4528 case KVM_CAP_SET_GUEST_DEBUG2:
4529 return KVM_GUESTDBG_VALID_MASK;
b59b153d 4530#ifdef CONFIG_KVM_XEN
23200b7a
JM
4531 case KVM_CAP_XEN_HVM:
4532 r = KVM_XEN_HVM_CONFIG_HYPERCALL_MSR |
8d4e7e80 4533 KVM_XEN_HVM_CONFIG_INTERCEPT_HCALL |
14243b38 4534 KVM_XEN_HVM_CONFIG_SHARED_INFO |
661a20fa
DW
4535 KVM_XEN_HVM_CONFIG_EVTCHN_2LEVEL |
4536 KVM_XEN_HVM_CONFIG_EVTCHN_SEND;
30b5c851 4537 if (sched_info_on())
d8ba8ba4
DW
4538 r |= KVM_XEN_HVM_CONFIG_RUNSTATE |
4539 KVM_XEN_HVM_CONFIG_RUNSTATE_UPDATE_FLAG;
23200b7a 4540 break;
b59b153d 4541#endif
01643c51
KH
4542 case KVM_CAP_SYNC_REGS:
4543 r = KVM_SYNC_X86_VALID_FIELDS;
4544 break;
e3fd9a93 4545 case KVM_CAP_ADJUST_CLOCK:
c68dc1b5 4546 r = KVM_CLOCK_VALID_FLAGS;
e3fd9a93 4547 break;
4d5422ce 4548 case KVM_CAP_X86_DISABLE_EXITS:
6f0f2d5e
TL
4549 r = KVM_X86_DISABLE_EXITS_PAUSE;
4550
4551 if (!mitigate_smt_rsb) {
4552 r |= KVM_X86_DISABLE_EXITS_HLT |
4553 KVM_X86_DISABLE_EXITS_CSTATE;
4554
4555 if (kvm_can_mwait_in_guest())
4556 r |= KVM_X86_DISABLE_EXITS_MWAIT;
4557 }
668fffa3 4558 break;
6d396b55 4559 case KVM_CAP_X86_SMM:
4b8e1b32
PB
4560 if (!IS_ENABLED(CONFIG_KVM_SMM))
4561 break;
4562
6d396b55
PB
4563 /* SMBASE is usually relocated above 1M on modern chipsets,
4564 * and SMM handlers might indeed rely on 4G segment limits,
4565 * so do not report SMM to be available if real mode is
4566 * emulated via vm86 mode. Still, do not go to great lengths
4567 * to avoid userspace's usage of the feature, because it is a
4568 * fringe case that is not enabled except via specific settings
4569 * of the module parameters.
4570 */
b3646477 4571 r = static_call(kvm_x86_has_emulated_msr)(kvm, MSR_IA32_SMBASE);
6d396b55 4572 break;
f725230a 4573 case KVM_CAP_NR_VCPUS:
2845e735 4574 r = min_t(unsigned int, num_online_cpus(), KVM_MAX_VCPUS);
8c3ba334
SL
4575 break;
4576 case KVM_CAP_MAX_VCPUS:
f725230a
AK
4577 r = KVM_MAX_VCPUS;
4578 break;
a86cb413 4579 case KVM_CAP_MAX_VCPU_ID:
a1c42dde 4580 r = KVM_MAX_VCPU_IDS;
a86cb413 4581 break;
a68a6a72
MT
4582 case KVM_CAP_PV_MMU: /* obsolete */
4583 r = 0;
2f333bcb 4584 break;
890ca9ae
HY
4585 case KVM_CAP_MCE:
4586 r = KVM_MAX_MCE_BANKS;
4587 break;
2d5b5a66 4588 case KVM_CAP_XCRS:
d366bf7e 4589 r = boot_cpu_has(X86_FEATURE_XSAVE);
2d5b5a66 4590 break;
92a1f12d 4591 case KVM_CAP_TSC_CONTROL:
ffbb61d0 4592 case KVM_CAP_VM_TSC_CONTROL:
938c8745 4593 r = kvm_caps.has_tsc_control;
92a1f12d 4594 break;
37131313
RK
4595 case KVM_CAP_X2APIC_API:
4596 r = KVM_X2APIC_API_VALID_FLAGS;
4597 break;
8fcc4b59 4598 case KVM_CAP_NESTED_STATE:
33b22172
PB
4599 r = kvm_x86_ops.nested_ops->get_state ?
4600 kvm_x86_ops.nested_ops->get_state(NULL, NULL, 0) : 0;
8fcc4b59 4601 break;
344c6c80 4602 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
b83237ad 4603 r = kvm_x86_ops.enable_l2_tlb_flush != NULL;
5a0165f6
VK
4604 break;
4605 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
33b22172 4606 r = kvm_x86_ops.nested_ops->enable_evmcs != NULL;
344c6c80 4607 break;
3edd6839
MG
4608 case KVM_CAP_SMALLER_MAXPHYADDR:
4609 r = (int) allow_smaller_maxphyaddr;
4610 break;
004a0124
AJ
4611 case KVM_CAP_STEAL_TIME:
4612 r = sched_info_on();
4613 break;
fe6b6bc8 4614 case KVM_CAP_X86_BUS_LOCK_EXIT:
938c8745 4615 if (kvm_caps.has_bus_lock_exit)
fe6b6bc8
CQ
4616 r = KVM_BUS_LOCK_DETECTION_OFF |
4617 KVM_BUS_LOCK_DETECTION_EXIT;
4618 else
4619 r = 0;
4620 break;
be50b206 4621 case KVM_CAP_XSAVE2: {
6be3ae45 4622 r = xstate_required_size(kvm_get_filtered_xcr0(), false);
be50b206
GZ
4623 if (r < sizeof(struct kvm_xsave))
4624 r = sizeof(struct kvm_xsave);
4625 break;
1c4dc573 4626 }
ba7bb663
DD
4627 case KVM_CAP_PMU_CAPABILITY:
4628 r = enable_pmu ? KVM_CAP_PMU_VALID_MASK : 0;
4629 break;
6d849191
OU
4630 case KVM_CAP_DISABLE_QUIRKS2:
4631 r = KVM_X86_VALID_QUIRKS;
4632 break;
2f4073e0
TX
4633 case KVM_CAP_X86_NOTIFY_VMEXIT:
4634 r = kvm_caps.has_notify_vmexit;
4635 break;
018d00d2 4636 default:
018d00d2
ZX
4637 break;
4638 }
4639 return r;
56f289a8
SC
4640}
4641
4642static inline void __user *kvm_get_attr_addr(struct kvm_device_attr *attr)
4643{
4644 void __user *uaddr = (void __user*)(unsigned long)attr->addr;
018d00d2 4645
56f289a8 4646 if ((u64)(unsigned long)uaddr != attr->addr)
6e37ec88 4647 return ERR_PTR_USR(-EFAULT);
56f289a8 4648 return uaddr;
018d00d2
ZX
4649}
4650
dd6e6312
PB
4651static int kvm_x86_dev_get_attr(struct kvm_device_attr *attr)
4652{
4653 u64 __user *uaddr = kvm_get_attr_addr(attr);
4654
4655 if (attr->group)
4656 return -ENXIO;
4657
4658 if (IS_ERR(uaddr))
4659 return PTR_ERR(uaddr);
4660
4661 switch (attr->attr) {
4662 case KVM_X86_XCOMP_GUEST_SUPP:
938c8745 4663 if (put_user(kvm_caps.supported_xcr0, uaddr))
dd6e6312
PB
4664 return -EFAULT;
4665 return 0;
4666 default:
4667 return -ENXIO;
4668 break;
4669 }
4670}
4671
4672static int kvm_x86_dev_has_attr(struct kvm_device_attr *attr)
4673{
4674 if (attr->group)
4675 return -ENXIO;
4676
4677 switch (attr->attr) {
4678 case KVM_X86_XCOMP_GUEST_SUPP:
4679 return 0;
4680 default:
4681 return -ENXIO;
4682 }
4683}
4684
043405e1
CO
4685long kvm_arch_dev_ioctl(struct file *filp,
4686 unsigned int ioctl, unsigned long arg)
4687{
4688 void __user *argp = (void __user *)arg;
4689 long r;
4690
4691 switch (ioctl) {
4692 case KVM_GET_MSR_INDEX_LIST: {
4693 struct kvm_msr_list __user *user_msr_list = argp;
4694 struct kvm_msr_list msr_list;
4695 unsigned n;
4696
4697 r = -EFAULT;
0e96f31e 4698 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
043405e1
CO
4699 goto out;
4700 n = msr_list.nmsrs;
62ef68bb 4701 msr_list.nmsrs = num_msrs_to_save + num_emulated_msrs;
0e96f31e 4702 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
043405e1
CO
4703 goto out;
4704 r = -E2BIG;
e125e7b6 4705 if (n < msr_list.nmsrs)
043405e1
CO
4706 goto out;
4707 r = -EFAULT;
4708 if (copy_to_user(user_msr_list->indices, &msrs_to_save,
4709 num_msrs_to_save * sizeof(u32)))
4710 goto out;
e125e7b6 4711 if (copy_to_user(user_msr_list->indices + num_msrs_to_save,
043405e1 4712 &emulated_msrs,
62ef68bb 4713 num_emulated_msrs * sizeof(u32)))
043405e1
CO
4714 goto out;
4715 r = 0;
4716 break;
4717 }
9c15bb1d
BP
4718 case KVM_GET_SUPPORTED_CPUID:
4719 case KVM_GET_EMULATED_CPUID: {
674eea0f
AK
4720 struct kvm_cpuid2 __user *cpuid_arg = argp;
4721 struct kvm_cpuid2 cpuid;
4722
4723 r = -EFAULT;
0e96f31e 4724 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
674eea0f 4725 goto out;
9c15bb1d
BP
4726
4727 r = kvm_dev_ioctl_get_cpuid(&cpuid, cpuid_arg->entries,
4728 ioctl);
674eea0f
AK
4729 if (r)
4730 goto out;
4731
4732 r = -EFAULT;
0e96f31e 4733 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
674eea0f
AK
4734 goto out;
4735 r = 0;
4736 break;
4737 }
cf6c26ec 4738 case KVM_X86_GET_MCE_CAP_SUPPORTED:
890ca9ae 4739 r = -EFAULT;
938c8745
SC
4740 if (copy_to_user(argp, &kvm_caps.supported_mce_cap,
4741 sizeof(kvm_caps.supported_mce_cap)))
890ca9ae
HY
4742 goto out;
4743 r = 0;
4744 break;
801e459a
TL
4745 case KVM_GET_MSR_FEATURE_INDEX_LIST: {
4746 struct kvm_msr_list __user *user_msr_list = argp;
4747 struct kvm_msr_list msr_list;
4748 unsigned int n;
4749
4750 r = -EFAULT;
4751 if (copy_from_user(&msr_list, user_msr_list, sizeof(msr_list)))
4752 goto out;
4753 n = msr_list.nmsrs;
4754 msr_list.nmsrs = num_msr_based_features;
4755 if (copy_to_user(user_msr_list, &msr_list, sizeof(msr_list)))
4756 goto out;
4757 r = -E2BIG;
4758 if (n < msr_list.nmsrs)
4759 goto out;
4760 r = -EFAULT;
4761 if (copy_to_user(user_msr_list->indices, &msr_based_features,
4762 num_msr_based_features * sizeof(u32)))
4763 goto out;
4764 r = 0;
4765 break;
4766 }
4767 case KVM_GET_MSRS:
4768 r = msr_io(NULL, argp, do_get_msr_feature, 1);
4769 break;
c21d54f0
VK
4770 case KVM_GET_SUPPORTED_HV_CPUID:
4771 r = kvm_ioctl_get_supported_hv_cpuid(NULL, argp);
4772 break;
dd6e6312
PB
4773 case KVM_GET_DEVICE_ATTR: {
4774 struct kvm_device_attr attr;
4775 r = -EFAULT;
4776 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4777 break;
4778 r = kvm_x86_dev_get_attr(&attr);
4779 break;
4780 }
4781 case KVM_HAS_DEVICE_ATTR: {
4782 struct kvm_device_attr attr;
4783 r = -EFAULT;
4784 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
4785 break;
4786 r = kvm_x86_dev_has_attr(&attr);
4787 break;
4788 }
043405e1
CO
4789 default:
4790 r = -EINVAL;
cf6c26ec 4791 break;
043405e1
CO
4792 }
4793out:
4794 return r;
4795}
4796
f5f48ee1
SY
4797static void wbinvd_ipi(void *garbage)
4798{
4799 wbinvd();
4800}
4801
4802static bool need_emulate_wbinvd(struct kvm_vcpu *vcpu)
4803{
e0f0bbc5 4804 return kvm_arch_has_noncoherent_dma(vcpu->kvm);
f5f48ee1
SY
4805}
4806
313a3dc7
CO
4807void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
4808{
f5f48ee1
SY
4809 /* Address WBINVD may be executed by guest */
4810 if (need_emulate_wbinvd(vcpu)) {
b3646477 4811 if (static_call(kvm_x86_has_wbinvd_exit)())
f5f48ee1
SY
4812 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
4813 else if (vcpu->cpu != -1 && vcpu->cpu != cpu)
4814 smp_call_function_single(vcpu->cpu,
4815 wbinvd_ipi, NULL, 1);
4816 }
4817
b3646477 4818 static_call(kvm_x86_vcpu_load)(vcpu, cpu);
8f6055cb 4819
37486135
BM
4820 /* Save host pkru register if supported */
4821 vcpu->arch.host_pkru = read_pkru();
4822
0dd6a6ed
ZA
4823 /* Apply any externally detected TSC adjustments (due to suspend) */
4824 if (unlikely(vcpu->arch.tsc_offset_adjustment)) {
4825 adjust_tsc_offset_host(vcpu, vcpu->arch.tsc_offset_adjustment);
4826 vcpu->arch.tsc_offset_adjustment = 0;
105b21bb 4827 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed 4828 }
8f6055cb 4829
b0c39dc6 4830 if (unlikely(vcpu->cpu != cpu) || kvm_check_tsc_unstable()) {
6f526ec5 4831 s64 tsc_delta = !vcpu->arch.last_host_tsc ? 0 :
4ea1636b 4832 rdtsc() - vcpu->arch.last_host_tsc;
e48672fa
ZA
4833 if (tsc_delta < 0)
4834 mark_tsc_unstable("KVM discovered backwards TSC");
ce7a058a 4835
b0c39dc6 4836 if (kvm_check_tsc_unstable()) {
9b399dfd 4837 u64 offset = kvm_compute_l1_tsc_offset(vcpu,
b183aa58 4838 vcpu->arch.last_guest_tsc);
a545ab6a 4839 kvm_vcpu_write_tsc_offset(vcpu, offset);
c285545f 4840 vcpu->arch.tsc_catchup = 1;
c285545f 4841 }
a749e247
PB
4842
4843 if (kvm_lapic_hv_timer_in_use(vcpu))
4844 kvm_lapic_restart_hv_timer(vcpu);
4845
d98d07ca
MT
4846 /*
4847 * On a host with synchronized TSC, there is no need to update
4848 * kvmclock on vcpu->cpu migration
4849 */
4850 if (!vcpu->kvm->arch.use_master_clock || vcpu->cpu == -1)
0061d53d 4851 kvm_make_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu);
c285545f 4852 if (vcpu->cpu != cpu)
1bd2009e 4853 kvm_make_request(KVM_REQ_MIGRATE_TIMER, vcpu);
e48672fa 4854 vcpu->cpu = cpu;
6b7d7e76 4855 }
c9aaa895 4856
c9aaa895 4857 kvm_make_request(KVM_REQ_STEAL_UPDATE, vcpu);
313a3dc7
CO
4858}
4859
0b9f6c46
PX
4860static void kvm_steal_time_set_preempted(struct kvm_vcpu *vcpu)
4861{
7e2175eb
DW
4862 struct gfn_to_hva_cache *ghc = &vcpu->arch.st.cache;
4863 struct kvm_steal_time __user *st;
4864 struct kvm_memslots *slots;
4865 static const u8 preempted = KVM_VCPU_PREEMPTED;
c3c28d24 4866 gpa_t gpa = vcpu->arch.st.msr_val & KVM_STEAL_VALID_BITS;
b0431382 4867
6cd88243
PB
4868 /*
4869 * The vCPU can be marked preempted if and only if the VM-Exit was on
4870 * an instruction boundary and will not trigger guest emulation of any
4871 * kind (see vcpu_run). Vendor specific code controls (conservatively)
4872 * when this is true, for example allowing the vCPU to be marked
4873 * preempted if and only if the VM-Exit was due to a host interrupt.
4874 */
4875 if (!vcpu->arch.at_instruction_boundary) {
4876 vcpu->stat.preemption_other++;
4877 return;
4878 }
4879
4880 vcpu->stat.preemption_reported++;
0b9f6c46
PX
4881 if (!(vcpu->arch.st.msr_val & KVM_MSR_ENABLED))
4882 return;
4883
a6bd811f 4884 if (vcpu->arch.st.preempted)
8c6de56a
BO
4885 return;
4886
7e2175eb
DW
4887 /* This happens on process exit */
4888 if (unlikely(current->mm != vcpu->kvm->mm))
9c1a0744 4889 return;
b0431382 4890
7e2175eb
DW
4891 slots = kvm_memslots(vcpu->kvm);
4892
4893 if (unlikely(slots->generation != ghc->generation ||
c3c28d24 4894 gpa != ghc->gpa ||
7e2175eb 4895 kvm_is_error_hva(ghc->hva) || !ghc->memslot))
9c1a0744 4896 return;
b0431382 4897
7e2175eb
DW
4898 st = (struct kvm_steal_time __user *)ghc->hva;
4899 BUILD_BUG_ON(sizeof(st->preempted) != sizeof(preempted));
0b9f6c46 4900
7e2175eb
DW
4901 if (!copy_to_user_nofault(&st->preempted, &preempted, sizeof(preempted)))
4902 vcpu->arch.st.preempted = KVM_VCPU_PREEMPTED;
0b9f6c46 4903
7e2175eb 4904 mark_page_dirty_in_slot(vcpu->kvm, ghc->memslot, gpa_to_gfn(ghc->gpa));
0b9f6c46
PX
4905}
4906
313a3dc7
CO
4907void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
4908{
9c1a0744
WL
4909 int idx;
4910
54aa83c9
PB
4911 if (vcpu->preempted) {
4912 if (!vcpu->arch.guest_state_protected)
4913 vcpu->arch.preempted_in_kernel = !static_call(kvm_x86_get_cpl)(vcpu);
de63ad4c 4914
54aa83c9
PB
4915 /*
4916 * Take the srcu lock as memslots will be accessed to check the gfn
4917 * cache generation against the memslots generation.
4918 */
4919 idx = srcu_read_lock(&vcpu->kvm->srcu);
4920 if (kvm_xen_msr_enabled(vcpu->kvm))
4921 kvm_xen_runstate_set_preempted(vcpu);
4922 else
4923 kvm_steal_time_set_preempted(vcpu);
4924 srcu_read_unlock(&vcpu->kvm->srcu, idx);
4925 }
30b5c851 4926
b3646477 4927 static_call(kvm_x86_vcpu_put)(vcpu);
4ea1636b 4928 vcpu->arch.last_host_tsc = rdtsc();
313a3dc7
CO
4929}
4930
313a3dc7
CO
4931static int kvm_vcpu_ioctl_get_lapic(struct kvm_vcpu *vcpu,
4932 struct kvm_lapic_state *s)
4933{
37c4dbf3 4934 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
d62caabb 4935
a92e2543 4936 return kvm_apic_get_state(vcpu, s);
313a3dc7
CO
4937}
4938
4939static int kvm_vcpu_ioctl_set_lapic(struct kvm_vcpu *vcpu,
4940 struct kvm_lapic_state *s)
4941{
a92e2543
RK
4942 int r;
4943
4944 r = kvm_apic_set_state(vcpu, s);
4945 if (r)
4946 return r;
cb142eb7 4947 update_cr8_intercept(vcpu);
313a3dc7
CO
4948
4949 return 0;
4950}
4951
127a457a
MG
4952static int kvm_cpu_accept_dm_intr(struct kvm_vcpu *vcpu)
4953{
71cc849b
PB
4954 /*
4955 * We can accept userspace's request for interrupt injection
4956 * as long as we have a place to store the interrupt number.
4957 * The actual injection will happen when the CPU is able to
4958 * deliver the interrupt.
4959 */
4960 if (kvm_cpu_has_extint(vcpu))
4961 return false;
4962
4963 /* Acknowledging ExtINT does not happen if LINT0 is masked. */
127a457a
MG
4964 return (!lapic_in_kernel(vcpu) ||
4965 kvm_apic_accept_pic_intr(vcpu));
4966}
4967
782d422b
MG
4968static int kvm_vcpu_ready_for_interrupt_injection(struct kvm_vcpu *vcpu)
4969{
fa7a549d
PB
4970 /*
4971 * Do not cause an interrupt window exit if an exception
4972 * is pending or an event needs reinjection; userspace
4973 * might want to inject the interrupt manually using KVM_SET_REGS
4974 * or KVM_SET_SREGS. For that to work, we must be at an
4975 * instruction boundary and with no events half-injected.
4976 */
4977 return (kvm_arch_interrupt_allowed(vcpu) &&
4978 kvm_cpu_accept_dm_intr(vcpu) &&
4979 !kvm_event_needs_reinjection(vcpu) &&
7709aba8 4980 !kvm_is_exception_pending(vcpu));
782d422b
MG
4981}
4982
f77bc6a4
ZX
4983static int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu,
4984 struct kvm_interrupt *irq)
4985{
02cdb50f 4986 if (irq->irq >= KVM_NR_INTERRUPTS)
f77bc6a4 4987 return -EINVAL;
1c1a9ce9
SR
4988
4989 if (!irqchip_in_kernel(vcpu->kvm)) {
4990 kvm_queue_interrupt(vcpu, irq->irq, false);
4991 kvm_make_request(KVM_REQ_EVENT, vcpu);
4992 return 0;
4993 }
4994
4995 /*
4996 * With in-kernel LAPIC, we only use this to inject EXTINT, so
4997 * fail for in-kernel 8259.
4998 */
4999 if (pic_in_kernel(vcpu->kvm))
f77bc6a4 5000 return -ENXIO;
f77bc6a4 5001
1c1a9ce9
SR
5002 if (vcpu->arch.pending_external_vector != -1)
5003 return -EEXIST;
f77bc6a4 5004
1c1a9ce9 5005 vcpu->arch.pending_external_vector = irq->irq;
934bf653 5006 kvm_make_request(KVM_REQ_EVENT, vcpu);
f77bc6a4
ZX
5007 return 0;
5008}
5009
c4abb7c9
JK
5010static int kvm_vcpu_ioctl_nmi(struct kvm_vcpu *vcpu)
5011{
c4abb7c9 5012 kvm_inject_nmi(vcpu);
c4abb7c9
JK
5013
5014 return 0;
5015}
5016
b209749f
AK
5017static int vcpu_ioctl_tpr_access_reporting(struct kvm_vcpu *vcpu,
5018 struct kvm_tpr_access_ctl *tac)
5019{
5020 if (tac->flags)
5021 return -EINVAL;
5022 vcpu->arch.tpr_access_reporting = !!tac->enabled;
5023 return 0;
5024}
5025
890ca9ae
HY
5026static int kvm_vcpu_ioctl_x86_setup_mce(struct kvm_vcpu *vcpu,
5027 u64 mcg_cap)
5028{
5029 int r;
5030 unsigned bank_num = mcg_cap & 0xff, bank;
5031
5032 r = -EINVAL;
c4e0e4ab 5033 if (!bank_num || bank_num > KVM_MAX_MCE_BANKS)
890ca9ae 5034 goto out;
938c8745 5035 if (mcg_cap & ~(kvm_caps.supported_mce_cap | 0xff | 0xff0000))
890ca9ae
HY
5036 goto out;
5037 r = 0;
5038 vcpu->arch.mcg_cap = mcg_cap;
5039 /* Init IA32_MCG_CTL to all 1s */
5040 if (mcg_cap & MCG_CTL_P)
5041 vcpu->arch.mcg_ctl = ~(u64)0;
281b5278
JW
5042 /* Init IA32_MCi_CTL to all 1s, IA32_MCi_CTL2 to all 0s */
5043 for (bank = 0; bank < bank_num; bank++) {
890ca9ae 5044 vcpu->arch.mce_banks[bank*4] = ~(u64)0;
281b5278
JW
5045 if (mcg_cap & MCG_CMCI_P)
5046 vcpu->arch.mci_ctl2_banks[bank] = 0;
5047 }
f83894b2
SC
5048
5049 kvm_apic_after_set_mcg_cap(vcpu);
c45dcc71 5050
b3646477 5051 static_call(kvm_x86_setup_mce)(vcpu);
890ca9ae
HY
5052out:
5053 return r;
5054}
5055
aebc3ca1
JW
5056/*
5057 * Validate this is an UCNA (uncorrectable no action) error by checking the
5058 * MCG_STATUS and MCi_STATUS registers:
5059 * - none of the bits for Machine Check Exceptions are set
5060 * - both the VAL (valid) and UC (uncorrectable) bits are set
5061 * MCI_STATUS_PCC - Processor Context Corrupted
5062 * MCI_STATUS_S - Signaled as a Machine Check Exception
5063 * MCI_STATUS_AR - Software recoverable Action Required
5064 */
5065static bool is_ucna(struct kvm_x86_mce *mce)
5066{
5067 return !mce->mcg_status &&
5068 !(mce->status & (MCI_STATUS_PCC | MCI_STATUS_S | MCI_STATUS_AR)) &&
5069 (mce->status & MCI_STATUS_VAL) &&
5070 (mce->status & MCI_STATUS_UC);
5071}
5072
5073static int kvm_vcpu_x86_set_ucna(struct kvm_vcpu *vcpu, struct kvm_x86_mce *mce, u64* banks)
5074{
5075 u64 mcg_cap = vcpu->arch.mcg_cap;
5076
5077 banks[1] = mce->status;
5078 banks[2] = mce->addr;
5079 banks[3] = mce->misc;
5080 vcpu->arch.mcg_status = mce->mcg_status;
5081
5082 if (!(mcg_cap & MCG_CMCI_P) ||
5083 !(vcpu->arch.mci_ctl2_banks[mce->bank] & MCI_CTL2_CMCI_EN))
5084 return 0;
5085
5086 if (lapic_in_kernel(vcpu))
5087 kvm_apic_local_deliver(vcpu->arch.apic, APIC_LVTCMCI);
5088
5089 return 0;
5090}
5091
890ca9ae
HY
5092static int kvm_vcpu_ioctl_x86_set_mce(struct kvm_vcpu *vcpu,
5093 struct kvm_x86_mce *mce)
5094{
5095 u64 mcg_cap = vcpu->arch.mcg_cap;
5096 unsigned bank_num = mcg_cap & 0xff;
5097 u64 *banks = vcpu->arch.mce_banks;
5098
5099 if (mce->bank >= bank_num || !(mce->status & MCI_STATUS_VAL))
5100 return -EINVAL;
aebc3ca1
JW
5101
5102 banks += array_index_nospec(4 * mce->bank, 4 * bank_num);
5103
5104 if (is_ucna(mce))
5105 return kvm_vcpu_x86_set_ucna(vcpu, mce, banks);
5106
890ca9ae
HY
5107 /*
5108 * if IA32_MCG_CTL is not all 1s, the uncorrected error
5109 * reporting is disabled
5110 */
5111 if ((mce->status & MCI_STATUS_UC) && (mcg_cap & MCG_CTL_P) &&
5112 vcpu->arch.mcg_ctl != ~(u64)0)
5113 return 0;
890ca9ae
HY
5114 /*
5115 * if IA32_MCi_CTL is not all 1s, the uncorrected error
5116 * reporting is disabled for the bank
5117 */
5118 if ((mce->status & MCI_STATUS_UC) && banks[0] != ~(u64)0)
5119 return 0;
5120 if (mce->status & MCI_STATUS_UC) {
5121 if ((vcpu->arch.mcg_status & MCG_STATUS_MCIP) ||
607475cf 5122 !kvm_is_cr4_bit_set(vcpu, X86_CR4_MCE)) {
a8eeb04a 5123 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
890ca9ae
HY
5124 return 0;
5125 }
5126 if (banks[1] & MCI_STATUS_VAL)
5127 mce->status |= MCI_STATUS_OVER;
5128 banks[2] = mce->addr;
5129 banks[3] = mce->misc;
5130 vcpu->arch.mcg_status = mce->mcg_status;
5131 banks[1] = mce->status;
5132 kvm_queue_exception(vcpu, MC_VECTOR);
5133 } else if (!(banks[1] & MCI_STATUS_VAL)
5134 || !(banks[1] & MCI_STATUS_UC)) {
5135 if (banks[1] & MCI_STATUS_VAL)
5136 mce->status |= MCI_STATUS_OVER;
5137 banks[2] = mce->addr;
5138 banks[3] = mce->misc;
5139 banks[1] = mce->status;
5140 } else
5141 banks[1] |= MCI_STATUS_OVER;
5142 return 0;
5143}
5144
3cfc3092
JK
5145static void kvm_vcpu_ioctl_x86_get_vcpu_events(struct kvm_vcpu *vcpu,
5146 struct kvm_vcpu_events *events)
5147{
7709aba8 5148 struct kvm_queued_exception *ex;
d4963e31 5149
7460fb4a 5150 process_nmi(vcpu);
59073aaf 5151
cf7316d0 5152#ifdef CONFIG_KVM_SMM
1f7becf1
JZ
5153 if (kvm_check_request(KVM_REQ_SMI, vcpu))
5154 process_smi(vcpu);
cf7316d0 5155#endif
1f7becf1 5156
a06230b6 5157 /*
7709aba8
SC
5158 * KVM's ABI only allows for one exception to be migrated. Luckily,
5159 * the only time there can be two queued exceptions is if there's a
5160 * non-exiting _injected_ exception, and a pending exiting exception.
5161 * In that case, ignore the VM-Exiting exception as it's an extension
5162 * of the injected exception.
5163 */
5164 if (vcpu->arch.exception_vmexit.pending &&
5165 !vcpu->arch.exception.pending &&
5166 !vcpu->arch.exception.injected)
5167 ex = &vcpu->arch.exception_vmexit;
5168 else
5169 ex = &vcpu->arch.exception;
5170
a06230b6 5171 /*
d4963e31
SC
5172 * In guest mode, payload delivery should be deferred if the exception
5173 * will be intercepted by L1, e.g. KVM should not modifying CR2 if L1
5174 * intercepts #PF, ditto for DR6 and #DBs. If the per-VM capability,
5175 * KVM_CAP_EXCEPTION_PAYLOAD, is not set, userspace may or may not
5176 * propagate the payload and so it cannot be safely deferred. Deliver
5177 * the payload if the capability hasn't been requested.
a06230b6
OU
5178 */
5179 if (!vcpu->kvm->arch.exception_payload_enabled &&
d4963e31
SC
5180 ex->pending && ex->has_payload)
5181 kvm_deliver_exception_payload(vcpu, ex);
a06230b6 5182
85672346
PB
5183 memset(events, 0, sizeof(*events));
5184
664f8e26 5185 /*
59073aaf
JM
5186 * The API doesn't provide the instruction length for software
5187 * exceptions, so don't report them. As long as the guest RIP
5188 * isn't advanced, we should expect to encounter the exception
5189 * again.
664f8e26 5190 */
85672346 5191 if (!kvm_exception_is_soft(ex->vector)) {
d4963e31
SC
5192 events->exception.injected = ex->injected;
5193 events->exception.pending = ex->pending;
59073aaf
JM
5194 /*
5195 * For ABI compatibility, deliberately conflate
5196 * pending and injected exceptions when
5197 * KVM_CAP_EXCEPTION_PAYLOAD isn't enabled.
5198 */
5199 if (!vcpu->kvm->arch.exception_payload_enabled)
d4963e31 5200 events->exception.injected |= ex->pending;
59073aaf 5201 }
d4963e31
SC
5202 events->exception.nr = ex->vector;
5203 events->exception.has_error_code = ex->has_error_code;
5204 events->exception.error_code = ex->error_code;
5205 events->exception_has_payload = ex->has_payload;
5206 events->exception_payload = ex->payload;
3cfc3092 5207
03b82a30 5208 events->interrupt.injected =
04140b41 5209 vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft;
3cfc3092 5210 events->interrupt.nr = vcpu->arch.interrupt.nr;
b3646477 5211 events->interrupt.shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
3cfc3092
JK
5212
5213 events->nmi.injected = vcpu->arch.nmi_injected;
fa4c027a 5214 events->nmi.pending = kvm_get_nr_pending_nmis(vcpu);
b3646477 5215 events->nmi.masked = static_call(kvm_x86_get_nmi_mask)(vcpu);
3cfc3092 5216
85672346 5217 /* events->sipi_vector is never valid when reporting to user space */
3cfc3092 5218
a7662aa5 5219#ifdef CONFIG_KVM_SMM
f077825a
PB
5220 events->smi.smm = is_smm(vcpu);
5221 events->smi.pending = vcpu->arch.smi_pending;
5222 events->smi.smm_inside_nmi =
5223 !!(vcpu->arch.hflags & HF_SMM_INSIDE_NMI_MASK);
a7662aa5 5224#endif
f077825a
PB
5225 events->smi.latched_init = kvm_lapic_latched_init(vcpu);
5226
dab4b911 5227 events->flags = (KVM_VCPUEVENT_VALID_NMI_PENDING
f077825a
PB
5228 | KVM_VCPUEVENT_VALID_SHADOW
5229 | KVM_VCPUEVENT_VALID_SMM);
59073aaf
JM
5230 if (vcpu->kvm->arch.exception_payload_enabled)
5231 events->flags |= KVM_VCPUEVENT_VALID_PAYLOAD;
ed235117
CQ
5232 if (vcpu->kvm->arch.triple_fault_event) {
5233 events->triple_fault.pending = kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5234 events->flags |= KVM_VCPUEVENT_VALID_TRIPLE_FAULT;
5235 }
3cfc3092
JK
5236}
5237
5238static int kvm_vcpu_ioctl_x86_set_vcpu_events(struct kvm_vcpu *vcpu,
5239 struct kvm_vcpu_events *events)
5240{
dab4b911 5241 if (events->flags & ~(KVM_VCPUEVENT_VALID_NMI_PENDING
48005f64 5242 | KVM_VCPUEVENT_VALID_SIPI_VECTOR
f077825a 5243 | KVM_VCPUEVENT_VALID_SHADOW
59073aaf 5244 | KVM_VCPUEVENT_VALID_SMM
ed235117
CQ
5245 | KVM_VCPUEVENT_VALID_PAYLOAD
5246 | KVM_VCPUEVENT_VALID_TRIPLE_FAULT))
3cfc3092
JK
5247 return -EINVAL;
5248
59073aaf
JM
5249 if (events->flags & KVM_VCPUEVENT_VALID_PAYLOAD) {
5250 if (!vcpu->kvm->arch.exception_payload_enabled)
5251 return -EINVAL;
5252 if (events->exception.pending)
5253 events->exception.injected = 0;
5254 else
5255 events->exception_has_payload = 0;
5256 } else {
5257 events->exception.pending = 0;
5258 events->exception_has_payload = 0;
5259 }
5260
5261 if ((events->exception.injected || events->exception.pending) &&
5262 (events->exception.nr > 31 || events->exception.nr == NMI_VECTOR))
78e546c8
PB
5263 return -EINVAL;
5264
28bf2888
DH
5265 /* INITs are latched while in SMM */
5266 if (events->flags & KVM_VCPUEVENT_VALID_SMM &&
5267 (events->smi.smm || events->smi.pending) &&
5268 vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
5269 return -EINVAL;
5270
7460fb4a 5271 process_nmi(vcpu);
7709aba8
SC
5272
5273 /*
5274 * Flag that userspace is stuffing an exception, the next KVM_RUN will
5275 * morph the exception to a VM-Exit if appropriate. Do this only for
5276 * pending exceptions, already-injected exceptions are not subject to
5277 * intercpetion. Note, userspace that conflates pending and injected
5278 * is hosed, and will incorrectly convert an injected exception into a
5279 * pending exception, which in turn may cause a spurious VM-Exit.
5280 */
5281 vcpu->arch.exception_from_userspace = events->exception.pending;
5282
5283 vcpu->arch.exception_vmexit.pending = false;
5284
59073aaf
JM
5285 vcpu->arch.exception.injected = events->exception.injected;
5286 vcpu->arch.exception.pending = events->exception.pending;
d4963e31 5287 vcpu->arch.exception.vector = events->exception.nr;
3cfc3092
JK
5288 vcpu->arch.exception.has_error_code = events->exception.has_error_code;
5289 vcpu->arch.exception.error_code = events->exception.error_code;
59073aaf
JM
5290 vcpu->arch.exception.has_payload = events->exception_has_payload;
5291 vcpu->arch.exception.payload = events->exception_payload;
3cfc3092 5292
04140b41 5293 vcpu->arch.interrupt.injected = events->interrupt.injected;
3cfc3092
JK
5294 vcpu->arch.interrupt.nr = events->interrupt.nr;
5295 vcpu->arch.interrupt.soft = events->interrupt.soft;
48005f64 5296 if (events->flags & KVM_VCPUEVENT_VALID_SHADOW)
b3646477
JB
5297 static_call(kvm_x86_set_interrupt_shadow)(vcpu,
5298 events->interrupt.shadow);
3cfc3092
JK
5299
5300 vcpu->arch.nmi_injected = events->nmi.injected;
ab2ee212 5301 if (events->flags & KVM_VCPUEVENT_VALID_NMI_PENDING) {
bdedff26
SC
5302 vcpu->arch.nmi_pending = 0;
5303 atomic_set(&vcpu->arch.nmi_queued, events->nmi.pending);
5304 kvm_make_request(KVM_REQ_NMI, vcpu);
ab2ee212 5305 }
b3646477 5306 static_call(kvm_x86_set_nmi_mask)(vcpu, events->nmi.masked);
3cfc3092 5307
66450a21 5308 if (events->flags & KVM_VCPUEVENT_VALID_SIPI_VECTOR &&
bce87cce 5309 lapic_in_kernel(vcpu))
66450a21 5310 vcpu->arch.apic->sipi_vector = events->sipi_vector;
3cfc3092 5311
f077825a 5312 if (events->flags & KVM_VCPUEVENT_VALID_SMM) {
4b8e1b32 5313#ifdef CONFIG_KVM_SMM
f7e57078 5314 if (!!(vcpu->arch.hflags & HF_SMM_MASK) != events->smi.smm) {
f9697df2 5315 kvm_leave_nested(vcpu);
dc87275f 5316 kvm_smm_changed(vcpu, events->smi.smm);
f7e57078 5317 }
6ef4e07e 5318
f077825a 5319 vcpu->arch.smi_pending = events->smi.pending;
f4ef1910
WL
5320
5321 if (events->smi.smm) {
5322 if (events->smi.smm_inside_nmi)
5323 vcpu->arch.hflags |= HF_SMM_INSIDE_NMI_MASK;
f077825a 5324 else
f4ef1910 5325 vcpu->arch.hflags &= ~HF_SMM_INSIDE_NMI_MASK;
ff90afa7
LA
5326 }
5327
4b8e1b32
PB
5328#else
5329 if (events->smi.smm || events->smi.pending ||
5330 events->smi.smm_inside_nmi)
5331 return -EINVAL;
5332#endif
5333
ff90afa7
LA
5334 if (lapic_in_kernel(vcpu)) {
5335 if (events->smi.latched_init)
5336 set_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
5337 else
5338 clear_bit(KVM_APIC_INIT, &vcpu->arch.apic->pending_events);
f077825a
PB
5339 }
5340 }
5341
ed235117
CQ
5342 if (events->flags & KVM_VCPUEVENT_VALID_TRIPLE_FAULT) {
5343 if (!vcpu->kvm->arch.triple_fault_event)
5344 return -EINVAL;
5345 if (events->triple_fault.pending)
5346 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5347 else
5348 kvm_clear_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5349 }
5350
3842d135
AK
5351 kvm_make_request(KVM_REQ_EVENT, vcpu);
5352
3cfc3092
JK
5353 return 0;
5354}
5355
a1efbe77
JK
5356static void kvm_vcpu_ioctl_x86_get_debugregs(struct kvm_vcpu *vcpu,
5357 struct kvm_debugregs *dbgregs)
5358{
73aaf249
JK
5359 unsigned long val;
5360
2c10b614 5361 memset(dbgregs, 0, sizeof(*dbgregs));
a1efbe77 5362 memcpy(dbgregs->db, vcpu->arch.db, sizeof(vcpu->arch.db));
16f8a6f9 5363 kvm_get_dr(vcpu, 6, &val);
73aaf249 5364 dbgregs->dr6 = val;
a1efbe77 5365 dbgregs->dr7 = vcpu->arch.dr7;
a1efbe77
JK
5366}
5367
5368static int kvm_vcpu_ioctl_x86_set_debugregs(struct kvm_vcpu *vcpu,
5369 struct kvm_debugregs *dbgregs)
5370{
5371 if (dbgregs->flags)
5372 return -EINVAL;
5373
fd238002 5374 if (!kvm_dr6_valid(dbgregs->dr6))
d14bdb55 5375 return -EINVAL;
fd238002 5376 if (!kvm_dr7_valid(dbgregs->dr7))
d14bdb55
PB
5377 return -EINVAL;
5378
a1efbe77 5379 memcpy(vcpu->arch.db, dbgregs->db, sizeof(vcpu->arch.db));
ae561ede 5380 kvm_update_dr0123(vcpu);
a1efbe77
JK
5381 vcpu->arch.dr6 = dbgregs->dr6;
5382 vcpu->arch.dr7 = dbgregs->dr7;
9926c9fd 5383 kvm_update_dr7(vcpu);
a1efbe77 5384
a1efbe77
JK
5385 return 0;
5386}
5387
2d5b5a66
SY
5388static void kvm_vcpu_ioctl_x86_get_xsave(struct kvm_vcpu *vcpu,
5389 struct kvm_xsave *guest_xsave)
5390{
d69c1382 5391 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
ed02b213
TL
5392 return;
5393
d69c1382
TG
5394 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5395 guest_xsave->region,
5396 sizeof(guest_xsave->region),
5397 vcpu->arch.pkru);
2d5b5a66
SY
5398}
5399
be50b206
GZ
5400static void kvm_vcpu_ioctl_x86_get_xsave2(struct kvm_vcpu *vcpu,
5401 u8 *state, unsigned int size)
5402{
5403 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
5404 return;
5405
5406 fpu_copy_guest_fpstate_to_uabi(&vcpu->arch.guest_fpu,
5407 state, size, vcpu->arch.pkru);
5408}
5409
2d5b5a66
SY
5410static int kvm_vcpu_ioctl_x86_set_xsave(struct kvm_vcpu *vcpu,
5411 struct kvm_xsave *guest_xsave)
5412{
d69c1382 5413 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
ed02b213
TL
5414 return 0;
5415
d69c1382
TG
5416 return fpu_copy_uabi_to_guest_fpstate(&vcpu->arch.guest_fpu,
5417 guest_xsave->region,
938c8745
SC
5418 kvm_caps.supported_xcr0,
5419 &vcpu->arch.pkru);
2d5b5a66
SY
5420}
5421
5422static void kvm_vcpu_ioctl_x86_get_xcrs(struct kvm_vcpu *vcpu,
5423 struct kvm_xcrs *guest_xcrs)
5424{
d366bf7e 5425 if (!boot_cpu_has(X86_FEATURE_XSAVE)) {
2d5b5a66
SY
5426 guest_xcrs->nr_xcrs = 0;
5427 return;
5428 }
5429
5430 guest_xcrs->nr_xcrs = 1;
5431 guest_xcrs->flags = 0;
5432 guest_xcrs->xcrs[0].xcr = XCR_XFEATURE_ENABLED_MASK;
5433 guest_xcrs->xcrs[0].value = vcpu->arch.xcr0;
5434}
5435
5436static int kvm_vcpu_ioctl_x86_set_xcrs(struct kvm_vcpu *vcpu,
5437 struct kvm_xcrs *guest_xcrs)
5438{
5439 int i, r = 0;
5440
d366bf7e 5441 if (!boot_cpu_has(X86_FEATURE_XSAVE))
2d5b5a66
SY
5442 return -EINVAL;
5443
5444 if (guest_xcrs->nr_xcrs > KVM_MAX_XCRS || guest_xcrs->flags)
5445 return -EINVAL;
5446
5447 for (i = 0; i < guest_xcrs->nr_xcrs; i++)
5448 /* Only support XCR0 currently */
c67a04cb 5449 if (guest_xcrs->xcrs[i].xcr == XCR_XFEATURE_ENABLED_MASK) {
2d5b5a66 5450 r = __kvm_set_xcr(vcpu, XCR_XFEATURE_ENABLED_MASK,
c67a04cb 5451 guest_xcrs->xcrs[i].value);
2d5b5a66
SY
5452 break;
5453 }
5454 if (r)
5455 r = -EINVAL;
5456 return r;
5457}
5458
1c0b28c2
EM
5459/*
5460 * kvm_set_guest_paused() indicates to the guest kernel that it has been
5461 * stopped by the hypervisor. This function will be called from the host only.
5462 * EINVAL is returned when the host attempts to set the flag for a guest that
5463 * does not support pv clocks.
5464 */
5465static int kvm_set_guest_paused(struct kvm_vcpu *vcpu)
5466{
916d3608 5467 if (!vcpu->arch.pv_time.active)
1c0b28c2 5468 return -EINVAL;
51d59c6b 5469 vcpu->arch.pvclock_set_guest_stopped_request = true;
1c0b28c2
EM
5470 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
5471 return 0;
5472}
5473
828ca896
OU
5474static int kvm_arch_tsc_has_attr(struct kvm_vcpu *vcpu,
5475 struct kvm_device_attr *attr)
5476{
5477 int r;
5478
5479 switch (attr->attr) {
5480 case KVM_VCPU_TSC_OFFSET:
5481 r = 0;
5482 break;
5483 default:
5484 r = -ENXIO;
5485 }
5486
5487 return r;
5488}
5489
5490static int kvm_arch_tsc_get_attr(struct kvm_vcpu *vcpu,
5491 struct kvm_device_attr *attr)
5492{
56f289a8 5493 u64 __user *uaddr = kvm_get_attr_addr(attr);
828ca896
OU
5494 int r;
5495
56f289a8
SC
5496 if (IS_ERR(uaddr))
5497 return PTR_ERR(uaddr);
828ca896
OU
5498
5499 switch (attr->attr) {
5500 case KVM_VCPU_TSC_OFFSET:
5501 r = -EFAULT;
5502 if (put_user(vcpu->arch.l1_tsc_offset, uaddr))
5503 break;
5504 r = 0;
5505 break;
5506 default:
5507 r = -ENXIO;
5508 }
5509
5510 return r;
5511}
5512
5513static int kvm_arch_tsc_set_attr(struct kvm_vcpu *vcpu,
5514 struct kvm_device_attr *attr)
5515{
56f289a8 5516 u64 __user *uaddr = kvm_get_attr_addr(attr);
828ca896
OU
5517 struct kvm *kvm = vcpu->kvm;
5518 int r;
5519
56f289a8
SC
5520 if (IS_ERR(uaddr))
5521 return PTR_ERR(uaddr);
828ca896
OU
5522
5523 switch (attr->attr) {
5524 case KVM_VCPU_TSC_OFFSET: {
5525 u64 offset, tsc, ns;
5526 unsigned long flags;
5527 bool matched;
5528
5529 r = -EFAULT;
5530 if (get_user(offset, uaddr))
5531 break;
5532
5533 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
5534
5535 matched = (vcpu->arch.virtual_tsc_khz &&
5536 kvm->arch.last_tsc_khz == vcpu->arch.virtual_tsc_khz &&
5537 kvm->arch.last_tsc_offset == offset);
5538
62711e5a 5539 tsc = kvm_scale_tsc(rdtsc(), vcpu->arch.l1_tsc_scaling_ratio) + offset;
828ca896
OU
5540 ns = get_kvmclock_base_ns();
5541
5542 __kvm_synchronize_tsc(vcpu, offset, tsc, ns, matched);
5543 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
5544
5545 r = 0;
5546 break;
5547 }
5548 default:
5549 r = -ENXIO;
5550 }
5551
5552 return r;
5553}
5554
5555static int kvm_vcpu_ioctl_device_attr(struct kvm_vcpu *vcpu,
5556 unsigned int ioctl,
5557 void __user *argp)
5558{
5559 struct kvm_device_attr attr;
5560 int r;
5561
5562 if (copy_from_user(&attr, argp, sizeof(attr)))
5563 return -EFAULT;
5564
5565 if (attr.group != KVM_VCPU_TSC_CTRL)
5566 return -ENXIO;
5567
5568 switch (ioctl) {
5569 case KVM_HAS_DEVICE_ATTR:
5570 r = kvm_arch_tsc_has_attr(vcpu, &attr);
5571 break;
5572 case KVM_GET_DEVICE_ATTR:
5573 r = kvm_arch_tsc_get_attr(vcpu, &attr);
5574 break;
5575 case KVM_SET_DEVICE_ATTR:
5576 r = kvm_arch_tsc_set_attr(vcpu, &attr);
5577 break;
5578 }
5579
5580 return r;
5581}
5582
5c919412
AS
5583static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
5584 struct kvm_enable_cap *cap)
5585{
57b119da
VK
5586 int r;
5587 uint16_t vmcs_version;
5588 void __user *user_ptr;
5589
5c919412
AS
5590 if (cap->flags)
5591 return -EINVAL;
5592
5593 switch (cap->cap) {
efc479e6
RK
5594 case KVM_CAP_HYPERV_SYNIC2:
5595 if (cap->args[0])
5596 return -EINVAL;
df561f66 5597 fallthrough;
b2869f28 5598
5c919412 5599 case KVM_CAP_HYPERV_SYNIC:
546d87e5
WL
5600 if (!irqchip_in_kernel(vcpu->kvm))
5601 return -EINVAL;
efc479e6
RK
5602 return kvm_hv_activate_synic(vcpu, cap->cap ==
5603 KVM_CAP_HYPERV_SYNIC2);
57b119da 5604 case KVM_CAP_HYPERV_ENLIGHTENED_VMCS:
33b22172 5605 if (!kvm_x86_ops.nested_ops->enable_evmcs)
5158917c 5606 return -ENOTTY;
33b22172 5607 r = kvm_x86_ops.nested_ops->enable_evmcs(vcpu, &vmcs_version);
57b119da
VK
5608 if (!r) {
5609 user_ptr = (void __user *)(uintptr_t)cap->args[0];
5610 if (copy_to_user(user_ptr, &vmcs_version,
5611 sizeof(vmcs_version)))
5612 r = -EFAULT;
5613 }
5614 return r;
344c6c80 5615 case KVM_CAP_HYPERV_DIRECT_TLBFLUSH:
b83237ad 5616 if (!kvm_x86_ops.enable_l2_tlb_flush)
344c6c80
TL
5617 return -ENOTTY;
5618
b83237ad 5619 return static_call(kvm_x86_enable_l2_tlb_flush)(vcpu);
57b119da 5620
644f7067
VK
5621 case KVM_CAP_HYPERV_ENFORCE_CPUID:
5622 return kvm_hv_set_enforce_cpuid(vcpu, cap->args[0]);
5623
66570e96
OU
5624 case KVM_CAP_ENFORCE_PV_FEATURE_CPUID:
5625 vcpu->arch.pv_cpuid.enforce = cap->args[0];
01b4f510
OU
5626 if (vcpu->arch.pv_cpuid.enforce)
5627 kvm_update_pv_runtime(vcpu);
66570e96
OU
5628
5629 return 0;
5c919412
AS
5630 default:
5631 return -EINVAL;
5632 }
5633}
5634
313a3dc7
CO
5635long kvm_arch_vcpu_ioctl(struct file *filp,
5636 unsigned int ioctl, unsigned long arg)
5637{
5638 struct kvm_vcpu *vcpu = filp->private_data;
5639 void __user *argp = (void __user *)arg;
5640 int r;
d1ac91d8 5641 union {
6dba9403 5642 struct kvm_sregs2 *sregs2;
d1ac91d8
AK
5643 struct kvm_lapic_state *lapic;
5644 struct kvm_xsave *xsave;
5645 struct kvm_xcrs *xcrs;
5646 void *buffer;
5647 } u;
5648
9b062471
CD
5649 vcpu_load(vcpu);
5650
d1ac91d8 5651 u.buffer = NULL;
313a3dc7
CO
5652 switch (ioctl) {
5653 case KVM_GET_LAPIC: {
2204ae3c 5654 r = -EINVAL;
bce87cce 5655 if (!lapic_in_kernel(vcpu))
2204ae3c 5656 goto out;
254272ce
BG
5657 u.lapic = kzalloc(sizeof(struct kvm_lapic_state),
5658 GFP_KERNEL_ACCOUNT);
313a3dc7 5659
b772ff36 5660 r = -ENOMEM;
d1ac91d8 5661 if (!u.lapic)
b772ff36 5662 goto out;
d1ac91d8 5663 r = kvm_vcpu_ioctl_get_lapic(vcpu, u.lapic);
313a3dc7
CO
5664 if (r)
5665 goto out;
5666 r = -EFAULT;
d1ac91d8 5667 if (copy_to_user(argp, u.lapic, sizeof(struct kvm_lapic_state)))
313a3dc7
CO
5668 goto out;
5669 r = 0;
5670 break;
5671 }
5672 case KVM_SET_LAPIC: {
2204ae3c 5673 r = -EINVAL;
bce87cce 5674 if (!lapic_in_kernel(vcpu))
2204ae3c 5675 goto out;
ff5c2c03 5676 u.lapic = memdup_user(argp, sizeof(*u.lapic));
9b062471
CD
5677 if (IS_ERR(u.lapic)) {
5678 r = PTR_ERR(u.lapic);
5679 goto out_nofree;
5680 }
ff5c2c03 5681
d1ac91d8 5682 r = kvm_vcpu_ioctl_set_lapic(vcpu, u.lapic);
313a3dc7
CO
5683 break;
5684 }
f77bc6a4
ZX
5685 case KVM_INTERRUPT: {
5686 struct kvm_interrupt irq;
5687
5688 r = -EFAULT;
0e96f31e 5689 if (copy_from_user(&irq, argp, sizeof(irq)))
f77bc6a4
ZX
5690 goto out;
5691 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
f77bc6a4
ZX
5692 break;
5693 }
c4abb7c9
JK
5694 case KVM_NMI: {
5695 r = kvm_vcpu_ioctl_nmi(vcpu);
c4abb7c9
JK
5696 break;
5697 }
f077825a 5698 case KVM_SMI: {
b0b42197 5699 r = kvm_inject_smi(vcpu);
f077825a
PB
5700 break;
5701 }
313a3dc7
CO
5702 case KVM_SET_CPUID: {
5703 struct kvm_cpuid __user *cpuid_arg = argp;
5704 struct kvm_cpuid cpuid;
5705
5706 r = -EFAULT;
0e96f31e 5707 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
313a3dc7
CO
5708 goto out;
5709 r = kvm_vcpu_ioctl_set_cpuid(vcpu, &cpuid, cpuid_arg->entries);
313a3dc7
CO
5710 break;
5711 }
07716717
DK
5712 case KVM_SET_CPUID2: {
5713 struct kvm_cpuid2 __user *cpuid_arg = argp;
5714 struct kvm_cpuid2 cpuid;
5715
5716 r = -EFAULT;
0e96f31e 5717 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
5718 goto out;
5719 r = kvm_vcpu_ioctl_set_cpuid2(vcpu, &cpuid,
19355475 5720 cpuid_arg->entries);
07716717
DK
5721 break;
5722 }
5723 case KVM_GET_CPUID2: {
5724 struct kvm_cpuid2 __user *cpuid_arg = argp;
5725 struct kvm_cpuid2 cpuid;
5726
5727 r = -EFAULT;
0e96f31e 5728 if (copy_from_user(&cpuid, cpuid_arg, sizeof(cpuid)))
07716717
DK
5729 goto out;
5730 r = kvm_vcpu_ioctl_get_cpuid2(vcpu, &cpuid,
19355475 5731 cpuid_arg->entries);
07716717
DK
5732 if (r)
5733 goto out;
5734 r = -EFAULT;
0e96f31e 5735 if (copy_to_user(cpuid_arg, &cpuid, sizeof(cpuid)))
07716717
DK
5736 goto out;
5737 r = 0;
5738 break;
5739 }
801e459a
TL
5740 case KVM_GET_MSRS: {
5741 int idx = srcu_read_lock(&vcpu->kvm->srcu);
609e36d3 5742 r = msr_io(vcpu, argp, do_get_msr, 1);
801e459a 5743 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 5744 break;
801e459a
TL
5745 }
5746 case KVM_SET_MSRS: {
5747 int idx = srcu_read_lock(&vcpu->kvm->srcu);
313a3dc7 5748 r = msr_io(vcpu, argp, do_set_msr, 0);
801e459a 5749 srcu_read_unlock(&vcpu->kvm->srcu, idx);
313a3dc7 5750 break;
801e459a 5751 }
b209749f
AK
5752 case KVM_TPR_ACCESS_REPORTING: {
5753 struct kvm_tpr_access_ctl tac;
5754
5755 r = -EFAULT;
0e96f31e 5756 if (copy_from_user(&tac, argp, sizeof(tac)))
b209749f
AK
5757 goto out;
5758 r = vcpu_ioctl_tpr_access_reporting(vcpu, &tac);
5759 if (r)
5760 goto out;
5761 r = -EFAULT;
0e96f31e 5762 if (copy_to_user(argp, &tac, sizeof(tac)))
b209749f
AK
5763 goto out;
5764 r = 0;
5765 break;
5766 };
b93463aa
AK
5767 case KVM_SET_VAPIC_ADDR: {
5768 struct kvm_vapic_addr va;
7301d6ab 5769 int idx;
b93463aa
AK
5770
5771 r = -EINVAL;
35754c98 5772 if (!lapic_in_kernel(vcpu))
b93463aa
AK
5773 goto out;
5774 r = -EFAULT;
0e96f31e 5775 if (copy_from_user(&va, argp, sizeof(va)))
b93463aa 5776 goto out;
7301d6ab 5777 idx = srcu_read_lock(&vcpu->kvm->srcu);
fda4e2e8 5778 r = kvm_lapic_set_vapic_addr(vcpu, va.vapic_addr);
7301d6ab 5779 srcu_read_unlock(&vcpu->kvm->srcu, idx);
b93463aa
AK
5780 break;
5781 }
890ca9ae
HY
5782 case KVM_X86_SETUP_MCE: {
5783 u64 mcg_cap;
5784
5785 r = -EFAULT;
0e96f31e 5786 if (copy_from_user(&mcg_cap, argp, sizeof(mcg_cap)))
890ca9ae
HY
5787 goto out;
5788 r = kvm_vcpu_ioctl_x86_setup_mce(vcpu, mcg_cap);
5789 break;
5790 }
5791 case KVM_X86_SET_MCE: {
5792 struct kvm_x86_mce mce;
5793
5794 r = -EFAULT;
0e96f31e 5795 if (copy_from_user(&mce, argp, sizeof(mce)))
890ca9ae
HY
5796 goto out;
5797 r = kvm_vcpu_ioctl_x86_set_mce(vcpu, &mce);
5798 break;
5799 }
3cfc3092
JK
5800 case KVM_GET_VCPU_EVENTS: {
5801 struct kvm_vcpu_events events;
5802
5803 kvm_vcpu_ioctl_x86_get_vcpu_events(vcpu, &events);
5804
5805 r = -EFAULT;
5806 if (copy_to_user(argp, &events, sizeof(struct kvm_vcpu_events)))
5807 break;
5808 r = 0;
5809 break;
5810 }
5811 case KVM_SET_VCPU_EVENTS: {
5812 struct kvm_vcpu_events events;
5813
5814 r = -EFAULT;
5815 if (copy_from_user(&events, argp, sizeof(struct kvm_vcpu_events)))
5816 break;
5817
5818 r = kvm_vcpu_ioctl_x86_set_vcpu_events(vcpu, &events);
5819 break;
5820 }
a1efbe77
JK
5821 case KVM_GET_DEBUGREGS: {
5822 struct kvm_debugregs dbgregs;
5823
5824 kvm_vcpu_ioctl_x86_get_debugregs(vcpu, &dbgregs);
5825
5826 r = -EFAULT;
5827 if (copy_to_user(argp, &dbgregs,
5828 sizeof(struct kvm_debugregs)))
5829 break;
5830 r = 0;
5831 break;
5832 }
5833 case KVM_SET_DEBUGREGS: {
5834 struct kvm_debugregs dbgregs;
5835
5836 r = -EFAULT;
5837 if (copy_from_user(&dbgregs, argp,
5838 sizeof(struct kvm_debugregs)))
5839 break;
5840
5841 r = kvm_vcpu_ioctl_x86_set_debugregs(vcpu, &dbgregs);
5842 break;
5843 }
2d5b5a66 5844 case KVM_GET_XSAVE: {
be50b206
GZ
5845 r = -EINVAL;
5846 if (vcpu->arch.guest_fpu.uabi_size > sizeof(struct kvm_xsave))
5847 break;
5848
254272ce 5849 u.xsave = kzalloc(sizeof(struct kvm_xsave), GFP_KERNEL_ACCOUNT);
2d5b5a66 5850 r = -ENOMEM;
d1ac91d8 5851 if (!u.xsave)
2d5b5a66
SY
5852 break;
5853
d1ac91d8 5854 kvm_vcpu_ioctl_x86_get_xsave(vcpu, u.xsave);
2d5b5a66
SY
5855
5856 r = -EFAULT;
d1ac91d8 5857 if (copy_to_user(argp, u.xsave, sizeof(struct kvm_xsave)))
2d5b5a66
SY
5858 break;
5859 r = 0;
5860 break;
5861 }
5862 case KVM_SET_XSAVE: {
be50b206
GZ
5863 int size = vcpu->arch.guest_fpu.uabi_size;
5864
5865 u.xsave = memdup_user(argp, size);
9b062471
CD
5866 if (IS_ERR(u.xsave)) {
5867 r = PTR_ERR(u.xsave);
5868 goto out_nofree;
5869 }
2d5b5a66 5870
d1ac91d8 5871 r = kvm_vcpu_ioctl_x86_set_xsave(vcpu, u.xsave);
2d5b5a66
SY
5872 break;
5873 }
be50b206
GZ
5874
5875 case KVM_GET_XSAVE2: {
5876 int size = vcpu->arch.guest_fpu.uabi_size;
5877
5878 u.xsave = kzalloc(size, GFP_KERNEL_ACCOUNT);
5879 r = -ENOMEM;
5880 if (!u.xsave)
5881 break;
5882
5883 kvm_vcpu_ioctl_x86_get_xsave2(vcpu, u.buffer, size);
5884
5885 r = -EFAULT;
5886 if (copy_to_user(argp, u.xsave, size))
5887 break;
5888
5889 r = 0;
5890 break;
5891 }
5892
2d5b5a66 5893 case KVM_GET_XCRS: {
254272ce 5894 u.xcrs = kzalloc(sizeof(struct kvm_xcrs), GFP_KERNEL_ACCOUNT);
2d5b5a66 5895 r = -ENOMEM;
d1ac91d8 5896 if (!u.xcrs)
2d5b5a66
SY
5897 break;
5898
d1ac91d8 5899 kvm_vcpu_ioctl_x86_get_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
5900
5901 r = -EFAULT;
d1ac91d8 5902 if (copy_to_user(argp, u.xcrs,
2d5b5a66
SY
5903 sizeof(struct kvm_xcrs)))
5904 break;
5905 r = 0;
5906 break;
5907 }
5908 case KVM_SET_XCRS: {
ff5c2c03 5909 u.xcrs = memdup_user(argp, sizeof(*u.xcrs));
9b062471
CD
5910 if (IS_ERR(u.xcrs)) {
5911 r = PTR_ERR(u.xcrs);
5912 goto out_nofree;
5913 }
2d5b5a66 5914
d1ac91d8 5915 r = kvm_vcpu_ioctl_x86_set_xcrs(vcpu, u.xcrs);
2d5b5a66
SY
5916 break;
5917 }
92a1f12d
JR
5918 case KVM_SET_TSC_KHZ: {
5919 u32 user_tsc_khz;
5920
5921 r = -EINVAL;
92a1f12d
JR
5922 user_tsc_khz = (u32)arg;
5923
938c8745
SC
5924 if (kvm_caps.has_tsc_control &&
5925 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
92a1f12d
JR
5926 goto out;
5927
cc578287
ZA
5928 if (user_tsc_khz == 0)
5929 user_tsc_khz = tsc_khz;
5930
381d585c
HZ
5931 if (!kvm_set_tsc_khz(vcpu, user_tsc_khz))
5932 r = 0;
92a1f12d 5933
92a1f12d
JR
5934 goto out;
5935 }
5936 case KVM_GET_TSC_KHZ: {
cc578287 5937 r = vcpu->arch.virtual_tsc_khz;
92a1f12d
JR
5938 goto out;
5939 }
1c0b28c2
EM
5940 case KVM_KVMCLOCK_CTRL: {
5941 r = kvm_set_guest_paused(vcpu);
5942 goto out;
5943 }
5c919412
AS
5944 case KVM_ENABLE_CAP: {
5945 struct kvm_enable_cap cap;
5946
5947 r = -EFAULT;
5948 if (copy_from_user(&cap, argp, sizeof(cap)))
5949 goto out;
5950 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
5951 break;
5952 }
8fcc4b59
JM
5953 case KVM_GET_NESTED_STATE: {
5954 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5955 u32 user_data_size;
5956
5957 r = -EINVAL;
33b22172 5958 if (!kvm_x86_ops.nested_ops->get_state)
8fcc4b59
JM
5959 break;
5960
5961 BUILD_BUG_ON(sizeof(user_data_size) != sizeof(user_kvm_nested_state->size));
26b471c7 5962 r = -EFAULT;
8fcc4b59 5963 if (get_user(user_data_size, &user_kvm_nested_state->size))
26b471c7 5964 break;
8fcc4b59 5965
33b22172
PB
5966 r = kvm_x86_ops.nested_ops->get_state(vcpu, user_kvm_nested_state,
5967 user_data_size);
8fcc4b59 5968 if (r < 0)
26b471c7 5969 break;
8fcc4b59
JM
5970
5971 if (r > user_data_size) {
5972 if (put_user(r, &user_kvm_nested_state->size))
26b471c7
LA
5973 r = -EFAULT;
5974 else
5975 r = -E2BIG;
5976 break;
8fcc4b59 5977 }
26b471c7 5978
8fcc4b59
JM
5979 r = 0;
5980 break;
5981 }
5982 case KVM_SET_NESTED_STATE: {
5983 struct kvm_nested_state __user *user_kvm_nested_state = argp;
5984 struct kvm_nested_state kvm_state;
ad5996d9 5985 int idx;
8fcc4b59
JM
5986
5987 r = -EINVAL;
33b22172 5988 if (!kvm_x86_ops.nested_ops->set_state)
8fcc4b59
JM
5989 break;
5990
26b471c7 5991 r = -EFAULT;
8fcc4b59 5992 if (copy_from_user(&kvm_state, user_kvm_nested_state, sizeof(kvm_state)))
26b471c7 5993 break;
8fcc4b59 5994
26b471c7 5995 r = -EINVAL;
8fcc4b59 5996 if (kvm_state.size < sizeof(kvm_state))
26b471c7 5997 break;
8fcc4b59
JM
5998
5999 if (kvm_state.flags &
8cab6507 6000 ~(KVM_STATE_NESTED_RUN_PENDING | KVM_STATE_NESTED_GUEST_MODE
cc440cda
PB
6001 | KVM_STATE_NESTED_EVMCS | KVM_STATE_NESTED_MTF_PENDING
6002 | KVM_STATE_NESTED_GIF_SET))
26b471c7 6003 break;
8fcc4b59
JM
6004
6005 /* nested_run_pending implies guest_mode. */
8cab6507
VK
6006 if ((kvm_state.flags & KVM_STATE_NESTED_RUN_PENDING)
6007 && !(kvm_state.flags & KVM_STATE_NESTED_GUEST_MODE))
26b471c7 6008 break;
8fcc4b59 6009
ad5996d9 6010 idx = srcu_read_lock(&vcpu->kvm->srcu);
33b22172 6011 r = kvm_x86_ops.nested_ops->set_state(vcpu, user_kvm_nested_state, &kvm_state);
ad5996d9 6012 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8fcc4b59
JM
6013 break;
6014 }
c21d54f0
VK
6015 case KVM_GET_SUPPORTED_HV_CPUID:
6016 r = kvm_ioctl_get_supported_hv_cpuid(vcpu, argp);
2bc39970 6017 break;
b59b153d 6018#ifdef CONFIG_KVM_XEN
3e324615
DW
6019 case KVM_XEN_VCPU_GET_ATTR: {
6020 struct kvm_xen_vcpu_attr xva;
6021
6022 r = -EFAULT;
6023 if (copy_from_user(&xva, argp, sizeof(xva)))
6024 goto out;
6025 r = kvm_xen_vcpu_get_attr(vcpu, &xva);
6026 if (!r && copy_to_user(argp, &xva, sizeof(xva)))
6027 r = -EFAULT;
6028 break;
6029 }
6030 case KVM_XEN_VCPU_SET_ATTR: {
6031 struct kvm_xen_vcpu_attr xva;
6032
6033 r = -EFAULT;
6034 if (copy_from_user(&xva, argp, sizeof(xva)))
6035 goto out;
6036 r = kvm_xen_vcpu_set_attr(vcpu, &xva);
6037 break;
6038 }
b59b153d 6039#endif
6dba9403
ML
6040 case KVM_GET_SREGS2: {
6041 u.sregs2 = kzalloc(sizeof(struct kvm_sregs2), GFP_KERNEL);
6042 r = -ENOMEM;
6043 if (!u.sregs2)
6044 goto out;
6045 __get_sregs2(vcpu, u.sregs2);
6046 r = -EFAULT;
6047 if (copy_to_user(argp, u.sregs2, sizeof(struct kvm_sregs2)))
6048 goto out;
6049 r = 0;
6050 break;
6051 }
6052 case KVM_SET_SREGS2: {
6053 u.sregs2 = memdup_user(argp, sizeof(struct kvm_sregs2));
6054 if (IS_ERR(u.sregs2)) {
6055 r = PTR_ERR(u.sregs2);
6056 u.sregs2 = NULL;
6057 goto out;
6058 }
6059 r = __set_sregs2(vcpu, u.sregs2);
6060 break;
6061 }
828ca896
OU
6062 case KVM_HAS_DEVICE_ATTR:
6063 case KVM_GET_DEVICE_ATTR:
6064 case KVM_SET_DEVICE_ATTR:
6065 r = kvm_vcpu_ioctl_device_attr(vcpu, ioctl, argp);
6066 break;
313a3dc7
CO
6067 default:
6068 r = -EINVAL;
6069 }
6070out:
d1ac91d8 6071 kfree(u.buffer);
9b062471
CD
6072out_nofree:
6073 vcpu_put(vcpu);
313a3dc7
CO
6074 return r;
6075}
6076
1499fa80 6077vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
5b1c1493
CO
6078{
6079 return VM_FAULT_SIGBUS;
6080}
6081
1fe779f8
CO
6082static int kvm_vm_ioctl_set_tss_addr(struct kvm *kvm, unsigned long addr)
6083{
6084 int ret;
6085
6086 if (addr > (unsigned int)(-3 * PAGE_SIZE))
951179ce 6087 return -EINVAL;
b3646477 6088 ret = static_call(kvm_x86_set_tss_addr)(kvm, addr);
1fe779f8
CO
6089 return ret;
6090}
6091
b927a3ce
SY
6092static int kvm_vm_ioctl_set_identity_map_addr(struct kvm *kvm,
6093 u64 ident_addr)
6094{
b3646477 6095 return static_call(kvm_x86_set_identity_map_addr)(kvm, ident_addr);
b927a3ce
SY
6096}
6097
1fe779f8 6098static int kvm_vm_ioctl_set_nr_mmu_pages(struct kvm *kvm,
bc8a3d89 6099 unsigned long kvm_nr_mmu_pages)
1fe779f8
CO
6100{
6101 if (kvm_nr_mmu_pages < KVM_MIN_ALLOC_MMU_PAGES)
6102 return -EINVAL;
6103
79fac95e 6104 mutex_lock(&kvm->slots_lock);
1fe779f8
CO
6105
6106 kvm_mmu_change_mmu_pages(kvm, kvm_nr_mmu_pages);
f05e70ac 6107 kvm->arch.n_requested_mmu_pages = kvm_nr_mmu_pages;
1fe779f8 6108
79fac95e 6109 mutex_unlock(&kvm->slots_lock);
1fe779f8
CO
6110 return 0;
6111}
6112
1fe779f8
CO
6113static int kvm_vm_ioctl_get_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6114{
90bca052 6115 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
6116 int r;
6117
6118 r = 0;
6119 switch (chip->chip_id) {
6120 case KVM_IRQCHIP_PIC_MASTER:
90bca052 6121 memcpy(&chip->chip.pic, &pic->pics[0],
1fe779f8
CO
6122 sizeof(struct kvm_pic_state));
6123 break;
6124 case KVM_IRQCHIP_PIC_SLAVE:
90bca052 6125 memcpy(&chip->chip.pic, &pic->pics[1],
1fe779f8
CO
6126 sizeof(struct kvm_pic_state));
6127 break;
6128 case KVM_IRQCHIP_IOAPIC:
33392b49 6129 kvm_get_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
6130 break;
6131 default:
6132 r = -EINVAL;
6133 break;
6134 }
6135 return r;
6136}
6137
6138static int kvm_vm_ioctl_set_irqchip(struct kvm *kvm, struct kvm_irqchip *chip)
6139{
90bca052 6140 struct kvm_pic *pic = kvm->arch.vpic;
1fe779f8
CO
6141 int r;
6142
6143 r = 0;
6144 switch (chip->chip_id) {
6145 case KVM_IRQCHIP_PIC_MASTER:
90bca052
DH
6146 spin_lock(&pic->lock);
6147 memcpy(&pic->pics[0], &chip->chip.pic,
1fe779f8 6148 sizeof(struct kvm_pic_state));
90bca052 6149 spin_unlock(&pic->lock);
1fe779f8
CO
6150 break;
6151 case KVM_IRQCHIP_PIC_SLAVE:
90bca052
DH
6152 spin_lock(&pic->lock);
6153 memcpy(&pic->pics[1], &chip->chip.pic,
1fe779f8 6154 sizeof(struct kvm_pic_state));
90bca052 6155 spin_unlock(&pic->lock);
1fe779f8
CO
6156 break;
6157 case KVM_IRQCHIP_IOAPIC:
33392b49 6158 kvm_set_ioapic(kvm, &chip->chip.ioapic);
1fe779f8
CO
6159 break;
6160 default:
6161 r = -EINVAL;
6162 break;
6163 }
90bca052 6164 kvm_pic_update_irq(pic);
1fe779f8
CO
6165 return r;
6166}
6167
e0f63cb9
SY
6168static int kvm_vm_ioctl_get_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6169{
34f3941c
RK
6170 struct kvm_kpit_state *kps = &kvm->arch.vpit->pit_state;
6171
6172 BUILD_BUG_ON(sizeof(*ps) != sizeof(kps->channels));
6173
6174 mutex_lock(&kps->lock);
6175 memcpy(ps, &kps->channels, sizeof(*ps));
6176 mutex_unlock(&kps->lock);
2da29bcc 6177 return 0;
e0f63cb9
SY
6178}
6179
6180static int kvm_vm_ioctl_set_pit(struct kvm *kvm, struct kvm_pit_state *ps)
6181{
0185604c 6182 int i;
09edea72
RK
6183 struct kvm_pit *pit = kvm->arch.vpit;
6184
6185 mutex_lock(&pit->pit_state.lock);
34f3941c 6186 memcpy(&pit->pit_state.channels, ps, sizeof(*ps));
0185604c 6187 for (i = 0; i < 3; i++)
09edea72
RK
6188 kvm_pit_load_count(pit, i, ps->channels[i].count, 0);
6189 mutex_unlock(&pit->pit_state.lock);
2da29bcc 6190 return 0;
e9f42757
BK
6191}
6192
6193static int kvm_vm_ioctl_get_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6194{
e9f42757
BK
6195 mutex_lock(&kvm->arch.vpit->pit_state.lock);
6196 memcpy(ps->channels, &kvm->arch.vpit->pit_state.channels,
6197 sizeof(ps->channels));
6198 ps->flags = kvm->arch.vpit->pit_state.flags;
6199 mutex_unlock(&kvm->arch.vpit->pit_state.lock);
97e69aa6 6200 memset(&ps->reserved, 0, sizeof(ps->reserved));
2da29bcc 6201 return 0;
e9f42757
BK
6202}
6203
6204static int kvm_vm_ioctl_set_pit2(struct kvm *kvm, struct kvm_pit_state2 *ps)
6205{
2da29bcc 6206 int start = 0;
0185604c 6207 int i;
e9f42757 6208 u32 prev_legacy, cur_legacy;
09edea72
RK
6209 struct kvm_pit *pit = kvm->arch.vpit;
6210
6211 mutex_lock(&pit->pit_state.lock);
6212 prev_legacy = pit->pit_state.flags & KVM_PIT_FLAGS_HPET_LEGACY;
e9f42757
BK
6213 cur_legacy = ps->flags & KVM_PIT_FLAGS_HPET_LEGACY;
6214 if (!prev_legacy && cur_legacy)
6215 start = 1;
09edea72
RK
6216 memcpy(&pit->pit_state.channels, &ps->channels,
6217 sizeof(pit->pit_state.channels));
6218 pit->pit_state.flags = ps->flags;
0185604c 6219 for (i = 0; i < 3; i++)
09edea72 6220 kvm_pit_load_count(pit, i, pit->pit_state.channels[i].count,
e5e57e7a 6221 start && i == 0);
09edea72 6222 mutex_unlock(&pit->pit_state.lock);
2da29bcc 6223 return 0;
e0f63cb9
SY
6224}
6225
52d939a0
MT
6226static int kvm_vm_ioctl_reinject(struct kvm *kvm,
6227 struct kvm_reinject_control *control)
6228{
71474e2f
RK
6229 struct kvm_pit *pit = kvm->arch.vpit;
6230
71474e2f
RK
6231 /* pit->pit_state.lock was overloaded to prevent userspace from getting
6232 * an inconsistent state after running multiple KVM_REINJECT_CONTROL
6233 * ioctls in parallel. Use a separate lock if that ioctl isn't rare.
6234 */
6235 mutex_lock(&pit->pit_state.lock);
6236 kvm_pit_set_reinject(pit, control->pit_reinject);
6237 mutex_unlock(&pit->pit_state.lock);
b39c90b6 6238
52d939a0
MT
6239 return 0;
6240}
6241
0dff0846 6242void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot)
5bb064dc 6243{
a018eba5 6244
88178fd4 6245 /*
a018eba5
SC
6246 * Flush all CPUs' dirty log buffers to the dirty_bitmap. Called
6247 * before reporting dirty_bitmap to userspace. KVM flushes the buffers
6248 * on all VM-Exits, thus we only need to kick running vCPUs to force a
6249 * VM-Exit.
88178fd4 6250 */
a018eba5 6251 struct kvm_vcpu *vcpu;
46808a4c 6252 unsigned long i;
a018eba5
SC
6253
6254 kvm_for_each_vcpu(i, vcpu, kvm)
6255 kvm_vcpu_kick(vcpu);
5bb064dc
ZX
6256}
6257
aa2fbe6d
YZ
6258int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
6259 bool line_status)
23d43cf9
CD
6260{
6261 if (!irqchip_in_kernel(kvm))
6262 return -ENXIO;
6263
6264 irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
aa2fbe6d
YZ
6265 irq_event->irq, irq_event->level,
6266 line_status);
23d43cf9
CD
6267 return 0;
6268}
6269
e5d83c74
PB
6270int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
6271 struct kvm_enable_cap *cap)
90de4a18
NA
6272{
6273 int r;
6274
6275 if (cap->flags)
6276 return -EINVAL;
6277
6278 switch (cap->cap) {
6d849191
OU
6279 case KVM_CAP_DISABLE_QUIRKS2:
6280 r = -EINVAL;
6281 if (cap->args[0] & ~KVM_X86_VALID_QUIRKS)
6282 break;
6283 fallthrough;
90de4a18
NA
6284 case KVM_CAP_DISABLE_QUIRKS:
6285 kvm->arch.disabled_quirks = cap->args[0];
6286 r = 0;
6287 break;
49df6397
SR
6288 case KVM_CAP_SPLIT_IRQCHIP: {
6289 mutex_lock(&kvm->lock);
b053b2ae
SR
6290 r = -EINVAL;
6291 if (cap->args[0] > MAX_NR_RESERVED_IOAPIC_PINS)
6292 goto split_irqchip_unlock;
49df6397
SR
6293 r = -EEXIST;
6294 if (irqchip_in_kernel(kvm))
6295 goto split_irqchip_unlock;
557abc40 6296 if (kvm->created_vcpus)
49df6397
SR
6297 goto split_irqchip_unlock;
6298 r = kvm_setup_empty_irq_routing(kvm);
5c0aea0e 6299 if (r)
49df6397
SR
6300 goto split_irqchip_unlock;
6301 /* Pairs with irqchip_in_kernel. */
6302 smp_wmb();
49776faf 6303 kvm->arch.irqchip_mode = KVM_IRQCHIP_SPLIT;
b053b2ae 6304 kvm->arch.nr_reserved_ioapic_pins = cap->args[0];
320af55a 6305 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
49df6397
SR
6306 r = 0;
6307split_irqchip_unlock:
6308 mutex_unlock(&kvm->lock);
6309 break;
6310 }
37131313
RK
6311 case KVM_CAP_X2APIC_API:
6312 r = -EINVAL;
6313 if (cap->args[0] & ~KVM_X2APIC_API_VALID_FLAGS)
6314 break;
6315
6316 if (cap->args[0] & KVM_X2APIC_API_USE_32BIT_IDS)
6317 kvm->arch.x2apic_format = true;
c519265f
RK
6318 if (cap->args[0] & KVM_X2APIC_API_DISABLE_BROADCAST_QUIRK)
6319 kvm->arch.x2apic_broadcast_quirk_disabled = true;
37131313
RK
6320
6321 r = 0;
6322 break;
4d5422ce
WL
6323 case KVM_CAP_X86_DISABLE_EXITS:
6324 r = -EINVAL;
6325 if (cap->args[0] & ~KVM_X86_DISABLE_VALID_EXITS)
6326 break;
6327
b31c114b
WL
6328 if (cap->args[0] & KVM_X86_DISABLE_EXITS_PAUSE)
6329 kvm->arch.pause_in_guest = true;
6f0f2d5e
TL
6330
6331#define SMT_RSB_MSG "This processor is affected by the Cross-Thread Return Predictions vulnerability. " \
6332 "KVM_CAP_X86_DISABLE_EXITS should only be used with SMT disabled or trusted guests."
6333
6334 if (!mitigate_smt_rsb) {
6335 if (boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible() &&
6336 (cap->args[0] & ~KVM_X86_DISABLE_EXITS_PAUSE))
6337 pr_warn_once(SMT_RSB_MSG);
6338
6339 if ((cap->args[0] & KVM_X86_DISABLE_EXITS_MWAIT) &&
6340 kvm_can_mwait_in_guest())
6341 kvm->arch.mwait_in_guest = true;
6342 if (cap->args[0] & KVM_X86_DISABLE_EXITS_HLT)
6343 kvm->arch.hlt_in_guest = true;
6344 if (cap->args[0] & KVM_X86_DISABLE_EXITS_CSTATE)
6345 kvm->arch.cstate_in_guest = true;
6346 }
6347
4d5422ce
WL
6348 r = 0;
6349 break;
6fbbde9a
DS
6350 case KVM_CAP_MSR_PLATFORM_INFO:
6351 kvm->arch.guest_can_read_msr_platform_info = cap->args[0];
6352 r = 0;
c4f55198
JM
6353 break;
6354 case KVM_CAP_EXCEPTION_PAYLOAD:
6355 kvm->arch.exception_payload_enabled = cap->args[0];
6356 r = 0;
6fbbde9a 6357 break;
ed235117
CQ
6358 case KVM_CAP_X86_TRIPLE_FAULT_EVENT:
6359 kvm->arch.triple_fault_event = cap->args[0];
6360 r = 0;
6361 break;
1ae09954 6362 case KVM_CAP_X86_USER_SPACE_MSR:
cf5029d5 6363 r = -EINVAL;
db205f7e 6364 if (cap->args[0] & ~KVM_MSR_EXIT_REASON_VALID_MASK)
cf5029d5 6365 break;
1ae09954
AG
6366 kvm->arch.user_space_msr_mask = cap->args[0];
6367 r = 0;
6368 break;
fe6b6bc8
CQ
6369 case KVM_CAP_X86_BUS_LOCK_EXIT:
6370 r = -EINVAL;
6371 if (cap->args[0] & ~KVM_BUS_LOCK_DETECTION_VALID_MODE)
6372 break;
6373
6374 if ((cap->args[0] & KVM_BUS_LOCK_DETECTION_OFF) &&
6375 (cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT))
6376 break;
6377
938c8745 6378 if (kvm_caps.has_bus_lock_exit &&
fe6b6bc8
CQ
6379 cap->args[0] & KVM_BUS_LOCK_DETECTION_EXIT)
6380 kvm->arch.bus_lock_detection_enabled = true;
6381 r = 0;
6382 break;
fe7e9488
SC
6383#ifdef CONFIG_X86_SGX_KVM
6384 case KVM_CAP_SGX_ATTRIBUTE: {
6385 unsigned long allowed_attributes = 0;
6386
6387 r = sgx_set_attribute(&allowed_attributes, cap->args[0]);
6388 if (r)
6389 break;
6390
6391 /* KVM only supports the PROVISIONKEY privileged attribute. */
6392 if ((allowed_attributes & SGX_ATTR_PROVISIONKEY) &&
6393 !(allowed_attributes & ~SGX_ATTR_PROVISIONKEY))
6394 kvm->arch.sgx_provisioning_allowed = true;
6395 else
6396 r = -EINVAL;
6397 break;
6398 }
6399#endif
54526d1f
NT
6400 case KVM_CAP_VM_COPY_ENC_CONTEXT_FROM:
6401 r = -EINVAL;
7ad02ef0
SC
6402 if (!kvm_x86_ops.vm_copy_enc_context_from)
6403 break;
6404
6405 r = static_call(kvm_x86_vm_copy_enc_context_from)(kvm, cap->args[0]);
6406 break;
b5663931
PG
6407 case KVM_CAP_VM_MOVE_ENC_CONTEXT_FROM:
6408 r = -EINVAL;
7ad02ef0
SC
6409 if (!kvm_x86_ops.vm_move_enc_context_from)
6410 break;
6411
6412 r = static_call(kvm_x86_vm_move_enc_context_from)(kvm, cap->args[0]);
6413 break;
0dbb1123
AK
6414 case KVM_CAP_EXIT_HYPERCALL:
6415 if (cap->args[0] & ~KVM_EXIT_HYPERCALL_VALID_MASK) {
6416 r = -EINVAL;
6417 break;
6418 }
6419 kvm->arch.hypercall_exit_enabled = cap->args[0];
6420 r = 0;
6421 break;
19238e75
AL
6422 case KVM_CAP_EXIT_ON_EMULATION_FAILURE:
6423 r = -EINVAL;
6424 if (cap->args[0] & ~1)
6425 break;
6426 kvm->arch.exit_on_emulation_error = cap->args[0];
6427 r = 0;
6428 break;
ba7bb663
DD
6429 case KVM_CAP_PMU_CAPABILITY:
6430 r = -EINVAL;
6431 if (!enable_pmu || (cap->args[0] & ~KVM_CAP_PMU_VALID_MASK))
6432 break;
6433
6434 mutex_lock(&kvm->lock);
6435 if (!kvm->created_vcpus) {
6436 kvm->arch.enable_pmu = !(cap->args[0] & KVM_PMU_CAP_DISABLE);
6437 r = 0;
6438 }
6439 mutex_unlock(&kvm->lock);
6440 break;
35875316
ZG
6441 case KVM_CAP_MAX_VCPU_ID:
6442 r = -EINVAL;
6443 if (cap->args[0] > KVM_MAX_VCPU_IDS)
6444 break;
6445
6446 mutex_lock(&kvm->lock);
6447 if (kvm->arch.max_vcpu_ids == cap->args[0]) {
6448 r = 0;
6449 } else if (!kvm->arch.max_vcpu_ids) {
6450 kvm->arch.max_vcpu_ids = cap->args[0];
6451 r = 0;
6452 }
6453 mutex_unlock(&kvm->lock);
6454 break;
2f4073e0
TX
6455 case KVM_CAP_X86_NOTIFY_VMEXIT:
6456 r = -EINVAL;
6457 if ((u32)cap->args[0] & ~KVM_X86_NOTIFY_VMEXIT_VALID_BITS)
6458 break;
6459 if (!kvm_caps.has_notify_vmexit)
6460 break;
6461 if (!((u32)cap->args[0] & KVM_X86_NOTIFY_VMEXIT_ENABLED))
6462 break;
6463 mutex_lock(&kvm->lock);
6464 if (!kvm->created_vcpus) {
6465 kvm->arch.notify_window = cap->args[0] >> 32;
6466 kvm->arch.notify_vmexit_flags = (u32)cap->args[0];
6467 r = 0;
6468 }
6469 mutex_unlock(&kvm->lock);
6470 break;
084cc29f
BG
6471 case KVM_CAP_VM_DISABLE_NX_HUGE_PAGES:
6472 r = -EINVAL;
6473
6474 /*
6475 * Since the risk of disabling NX hugepages is a guest crashing
6476 * the system, ensure the userspace process has permission to
6477 * reboot the system.
6478 *
6479 * Note that unlike the reboot() syscall, the process must have
6480 * this capability in the root namespace because exposing
6481 * /dev/kvm into a container does not limit the scope of the
6482 * iTLB multihit bug to that container. In other words,
6483 * this must use capable(), not ns_capable().
6484 */
6485 if (!capable(CAP_SYS_BOOT)) {
6486 r = -EPERM;
6487 break;
6488 }
6489
6490 if (cap->args[0])
6491 break;
6492
6493 mutex_lock(&kvm->lock);
6494 if (!kvm->created_vcpus) {
6495 kvm->arch.disable_nx_huge_pages = true;
6496 r = 0;
6497 }
6498 mutex_unlock(&kvm->lock);
6499 break;
90de4a18
NA
6500 default:
6501 r = -EINVAL;
6502 break;
6503 }
6504 return r;
6505}
6506
b318e8de
SC
6507static struct kvm_x86_msr_filter *kvm_alloc_msr_filter(bool default_allow)
6508{
6509 struct kvm_x86_msr_filter *msr_filter;
6510
6511 msr_filter = kzalloc(sizeof(*msr_filter), GFP_KERNEL_ACCOUNT);
6512 if (!msr_filter)
6513 return NULL;
6514
6515 msr_filter->default_allow = default_allow;
6516 return msr_filter;
6517}
6518
6519static void kvm_free_msr_filter(struct kvm_x86_msr_filter *msr_filter)
1a155254
AG
6520{
6521 u32 i;
1a155254 6522
b318e8de
SC
6523 if (!msr_filter)
6524 return;
6525
6526 for (i = 0; i < msr_filter->count; i++)
6527 kfree(msr_filter->ranges[i].bitmap);
1a155254 6528
b318e8de 6529 kfree(msr_filter);
1a155254
AG
6530}
6531
b318e8de
SC
6532static int kvm_add_msr_filter(struct kvm_x86_msr_filter *msr_filter,
6533 struct kvm_msr_filter_range *user_range)
1a155254 6534{
1a155254
AG
6535 unsigned long *bitmap = NULL;
6536 size_t bitmap_size;
1a155254
AG
6537
6538 if (!user_range->nmsrs)
6539 return 0;
6540
8aff460f 6541 if (user_range->flags & ~KVM_MSR_FILTER_RANGE_VALID_MASK)
aca35288
SC
6542 return -EINVAL;
6543
6544 if (!user_range->flags)
6545 return -EINVAL;
6546
1a155254
AG
6547 bitmap_size = BITS_TO_LONGS(user_range->nmsrs) * sizeof(long);
6548 if (!bitmap_size || bitmap_size > KVM_MSR_FILTER_MAX_BITMAP_SIZE)
6549 return -EINVAL;
6550
6551 bitmap = memdup_user((__user u8*)user_range->bitmap, bitmap_size);
6552 if (IS_ERR(bitmap))
6553 return PTR_ERR(bitmap);
6554
aca35288 6555 msr_filter->ranges[msr_filter->count] = (struct msr_bitmap_range) {
1a155254
AG
6556 .flags = user_range->flags,
6557 .base = user_range->base,
6558 .nmsrs = user_range->nmsrs,
6559 .bitmap = bitmap,
6560 };
6561
b318e8de 6562 msr_filter->count++;
1a155254 6563 return 0;
1a155254
AG
6564}
6565
2e3272bc
AG
6566static int kvm_vm_ioctl_set_msr_filter(struct kvm *kvm,
6567 struct kvm_msr_filter *filter)
1a155254 6568{
b318e8de 6569 struct kvm_x86_msr_filter *new_filter, *old_filter;
1a155254 6570 bool default_allow;
043248b3 6571 bool empty = true;
4559e6cf 6572 int r;
1a155254
AG
6573 u32 i;
6574
c1340fe3 6575 if (filter->flags & ~KVM_MSR_FILTER_VALID_MASK)
cf5029d5
AL
6576 return -EINVAL;
6577
2e3272bc
AG
6578 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++)
6579 empty &= !filter->ranges[i].nmsrs;
1a155254 6580
2e3272bc 6581 default_allow = !(filter->flags & KVM_MSR_FILTER_DEFAULT_DENY);
043248b3
PB
6582 if (empty && !default_allow)
6583 return -EINVAL;
6584
b318e8de
SC
6585 new_filter = kvm_alloc_msr_filter(default_allow);
6586 if (!new_filter)
6587 return -ENOMEM;
1a155254 6588
2e3272bc
AG
6589 for (i = 0; i < ARRAY_SIZE(filter->ranges); i++) {
6590 r = kvm_add_msr_filter(new_filter, &filter->ranges[i]);
b318e8de
SC
6591 if (r) {
6592 kvm_free_msr_filter(new_filter);
6593 return r;
6594 }
1a155254
AG
6595 }
6596
b318e8de 6597 mutex_lock(&kvm->lock);
1fdefb8b
ML
6598 old_filter = rcu_replace_pointer(kvm->arch.msr_filter, new_filter,
6599 mutex_is_locked(&kvm->lock));
708f799d 6600 mutex_unlock(&kvm->lock);
b318e8de
SC
6601 synchronize_srcu(&kvm->srcu);
6602
6603 kvm_free_msr_filter(old_filter);
6604
1a155254 6605 kvm_make_all_cpus_request(kvm, KVM_REQ_MSR_FILTER_CHANGED);
1a155254 6606
b318e8de 6607 return 0;
1a155254
AG
6608}
6609
1739c701
AG
6610#ifdef CONFIG_KVM_COMPAT
6611/* for KVM_X86_SET_MSR_FILTER */
6612struct kvm_msr_filter_range_compat {
6613 __u32 flags;
6614 __u32 nmsrs;
6615 __u32 base;
6616 __u32 bitmap;
6617};
6618
6619struct kvm_msr_filter_compat {
6620 __u32 flags;
6621 struct kvm_msr_filter_range_compat ranges[KVM_MSR_FILTER_MAX_RANGES];
6622};
6623
6624#define KVM_X86_SET_MSR_FILTER_COMPAT _IOW(KVMIO, 0xc6, struct kvm_msr_filter_compat)
6625
6626long kvm_arch_vm_compat_ioctl(struct file *filp, unsigned int ioctl,
6627 unsigned long arg)
6628{
6629 void __user *argp = (void __user *)arg;
6630 struct kvm *kvm = filp->private_data;
6631 long r = -ENOTTY;
6632
6633 switch (ioctl) {
6634 case KVM_X86_SET_MSR_FILTER_COMPAT: {
6635 struct kvm_msr_filter __user *user_msr_filter = argp;
6636 struct kvm_msr_filter_compat filter_compat;
6637 struct kvm_msr_filter filter;
6638 int i;
6639
6640 if (copy_from_user(&filter_compat, user_msr_filter,
6641 sizeof(filter_compat)))
6642 return -EFAULT;
6643
6644 filter.flags = filter_compat.flags;
6645 for (i = 0; i < ARRAY_SIZE(filter.ranges); i++) {
6646 struct kvm_msr_filter_range_compat *cr;
6647
6648 cr = &filter_compat.ranges[i];
6649 filter.ranges[i] = (struct kvm_msr_filter_range) {
6650 .flags = cr->flags,
6651 .nmsrs = cr->nmsrs,
6652 .base = cr->base,
6653 .bitmap = (__u8 *)(ulong)cr->bitmap,
6654 };
6655 }
6656
6657 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
6658 break;
6659 }
6660 }
6661
6662 return r;
6663}
6664#endif
6665
7d62874f
SS
6666#ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
6667static int kvm_arch_suspend_notifier(struct kvm *kvm)
6668{
6669 struct kvm_vcpu *vcpu;
46808a4c
MZ
6670 unsigned long i;
6671 int ret = 0;
7d62874f
SS
6672
6673 mutex_lock(&kvm->lock);
6674 kvm_for_each_vcpu(i, vcpu, kvm) {
916d3608 6675 if (!vcpu->arch.pv_time.active)
7d62874f
SS
6676 continue;
6677
6678 ret = kvm_set_guest_paused(vcpu);
6679 if (ret) {
6680 kvm_err("Failed to pause guest VCPU%d: %d\n",
6681 vcpu->vcpu_id, ret);
6682 break;
6683 }
6684 }
6685 mutex_unlock(&kvm->lock);
6686
6687 return ret ? NOTIFY_BAD : NOTIFY_DONE;
6688}
6689
6690int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state)
6691{
6692 switch (state) {
6693 case PM_HIBERNATION_PREPARE:
6694 case PM_SUSPEND_PREPARE:
6695 return kvm_arch_suspend_notifier(kvm);
6696 }
6697
6698 return NOTIFY_DONE;
6699}
6700#endif /* CONFIG_HAVE_KVM_PM_NOTIFIER */
6701
45e6c2fa
PB
6702static int kvm_vm_ioctl_get_clock(struct kvm *kvm, void __user *argp)
6703{
869b4421 6704 struct kvm_clock_data data = { 0 };
45e6c2fa 6705
55c0cefb 6706 get_kvmclock(kvm, &data);
45e6c2fa
PB
6707 if (copy_to_user(argp, &data, sizeof(data)))
6708 return -EFAULT;
6709
6710 return 0;
6711}
6712
6713static int kvm_vm_ioctl_set_clock(struct kvm *kvm, void __user *argp)
6714{
6715 struct kvm_arch *ka = &kvm->arch;
6716 struct kvm_clock_data data;
c68dc1b5 6717 u64 now_raw_ns;
45e6c2fa
PB
6718
6719 if (copy_from_user(&data, argp, sizeof(data)))
6720 return -EFAULT;
6721
c68dc1b5
OU
6722 /*
6723 * Only KVM_CLOCK_REALTIME is used, but allow passing the
6724 * result of KVM_GET_CLOCK back to KVM_SET_CLOCK.
6725 */
6726 if (data.flags & ~KVM_CLOCK_VALID_FLAGS)
45e6c2fa
PB
6727 return -EINVAL;
6728
42dcbe7d 6729 kvm_hv_request_tsc_page_update(kvm);
45e6c2fa
PB
6730 kvm_start_pvclock_update(kvm);
6731 pvclock_update_vm_gtod_copy(kvm);
6732
6733 /*
6734 * This pairs with kvm_guest_time_update(): when masterclock is
6735 * in use, we use master_kernel_ns + kvmclock_offset to set
6736 * unsigned 'system_time' so if we use get_kvmclock_ns() (which
6737 * is slightly ahead) here we risk going negative on unsigned
6738 * 'system_time' when 'data.clock' is very small.
6739 */
c68dc1b5
OU
6740 if (data.flags & KVM_CLOCK_REALTIME) {
6741 u64 now_real_ns = ktime_get_real_ns();
6742
6743 /*
6744 * Avoid stepping the kvmclock backwards.
6745 */
6746 if (now_real_ns > data.realtime)
6747 data.clock += now_real_ns - data.realtime;
6748 }
6749
6750 if (ka->use_master_clock)
6751 now_raw_ns = ka->master_kernel_ns;
45e6c2fa 6752 else
c68dc1b5
OU
6753 now_raw_ns = get_kvmclock_base_ns();
6754 ka->kvmclock_offset = data.clock - now_raw_ns;
45e6c2fa
PB
6755 kvm_end_pvclock_update(kvm);
6756 return 0;
6757}
6758
d8708b80 6759int kvm_arch_vm_ioctl(struct file *filp, unsigned int ioctl, unsigned long arg)
1fe779f8
CO
6760{
6761 struct kvm *kvm = filp->private_data;
6762 void __user *argp = (void __user *)arg;
367e1319 6763 int r = -ENOTTY;
f0d66275
DH
6764 /*
6765 * This union makes it completely explicit to gcc-3.x
6766 * that these two variables' stack usage should be
6767 * combined, not added together.
6768 */
6769 union {
6770 struct kvm_pit_state ps;
e9f42757 6771 struct kvm_pit_state2 ps2;
c5ff41ce 6772 struct kvm_pit_config pit_config;
f0d66275 6773 } u;
1fe779f8
CO
6774
6775 switch (ioctl) {
6776 case KVM_SET_TSS_ADDR:
6777 r = kvm_vm_ioctl_set_tss_addr(kvm, arg);
1fe779f8 6778 break;
b927a3ce
SY
6779 case KVM_SET_IDENTITY_MAP_ADDR: {
6780 u64 ident_addr;
6781
1af1ac91
DH
6782 mutex_lock(&kvm->lock);
6783 r = -EINVAL;
6784 if (kvm->created_vcpus)
6785 goto set_identity_unlock;
b927a3ce 6786 r = -EFAULT;
0e96f31e 6787 if (copy_from_user(&ident_addr, argp, sizeof(ident_addr)))
1af1ac91 6788 goto set_identity_unlock;
b927a3ce 6789 r = kvm_vm_ioctl_set_identity_map_addr(kvm, ident_addr);
1af1ac91
DH
6790set_identity_unlock:
6791 mutex_unlock(&kvm->lock);
b927a3ce
SY
6792 break;
6793 }
1fe779f8
CO
6794 case KVM_SET_NR_MMU_PAGES:
6795 r = kvm_vm_ioctl_set_nr_mmu_pages(kvm, arg);
1fe779f8 6796 break;
3ddea128 6797 case KVM_CREATE_IRQCHIP: {
3ddea128 6798 mutex_lock(&kvm->lock);
09941366 6799
3ddea128 6800 r = -EEXIST;
35e6eaa3 6801 if (irqchip_in_kernel(kvm))
3ddea128 6802 goto create_irqchip_unlock;
09941366 6803
3e515705 6804 r = -EINVAL;
557abc40 6805 if (kvm->created_vcpus)
3e515705 6806 goto create_irqchip_unlock;
09941366
RK
6807
6808 r = kvm_pic_init(kvm);
6809 if (r)
3ddea128 6810 goto create_irqchip_unlock;
09941366
RK
6811
6812 r = kvm_ioapic_init(kvm);
6813 if (r) {
09941366 6814 kvm_pic_destroy(kvm);
3ddea128 6815 goto create_irqchip_unlock;
09941366
RK
6816 }
6817
399ec807
AK
6818 r = kvm_setup_default_irq_routing(kvm);
6819 if (r) {
72bb2fcd 6820 kvm_ioapic_destroy(kvm);
09941366 6821 kvm_pic_destroy(kvm);
71ba994c 6822 goto create_irqchip_unlock;
399ec807 6823 }
49776faf 6824 /* Write kvm->irq_routing before enabling irqchip_in_kernel. */
71ba994c 6825 smp_wmb();
49776faf 6826 kvm->arch.irqchip_mode = KVM_IRQCHIP_KERNEL;
320af55a 6827 kvm_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_ABSENT);
3ddea128
MT
6828 create_irqchip_unlock:
6829 mutex_unlock(&kvm->lock);
1fe779f8 6830 break;
3ddea128 6831 }
7837699f 6832 case KVM_CREATE_PIT:
c5ff41ce
JK
6833 u.pit_config.flags = KVM_PIT_SPEAKER_DUMMY;
6834 goto create_pit;
6835 case KVM_CREATE_PIT2:
6836 r = -EFAULT;
6837 if (copy_from_user(&u.pit_config, argp,
6838 sizeof(struct kvm_pit_config)))
6839 goto out;
6840 create_pit:
250715a6 6841 mutex_lock(&kvm->lock);
269e05e4
AK
6842 r = -EEXIST;
6843 if (kvm->arch.vpit)
6844 goto create_pit_unlock;
7837699f 6845 r = -ENOMEM;
c5ff41ce 6846 kvm->arch.vpit = kvm_create_pit(kvm, u.pit_config.flags);
7837699f
SY
6847 if (kvm->arch.vpit)
6848 r = 0;
269e05e4 6849 create_pit_unlock:
250715a6 6850 mutex_unlock(&kvm->lock);
7837699f 6851 break;
1fe779f8
CO
6852 case KVM_GET_IRQCHIP: {
6853 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 6854 struct kvm_irqchip *chip;
1fe779f8 6855
ff5c2c03
SL
6856 chip = memdup_user(argp, sizeof(*chip));
6857 if (IS_ERR(chip)) {
6858 r = PTR_ERR(chip);
1fe779f8 6859 goto out;
ff5c2c03
SL
6860 }
6861
1fe779f8 6862 r = -ENXIO;
826da321 6863 if (!irqchip_kernel(kvm))
f0d66275
DH
6864 goto get_irqchip_out;
6865 r = kvm_vm_ioctl_get_irqchip(kvm, chip);
1fe779f8 6866 if (r)
f0d66275 6867 goto get_irqchip_out;
1fe779f8 6868 r = -EFAULT;
0e96f31e 6869 if (copy_to_user(argp, chip, sizeof(*chip)))
f0d66275 6870 goto get_irqchip_out;
1fe779f8 6871 r = 0;
f0d66275
DH
6872 get_irqchip_out:
6873 kfree(chip);
1fe779f8
CO
6874 break;
6875 }
6876 case KVM_SET_IRQCHIP: {
6877 /* 0: PIC master, 1: PIC slave, 2: IOAPIC */
ff5c2c03 6878 struct kvm_irqchip *chip;
1fe779f8 6879
ff5c2c03
SL
6880 chip = memdup_user(argp, sizeof(*chip));
6881 if (IS_ERR(chip)) {
6882 r = PTR_ERR(chip);
1fe779f8 6883 goto out;
ff5c2c03
SL
6884 }
6885
1fe779f8 6886 r = -ENXIO;
826da321 6887 if (!irqchip_kernel(kvm))
f0d66275
DH
6888 goto set_irqchip_out;
6889 r = kvm_vm_ioctl_set_irqchip(kvm, chip);
f0d66275
DH
6890 set_irqchip_out:
6891 kfree(chip);
1fe779f8
CO
6892 break;
6893 }
e0f63cb9 6894 case KVM_GET_PIT: {
e0f63cb9 6895 r = -EFAULT;
f0d66275 6896 if (copy_from_user(&u.ps, argp, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
6897 goto out;
6898 r = -ENXIO;
6899 if (!kvm->arch.vpit)
6900 goto out;
f0d66275 6901 r = kvm_vm_ioctl_get_pit(kvm, &u.ps);
e0f63cb9
SY
6902 if (r)
6903 goto out;
6904 r = -EFAULT;
f0d66275 6905 if (copy_to_user(argp, &u.ps, sizeof(struct kvm_pit_state)))
e0f63cb9
SY
6906 goto out;
6907 r = 0;
6908 break;
6909 }
6910 case KVM_SET_PIT: {
e0f63cb9 6911 r = -EFAULT;
0e96f31e 6912 if (copy_from_user(&u.ps, argp, sizeof(u.ps)))
e0f63cb9 6913 goto out;
7289fdb5 6914 mutex_lock(&kvm->lock);
e0f63cb9
SY
6915 r = -ENXIO;
6916 if (!kvm->arch.vpit)
7289fdb5 6917 goto set_pit_out;
f0d66275 6918 r = kvm_vm_ioctl_set_pit(kvm, &u.ps);
7289fdb5
SR
6919set_pit_out:
6920 mutex_unlock(&kvm->lock);
e0f63cb9
SY
6921 break;
6922 }
e9f42757
BK
6923 case KVM_GET_PIT2: {
6924 r = -ENXIO;
6925 if (!kvm->arch.vpit)
6926 goto out;
6927 r = kvm_vm_ioctl_get_pit2(kvm, &u.ps2);
6928 if (r)
6929 goto out;
6930 r = -EFAULT;
6931 if (copy_to_user(argp, &u.ps2, sizeof(u.ps2)))
6932 goto out;
6933 r = 0;
6934 break;
6935 }
6936 case KVM_SET_PIT2: {
6937 r = -EFAULT;
6938 if (copy_from_user(&u.ps2, argp, sizeof(u.ps2)))
6939 goto out;
7289fdb5 6940 mutex_lock(&kvm->lock);
e9f42757
BK
6941 r = -ENXIO;
6942 if (!kvm->arch.vpit)
7289fdb5 6943 goto set_pit2_out;
e9f42757 6944 r = kvm_vm_ioctl_set_pit2(kvm, &u.ps2);
7289fdb5
SR
6945set_pit2_out:
6946 mutex_unlock(&kvm->lock);
e9f42757
BK
6947 break;
6948 }
52d939a0
MT
6949 case KVM_REINJECT_CONTROL: {
6950 struct kvm_reinject_control control;
6951 r = -EFAULT;
6952 if (copy_from_user(&control, argp, sizeof(control)))
6953 goto out;
cad23e72
ML
6954 r = -ENXIO;
6955 if (!kvm->arch.vpit)
6956 goto out;
52d939a0 6957 r = kvm_vm_ioctl_reinject(kvm, &control);
52d939a0
MT
6958 break;
6959 }
d71ba788
PB
6960 case KVM_SET_BOOT_CPU_ID:
6961 r = 0;
6962 mutex_lock(&kvm->lock);
557abc40 6963 if (kvm->created_vcpus)
d71ba788
PB
6964 r = -EBUSY;
6965 else
6966 kvm->arch.bsp_vcpu_id = arg;
6967 mutex_unlock(&kvm->lock);
6968 break;
b59b153d 6969#ifdef CONFIG_KVM_XEN
ffde22ac 6970 case KVM_XEN_HVM_CONFIG: {
51776043 6971 struct kvm_xen_hvm_config xhc;
ffde22ac 6972 r = -EFAULT;
51776043 6973 if (copy_from_user(&xhc, argp, sizeof(xhc)))
ffde22ac 6974 goto out;
78e9878c 6975 r = kvm_xen_hvm_config(kvm, &xhc);
ffde22ac
ES
6976 break;
6977 }
a76b9641
JM
6978 case KVM_XEN_HVM_GET_ATTR: {
6979 struct kvm_xen_hvm_attr xha;
6980
6981 r = -EFAULT;
6982 if (copy_from_user(&xha, argp, sizeof(xha)))
ffde22ac 6983 goto out;
a76b9641
JM
6984 r = kvm_xen_hvm_get_attr(kvm, &xha);
6985 if (!r && copy_to_user(argp, &xha, sizeof(xha)))
6986 r = -EFAULT;
6987 break;
6988 }
6989 case KVM_XEN_HVM_SET_ATTR: {
6990 struct kvm_xen_hvm_attr xha;
6991
6992 r = -EFAULT;
6993 if (copy_from_user(&xha, argp, sizeof(xha)))
6994 goto out;
6995 r = kvm_xen_hvm_set_attr(kvm, &xha);
ffde22ac
ES
6996 break;
6997 }
35025735
DW
6998 case KVM_XEN_HVM_EVTCHN_SEND: {
6999 struct kvm_irq_routing_xen_evtchn uxe;
7000
7001 r = -EFAULT;
7002 if (copy_from_user(&uxe, argp, sizeof(uxe)))
7003 goto out;
7004 r = kvm_xen_hvm_evtchn_send(kvm, &uxe);
7005 break;
7006 }
b59b153d 7007#endif
45e6c2fa
PB
7008 case KVM_SET_CLOCK:
7009 r = kvm_vm_ioctl_set_clock(kvm, argp);
afbcf7ab 7010 break;
45e6c2fa
PB
7011 case KVM_GET_CLOCK:
7012 r = kvm_vm_ioctl_get_clock(kvm, argp);
afbcf7ab 7013 break;
ffbb61d0
DW
7014 case KVM_SET_TSC_KHZ: {
7015 u32 user_tsc_khz;
7016
7017 r = -EINVAL;
7018 user_tsc_khz = (u32)arg;
7019
938c8745
SC
7020 if (kvm_caps.has_tsc_control &&
7021 user_tsc_khz >= kvm_caps.max_guest_tsc_khz)
ffbb61d0
DW
7022 goto out;
7023
7024 if (user_tsc_khz == 0)
7025 user_tsc_khz = tsc_khz;
7026
7027 WRITE_ONCE(kvm->arch.default_tsc_khz, user_tsc_khz);
7028 r = 0;
7029
7030 goto out;
7031 }
7032 case KVM_GET_TSC_KHZ: {
7033 r = READ_ONCE(kvm->arch.default_tsc_khz);
7034 goto out;
7035 }
5acc5c06
BS
7036 case KVM_MEMORY_ENCRYPT_OP: {
7037 r = -ENOTTY;
03d004cd
SC
7038 if (!kvm_x86_ops.mem_enc_ioctl)
7039 goto out;
7040
7041 r = static_call(kvm_x86_mem_enc_ioctl)(kvm, argp);
5acc5c06
BS
7042 break;
7043 }
69eaedee
BS
7044 case KVM_MEMORY_ENCRYPT_REG_REGION: {
7045 struct kvm_enc_region region;
7046
7047 r = -EFAULT;
7048 if (copy_from_user(&region, argp, sizeof(region)))
7049 goto out;
7050
7051 r = -ENOTTY;
03d004cd
SC
7052 if (!kvm_x86_ops.mem_enc_register_region)
7053 goto out;
7054
7055 r = static_call(kvm_x86_mem_enc_register_region)(kvm, &region);
69eaedee
BS
7056 break;
7057 }
7058 case KVM_MEMORY_ENCRYPT_UNREG_REGION: {
7059 struct kvm_enc_region region;
7060
7061 r = -EFAULT;
7062 if (copy_from_user(&region, argp, sizeof(region)))
7063 goto out;
7064
7065 r = -ENOTTY;
03d004cd
SC
7066 if (!kvm_x86_ops.mem_enc_unregister_region)
7067 goto out;
7068
7069 r = static_call(kvm_x86_mem_enc_unregister_region)(kvm, &region);
69eaedee
BS
7070 break;
7071 }
faeb7833
RK
7072 case KVM_HYPERV_EVENTFD: {
7073 struct kvm_hyperv_eventfd hvevfd;
7074
7075 r = -EFAULT;
7076 if (copy_from_user(&hvevfd, argp, sizeof(hvevfd)))
7077 goto out;
7078 r = kvm_vm_ioctl_hv_eventfd(kvm, &hvevfd);
7079 break;
7080 }
66bb8a06
EH
7081 case KVM_SET_PMU_EVENT_FILTER:
7082 r = kvm_vm_ioctl_set_pmu_event_filter(kvm, argp);
7083 break;
2e3272bc
AG
7084 case KVM_X86_SET_MSR_FILTER: {
7085 struct kvm_msr_filter __user *user_msr_filter = argp;
7086 struct kvm_msr_filter filter;
7087
7088 if (copy_from_user(&filter, user_msr_filter, sizeof(filter)))
7089 return -EFAULT;
7090
7091 r = kvm_vm_ioctl_set_msr_filter(kvm, &filter);
1a155254 7092 break;
2e3272bc 7093 }
1fe779f8 7094 default:
ad6260da 7095 r = -ENOTTY;
1fe779f8
CO
7096 }
7097out:
7098 return r;
7099}
7100
9eb6ba31
SC
7101static void kvm_probe_feature_msr(u32 msr_index)
7102{
7103 struct kvm_msr_entry msr = {
7104 .index = msr_index,
7105 };
7106
7107 if (kvm_get_msr_feature(&msr))
7108 return;
7109
7110 msr_based_features[num_msr_based_features++] = msr_index;
7111}
7112
2374b731 7113static void kvm_probe_msr_to_save(u32 msr_index)
043405e1
CO
7114{
7115 u32 dummy[2];
2374b731
SC
7116
7117 if (rdmsr_safe(msr_index, &dummy[0], &dummy[1]))
7118 return;
7119
7120 /*
7121 * Even MSRs that are valid in the host may not be exposed to guests in
7122 * some cases.
7123 */
7124 switch (msr_index) {
7125 case MSR_IA32_BNDCFGS:
7126 if (!kvm_mpx_supported())
7127 return;
7128 break;
7129 case MSR_TSC_AUX:
7130 if (!kvm_cpu_cap_has(X86_FEATURE_RDTSCP) &&
7131 !kvm_cpu_cap_has(X86_FEATURE_RDPID))
7132 return;
7133 break;
7134 case MSR_IA32_UMWAIT_CONTROL:
7135 if (!kvm_cpu_cap_has(X86_FEATURE_WAITPKG))
7136 return;
7137 break;
7138 case MSR_IA32_RTIT_CTL:
7139 case MSR_IA32_RTIT_STATUS:
7140 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT))
7141 return;
7142 break;
7143 case MSR_IA32_RTIT_CR3_MATCH:
7144 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7145 !intel_pt_validate_hw_cap(PT_CAP_cr3_filtering))
7146 return;
7147 break;
7148 case MSR_IA32_RTIT_OUTPUT_BASE:
7149 case MSR_IA32_RTIT_OUTPUT_MASK:
7150 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7151 (!intel_pt_validate_hw_cap(PT_CAP_topa_output) &&
7152 !intel_pt_validate_hw_cap(PT_CAP_single_range_output)))
7153 return;
7154 break;
7155 case MSR_IA32_RTIT_ADDR0_A ... MSR_IA32_RTIT_ADDR3_B:
7156 if (!kvm_cpu_cap_has(X86_FEATURE_INTEL_PT) ||
7157 (msr_index - MSR_IA32_RTIT_ADDR0_A >=
7158 intel_pt_validate_hw_cap(PT_CAP_num_address_ranges) * 2))
7159 return;
7160 break;
7161 case MSR_ARCH_PERFMON_PERFCTR0 ... MSR_ARCH_PERFMON_PERFCTR_MAX:
7162 if (msr_index - MSR_ARCH_PERFMON_PERFCTR0 >=
7163 kvm_pmu_cap.num_counters_gp)
7164 return;
7165 break;
7166 case MSR_ARCH_PERFMON_EVENTSEL0 ... MSR_ARCH_PERFMON_EVENTSEL_MAX:
7167 if (msr_index - MSR_ARCH_PERFMON_EVENTSEL0 >=
7168 kvm_pmu_cap.num_counters_gp)
7169 return;
7170 break;
e33b6d79
LX
7171 case MSR_ARCH_PERFMON_FIXED_CTR0 ... MSR_ARCH_PERFMON_FIXED_CTR_MAX:
7172 if (msr_index - MSR_ARCH_PERFMON_FIXED_CTR0 >=
7173 kvm_pmu_cap.num_counters_fixed)
7174 return;
7175 break;
4a277189
LX
7176 case MSR_AMD64_PERF_CNTR_GLOBAL_CTL:
7177 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS:
7178 case MSR_AMD64_PERF_CNTR_GLOBAL_STATUS_CLR:
7179 if (!kvm_cpu_cap_has(X86_FEATURE_PERFMON_V2))
7180 return;
7181 break;
2374b731
SC
7182 case MSR_IA32_XFD:
7183 case MSR_IA32_XFD_ERR:
7184 if (!kvm_cpu_cap_has(X86_FEATURE_XFD))
7185 return;
7186 break;
b9846a69
MZ
7187 case MSR_IA32_TSX_CTRL:
7188 if (!(kvm_get_arch_capabilities() & ARCH_CAP_TSX_CTRL_MSR))
7189 return;
7190 break;
2374b731
SC
7191 default:
7192 break;
7193 }
7194
7195 msrs_to_save[num_msrs_to_save++] = msr_index;
7196}
7197
b1932c5c 7198static void kvm_init_msr_lists(void)
2374b731 7199{
7a5ee6ed 7200 unsigned i;
043405e1 7201
0144ba0c 7202 BUILD_BUG_ON_MSG(KVM_PMC_MAX_FIXED != 3,
2374b731 7203 "Please update the fixed PMCs in msrs_to_save_pmu[]");
24c29b7a 7204
6cbee2b9
XL
7205 num_msrs_to_save = 0;
7206 num_emulated_msrs = 0;
7207 num_msr_based_features = 0;
7208
2374b731
SC
7209 for (i = 0; i < ARRAY_SIZE(msrs_to_save_base); i++)
7210 kvm_probe_msr_to_save(msrs_to_save_base[i]);
93c4adc7 7211
c3531edc
SC
7212 if (enable_pmu) {
7213 for (i = 0; i < ARRAY_SIZE(msrs_to_save_pmu); i++)
7214 kvm_probe_msr_to_save(msrs_to_save_pmu[i]);
043405e1 7215 }
62ef68bb 7216
7a5ee6ed 7217 for (i = 0; i < ARRAY_SIZE(emulated_msrs_all); i++) {
b3646477 7218 if (!static_call(kvm_x86_has_emulated_msr)(NULL, emulated_msrs_all[i]))
bc226f07 7219 continue;
62ef68bb 7220
7a5ee6ed 7221 emulated_msrs[num_emulated_msrs++] = emulated_msrs_all[i];
62ef68bb 7222 }
801e459a 7223
9eb6ba31
SC
7224 for (i = KVM_FIRST_EMULATED_VMX_MSR; i <= KVM_LAST_EMULATED_VMX_MSR; i++)
7225 kvm_probe_feature_msr(i);
801e459a 7226
9eb6ba31
SC
7227 for (i = 0; i < ARRAY_SIZE(msr_based_features_all_except_vmx); i++)
7228 kvm_probe_feature_msr(msr_based_features_all_except_vmx[i]);
043405e1
CO
7229}
7230
bda9020e
MT
7231static int vcpu_mmio_write(struct kvm_vcpu *vcpu, gpa_t addr, int len,
7232 const void *v)
bbd9b64e 7233{
70252a10
AK
7234 int handled = 0;
7235 int n;
7236
7237 do {
7238 n = min(len, 8);
bce87cce 7239 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
7240 !kvm_iodevice_write(vcpu, &vcpu->arch.apic->dev, addr, n, v))
7241 && kvm_io_bus_write(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10
AK
7242 break;
7243 handled += n;
7244 addr += n;
7245 len -= n;
7246 v += n;
7247 } while (len);
bbd9b64e 7248
70252a10 7249 return handled;
bbd9b64e
CO
7250}
7251
bda9020e 7252static int vcpu_mmio_read(struct kvm_vcpu *vcpu, gpa_t addr, int len, void *v)
bbd9b64e 7253{
70252a10
AK
7254 int handled = 0;
7255 int n;
7256
7257 do {
7258 n = min(len, 8);
bce87cce 7259 if (!(lapic_in_kernel(vcpu) &&
e32edf4f
NN
7260 !kvm_iodevice_read(vcpu, &vcpu->arch.apic->dev,
7261 addr, n, v))
7262 && kvm_io_bus_read(vcpu, KVM_MMIO_BUS, addr, n, v))
70252a10 7263 break;
e39d200f 7264 trace_kvm_mmio(KVM_TRACE_MMIO_READ, n, addr, v);
70252a10
AK
7265 handled += n;
7266 addr += n;
7267 len -= n;
7268 v += n;
7269 } while (len);
bbd9b64e 7270
70252a10 7271 return handled;
bbd9b64e
CO
7272}
7273
c53da4f3
PB
7274void kvm_set_segment(struct kvm_vcpu *vcpu,
7275 struct kvm_segment *var, int seg)
2dafc6c2 7276{
b3646477 7277 static_call(kvm_x86_set_segment)(vcpu, var, seg);
2dafc6c2
GN
7278}
7279
7280void kvm_get_segment(struct kvm_vcpu *vcpu,
7281 struct kvm_segment *var, int seg)
7282{
b3646477 7283 static_call(kvm_x86_get_segment)(vcpu, var, seg);
2dafc6c2
GN
7284}
7285
5b22bbe7 7286gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
54987b7a 7287 struct x86_exception *exception)
02f59dc9 7288{
1f5a21ee 7289 struct kvm_mmu *mmu = vcpu->arch.mmu;
02f59dc9 7290 gpa_t t_gpa;
02f59dc9
JR
7291
7292 BUG_ON(!mmu_is_nested(vcpu));
7293
7294 /* NPT walks are always user-walks */
7295 access |= PFERR_USER_MASK;
1f5a21ee 7296 t_gpa = mmu->gva_to_gpa(vcpu, mmu, gpa, access, exception);
02f59dc9
JR
7297
7298 return t_gpa;
7299}
7300
ab9ae313
AK
7301gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
7302 struct x86_exception *exception)
1871c602 7303{
1f5a21ee
LJ
7304 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7305
5b22bbe7 7306 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
1f5a21ee 7307 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
1871c602 7308}
54f958cd 7309EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_read);
1871c602 7310
ab9ae313
AK
7311gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
7312 struct x86_exception *exception)
1871c602 7313{
1f5a21ee
LJ
7314 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7315
5b22bbe7 7316 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
1871c602 7317 access |= PFERR_WRITE_MASK;
1f5a21ee 7318 return mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
1871c602 7319}
54f958cd 7320EXPORT_SYMBOL_GPL(kvm_mmu_gva_to_gpa_write);
1871c602
GN
7321
7322/* uses this to access any guest's mapped memory without checking CPL */
ab9ae313
AK
7323gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
7324 struct x86_exception *exception)
1871c602 7325{
1f5a21ee
LJ
7326 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
7327
7328 return mmu->gva_to_gpa(vcpu, mmu, gva, 0, exception);
1871c602
GN
7329}
7330
7331static int kvm_read_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5b22bbe7 7332 struct kvm_vcpu *vcpu, u64 access,
bcc55cba 7333 struct x86_exception *exception)
bbd9b64e 7334{
1f5a21ee 7335 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
bbd9b64e 7336 void *data = val;
10589a46 7337 int r = X86EMUL_CONTINUE;
bbd9b64e
CO
7338
7339 while (bytes) {
1f5a21ee 7340 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
bbd9b64e 7341 unsigned offset = addr & (PAGE_SIZE-1);
77c2002e 7342 unsigned toread = min(bytes, (unsigned)PAGE_SIZE - offset);
bbd9b64e
CO
7343 int ret;
7344
6e1d2a3f 7345 if (gpa == INVALID_GPA)
ab9ae313 7346 return X86EMUL_PROPAGATE_FAULT;
54bf36aa
PB
7347 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, data,
7348 offset, toread);
10589a46 7349 if (ret < 0) {
c3cd7ffa 7350 r = X86EMUL_IO_NEEDED;
10589a46
MT
7351 goto out;
7352 }
bbd9b64e 7353
77c2002e
IE
7354 bytes -= toread;
7355 data += toread;
7356 addr += toread;
bbd9b64e 7357 }
10589a46 7358out:
10589a46 7359 return r;
bbd9b64e 7360}
77c2002e 7361
1871c602 7362/* used for instruction fetching */
0f65dd70
AK
7363static int kvm_fetch_guest_virt(struct x86_emulate_ctxt *ctxt,
7364 gva_t addr, void *val, unsigned int bytes,
bcc55cba 7365 struct x86_exception *exception)
1871c602 7366{
0f65dd70 7367 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
1f5a21ee 7368 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5b22bbe7 7369 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
44583cba
PB
7370 unsigned offset;
7371 int ret;
0f65dd70 7372
44583cba 7373 /* Inline kvm_read_guest_virt_helper for speed. */
1f5a21ee
LJ
7374 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access|PFERR_FETCH_MASK,
7375 exception);
6e1d2a3f 7376 if (unlikely(gpa == INVALID_GPA))
44583cba
PB
7377 return X86EMUL_PROPAGATE_FAULT;
7378
7379 offset = addr & (PAGE_SIZE-1);
7380 if (WARN_ON(offset + bytes > PAGE_SIZE))
7381 bytes = (unsigned)PAGE_SIZE - offset;
54bf36aa
PB
7382 ret = kvm_vcpu_read_guest_page(vcpu, gpa >> PAGE_SHIFT, val,
7383 offset, bytes);
44583cba
PB
7384 if (unlikely(ret < 0))
7385 return X86EMUL_IO_NEEDED;
7386
7387 return X86EMUL_CONTINUE;
1871c602
GN
7388}
7389
ce14e868 7390int kvm_read_guest_virt(struct kvm_vcpu *vcpu,
0f65dd70 7391 gva_t addr, void *val, unsigned int bytes,
bcc55cba 7392 struct x86_exception *exception)
1871c602 7393{
5b22bbe7 7394 u64 access = (static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0;
0f65dd70 7395
353c0956
PB
7396 /*
7397 * FIXME: this should call handle_emulation_failure if X86EMUL_IO_NEEDED
7398 * is returned, but our callers are not ready for that and they blindly
7399 * call kvm_inject_page_fault. Ensure that they at least do not leak
7400 * uninitialized kernel stack memory into cr2 and error code.
7401 */
7402 memset(exception, 0, sizeof(*exception));
1871c602 7403 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access,
bcc55cba 7404 exception);
1871c602 7405}
064aea77 7406EXPORT_SYMBOL_GPL(kvm_read_guest_virt);
1871c602 7407
ce14e868
PB
7408static int emulator_read_std(struct x86_emulate_ctxt *ctxt,
7409 gva_t addr, void *val, unsigned int bytes,
3c9fa24c 7410 struct x86_exception *exception, bool system)
1871c602 7411{
0f65dd70 7412 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5b22bbe7 7413 u64 access = 0;
3c9fa24c 7414
4f4aa80e
LJ
7415 if (system)
7416 access |= PFERR_IMPLICIT_ACCESS;
7417 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
3c9fa24c
PB
7418 access |= PFERR_USER_MASK;
7419
7420 return kvm_read_guest_virt_helper(addr, val, bytes, vcpu, access, exception);
1871c602
GN
7421}
7422
ce14e868 7423static int kvm_write_guest_virt_helper(gva_t addr, void *val, unsigned int bytes,
5b22bbe7 7424 struct kvm_vcpu *vcpu, u64 access,
ce14e868 7425 struct x86_exception *exception)
77c2002e 7426{
1f5a21ee 7427 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
77c2002e
IE
7428 void *data = val;
7429 int r = X86EMUL_CONTINUE;
7430
7431 while (bytes) {
1f5a21ee 7432 gpa_t gpa = mmu->gva_to_gpa(vcpu, mmu, addr, access, exception);
77c2002e
IE
7433 unsigned offset = addr & (PAGE_SIZE-1);
7434 unsigned towrite = min(bytes, (unsigned)PAGE_SIZE - offset);
7435 int ret;
7436
6e1d2a3f 7437 if (gpa == INVALID_GPA)
ab9ae313 7438 return X86EMUL_PROPAGATE_FAULT;
54bf36aa 7439 ret = kvm_vcpu_write_guest(vcpu, gpa, data, towrite);
77c2002e 7440 if (ret < 0) {
c3cd7ffa 7441 r = X86EMUL_IO_NEEDED;
77c2002e
IE
7442 goto out;
7443 }
7444
7445 bytes -= towrite;
7446 data += towrite;
7447 addr += towrite;
7448 }
7449out:
7450 return r;
7451}
ce14e868
PB
7452
7453static int emulator_write_std(struct x86_emulate_ctxt *ctxt, gva_t addr, void *val,
3c9fa24c
PB
7454 unsigned int bytes, struct x86_exception *exception,
7455 bool system)
ce14e868
PB
7456{
7457 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
5b22bbe7 7458 u64 access = PFERR_WRITE_MASK;
3c9fa24c 7459
4f4aa80e
LJ
7460 if (system)
7461 access |= PFERR_IMPLICIT_ACCESS;
7462 else if (static_call(kvm_x86_get_cpl)(vcpu) == 3)
3c9fa24c 7463 access |= PFERR_USER_MASK;
ce14e868
PB
7464
7465 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
3c9fa24c 7466 access, exception);
ce14e868
PB
7467}
7468
7469int kvm_write_guest_virt_system(struct kvm_vcpu *vcpu, gva_t addr, void *val,
7470 unsigned int bytes, struct x86_exception *exception)
7471{
c595ceee
PB
7472 /* kvm_write_guest_virt_system can pull in tons of pages. */
7473 vcpu->arch.l1tf_flush_l1d = true;
7474
ce14e868
PB
7475 return kvm_write_guest_virt_helper(addr, val, bytes, vcpu,
7476 PFERR_WRITE_MASK, exception);
7477}
6a4d7550 7478EXPORT_SYMBOL_GPL(kvm_write_guest_virt_system);
77c2002e 7479
4d31d9ef
SC
7480static int kvm_can_emulate_insn(struct kvm_vcpu *vcpu, int emul_type,
7481 void *insn, int insn_len)
7482{
7483 return static_call(kvm_x86_can_emulate_instruction)(vcpu, emul_type,
7484 insn, insn_len);
7485}
7486
082d06ed
WL
7487int handle_ud(struct kvm_vcpu *vcpu)
7488{
b3dc0695 7489 static const char kvm_emulate_prefix[] = { __KVM_EMULATE_PREFIX };
40aaa5b6 7490 int fep_flags = READ_ONCE(force_emulation_prefix);
6c86eedc 7491 int emul_type = EMULTYPE_TRAP_UD;
6c86eedc
WL
7492 char sig[5]; /* ud2; .ascii "kvm" */
7493 struct x86_exception e;
7494
4d31d9ef 7495 if (unlikely(!kvm_can_emulate_insn(vcpu, emul_type, NULL, 0)))
09e3e2a1
SC
7496 return 1;
7497
40aaa5b6 7498 if (fep_flags &&
3c9fa24c
PB
7499 kvm_read_guest_virt(vcpu, kvm_get_linear_rip(vcpu),
7500 sig, sizeof(sig), &e) == 0 &&
b3dc0695 7501 memcmp(sig, kvm_emulate_prefix, sizeof(sig)) == 0) {
40aaa5b6 7502 if (fep_flags & KVM_FEP_CLEAR_RFLAGS_RF)
d500e1ed 7503 kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) & ~X86_EFLAGS_RF);
6c86eedc 7504 kvm_rip_write(vcpu, kvm_rip_read(vcpu) + sizeof(sig));
b4000606 7505 emul_type = EMULTYPE_TRAP_UD_FORCED;
6c86eedc 7506 }
082d06ed 7507
60fc3d02 7508 return kvm_emulate_instruction(vcpu, emul_type);
082d06ed
WL
7509}
7510EXPORT_SYMBOL_GPL(handle_ud);
7511
0f89b207
TL
7512static int vcpu_is_mmio_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7513 gpa_t gpa, bool write)
7514{
7515 /* For APIC access vmexit */
7516 if ((gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7517 return 1;
7518
7519 if (vcpu_match_mmio_gpa(vcpu, gpa)) {
7520 trace_vcpu_match_mmio(gva, gpa, write, true);
7521 return 1;
7522 }
7523
7524 return 0;
7525}
7526
af7cc7d1
XG
7527static int vcpu_mmio_gva_to_gpa(struct kvm_vcpu *vcpu, unsigned long gva,
7528 gpa_t *gpa, struct x86_exception *exception,
7529 bool write)
7530{
1f5a21ee 7531 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5b22bbe7 7532 u64 access = ((static_call(kvm_x86_get_cpl)(vcpu) == 3) ? PFERR_USER_MASK : 0)
97d64b78 7533 | (write ? PFERR_WRITE_MASK : 0);
af7cc7d1 7534
be94f6b7
HH
7535 /*
7536 * currently PKRU is only applied to ept enabled guest so
7537 * there is no pkey in EPT page table for L1 guest or EPT
7538 * shadow page table for L2 guest.
7539 */
908b7d43
SC
7540 if (vcpu_match_mmio_gva(vcpu, gva) && (!is_paging(vcpu) ||
7541 !permission_fault(vcpu, vcpu->arch.walk_mmu,
7542 vcpu->arch.mmio_access, 0, access))) {
bebb106a
XG
7543 *gpa = vcpu->arch.mmio_gfn << PAGE_SHIFT |
7544 (gva & (PAGE_SIZE - 1));
4f022648 7545 trace_vcpu_match_mmio(gva, *gpa, write, false);
bebb106a
XG
7546 return 1;
7547 }
7548
1f5a21ee 7549 *gpa = mmu->gva_to_gpa(vcpu, mmu, gva, access, exception);
af7cc7d1 7550
6e1d2a3f 7551 if (*gpa == INVALID_GPA)
af7cc7d1
XG
7552 return -1;
7553
0f89b207 7554 return vcpu_is_mmio_gpa(vcpu, gva, *gpa, write);
af7cc7d1
XG
7555}
7556
3200f405 7557int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
bcc55cba 7558 const void *val, int bytes)
bbd9b64e
CO
7559{
7560 int ret;
7561
54bf36aa 7562 ret = kvm_vcpu_write_guest(vcpu, gpa, val, bytes);
9f811285 7563 if (ret < 0)
bbd9b64e 7564 return 0;
0eb05bf2 7565 kvm_page_track_write(vcpu, gpa, val, bytes);
bbd9b64e
CO
7566 return 1;
7567}
7568
77d197b2
XG
7569struct read_write_emulator_ops {
7570 int (*read_write_prepare)(struct kvm_vcpu *vcpu, void *val,
7571 int bytes);
7572 int (*read_write_emulate)(struct kvm_vcpu *vcpu, gpa_t gpa,
7573 void *val, int bytes);
7574 int (*read_write_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7575 int bytes, void *val);
7576 int (*read_write_exit_mmio)(struct kvm_vcpu *vcpu, gpa_t gpa,
7577 void *val, int bytes);
7578 bool write;
7579};
7580
7581static int read_prepare(struct kvm_vcpu *vcpu, void *val, int bytes)
7582{
7583 if (vcpu->mmio_read_completed) {
77d197b2 7584 trace_kvm_mmio(KVM_TRACE_MMIO_READ, bytes,
e39d200f 7585 vcpu->mmio_fragments[0].gpa, val);
77d197b2
XG
7586 vcpu->mmio_read_completed = 0;
7587 return 1;
7588 }
7589
7590 return 0;
7591}
7592
7593static int read_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7594 void *val, int bytes)
7595{
54bf36aa 7596 return !kvm_vcpu_read_guest(vcpu, gpa, val, bytes);
77d197b2
XG
7597}
7598
7599static int write_emulate(struct kvm_vcpu *vcpu, gpa_t gpa,
7600 void *val, int bytes)
7601{
7602 return emulator_write_phys(vcpu, gpa, val, bytes);
7603}
7604
7605static int write_mmio(struct kvm_vcpu *vcpu, gpa_t gpa, int bytes, void *val)
7606{
e39d200f 7607 trace_kvm_mmio(KVM_TRACE_MMIO_WRITE, bytes, gpa, val);
77d197b2
XG
7608 return vcpu_mmio_write(vcpu, gpa, bytes, val);
7609}
7610
7611static int read_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7612 void *val, int bytes)
7613{
e39d200f 7614 trace_kvm_mmio(KVM_TRACE_MMIO_READ_UNSATISFIED, bytes, gpa, NULL);
77d197b2
XG
7615 return X86EMUL_IO_NEEDED;
7616}
7617
7618static int write_exit_mmio(struct kvm_vcpu *vcpu, gpa_t gpa,
7619 void *val, int bytes)
7620{
f78146b0
AK
7621 struct kvm_mmio_fragment *frag = &vcpu->mmio_fragments[0];
7622
87da7e66 7623 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
77d197b2
XG
7624 return X86EMUL_CONTINUE;
7625}
7626
0fbe9b0b 7627static const struct read_write_emulator_ops read_emultor = {
77d197b2
XG
7628 .read_write_prepare = read_prepare,
7629 .read_write_emulate = read_emulate,
7630 .read_write_mmio = vcpu_mmio_read,
7631 .read_write_exit_mmio = read_exit_mmio,
7632};
7633
0fbe9b0b 7634static const struct read_write_emulator_ops write_emultor = {
77d197b2
XG
7635 .read_write_emulate = write_emulate,
7636 .read_write_mmio = write_mmio,
7637 .read_write_exit_mmio = write_exit_mmio,
7638 .write = true,
7639};
7640
22388a3c
XG
7641static int emulator_read_write_onepage(unsigned long addr, void *val,
7642 unsigned int bytes,
7643 struct x86_exception *exception,
7644 struct kvm_vcpu *vcpu,
0fbe9b0b 7645 const struct read_write_emulator_ops *ops)
bbd9b64e 7646{
af7cc7d1
XG
7647 gpa_t gpa;
7648 int handled, ret;
22388a3c 7649 bool write = ops->write;
f78146b0 7650 struct kvm_mmio_fragment *frag;
c9b8b07c 7651 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
0f89b207
TL
7652
7653 /*
7654 * If the exit was due to a NPF we may already have a GPA.
7655 * If the GPA is present, use it to avoid the GVA to GPA table walk.
7656 * Note, this cannot be used on string operations since string
7657 * operation using rep will only have the initial GPA from the NPF
7658 * occurred.
7659 */
744e699c
SC
7660 if (ctxt->gpa_available && emulator_can_use_gpa(ctxt) &&
7661 (addr & ~PAGE_MASK) == (ctxt->gpa_val & ~PAGE_MASK)) {
7662 gpa = ctxt->gpa_val;
618232e2
BS
7663 ret = vcpu_is_mmio_gpa(vcpu, addr, gpa, write);
7664 } else {
7665 ret = vcpu_mmio_gva_to_gpa(vcpu, addr, &gpa, exception, write);
7666 if (ret < 0)
7667 return X86EMUL_PROPAGATE_FAULT;
0f89b207 7668 }
10589a46 7669
618232e2 7670 if (!ret && ops->read_write_emulate(vcpu, gpa, val, bytes))
bbd9b64e
CO
7671 return X86EMUL_CONTINUE;
7672
bbd9b64e
CO
7673 /*
7674 * Is this MMIO handled locally?
7675 */
22388a3c 7676 handled = ops->read_write_mmio(vcpu, gpa, bytes, val);
70252a10 7677 if (handled == bytes)
bbd9b64e 7678 return X86EMUL_CONTINUE;
bbd9b64e 7679
70252a10
AK
7680 gpa += handled;
7681 bytes -= handled;
7682 val += handled;
7683
87da7e66
XG
7684 WARN_ON(vcpu->mmio_nr_fragments >= KVM_MAX_MMIO_FRAGMENTS);
7685 frag = &vcpu->mmio_fragments[vcpu->mmio_nr_fragments++];
7686 frag->gpa = gpa;
7687 frag->data = val;
7688 frag->len = bytes;
f78146b0 7689 return X86EMUL_CONTINUE;
bbd9b64e
CO
7690}
7691
52eb5a6d
XL
7692static int emulator_read_write(struct x86_emulate_ctxt *ctxt,
7693 unsigned long addr,
22388a3c
XG
7694 void *val, unsigned int bytes,
7695 struct x86_exception *exception,
0fbe9b0b 7696 const struct read_write_emulator_ops *ops)
bbd9b64e 7697{
0f65dd70 7698 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
f78146b0
AK
7699 gpa_t gpa;
7700 int rc;
7701
7702 if (ops->read_write_prepare &&
7703 ops->read_write_prepare(vcpu, val, bytes))
7704 return X86EMUL_CONTINUE;
7705
7706 vcpu->mmio_nr_fragments = 0;
0f65dd70 7707
bbd9b64e
CO
7708 /* Crossing a page boundary? */
7709 if (((addr + bytes - 1) ^ addr) & PAGE_MASK) {
f78146b0 7710 int now;
bbd9b64e
CO
7711
7712 now = -addr & ~PAGE_MASK;
22388a3c
XG
7713 rc = emulator_read_write_onepage(addr, val, now, exception,
7714 vcpu, ops);
7715
bbd9b64e
CO
7716 if (rc != X86EMUL_CONTINUE)
7717 return rc;
7718 addr += now;
bac15531
NA
7719 if (ctxt->mode != X86EMUL_MODE_PROT64)
7720 addr = (u32)addr;
bbd9b64e
CO
7721 val += now;
7722 bytes -= now;
7723 }
22388a3c 7724
f78146b0
AK
7725 rc = emulator_read_write_onepage(addr, val, bytes, exception,
7726 vcpu, ops);
7727 if (rc != X86EMUL_CONTINUE)
7728 return rc;
7729
7730 if (!vcpu->mmio_nr_fragments)
7731 return rc;
7732
7733 gpa = vcpu->mmio_fragments[0].gpa;
7734
7735 vcpu->mmio_needed = 1;
7736 vcpu->mmio_cur_fragment = 0;
7737
87da7e66 7738 vcpu->run->mmio.len = min(8u, vcpu->mmio_fragments[0].len);
f78146b0
AK
7739 vcpu->run->mmio.is_write = vcpu->mmio_is_write = ops->write;
7740 vcpu->run->exit_reason = KVM_EXIT_MMIO;
7741 vcpu->run->mmio.phys_addr = gpa;
7742
7743 return ops->read_write_exit_mmio(vcpu, gpa, val, bytes);
22388a3c
XG
7744}
7745
7746static int emulator_read_emulated(struct x86_emulate_ctxt *ctxt,
7747 unsigned long addr,
7748 void *val,
7749 unsigned int bytes,
7750 struct x86_exception *exception)
7751{
7752 return emulator_read_write(ctxt, addr, val, bytes,
7753 exception, &read_emultor);
7754}
7755
52eb5a6d 7756static int emulator_write_emulated(struct x86_emulate_ctxt *ctxt,
22388a3c
XG
7757 unsigned long addr,
7758 const void *val,
7759 unsigned int bytes,
7760 struct x86_exception *exception)
7761{
7762 return emulator_read_write(ctxt, addr, (void *)val, bytes,
7763 exception, &write_emultor);
bbd9b64e 7764}
bbd9b64e 7765
1c2361f6
SC
7766#define emulator_try_cmpxchg_user(t, ptr, old, new) \
7767 (__try_cmpxchg_user((t __user *)(ptr), (t *)(old), *(t *)(new), efault ## t))
daea3e73 7768
0f65dd70
AK
7769static int emulator_cmpxchg_emulated(struct x86_emulate_ctxt *ctxt,
7770 unsigned long addr,
bbd9b64e
CO
7771 const void *old,
7772 const void *new,
7773 unsigned int bytes,
0f65dd70 7774 struct x86_exception *exception)
bbd9b64e 7775{
0f65dd70 7776 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
9de6fe3c 7777 u64 page_line_mask;
1c2361f6 7778 unsigned long hva;
daea3e73 7779 gpa_t gpa;
1c2361f6 7780 int r;
2bacc55c 7781
daea3e73
AK
7782 /* guests cmpxchg8b have to be emulated atomically */
7783 if (bytes > 8 || (bytes & (bytes - 1)))
7784 goto emul_write;
10589a46 7785
daea3e73 7786 gpa = kvm_mmu_gva_to_gpa_write(vcpu, addr, NULL);
2bacc55c 7787
6e1d2a3f 7788 if (gpa == INVALID_GPA ||
daea3e73
AK
7789 (gpa & PAGE_MASK) == APIC_DEFAULT_PHYS_BASE)
7790 goto emul_write;
2bacc55c 7791
9de6fe3c
XL
7792 /*
7793 * Emulate the atomic as a straight write to avoid #AC if SLD is
7794 * enabled in the host and the access splits a cache line.
7795 */
7796 if (boot_cpu_has(X86_FEATURE_SPLIT_LOCK_DETECT))
7797 page_line_mask = ~(cache_line_size() - 1);
7798 else
7799 page_line_mask = PAGE_MASK;
7800
7801 if (((gpa + bytes - 1) & page_line_mask) != (gpa & page_line_mask))
daea3e73 7802 goto emul_write;
72dc67a6 7803
1c2361f6 7804 hva = kvm_vcpu_gfn_to_hva(vcpu, gpa_to_gfn(gpa));
33fbe6be 7805 if (kvm_is_error_hva(hva))
c19b8bd6 7806 goto emul_write;
72dc67a6 7807
1c2361f6 7808 hva += offset_in_page(gpa);
42e35f80 7809
daea3e73
AK
7810 switch (bytes) {
7811 case 1:
1c2361f6 7812 r = emulator_try_cmpxchg_user(u8, hva, old, new);
daea3e73
AK
7813 break;
7814 case 2:
1c2361f6 7815 r = emulator_try_cmpxchg_user(u16, hva, old, new);
daea3e73
AK
7816 break;
7817 case 4:
1c2361f6 7818 r = emulator_try_cmpxchg_user(u32, hva, old, new);
daea3e73
AK
7819 break;
7820 case 8:
1c2361f6 7821 r = emulator_try_cmpxchg_user(u64, hva, old, new);
daea3e73
AK
7822 break;
7823 default:
7824 BUG();
2bacc55c 7825 }
42e35f80 7826
1c2361f6 7827 if (r < 0)
5d6c7de6 7828 return X86EMUL_UNHANDLEABLE;
1c2361f6 7829 if (r)
daea3e73
AK
7830 return X86EMUL_CMPXCHG_FAILED;
7831
0eb05bf2 7832 kvm_page_track_write(vcpu, gpa, new, bytes);
8f6abd06
GN
7833
7834 return X86EMUL_CONTINUE;
4a5f48f6 7835
3200f405 7836emul_write:
8d20bd63 7837 pr_warn_once("emulating exchange as write\n");
2bacc55c 7838
0f65dd70 7839 return emulator_write_emulated(ctxt, addr, new, bytes, exception);
bbd9b64e
CO
7840}
7841
6f6fbe98 7842static int emulator_pio_in_out(struct kvm_vcpu *vcpu, int size,
30d583fd 7843 unsigned short port, void *data,
6f6fbe98 7844 unsigned int count, bool in)
cf8f70bf 7845{
0f87ac23
PB
7846 unsigned i;
7847 int r;
cf8f70bf 7848
30d583fd 7849 WARN_ON_ONCE(vcpu->arch.pio.count);
0f87ac23
PB
7850 for (i = 0; i < count; i++) {
7851 if (in)
7852 r = kvm_io_bus_read(vcpu, KVM_PIO_BUS, port, size, data);
cbfc6c91 7853 else
0f87ac23 7854 r = kvm_io_bus_write(vcpu, KVM_PIO_BUS, port, size, data);
35ab3b77
PB
7855
7856 if (r) {
7857 if (i == 0)
7858 goto userspace_io;
7859
7860 /*
7861 * Userspace must have unregistered the device while PIO
0c05e10b 7862 * was running. Drop writes / read as 0.
35ab3b77 7863 */
0c05e10b
PB
7864 if (in)
7865 memset(data, 0, size * (count - i));
cbfc6c91 7866 break;
35ab3b77
PB
7867 }
7868
0f87ac23 7869 data += size;
cbfc6c91 7870 }
0f87ac23 7871 return 1;
cf8f70bf 7872
0f87ac23 7873userspace_io:
cf8f70bf 7874 vcpu->arch.pio.port = port;
6f6fbe98 7875 vcpu->arch.pio.in = in;
0c05e10b 7876 vcpu->arch.pio.count = count;
cf8f70bf
GN
7877 vcpu->arch.pio.size = size;
7878
0c05e10b
PB
7879 if (in)
7880 memset(vcpu->arch.pio_data, 0, size * count);
7881 else
7882 memcpy(vcpu->arch.pio_data, data, size * count);
cf8f70bf
GN
7883
7884 vcpu->run->exit_reason = KVM_EXIT_IO;
6f6fbe98 7885 vcpu->run->io.direction = in ? KVM_EXIT_IO_IN : KVM_EXIT_IO_OUT;
cf8f70bf
GN
7886 vcpu->run->io.size = size;
7887 vcpu->run->io.data_offset = KVM_PIO_PAGE_OFFSET * PAGE_SIZE;
7888 vcpu->run->io.count = count;
7889 vcpu->run->io.port = port;
cf8f70bf
GN
7890 return 0;
7891}
7892
f35cee4a
PB
7893static int emulator_pio_in(struct kvm_vcpu *vcpu, int size,
7894 unsigned short port, void *val, unsigned int count)
cf8f70bf 7895{
0c05e10b
PB
7896 int r = emulator_pio_in_out(vcpu, size, port, val, count, true);
7897 if (r)
7898 trace_kvm_pio(KVM_PIO_IN, port, size, count, val);
7899
7900 return r;
3b27de27 7901}
ca1d4a9e 7902
6b5efc93 7903static void complete_emulator_pio_in(struct kvm_vcpu *vcpu, void *val)
3b27de27 7904{
6b5efc93 7905 int size = vcpu->arch.pio.size;
0c05e10b 7906 unsigned int count = vcpu->arch.pio.count;
6b5efc93
PB
7907 memcpy(val, vcpu->arch.pio_data, size * count);
7908 trace_kvm_pio(KVM_PIO_IN, vcpu->arch.pio.port, size, count, vcpu->arch.pio_data);
3b27de27
PB
7909 vcpu->arch.pio.count = 0;
7910}
cf8f70bf 7911
f35cee4a
PB
7912static int emulator_pio_in_emulated(struct x86_emulate_ctxt *ctxt,
7913 int size, unsigned short port, void *val,
7914 unsigned int count)
3b27de27 7915{
f35cee4a 7916 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
3b27de27 7917 if (vcpu->arch.pio.count) {
d07898ea
SC
7918 /*
7919 * Complete a previous iteration that required userspace I/O.
7920 * Note, @count isn't guaranteed to match pio.count as userspace
7921 * can modify ECX before rerunning the vCPU. Ignore any such
7922 * shenanigans as KVM doesn't support modifying the rep count,
7923 * and the emulator ensures @count doesn't overflow the buffer.
7924 */
0c05e10b
PB
7925 complete_emulator_pio_in(vcpu, val);
7926 return 1;
cf8f70bf
GN
7927 }
7928
f35cee4a 7929 return emulator_pio_in(vcpu, size, port, val, count);
2e3bb4d8 7930}
6f6fbe98 7931
2e3bb4d8
SC
7932static int emulator_pio_out(struct kvm_vcpu *vcpu, int size,
7933 unsigned short port, const void *val,
7934 unsigned int count)
7935{
30d583fd 7936 trace_kvm_pio(KVM_PIO_OUT, port, size, count, val);
0c05e10b 7937 return emulator_pio_in_out(vcpu, size, port, (void *)val, count, false);
6f6fbe98
XG
7938}
7939
2e3bb4d8
SC
7940static int emulator_pio_out_emulated(struct x86_emulate_ctxt *ctxt,
7941 int size, unsigned short port,
7942 const void *val, unsigned int count)
7943{
7944 return emulator_pio_out(emul_to_vcpu(ctxt), size, port, val, count);
7945}
7946
bbd9b64e
CO
7947static unsigned long get_segment_base(struct kvm_vcpu *vcpu, int seg)
7948{
b3646477 7949 return static_call(kvm_x86_get_segment_base)(vcpu, seg);
bbd9b64e
CO
7950}
7951
3cb16fe7 7952static void emulator_invlpg(struct x86_emulate_ctxt *ctxt, ulong address)
bbd9b64e 7953{
3cb16fe7 7954 kvm_mmu_invlpg(emul_to_vcpu(ctxt), address);
bbd9b64e
CO
7955}
7956
ae6a2375 7957static int kvm_emulate_wbinvd_noskip(struct kvm_vcpu *vcpu)
f5f48ee1
SY
7958{
7959 if (!need_emulate_wbinvd(vcpu))
7960 return X86EMUL_CONTINUE;
7961
b3646477 7962 if (static_call(kvm_x86_has_wbinvd_exit)()) {
2eec7343
JK
7963 int cpu = get_cpu();
7964
7965 cpumask_set_cpu(cpu, vcpu->arch.wbinvd_dirty_mask);
c2162e13 7966 on_each_cpu_mask(vcpu->arch.wbinvd_dirty_mask,
f5f48ee1 7967 wbinvd_ipi, NULL, 1);
2eec7343 7968 put_cpu();
f5f48ee1 7969 cpumask_clear(vcpu->arch.wbinvd_dirty_mask);
2eec7343
JK
7970 } else
7971 wbinvd();
f5f48ee1
SY
7972 return X86EMUL_CONTINUE;
7973}
5cb56059
JS
7974
7975int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu)
7976{
6affcbed
KH
7977 kvm_emulate_wbinvd_noskip(vcpu);
7978 return kvm_skip_emulated_instruction(vcpu);
5cb56059 7979}
f5f48ee1
SY
7980EXPORT_SYMBOL_GPL(kvm_emulate_wbinvd);
7981
5cb56059
JS
7982
7983
bcaf5cc5
AK
7984static void emulator_wbinvd(struct x86_emulate_ctxt *ctxt)
7985{
5cb56059 7986 kvm_emulate_wbinvd_noskip(emul_to_vcpu(ctxt));
bcaf5cc5
AK
7987}
7988
29d6ca41
PB
7989static void emulator_get_dr(struct x86_emulate_ctxt *ctxt, int dr,
7990 unsigned long *dest)
bbd9b64e 7991{
29d6ca41 7992 kvm_get_dr(emul_to_vcpu(ctxt), dr, dest);
bbd9b64e
CO
7993}
7994
52eb5a6d
XL
7995static int emulator_set_dr(struct x86_emulate_ctxt *ctxt, int dr,
7996 unsigned long value)
bbd9b64e 7997{
338dbc97 7998
996ff542 7999 return kvm_set_dr(emul_to_vcpu(ctxt), dr, value);
bbd9b64e
CO
8000}
8001
52a46617 8002static u64 mk_cr_64(u64 curr_cr, u32 new_val)
5fdbf976 8003{
52a46617 8004 return (curr_cr & ~((1ULL << 32) - 1)) | new_val;
5fdbf976
MT
8005}
8006
717746e3 8007static unsigned long emulator_get_cr(struct x86_emulate_ctxt *ctxt, int cr)
bbd9b64e 8008{
717746e3 8009 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
52a46617
GN
8010 unsigned long value;
8011
8012 switch (cr) {
8013 case 0:
8014 value = kvm_read_cr0(vcpu);
8015 break;
8016 case 2:
8017 value = vcpu->arch.cr2;
8018 break;
8019 case 3:
9f8fe504 8020 value = kvm_read_cr3(vcpu);
52a46617
GN
8021 break;
8022 case 4:
8023 value = kvm_read_cr4(vcpu);
8024 break;
8025 case 8:
8026 value = kvm_get_cr8(vcpu);
8027 break;
8028 default:
a737f256 8029 kvm_err("%s: unexpected cr %u\n", __func__, cr);
52a46617
GN
8030 return 0;
8031 }
8032
8033 return value;
8034}
8035
717746e3 8036static int emulator_set_cr(struct x86_emulate_ctxt *ctxt, int cr, ulong val)
52a46617 8037{
717746e3 8038 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
0f12244f
GN
8039 int res = 0;
8040
52a46617
GN
8041 switch (cr) {
8042 case 0:
49a9b07e 8043 res = kvm_set_cr0(vcpu, mk_cr_64(kvm_read_cr0(vcpu), val));
52a46617
GN
8044 break;
8045 case 2:
8046 vcpu->arch.cr2 = val;
8047 break;
8048 case 3:
2390218b 8049 res = kvm_set_cr3(vcpu, val);
52a46617
GN
8050 break;
8051 case 4:
a83b29c6 8052 res = kvm_set_cr4(vcpu, mk_cr_64(kvm_read_cr4(vcpu), val));
52a46617
GN
8053 break;
8054 case 8:
eea1cff9 8055 res = kvm_set_cr8(vcpu, val);
52a46617
GN
8056 break;
8057 default:
a737f256 8058 kvm_err("%s: unexpected cr %u\n", __func__, cr);
0f12244f 8059 res = -1;
52a46617 8060 }
0f12244f
GN
8061
8062 return res;
52a46617
GN
8063}
8064
717746e3 8065static int emulator_get_cpl(struct x86_emulate_ctxt *ctxt)
9c537244 8066{
b3646477 8067 return static_call(kvm_x86_get_cpl)(emul_to_vcpu(ctxt));
9c537244
GN
8068}
8069
4bff1e86 8070static void emulator_get_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
2dafc6c2 8071{
b3646477 8072 static_call(kvm_x86_get_gdt)(emul_to_vcpu(ctxt), dt);
2dafc6c2
GN
8073}
8074
4bff1e86 8075static void emulator_get_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
160ce1f1 8076{
b3646477 8077 static_call(kvm_x86_get_idt)(emul_to_vcpu(ctxt), dt);
160ce1f1
MG
8078}
8079
1ac9d0cf
AK
8080static void emulator_set_gdt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8081{
b3646477 8082 static_call(kvm_x86_set_gdt)(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
8083}
8084
8085static void emulator_set_idt(struct x86_emulate_ctxt *ctxt, struct desc_ptr *dt)
8086{
b3646477 8087 static_call(kvm_x86_set_idt)(emul_to_vcpu(ctxt), dt);
1ac9d0cf
AK
8088}
8089
4bff1e86
AK
8090static unsigned long emulator_get_cached_segment_base(
8091 struct x86_emulate_ctxt *ctxt, int seg)
5951c442 8092{
4bff1e86 8093 return get_segment_base(emul_to_vcpu(ctxt), seg);
5951c442
GN
8094}
8095
1aa36616
AK
8096static bool emulator_get_segment(struct x86_emulate_ctxt *ctxt, u16 *selector,
8097 struct desc_struct *desc, u32 *base3,
8098 int seg)
2dafc6c2
GN
8099{
8100 struct kvm_segment var;
8101
4bff1e86 8102 kvm_get_segment(emul_to_vcpu(ctxt), &var, seg);
1aa36616 8103 *selector = var.selector;
2dafc6c2 8104
378a8b09
GN
8105 if (var.unusable) {
8106 memset(desc, 0, sizeof(*desc));
f0367ee1
RK
8107 if (base3)
8108 *base3 = 0;
2dafc6c2 8109 return false;
378a8b09 8110 }
2dafc6c2
GN
8111
8112 if (var.g)
8113 var.limit >>= 12;
8114 set_desc_limit(desc, var.limit);
8115 set_desc_base(desc, (unsigned long)var.base);
5601d05b
GN
8116#ifdef CONFIG_X86_64
8117 if (base3)
8118 *base3 = var.base >> 32;
8119#endif
2dafc6c2
GN
8120 desc->type = var.type;
8121 desc->s = var.s;
8122 desc->dpl = var.dpl;
8123 desc->p = var.present;
8124 desc->avl = var.avl;
8125 desc->l = var.l;
8126 desc->d = var.db;
8127 desc->g = var.g;
8128
8129 return true;
8130}
8131
1aa36616
AK
8132static void emulator_set_segment(struct x86_emulate_ctxt *ctxt, u16 selector,
8133 struct desc_struct *desc, u32 base3,
8134 int seg)
2dafc6c2 8135{
4bff1e86 8136 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
2dafc6c2
GN
8137 struct kvm_segment var;
8138
1aa36616 8139 var.selector = selector;
2dafc6c2 8140 var.base = get_desc_base(desc);
5601d05b
GN
8141#ifdef CONFIG_X86_64
8142 var.base |= ((u64)base3) << 32;
8143#endif
2dafc6c2
GN
8144 var.limit = get_desc_limit(desc);
8145 if (desc->g)
8146 var.limit = (var.limit << 12) | 0xfff;
8147 var.type = desc->type;
2dafc6c2
GN
8148 var.dpl = desc->dpl;
8149 var.db = desc->d;
8150 var.s = desc->s;
8151 var.l = desc->l;
8152 var.g = desc->g;
8153 var.avl = desc->avl;
8154 var.present = desc->p;
8155 var.unusable = !var.present;
8156 var.padding = 0;
8157
8158 kvm_set_segment(vcpu, &var, seg);
8159 return;
8160}
8161
ac8d6cad
HW
8162static int emulator_get_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8163 u32 msr_index, u64 *pdata)
717746e3 8164{
1ae09954
AG
8165 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8166 int r;
8167
ac8d6cad 8168 r = kvm_get_msr_with_filter(vcpu, msr_index, pdata);
36d546d5
HW
8169 if (r < 0)
8170 return X86EMUL_UNHANDLEABLE;
1ae09954 8171
36d546d5
HW
8172 if (r) {
8173 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_RDMSR, 0,
8174 complete_emulated_rdmsr, r))
8175 return X86EMUL_IO_NEEDED;
794663e1
HW
8176
8177 trace_kvm_msr_read_ex(msr_index);
36d546d5 8178 return X86EMUL_PROPAGATE_FAULT;
1ae09954
AG
8179 }
8180
794663e1 8181 trace_kvm_msr_read(msr_index, *pdata);
36d546d5 8182 return X86EMUL_CONTINUE;
717746e3
AK
8183}
8184
ac8d6cad
HW
8185static int emulator_set_msr_with_filter(struct x86_emulate_ctxt *ctxt,
8186 u32 msr_index, u64 data)
717746e3 8187{
1ae09954
AG
8188 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8189 int r;
8190
ac8d6cad 8191 r = kvm_set_msr_with_filter(vcpu, msr_index, data);
36d546d5
HW
8192 if (r < 0)
8193 return X86EMUL_UNHANDLEABLE;
1ae09954 8194
36d546d5
HW
8195 if (r) {
8196 if (kvm_msr_user_space(vcpu, msr_index, KVM_EXIT_X86_WRMSR, data,
8197 complete_emulated_msr_access, r))
8198 return X86EMUL_IO_NEEDED;
794663e1
HW
8199
8200 trace_kvm_msr_write_ex(msr_index, data);
36d546d5 8201 return X86EMUL_PROPAGATE_FAULT;
1ae09954
AG
8202 }
8203
794663e1 8204 trace_kvm_msr_write(msr_index, data);
36d546d5 8205 return X86EMUL_CONTINUE;
717746e3
AK
8206}
8207
ac8d6cad
HW
8208static int emulator_get_msr(struct x86_emulate_ctxt *ctxt,
8209 u32 msr_index, u64 *pdata)
8210{
8211 return kvm_get_msr(emul_to_vcpu(ctxt), msr_index, pdata);
8212}
8213
67f4d428
NA
8214static int emulator_check_pmc(struct x86_emulate_ctxt *ctxt,
8215 u32 pmc)
8216{
e6cd31f1
JM
8217 if (kvm_pmu_is_valid_rdpmc_ecx(emul_to_vcpu(ctxt), pmc))
8218 return 0;
8219 return -EINVAL;
67f4d428
NA
8220}
8221
222d21aa
AK
8222static int emulator_read_pmc(struct x86_emulate_ctxt *ctxt,
8223 u32 pmc, u64 *pdata)
8224{
c6702c9d 8225 return kvm_pmu_rdpmc(emul_to_vcpu(ctxt), pmc, pdata);
222d21aa
AK
8226}
8227
6c3287f7
AK
8228static void emulator_halt(struct x86_emulate_ctxt *ctxt)
8229{
8230 emul_to_vcpu(ctxt)->arch.halt_request = 1;
8231}
8232
2953538e 8233static int emulator_intercept(struct x86_emulate_ctxt *ctxt,
8a76d7f2 8234 struct x86_instruction_info *info,
c4f035c6
AK
8235 enum x86_intercept_stage stage)
8236{
b3646477 8237 return static_call(kvm_x86_check_intercept)(emul_to_vcpu(ctxt), info, stage,
21f1b8f2 8238 &ctxt->exception);
c4f035c6
AK
8239}
8240
e911eb3b 8241static bool emulator_get_cpuid(struct x86_emulate_ctxt *ctxt,
f91af517
SC
8242 u32 *eax, u32 *ebx, u32 *ecx, u32 *edx,
8243 bool exact_only)
bdb42f5a 8244{
f91af517 8245 return kvm_cpuid(emul_to_vcpu(ctxt), eax, ebx, ecx, edx, exact_only);
bdb42f5a
SB
8246}
8247
5ae78e95
SC
8248static bool emulator_guest_has_long_mode(struct x86_emulate_ctxt *ctxt)
8249{
8250 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_LM);
8251}
8252
8253static bool emulator_guest_has_movbe(struct x86_emulate_ctxt *ctxt)
8254{
8255 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_MOVBE);
8256}
8257
8258static bool emulator_guest_has_fxsr(struct x86_emulate_ctxt *ctxt)
8259{
8260 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_FXSR);
8261}
8262
a836839c
HW
8263static bool emulator_guest_has_rdpid(struct x86_emulate_ctxt *ctxt)
8264{
8265 return guest_cpuid_has(emul_to_vcpu(ctxt), X86_FEATURE_RDPID);
8266}
8267
dd856efa
AK
8268static ulong emulator_read_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg)
8269{
27b4a9c4 8270 return kvm_register_read_raw(emul_to_vcpu(ctxt), reg);
dd856efa
AK
8271}
8272
8273static void emulator_write_gpr(struct x86_emulate_ctxt *ctxt, unsigned reg, ulong val)
8274{
27b4a9c4 8275 kvm_register_write_raw(emul_to_vcpu(ctxt), reg, val);
dd856efa
AK
8276}
8277
801806d9
NA
8278static void emulator_set_nmi_mask(struct x86_emulate_ctxt *ctxt, bool masked)
8279{
b3646477 8280 static_call(kvm_x86_set_nmi_mask)(emul_to_vcpu(ctxt), masked);
801806d9
NA
8281}
8282
32e69f23 8283static bool emulator_is_smm(struct x86_emulate_ctxt *ctxt)
6ed071f0 8284{
32e69f23
ML
8285 return is_smm(emul_to_vcpu(ctxt));
8286}
8287
8288static bool emulator_is_guest_mode(struct x86_emulate_ctxt *ctxt)
6ed071f0 8289{
32e69f23 8290 return is_guest_mode(emul_to_vcpu(ctxt));
6ed071f0
LP
8291}
8292
4b8e1b32
PB
8293#ifndef CONFIG_KVM_SMM
8294static int emulator_leave_smm(struct x86_emulate_ctxt *ctxt)
6ed071f0 8295{
4b8e1b32
PB
8296 WARN_ON_ONCE(1);
8297 return X86EMUL_UNHANDLEABLE;
0234bf88 8298}
4b8e1b32 8299#endif
0234bf88 8300
25b17226
SC
8301static void emulator_triple_fault(struct x86_emulate_ctxt *ctxt)
8302{
8303 kvm_make_request(KVM_REQ_TRIPLE_FAULT, emul_to_vcpu(ctxt));
8304}
8305
02d4160f
VK
8306static int emulator_set_xcr(struct x86_emulate_ctxt *ctxt, u32 index, u64 xcr)
8307{
8308 return __kvm_set_xcr(emul_to_vcpu(ctxt), index, xcr);
8309}
8310
1cca2f8c
SC
8311static void emulator_vm_bugged(struct x86_emulate_ctxt *ctxt)
8312{
8313 struct kvm *kvm = emul_to_vcpu(ctxt)->kvm;
8314
8315 if (!kvm->vm_bugged)
8316 kvm_vm_bugged(kvm);
8317}
8318
0225fb50 8319static const struct x86_emulate_ops emulate_ops = {
1cca2f8c 8320 .vm_bugged = emulator_vm_bugged,
dd856efa
AK
8321 .read_gpr = emulator_read_gpr,
8322 .write_gpr = emulator_write_gpr,
ce14e868
PB
8323 .read_std = emulator_read_std,
8324 .write_std = emulator_write_std,
1871c602 8325 .fetch = kvm_fetch_guest_virt,
bbd9b64e
CO
8326 .read_emulated = emulator_read_emulated,
8327 .write_emulated = emulator_write_emulated,
8328 .cmpxchg_emulated = emulator_cmpxchg_emulated,
3cb16fe7 8329 .invlpg = emulator_invlpg,
cf8f70bf
GN
8330 .pio_in_emulated = emulator_pio_in_emulated,
8331 .pio_out_emulated = emulator_pio_out_emulated,
1aa36616
AK
8332 .get_segment = emulator_get_segment,
8333 .set_segment = emulator_set_segment,
5951c442 8334 .get_cached_segment_base = emulator_get_cached_segment_base,
2dafc6c2 8335 .get_gdt = emulator_get_gdt,
160ce1f1 8336 .get_idt = emulator_get_idt,
1ac9d0cf
AK
8337 .set_gdt = emulator_set_gdt,
8338 .set_idt = emulator_set_idt,
52a46617
GN
8339 .get_cr = emulator_get_cr,
8340 .set_cr = emulator_set_cr,
9c537244 8341 .cpl = emulator_get_cpl,
35aa5375
GN
8342 .get_dr = emulator_get_dr,
8343 .set_dr = emulator_set_dr,
ac8d6cad
HW
8344 .set_msr_with_filter = emulator_set_msr_with_filter,
8345 .get_msr_with_filter = emulator_get_msr_with_filter,
717746e3 8346 .get_msr = emulator_get_msr,
67f4d428 8347 .check_pmc = emulator_check_pmc,
222d21aa 8348 .read_pmc = emulator_read_pmc,
6c3287f7 8349 .halt = emulator_halt,
bcaf5cc5 8350 .wbinvd = emulator_wbinvd,
d6aa1000 8351 .fix_hypercall = emulator_fix_hypercall,
c4f035c6 8352 .intercept = emulator_intercept,
bdb42f5a 8353 .get_cpuid = emulator_get_cpuid,
5ae78e95
SC
8354 .guest_has_long_mode = emulator_guest_has_long_mode,
8355 .guest_has_movbe = emulator_guest_has_movbe,
8356 .guest_has_fxsr = emulator_guest_has_fxsr,
a836839c 8357 .guest_has_rdpid = emulator_guest_has_rdpid,
801806d9 8358 .set_nmi_mask = emulator_set_nmi_mask,
32e69f23
ML
8359 .is_smm = emulator_is_smm,
8360 .is_guest_mode = emulator_is_guest_mode,
ecc513e5 8361 .leave_smm = emulator_leave_smm,
25b17226 8362 .triple_fault = emulator_triple_fault,
02d4160f 8363 .set_xcr = emulator_set_xcr,
bbd9b64e
CO
8364};
8365
95cb2295
GN
8366static void toggle_interruptibility(struct kvm_vcpu *vcpu, u32 mask)
8367{
b3646477 8368 u32 int_shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
95cb2295
GN
8369 /*
8370 * an sti; sti; sequence only disable interrupts for the first
8371 * instruction. So, if the last instruction, be it emulated or
8372 * not, left the system with the INT_STI flag enabled, it
8373 * means that the last instruction is an sti. We should not
8374 * leave the flag on in this case. The same goes for mov ss
8375 */
37ccdcbe
PB
8376 if (int_shadow & mask)
8377 mask = 0;
6addfc42 8378 if (unlikely(int_shadow || mask)) {
b3646477 8379 static_call(kvm_x86_set_interrupt_shadow)(vcpu, mask);
6addfc42
PB
8380 if (!mask)
8381 kvm_make_request(KVM_REQ_EVENT, vcpu);
8382 }
95cb2295
GN
8383}
8384
7709aba8 8385static void inject_emulated_exception(struct kvm_vcpu *vcpu)
54b8486f 8386{
c9b8b07c 8387 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
ef54bcfe 8388
7709aba8
SC
8389 if (ctxt->exception.vector == PF_VECTOR)
8390 kvm_inject_emulated_page_fault(vcpu, &ctxt->exception);
8391 else if (ctxt->exception.error_code_valid)
da9cb575
AK
8392 kvm_queue_exception_e(vcpu, ctxt->exception.vector,
8393 ctxt->exception.error_code);
54b8486f 8394 else
da9cb575 8395 kvm_queue_exception(vcpu, ctxt->exception.vector);
54b8486f
GN
8396}
8397
c9b8b07c
SC
8398static struct x86_emulate_ctxt *alloc_emulate_ctxt(struct kvm_vcpu *vcpu)
8399{
8400 struct x86_emulate_ctxt *ctxt;
8401
8402 ctxt = kmem_cache_zalloc(x86_emulator_cache, GFP_KERNEL_ACCOUNT);
8403 if (!ctxt) {
8d20bd63 8404 pr_err("failed to allocate vcpu's emulator\n");
c9b8b07c
SC
8405 return NULL;
8406 }
8407
8408 ctxt->vcpu = vcpu;
8409 ctxt->ops = &emulate_ops;
8410 vcpu->arch.emulate_ctxt = ctxt;
8411
8412 return ctxt;
8413}
8414
8ec4722d
MG
8415static void init_emulate_ctxt(struct kvm_vcpu *vcpu)
8416{
c9b8b07c 8417 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d
MG
8418 int cs_db, cs_l;
8419
b3646477 8420 static_call(kvm_x86_get_cs_db_l_bits)(vcpu, &cs_db, &cs_l);
8ec4722d 8421
744e699c 8422 ctxt->gpa_available = false;
adf52235 8423 ctxt->eflags = kvm_get_rflags(vcpu);
c8401dda
PB
8424 ctxt->tf = (ctxt->eflags & X86_EFLAGS_TF) != 0;
8425
adf52235
TY
8426 ctxt->eip = kvm_rip_read(vcpu);
8427 ctxt->mode = (!is_protmode(vcpu)) ? X86EMUL_MODE_REAL :
8428 (ctxt->eflags & X86_EFLAGS_VM) ? X86EMUL_MODE_VM86 :
42bf549f 8429 (cs_l && is_long_mode(vcpu)) ? X86EMUL_MODE_PROT64 :
adf52235
TY
8430 cs_db ? X86EMUL_MODE_PROT32 :
8431 X86EMUL_MODE_PROT16;
da6393cd
WL
8432 ctxt->interruptibility = 0;
8433 ctxt->have_exception = false;
8434 ctxt->exception.vector = -1;
8435 ctxt->perm_ok = false;
8436
dd856efa 8437 init_decode_cache(ctxt);
7ae441ea 8438 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
8ec4722d
MG
8439}
8440
9497e1f2 8441void kvm_inject_realmode_interrupt(struct kvm_vcpu *vcpu, int irq, int inc_eip)
63995653 8442{
c9b8b07c 8443 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
63995653
MG
8444 int ret;
8445
8446 init_emulate_ctxt(vcpu);
8447
9dac77fa
AK
8448 ctxt->op_bytes = 2;
8449 ctxt->ad_bytes = 2;
8450 ctxt->_eip = ctxt->eip + inc_eip;
9d74191a 8451 ret = emulate_int_real(ctxt, irq);
63995653 8452
9497e1f2
SC
8453 if (ret != X86EMUL_CONTINUE) {
8454 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8455 } else {
8456 ctxt->eip = ctxt->_eip;
8457 kvm_rip_write(vcpu, ctxt->eip);
8458 kvm_set_rflags(vcpu, ctxt->eflags);
8459 }
63995653
MG
8460}
8461EXPORT_SYMBOL_GPL(kvm_inject_realmode_interrupt);
8462
e615e355
DE
8463static void prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8464 u8 ndata, u8 *insn_bytes, u8 insn_size)
19238e75 8465{
19238e75 8466 struct kvm_run *run = vcpu->run;
e615e355
DE
8467 u64 info[5];
8468 u8 info_start;
8469
8470 /*
8471 * Zero the whole array used to retrieve the exit info, as casting to
8472 * u32 for select entries will leave some chunks uninitialized.
8473 */
8474 memset(&info, 0, sizeof(info));
8475
8476 static_call(kvm_x86_get_exit_info)(vcpu, (u32 *)&info[0], &info[1],
8477 &info[2], (u32 *)&info[3],
8478 (u32 *)&info[4]);
19238e75
AL
8479
8480 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8481 run->emulation_failure.suberror = KVM_INTERNAL_ERROR_EMULATION;
e615e355
DE
8482
8483 /*
8484 * There's currently space for 13 entries, but 5 are used for the exit
8485 * reason and info. Restrict to 4 to reduce the maintenance burden
8486 * when expanding kvm_run.emulation_failure in the future.
8487 */
8488 if (WARN_ON_ONCE(ndata > 4))
8489 ndata = 4;
8490
8491 /* Always include the flags as a 'data' entry. */
8492 info_start = 1;
19238e75
AL
8493 run->emulation_failure.flags = 0;
8494
8495 if (insn_size) {
e615e355
DE
8496 BUILD_BUG_ON((sizeof(run->emulation_failure.insn_size) +
8497 sizeof(run->emulation_failure.insn_bytes) != 16));
8498 info_start += 2;
19238e75
AL
8499 run->emulation_failure.flags |=
8500 KVM_INTERNAL_ERROR_EMULATION_FLAG_INSTRUCTION_BYTES;
8501 run->emulation_failure.insn_size = insn_size;
8502 memset(run->emulation_failure.insn_bytes, 0x90,
8503 sizeof(run->emulation_failure.insn_bytes));
e615e355 8504 memcpy(run->emulation_failure.insn_bytes, insn_bytes, insn_size);
19238e75 8505 }
e615e355
DE
8506
8507 memcpy(&run->internal.data[info_start], info, sizeof(info));
8508 memcpy(&run->internal.data[info_start + ARRAY_SIZE(info)], data,
8509 ndata * sizeof(data[0]));
8510
8511 run->emulation_failure.ndata = info_start + ARRAY_SIZE(info) + ndata;
19238e75
AL
8512}
8513
e615e355
DE
8514static void prepare_emulation_ctxt_failure_exit(struct kvm_vcpu *vcpu)
8515{
8516 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8517
8518 prepare_emulation_failure_exit(vcpu, NULL, 0, ctxt->fetch.data,
8519 ctxt->fetch.end - ctxt->fetch.data);
8520}
8521
8522void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu, u64 *data,
8523 u8 ndata)
8524{
8525 prepare_emulation_failure_exit(vcpu, data, ndata, NULL, 0);
19238e75 8526}
e615e355
DE
8527EXPORT_SYMBOL_GPL(__kvm_prepare_emulation_failure_exit);
8528
8529void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu)
8530{
8531 __kvm_prepare_emulation_failure_exit(vcpu, NULL, 0);
8532}
8533EXPORT_SYMBOL_GPL(kvm_prepare_emulation_failure_exit);
19238e75 8534
e2366171 8535static int handle_emulation_failure(struct kvm_vcpu *vcpu, int emulation_type)
6d77dbfc 8536{
19238e75
AL
8537 struct kvm *kvm = vcpu->kvm;
8538
6d77dbfc
GN
8539 ++vcpu->stat.insn_emulation_fail;
8540 trace_kvm_emulate_insn_failed(vcpu);
e2366171 8541
42cbf068
SC
8542 if (emulation_type & EMULTYPE_VMWARE_GP) {
8543 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 8544 return 1;
42cbf068 8545 }
e2366171 8546
19238e75
AL
8547 if (kvm->arch.exit_on_emulation_error ||
8548 (emulation_type & EMULTYPE_SKIP)) {
e615e355 8549 prepare_emulation_ctxt_failure_exit(vcpu);
60fc3d02 8550 return 0;
738fece4
SC
8551 }
8552
22da61c9
SC
8553 kvm_queue_exception(vcpu, UD_VECTOR);
8554
b3646477 8555 if (!is_guest_mode(vcpu) && static_call(kvm_x86_get_cpl)(vcpu) == 0) {
e615e355 8556 prepare_emulation_ctxt_failure_exit(vcpu);
60fc3d02 8557 return 0;
fc3a9157 8558 }
e2366171 8559
60fc3d02 8560 return 1;
6d77dbfc
GN
8561}
8562
736c291c 8563static bool reexecute_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
991eebf9 8564 int emulation_type)
a6f177ef 8565{
736c291c 8566 gpa_t gpa = cr2_or_gpa;
ba049e93 8567 kvm_pfn_t pfn;
a6f177ef 8568
92daa48b 8569 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
991eebf9
GN
8570 return false;
8571
92daa48b
SC
8572 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8573 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
8574 return false;
8575
347a0d0d 8576 if (!vcpu->arch.mmu->root_role.direct) {
95b3cf69
XG
8577 /*
8578 * Write permission should be allowed since only
8579 * write access need to be emulated.
8580 */
736c291c 8581 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
a6f177ef 8582
95b3cf69
XG
8583 /*
8584 * If the mapping is invalid in guest, let cpu retry
8585 * it to generate fault.
8586 */
6e1d2a3f 8587 if (gpa == INVALID_GPA)
95b3cf69
XG
8588 return true;
8589 }
a6f177ef 8590
8e3d9d06
XG
8591 /*
8592 * Do not retry the unhandleable instruction if it faults on the
8593 * readonly host memory, otherwise it will goto a infinite loop:
8594 * retry instruction -> write #PF -> emulation fail -> retry
8595 * instruction -> ...
8596 */
8597 pfn = gfn_to_pfn(vcpu->kvm, gpa_to_gfn(gpa));
95b3cf69
XG
8598
8599 /*
8600 * If the instruction failed on the error pfn, it can not be fixed,
8601 * report the error to userspace.
8602 */
8603 if (is_error_noslot_pfn(pfn))
8604 return false;
8605
8606 kvm_release_pfn_clean(pfn);
8607
8608 /* The instructions are well-emulated on direct mmu. */
347a0d0d 8609 if (vcpu->arch.mmu->root_role.direct) {
95b3cf69
XG
8610 unsigned int indirect_shadow_pages;
8611
531810ca 8612 write_lock(&vcpu->kvm->mmu_lock);
95b3cf69 8613 indirect_shadow_pages = vcpu->kvm->arch.indirect_shadow_pages;
531810ca 8614 write_unlock(&vcpu->kvm->mmu_lock);
95b3cf69
XG
8615
8616 if (indirect_shadow_pages)
8617 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
8618
a6f177ef 8619 return true;
8e3d9d06 8620 }
a6f177ef 8621
95b3cf69
XG
8622 /*
8623 * if emulation was due to access to shadowed page table
8624 * and it failed try to unshadow page and re-enter the
8625 * guest to let CPU execute the instruction.
8626 */
8627 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
93c05d3e
XG
8628
8629 /*
8630 * If the access faults on its page table, it can not
8631 * be fixed by unprotecting shadow page and it should
8632 * be reported to userspace.
8633 */
258d985f 8634 return !(emulation_type & EMULTYPE_WRITE_PF_TO_SP);
a6f177ef
GN
8635}
8636
1cb3f3ae 8637static bool retry_instruction(struct x86_emulate_ctxt *ctxt,
736c291c 8638 gpa_t cr2_or_gpa, int emulation_type)
1cb3f3ae
XG
8639{
8640 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
736c291c 8641 unsigned long last_retry_eip, last_retry_addr, gpa = cr2_or_gpa;
1cb3f3ae
XG
8642
8643 last_retry_eip = vcpu->arch.last_retry_eip;
8644 last_retry_addr = vcpu->arch.last_retry_addr;
8645
8646 /*
8647 * If the emulation is caused by #PF and it is non-page_table
8648 * writing instruction, it means the VM-EXIT is caused by shadow
8649 * page protected, we can zap the shadow page and retry this
8650 * instruction directly.
8651 *
8652 * Note: if the guest uses a non-page-table modifying instruction
8653 * on the PDE that points to the instruction, then we will unmap
8654 * the instruction and go to an infinite loop. So, we cache the
8655 * last retried eip and the last fault address, if we meet the eip
8656 * and the address again, we can break out of the potential infinite
8657 * loop.
8658 */
8659 vcpu->arch.last_retry_eip = vcpu->arch.last_retry_addr = 0;
8660
92daa48b 8661 if (!(emulation_type & EMULTYPE_ALLOW_RETRY_PF))
1cb3f3ae
XG
8662 return false;
8663
92daa48b
SC
8664 if (WARN_ON_ONCE(is_guest_mode(vcpu)) ||
8665 WARN_ON_ONCE(!(emulation_type & EMULTYPE_PF)))
6c3dfeb6
SC
8666 return false;
8667
1cb3f3ae
XG
8668 if (x86_page_table_writing_insn(ctxt))
8669 return false;
8670
736c291c 8671 if (ctxt->eip == last_retry_eip && last_retry_addr == cr2_or_gpa)
1cb3f3ae
XG
8672 return false;
8673
8674 vcpu->arch.last_retry_eip = ctxt->eip;
736c291c 8675 vcpu->arch.last_retry_addr = cr2_or_gpa;
1cb3f3ae 8676
347a0d0d 8677 if (!vcpu->arch.mmu->root_role.direct)
736c291c 8678 gpa = kvm_mmu_gva_to_gpa_write(vcpu, cr2_or_gpa, NULL);
1cb3f3ae 8679
22368028 8680 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(gpa));
1cb3f3ae
XG
8681
8682 return true;
8683}
8684
716d51ab
GN
8685static int complete_emulated_mmio(struct kvm_vcpu *vcpu);
8686static int complete_emulated_pio(struct kvm_vcpu *vcpu);
8687
4a1e10d5
PB
8688static int kvm_vcpu_check_hw_bp(unsigned long addr, u32 type, u32 dr7,
8689 unsigned long *db)
8690{
8691 u32 dr6 = 0;
8692 int i;
8693 u32 enable, rwlen;
8694
8695 enable = dr7;
8696 rwlen = dr7 >> 16;
8697 for (i = 0; i < 4; i++, enable >>= 2, rwlen >>= 4)
8698 if ((enable & 3) && (rwlen & 15) == type && db[i] == addr)
8699 dr6 |= (1 << i);
8700 return dr6;
8701}
8702
120c2c4f 8703static int kvm_vcpu_do_singlestep(struct kvm_vcpu *vcpu)
663f4c61
PB
8704{
8705 struct kvm_run *kvm_run = vcpu->run;
8706
c8401dda 8707 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP) {
9a3ecd5e 8708 kvm_run->debug.arch.dr6 = DR6_BS | DR6_ACTIVE_LOW;
d5d260c5 8709 kvm_run->debug.arch.pc = kvm_get_linear_rip(vcpu);
c8401dda
PB
8710 kvm_run->debug.arch.exception = DB_VECTOR;
8711 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 8712 return 0;
663f4c61 8713 }
120c2c4f 8714 kvm_queue_exception_p(vcpu, DB_VECTOR, DR6_BS);
60fc3d02 8715 return 1;
663f4c61
PB
8716}
8717
6affcbed
KH
8718int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu)
8719{
b3646477 8720 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
f8ea7c60 8721 int r;
6affcbed 8722
b3646477 8723 r = static_call(kvm_x86_skip_emulated_instruction)(vcpu);
60fc3d02 8724 if (unlikely(!r))
f8ea7c60 8725 return 0;
c8401dda 8726
9cd803d4
EH
8727 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
8728
c8401dda
PB
8729 /*
8730 * rflags is the old, "raw" value of the flags. The new value has
8731 * not been saved yet.
8732 *
8733 * This is correct even for TF set by the guest, because "the
8734 * processor will not generate this exception after the instruction
8735 * that sets the TF flag".
8736 */
8737 if (unlikely(rflags & X86_EFLAGS_TF))
120c2c4f 8738 r = kvm_vcpu_do_singlestep(vcpu);
60fc3d02 8739 return r;
6affcbed
KH
8740}
8741EXPORT_SYMBOL_GPL(kvm_skip_emulated_instruction);
8742
baf67ca8 8743static bool kvm_is_code_breakpoint_inhibited(struct kvm_vcpu *vcpu)
4a1e10d5 8744{
baf67ca8
SC
8745 u32 shadow;
8746
8747 if (kvm_get_rflags(vcpu) & X86_EFLAGS_RF)
8748 return true;
8749
8750 /*
8751 * Intel CPUs inhibit code #DBs when MOV/POP SS blocking is active,
8752 * but AMD CPUs do not. MOV/POP SS blocking is rare, check that first
8753 * to avoid the relatively expensive CPUID lookup.
8754 */
8755 shadow = static_call(kvm_x86_get_interrupt_shadow)(vcpu);
8756 return (shadow & KVM_X86_SHADOW_INT_MOV_SS) &&
8757 guest_cpuid_is_intel(vcpu);
8758}
8759
750f8fcb
SC
8760static bool kvm_vcpu_check_code_breakpoint(struct kvm_vcpu *vcpu,
8761 int emulation_type, int *r)
4a1e10d5 8762{
750f8fcb
SC
8763 WARN_ON_ONCE(emulation_type & EMULTYPE_NO_DECODE);
8764
8765 /*
8766 * Do not check for code breakpoints if hardware has already done the
8767 * checks, as inferred from the emulation type. On NO_DECODE and SKIP,
8768 * the instruction has passed all exception checks, and all intercepted
8769 * exceptions that trigger emulation have lower priority than code
8770 * breakpoints, i.e. the fact that the intercepted exception occurred
8771 * means any code breakpoints have already been serviced.
8772 *
8773 * Note, KVM needs to check for code #DBs on EMULTYPE_TRAP_UD_FORCED as
8774 * hardware has checked the RIP of the magic prefix, but not the RIP of
8775 * the instruction being emulated. The intent of forced emulation is
8776 * to behave as if KVM intercepted the instruction without an exception
8777 * and without a prefix.
8778 */
8779 if (emulation_type & (EMULTYPE_NO_DECODE | EMULTYPE_SKIP |
8780 EMULTYPE_TRAP_UD | EMULTYPE_VMWARE_GP | EMULTYPE_PF))
8781 return false;
8782
4a1e10d5
PB
8783 if (unlikely(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) &&
8784 (vcpu->arch.guest_debug_dr7 & DR7_BP_EN_MASK)) {
82b32774
NA
8785 struct kvm_run *kvm_run = vcpu->run;
8786 unsigned long eip = kvm_get_linear_rip(vcpu);
8787 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
8788 vcpu->arch.guest_debug_dr7,
8789 vcpu->arch.eff_db);
8790
8791 if (dr6 != 0) {
9a3ecd5e 8792 kvm_run->debug.arch.dr6 = dr6 | DR6_ACTIVE_LOW;
82b32774 8793 kvm_run->debug.arch.pc = eip;
4a1e10d5
PB
8794 kvm_run->debug.arch.exception = DB_VECTOR;
8795 kvm_run->exit_reason = KVM_EXIT_DEBUG;
60fc3d02 8796 *r = 0;
4a1e10d5
PB
8797 return true;
8798 }
8799 }
8800
4161a569 8801 if (unlikely(vcpu->arch.dr7 & DR7_BP_EN_MASK) &&
baf67ca8 8802 !kvm_is_code_breakpoint_inhibited(vcpu)) {
82b32774
NA
8803 unsigned long eip = kvm_get_linear_rip(vcpu);
8804 u32 dr6 = kvm_vcpu_check_hw_bp(eip, 0,
4a1e10d5
PB
8805 vcpu->arch.dr7,
8806 vcpu->arch.db);
8807
8808 if (dr6 != 0) {
4d5523cf 8809 kvm_queue_exception_p(vcpu, DB_VECTOR, dr6);
60fc3d02 8810 *r = 1;
4a1e10d5
PB
8811 return true;
8812 }
8813 }
8814
8815 return false;
8816}
8817
04789b66
LA
8818static bool is_vmware_backdoor_opcode(struct x86_emulate_ctxt *ctxt)
8819{
2d7921c4
AM
8820 switch (ctxt->opcode_len) {
8821 case 1:
8822 switch (ctxt->b) {
8823 case 0xe4: /* IN */
8824 case 0xe5:
8825 case 0xec:
8826 case 0xed:
8827 case 0xe6: /* OUT */
8828 case 0xe7:
8829 case 0xee:
8830 case 0xef:
8831 case 0x6c: /* INS */
8832 case 0x6d:
8833 case 0x6e: /* OUTS */
8834 case 0x6f:
8835 return true;
8836 }
8837 break;
8838 case 2:
8839 switch (ctxt->b) {
8840 case 0x33: /* RDPMC */
8841 return true;
8842 }
8843 break;
04789b66
LA
8844 }
8845
8846 return false;
8847}
8848
4aa2691d 8849/*
fee060cd
SC
8850 * Decode an instruction for emulation. The caller is responsible for handling
8851 * code breakpoints. Note, manually detecting code breakpoints is unnecessary
8852 * (and wrong) when emulating on an intercepted fault-like exception[*], as
8853 * code breakpoints have higher priority and thus have already been done by
8854 * hardware.
8855 *
8856 * [*] Except #MC, which is higher priority, but KVM should never emulate in
8857 * response to a machine check.
4aa2691d
WH
8858 */
8859int x86_decode_emulated_instruction(struct kvm_vcpu *vcpu, int emulation_type,
8860 void *insn, int insn_len)
8861{
4aa2691d 8862 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
fee060cd 8863 int r;
4aa2691d
WH
8864
8865 init_emulate_ctxt(vcpu);
8866
b35491e6 8867 r = x86_decode_insn(ctxt, insn, insn_len, emulation_type);
4aa2691d
WH
8868
8869 trace_kvm_emulate_insn_start(vcpu);
8870 ++vcpu->stat.insn_emulation;
8871
8872 return r;
8873}
8874EXPORT_SYMBOL_GPL(x86_decode_emulated_instruction);
8875
736c291c
SC
8876int x86_emulate_instruction(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
8877 int emulation_type, void *insn, int insn_len)
bbd9b64e 8878{
95cb2295 8879 int r;
c9b8b07c 8880 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
7ae441ea 8881 bool writeback = true;
09e3e2a1 8882
4d31d9ef 8883 if (unlikely(!kvm_can_emulate_insn(vcpu, emulation_type, insn, insn_len)))
09e3e2a1 8884 return 1;
bbd9b64e 8885
c595ceee
PB
8886 vcpu->arch.l1tf_flush_l1d = true;
8887
571008da 8888 if (!(emulation_type & EMULTYPE_NO_DECODE)) {
4aa2691d 8889 kvm_clear_exception_queue(vcpu);
4a1e10d5 8890
fee060cd
SC
8891 /*
8892 * Return immediately if RIP hits a code breakpoint, such #DBs
8893 * are fault-like and are higher priority than any faults on
8894 * the code fetch itself.
8895 */
750f8fcb 8896 if (kvm_vcpu_check_code_breakpoint(vcpu, emulation_type, &r))
fee060cd
SC
8897 return r;
8898
4aa2691d
WH
8899 r = x86_decode_emulated_instruction(vcpu, emulation_type,
8900 insn, insn_len);
1d2887e2 8901 if (r != EMULATION_OK) {
b4000606 8902 if ((emulation_type & EMULTYPE_TRAP_UD) ||
c83fad65
SC
8903 (emulation_type & EMULTYPE_TRAP_UD_FORCED)) {
8904 kvm_queue_exception(vcpu, UD_VECTOR);
60fc3d02 8905 return 1;
c83fad65 8906 }
736c291c 8907 if (reexecute_instruction(vcpu, cr2_or_gpa,
736c291c 8908 emulation_type))
60fc3d02 8909 return 1;
17122c06
SC
8910
8911 if (ctxt->have_exception &&
8912 !(emulation_type & EMULTYPE_SKIP)) {
c8848cee
JD
8913 /*
8914 * #UD should result in just EMULATION_FAILED, and trap-like
8915 * exception should not be encountered during decode.
8916 */
8917 WARN_ON_ONCE(ctxt->exception.vector == UD_VECTOR ||
8918 exception_type(ctxt->exception.vector) == EXCPT_TRAP);
8530a79c 8919 inject_emulated_exception(vcpu);
60fc3d02 8920 return 1;
8530a79c 8921 }
e2366171 8922 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
8923 }
8924 }
8925
42cbf068
SC
8926 if ((emulation_type & EMULTYPE_VMWARE_GP) &&
8927 !is_vmware_backdoor_opcode(ctxt)) {
8928 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
60fc3d02 8929 return 1;
42cbf068 8930 }
04789b66 8931
1957aa63 8932 /*
906fa904
HW
8933 * EMULTYPE_SKIP without EMULTYPE_COMPLETE_USER_EXIT is intended for
8934 * use *only* by vendor callbacks for kvm_skip_emulated_instruction().
8935 * The caller is responsible for updating interruptibility state and
8936 * injecting single-step #DBs.
1957aa63 8937 */
ba8afb6b 8938 if (emulation_type & EMULTYPE_SKIP) {
5e854864
SC
8939 if (ctxt->mode != X86EMUL_MODE_PROT64)
8940 ctxt->eip = (u32)ctxt->_eip;
8941 else
8942 ctxt->eip = ctxt->_eip;
8943
906fa904
HW
8944 if (emulation_type & EMULTYPE_COMPLETE_USER_EXIT) {
8945 r = 1;
8946 goto writeback;
8947 }
8948
5e854864 8949 kvm_rip_write(vcpu, ctxt->eip);
bb663c7a
NA
8950 if (ctxt->eflags & X86_EFLAGS_RF)
8951 kvm_set_rflags(vcpu, ctxt->eflags & ~X86_EFLAGS_RF);
60fc3d02 8952 return 1;
ba8afb6b
GN
8953 }
8954
736c291c 8955 if (retry_instruction(ctxt, cr2_or_gpa, emulation_type))
60fc3d02 8956 return 1;
1cb3f3ae 8957
7ae441ea 8958 /* this is needed for vmware backdoor interface to work since it
4d2179e1 8959 changes registers values during IO operation */
7ae441ea
GN
8960 if (vcpu->arch.emulate_regs_need_sync_from_vcpu) {
8961 vcpu->arch.emulate_regs_need_sync_from_vcpu = false;
dd856efa 8962 emulator_invalidate_register_cache(ctxt);
7ae441ea 8963 }
4d2179e1 8964
5cd21917 8965restart:
92daa48b
SC
8966 if (emulation_type & EMULTYPE_PF) {
8967 /* Save the faulting GPA (cr2) in the address field */
8968 ctxt->exception.address = cr2_or_gpa;
8969
8970 /* With shadow page tables, cr2 contains a GVA or nGPA. */
347a0d0d 8971 if (vcpu->arch.mmu->root_role.direct) {
744e699c
SC
8972 ctxt->gpa_available = true;
8973 ctxt->gpa_val = cr2_or_gpa;
92daa48b
SC
8974 }
8975 } else {
8976 /* Sanitize the address out of an abundance of paranoia. */
8977 ctxt->exception.address = 0;
8978 }
0f89b207 8979
9d74191a 8980 r = x86_emulate_insn(ctxt);
bbd9b64e 8981
775fde86 8982 if (r == EMULATION_INTERCEPTED)
60fc3d02 8983 return 1;
775fde86 8984
d2ddd1c4 8985 if (r == EMULATION_FAILED) {
258d985f 8986 if (reexecute_instruction(vcpu, cr2_or_gpa, emulation_type))
60fc3d02 8987 return 1;
c3cd7ffa 8988
e2366171 8989 return handle_emulation_failure(vcpu, emulation_type);
bbd9b64e
CO
8990 }
8991
9d74191a 8992 if (ctxt->have_exception) {
0dc90226
SC
8993 WARN_ON_ONCE(vcpu->mmio_needed && !vcpu->mmio_is_write);
8994 vcpu->mmio_needed = false;
60fc3d02 8995 r = 1;
7709aba8 8996 inject_emulated_exception(vcpu);
d2ddd1c4 8997 } else if (vcpu->arch.pio.count) {
0912c977
PB
8998 if (!vcpu->arch.pio.in) {
8999 /* FIXME: return into emulator if single-stepping. */
3457e419 9000 vcpu->arch.pio.count = 0;
0912c977 9001 } else {
7ae441ea 9002 writeback = false;
716d51ab
GN
9003 vcpu->arch.complete_userspace_io = complete_emulated_pio;
9004 }
60fc3d02 9005 r = 0;
7ae441ea 9006 } else if (vcpu->mmio_needed) {
bc8a0aaf
SC
9007 ++vcpu->stat.mmio_exits;
9008
7ae441ea
GN
9009 if (!vcpu->mmio_is_write)
9010 writeback = false;
60fc3d02 9011 r = 0;
716d51ab 9012 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
adbfb12d
HW
9013 } else if (vcpu->arch.complete_userspace_io) {
9014 writeback = false;
9015 r = 0;
7ae441ea 9016 } else if (r == EMULATION_RESTART)
5cd21917 9017 goto restart;
d2ddd1c4 9018 else
60fc3d02 9019 r = 1;
f850e2e6 9020
906fa904 9021writeback:
7ae441ea 9022 if (writeback) {
b3646477 9023 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
9d74191a 9024 toggle_interruptibility(vcpu, ctxt->interruptibility);
7ae441ea 9025 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
5623f751
SC
9026
9027 /*
9028 * Note, EXCPT_DB is assumed to be fault-like as the emulator
9029 * only supports code breakpoints and general detect #DB, both
9030 * of which are fault-like.
9031 */
38827dbd 9032 if (!ctxt->have_exception ||
75ee23b3 9033 exception_type(ctxt->exception.vector) == EXCPT_TRAP) {
9cd803d4 9034 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_INSTRUCTIONS);
018d70ff
EH
9035 if (ctxt->is_branch)
9036 kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
75ee23b3 9037 kvm_rip_write(vcpu, ctxt->eip);
384dea1c 9038 if (r && (ctxt->tf || (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)))
120c2c4f 9039 r = kvm_vcpu_do_singlestep(vcpu);
2a890614 9040 static_call_cond(kvm_x86_update_emulated_instruction)(vcpu);
38827dbd 9041 __kvm_set_rflags(vcpu, ctxt->eflags);
75ee23b3 9042 }
6addfc42
PB
9043
9044 /*
9045 * For STI, interrupts are shadowed; so KVM_REQ_EVENT will
9046 * do nothing, and it will be requested again as soon as
9047 * the shadow expires. But we still need to check here,
9048 * because POPF has no interrupt shadow.
9049 */
9050 if (unlikely((ctxt->eflags & ~rflags) & X86_EFLAGS_IF))
9051 kvm_make_request(KVM_REQ_EVENT, vcpu);
7ae441ea
GN
9052 } else
9053 vcpu->arch.emulate_regs_need_sync_to_vcpu = true;
e85d28f8
GN
9054
9055 return r;
de7d789a 9056}
c60658d1
SC
9057
9058int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type)
9059{
9060 return x86_emulate_instruction(vcpu, 0, emulation_type, NULL, 0);
9061}
9062EXPORT_SYMBOL_GPL(kvm_emulate_instruction);
9063
9064int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
9065 void *insn, int insn_len)
9066{
9067 return x86_emulate_instruction(vcpu, 0, 0, insn, insn_len);
9068}
9069EXPORT_SYMBOL_GPL(kvm_emulate_instruction_from_buffer);
de7d789a 9070
8764ed55
SC
9071static int complete_fast_pio_out_port_0x7e(struct kvm_vcpu *vcpu)
9072{
9073 vcpu->arch.pio.count = 0;
9074 return 1;
9075}
9076
45def77e
SC
9077static int complete_fast_pio_out(struct kvm_vcpu *vcpu)
9078{
9079 vcpu->arch.pio.count = 0;
9080
9081 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip)))
9082 return 1;
9083
9084 return kvm_skip_emulated_instruction(vcpu);
9085}
9086
dca7f128
SC
9087static int kvm_fast_pio_out(struct kvm_vcpu *vcpu, int size,
9088 unsigned short port)
de7d789a 9089{
de3cd117 9090 unsigned long val = kvm_rax_read(vcpu);
2e3bb4d8
SC
9091 int ret = emulator_pio_out(vcpu, size, port, &val, 1);
9092
8764ed55
SC
9093 if (ret)
9094 return ret;
45def77e 9095
8764ed55
SC
9096 /*
9097 * Workaround userspace that relies on old KVM behavior of %rip being
9098 * incremented prior to exiting to userspace to handle "OUT 0x7e".
9099 */
9100 if (port == 0x7e &&
9101 kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_OUT_7E_INC_RIP)) {
9102 vcpu->arch.complete_userspace_io =
9103 complete_fast_pio_out_port_0x7e;
9104 kvm_skip_emulated_instruction(vcpu);
9105 } else {
45def77e
SC
9106 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
9107 vcpu->arch.complete_userspace_io = complete_fast_pio_out;
9108 }
8764ed55 9109 return 0;
de7d789a 9110}
de7d789a 9111
8370c3d0
TL
9112static int complete_fast_pio_in(struct kvm_vcpu *vcpu)
9113{
9114 unsigned long val;
9115
9116 /* We should only ever be called with arch.pio.count equal to 1 */
9117 BUG_ON(vcpu->arch.pio.count != 1);
9118
45def77e
SC
9119 if (unlikely(!kvm_is_linear_rip(vcpu, vcpu->arch.pio.linear_rip))) {
9120 vcpu->arch.pio.count = 0;
9121 return 1;
9122 }
9123
8370c3d0 9124 /* For size less than 4 we merge, else we zero extend */
de3cd117 9125 val = (vcpu->arch.pio.size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0 9126
7a6177d6 9127 complete_emulator_pio_in(vcpu, &val);
de3cd117 9128 kvm_rax_write(vcpu, val);
8370c3d0 9129
45def77e 9130 return kvm_skip_emulated_instruction(vcpu);
8370c3d0
TL
9131}
9132
dca7f128
SC
9133static int kvm_fast_pio_in(struct kvm_vcpu *vcpu, int size,
9134 unsigned short port)
8370c3d0
TL
9135{
9136 unsigned long val;
9137 int ret;
9138
9139 /* For size less than 4 we merge, else we zero extend */
de3cd117 9140 val = (size < 4) ? kvm_rax_read(vcpu) : 0;
8370c3d0 9141
2e3bb4d8 9142 ret = emulator_pio_in(vcpu, size, port, &val, 1);
8370c3d0 9143 if (ret) {
de3cd117 9144 kvm_rax_write(vcpu, val);
8370c3d0
TL
9145 return ret;
9146 }
9147
45def77e 9148 vcpu->arch.pio.linear_rip = kvm_get_linear_rip(vcpu);
8370c3d0
TL
9149 vcpu->arch.complete_userspace_io = complete_fast_pio_in;
9150
9151 return 0;
9152}
dca7f128
SC
9153
9154int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in)
9155{
45def77e 9156 int ret;
dca7f128 9157
dca7f128 9158 if (in)
45def77e 9159 ret = kvm_fast_pio_in(vcpu, size, port);
dca7f128 9160 else
45def77e
SC
9161 ret = kvm_fast_pio_out(vcpu, size, port);
9162 return ret && kvm_skip_emulated_instruction(vcpu);
dca7f128
SC
9163}
9164EXPORT_SYMBOL_GPL(kvm_fast_pio);
8370c3d0 9165
251a5fd6 9166static int kvmclock_cpu_down_prep(unsigned int cpu)
8cfdc000 9167{
0a3aee0d 9168 __this_cpu_write(cpu_tsc_khz, 0);
251a5fd6 9169 return 0;
8cfdc000
ZA
9170}
9171
9172static void tsc_khz_changed(void *data)
c8076604 9173{
8cfdc000
ZA
9174 struct cpufreq_freqs *freq = data;
9175 unsigned long khz = 0;
9176
3ebcbd22
AR
9177 WARN_ON_ONCE(boot_cpu_has(X86_FEATURE_CONSTANT_TSC));
9178
8cfdc000
ZA
9179 if (data)
9180 khz = freq->new;
3ebcbd22 9181 else
8cfdc000
ZA
9182 khz = cpufreq_quick_get(raw_smp_processor_id());
9183 if (!khz)
9184 khz = tsc_khz;
0a3aee0d 9185 __this_cpu_write(cpu_tsc_khz, khz);
c8076604
GH
9186}
9187
5fa4ec9c 9188#ifdef CONFIG_X86_64
0092e434
VK
9189static void kvm_hyperv_tsc_notifier(void)
9190{
0092e434 9191 struct kvm *kvm;
0092e434
VK
9192 int cpu;
9193
0d9ce162 9194 mutex_lock(&kvm_lock);
0092e434
VK
9195 list_for_each_entry(kvm, &vm_list, vm_list)
9196 kvm_make_mclock_inprogress_request(kvm);
9197
6b6fcd28 9198 /* no guest entries from this point */
0092e434
VK
9199 hyperv_stop_tsc_emulation();
9200
9201 /* TSC frequency always matches when on Hyper-V */
3ebcbd22
AR
9202 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9203 for_each_present_cpu(cpu)
9204 per_cpu(cpu_tsc_khz, cpu) = tsc_khz;
9205 }
938c8745 9206 kvm_caps.max_guest_tsc_khz = tsc_khz;
0092e434
VK
9207
9208 list_for_each_entry(kvm, &vm_list, vm_list) {
869b4421 9209 __kvm_start_pvclock_update(kvm);
0092e434 9210 pvclock_update_vm_gtod_copy(kvm);
6b6fcd28 9211 kvm_end_pvclock_update(kvm);
0092e434 9212 }
6b6fcd28 9213
0d9ce162 9214 mutex_unlock(&kvm_lock);
0092e434 9215}
5fa4ec9c 9216#endif
0092e434 9217
df24014a 9218static void __kvmclock_cpufreq_notifier(struct cpufreq_freqs *freq, int cpu)
c8076604 9219{
c8076604
GH
9220 struct kvm *kvm;
9221 struct kvm_vcpu *vcpu;
46808a4c
MZ
9222 int send_ipi = 0;
9223 unsigned long i;
c8076604 9224
8cfdc000
ZA
9225 /*
9226 * We allow guests to temporarily run on slowing clocks,
9227 * provided we notify them after, or to run on accelerating
9228 * clocks, provided we notify them before. Thus time never
9229 * goes backwards.
9230 *
9231 * However, we have a problem. We can't atomically update
9232 * the frequency of a given CPU from this function; it is
9233 * merely a notifier, which can be called from any CPU.
9234 * Changing the TSC frequency at arbitrary points in time
9235 * requires a recomputation of local variables related to
9236 * the TSC for each VCPU. We must flag these local variables
9237 * to be updated and be sure the update takes place with the
9238 * new frequency before any guests proceed.
9239 *
9240 * Unfortunately, the combination of hotplug CPU and frequency
9241 * change creates an intractable locking scenario; the order
9242 * of when these callouts happen is undefined with respect to
9243 * CPU hotplug, and they can race with each other. As such,
9244 * merely setting per_cpu(cpu_tsc_khz) = X during a hotadd is
9245 * undefined; you can actually have a CPU frequency change take
9246 * place in between the computation of X and the setting of the
9247 * variable. To protect against this problem, all updates of
9248 * the per_cpu tsc_khz variable are done in an interrupt
9249 * protected IPI, and all callers wishing to update the value
9250 * must wait for a synchronous IPI to complete (which is trivial
9251 * if the caller is on the CPU already). This establishes the
9252 * necessary total order on variable updates.
9253 *
9254 * Note that because a guest time update may take place
9255 * anytime after the setting of the VCPU's request bit, the
9256 * correct TSC value must be set before the request. However,
9257 * to ensure the update actually makes it to any guest which
9258 * starts running in hardware virtualization between the set
9259 * and the acquisition of the spinlock, we must also ping the
9260 * CPU after setting the request bit.
9261 *
9262 */
9263
df24014a 9264 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 9265
0d9ce162 9266 mutex_lock(&kvm_lock);
c8076604 9267 list_for_each_entry(kvm, &vm_list, vm_list) {
988a2cae 9268 kvm_for_each_vcpu(i, vcpu, kvm) {
df24014a 9269 if (vcpu->cpu != cpu)
c8076604 9270 continue;
c285545f 9271 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0d9ce162 9272 if (vcpu->cpu != raw_smp_processor_id())
8cfdc000 9273 send_ipi = 1;
c8076604
GH
9274 }
9275 }
0d9ce162 9276 mutex_unlock(&kvm_lock);
c8076604
GH
9277
9278 if (freq->old < freq->new && send_ipi) {
9279 /*
9280 * We upscale the frequency. Must make the guest
9281 * doesn't see old kvmclock values while running with
9282 * the new frequency, otherwise we risk the guest sees
9283 * time go backwards.
9284 *
9285 * In case we update the frequency for another cpu
9286 * (which might be in guest context) send an interrupt
9287 * to kick the cpu out of guest context. Next time
9288 * guest context is entered kvmclock will be updated,
9289 * so the guest will not see stale values.
9290 */
df24014a 9291 smp_call_function_single(cpu, tsc_khz_changed, freq, 1);
c8076604 9292 }
df24014a
VK
9293}
9294
9295static int kvmclock_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
9296 void *data)
9297{
9298 struct cpufreq_freqs *freq = data;
9299 int cpu;
9300
9301 if (val == CPUFREQ_PRECHANGE && freq->old > freq->new)
9302 return 0;
9303 if (val == CPUFREQ_POSTCHANGE && freq->old < freq->new)
9304 return 0;
9305
9306 for_each_cpu(cpu, freq->policy->cpus)
9307 __kvmclock_cpufreq_notifier(freq, cpu);
9308
c8076604
GH
9309 return 0;
9310}
9311
9312static struct notifier_block kvmclock_cpufreq_notifier_block = {
8cfdc000
ZA
9313 .notifier_call = kvmclock_cpufreq_notifier
9314};
9315
251a5fd6 9316static int kvmclock_cpu_online(unsigned int cpu)
8cfdc000 9317{
251a5fd6
SAS
9318 tsc_khz_changed(NULL);
9319 return 0;
8cfdc000
ZA
9320}
9321
b820cc0c
ZA
9322static void kvm_timer_init(void)
9323{
b820cc0c 9324 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
741e511b
SC
9325 max_tsc_khz = tsc_khz;
9326
9327 if (IS_ENABLED(CONFIG_CPU_FREQ)) {
9328 struct cpufreq_policy *policy;
9329 int cpu;
9330
9331 cpu = get_cpu();
9332 policy = cpufreq_cpu_get(cpu);
9333 if (policy) {
9334 if (policy->cpuinfo.max_freq)
9335 max_tsc_khz = policy->cpuinfo.max_freq;
9336 cpufreq_cpu_put(policy);
9337 }
9338 put_cpu();
9a11997e 9339 }
b820cc0c
ZA
9340 cpufreq_register_notifier(&kvmclock_cpufreq_notifier_block,
9341 CPUFREQ_TRANSITION_NOTIFIER);
460dd42e 9342
3ebcbd22
AR
9343 cpuhp_setup_state(CPUHP_AP_X86_KVM_CLK_ONLINE, "x86/kvm/clk:online",
9344 kvmclock_cpu_online, kvmclock_cpu_down_prep);
9345 }
b820cc0c
ZA
9346}
9347
16e8d74d
MT
9348#ifdef CONFIG_X86_64
9349static void pvclock_gtod_update_fn(struct work_struct *work)
9350{
d828199e 9351 struct kvm *kvm;
d828199e 9352 struct kvm_vcpu *vcpu;
46808a4c 9353 unsigned long i;
d828199e 9354
0d9ce162 9355 mutex_lock(&kvm_lock);
d828199e
MT
9356 list_for_each_entry(kvm, &vm_list, vm_list)
9357 kvm_for_each_vcpu(i, vcpu, kvm)
105b21bb 9358 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
d828199e 9359 atomic_set(&kvm_guest_has_master_clock, 0);
0d9ce162 9360 mutex_unlock(&kvm_lock);
16e8d74d
MT
9361}
9362
9363static DECLARE_WORK(pvclock_gtod_work, pvclock_gtod_update_fn);
9364
3f804f6d
TG
9365/*
9366 * Indirection to move queue_work() out of the tk_core.seq write held
9367 * region to prevent possible deadlocks against time accessors which
9368 * are invoked with work related locks held.
9369 */
9370static void pvclock_irq_work_fn(struct irq_work *w)
9371{
9372 queue_work(system_long_wq, &pvclock_gtod_work);
9373}
9374
9375static DEFINE_IRQ_WORK(pvclock_irq_work, pvclock_irq_work_fn);
9376
16e8d74d
MT
9377/*
9378 * Notification about pvclock gtod data update.
9379 */
9380static int pvclock_gtod_notify(struct notifier_block *nb, unsigned long unused,
9381 void *priv)
9382{
9383 struct pvclock_gtod_data *gtod = &pvclock_gtod_data;
9384 struct timekeeper *tk = priv;
9385
9386 update_pvclock_gtod(tk);
9387
3f804f6d
TG
9388 /*
9389 * Disable master clock if host does not trust, or does not use,
9390 * TSC based clocksource. Delegate queue_work() to irq_work as
9391 * this is invoked with tk_core.seq write held.
16e8d74d 9392 */
b0c39dc6 9393 if (!gtod_is_based_on_tsc(gtod->clock.vclock_mode) &&
16e8d74d 9394 atomic_read(&kvm_guest_has_master_clock) != 0)
3f804f6d 9395 irq_work_queue(&pvclock_irq_work);
16e8d74d
MT
9396 return 0;
9397}
9398
9399static struct notifier_block pvclock_gtod_notifier = {
9400 .notifier_call = pvclock_gtod_notify,
9401};
9402#endif
9403
b7483387
SC
9404static inline void kvm_ops_update(struct kvm_x86_init_ops *ops)
9405{
9406 memcpy(&kvm_x86_ops, ops->runtime_ops, sizeof(kvm_x86_ops));
9407
9408#define __KVM_X86_OP(func) \
9409 static_call_update(kvm_x86_##func, kvm_x86_ops.func);
9410#define KVM_X86_OP(func) \
9411 WARN_ON(!kvm_x86_ops.func); __KVM_X86_OP(func)
9412#define KVM_X86_OP_OPTIONAL __KVM_X86_OP
9413#define KVM_X86_OP_OPTIONAL_RET0(func) \
9414 static_call_update(kvm_x86_##func, (void *)kvm_x86_ops.func ? : \
9415 (void *)__static_call_return0);
9416#include <asm/kvm-x86-ops.h>
9417#undef __KVM_X86_OP
9418
9419 kvm_pmu_ops_update(ops->pmu_ops);
9420}
9421
d83420c2 9422static int kvm_x86_check_processor_compatibility(void)
3045c483 9423{
e4aa7f88
CG
9424 int cpu = smp_processor_id();
9425 struct cpuinfo_x86 *c = &cpu_data(cpu);
9426
9427 /*
9428 * Compatibility checks are done when loading KVM and when enabling
9429 * hardware, e.g. during CPU hotplug, to ensure all online CPUs are
9430 * compatible, i.e. KVM should never perform a compatibility check on
9431 * an offline CPU.
9432 */
9433 WARN_ON(!cpu_online(cpu));
3045c483 9434
3045c483
SC
9435 if (__cr4_reserved_bits(cpu_has, c) !=
9436 __cr4_reserved_bits(cpu_has, &boot_cpu_data))
9437 return -EIO;
9438
d83420c2 9439 return static_call(kvm_x86_check_processor_compatibility)();
3045c483
SC
9440}
9441
d83420c2 9442static void kvm_x86_check_cpu_compat(void *ret)
3045c483 9443{
d83420c2 9444 *(int *)ret = kvm_x86_check_processor_compatibility();
3045c483
SC
9445}
9446
3af4a9e6 9447static int __kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
043405e1 9448{
94bda2f4 9449 u64 host_pat;
3045c483 9450 int r, cpu;
f8c16bba 9451
afaf0b2f 9452 if (kvm_x86_ops.hardware_enable) {
8d20bd63 9453 pr_err("already loaded vendor module '%s'\n", kvm_x86_ops.name);
82ffad2d 9454 return -EEXIST;
f8c16bba
ZX
9455 }
9456
b666a4b6
MO
9457 /*
9458 * KVM explicitly assumes that the guest has an FPU and
9459 * FXSAVE/FXRSTOR. For example, the KVM_GET_FPU explicitly casts the
9460 * vCPU's FPU state as a fxregs_state struct.
9461 */
9462 if (!boot_cpu_has(X86_FEATURE_FPU) || !boot_cpu_has(X86_FEATURE_FXSR)) {
8d20bd63 9463 pr_err("inadequate fpu\n");
82ffad2d 9464 return -EOPNOTSUPP;
b666a4b6
MO
9465 }
9466
5e17b2ee
TG
9467 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
9468 pr_err("RT requires X86_FEATURE_CONSTANT_TSC\n");
82ffad2d 9469 return -EOPNOTSUPP;
b666a4b6
MO
9470 }
9471
94bda2f4
SC
9472 /*
9473 * KVM assumes that PAT entry '0' encodes WB memtype and simply zeroes
9474 * the PAT bits in SPTEs. Bail if PAT[0] is programmed to something
9475 * other than WB. Note, EPT doesn't utilize the PAT, but don't bother
9476 * with an exception. PAT[0] is set to WB on RESET and also by the
9477 * kernel, i.e. failure indicates a kernel bug or broken firmware.
9478 */
9479 if (rdmsrl_safe(MSR_IA32_CR_PAT, &host_pat) ||
9480 (host_pat & GENMASK(2, 0)) != 6) {
8d20bd63 9481 pr_err("host PAT[0] is not WB\n");
82ffad2d 9482 return -EIO;
94bda2f4 9483 }
b666a4b6 9484
c9b8b07c
SC
9485 x86_emulator_cache = kvm_alloc_emulator_cache();
9486 if (!x86_emulator_cache) {
8d20bd63 9487 pr_err("failed to allocate cache for x86 emulator\n");
82ffad2d 9488 return -ENOMEM;
c9b8b07c
SC
9489 }
9490
7e34fbd0
SC
9491 user_return_msrs = alloc_percpu(struct kvm_user_return_msrs);
9492 if (!user_return_msrs) {
8d20bd63 9493 pr_err("failed to allocate percpu kvm_user_return_msrs\n");
82ffad2d 9494 r = -ENOMEM;
c9b8b07c 9495 goto out_free_x86_emulator_cache;
013f6a5d 9496 }
e5fda4bb 9497 kvm_nr_uret_msrs = 0;
013f6a5d 9498
1d0e8480 9499 r = kvm_mmu_vendor_module_init();
97db56ce 9500 if (r)
013f6a5d 9501 goto out_free_percpu;
97db56ce 9502
cfc48181 9503 if (boot_cpu_has(X86_FEATURE_XSAVE)) {
2acf923e 9504 host_xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
938c8745 9505 kvm_caps.supported_xcr0 = host_xcr0 & KVM_SUPPORTED_XCR0;
cfc48181 9506 }
2acf923e 9507
b7483387
SC
9508 rdmsrl_safe(MSR_EFER, &host_efer);
9509
9510 if (boot_cpu_has(X86_FEATURE_XSAVES))
9511 rdmsrl(MSR_IA32_XSS, host_xss);
9512
8911ce66 9513 kvm_init_pmu_capability(ops->pmu_ops);
b7483387
SC
9514
9515 r = ops->hardware_setup();
9516 if (r != 0)
9517 goto out_mmu_exit;
9518
d83420c2
SC
9519 kvm_ops_update(ops);
9520
3045c483 9521 for_each_online_cpu(cpu) {
d83420c2 9522 smp_call_function_single(cpu, kvm_x86_check_cpu_compat, &r, 1);
3045c483 9523 if (r < 0)
d83420c2 9524 goto out_unwind_ops;
3045c483
SC
9525 }
9526
b7483387
SC
9527 /*
9528 * Point of no return! DO NOT add error paths below this point unless
9529 * absolutely necessary, as most operations from this point forward
9530 * require unwinding.
9531 */
1935542a
SC
9532 kvm_timer_init();
9533
0c5f81da 9534 if (pi_inject_timer == -1)
04d4e665 9535 pi_inject_timer = housekeeping_enabled(HK_TYPE_TIMER);
16e8d74d
MT
9536#ifdef CONFIG_X86_64
9537 pvclock_gtod_register_notifier(&pvclock_gtod_notifier);
0092e434 9538
5fa4ec9c 9539 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434 9540 set_hv_tscchange_cb(kvm_hyperv_tsc_notifier);
16e8d74d
MT
9541#endif
9542
b7483387
SC
9543 kvm_register_perf_callbacks(ops->handle_intel_pt_intr);
9544
9545 if (!kvm_cpu_cap_has(X86_FEATURE_XSAVES))
9546 kvm_caps.supported_xss = 0;
9547
9548#define __kvm_cpu_cap_has(UNUSED_, f) kvm_cpu_cap_has(f)
9549 cr4_reserved_bits = __cr4_reserved_bits(__kvm_cpu_cap_has, UNUSED_);
9550#undef __kvm_cpu_cap_has
9551
9552 if (kvm_caps.has_tsc_control) {
9553 /*
9554 * Make sure the user can only configure tsc_khz values that
9555 * fit into a signed integer.
9556 * A min value is not calculated because it will always
9557 * be 1 on all machines.
9558 */
9559 u64 max = min(0x7fffffffULL,
9560 __scale_tsc(kvm_caps.max_tsc_scaling_ratio, tsc_khz));
9561 kvm_caps.max_guest_tsc_khz = max;
9562 }
9563 kvm_caps.default_tsc_scaling_ratio = 1ULL << kvm_caps.tsc_scaling_ratio_frac_bits;
b1932c5c 9564 kvm_init_msr_lists();
f8c16bba 9565 return 0;
56c6d28a 9566
d83420c2
SC
9567out_unwind_ops:
9568 kvm_x86_ops.hardware_enable = NULL;
9569 static_call(kvm_x86_hardware_unsetup)();
b7483387
SC
9570out_mmu_exit:
9571 kvm_mmu_vendor_module_exit();
013f6a5d 9572out_free_percpu:
7e34fbd0 9573 free_percpu(user_return_msrs);
c9b8b07c
SC
9574out_free_x86_emulator_cache:
9575 kmem_cache_destroy(x86_emulator_cache);
56c6d28a 9576 return r;
043405e1 9577}
8776e519 9578
3af4a9e6
SC
9579int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops)
9580{
9581 int r;
9582
9583 mutex_lock(&vendor_module_lock);
9584 r = __kvm_x86_vendor_init(ops);
9585 mutex_unlock(&vendor_module_lock);
9586
9587 return r;
9588}
4f8396b9 9589EXPORT_SYMBOL_GPL(kvm_x86_vendor_init);
8776e519 9590
4f8396b9 9591void kvm_x86_vendor_exit(void)
f8c16bba 9592{
b7483387
SC
9593 kvm_unregister_perf_callbacks();
9594
0092e434 9595#ifdef CONFIG_X86_64
5fa4ec9c 9596 if (hypervisor_is_type(X86_HYPER_MS_HYPERV))
0092e434
VK
9597 clear_hv_tscchange_cb();
9598#endif
cef84c30 9599 kvm_lapic_exit();
ff9d07a0 9600
3ebcbd22 9601 if (!boot_cpu_has(X86_FEATURE_CONSTANT_TSC)) {
888d256e
JK
9602 cpufreq_unregister_notifier(&kvmclock_cpufreq_notifier_block,
9603 CPUFREQ_TRANSITION_NOTIFIER);
3ebcbd22
AR
9604 cpuhp_remove_state_nocalls(CPUHP_AP_X86_KVM_CLK_ONLINE);
9605 }
16e8d74d
MT
9606#ifdef CONFIG_X86_64
9607 pvclock_gtod_unregister_notifier(&pvclock_gtod_notifier);
3f804f6d 9608 irq_work_sync(&pvclock_irq_work);
594b27e6 9609 cancel_work_sync(&pvclock_gtod_work);
16e8d74d 9610#endif
b7483387 9611 static_call(kvm_x86_hardware_unsetup)();
1d0e8480 9612 kvm_mmu_vendor_module_exit();
7e34fbd0 9613 free_percpu(user_return_msrs);
dfdc0a71 9614 kmem_cache_destroy(x86_emulator_cache);
b59b153d 9615#ifdef CONFIG_KVM_XEN
c462f859 9616 static_key_deferred_flush(&kvm_xen_enabled);
7d6bbebb 9617 WARN_ON(static_branch_unlikely(&kvm_xen_enabled.key));
b59b153d 9618#endif
3af4a9e6
SC
9619 mutex_lock(&vendor_module_lock);
9620 kvm_x86_ops.hardware_enable = NULL;
9621 mutex_unlock(&vendor_module_lock);
56c6d28a 9622}
4f8396b9 9623EXPORT_SYMBOL_GPL(kvm_x86_vendor_exit);
f8c16bba 9624
1460179d 9625static int __kvm_emulate_halt(struct kvm_vcpu *vcpu, int state, int reason)
8776e519 9626{
91b99ea7
SC
9627 /*
9628 * The vCPU has halted, e.g. executed HLT. Update the run state if the
9629 * local APIC is in-kernel, the run loop will detect the non-runnable
9630 * state and halt the vCPU. Exit to userspace if the local APIC is
9631 * managed by userspace, in which case userspace is responsible for
9632 * handling wake events.
9633 */
8776e519 9634 ++vcpu->stat.halt_exits;
35754c98 9635 if (lapic_in_kernel(vcpu)) {
647daca2 9636 vcpu->arch.mp_state = state;
8776e519
HB
9637 return 1;
9638 } else {
647daca2 9639 vcpu->run->exit_reason = reason;
8776e519
HB
9640 return 0;
9641 }
9642}
647daca2 9643
1460179d 9644int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu)
647daca2 9645{
1460179d 9646 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_HALTED, KVM_EXIT_HLT);
647daca2 9647}
1460179d 9648EXPORT_SYMBOL_GPL(kvm_emulate_halt_noskip);
5cb56059
JS
9649
9650int kvm_emulate_halt(struct kvm_vcpu *vcpu)
9651{
6affcbed
KH
9652 int ret = kvm_skip_emulated_instruction(vcpu);
9653 /*
9654 * TODO: we might be squashing a GUESTDBG_SINGLESTEP-triggered
9655 * KVM_EXIT_DEBUG here.
9656 */
1460179d 9657 return kvm_emulate_halt_noskip(vcpu) && ret;
5cb56059 9658}
8776e519
HB
9659EXPORT_SYMBOL_GPL(kvm_emulate_halt);
9660
647daca2
TL
9661int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu)
9662{
9663 int ret = kvm_skip_emulated_instruction(vcpu);
9664
1460179d
SC
9665 return __kvm_emulate_halt(vcpu, KVM_MP_STATE_AP_RESET_HOLD,
9666 KVM_EXIT_AP_RESET_HOLD) && ret;
647daca2
TL
9667}
9668EXPORT_SYMBOL_GPL(kvm_emulate_ap_reset_hold);
9669
8ef81a9a 9670#ifdef CONFIG_X86_64
55dd00a7
MT
9671static int kvm_pv_clock_pairing(struct kvm_vcpu *vcpu, gpa_t paddr,
9672 unsigned long clock_type)
9673{
9674 struct kvm_clock_pairing clock_pairing;
899a31f5 9675 struct timespec64 ts;
80fbd89c 9676 u64 cycle;
55dd00a7
MT
9677 int ret;
9678
9679 if (clock_type != KVM_CLOCK_PAIRING_WALLCLOCK)
9680 return -KVM_EOPNOTSUPP;
9681
3a55f729
AR
9682 /*
9683 * When tsc is in permanent catchup mode guests won't be able to use
9684 * pvclock_read_retry loop to get consistent view of pvclock
9685 */
9686 if (vcpu->arch.tsc_always_catchup)
9687 return -KVM_EOPNOTSUPP;
9688
7ca7f3b9 9689 if (!kvm_get_walltime_and_clockread(&ts, &cycle))
55dd00a7
MT
9690 return -KVM_EOPNOTSUPP;
9691
9692 clock_pairing.sec = ts.tv_sec;
9693 clock_pairing.nsec = ts.tv_nsec;
9694 clock_pairing.tsc = kvm_read_l1_tsc(vcpu, cycle);
9695 clock_pairing.flags = 0;
bcbfbd8e 9696 memset(&clock_pairing.pad, 0, sizeof(clock_pairing.pad));
55dd00a7
MT
9697
9698 ret = 0;
9699 if (kvm_write_guest(vcpu->kvm, paddr, &clock_pairing,
9700 sizeof(struct kvm_clock_pairing)))
9701 ret = -KVM_EFAULT;
9702
9703 return ret;
9704}
8ef81a9a 9705#endif
55dd00a7 9706
6aef266c
SV
9707/*
9708 * kvm_pv_kick_cpu_op: Kick a vcpu.
9709 *
9710 * @apicid - apicid of vcpu to be kicked.
9711 */
9d68c6f6 9712static void kvm_pv_kick_cpu_op(struct kvm *kvm, int apicid)
6aef266c 9713{
8a414f94
VK
9714 /*
9715 * All other fields are unused for APIC_DM_REMRD, but may be consumed by
9716 * common code, e.g. for tracing. Defer initialization to the compiler.
9717 */
9718 struct kvm_lapic_irq lapic_irq = {
9719 .delivery_mode = APIC_DM_REMRD,
9720 .dest_mode = APIC_DEST_PHYSICAL,
9721 .shorthand = APIC_DEST_NOSHORT,
9722 .dest_id = apicid,
9723 };
6aef266c 9724
795a149e 9725 kvm_irq_delivery_to_apic(kvm, NULL, &lapic_irq, NULL);
6aef266c
SV
9726}
9727
4e19c36f
SS
9728bool kvm_apicv_activated(struct kvm *kvm)
9729{
9730 return (READ_ONCE(kvm->arch.apicv_inhibit_reasons) == 0);
9731}
9732EXPORT_SYMBOL_GPL(kvm_apicv_activated);
9733
d5fa597e
ML
9734bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu)
9735{
9736 ulong vm_reasons = READ_ONCE(vcpu->kvm->arch.apicv_inhibit_reasons);
9737 ulong vcpu_reasons = static_call(kvm_x86_vcpu_get_apicv_inhibit_reasons)(vcpu);
9738
9739 return (vm_reasons | vcpu_reasons) == 0;
9740}
9741EXPORT_SYMBOL_GPL(kvm_vcpu_apicv_activated);
4f4c4a3e
SC
9742
9743static void set_or_clear_apicv_inhibit(unsigned long *inhibits,
9744 enum kvm_apicv_inhibit reason, bool set)
9745{
9746 if (set)
9747 __set_bit(reason, inhibits);
9748 else
9749 __clear_bit(reason, inhibits);
9750
9751 trace_kvm_apicv_inhibit_changed(reason, set, *inhibits);
9752}
9753
4651fc56 9754static void kvm_apicv_init(struct kvm *kvm)
4e19c36f 9755{
4f4c4a3e
SC
9756 unsigned long *inhibits = &kvm->arch.apicv_inhibit_reasons;
9757
187c8833 9758 init_rwsem(&kvm->arch.apicv_update_lock);
b0a1637f 9759
4f4c4a3e
SC
9760 set_or_clear_apicv_inhibit(inhibits, APICV_INHIBIT_REASON_ABSENT, true);
9761
ef8b4b72 9762 if (!enable_apicv)
4f4c4a3e 9763 set_or_clear_apicv_inhibit(inhibits,
80f0497c 9764 APICV_INHIBIT_REASON_DISABLE, true);
4e19c36f 9765}
4e19c36f 9766
4a7132ef 9767static void kvm_sched_yield(struct kvm_vcpu *vcpu, unsigned long dest_id)
71506297
WL
9768{
9769 struct kvm_vcpu *target = NULL;
9770 struct kvm_apic_map *map;
9771
4a7132ef
WL
9772 vcpu->stat.directed_yield_attempted++;
9773
72b268a8
WL
9774 if (single_task_running())
9775 goto no_yield;
9776
71506297 9777 rcu_read_lock();
4a7132ef 9778 map = rcu_dereference(vcpu->kvm->arch.apic_map);
71506297
WL
9779
9780 if (likely(map) && dest_id <= map->max_apic_id && map->phys_map[dest_id])
9781 target = map->phys_map[dest_id]->vcpu;
9782
9783 rcu_read_unlock();
9784
4a7132ef
WL
9785 if (!target || !READ_ONCE(target->ready))
9786 goto no_yield;
9787
a1fa4cbd
WL
9788 /* Ignore requests to yield to self */
9789 if (vcpu == target)
9790 goto no_yield;
9791
4a7132ef
WL
9792 if (kvm_vcpu_yield_to(target) <= 0)
9793 goto no_yield;
9794
9795 vcpu->stat.directed_yield_successful++;
9796
9797no_yield:
9798 return;
71506297
WL
9799}
9800
0dbb1123
AK
9801static int complete_hypercall_exit(struct kvm_vcpu *vcpu)
9802{
9803 u64 ret = vcpu->run->hypercall.ret;
9804
9805 if (!is_64_bit_mode(vcpu))
9806 ret = (u32)ret;
9807 kvm_rax_write(vcpu, ret);
9808 ++vcpu->stat.hypercalls;
9809 return kvm_skip_emulated_instruction(vcpu);
9810}
9811
8776e519
HB
9812int kvm_emulate_hypercall(struct kvm_vcpu *vcpu)
9813{
9814 unsigned long nr, a0, a1, a2, a3, ret;
6356ee0c 9815 int op_64_bit;
8776e519 9816
23200b7a
JM
9817 if (kvm_xen_hypercall_enabled(vcpu->kvm))
9818 return kvm_xen_hypercall(vcpu);
9819
8f014550 9820 if (kvm_hv_hypercall_enabled(vcpu))
696ca779 9821 return kvm_hv_hypercall(vcpu);
55cd8e5a 9822
de3cd117
SC
9823 nr = kvm_rax_read(vcpu);
9824 a0 = kvm_rbx_read(vcpu);
9825 a1 = kvm_rcx_read(vcpu);
9826 a2 = kvm_rdx_read(vcpu);
9827 a3 = kvm_rsi_read(vcpu);
8776e519 9828
229456fc 9829 trace_kvm_hypercall(nr, a0, a1, a2, a3);
2714d1d3 9830
b5aead00 9831 op_64_bit = is_64_bit_hypercall(vcpu);
a449c7aa 9832 if (!op_64_bit) {
8776e519
HB
9833 nr &= 0xFFFFFFFF;
9834 a0 &= 0xFFFFFFFF;
9835 a1 &= 0xFFFFFFFF;
9836 a2 &= 0xFFFFFFFF;
9837 a3 &= 0xFFFFFFFF;
9838 }
9839
b3646477 9840 if (static_call(kvm_x86_get_cpl)(vcpu) != 0) {
07708c4a 9841 ret = -KVM_EPERM;
696ca779 9842 goto out;
07708c4a
JK
9843 }
9844
66570e96
OU
9845 ret = -KVM_ENOSYS;
9846
8776e519 9847 switch (nr) {
b93463aa
AK
9848 case KVM_HC_VAPIC_POLL_IRQ:
9849 ret = 0;
9850 break;
6aef266c 9851 case KVM_HC_KICK_CPU:
66570e96
OU
9852 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_UNHALT))
9853 break;
9854
9d68c6f6 9855 kvm_pv_kick_cpu_op(vcpu->kvm, a1);
4a7132ef 9856 kvm_sched_yield(vcpu, a1);
6aef266c
SV
9857 ret = 0;
9858 break;
8ef81a9a 9859#ifdef CONFIG_X86_64
55dd00a7
MT
9860 case KVM_HC_CLOCK_PAIRING:
9861 ret = kvm_pv_clock_pairing(vcpu, a0, a1);
9862 break;
1ed199a4 9863#endif
4180bf1b 9864 case KVM_HC_SEND_IPI:
66570e96
OU
9865 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SEND_IPI))
9866 break;
9867
4180bf1b
WL
9868 ret = kvm_pv_send_ipi(vcpu->kvm, a0, a1, a2, a3, op_64_bit);
9869 break;
71506297 9870 case KVM_HC_SCHED_YIELD:
66570e96
OU
9871 if (!guest_pv_has(vcpu, KVM_FEATURE_PV_SCHED_YIELD))
9872 break;
9873
4a7132ef 9874 kvm_sched_yield(vcpu, a0);
71506297
WL
9875 ret = 0;
9876 break;
0dbb1123
AK
9877 case KVM_HC_MAP_GPA_RANGE: {
9878 u64 gpa = a0, npages = a1, attrs = a2;
9879
9880 ret = -KVM_ENOSYS;
9881 if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE)))
9882 break;
9883
9884 if (!PAGE_ALIGNED(gpa) || !npages ||
9885 gpa_to_gfn(gpa) + npages <= gpa_to_gfn(gpa)) {
9886 ret = -KVM_EINVAL;
9887 break;
9888 }
9889
9890 vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
9891 vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
9892 vcpu->run->hypercall.args[0] = gpa;
9893 vcpu->run->hypercall.args[1] = npages;
9894 vcpu->run->hypercall.args[2] = attrs;
e65733b5
OU
9895 vcpu->run->hypercall.flags = 0;
9896 if (op_64_bit)
9897 vcpu->run->hypercall.flags |= KVM_EXIT_HYPERCALL_LONG_MODE;
9898
9899 WARN_ON_ONCE(vcpu->run->hypercall.flags & KVM_EXIT_HYPERCALL_MBZ);
0dbb1123
AK
9900 vcpu->arch.complete_userspace_io = complete_hypercall_exit;
9901 return 0;
9902 }
8776e519
HB
9903 default:
9904 ret = -KVM_ENOSYS;
9905 break;
9906 }
696ca779 9907out:
a449c7aa
NA
9908 if (!op_64_bit)
9909 ret = (u32)ret;
de3cd117 9910 kvm_rax_write(vcpu, ret);
6356ee0c 9911
f11c3a8d 9912 ++vcpu->stat.hypercalls;
6356ee0c 9913 return kvm_skip_emulated_instruction(vcpu);
8776e519
HB
9914}
9915EXPORT_SYMBOL_GPL(kvm_emulate_hypercall);
9916
b6785def 9917static int emulator_fix_hypercall(struct x86_emulate_ctxt *ctxt)
8776e519 9918{
d6aa1000 9919 struct kvm_vcpu *vcpu = emul_to_vcpu(ctxt);
8776e519 9920 char instruction[3];
5fdbf976 9921 unsigned long rip = kvm_rip_read(vcpu);
8776e519 9922
f1a9761f
OU
9923 /*
9924 * If the quirk is disabled, synthesize a #UD and let the guest pick up
9925 * the pieces.
9926 */
9927 if (!kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_FIX_HYPERCALL_INSN)) {
9928 ctxt->exception.error_code_valid = false;
9929 ctxt->exception.vector = UD_VECTOR;
9930 ctxt->have_exception = true;
9931 return X86EMUL_PROPAGATE_FAULT;
9932 }
9933
b3646477 9934 static_call(kvm_x86_patch_hypercall)(vcpu, instruction);
8776e519 9935
ce2e852e
DV
9936 return emulator_write_emulated(ctxt, rip, instruction, 3,
9937 &ctxt->exception);
8776e519
HB
9938}
9939
851ba692 9940static int dm_request_for_irq_injection(struct kvm_vcpu *vcpu)
b6c7a5dc 9941{
782d422b
MG
9942 return vcpu->run->request_interrupt_window &&
9943 likely(!pic_in_kernel(vcpu->kvm));
b6c7a5dc
HB
9944}
9945
8d25b7be 9946/* Called within kvm->srcu read side. */
851ba692 9947static void post_kvm_run_save(struct kvm_vcpu *vcpu)
b6c7a5dc 9948{
851ba692
AK
9949 struct kvm_run *kvm_run = vcpu->run;
9950
c5063551 9951 kvm_run->if_flag = static_call(kvm_x86_get_if_flag)(vcpu);
2d3ad1f4 9952 kvm_run->cr8 = kvm_get_cr8(vcpu);
b6c7a5dc 9953 kvm_run->apic_base = kvm_get_apic_base(vcpu);
f3d1436d 9954
127a457a
MG
9955 kvm_run->ready_for_interrupt_injection =
9956 pic_in_kernel(vcpu->kvm) ||
782d422b 9957 kvm_vcpu_ready_for_interrupt_injection(vcpu);
15aad3be
CQ
9958
9959 if (is_smm(vcpu))
9960 kvm_run->flags |= KVM_RUN_X86_SMM;
b6c7a5dc
HB
9961}
9962
95ba8273
GN
9963static void update_cr8_intercept(struct kvm_vcpu *vcpu)
9964{
9965 int max_irr, tpr;
9966
afaf0b2f 9967 if (!kvm_x86_ops.update_cr8_intercept)
95ba8273
GN
9968 return;
9969
bce87cce 9970 if (!lapic_in_kernel(vcpu))
88c808fd
AK
9971 return;
9972
ce0a58f4 9973 if (vcpu->arch.apic->apicv_active)
d62caabb
AS
9974 return;
9975
8db3baa2
GN
9976 if (!vcpu->arch.apic->vapic_addr)
9977 max_irr = kvm_lapic_find_highest_irr(vcpu);
9978 else
9979 max_irr = -1;
95ba8273
GN
9980
9981 if (max_irr != -1)
9982 max_irr >>= 4;
9983
9984 tpr = kvm_lapic_get_cr8(vcpu);
9985
b3646477 9986 static_call(kvm_x86_update_cr8_intercept)(vcpu, tpr, max_irr);
95ba8273
GN
9987}
9988
b97f0745 9989
cb6a32c2
SC
9990int kvm_check_nested_events(struct kvm_vcpu *vcpu)
9991{
92e7d5c8 9992 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
cb6a32c2
SC
9993 kvm_x86_ops.nested_ops->triple_fault(vcpu);
9994 return 1;
9995 }
9996
9997 return kvm_x86_ops.nested_ops->check_events(vcpu);
9998}
9999
b97f0745
ML
10000static void kvm_inject_exception(struct kvm_vcpu *vcpu)
10001{
6c41468c
SC
10002 /*
10003 * Suppress the error code if the vCPU is in Real Mode, as Real Mode
10004 * exceptions don't report error codes. The presence of an error code
10005 * is carried with the exception and only stripped when the exception
10006 * is injected as intercepted #PF VM-Exits for AMD's Paged Real Mode do
10007 * report an error code despite the CPU being in Real Mode.
10008 */
10009 vcpu->arch.exception.has_error_code &= is_protmode(vcpu);
10010
d4963e31 10011 trace_kvm_inj_exception(vcpu->arch.exception.vector,
a61d7c54
SC
10012 vcpu->arch.exception.has_error_code,
10013 vcpu->arch.exception.error_code,
10014 vcpu->arch.exception.injected);
10015
6ad75c5c 10016 static_call(kvm_x86_inject_exception)(vcpu);
b97f0745
ML
10017}
10018
e746c1f1
SC
10019/*
10020 * Check for any event (interrupt or exception) that is ready to be injected,
10021 * and if there is at least one event, inject the event with the highest
10022 * priority. This handles both "pending" events, i.e. events that have never
10023 * been injected into the guest, and "injected" events, i.e. events that were
10024 * injected as part of a previous VM-Enter, but weren't successfully delivered
10025 * and need to be re-injected.
10026 *
10027 * Note, this is not guaranteed to be invoked on a guest instruction boundary,
10028 * i.e. doesn't guarantee that there's an event window in the guest. KVM must
10029 * be able to inject exceptions in the "middle" of an instruction, and so must
10030 * also be able to re-inject NMIs and IRQs in the middle of an instruction.
10031 * I.e. for exceptions and re-injected events, NOT invoking this on instruction
10032 * boundaries is necessary and correct.
10033 *
10034 * For simplicity, KVM uses a single path to inject all events (except events
10035 * that are injected directly from L1 to L2) and doesn't explicitly track
10036 * instruction boundaries for asynchronous events. However, because VM-Exits
10037 * that can occur during instruction execution typically result in KVM skipping
10038 * the instruction or injecting an exception, e.g. instruction and exception
10039 * intercepts, and because pending exceptions have higher priority than pending
10040 * interrupts, KVM still honors instruction boundaries in most scenarios.
10041 *
10042 * But, if a VM-Exit occurs during instruction execution, and KVM does NOT skip
10043 * the instruction or inject an exception, then KVM can incorrecty inject a new
10044 * asynchrounous event if the event became pending after the CPU fetched the
10045 * instruction (in the guest). E.g. if a page fault (#PF, #NPF, EPT violation)
10046 * occurs and is resolved by KVM, a coincident NMI, SMI, IRQ, etc... can be
10047 * injected on the restarted instruction instead of being deferred until the
10048 * instruction completes.
10049 *
10050 * In practice, this virtualization hole is unlikely to be observed by the
10051 * guest, and even less likely to cause functional problems. To detect the
10052 * hole, the guest would have to trigger an event on a side effect of an early
10053 * phase of instruction execution, e.g. on the instruction fetch from memory.
10054 * And for it to be a functional problem, the guest would need to depend on the
10055 * ordering between that side effect, the instruction completing, _and_ the
10056 * delivery of the asynchronous event.
10057 */
10058static int kvm_check_and_inject_events(struct kvm_vcpu *vcpu,
10059 bool *req_immediate_exit)
95ba8273 10060{
28360f88 10061 bool can_inject;
b6b8a145
JK
10062 int r;
10063
6c593b52
SC
10064 /*
10065 * Process nested events first, as nested VM-Exit supercedes event
10066 * re-injection. If there's an event queued for re-injection, it will
10067 * be saved into the appropriate vmc{b,s}12 fields on nested VM-Exit.
10068 */
10069 if (is_guest_mode(vcpu))
10070 r = kvm_check_nested_events(vcpu);
10071 else
10072 r = 0;
664f8e26
WL
10073
10074 /*
6c593b52
SC
10075 * Re-inject exceptions and events *especially* if immediate entry+exit
10076 * to/from L2 is needed, as any event that has already been injected
10077 * into L2 needs to complete its lifecycle before injecting a new event.
10078 *
10079 * Don't re-inject an NMI or interrupt if there is a pending exception.
10080 * This collision arises if an exception occurred while vectoring the
10081 * injected event, KVM intercepted said exception, and KVM ultimately
10082 * determined the fault belongs to the guest and queues the exception
10083 * for injection back into the guest.
10084 *
10085 * "Injected" interrupts can also collide with pending exceptions if
10086 * userspace ignores the "ready for injection" flag and blindly queues
10087 * an interrupt. In that case, prioritizing the exception is correct,
10088 * as the exception "occurred" before the exit to userspace. Trap-like
10089 * exceptions, e.g. most #DBs, have higher priority than interrupts.
10090 * And while fault-like exceptions, e.g. #GP and #PF, are the lowest
10091 * priority, they're only generated (pended) during instruction
10092 * execution, and interrupts are recognized at instruction boundaries.
10093 * Thus a pending fault-like exception means the fault occurred on the
10094 * *previous* instruction and must be serviced prior to recognizing any
10095 * new events in order to fully complete the previous instruction.
664f8e26 10096 */
6c593b52
SC
10097 if (vcpu->arch.exception.injected)
10098 kvm_inject_exception(vcpu);
7709aba8 10099 else if (kvm_is_exception_pending(vcpu))
6c593b52
SC
10100 ; /* see above */
10101 else if (vcpu->arch.nmi_injected)
10102 static_call(kvm_x86_inject_nmi)(vcpu);
10103 else if (vcpu->arch.interrupt.injected)
10104 static_call(kvm_x86_inject_irq)(vcpu, true);
664f8e26 10105
6c593b52
SC
10106 /*
10107 * Exceptions that morph to VM-Exits are handled above, and pending
10108 * exceptions on top of injected exceptions that do not VM-Exit should
10109 * either morph to #DF or, sadly, override the injected exception.
10110 */
3b82b8d7
SC
10111 WARN_ON_ONCE(vcpu->arch.exception.injected &&
10112 vcpu->arch.exception.pending);
10113
1a680e35 10114 /*
6c593b52
SC
10115 * Bail if immediate entry+exit to/from the guest is needed to complete
10116 * nested VM-Enter or event re-injection so that a different pending
10117 * event can be serviced (or if KVM needs to exit to userspace).
10118 *
10119 * Otherwise, continue processing events even if VM-Exit occurred. The
10120 * VM-Exit will have cleared exceptions that were meant for L2, but
10121 * there may now be events that can be injected into L1.
1a680e35 10122 */
6c593b52
SC
10123 if (r < 0)
10124 goto out;
664f8e26 10125
7709aba8
SC
10126 /*
10127 * A pending exception VM-Exit should either result in nested VM-Exit
10128 * or force an immediate re-entry and exit to/from L2, and exception
10129 * VM-Exits cannot be injected (flag should _never_ be set).
10130 */
10131 WARN_ON_ONCE(vcpu->arch.exception_vmexit.injected ||
10132 vcpu->arch.exception_vmexit.pending);
10133
28360f88
SC
10134 /*
10135 * New events, other than exceptions, cannot be injected if KVM needs
10136 * to re-inject a previous event. See above comments on re-injecting
10137 * for why pending exceptions get priority.
10138 */
10139 can_inject = !kvm_event_needs_reinjection(vcpu);
664f8e26 10140
b59bb7bd 10141 if (vcpu->arch.exception.pending) {
5623f751
SC
10142 /*
10143 * Fault-class exceptions, except #DBs, set RF=1 in the RFLAGS
10144 * value pushed on the stack. Trap-like exception and all #DBs
10145 * leave RF as-is (KVM follows Intel's behavior in this regard;
10146 * AMD states that code breakpoint #DBs excplitly clear RF=0).
10147 *
10148 * Note, most versions of Intel's SDM and AMD's APM incorrectly
10149 * describe the behavior of General Detect #DBs, which are
10150 * fault-like. They do _not_ set RF, a la code breakpoints.
10151 */
d4963e31 10152 if (exception_type(vcpu->arch.exception.vector) == EXCPT_FAULT)
d6e8c854
NA
10153 __kvm_set_rflags(vcpu, kvm_get_rflags(vcpu) |
10154 X86_EFLAGS_RF);
10155
d4963e31
SC
10156 if (vcpu->arch.exception.vector == DB_VECTOR) {
10157 kvm_deliver_exception_payload(vcpu, &vcpu->arch.exception);
f10c729f
JM
10158 if (vcpu->arch.dr7 & DR7_GD) {
10159 vcpu->arch.dr7 &= ~DR7_GD;
10160 kvm_update_dr7(vcpu);
10161 }
6bdf0662
NA
10162 }
10163
b97f0745 10164 kvm_inject_exception(vcpu);
a61d7c54
SC
10165
10166 vcpu->arch.exception.pending = false;
10167 vcpu->arch.exception.injected = true;
10168
c6b22f59 10169 can_inject = false;
1a680e35
LA
10170 }
10171
61e5f69e
ML
10172 /* Don't inject interrupts if the user asked to avoid doing so */
10173 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ)
10174 return 0;
10175
c9d40913
PB
10176 /*
10177 * Finally, inject interrupt events. If an event cannot be injected
10178 * due to architectural conditions (e.g. IF=0) a window-open exit
10179 * will re-request KVM_REQ_EVENT. Sometimes however an event is pending
10180 * and can architecturally be injected, but we cannot do it right now:
10181 * an interrupt could have arrived just now and we have to inject it
10182 * as a vmexit, or there could already an event in the queue, which is
10183 * indicated by can_inject. In that case we request an immediate exit
10184 * in order to make progress and get back here for another iteration.
10185 * The kvm_x86_ops hooks communicate this by returning -EBUSY.
10186 */
31e83e21 10187#ifdef CONFIG_KVM_SMM
c9d40913 10188 if (vcpu->arch.smi_pending) {
b3646477 10189 r = can_inject ? static_call(kvm_x86_smi_allowed)(vcpu, true) : -EBUSY;
c9d40913 10190 if (r < 0)
a5f6909a 10191 goto out;
c9d40913
PB
10192 if (r) {
10193 vcpu->arch.smi_pending = false;
10194 ++vcpu->arch.smi_count;
10195 enter_smm(vcpu);
10196 can_inject = false;
10197 } else
b3646477 10198 static_call(kvm_x86_enable_smi_window)(vcpu);
c9d40913 10199 }
31e83e21 10200#endif
c9d40913
PB
10201
10202 if (vcpu->arch.nmi_pending) {
b3646477 10203 r = can_inject ? static_call(kvm_x86_nmi_allowed)(vcpu, true) : -EBUSY;
c9d40913 10204 if (r < 0)
a5f6909a 10205 goto out;
c9d40913
PB
10206 if (r) {
10207 --vcpu->arch.nmi_pending;
10208 vcpu->arch.nmi_injected = true;
e27bc044 10209 static_call(kvm_x86_inject_nmi)(vcpu);
c9d40913 10210 can_inject = false;
b3646477 10211 WARN_ON(static_call(kvm_x86_nmi_allowed)(vcpu, true) < 0);
c9d40913
PB
10212 }
10213 if (vcpu->arch.nmi_pending)
b3646477 10214 static_call(kvm_x86_enable_nmi_window)(vcpu);
c9d40913 10215 }
1a680e35 10216
c9d40913 10217 if (kvm_cpu_has_injectable_intr(vcpu)) {
b3646477 10218 r = can_inject ? static_call(kvm_x86_interrupt_allowed)(vcpu, true) : -EBUSY;
c9d40913 10219 if (r < 0)
a5f6909a 10220 goto out;
c9d40913 10221 if (r) {
bf672720
ML
10222 int irq = kvm_cpu_get_interrupt(vcpu);
10223
10224 if (!WARN_ON_ONCE(irq == -1)) {
10225 kvm_queue_interrupt(vcpu, irq, false);
10226 static_call(kvm_x86_inject_irq)(vcpu, false);
10227 WARN_ON(static_call(kvm_x86_interrupt_allowed)(vcpu, true) < 0);
10228 }
c9d40913
PB
10229 }
10230 if (kvm_cpu_has_injectable_intr(vcpu))
b3646477 10231 static_call(kvm_x86_enable_irq_window)(vcpu);
95ba8273 10232 }
ee2cd4b7 10233
c9d40913 10234 if (is_guest_mode(vcpu) &&
5b4ac1a1
PB
10235 kvm_x86_ops.nested_ops->has_events &&
10236 kvm_x86_ops.nested_ops->has_events(vcpu))
c9d40913
PB
10237 *req_immediate_exit = true;
10238
dea0d5a2
SC
10239 /*
10240 * KVM must never queue a new exception while injecting an event; KVM
10241 * is done emulating and should only propagate the to-be-injected event
10242 * to the VMCS/VMCB. Queueing a new exception can put the vCPU into an
10243 * infinite loop as KVM will bail from VM-Enter to inject the pending
10244 * exception and start the cycle all over.
10245 *
10246 * Exempt triple faults as they have special handling and won't put the
10247 * vCPU into an infinite loop. Triple fault can be queued when running
10248 * VMX without unrestricted guest, as that requires KVM to emulate Real
10249 * Mode events (see kvm_inject_realmode_interrupt()).
10250 */
10251 WARN_ON_ONCE(vcpu->arch.exception.pending ||
10252 vcpu->arch.exception_vmexit.pending);
a5f6909a 10253 return 0;
c9d40913 10254
a5f6909a
JM
10255out:
10256 if (r == -EBUSY) {
10257 *req_immediate_exit = true;
10258 r = 0;
10259 }
10260 return r;
95ba8273
GN
10261}
10262
7460fb4a
AK
10263static void process_nmi(struct kvm_vcpu *vcpu)
10264{
400fee8c 10265 unsigned int limit;
7460fb4a
AK
10266
10267 /*
400fee8c
SC
10268 * x86 is limited to one NMI pending, but because KVM can't react to
10269 * incoming NMIs as quickly as bare metal, e.g. if the vCPU is
10270 * scheduled out, KVM needs to play nice with two queued NMIs showing
10271 * up at the same time. To handle this scenario, allow two NMIs to be
10272 * (temporarily) pending so long as NMIs are not blocked and KVM is not
10273 * waiting for a previous NMI injection to complete (which effectively
10274 * blocks NMIs). KVM will immediately inject one of the two NMIs, and
10275 * will request an NMI window to handle the second NMI.
7460fb4a 10276 */
b3646477 10277 if (static_call(kvm_x86_get_nmi_mask)(vcpu) || vcpu->arch.nmi_injected)
7460fb4a 10278 limit = 1;
400fee8c
SC
10279 else
10280 limit = 2;
7460fb4a 10281
fa4c027a
SS
10282 /*
10283 * Adjust the limit to account for pending virtual NMIs, which aren't
10284 * tracked in vcpu->arch.nmi_pending.
10285 */
10286 if (static_call(kvm_x86_is_vnmi_pending)(vcpu))
10287 limit--;
7460fb4a
AK
10288
10289 vcpu->arch.nmi_pending += atomic_xchg(&vcpu->arch.nmi_queued, 0);
10290 vcpu->arch.nmi_pending = min(vcpu->arch.nmi_pending, limit);
2cb93173 10291
fa4c027a
SS
10292 if (vcpu->arch.nmi_pending &&
10293 (static_call(kvm_x86_set_vnmi_pending)(vcpu)))
10294 vcpu->arch.nmi_pending--;
10295
2cb93173
SC
10296 if (vcpu->arch.nmi_pending)
10297 kvm_make_request(KVM_REQ_EVENT, vcpu);
7460fb4a
AK
10298}
10299
fa4c027a
SS
10300/* Return total number of NMIs pending injection to the VM */
10301int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu)
10302{
10303 return vcpu->arch.nmi_pending +
10304 static_call(kvm_x86_is_vnmi_pending)(vcpu);
7460fb4a
AK
10305}
10306
7ee30bc1
NNL
10307void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
10308 unsigned long *vcpu_bitmap)
10309{
620b2438 10310 kvm_make_vcpus_request_mask(kvm, KVM_REQ_SCAN_IOAPIC, vcpu_bitmap);
7ee30bc1
NNL
10311}
10312
2860c4b1
PB
10313void kvm_make_scan_ioapic_request(struct kvm *kvm)
10314{
10315 kvm_make_all_cpus_request(kvm, KVM_REQ_SCAN_IOAPIC);
10316}
10317
2008fab3 10318void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
8df14af4 10319{
ce0a58f4 10320 struct kvm_lapic *apic = vcpu->arch.apic;
06ef8134
ML
10321 bool activate;
10322
8df14af4
SS
10323 if (!lapic_in_kernel(vcpu))
10324 return;
10325
187c8833 10326 down_read(&vcpu->kvm->arch.apicv_update_lock);
66c768d3 10327 preempt_disable();
b0a1637f 10328
8fc9c7a3
SS
10329 /* Do not activate APICV when APIC is disabled */
10330 activate = kvm_vcpu_apicv_activated(vcpu) &&
10331 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED);
d5fa597e 10332
ce0a58f4 10333 if (apic->apicv_active == activate)
06ef8134
ML
10334 goto out;
10335
ce0a58f4 10336 apic->apicv_active = activate;
8df14af4 10337 kvm_apic_update_apicv(vcpu);
b3646477 10338 static_call(kvm_x86_refresh_apicv_exec_ctrl)(vcpu);
bca66dbc
VK
10339
10340 /*
10341 * When APICv gets disabled, we may still have injected interrupts
10342 * pending. At the same time, KVM_REQ_EVENT may not be set as APICv was
10343 * still active when the interrupt got accepted. Make sure
e746c1f1 10344 * kvm_check_and_inject_events() is called to check for that.
bca66dbc 10345 */
ce0a58f4 10346 if (!apic->apicv_active)
bca66dbc 10347 kvm_make_request(KVM_REQ_EVENT, vcpu);
b0a1637f 10348
06ef8134 10349out:
66c768d3 10350 preempt_enable();
187c8833 10351 up_read(&vcpu->kvm->arch.apicv_update_lock);
8df14af4 10352}
2008fab3
SC
10353EXPORT_SYMBOL_GPL(__kvm_vcpu_update_apicv);
10354
10355static void kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu)
10356{
10357 if (!lapic_in_kernel(vcpu))
10358 return;
10359
10360 /*
10361 * Due to sharing page tables across vCPUs, the xAPIC memslot must be
10362 * deleted if any vCPU has xAPIC virtualization and x2APIC enabled, but
10363 * and hardware doesn't support x2APIC virtualization. E.g. some AMD
10364 * CPUs support AVIC but not x2APIC. KVM still allows enabling AVIC in
10365 * this case so that KVM can the AVIC doorbell to inject interrupts to
10366 * running vCPUs, but KVM must not create SPTEs for the APIC base as
10367 * the vCPU would incorrectly be able to access the vAPIC page via MMIO
10368 * despite being in x2APIC mode. For simplicity, inhibiting the APIC
10369 * access page is sticky.
10370 */
10371 if (apic_x2apic_mode(vcpu->arch.apic) &&
10372 kvm_x86_ops.allow_apicv_in_x2apic_without_x2apic_virtualization)
10373 kvm_inhibit_apic_access_page(vcpu);
10374
10375 __kvm_vcpu_update_apicv(vcpu);
10376}
8df14af4 10377
320af55a
SC
10378void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10379 enum kvm_apicv_inhibit reason, bool set)
8df14af4 10380{
b0a1637f 10381 unsigned long old, new;
8e205a6b 10382
187c8833
SC
10383 lockdep_assert_held_write(&kvm->arch.apicv_update_lock);
10384
b3f257a8 10385 if (!(kvm_x86_ops.required_apicv_inhibits & BIT(reason)))
ef8efd7a
SS
10386 return;
10387
b0a1637f
ML
10388 old = new = kvm->arch.apicv_inhibit_reasons;
10389
4f4c4a3e 10390 set_or_clear_apicv_inhibit(&new, reason, set);
8e205a6b 10391
36222b11 10392 if (!!old != !!new) {
ee49a893
SC
10393 /*
10394 * Kick all vCPUs before setting apicv_inhibit_reasons to avoid
10395 * false positives in the sanity check WARN in svm_vcpu_run().
10396 * This task will wait for all vCPUs to ack the kick IRQ before
10397 * updating apicv_inhibit_reasons, and all other vCPUs will
10398 * block on acquiring apicv_update_lock so that vCPUs can't
10399 * redo svm_vcpu_run() without seeing the new inhibit state.
10400 *
10401 * Note, holding apicv_update_lock and taking it in the read
10402 * side (handling the request) also prevents other vCPUs from
10403 * servicing the request with a stale apicv_inhibit_reasons.
10404 */
36222b11 10405 kvm_make_all_cpus_request(kvm, KVM_REQ_APICV_UPDATE);
b0a1637f 10406 kvm->arch.apicv_inhibit_reasons = new;
36222b11
ML
10407 if (new) {
10408 unsigned long gfn = gpa_to_gfn(APIC_DEFAULT_PHYS_BASE);
074c0080
BG
10409 int idx = srcu_read_lock(&kvm->srcu);
10410
36222b11 10411 kvm_zap_gfn_range(kvm, gfn, gfn+1);
074c0080 10412 srcu_read_unlock(&kvm->srcu, idx);
36222b11 10413 }
7491b7b2 10414 } else {
b0a1637f 10415 kvm->arch.apicv_inhibit_reasons = new;
7491b7b2 10416 }
b0a1637f 10417}
7d611233 10418
320af55a
SC
10419void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
10420 enum kvm_apicv_inhibit reason, bool set)
b0a1637f 10421{
f1575642
SC
10422 if (!enable_apicv)
10423 return;
10424
187c8833 10425 down_write(&kvm->arch.apicv_update_lock);
320af55a 10426 __kvm_set_or_clear_apicv_inhibit(kvm, reason, set);
187c8833 10427 up_write(&kvm->arch.apicv_update_lock);
8df14af4 10428}
320af55a 10429EXPORT_SYMBOL_GPL(kvm_set_or_clear_apicv_inhibit);
8df14af4 10430
3d81bc7e 10431static void vcpu_scan_ioapic(struct kvm_vcpu *vcpu)
c7c9c56c 10432{
dcbd3e49 10433 if (!kvm_apic_present(vcpu))
3d81bc7e 10434 return;
c7c9c56c 10435
6308630b 10436 bitmap_zero(vcpu->arch.ioapic_handled_vectors, 256);
c7c9c56c 10437
b053b2ae 10438 if (irqchip_split(vcpu->kvm))
6308630b 10439 kvm_scan_ioapic_routes(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 10440 else {
37c4dbf3 10441 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
e97f852f
WL
10442 if (ioapic_in_kernel(vcpu->kvm))
10443 kvm_ioapic_scan_entry(vcpu, vcpu->arch.ioapic_handled_vectors);
db2bdcbb 10444 }
e40ff1d6
LA
10445
10446 if (is_guest_mode(vcpu))
10447 vcpu->arch.load_eoi_exitmap_pending = true;
10448 else
10449 kvm_make_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu);
10450}
10451
10452static void vcpu_load_eoi_exitmap(struct kvm_vcpu *vcpu)
10453{
10454 u64 eoi_exit_bitmap[4];
10455
10456 if (!kvm_apic_hw_enabled(vcpu->arch.apic))
10457 return;
10458
c5adbb3a 10459 if (to_hv_vcpu(vcpu)) {
f2bc14b6
VK
10460 bitmap_or((ulong *)eoi_exit_bitmap,
10461 vcpu->arch.ioapic_handled_vectors,
10462 to_hv_synic(vcpu)->vec_bitmap, 256);
abb6d479 10463 static_call_cond(kvm_x86_load_eoi_exitmap)(vcpu, eoi_exit_bitmap);
c5adbb3a 10464 return;
10465 }
f2bc14b6 10466
abb6d479 10467 static_call_cond(kvm_x86_load_eoi_exitmap)(
c5adbb3a 10468 vcpu, (u64 *)vcpu->arch.ioapic_handled_vectors);
c7c9c56c
YZ
10469}
10470
683412cc
MZ
10471void kvm_arch_guest_memory_reclaimed(struct kvm *kvm)
10472{
10473 static_call_cond(kvm_x86_guest_memory_reclaimed)(kvm);
10474}
10475
d081a343 10476static void kvm_vcpu_reload_apic_access_page(struct kvm_vcpu *vcpu)
4256f43f 10477{
35754c98 10478 if (!lapic_in_kernel(vcpu))
f439ed27
PB
10479 return;
10480
2a890614 10481 static_call_cond(kvm_x86_set_apic_access_page_addr)(vcpu);
4256f43f 10482}
4256f43f 10483
d264ee0c
SC
10484void __kvm_request_immediate_exit(struct kvm_vcpu *vcpu)
10485{
10486 smp_send_reschedule(vcpu->cpu);
10487}
10488EXPORT_SYMBOL_GPL(__kvm_request_immediate_exit);
10489
9357d939 10490/*
8d25b7be 10491 * Called within kvm->srcu read side.
362c698f 10492 * Returns 1 to let vcpu_run() continue the guest execution loop without
9357d939
TY
10493 * exiting to the userspace. Otherwise, the value will be returned to the
10494 * userspace.
10495 */
851ba692 10496static int vcpu_enter_guest(struct kvm_vcpu *vcpu)
b6c7a5dc
HB
10497{
10498 int r;
62a193ed
MG
10499 bool req_int_win =
10500 dm_request_for_irq_injection(vcpu) &&
10501 kvm_cpu_accept_dm_intr(vcpu);
404d5d7b 10502 fastpath_t exit_fastpath;
62a193ed 10503
730dca42 10504 bool req_immediate_exit = false;
b6c7a5dc 10505
2fa6e1e1 10506 if (kvm_request_pending(vcpu)) {
f4d31653 10507 if (kvm_check_request(KVM_REQ_VM_DEAD, vcpu)) {
67369273
SC
10508 r = -EIO;
10509 goto out;
10510 }
cf87ac73
GS
10511
10512 if (kvm_dirty_ring_check_request(vcpu)) {
10513 r = 0;
10514 goto out;
10515 }
10516
729c15c2 10517 if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
9a78e158 10518 if (unlikely(!kvm_x86_ops.nested_ops->get_nested_state_pages(vcpu))) {
671ddc70
JM
10519 r = 0;
10520 goto out;
10521 }
10522 }
527d5cd7
SC
10523 if (kvm_check_request(KVM_REQ_MMU_FREE_OBSOLETE_ROOTS, vcpu))
10524 kvm_mmu_free_obsolete_roots(vcpu);
a8eeb04a 10525 if (kvm_check_request(KVM_REQ_MIGRATE_TIMER, vcpu))
2f599714 10526 __kvm_migrate_timers(vcpu);
d828199e 10527 if (kvm_check_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu))
6b6fcd28 10528 kvm_update_masterclock(vcpu->kvm);
0061d53d
MT
10529 if (kvm_check_request(KVM_REQ_GLOBAL_CLOCK_UPDATE, vcpu))
10530 kvm_gen_kvmclock_update(vcpu);
34c238a1
ZA
10531 if (kvm_check_request(KVM_REQ_CLOCK_UPDATE, vcpu)) {
10532 r = kvm_guest_time_update(vcpu);
8cfdc000
ZA
10533 if (unlikely(r))
10534 goto out;
10535 }
a8eeb04a 10536 if (kvm_check_request(KVM_REQ_MMU_SYNC, vcpu))
4731d4c7 10537 kvm_mmu_sync_roots(vcpu);
727a7e27
PB
10538 if (kvm_check_request(KVM_REQ_LOAD_MMU_PGD, vcpu))
10539 kvm_mmu_load_pgd(vcpu);
e94cea09
SC
10540
10541 /*
10542 * Note, the order matters here, as flushing "all" TLB entries
10543 * also flushes the "current" TLB entries, i.e. servicing the
10544 * flush "all" will clear any request to flush "current".
10545 */
10546 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu))
7780938c 10547 kvm_vcpu_flush_tlb_all(vcpu);
eeeb4f67 10548
40e5f908 10549 kvm_service_local_tlb_flush_requests(vcpu);
eeeb4f67 10550
0823570f
VK
10551 /*
10552 * Fall back to a "full" guest flush if Hyper-V's precise
10553 * flushing fails. Note, Hyper-V's flushing is per-vCPU, but
10554 * the flushes are considered "remote" and not "local" because
10555 * the requests can be initiated from other vCPUs.
10556 */
10557 if (kvm_check_request(KVM_REQ_HV_TLB_FLUSH, vcpu) &&
10558 kvm_hv_vcpu_flush_tlb(vcpu))
adc43caa
VK
10559 kvm_vcpu_flush_tlb_guest(vcpu);
10560
a8eeb04a 10561 if (kvm_check_request(KVM_REQ_REPORT_TPR_ACCESS, vcpu)) {
851ba692 10562 vcpu->run->exit_reason = KVM_EXIT_TPR_ACCESS;
b93463aa
AK
10563 r = 0;
10564 goto out;
10565 }
92e7d5c8
ML
10566 if (kvm_test_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
10567 if (is_guest_mode(vcpu))
cb6a32c2 10568 kvm_x86_ops.nested_ops->triple_fault(vcpu);
92e7d5c8
ML
10569
10570 if (kvm_check_request(KVM_REQ_TRIPLE_FAULT, vcpu)) {
cb6a32c2
SC
10571 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
10572 vcpu->mmio_needed = 0;
10573 r = 0;
e542baf3 10574 goto out;
cb6a32c2 10575 }
71c4dfaf 10576 }
af585b92
GN
10577 if (kvm_check_request(KVM_REQ_APF_HALT, vcpu)) {
10578 /* Page is swapped out. Do synthetic halt */
10579 vcpu->arch.apf.halted = true;
10580 r = 1;
10581 goto out;
10582 }
c9aaa895
GC
10583 if (kvm_check_request(KVM_REQ_STEAL_UPDATE, vcpu))
10584 record_steal_time(vcpu);
cf7316d0 10585#ifdef CONFIG_KVM_SMM
64d60670
PB
10586 if (kvm_check_request(KVM_REQ_SMI, vcpu))
10587 process_smi(vcpu);
cf7316d0 10588#endif
7460fb4a
AK
10589 if (kvm_check_request(KVM_REQ_NMI, vcpu))
10590 process_nmi(vcpu);
f5132b01 10591 if (kvm_check_request(KVM_REQ_PMU, vcpu))
c6702c9d 10592 kvm_pmu_handle_event(vcpu);
f5132b01 10593 if (kvm_check_request(KVM_REQ_PMI, vcpu))
c6702c9d 10594 kvm_pmu_deliver_pmi(vcpu);
7543a635
SR
10595 if (kvm_check_request(KVM_REQ_IOAPIC_EOI_EXIT, vcpu)) {
10596 BUG_ON(vcpu->arch.pending_ioapic_eoi > 255);
10597 if (test_bit(vcpu->arch.pending_ioapic_eoi,
6308630b 10598 vcpu->arch.ioapic_handled_vectors)) {
7543a635
SR
10599 vcpu->run->exit_reason = KVM_EXIT_IOAPIC_EOI;
10600 vcpu->run->eoi.vector =
10601 vcpu->arch.pending_ioapic_eoi;
10602 r = 0;
10603 goto out;
10604 }
10605 }
3d81bc7e
YZ
10606 if (kvm_check_request(KVM_REQ_SCAN_IOAPIC, vcpu))
10607 vcpu_scan_ioapic(vcpu);
e40ff1d6
LA
10608 if (kvm_check_request(KVM_REQ_LOAD_EOI_EXITMAP, vcpu))
10609 vcpu_load_eoi_exitmap(vcpu);
4256f43f
TC
10610 if (kvm_check_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu))
10611 kvm_vcpu_reload_apic_access_page(vcpu);
2ce79189
AS
10612 if (kvm_check_request(KVM_REQ_HV_CRASH, vcpu)) {
10613 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10614 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_CRASH;
d495f942 10615 vcpu->run->system_event.ndata = 0;
2ce79189
AS
10616 r = 0;
10617 goto out;
10618 }
e516cebb
AS
10619 if (kvm_check_request(KVM_REQ_HV_RESET, vcpu)) {
10620 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
10621 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_RESET;
d495f942 10622 vcpu->run->system_event.ndata = 0;
e516cebb
AS
10623 r = 0;
10624 goto out;
10625 }
db397571 10626 if (kvm_check_request(KVM_REQ_HV_EXIT, vcpu)) {
9ff5e030
VK
10627 struct kvm_vcpu_hv *hv_vcpu = to_hv_vcpu(vcpu);
10628
db397571 10629 vcpu->run->exit_reason = KVM_EXIT_HYPERV;
9ff5e030 10630 vcpu->run->hyperv = hv_vcpu->exit;
db397571
AS
10631 r = 0;
10632 goto out;
10633 }
f3b138c5
AS
10634
10635 /*
10636 * KVM_REQ_HV_STIMER has to be processed after
10637 * KVM_REQ_CLOCK_UPDATE, because Hyper-V SynIC timers
10638 * depend on the guest clock being up-to-date
10639 */
1f4b34f8
AS
10640 if (kvm_check_request(KVM_REQ_HV_STIMER, vcpu))
10641 kvm_hv_process_stimers(vcpu);
8df14af4
SS
10642 if (kvm_check_request(KVM_REQ_APICV_UPDATE, vcpu))
10643 kvm_vcpu_update_apicv(vcpu);
557a961a
VK
10644 if (kvm_check_request(KVM_REQ_APF_READY, vcpu))
10645 kvm_check_async_pf_completion(vcpu);
1a155254 10646 if (kvm_check_request(KVM_REQ_MSR_FILTER_CHANGED, vcpu))
b3646477 10647 static_call(kvm_x86_msr_filter_changed)(vcpu);
a85863c2
MS
10648
10649 if (kvm_check_request(KVM_REQ_UPDATE_CPU_DIRTY_LOGGING, vcpu))
10650 static_call(kvm_x86_update_cpu_dirty_logging)(vcpu);
2f52d58c 10651 }
b93463aa 10652
40da8ccd
DW
10653 if (kvm_check_request(KVM_REQ_EVENT, vcpu) || req_int_win ||
10654 kvm_xen_has_interrupt(vcpu)) {
0f1e261e 10655 ++vcpu->stat.req_event;
4fe09bcf
JM
10656 r = kvm_apic_accept_events(vcpu);
10657 if (r < 0) {
10658 r = 0;
10659 goto out;
10660 }
66450a21
JK
10661 if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED) {
10662 r = 1;
10663 goto out;
10664 }
10665
e746c1f1 10666 r = kvm_check_and_inject_events(vcpu, &req_immediate_exit);
a5f6909a
JM
10667 if (r < 0) {
10668 r = 0;
10669 goto out;
10670 }
c9d40913 10671 if (req_int_win)
b3646477 10672 static_call(kvm_x86_enable_irq_window)(vcpu);
b463a6f7
AK
10673
10674 if (kvm_lapic_enabled(vcpu)) {
10675 update_cr8_intercept(vcpu);
10676 kvm_lapic_sync_to_vapic(vcpu);
10677 }
10678 }
10679
d8368af8
AK
10680 r = kvm_mmu_reload(vcpu);
10681 if (unlikely(r)) {
d905c069 10682 goto cancel_injection;
d8368af8
AK
10683 }
10684
b6c7a5dc
HB
10685 preempt_disable();
10686
e27bc044 10687 static_call(kvm_x86_prepare_switch_to_guest)(vcpu);
b95234c8
PB
10688
10689 /*
10690 * Disable IRQs before setting IN_GUEST_MODE. Posted interrupt
10691 * IPI are then delayed after guest entry, which ensures that they
10692 * result in virtual interrupt delivery.
10693 */
10694 local_irq_disable();
66fa226c
ML
10695
10696 /* Store vcpu->apicv_active before vcpu->mode. */
10697 smp_store_release(&vcpu->mode, IN_GUEST_MODE);
6b7e2d09 10698
2031f287 10699 kvm_vcpu_srcu_read_unlock(vcpu);
01b71917 10700
0f127d12 10701 /*
b95234c8 10702 * 1) We should set ->mode before checking ->requests. Please see
cde9af6e 10703 * the comment in kvm_vcpu_exiting_guest_mode().
b95234c8 10704 *
81b01667 10705 * 2) For APICv, we should set ->mode before checking PID.ON. This
b95234c8
PB
10706 * pairs with the memory barrier implicit in pi_test_and_set_on
10707 * (see vmx_deliver_posted_interrupt).
10708 *
10709 * 3) This also orders the write to mode from any reads to the page
10710 * tables done while the VCPU is running. Please see the comment
10711 * in kvm_flush_remote_tlbs.
6b7e2d09 10712 */
01b71917 10713 smp_mb__after_srcu_read_unlock();
b6c7a5dc 10714
b95234c8 10715 /*
0f65a9d3
SC
10716 * Process pending posted interrupts to handle the case where the
10717 * notification IRQ arrived in the host, or was never sent (because the
10718 * target vCPU wasn't running). Do this regardless of the vCPU's APICv
10719 * status, KVM doesn't update assigned devices when APICv is inhibited,
10720 * i.e. they can post interrupts even if APICv is temporarily disabled.
b95234c8 10721 */
37c4dbf3
PB
10722 if (kvm_lapic_enabled(vcpu))
10723 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
32f88400 10724
5a9f5443 10725 if (kvm_vcpu_exit_request(vcpu)) {
6b7e2d09 10726 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 10727 smp_wmb();
6c142801
AK
10728 local_irq_enable();
10729 preempt_enable();
2031f287 10730 kvm_vcpu_srcu_read_lock(vcpu);
6c142801 10731 r = 1;
d905c069 10732 goto cancel_injection;
6c142801
AK
10733 }
10734
c43203ca
PB
10735 if (req_immediate_exit) {
10736 kvm_make_request(KVM_REQ_EVENT, vcpu);
b3646477 10737 static_call(kvm_x86_request_immediate_exit)(vcpu);
c43203ca 10738 }
d6185f20 10739
2620fe26
SC
10740 fpregs_assert_state_consistent();
10741 if (test_thread_flag(TIF_NEED_FPU_LOAD))
10742 switch_fpu_return();
5f409e20 10743
ec5be88a
JL
10744 if (vcpu->arch.guest_fpu.xfd_err)
10745 wrmsrl(MSR_IA32_XFD_ERR, vcpu->arch.guest_fpu.xfd_err);
10746
42dbaa5a 10747 if (unlikely(vcpu->arch.switch_db_regs)) {
42dbaa5a
JK
10748 set_debugreg(0, 7);
10749 set_debugreg(vcpu->arch.eff_db[0], 0);
10750 set_debugreg(vcpu->arch.eff_db[1], 1);
10751 set_debugreg(vcpu->arch.eff_db[2], 2);
10752 set_debugreg(vcpu->arch.eff_db[3], 3);
f85d4016
LJ
10753 } else if (unlikely(hw_breakpoint_active())) {
10754 set_debugreg(0, 7);
42dbaa5a 10755 }
b6c7a5dc 10756
b2d2af7e
MR
10757 guest_timing_enter_irqoff();
10758
d89d04ab 10759 for (;;) {
ee49a893
SC
10760 /*
10761 * Assert that vCPU vs. VM APICv state is consistent. An APICv
10762 * update must kick and wait for all vCPUs before toggling the
10763 * per-VM state, and responsing vCPUs must wait for the update
10764 * to complete before servicing KVM_REQ_APICV_UPDATE.
10765 */
f8d8ac21
SS
10766 WARN_ON_ONCE((kvm_vcpu_apicv_activated(vcpu) != kvm_vcpu_apicv_active(vcpu)) &&
10767 (kvm_get_apic_mode(vcpu) != LAPIC_MODE_DISABLED));
ee49a893 10768
e27bc044 10769 exit_fastpath = static_call(kvm_x86_vcpu_run)(vcpu);
d89d04ab
PB
10770 if (likely(exit_fastpath != EXIT_FASTPATH_REENTER_GUEST))
10771 break;
10772
37c4dbf3
PB
10773 if (kvm_lapic_enabled(vcpu))
10774 static_call_cond(kvm_x86_sync_pir_to_irr)(vcpu);
de7cd3f6
PB
10775
10776 if (unlikely(kvm_vcpu_exit_request(vcpu))) {
d89d04ab
PB
10777 exit_fastpath = EXIT_FASTPATH_EXIT_HANDLED;
10778 break;
10779 }
8b703a49
SC
10780
10781 /* Note, VM-Exits that go down the "slow" path are accounted below. */
10782 ++vcpu->stat.exits;
de7cd3f6 10783 }
b6c7a5dc 10784
c77fb5fe
PB
10785 /*
10786 * Do this here before restoring debug registers on the host. And
10787 * since we do this before handling the vmexit, a DR access vmexit
10788 * can (a) read the correct value of the debug registers, (b) set
10789 * KVM_DEBUGREG_WONT_EXIT again.
10790 */
10791 if (unlikely(vcpu->arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)) {
c77fb5fe 10792 WARN_ON(vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP);
b3646477 10793 static_call(kvm_x86_sync_dirty_debug_regs)(vcpu);
70e4da7a 10794 kvm_update_dr0123(vcpu);
70e4da7a 10795 kvm_update_dr7(vcpu);
c77fb5fe
PB
10796 }
10797
24f1e32c
FW
10798 /*
10799 * If the guest has used debug registers, at least dr7
10800 * will be disabled while returning to the host.
10801 * If we don't have active breakpoints in the host, we don't
10802 * care about the messed up debug address registers. But if
10803 * we have some of them active, restore the old state.
10804 */
59d8eb53 10805 if (hw_breakpoint_active())
24f1e32c 10806 hw_breakpoint_restore();
42dbaa5a 10807
c967118d 10808 vcpu->arch.last_vmentry_cpu = vcpu->cpu;
4ba76538 10809 vcpu->arch.last_guest_tsc = kvm_read_l1_tsc(vcpu, rdtsc());
1d5f066e 10810
6b7e2d09 10811 vcpu->mode = OUTSIDE_GUEST_MODE;
d94e1dc9 10812 smp_wmb();
a547c6db 10813
b5274b1b
KT
10814 /*
10815 * Sync xfd before calling handle_exit_irqoff() which may
10816 * rely on the fact that guest_fpu::xfd is up-to-date (e.g.
10817 * in #NM irqoff handler).
10818 */
10819 if (vcpu->arch.xfd_no_write_intercept)
10820 fpu_sync_guest_vmexit_xfd_state();
10821
b3646477 10822 static_call(kvm_x86_handle_exit_irqoff)(vcpu);
b6c7a5dc 10823
ec5be88a
JL
10824 if (vcpu->arch.guest_fpu.xfd_err)
10825 wrmsrl(MSR_IA32_XFD_ERR, 0);
10826
d7a08882
SC
10827 /*
10828 * Consume any pending interrupts, including the possible source of
10829 * VM-Exit on SVM and any ticks that occur between VM-Exit and now.
10830 * An instruction is required after local_irq_enable() to fully unblock
10831 * interrupts on processors that implement an interrupt shadow, the
10832 * stat.exits increment will do nicely.
10833 */
db215756 10834 kvm_before_interrupt(vcpu, KVM_HANDLING_IRQ);
d7a08882 10835 local_irq_enable();
b6c7a5dc 10836 ++vcpu->stat.exits;
d7a08882
SC
10837 local_irq_disable();
10838 kvm_after_interrupt(vcpu);
b6c7a5dc 10839
16045714
WL
10840 /*
10841 * Wait until after servicing IRQs to account guest time so that any
10842 * ticks that occurred while running the guest are properly accounted
10843 * to the guest. Waiting until IRQs are enabled degrades the accuracy
10844 * of accounting via context tracking, but the loss of accuracy is
10845 * acceptable for all known use cases.
10846 */
b2d2af7e 10847 guest_timing_exit_irqoff();
16045714 10848
f2485b3e 10849 local_irq_enable();
b6c7a5dc
HB
10850 preempt_enable();
10851
2031f287 10852 kvm_vcpu_srcu_read_lock(vcpu);
3200f405 10853
b6c7a5dc
HB
10854 /*
10855 * Profile KVM exit RIPs:
10856 */
10857 if (unlikely(prof_on == KVM_PROFILING)) {
5fdbf976
MT
10858 unsigned long rip = kvm_rip_read(vcpu);
10859 profile_hit(KVM_PROFILING, (void *)rip);
b6c7a5dc
HB
10860 }
10861
cc578287
ZA
10862 if (unlikely(vcpu->arch.tsc_always_catchup))
10863 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
298101da 10864
5cfb1d5a
MT
10865 if (vcpu->arch.apic_attention)
10866 kvm_lapic_sync_from_vapic(vcpu);
b93463aa 10867
b3646477 10868 r = static_call(kvm_x86_handle_exit)(vcpu, exit_fastpath);
d905c069
MT
10869 return r;
10870
10871cancel_injection:
8081ad06
SC
10872 if (req_immediate_exit)
10873 kvm_make_request(KVM_REQ_EVENT, vcpu);
b3646477 10874 static_call(kvm_x86_cancel_injection)(vcpu);
ae7a2a3f
MT
10875 if (unlikely(vcpu->arch.apic_attention))
10876 kvm_lapic_sync_from_vapic(vcpu);
d7690175
MT
10877out:
10878 return r;
10879}
b6c7a5dc 10880
8d25b7be 10881/* Called within kvm->srcu read side. */
2031f287 10882static inline int vcpu_block(struct kvm_vcpu *vcpu)
362c698f 10883{
98c25ead
SC
10884 bool hv_timer;
10885
c3e8abf0 10886 if (!kvm_arch_vcpu_runnable(vcpu)) {
98c25ead
SC
10887 /*
10888 * Switch to the software timer before halt-polling/blocking as
10889 * the guest's timer may be a break event for the vCPU, and the
10890 * hypervisor timer runs only when the CPU is in guest mode.
10891 * Switch before halt-polling so that KVM recognizes an expired
10892 * timer before blocking.
10893 */
10894 hv_timer = kvm_lapic_hv_timer_in_use(vcpu);
10895 if (hv_timer)
10896 kvm_lapic_switch_to_sw_timer(vcpu);
10897
2031f287 10898 kvm_vcpu_srcu_read_unlock(vcpu);
cdafece4
SC
10899 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10900 kvm_vcpu_halt(vcpu);
10901 else
10902 kvm_vcpu_block(vcpu);
2031f287 10903 kvm_vcpu_srcu_read_lock(vcpu);
bf9f6ac8 10904
98c25ead
SC
10905 if (hv_timer)
10906 kvm_lapic_switch_to_hv_timer(vcpu);
10907
599275c0
PB
10908 /*
10909 * If the vCPU is not runnable, a signal or another host event
10910 * of some kind is pending; service it without changing the
10911 * vCPU's activity state.
10912 */
10913 if (!kvm_arch_vcpu_runnable(vcpu))
9c8fd1ba
PB
10914 return 1;
10915 }
362c698f 10916
26844fee
PB
10917 /*
10918 * Evaluate nested events before exiting the halted state. This allows
10919 * the halt state to be recorded properly in the VMCS12's activity
10920 * state field (AMD does not have a similar field and a VM-Exit always
10921 * causes a spurious wakeup from HLT).
10922 */
10923 if (is_guest_mode(vcpu)) {
10924 if (kvm_check_nested_events(vcpu) < 0)
10925 return 0;
10926 }
10927
4fe09bcf
JM
10928 if (kvm_apic_accept_events(vcpu) < 0)
10929 return 0;
362c698f
PB
10930 switch(vcpu->arch.mp_state) {
10931 case KVM_MP_STATE_HALTED:
647daca2 10932 case KVM_MP_STATE_AP_RESET_HOLD:
362c698f
PB
10933 vcpu->arch.pv.pv_unhalted = false;
10934 vcpu->arch.mp_state =
10935 KVM_MP_STATE_RUNNABLE;
df561f66 10936 fallthrough;
362c698f
PB
10937 case KVM_MP_STATE_RUNNABLE:
10938 vcpu->arch.apf.halted = false;
10939 break;
10940 case KVM_MP_STATE_INIT_RECEIVED:
10941 break;
10942 default:
22c6a0ef
PB
10943 WARN_ON_ONCE(1);
10944 break;
362c698f
PB
10945 }
10946 return 1;
10947}
09cec754 10948
5d9bc648
PB
10949static inline bool kvm_vcpu_running(struct kvm_vcpu *vcpu)
10950{
10951 return (vcpu->arch.mp_state == KVM_MP_STATE_RUNNABLE &&
10952 !vcpu->arch.apf.halted);
10953}
10954
8d25b7be 10955/* Called within kvm->srcu read side. */
362c698f 10956static int vcpu_run(struct kvm_vcpu *vcpu)
d7690175
MT
10957{
10958 int r;
10959
c595ceee 10960 vcpu->arch.l1tf_flush_l1d = true;
d7690175 10961
362c698f 10962 for (;;) {
6cd88243
PB
10963 /*
10964 * If another guest vCPU requests a PV TLB flush in the middle
10965 * of instruction emulation, the rest of the emulation could
10966 * use a stale page translation. Assume that any code after
10967 * this point can start executing an instruction.
10968 */
10969 vcpu->arch.at_instruction_boundary = false;
58f800d5 10970 if (kvm_vcpu_running(vcpu)) {
851ba692 10971 r = vcpu_enter_guest(vcpu);
bf9f6ac8 10972 } else {
2031f287 10973 r = vcpu_block(vcpu);
bf9f6ac8
FW
10974 }
10975
09cec754
GN
10976 if (r <= 0)
10977 break;
10978
084071d5 10979 kvm_clear_request(KVM_REQ_UNBLOCK, vcpu);
7caf9571
DW
10980 if (kvm_xen_has_pending_events(vcpu))
10981 kvm_xen_inject_pending_events(vcpu);
10982
09cec754
GN
10983 if (kvm_cpu_has_pending_timer(vcpu))
10984 kvm_inject_pending_timer_irqs(vcpu);
10985
782d422b
MG
10986 if (dm_request_for_irq_injection(vcpu) &&
10987 kvm_vcpu_ready_for_interrupt_injection(vcpu)) {
4ca7dd8c
PB
10988 r = 0;
10989 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
09cec754 10990 ++vcpu->stat.request_irq_exits;
362c698f 10991 break;
09cec754 10992 }
af585b92 10993
f3020b88 10994 if (__xfer_to_guest_mode_work_pending()) {
2031f287 10995 kvm_vcpu_srcu_read_unlock(vcpu);
72c3c0fe 10996 r = xfer_to_guest_mode_handle_work(vcpu);
2031f287 10997 kvm_vcpu_srcu_read_lock(vcpu);
72c3c0fe
TG
10998 if (r)
10999 return r;
d7690175 11000 }
b6c7a5dc
HB
11001 }
11002
b6c7a5dc
HB
11003 return r;
11004}
11005
716d51ab
GN
11006static inline int complete_emulated_io(struct kvm_vcpu *vcpu)
11007{
2d089356 11008 return kvm_emulate_instruction(vcpu, EMULTYPE_NO_DECODE);
716d51ab
GN
11009}
11010
11011static int complete_emulated_pio(struct kvm_vcpu *vcpu)
11012{
11013 BUG_ON(!vcpu->arch.pio.count);
11014
11015 return complete_emulated_io(vcpu);
11016}
11017
f78146b0
AK
11018/*
11019 * Implements the following, as a state machine:
11020 *
11021 * read:
11022 * for each fragment
87da7e66
XG
11023 * for each mmio piece in the fragment
11024 * write gpa, len
11025 * exit
11026 * copy data
f78146b0
AK
11027 * execute insn
11028 *
11029 * write:
11030 * for each fragment
87da7e66
XG
11031 * for each mmio piece in the fragment
11032 * write gpa, len
11033 * copy data
11034 * exit
f78146b0 11035 */
716d51ab 11036static int complete_emulated_mmio(struct kvm_vcpu *vcpu)
5287f194
AK
11037{
11038 struct kvm_run *run = vcpu->run;
f78146b0 11039 struct kvm_mmio_fragment *frag;
87da7e66 11040 unsigned len;
5287f194 11041
716d51ab 11042 BUG_ON(!vcpu->mmio_needed);
5287f194 11043
716d51ab 11044 /* Complete previous fragment */
87da7e66
XG
11045 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
11046 len = min(8u, frag->len);
716d51ab 11047 if (!vcpu->mmio_is_write)
87da7e66
XG
11048 memcpy(frag->data, run->mmio.data, len);
11049
11050 if (frag->len <= 8) {
11051 /* Switch to the next fragment. */
11052 frag++;
11053 vcpu->mmio_cur_fragment++;
11054 } else {
11055 /* Go forward to the next mmio piece. */
11056 frag->data += len;
11057 frag->gpa += len;
11058 frag->len -= len;
11059 }
11060
a08d3b3b 11061 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
716d51ab 11062 vcpu->mmio_needed = 0;
0912c977
PB
11063
11064 /* FIXME: return into emulator if single-stepping. */
cef4dea0 11065 if (vcpu->mmio_is_write)
716d51ab
GN
11066 return 1;
11067 vcpu->mmio_read_completed = 1;
11068 return complete_emulated_io(vcpu);
11069 }
87da7e66 11070
716d51ab
GN
11071 run->exit_reason = KVM_EXIT_MMIO;
11072 run->mmio.phys_addr = frag->gpa;
11073 if (vcpu->mmio_is_write)
87da7e66
XG
11074 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
11075 run->mmio.len = min(8u, frag->len);
716d51ab
GN
11076 run->mmio.is_write = vcpu->mmio_is_write;
11077 vcpu->arch.complete_userspace_io = complete_emulated_mmio;
11078 return 0;
5287f194
AK
11079}
11080
822f312d
SAS
11081/* Swap (qemu) user FPU context for the guest FPU context. */
11082static void kvm_load_guest_fpu(struct kvm_vcpu *vcpu)
11083{
e27bc044 11084 /* Exclude PKRU, it's restored separately immediately after VM-Exit. */
d69c1382 11085 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, true);
822f312d
SAS
11086 trace_kvm_fpu(1);
11087}
11088
11089/* When vcpu_run ends, restore user space FPU context. */
11090static void kvm_put_guest_fpu(struct kvm_vcpu *vcpu)
11091{
d69c1382 11092 fpu_swap_kvm_fpstate(&vcpu->arch.guest_fpu, false);
822f312d
SAS
11093 ++vcpu->stat.fpu_reload;
11094 trace_kvm_fpu(0);
11095}
11096
1b94f6f8 11097int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu)
b6c7a5dc 11098{
7709aba8 11099 struct kvm_queued_exception *ex = &vcpu->arch.exception;
1b94f6f8 11100 struct kvm_run *kvm_run = vcpu->run;
b6c7a5dc 11101 int r;
b6c7a5dc 11102
accb757d 11103 vcpu_load(vcpu);
20b7035c 11104 kvm_sigset_activate(vcpu);
15aad3be 11105 kvm_run->flags = 0;
5663d8f9
PX
11106 kvm_load_guest_fpu(vcpu);
11107
2031f287 11108 kvm_vcpu_srcu_read_lock(vcpu);
a4535290 11109 if (unlikely(vcpu->arch.mp_state == KVM_MP_STATE_UNINITIALIZED)) {
2f173d26
JS
11110 if (kvm_run->immediate_exit) {
11111 r = -EINTR;
11112 goto out;
11113 }
98c25ead
SC
11114 /*
11115 * It should be impossible for the hypervisor timer to be in
11116 * use before KVM has ever run the vCPU.
11117 */
11118 WARN_ON_ONCE(kvm_lapic_hv_timer_in_use(vcpu));
8d25b7be 11119
2031f287 11120 kvm_vcpu_srcu_read_unlock(vcpu);
c91d4497 11121 kvm_vcpu_block(vcpu);
2031f287 11122 kvm_vcpu_srcu_read_lock(vcpu);
8d25b7be 11123
4fe09bcf
JM
11124 if (kvm_apic_accept_events(vcpu) < 0) {
11125 r = 0;
11126 goto out;
11127 }
ac9f6dc0 11128 r = -EAGAIN;
a0595000
JS
11129 if (signal_pending(current)) {
11130 r = -EINTR;
1b94f6f8 11131 kvm_run->exit_reason = KVM_EXIT_INTR;
a0595000
JS
11132 ++vcpu->stat.signal_exits;
11133 }
ac9f6dc0 11134 goto out;
b6c7a5dc
HB
11135 }
11136
e489a4a6
SC
11137 if ((kvm_run->kvm_valid_regs & ~KVM_SYNC_X86_VALID_FIELDS) ||
11138 (kvm_run->kvm_dirty_regs & ~KVM_SYNC_X86_VALID_FIELDS)) {
01643c51
KH
11139 r = -EINVAL;
11140 goto out;
11141 }
11142
1b94f6f8 11143 if (kvm_run->kvm_dirty_regs) {
01643c51
KH
11144 r = sync_regs(vcpu);
11145 if (r != 0)
11146 goto out;
11147 }
11148
b6c7a5dc 11149 /* re-sync apic's tpr */
35754c98 11150 if (!lapic_in_kernel(vcpu)) {
eea1cff9
AP
11151 if (kvm_set_cr8(vcpu, kvm_run->cr8) != 0) {
11152 r = -EINVAL;
11153 goto out;
11154 }
11155 }
b6c7a5dc 11156
7709aba8
SC
11157 /*
11158 * If userspace set a pending exception and L2 is active, convert it to
11159 * a pending VM-Exit if L1 wants to intercept the exception.
11160 */
11161 if (vcpu->arch.exception_from_userspace && is_guest_mode(vcpu) &&
11162 kvm_x86_ops.nested_ops->is_exception_vmexit(vcpu, ex->vector,
11163 ex->error_code)) {
11164 kvm_queue_exception_vmexit(vcpu, ex->vector,
11165 ex->has_error_code, ex->error_code,
11166 ex->has_payload, ex->payload);
11167 ex->injected = false;
11168 ex->pending = false;
11169 }
11170 vcpu->arch.exception_from_userspace = false;
11171
716d51ab
GN
11172 if (unlikely(vcpu->arch.complete_userspace_io)) {
11173 int (*cui)(struct kvm_vcpu *) = vcpu->arch.complete_userspace_io;
11174 vcpu->arch.complete_userspace_io = NULL;
11175 r = cui(vcpu);
11176 if (r <= 0)
5663d8f9 11177 goto out;
0bc27326
SC
11178 } else {
11179 WARN_ON_ONCE(vcpu->arch.pio.count);
11180 WARN_ON_ONCE(vcpu->mmio_needed);
11181 }
5287f194 11182
fc4fad79 11183 if (kvm_run->immediate_exit) {
460df4c1 11184 r = -EINTR;
fc4fad79
SC
11185 goto out;
11186 }
11187
11188 r = static_call(kvm_x86_vcpu_pre_run)(vcpu);
11189 if (r <= 0)
11190 goto out;
11191
11192 r = vcpu_run(vcpu);
b6c7a5dc
HB
11193
11194out:
5663d8f9 11195 kvm_put_guest_fpu(vcpu);
1b94f6f8 11196 if (kvm_run->kvm_valid_regs)
01643c51 11197 store_regs(vcpu);
f1d86e46 11198 post_kvm_run_save(vcpu);
2031f287 11199 kvm_vcpu_srcu_read_unlock(vcpu);
b6c7a5dc 11200
8d25b7be 11201 kvm_sigset_deactivate(vcpu);
accb757d 11202 vcpu_put(vcpu);
b6c7a5dc
HB
11203 return r;
11204}
11205
01643c51 11206static void __get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 11207{
7ae441ea
GN
11208 if (vcpu->arch.emulate_regs_need_sync_to_vcpu) {
11209 /*
11210 * We are here if userspace calls get_regs() in the middle of
11211 * instruction emulation. Registers state needs to be copied
4a969980 11212 * back from emulation context to vcpu. Userspace shouldn't do
7ae441ea
GN
11213 * that usually, but some bad designed PV devices (vmware
11214 * backdoor interface) need this to work
11215 */
c9b8b07c 11216 emulator_writeback_register_cache(vcpu->arch.emulate_ctxt);
7ae441ea
GN
11217 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11218 }
de3cd117
SC
11219 regs->rax = kvm_rax_read(vcpu);
11220 regs->rbx = kvm_rbx_read(vcpu);
11221 regs->rcx = kvm_rcx_read(vcpu);
11222 regs->rdx = kvm_rdx_read(vcpu);
11223 regs->rsi = kvm_rsi_read(vcpu);
11224 regs->rdi = kvm_rdi_read(vcpu);
e9c16c78 11225 regs->rsp = kvm_rsp_read(vcpu);
de3cd117 11226 regs->rbp = kvm_rbp_read(vcpu);
b6c7a5dc 11227#ifdef CONFIG_X86_64
de3cd117
SC
11228 regs->r8 = kvm_r8_read(vcpu);
11229 regs->r9 = kvm_r9_read(vcpu);
11230 regs->r10 = kvm_r10_read(vcpu);
11231 regs->r11 = kvm_r11_read(vcpu);
11232 regs->r12 = kvm_r12_read(vcpu);
11233 regs->r13 = kvm_r13_read(vcpu);
11234 regs->r14 = kvm_r14_read(vcpu);
11235 regs->r15 = kvm_r15_read(vcpu);
b6c7a5dc
HB
11236#endif
11237
5fdbf976 11238 regs->rip = kvm_rip_read(vcpu);
91586a3b 11239 regs->rflags = kvm_get_rflags(vcpu);
01643c51 11240}
b6c7a5dc 11241
01643c51
KH
11242int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11243{
11244 vcpu_load(vcpu);
11245 __get_regs(vcpu, regs);
1fc9b76b 11246 vcpu_put(vcpu);
b6c7a5dc
HB
11247 return 0;
11248}
11249
01643c51 11250static void __set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
b6c7a5dc 11251{
7ae441ea
GN
11252 vcpu->arch.emulate_regs_need_sync_from_vcpu = true;
11253 vcpu->arch.emulate_regs_need_sync_to_vcpu = false;
11254
de3cd117
SC
11255 kvm_rax_write(vcpu, regs->rax);
11256 kvm_rbx_write(vcpu, regs->rbx);
11257 kvm_rcx_write(vcpu, regs->rcx);
11258 kvm_rdx_write(vcpu, regs->rdx);
11259 kvm_rsi_write(vcpu, regs->rsi);
11260 kvm_rdi_write(vcpu, regs->rdi);
e9c16c78 11261 kvm_rsp_write(vcpu, regs->rsp);
de3cd117 11262 kvm_rbp_write(vcpu, regs->rbp);
b6c7a5dc 11263#ifdef CONFIG_X86_64
de3cd117
SC
11264 kvm_r8_write(vcpu, regs->r8);
11265 kvm_r9_write(vcpu, regs->r9);
11266 kvm_r10_write(vcpu, regs->r10);
11267 kvm_r11_write(vcpu, regs->r11);
11268 kvm_r12_write(vcpu, regs->r12);
11269 kvm_r13_write(vcpu, regs->r13);
11270 kvm_r14_write(vcpu, regs->r14);
11271 kvm_r15_write(vcpu, regs->r15);
b6c7a5dc
HB
11272#endif
11273
5fdbf976 11274 kvm_rip_write(vcpu, regs->rip);
d73235d1 11275 kvm_set_rflags(vcpu, regs->rflags | X86_EFLAGS_FIXED);
b6c7a5dc 11276
b4f14abd 11277 vcpu->arch.exception.pending = false;
7709aba8 11278 vcpu->arch.exception_vmexit.pending = false;
b4f14abd 11279
3842d135 11280 kvm_make_request(KVM_REQ_EVENT, vcpu);
01643c51 11281}
3842d135 11282
01643c51
KH
11283int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
11284{
11285 vcpu_load(vcpu);
11286 __set_regs(vcpu, regs);
875656fe 11287 vcpu_put(vcpu);
b6c7a5dc
HB
11288 return 0;
11289}
11290
6dba9403 11291static void __get_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
b6c7a5dc 11292{
89a27f4d 11293 struct desc_ptr dt;
b6c7a5dc 11294
5265713a
TL
11295 if (vcpu->arch.guest_state_protected)
11296 goto skip_protected_regs;
11297
3e6e0aab
GT
11298 kvm_get_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11299 kvm_get_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11300 kvm_get_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11301 kvm_get_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11302 kvm_get_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11303 kvm_get_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 11304
3e6e0aab
GT
11305 kvm_get_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11306 kvm_get_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 11307
b3646477 11308 static_call(kvm_x86_get_idt)(vcpu, &dt);
89a27f4d
GN
11309 sregs->idt.limit = dt.size;
11310 sregs->idt.base = dt.address;
b3646477 11311 static_call(kvm_x86_get_gdt)(vcpu, &dt);
89a27f4d
GN
11312 sregs->gdt.limit = dt.size;
11313 sregs->gdt.base = dt.address;
b6c7a5dc 11314
ad312c7c 11315 sregs->cr2 = vcpu->arch.cr2;
9f8fe504 11316 sregs->cr3 = kvm_read_cr3(vcpu);
5265713a
TL
11317
11318skip_protected_regs:
11319 sregs->cr0 = kvm_read_cr0(vcpu);
fc78f519 11320 sregs->cr4 = kvm_read_cr4(vcpu);
2d3ad1f4 11321 sregs->cr8 = kvm_get_cr8(vcpu);
f6801dff 11322 sregs->efer = vcpu->arch.efer;
b6c7a5dc 11323 sregs->apic_base = kvm_get_apic_base(vcpu);
6dba9403 11324}
b6c7a5dc 11325
6dba9403
ML
11326static void __get_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11327{
11328 __get_sregs_common(vcpu, sregs);
11329
11330 if (vcpu->arch.guest_state_protected)
11331 return;
b6c7a5dc 11332
04140b41 11333 if (vcpu->arch.interrupt.injected && !vcpu->arch.interrupt.soft)
14d0bc1f
GN
11334 set_bit(vcpu->arch.interrupt.nr,
11335 (unsigned long *)sregs->interrupt_bitmap);
01643c51 11336}
16d7a191 11337
6dba9403
ML
11338static void __get_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11339{
11340 int i;
11341
11342 __get_sregs_common(vcpu, (struct kvm_sregs *)sregs2);
11343
11344 if (vcpu->arch.guest_state_protected)
11345 return;
11346
11347 if (is_pae_paging(vcpu)) {
11348 for (i = 0 ; i < 4 ; i++)
11349 sregs2->pdptrs[i] = kvm_pdptr_read(vcpu, i);
11350 sregs2->flags |= KVM_SREGS2_FLAGS_PDPTRS_VALID;
11351 }
11352}
11353
01643c51
KH
11354int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
11355 struct kvm_sregs *sregs)
11356{
11357 vcpu_load(vcpu);
11358 __get_sregs(vcpu, sregs);
bcdec41c 11359 vcpu_put(vcpu);
b6c7a5dc
HB
11360 return 0;
11361}
11362
62d9f0db
MT
11363int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
11364 struct kvm_mp_state *mp_state)
11365{
4fe09bcf
JM
11366 int r;
11367
fd232561 11368 vcpu_load(vcpu);
f958bd23
SC
11369 if (kvm_mpx_supported())
11370 kvm_load_guest_fpu(vcpu);
fd232561 11371
4fe09bcf
JM
11372 r = kvm_apic_accept_events(vcpu);
11373 if (r < 0)
11374 goto out;
11375 r = 0;
11376
647daca2
TL
11377 if ((vcpu->arch.mp_state == KVM_MP_STATE_HALTED ||
11378 vcpu->arch.mp_state == KVM_MP_STATE_AP_RESET_HOLD) &&
11379 vcpu->arch.pv.pv_unhalted)
6aef266c
SV
11380 mp_state->mp_state = KVM_MP_STATE_RUNNABLE;
11381 else
11382 mp_state->mp_state = vcpu->arch.mp_state;
11383
4fe09bcf 11384out:
f958bd23
SC
11385 if (kvm_mpx_supported())
11386 kvm_put_guest_fpu(vcpu);
fd232561 11387 vcpu_put(vcpu);
4fe09bcf 11388 return r;
62d9f0db
MT
11389}
11390
11391int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
11392 struct kvm_mp_state *mp_state)
11393{
e83dff5e
CD
11394 int ret = -EINVAL;
11395
11396 vcpu_load(vcpu);
11397
22c6a0ef
PB
11398 switch (mp_state->mp_state) {
11399 case KVM_MP_STATE_UNINITIALIZED:
11400 case KVM_MP_STATE_HALTED:
11401 case KVM_MP_STATE_AP_RESET_HOLD:
11402 case KVM_MP_STATE_INIT_RECEIVED:
11403 case KVM_MP_STATE_SIPI_RECEIVED:
11404 if (!lapic_in_kernel(vcpu))
11405 goto out;
11406 break;
11407
11408 case KVM_MP_STATE_RUNNABLE:
11409 break;
11410
11411 default:
e83dff5e 11412 goto out;
22c6a0ef 11413 }
66450a21 11414
27cbe7d6 11415 /*
1b7a1b78
SC
11416 * Pending INITs are reported using KVM_SET_VCPU_EVENTS, disallow
11417 * forcing the guest into INIT/SIPI if those events are supposed to be
11418 * blocked. KVM prioritizes SMI over INIT, so reject INIT/SIPI state
11419 * if an SMI is pending as well.
27cbe7d6 11420 */
1b7a1b78 11421 if ((!kvm_apic_init_sipi_allowed(vcpu) || vcpu->arch.smi_pending) &&
28bf2888
DH
11422 (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED ||
11423 mp_state->mp_state == KVM_MP_STATE_INIT_RECEIVED))
e83dff5e 11424 goto out;
28bf2888 11425
66450a21
JK
11426 if (mp_state->mp_state == KVM_MP_STATE_SIPI_RECEIVED) {
11427 vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
11428 set_bit(KVM_APIC_SIPI, &vcpu->arch.apic->pending_events);
11429 } else
11430 vcpu->arch.mp_state = mp_state->mp_state;
3842d135 11431 kvm_make_request(KVM_REQ_EVENT, vcpu);
e83dff5e
CD
11432
11433 ret = 0;
11434out:
11435 vcpu_put(vcpu);
11436 return ret;
62d9f0db
MT
11437}
11438
7f3d35fd
KW
11439int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
11440 int reason, bool has_error_code, u32 error_code)
b6c7a5dc 11441{
c9b8b07c 11442 struct x86_emulate_ctxt *ctxt = vcpu->arch.emulate_ctxt;
8ec4722d 11443 int ret;
e01c2426 11444
8ec4722d 11445 init_emulate_ctxt(vcpu);
c697518a 11446
7f3d35fd 11447 ret = emulator_task_switch(ctxt, tss_selector, idt_index, reason,
9d74191a 11448 has_error_code, error_code);
1051778f
SC
11449 if (ret) {
11450 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
11451 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
11452 vcpu->run->internal.ndata = 0;
60fc3d02 11453 return 0;
1051778f 11454 }
37817f29 11455
9d74191a
TY
11456 kvm_rip_write(vcpu, ctxt->eip);
11457 kvm_set_rflags(vcpu, ctxt->eflags);
60fc3d02 11458 return 1;
37817f29
IE
11459}
11460EXPORT_SYMBOL_GPL(kvm_task_switch);
11461
ee69c92b 11462static bool kvm_is_valid_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
f2981033 11463{
37b95951 11464 if ((sregs->efer & EFER_LME) && (sregs->cr0 & X86_CR0_PG)) {
f2981033
LT
11465 /*
11466 * When EFER.LME and CR0.PG are set, the processor is in
11467 * 64-bit mode (though maybe in a 32-bit code segment).
11468 * CR4.PAE and EFER.LMA must be set.
11469 */
ee69c92b
SC
11470 if (!(sregs->cr4 & X86_CR4_PAE) || !(sregs->efer & EFER_LMA))
11471 return false;
ca29e145 11472 if (kvm_vcpu_is_illegal_gpa(vcpu, sregs->cr3))
c1c35cf7 11473 return false;
f2981033
LT
11474 } else {
11475 /*
11476 * Not in 64-bit mode: EFER.LMA is clear and the code
11477 * segment cannot be 64-bit.
11478 */
11479 if (sregs->efer & EFER_LMA || sregs->cs.l)
ee69c92b 11480 return false;
f2981033
LT
11481 }
11482
26a0652c
SC
11483 return kvm_is_valid_cr4(vcpu, sregs->cr4) &&
11484 kvm_is_valid_cr0(vcpu, sregs->cr0);
f2981033
LT
11485}
11486
6dba9403
ML
11487static int __set_sregs_common(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs,
11488 int *mmu_reset_needed, bool update_pdptrs)
b6c7a5dc 11489{
58cb628d 11490 struct msr_data apic_base_msr;
6dba9403 11491 int idx;
89a27f4d 11492 struct desc_ptr dt;
b4ef9d4e 11493
ee69c92b 11494 if (!kvm_is_valid_sregs(vcpu, sregs))
6dba9403 11495 return -EINVAL;
f2981033 11496
d3802286
JM
11497 apic_base_msr.data = sregs->apic_base;
11498 apic_base_msr.host_initiated = true;
11499 if (kvm_set_apic_base(vcpu, &apic_base_msr))
6dba9403 11500 return -EINVAL;
6d1068b3 11501
5265713a 11502 if (vcpu->arch.guest_state_protected)
6dba9403 11503 return 0;
5265713a 11504
89a27f4d
GN
11505 dt.size = sregs->idt.limit;
11506 dt.address = sregs->idt.base;
b3646477 11507 static_call(kvm_x86_set_idt)(vcpu, &dt);
89a27f4d
GN
11508 dt.size = sregs->gdt.limit;
11509 dt.address = sregs->gdt.base;
b3646477 11510 static_call(kvm_x86_set_gdt)(vcpu, &dt);
b6c7a5dc 11511
ad312c7c 11512 vcpu->arch.cr2 = sregs->cr2;
6dba9403 11513 *mmu_reset_needed |= kvm_read_cr3(vcpu) != sregs->cr3;
dc7e795e 11514 vcpu->arch.cr3 = sregs->cr3;
3883bc9d 11515 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
405329fc 11516 static_call_cond(kvm_x86_post_set_cr3)(vcpu, sregs->cr3);
b6c7a5dc 11517
2d3ad1f4 11518 kvm_set_cr8(vcpu, sregs->cr8);
b6c7a5dc 11519
6dba9403 11520 *mmu_reset_needed |= vcpu->arch.efer != sregs->efer;
b3646477 11521 static_call(kvm_x86_set_efer)(vcpu, sregs->efer);
b6c7a5dc 11522
6dba9403 11523 *mmu_reset_needed |= kvm_read_cr0(vcpu) != sregs->cr0;
b3646477 11524 static_call(kvm_x86_set_cr0)(vcpu, sregs->cr0);
d7306163 11525 vcpu->arch.cr0 = sregs->cr0;
b6c7a5dc 11526
6dba9403 11527 *mmu_reset_needed |= kvm_read_cr4(vcpu) != sregs->cr4;
b3646477 11528 static_call(kvm_x86_set_cr4)(vcpu, sregs->cr4);
63f42e02 11529
6dba9403
ML
11530 if (update_pdptrs) {
11531 idx = srcu_read_lock(&vcpu->kvm->srcu);
11532 if (is_pae_paging(vcpu)) {
2df4a5eb 11533 load_pdptrs(vcpu, kvm_read_cr3(vcpu));
6dba9403
ML
11534 *mmu_reset_needed = 1;
11535 }
11536 srcu_read_unlock(&vcpu->kvm->srcu, idx);
7c93be44 11537 }
b6c7a5dc 11538
3e6e0aab
GT
11539 kvm_set_segment(vcpu, &sregs->cs, VCPU_SREG_CS);
11540 kvm_set_segment(vcpu, &sregs->ds, VCPU_SREG_DS);
11541 kvm_set_segment(vcpu, &sregs->es, VCPU_SREG_ES);
11542 kvm_set_segment(vcpu, &sregs->fs, VCPU_SREG_FS);
11543 kvm_set_segment(vcpu, &sregs->gs, VCPU_SREG_GS);
11544 kvm_set_segment(vcpu, &sregs->ss, VCPU_SREG_SS);
b6c7a5dc 11545
3e6e0aab
GT
11546 kvm_set_segment(vcpu, &sregs->tr, VCPU_SREG_TR);
11547 kvm_set_segment(vcpu, &sregs->ldt, VCPU_SREG_LDTR);
b6c7a5dc 11548
5f0269f5
ME
11549 update_cr8_intercept(vcpu);
11550
9c3e4aab 11551 /* Older userspace won't unhalt the vcpu on reset. */
c5af89b6 11552 if (kvm_vcpu_is_bsp(vcpu) && kvm_rip_read(vcpu) == 0xfff0 &&
9c3e4aab 11553 sregs->cs.selector == 0xf000 && sregs->cs.base == 0xffff0000 &&
3eeb3288 11554 !is_protmode(vcpu))
9c3e4aab
MT
11555 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11556
6dba9403
ML
11557 return 0;
11558}
11559
11560static int __set_sregs(struct kvm_vcpu *vcpu, struct kvm_sregs *sregs)
11561{
11562 int pending_vec, max_bits;
11563 int mmu_reset_needed = 0;
11564 int ret = __set_sregs_common(vcpu, sregs, &mmu_reset_needed, true);
11565
11566 if (ret)
11567 return ret;
11568
11569 if (mmu_reset_needed)
11570 kvm_mmu_reset_context(vcpu);
11571
5265713a
TL
11572 max_bits = KVM_NR_INTERRUPTS;
11573 pending_vec = find_first_bit(
11574 (const unsigned long *)sregs->interrupt_bitmap, max_bits);
6dba9403 11575
5265713a
TL
11576 if (pending_vec < max_bits) {
11577 kvm_queue_interrupt(vcpu, pending_vec, false);
11578 pr_debug("Set back pending irq %d\n", pending_vec);
6dba9403 11579 kvm_make_request(KVM_REQ_EVENT, vcpu);
5265713a 11580 }
6dba9403
ML
11581 return 0;
11582}
5265713a 11583
6dba9403
ML
11584static int __set_sregs2(struct kvm_vcpu *vcpu, struct kvm_sregs2 *sregs2)
11585{
11586 int mmu_reset_needed = 0;
11587 bool valid_pdptrs = sregs2->flags & KVM_SREGS2_FLAGS_PDPTRS_VALID;
11588 bool pae = (sregs2->cr0 & X86_CR0_PG) && (sregs2->cr4 & X86_CR4_PAE) &&
11589 !(sregs2->efer & EFER_LMA);
11590 int i, ret;
3842d135 11591
6dba9403
ML
11592 if (sregs2->flags & ~KVM_SREGS2_FLAGS_PDPTRS_VALID)
11593 return -EINVAL;
11594
11595 if (valid_pdptrs && (!pae || vcpu->arch.guest_state_protected))
11596 return -EINVAL;
11597
11598 ret = __set_sregs_common(vcpu, (struct kvm_sregs *)sregs2,
11599 &mmu_reset_needed, !valid_pdptrs);
11600 if (ret)
11601 return ret;
11602
11603 if (valid_pdptrs) {
11604 for (i = 0; i < 4 ; i++)
11605 kvm_pdptr_write(vcpu, i, sregs2->pdptrs[i]);
11606
11607 kvm_register_mark_dirty(vcpu, VCPU_EXREG_PDPTR);
11608 mmu_reset_needed = 1;
158a48ec 11609 vcpu->arch.pdptrs_from_userspace = true;
6dba9403
ML
11610 }
11611 if (mmu_reset_needed)
11612 kvm_mmu_reset_context(vcpu);
11613 return 0;
01643c51
KH
11614}
11615
11616int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
11617 struct kvm_sregs *sregs)
11618{
11619 int ret;
11620
11621 vcpu_load(vcpu);
11622 ret = __set_sregs(vcpu, sregs);
b4ef9d4e
CD
11623 vcpu_put(vcpu);
11624 return ret;
b6c7a5dc
HB
11625}
11626
cae72dcc
ML
11627static void kvm_arch_vcpu_guestdbg_update_apicv_inhibit(struct kvm *kvm)
11628{
320af55a 11629 bool set = false;
cae72dcc 11630 struct kvm_vcpu *vcpu;
46808a4c 11631 unsigned long i;
cae72dcc 11632
0047fb33
SC
11633 if (!enable_apicv)
11634 return;
11635
cae72dcc
ML
11636 down_write(&kvm->arch.apicv_update_lock);
11637
11638 kvm_for_each_vcpu(i, vcpu, kvm) {
11639 if (vcpu->guest_debug & KVM_GUESTDBG_BLOCKIRQ) {
320af55a 11640 set = true;
cae72dcc
ML
11641 break;
11642 }
11643 }
320af55a 11644 __kvm_set_or_clear_apicv_inhibit(kvm, APICV_INHIBIT_REASON_BLOCKIRQ, set);
cae72dcc
ML
11645 up_write(&kvm->arch.apicv_update_lock);
11646}
11647
d0bfb940
JK
11648int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
11649 struct kvm_guest_debug *dbg)
b6c7a5dc 11650{
355be0b9 11651 unsigned long rflags;
ae675ef0 11652 int i, r;
b6c7a5dc 11653
8d4846b9
TL
11654 if (vcpu->arch.guest_state_protected)
11655 return -EINVAL;
11656
66b56562
CD
11657 vcpu_load(vcpu);
11658
4f926bf2
JK
11659 if (dbg->control & (KVM_GUESTDBG_INJECT_DB | KVM_GUESTDBG_INJECT_BP)) {
11660 r = -EBUSY;
7709aba8 11661 if (kvm_is_exception_pending(vcpu))
2122ff5e 11662 goto out;
4f926bf2
JK
11663 if (dbg->control & KVM_GUESTDBG_INJECT_DB)
11664 kvm_queue_exception(vcpu, DB_VECTOR);
11665 else
11666 kvm_queue_exception(vcpu, BP_VECTOR);
11667 }
11668
91586a3b
JK
11669 /*
11670 * Read rflags as long as potentially injected trace flags are still
11671 * filtered out.
11672 */
11673 rflags = kvm_get_rflags(vcpu);
355be0b9
JK
11674
11675 vcpu->guest_debug = dbg->control;
11676 if (!(vcpu->guest_debug & KVM_GUESTDBG_ENABLE))
11677 vcpu->guest_debug = 0;
11678
11679 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
ae675ef0
JK
11680 for (i = 0; i < KVM_NR_DB_REGS; ++i)
11681 vcpu->arch.eff_db[i] = dbg->arch.debugreg[i];
c8639010 11682 vcpu->arch.guest_debug_dr7 = dbg->arch.debugreg[7];
ae675ef0
JK
11683 } else {
11684 for (i = 0; i < KVM_NR_DB_REGS; i++)
11685 vcpu->arch.eff_db[i] = vcpu->arch.db[i];
ae675ef0 11686 }
c8639010 11687 kvm_update_dr7(vcpu);
ae675ef0 11688
f92653ee 11689 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
e87e46d5 11690 vcpu->arch.singlestep_rip = kvm_get_linear_rip(vcpu);
94fe45da 11691
91586a3b
JK
11692 /*
11693 * Trigger an rflags update that will inject or remove the trace
11694 * flags.
11695 */
11696 kvm_set_rflags(vcpu, rflags);
b6c7a5dc 11697
b3646477 11698 static_call(kvm_x86_update_exception_bitmap)(vcpu);
b6c7a5dc 11699
cae72dcc
ML
11700 kvm_arch_vcpu_guestdbg_update_apicv_inhibit(vcpu->kvm);
11701
4f926bf2 11702 r = 0;
d0bfb940 11703
2122ff5e 11704out:
66b56562 11705 vcpu_put(vcpu);
b6c7a5dc
HB
11706 return r;
11707}
11708
8b006791
ZX
11709/*
11710 * Translate a guest virtual address to a guest physical address.
11711 */
11712int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
11713 struct kvm_translation *tr)
11714{
11715 unsigned long vaddr = tr->linear_address;
11716 gpa_t gpa;
f656ce01 11717 int idx;
8b006791 11718
1da5b61d
CD
11719 vcpu_load(vcpu);
11720
f656ce01 11721 idx = srcu_read_lock(&vcpu->kvm->srcu);
1871c602 11722 gpa = kvm_mmu_gva_to_gpa_system(vcpu, vaddr, NULL);
f656ce01 11723 srcu_read_unlock(&vcpu->kvm->srcu, idx);
8b006791 11724 tr->physical_address = gpa;
6e1d2a3f 11725 tr->valid = gpa != INVALID_GPA;
8b006791
ZX
11726 tr->writeable = 1;
11727 tr->usermode = 0;
8b006791 11728
1da5b61d 11729 vcpu_put(vcpu);
8b006791
ZX
11730 return 0;
11731}
11732
d0752060
HB
11733int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11734{
1393123e 11735 struct fxregs_state *fxsave;
d0752060 11736
d69c1382 11737 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
ed02b213
TL
11738 return 0;
11739
1393123e 11740 vcpu_load(vcpu);
d0752060 11741
d69c1382 11742 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
d0752060
HB
11743 memcpy(fpu->fpr, fxsave->st_space, 128);
11744 fpu->fcw = fxsave->cwd;
11745 fpu->fsw = fxsave->swd;
11746 fpu->ftwx = fxsave->twd;
11747 fpu->last_opcode = fxsave->fop;
11748 fpu->last_ip = fxsave->rip;
11749 fpu->last_dp = fxsave->rdp;
0e96f31e 11750 memcpy(fpu->xmm, fxsave->xmm_space, sizeof(fxsave->xmm_space));
d0752060 11751
1393123e 11752 vcpu_put(vcpu);
d0752060
HB
11753 return 0;
11754}
11755
11756int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
11757{
6a96bc7f
CD
11758 struct fxregs_state *fxsave;
11759
d69c1382 11760 if (fpstate_is_confidential(&vcpu->arch.guest_fpu))
ed02b213
TL
11761 return 0;
11762
6a96bc7f
CD
11763 vcpu_load(vcpu);
11764
d69c1382 11765 fxsave = &vcpu->arch.guest_fpu.fpstate->regs.fxsave;
d0752060 11766
d0752060
HB
11767 memcpy(fxsave->st_space, fpu->fpr, 128);
11768 fxsave->cwd = fpu->fcw;
11769 fxsave->swd = fpu->fsw;
11770 fxsave->twd = fpu->ftwx;
11771 fxsave->fop = fpu->last_opcode;
11772 fxsave->rip = fpu->last_ip;
11773 fxsave->rdp = fpu->last_dp;
0e96f31e 11774 memcpy(fxsave->xmm_space, fpu->xmm, sizeof(fxsave->xmm_space));
d0752060 11775
6a96bc7f 11776 vcpu_put(vcpu);
d0752060
HB
11777 return 0;
11778}
11779
01643c51
KH
11780static void store_regs(struct kvm_vcpu *vcpu)
11781{
11782 BUILD_BUG_ON(sizeof(struct kvm_sync_regs) > SYNC_REGS_SIZE_BYTES);
11783
11784 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_REGS)
11785 __get_regs(vcpu, &vcpu->run->s.regs.regs);
11786
11787 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_SREGS)
11788 __get_sregs(vcpu, &vcpu->run->s.regs.sregs);
11789
11790 if (vcpu->run->kvm_valid_regs & KVM_SYNC_X86_EVENTS)
11791 kvm_vcpu_ioctl_x86_get_vcpu_events(
11792 vcpu, &vcpu->run->s.regs.events);
11793}
11794
11795static int sync_regs(struct kvm_vcpu *vcpu)
11796{
01643c51
KH
11797 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_REGS) {
11798 __set_regs(vcpu, &vcpu->run->s.regs.regs);
11799 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_REGS;
11800 }
11801 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_SREGS) {
11802 if (__set_sregs(vcpu, &vcpu->run->s.regs.sregs))
11803 return -EINVAL;
11804 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_SREGS;
11805 }
11806 if (vcpu->run->kvm_dirty_regs & KVM_SYNC_X86_EVENTS) {
11807 if (kvm_vcpu_ioctl_x86_set_vcpu_events(
11808 vcpu, &vcpu->run->s.regs.events))
11809 return -EINVAL;
11810 vcpu->run->kvm_dirty_regs &= ~KVM_SYNC_X86_EVENTS;
11811 }
11812
11813 return 0;
11814}
11815
897cc38e 11816int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id)
e9b11c17 11817{
1d5e740d 11818 if (kvm_check_tsc_unstable() && kvm->created_vcpus)
8d20bd63 11819 pr_warn_once("SMP vm created on host with unstable TSC; "
897cc38e 11820 "guest TSC will not be reliable\n");
7f1ea208 11821
35875316
ZG
11822 if (!kvm->arch.max_vcpu_ids)
11823 kvm->arch.max_vcpu_ids = KVM_MAX_VCPU_IDS;
11824
11825 if (id >= kvm->arch.max_vcpu_ids)
11826 return -EINVAL;
11827
d588bb9b 11828 return static_call(kvm_x86_vcpu_precreate)(kvm);
e9b11c17
ZX
11829}
11830
e529ef66 11831int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu)
e9b11c17 11832{
95a0d01e
SC
11833 struct page *page;
11834 int r;
c447e76b 11835
63f5a190 11836 vcpu->arch.last_vmentry_cpu = -1;
7117003f
SC
11837 vcpu->arch.regs_avail = ~0;
11838 vcpu->arch.regs_dirty = ~0;
63f5a190 11839
8c82a0b3 11840 kvm_gpc_init(&vcpu->arch.pv_time, vcpu->kvm, vcpu, KVM_HOST_USES_PFN);
52491a38 11841
95a0d01e
SC
11842 if (!irqchip_in_kernel(vcpu->kvm) || kvm_vcpu_is_reset_bsp(vcpu))
11843 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
11844 else
11845 vcpu->arch.mp_state = KVM_MP_STATE_UNINITIALIZED;
c447e76b 11846
95a0d01e
SC
11847 r = kvm_mmu_create(vcpu);
11848 if (r < 0)
11849 return r;
11850
11851 if (irqchip_in_kernel(vcpu->kvm)) {
95a0d01e
SC
11852 r = kvm_create_lapic(vcpu, lapic_timer_advance_ns);
11853 if (r < 0)
11854 goto fail_mmu_destroy;
423ecfea
SC
11855
11856 /*
11857 * Defer evaluating inhibits until the vCPU is first run, as
11858 * this vCPU will not get notified of any changes until this
11859 * vCPU is visible to other vCPUs (marked online and added to
11860 * the set of vCPUs). Opportunistically mark APICv active as
11861 * VMX in particularly is highly unlikely to have inhibits.
11862 * Ignore the current per-VM APICv state so that vCPU creation
11863 * is guaranteed to run with a deterministic value, the request
11864 * will ensure the vCPU gets the correct state before VM-Entry.
11865 */
11866 if (enable_apicv) {
ce0a58f4 11867 vcpu->arch.apic->apicv_active = true;
423ecfea
SC
11868 kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
11869 }
95a0d01e 11870 } else
6e4e3b4d 11871 static_branch_inc(&kvm_has_noapic_vcpu);
95a0d01e
SC
11872
11873 r = -ENOMEM;
11874
93bb59ca 11875 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
95a0d01e
SC
11876 if (!page)
11877 goto fail_free_lapic;
11878 vcpu->arch.pio_data = page_address(page);
11879
087acc4e 11880 vcpu->arch.mce_banks = kcalloc(KVM_MAX_MCE_BANKS * 4, sizeof(u64),
95a0d01e 11881 GFP_KERNEL_ACCOUNT);
281b5278
JW
11882 vcpu->arch.mci_ctl2_banks = kcalloc(KVM_MAX_MCE_BANKS, sizeof(u64),
11883 GFP_KERNEL_ACCOUNT);
11884 if (!vcpu->arch.mce_banks || !vcpu->arch.mci_ctl2_banks)
3c0ba05c 11885 goto fail_free_mce_banks;
95a0d01e
SC
11886 vcpu->arch.mcg_cap = KVM_MAX_MCE_BANKS;
11887
11888 if (!zalloc_cpumask_var(&vcpu->arch.wbinvd_dirty_mask,
11889 GFP_KERNEL_ACCOUNT))
11890 goto fail_free_mce_banks;
11891
c9b8b07c
SC
11892 if (!alloc_emulate_ctxt(vcpu))
11893 goto free_wbinvd_dirty_mask;
11894
d69c1382 11895 if (!fpu_alloc_guest_fpstate(&vcpu->arch.guest_fpu)) {
8d20bd63 11896 pr_err("failed to allocate vcpu's fpu\n");
c9b8b07c 11897 goto free_emulate_ctxt;
95a0d01e
SC
11898 }
11899
95a0d01e 11900 vcpu->arch.maxphyaddr = cpuid_query_maxphyaddr(vcpu);
a8ac864a 11901 vcpu->arch.reserved_gpa_bits = kvm_vcpu_reserved_gpa_bits_raw(vcpu);
95a0d01e
SC
11902
11903 vcpu->arch.pat = MSR_IA32_CR_PAT_DEFAULT;
11904
11905 kvm_async_pf_hash_reset(vcpu);
6c6f82be
SC
11906
11907 vcpu->arch.perf_capabilities = kvm_caps.supported_perf_cap;
95a0d01e
SC
11908 kvm_pmu_init(vcpu);
11909
11910 vcpu->arch.pending_external_vector = -1;
11911 vcpu->arch.preempted_in_kernel = false;
11912
3c86c0d3
VP
11913#if IS_ENABLED(CONFIG_HYPERV)
11914 vcpu->arch.hv_root_tdp = INVALID_PAGE;
11915#endif
11916
b3646477 11917 r = static_call(kvm_x86_vcpu_create)(vcpu);
95a0d01e
SC
11918 if (r)
11919 goto free_guest_fpu;
e9b11c17 11920
0cf9135b 11921 vcpu->arch.arch_capabilities = kvm_get_arch_capabilities();
e53d88af 11922 vcpu->arch.msr_platform_info = MSR_PLATFORM_INFO_CPUID_FAULT;
942c2490 11923 kvm_xen_init_vcpu(vcpu);
19efffa2 11924 kvm_vcpu_mtrr_init(vcpu);
ec7660cc 11925 vcpu_load(vcpu);
ffbb61d0 11926 kvm_set_tsc_khz(vcpu, vcpu->kvm->arch.default_tsc_khz);
d28bc9dd 11927 kvm_vcpu_reset(vcpu, false);
c9060662 11928 kvm_init_mmu(vcpu);
e9b11c17 11929 vcpu_put(vcpu);
ec7660cc 11930 return 0;
95a0d01e
SC
11931
11932free_guest_fpu:
d69c1382 11933 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
c9b8b07c
SC
11934free_emulate_ctxt:
11935 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
95a0d01e
SC
11936free_wbinvd_dirty_mask:
11937 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
11938fail_free_mce_banks:
11939 kfree(vcpu->arch.mce_banks);
281b5278 11940 kfree(vcpu->arch.mci_ctl2_banks);
95a0d01e
SC
11941 free_page((unsigned long)vcpu->arch.pio_data);
11942fail_free_lapic:
11943 kvm_free_lapic(vcpu);
11944fail_mmu_destroy:
11945 kvm_mmu_destroy(vcpu);
11946 return r;
e9b11c17
ZX
11947}
11948
31928aa5 11949void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
42897d86 11950{
332967a3 11951 struct kvm *kvm = vcpu->kvm;
42897d86 11952
ec7660cc 11953 if (mutex_lock_killable(&vcpu->mutex))
31928aa5 11954 return;
ec7660cc 11955 vcpu_load(vcpu);
0c899c25 11956 kvm_synchronize_tsc(vcpu, 0);
42897d86 11957 vcpu_put(vcpu);
2d5ba19b
MT
11958
11959 /* poll control enabled by default */
11960 vcpu->arch.msr_kvm_poll_control = 1;
11961
ec7660cc 11962 mutex_unlock(&vcpu->mutex);
42897d86 11963
b34de572
WL
11964 if (kvmclock_periodic_sync && vcpu->vcpu_idx == 0)
11965 schedule_delayed_work(&kvm->arch.kvmclock_sync_work,
11966 KVMCLOCK_SYNC_PERIOD);
42897d86
MT
11967}
11968
d40ccc62 11969void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
e9b11c17 11970{
95a0d01e 11971 int idx;
344d9588 11972
50b143e1 11973 kvmclock_reset(vcpu);
e9b11c17 11974
b3646477 11975 static_call(kvm_x86_vcpu_free)(vcpu);
50b143e1 11976
c9b8b07c 11977 kmem_cache_free(x86_emulator_cache, vcpu->arch.emulate_ctxt);
50b143e1 11978 free_cpumask_var(vcpu->arch.wbinvd_dirty_mask);
d69c1382 11979 fpu_free_guest_fpstate(&vcpu->arch.guest_fpu);
95a0d01e 11980
a795cd43 11981 kvm_xen_destroy_vcpu(vcpu);
95a0d01e
SC
11982 kvm_hv_vcpu_uninit(vcpu);
11983 kvm_pmu_destroy(vcpu);
11984 kfree(vcpu->arch.mce_banks);
281b5278 11985 kfree(vcpu->arch.mci_ctl2_banks);
95a0d01e
SC
11986 kvm_free_lapic(vcpu);
11987 idx = srcu_read_lock(&vcpu->kvm->srcu);
11988 kvm_mmu_destroy(vcpu);
11989 srcu_read_unlock(&vcpu->kvm->srcu, idx);
11990 free_page((unsigned long)vcpu->arch.pio_data);
255cbecf 11991 kvfree(vcpu->arch.cpuid_entries);
95a0d01e 11992 if (!lapic_in_kernel(vcpu))
6e4e3b4d 11993 static_branch_dec(&kvm_has_noapic_vcpu);
e9b11c17
ZX
11994}
11995
d28bc9dd 11996void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e9b11c17 11997{
25b97845 11998 struct kvm_cpuid_entry2 *cpuid_0x1;
0aa18375 11999 unsigned long old_cr0 = kvm_read_cr0(vcpu);
4c72ab5a 12000 unsigned long new_cr0;
0aa18375 12001
62dd57dd
SC
12002 /*
12003 * Several of the "set" flows, e.g. ->set_cr0(), read other registers
12004 * to handle side effects. RESET emulation hits those flows and relies
12005 * on emulated/virtualized registers, including those that are loaded
12006 * into hardware, to be zeroed at vCPU creation. Use CRs as a sentinel
12007 * to detect improper or missing initialization.
12008 */
12009 WARN_ON_ONCE(!init_event &&
12010 (old_cr0 || kvm_read_cr3(vcpu) || kvm_read_cr4(vcpu)));
0aa18375 12011
ed129ec9
ML
12012 /*
12013 * SVM doesn't unconditionally VM-Exit on INIT and SHUTDOWN, thus it's
12014 * possible to INIT the vCPU while L2 is active. Force the vCPU back
12015 * into L1 as EFER.SVME is cleared on INIT (along with all other EFER
12016 * bits), i.e. virtualization is disabled.
12017 */
12018 if (is_guest_mode(vcpu))
12019 kvm_leave_nested(vcpu);
12020
b7e31be3
RK
12021 kvm_lapic_reset(vcpu, init_event);
12022
ed129ec9 12023 WARN_ON_ONCE(is_guest_mode(vcpu) || is_smm(vcpu));
e69fab5d
PB
12024 vcpu->arch.hflags = 0;
12025
c43203ca 12026 vcpu->arch.smi_pending = 0;
52797bf9 12027 vcpu->arch.smi_count = 0;
7460fb4a
AK
12028 atomic_set(&vcpu->arch.nmi_queued, 0);
12029 vcpu->arch.nmi_pending = 0;
448fa4a9 12030 vcpu->arch.nmi_injected = false;
5f7552d4
NA
12031 kvm_clear_interrupt_queue(vcpu);
12032 kvm_clear_exception_queue(vcpu);
448fa4a9 12033
42dbaa5a 12034 memset(vcpu->arch.db, 0, sizeof(vcpu->arch.db));
ae561ede 12035 kvm_update_dr0123(vcpu);
9a3ecd5e 12036 vcpu->arch.dr6 = DR6_ACTIVE_LOW;
42dbaa5a 12037 vcpu->arch.dr7 = DR7_FIXED_1;
c8639010 12038 kvm_update_dr7(vcpu);
42dbaa5a 12039
1119022c
NA
12040 vcpu->arch.cr2 = 0;
12041
3842d135 12042 kvm_make_request(KVM_REQ_EVENT, vcpu);
2635b5c4
VK
12043 vcpu->arch.apf.msr_en_val = 0;
12044 vcpu->arch.apf.msr_int_val = 0;
c9aaa895 12045 vcpu->arch.st.msr_val = 0;
3842d135 12046
12f9a48f
GC
12047 kvmclock_reset(vcpu);
12048
af585b92
GN
12049 kvm_clear_async_pf_completion_queue(vcpu);
12050 kvm_async_pf_hash_reset(vcpu);
12051 vcpu->arch.apf.halted = false;
3842d135 12052
d69c1382
TG
12053 if (vcpu->arch.guest_fpu.fpstate && kvm_mpx_supported()) {
12054 struct fpstate *fpstate = vcpu->arch.guest_fpu.fpstate;
a554d207
WL
12055
12056 /*
a61353ac
SC
12057 * All paths that lead to INIT are required to load the guest's
12058 * FPU state (because most paths are buried in KVM_RUN).
a554d207 12059 */
f775b13e
RR
12060 if (init_event)
12061 kvm_put_guest_fpu(vcpu);
087df48c
TG
12062
12063 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDREGS);
12064 fpstate_clear_xstate_component(fpstate, XFEATURE_BNDCSR);
12065
f775b13e
RR
12066 if (init_event)
12067 kvm_load_guest_fpu(vcpu);
a554d207
WL
12068 }
12069
64d60670 12070 if (!init_event) {
d28bc9dd 12071 kvm_pmu_reset(vcpu);
64d60670 12072 vcpu->arch.smbase = 0x30000;
db2336a8 12073
db2336a8 12074 vcpu->arch.msr_misc_features_enables = 0;
9fc22296
SC
12075 vcpu->arch.ia32_misc_enable_msr = MSR_IA32_MISC_ENABLE_PEBS_UNAVAIL |
12076 MSR_IA32_MISC_ENABLE_BTS_UNAVAIL;
a554d207 12077
05a9e065
LX
12078 __kvm_set_xcr(vcpu, 0, XFEATURE_MASK_FP);
12079 __kvm_set_msr(vcpu, MSR_IA32_XSS, 0, true);
64d60670 12080 }
f5132b01 12081
ff8828c8 12082 /* All GPRs except RDX (handled below) are zeroed on RESET/INIT. */
66f7b72e 12083 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
ff8828c8 12084 kvm_register_mark_dirty(vcpu, VCPU_REGS_RSP);
66f7b72e 12085
49d8665c
SC
12086 /*
12087 * Fall back to KVM's default Family/Model/Stepping of 0x600 (P6/Athlon)
12088 * if no CPUID match is found. Note, it's impossible to get a match at
12089 * RESET since KVM emulates RESET before exposing the vCPU to userspace,
25b97845
SC
12090 * i.e. it's impossible for kvm_find_cpuid_entry() to find a valid entry
12091 * on RESET. But, go through the motions in case that's ever remedied.
49d8665c 12092 */
277ad7d5 12093 cpuid_0x1 = kvm_find_cpuid_entry(vcpu, 1);
25b97845 12094 kvm_rdx_write(vcpu, cpuid_0x1 ? cpuid_0x1->eax : 0x600);
49d8665c 12095
b3646477 12096 static_call(kvm_x86_vcpu_reset)(vcpu, init_event);
0aa18375 12097
f39e805e
SC
12098 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
12099 kvm_rip_write(vcpu, 0xfff0);
12100
03a6e840
SC
12101 vcpu->arch.cr3 = 0;
12102 kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
12103
4c72ab5a
SC
12104 /*
12105 * CR0.CD/NW are set on RESET, preserved on INIT. Note, some versions
12106 * of Intel's SDM list CD/NW as being set on INIT, but they contradict
12107 * (or qualify) that with a footnote stating that CD/NW are preserved.
12108 */
12109 new_cr0 = X86_CR0_ET;
12110 if (init_event)
12111 new_cr0 |= (old_cr0 & (X86_CR0_NW | X86_CR0_CD));
12112 else
12113 new_cr0 |= X86_CR0_NW | X86_CR0_CD;
12114
12115 static_call(kvm_x86_set_cr0)(vcpu, new_cr0);
f39e805e
SC
12116 static_call(kvm_x86_set_cr4)(vcpu, 0);
12117 static_call(kvm_x86_set_efer)(vcpu, 0);
12118 static_call(kvm_x86_update_exception_bitmap)(vcpu);
12119
0aa18375 12120 /*
b5f61c03
PB
12121 * On the standard CR0/CR4/EFER modification paths, there are several
12122 * complex conditions determining whether the MMU has to be reset and/or
12123 * which PCIDs have to be flushed. However, CR0.WP and the paging-related
12124 * bits in CR4 and EFER are irrelevant if CR0.PG was '0'; and a reset+flush
12125 * is needed anyway if CR0.PG was '1' (which can only happen for INIT, as
12126 * CR0 will be '0' prior to RESET). So we only need to check CR0.PG here.
0aa18375 12127 */
b5f61c03
PB
12128 if (old_cr0 & X86_CR0_PG) {
12129 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
0aa18375 12130 kvm_mmu_reset_context(vcpu);
b5f61c03 12131 }
df37ed38
SC
12132
12133 /*
12134 * Intel's SDM states that all TLB entries are flushed on INIT. AMD's
12135 * APM states the TLBs are untouched by INIT, but it also states that
12136 * the TLBs are flushed on "External initialization of the processor."
12137 * Flush the guest TLB regardless of vendor, there is no meaningful
12138 * benefit in relying on the guest to flush the TLB immediately after
12139 * INIT. A spurious TLB flush is benign and likely negligible from a
12140 * performance perspective.
12141 */
12142 if (init_event)
12143 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
e9b11c17 12144}
265e4353 12145EXPORT_SYMBOL_GPL(kvm_vcpu_reset);
e9b11c17 12146
2b4a273b 12147void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
66450a21
JK
12148{
12149 struct kvm_segment cs;
12150
12151 kvm_get_segment(vcpu, &cs, VCPU_SREG_CS);
12152 cs.selector = vector << 8;
12153 cs.base = vector << 12;
12154 kvm_set_segment(vcpu, &cs, VCPU_SREG_CS);
12155 kvm_rip_write(vcpu, 0);
e9b11c17 12156}
647daca2 12157EXPORT_SYMBOL_GPL(kvm_vcpu_deliver_sipi_vector);
e9b11c17 12158
13a34e06 12159int kvm_arch_hardware_enable(void)
e9b11c17 12160{
ca84d1a2
ZA
12161 struct kvm *kvm;
12162 struct kvm_vcpu *vcpu;
46808a4c 12163 unsigned long i;
0dd6a6ed
ZA
12164 int ret;
12165 u64 local_tsc;
12166 u64 max_tsc = 0;
12167 bool stable, backwards_tsc = false;
18863bdd 12168
7e34fbd0 12169 kvm_user_return_msr_cpu_online();
c82a5c5c
CG
12170
12171 ret = kvm_x86_check_processor_compatibility();
12172 if (ret)
12173 return ret;
12174
b3646477 12175 ret = static_call(kvm_x86_hardware_enable)();
0dd6a6ed
ZA
12176 if (ret != 0)
12177 return ret;
12178
4ea1636b 12179 local_tsc = rdtsc();
b0c39dc6 12180 stable = !kvm_check_tsc_unstable();
0dd6a6ed
ZA
12181 list_for_each_entry(kvm, &vm_list, vm_list) {
12182 kvm_for_each_vcpu(i, vcpu, kvm) {
12183 if (!stable && vcpu->cpu == smp_processor_id())
105b21bb 12184 kvm_make_request(KVM_REQ_CLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
12185 if (stable && vcpu->arch.last_host_tsc > local_tsc) {
12186 backwards_tsc = true;
12187 if (vcpu->arch.last_host_tsc > max_tsc)
12188 max_tsc = vcpu->arch.last_host_tsc;
12189 }
12190 }
12191 }
12192
12193 /*
12194 * Sometimes, even reliable TSCs go backwards. This happens on
12195 * platforms that reset TSC during suspend or hibernate actions, but
12196 * maintain synchronization. We must compensate. Fortunately, we can
12197 * detect that condition here, which happens early in CPU bringup,
12198 * before any KVM threads can be running. Unfortunately, we can't
12199 * bring the TSCs fully up to date with real time, as we aren't yet far
12200 * enough into CPU bringup that we know how much real time has actually
9285ec4c 12201 * elapsed; our helper function, ktime_get_boottime_ns() will be using boot
0dd6a6ed
ZA
12202 * variables that haven't been updated yet.
12203 *
12204 * So we simply find the maximum observed TSC above, then record the
12205 * adjustment to TSC in each VCPU. When the VCPU later gets loaded,
12206 * the adjustment will be applied. Note that we accumulate
12207 * adjustments, in case multiple suspend cycles happen before some VCPU
12208 * gets a chance to run again. In the event that no KVM threads get a
12209 * chance to run, we will miss the entire elapsed period, as we'll have
12210 * reset last_host_tsc, so VCPUs will not have the TSC adjusted and may
12211 * loose cycle time. This isn't too big a deal, since the loss will be
12212 * uniform across all VCPUs (not to mention the scenario is extremely
12213 * unlikely). It is possible that a second hibernate recovery happens
12214 * much faster than a first, causing the observed TSC here to be
12215 * smaller; this would require additional padding adjustment, which is
12216 * why we set last_host_tsc to the local tsc observed here.
12217 *
12218 * N.B. - this code below runs only on platforms with reliable TSC,
12219 * as that is the only way backwards_tsc is set above. Also note
12220 * that this runs for ALL vcpus, which is not a bug; all VCPUs should
12221 * have the same delta_cyc adjustment applied if backwards_tsc
12222 * is detected. Note further, this adjustment is only done once,
12223 * as we reset last_host_tsc on all VCPUs to stop this from being
12224 * called multiple times (one for each physical CPU bringup).
12225 *
4a969980 12226 * Platforms with unreliable TSCs don't have to deal with this, they
0dd6a6ed
ZA
12227 * will be compensated by the logic in vcpu_load, which sets the TSC to
12228 * catchup mode. This will catchup all VCPUs to real time, but cannot
12229 * guarantee that they stay in perfect synchronization.
12230 */
12231 if (backwards_tsc) {
12232 u64 delta_cyc = max_tsc - local_tsc;
12233 list_for_each_entry(kvm, &vm_list, vm_list) {
a826faf1 12234 kvm->arch.backwards_tsc_observed = true;
0dd6a6ed
ZA
12235 kvm_for_each_vcpu(i, vcpu, kvm) {
12236 vcpu->arch.tsc_offset_adjustment += delta_cyc;
12237 vcpu->arch.last_host_tsc = local_tsc;
105b21bb 12238 kvm_make_request(KVM_REQ_MASTERCLOCK_UPDATE, vcpu);
0dd6a6ed
ZA
12239 }
12240
12241 /*
12242 * We have to disable TSC offset matching.. if you were
12243 * booting a VM while issuing an S4 host suspend....
12244 * you may have some problem. Solving this issue is
12245 * left as an exercise to the reader.
12246 */
12247 kvm->arch.last_tsc_nsec = 0;
12248 kvm->arch.last_tsc_write = 0;
12249 }
12250
12251 }
12252 return 0;
e9b11c17
ZX
12253}
12254
13a34e06 12255void kvm_arch_hardware_disable(void)
e9b11c17 12256{
b3646477 12257 static_call(kvm_x86_hardware_disable)();
13a34e06 12258 drop_user_return_notifiers();
e9b11c17
ZX
12259}
12260
d71ba788
PB
12261bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu)
12262{
12263 return vcpu->kvm->arch.bsp_vcpu_id == vcpu->vcpu_id;
12264}
d71ba788
PB
12265
12266bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu)
12267{
12268 return (vcpu->arch.apic_base & MSR_IA32_APICBASE_BSP) != 0;
e9b11c17
ZX
12269}
12270
6e4e3b4d
CL
12271__read_mostly DEFINE_STATIC_KEY_FALSE(kvm_has_noapic_vcpu);
12272EXPORT_SYMBOL_GPL(kvm_has_noapic_vcpu);
54e9818f 12273
e790d9ef
RK
12274void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu)
12275{
b35e5548
LX
12276 struct kvm_pmu *pmu = vcpu_to_pmu(vcpu);
12277
c595ceee 12278 vcpu->arch.l1tf_flush_l1d = true;
b35e5548
LX
12279 if (pmu->version && unlikely(pmu->event_count)) {
12280 pmu->need_cleanup = true;
12281 kvm_make_request(KVM_REQ_PMU, vcpu);
12282 }
b3646477 12283 static_call(kvm_x86_sched_in)(vcpu, cpu);
e790d9ef
RK
12284}
12285
562b6b08
SC
12286void kvm_arch_free_vm(struct kvm *kvm)
12287{
05f04ae4 12288 kfree(to_kvm_hv(kvm)->hv_pa_pg);
78b497f2 12289 __kvm_arch_free_vm(kvm);
e790d9ef
RK
12290}
12291
562b6b08 12292
e08b9637 12293int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
d19a9cd2 12294{
eb7511bf 12295 int ret;
869b4421 12296 unsigned long flags;
eb7511bf 12297
e08b9637
CO
12298 if (type)
12299 return -EINVAL;
12300
eb7511bf
HZ
12301 ret = kvm_page_track_init(kvm);
12302 if (ret)
a1a39128
PB
12303 goto out;
12304
12305 ret = kvm_mmu_init_vm(kvm);
12306 if (ret)
12307 goto out_page_track;
eb7511bf 12308
b24ede22
JS
12309 ret = static_call(kvm_x86_vm_init)(kvm);
12310 if (ret)
12311 goto out_uninit_mmu;
12312
6ef768fa 12313 INIT_HLIST_HEAD(&kvm->arch.mask_notifier_list);
4d5c5d0f 12314 INIT_LIST_HEAD(&kvm->arch.assigned_dev_head);
e0f0bbc5 12315 atomic_set(&kvm->arch.noncoherent_dma_count, 0);
d19a9cd2 12316
5550af4d
SY
12317 /* Reserve bit 0 of irq_sources_bitmap for userspace irq source */
12318 set_bit(KVM_USERSPACE_IRQ_SOURCE_ID, &kvm->arch.irq_sources_bitmap);
7a84428a
AW
12319 /* Reserve bit 1 of irq_sources_bitmap for irqfd-resampler */
12320 set_bit(KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID,
12321 &kvm->arch.irq_sources_bitmap);
5550af4d 12322
038f8c11 12323 raw_spin_lock_init(&kvm->arch.tsc_write_lock);
1e08ec4a 12324 mutex_init(&kvm->arch.apic_map_lock);
869b4421 12325 seqcount_raw_spinlock_init(&kvm->arch.pvclock_sc, &kvm->arch.tsc_write_lock);
8171cd68 12326 kvm->arch.kvmclock_offset = -get_kvmclock_base_ns();
869b4421
PB
12327
12328 raw_spin_lock_irqsave(&kvm->arch.tsc_write_lock, flags);
d828199e 12329 pvclock_update_vm_gtod_copy(kvm);
869b4421 12330 raw_spin_unlock_irqrestore(&kvm->arch.tsc_write_lock, flags);
53f658b3 12331
741e511b 12332 kvm->arch.default_tsc_khz = max_tsc_khz ? : tsc_khz;
6fbbde9a 12333 kvm->arch.guest_can_read_msr_platform_info = true;
ba7bb663 12334 kvm->arch.enable_pmu = enable_pmu;
6fbbde9a 12335
3c86c0d3
VP
12336#if IS_ENABLED(CONFIG_HYPERV)
12337 spin_lock_init(&kvm->arch.hv_root_tdp_lock);
12338 kvm->arch.hv_root_tdp = INVALID_PAGE;
12339#endif
12340
7e44e449 12341 INIT_DELAYED_WORK(&kvm->arch.kvmclock_update_work, kvmclock_update_fn);
332967a3 12342 INIT_DELAYED_WORK(&kvm->arch.kvmclock_sync_work, kvmclock_sync_fn);
7e44e449 12343
4651fc56 12344 kvm_apicv_init(kvm);
cbc0236a 12345 kvm_hv_init_vm(kvm);
319afe68 12346 kvm_xen_init_vm(kvm);
0eb05bf2 12347
b24ede22 12348 return 0;
a1a39128 12349
b24ede22
JS
12350out_uninit_mmu:
12351 kvm_mmu_uninit_vm(kvm);
a1a39128
PB
12352out_page_track:
12353 kvm_page_track_cleanup(kvm);
12354out:
12355 return ret;
d19a9cd2
ZX
12356}
12357
1aa9b957
JS
12358int kvm_arch_post_init_vm(struct kvm *kvm)
12359{
12360 return kvm_mmu_post_init_vm(kvm);
12361}
12362
d19a9cd2
ZX
12363static void kvm_unload_vcpu_mmu(struct kvm_vcpu *vcpu)
12364{
ec7660cc 12365 vcpu_load(vcpu);
d19a9cd2
ZX
12366 kvm_mmu_unload(vcpu);
12367 vcpu_put(vcpu);
12368}
12369
6fcee03d 12370static void kvm_unload_vcpu_mmus(struct kvm *kvm)
d19a9cd2 12371{
46808a4c 12372 unsigned long i;
988a2cae 12373 struct kvm_vcpu *vcpu;
d19a9cd2 12374
af585b92
GN
12375 kvm_for_each_vcpu(i, vcpu, kvm) {
12376 kvm_clear_async_pf_completion_queue(vcpu);
988a2cae 12377 kvm_unload_vcpu_mmu(vcpu);
af585b92 12378 }
d19a9cd2
ZX
12379}
12380
ad8ba2cd
SY
12381void kvm_arch_sync_events(struct kvm *kvm)
12382{
332967a3 12383 cancel_delayed_work_sync(&kvm->arch.kvmclock_sync_work);
7e44e449 12384 cancel_delayed_work_sync(&kvm->arch.kvmclock_update_work);
aea924f6 12385 kvm_free_pit(kvm);
ad8ba2cd
SY
12386}
12387
ff5a983c
PX
12388/**
12389 * __x86_set_memory_region: Setup KVM internal memory slot
12390 *
12391 * @kvm: the kvm pointer to the VM.
12392 * @id: the slot ID to setup.
12393 * @gpa: the GPA to install the slot (unused when @size == 0).
12394 * @size: the size of the slot. Set to zero to uninstall a slot.
12395 *
12396 * This function helps to setup a KVM internal memory slot. Specify
12397 * @size > 0 to install a new slot, while @size == 0 to uninstall a
12398 * slot. The return code can be one of the following:
12399 *
12400 * HVA: on success (uninstall will return a bogus HVA)
12401 * -errno: on error
12402 *
12403 * The caller should always use IS_ERR() to check the return value
12404 * before use. Note, the KVM internal memory slots are guaranteed to
12405 * remain valid and unchanged until the VM is destroyed, i.e., the
12406 * GPA->HVA translation will not change. However, the HVA is a user
12407 * address, i.e. its accessibility is not guaranteed, and must be
12408 * accessed via __copy_{to,from}_user().
12409 */
12410void __user * __x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
12411 u32 size)
9da0e4d5
PB
12412{
12413 int i, r;
3f649ab7 12414 unsigned long hva, old_npages;
f0d648bd 12415 struct kvm_memslots *slots = kvm_memslots(kvm);
0577d1ab 12416 struct kvm_memory_slot *slot;
9da0e4d5
PB
12417
12418 /* Called with kvm->slots_lock held. */
1d8007bd 12419 if (WARN_ON(id >= KVM_MEM_SLOTS_NUM))
ff5a983c 12420 return ERR_PTR_USR(-EINVAL);
9da0e4d5 12421
f0d648bd
PB
12422 slot = id_to_memslot(slots, id);
12423 if (size) {
0577d1ab 12424 if (slot && slot->npages)
ff5a983c 12425 return ERR_PTR_USR(-EEXIST);
f0d648bd
PB
12426
12427 /*
12428 * MAP_SHARED to prevent internal slot pages from being moved
12429 * by fork()/COW.
12430 */
12431 hva = vm_mmap(NULL, 0, size, PROT_READ | PROT_WRITE,
12432 MAP_SHARED | MAP_ANONYMOUS, 0);
2eb398df 12433 if (IS_ERR_VALUE(hva))
ff5a983c 12434 return (void __user *)hva;
f0d648bd 12435 } else {
0577d1ab 12436 if (!slot || !slot->npages)
46914534 12437 return NULL;
f0d648bd 12438
0577d1ab 12439 old_npages = slot->npages;
b66f9bab 12440 hva = slot->userspace_addr;
f0d648bd
PB
12441 }
12442
9da0e4d5 12443 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1d8007bd 12444 struct kvm_userspace_memory_region m;
9da0e4d5 12445
1d8007bd
PB
12446 m.slot = id | (i << 16);
12447 m.flags = 0;
12448 m.guest_phys_addr = gpa;
f0d648bd 12449 m.userspace_addr = hva;
1d8007bd 12450 m.memory_size = size;
9da0e4d5
PB
12451 r = __kvm_set_memory_region(kvm, &m);
12452 if (r < 0)
ff5a983c 12453 return ERR_PTR_USR(r);
9da0e4d5
PB
12454 }
12455
103c763c 12456 if (!size)
0577d1ab 12457 vm_munmap(hva, old_npages * PAGE_SIZE);
f0d648bd 12458
ff5a983c 12459 return (void __user *)hva;
9da0e4d5
PB
12460}
12461EXPORT_SYMBOL_GPL(__x86_set_memory_region);
12462
1aa9b957
JS
12463void kvm_arch_pre_destroy_vm(struct kvm *kvm)
12464{
12465 kvm_mmu_pre_destroy_vm(kvm);
12466}
12467
d19a9cd2
ZX
12468void kvm_arch_destroy_vm(struct kvm *kvm)
12469{
27469d29
AH
12470 if (current->mm == kvm->mm) {
12471 /*
12472 * Free memory regions allocated on behalf of userspace,
f7081834 12473 * unless the memory map has changed due to process exit
27469d29
AH
12474 * or fd copying.
12475 */
6a3c623b
PX
12476 mutex_lock(&kvm->slots_lock);
12477 __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
12478 0, 0);
12479 __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
12480 0, 0);
12481 __x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, 0, 0);
12482 mutex_unlock(&kvm->slots_lock);
27469d29 12483 }
6fcee03d 12484 kvm_unload_vcpu_mmus(kvm);
b3646477 12485 static_call_cond(kvm_x86_vm_destroy)(kvm);
b318e8de 12486 kvm_free_msr_filter(srcu_dereference_check(kvm->arch.msr_filter, &kvm->srcu, 1));
c761159c
PX
12487 kvm_pic_destroy(kvm);
12488 kvm_ioapic_destroy(kvm);
6fcee03d 12489 kvm_destroy_vcpus(kvm);
af1bae54 12490 kvfree(rcu_dereference_check(kvm->arch.apic_map, 1));
66bb8a06 12491 kfree(srcu_dereference_check(kvm->arch.pmu_event_filter, &kvm->srcu, 1));
13d268ca 12492 kvm_mmu_uninit_vm(kvm);
2beb6dad 12493 kvm_page_track_cleanup(kvm);
7d6bbebb 12494 kvm_xen_destroy_vm(kvm);
cbc0236a 12495 kvm_hv_destroy_vm(kvm);
d19a9cd2 12496}
0de10343 12497
c9b929b3 12498static void memslot_rmap_free(struct kvm_memory_slot *slot)
db3fe4eb
TY
12499{
12500 int i;
12501
d89cc617 12502 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
e96c81ee
SC
12503 kvfree(slot->arch.rmap[i]);
12504 slot->arch.rmap[i] = NULL;
c9b929b3
BG
12505 }
12506}
e96c81ee 12507
c9b929b3
BG
12508void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot)
12509{
12510 int i;
12511
12512 memslot_rmap_free(slot);
d89cc617 12513
c9b929b3 12514 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
e96c81ee
SC
12515 kvfree(slot->arch.lpage_info[i - 1]);
12516 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb 12517 }
21ebbeda 12518
e96c81ee 12519 kvm_page_track_free_memslot(slot);
db3fe4eb
TY
12520}
12521
1e76a3ce 12522int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages)
56dd1019
BG
12523{
12524 const int sz = sizeof(*slot->arch.rmap[0]);
12525 int i;
12526
12527 for (i = 0; i < KVM_NR_PAGE_SIZES; ++i) {
12528 int level = i + 1;
4139b197 12529 int lpages = __kvm_mmu_slot_lpages(slot, npages, level);
56dd1019 12530
fa13843d
PB
12531 if (slot->arch.rmap[i])
12532 continue;
d501f747 12533
37b2a651 12534 slot->arch.rmap[i] = __vcalloc(lpages, sz, GFP_KERNEL_ACCOUNT);
56dd1019
BG
12535 if (!slot->arch.rmap[i]) {
12536 memslot_rmap_free(slot);
12537 return -ENOMEM;
12538 }
12539 }
12540
12541 return 0;
12542}
12543
a2557408 12544static int kvm_alloc_memslot_metadata(struct kvm *kvm,
9d7d18ee 12545 struct kvm_memory_slot *slot)
db3fe4eb 12546{
9d7d18ee 12547 unsigned long npages = slot->npages;
56dd1019 12548 int i, r;
db3fe4eb 12549
edd4fa37
SC
12550 /*
12551 * Clear out the previous array pointers for the KVM_MR_MOVE case. The
12552 * old arrays will be freed by __kvm_set_memory_region() if installing
12553 * the new memslot is successful.
12554 */
12555 memset(&slot->arch, 0, sizeof(slot->arch));
12556
e2209710 12557 if (kvm_memslots_have_rmaps(kvm)) {
a2557408
BG
12558 r = memslot_rmap_alloc(slot, npages);
12559 if (r)
12560 return r;
12561 }
56dd1019
BG
12562
12563 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
92f94f1e 12564 struct kvm_lpage_info *linfo;
db3fe4eb
TY
12565 unsigned long ugfn;
12566 int lpages;
d89cc617 12567 int level = i + 1;
db3fe4eb 12568
4139b197 12569 lpages = __kvm_mmu_slot_lpages(slot, npages, level);
db3fe4eb 12570
37b2a651 12571 linfo = __vcalloc(lpages, sizeof(*linfo), GFP_KERNEL_ACCOUNT);
92f94f1e 12572 if (!linfo)
db3fe4eb
TY
12573 goto out_free;
12574
92f94f1e
XG
12575 slot->arch.lpage_info[i - 1] = linfo;
12576
db3fe4eb 12577 if (slot->base_gfn & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 12578 linfo[0].disallow_lpage = 1;
db3fe4eb 12579 if ((slot->base_gfn + npages) & (KVM_PAGES_PER_HPAGE(level) - 1))
92f94f1e 12580 linfo[lpages - 1].disallow_lpage = 1;
db3fe4eb
TY
12581 ugfn = slot->userspace_addr >> PAGE_SHIFT;
12582 /*
12583 * If the gfn and userspace address are not aligned wrt each
600087b6 12584 * other, disable large page support for this slot.
db3fe4eb 12585 */
600087b6 12586 if ((slot->base_gfn ^ ugfn) & (KVM_PAGES_PER_HPAGE(level) - 1)) {
db3fe4eb
TY
12587 unsigned long j;
12588
12589 for (j = 0; j < lpages; ++j)
92f94f1e 12590 linfo[j].disallow_lpage = 1;
db3fe4eb
TY
12591 }
12592 }
12593
deae4a10 12594 if (kvm_page_track_create_memslot(kvm, slot, npages))
21ebbeda
XG
12595 goto out_free;
12596
db3fe4eb
TY
12597 return 0;
12598
12599out_free:
c9b929b3 12600 memslot_rmap_free(slot);
d89cc617 12601
c9b929b3 12602 for (i = 1; i < KVM_NR_PAGE_SIZES; ++i) {
548ef284 12603 kvfree(slot->arch.lpage_info[i - 1]);
d89cc617 12604 slot->arch.lpage_info[i - 1] = NULL;
db3fe4eb
TY
12605 }
12606 return -ENOMEM;
12607}
12608
15248258 12609void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen)
e59dbe09 12610{
91724814 12611 struct kvm_vcpu *vcpu;
46808a4c 12612 unsigned long i;
91724814 12613
e6dff7d1
TY
12614 /*
12615 * memslots->generation has been incremented.
12616 * mmio generation may have reached its maximum value.
12617 */
15248258 12618 kvm_mmu_invalidate_mmio_sptes(kvm, gen);
91724814
BO
12619
12620 /* Force re-initialization of steal_time cache */
12621 kvm_for_each_vcpu(i, vcpu, kvm)
12622 kvm_vcpu_kick(vcpu);
e59dbe09
TY
12623}
12624
f7784b8e 12625int kvm_arch_prepare_memory_region(struct kvm *kvm,
537a17b3
SC
12626 const struct kvm_memory_slot *old,
12627 struct kvm_memory_slot *new,
12628 enum kvm_mr_change change)
0de10343 12629{
86931ff7
SC
12630 if (change == KVM_MR_CREATE || change == KVM_MR_MOVE) {
12631 if ((new->base_gfn + new->npages - 1) > kvm_mmu_max_gfn())
12632 return -EINVAL;
12633
9d7d18ee 12634 return kvm_alloc_memslot_metadata(kvm, new);
86931ff7 12635 }
537a17b3
SC
12636
12637 if (change == KVM_MR_FLAGS_ONLY)
12638 memcpy(&new->arch, &old->arch, sizeof(old->arch));
12639 else if (WARN_ON_ONCE(change != KVM_MR_DELETE))
12640 return -EIO;
12641
f7784b8e
MT
12642 return 0;
12643}
12644
a85863c2
MS
12645
12646static void kvm_mmu_update_cpu_dirty_logging(struct kvm *kvm, bool enable)
12647{
ee661d8e 12648 int nr_slots;
a85863c2
MS
12649
12650 if (!kvm_x86_ops.cpu_dirty_log_size)
12651 return;
12652
ee661d8e
DM
12653 nr_slots = atomic_read(&kvm->nr_memslots_dirty_logging);
12654 if ((enable && nr_slots == 1) || !nr_slots)
a85863c2 12655 kvm_make_all_cpus_request(kvm, KVM_REQ_UPDATE_CPU_DIRTY_LOGGING);
a85863c2
MS
12656}
12657
88178fd4 12658static void kvm_mmu_slot_apply_flags(struct kvm *kvm,
3741679b 12659 struct kvm_memory_slot *old,
269e9552 12660 const struct kvm_memory_slot *new,
3741679b 12661 enum kvm_mr_change change)
88178fd4 12662{
77aedf26
SC
12663 u32 old_flags = old ? old->flags : 0;
12664 u32 new_flags = new ? new->flags : 0;
12665 bool log_dirty_pages = new_flags & KVM_MEM_LOG_DIRTY_PAGES;
a85863c2 12666
3741679b 12667 /*
a85863c2
MS
12668 * Update CPU dirty logging if dirty logging is being toggled. This
12669 * applies to all operations.
3741679b 12670 */
77aedf26 12671 if ((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)
a85863c2 12672 kvm_mmu_update_cpu_dirty_logging(kvm, log_dirty_pages);
88178fd4
KH
12673
12674 /*
a85863c2 12675 * Nothing more to do for RO slots (which can't be dirtied and can't be
b6e16ae5 12676 * made writable) or CREATE/MOVE/DELETE of a slot.
88178fd4 12677 *
b6e16ae5 12678 * For a memslot with dirty logging disabled:
3741679b
AY
12679 * CREATE: No dirty mappings will already exist.
12680 * MOVE/DELETE: The old mappings will already have been cleaned up by
12681 * kvm_arch_flush_shadow_memslot()
b6e16ae5
SC
12682 *
12683 * For a memslot with dirty logging enabled:
12684 * CREATE: No shadow pages exist, thus nothing to write-protect
12685 * and no dirty bits to clear.
12686 * MOVE/DELETE: The old mappings will already have been cleaned up by
12687 * kvm_arch_flush_shadow_memslot().
3741679b 12688 */
77aedf26 12689 if ((change != KVM_MR_FLAGS_ONLY) || (new_flags & KVM_MEM_READONLY))
88178fd4 12690 return;
3741679b
AY
12691
12692 /*
52f46079
SC
12693 * READONLY and non-flags changes were filtered out above, and the only
12694 * other flag is LOG_DIRTY_PAGES, i.e. something is wrong if dirty
12695 * logging isn't being toggled on or off.
88178fd4 12696 */
77aedf26 12697 if (WARN_ON_ONCE(!((old_flags ^ new_flags) & KVM_MEM_LOG_DIRTY_PAGES)))
52f46079
SC
12698 return;
12699
b6e16ae5
SC
12700 if (!log_dirty_pages) {
12701 /*
12702 * Dirty logging tracks sptes in 4k granularity, meaning that
12703 * large sptes have to be split. If live migration succeeds,
12704 * the guest in the source machine will be destroyed and large
12705 * sptes will be created in the destination. However, if the
12706 * guest continues to run in the source machine (for example if
12707 * live migration fails), small sptes will remain around and
12708 * cause bad performance.
12709 *
12710 * Scan sptes if dirty logging has been stopped, dropping those
12711 * which can be collapsed into a single large-page spte. Later
12712 * page faults will create the large-page sptes.
12713 */
3741679b 12714 kvm_mmu_zap_collapsible_sptes(kvm, new);
b6e16ae5 12715 } else {
89212919
KZ
12716 /*
12717 * Initially-all-set does not require write protecting any page,
12718 * because they're all assumed to be dirty.
12719 */
12720 if (kvm_dirty_log_manual_protect_and_init_set(kvm))
12721 return;
a1419f8b 12722
a3fe5dbd
DM
12723 if (READ_ONCE(eager_page_split))
12724 kvm_mmu_slot_try_split_huge_pages(kvm, new, PG_LEVEL_4K);
12725
a018eba5 12726 if (kvm_x86_ops.cpu_dirty_log_size) {
89212919
KZ
12727 kvm_mmu_slot_leaf_clear_dirty(kvm, new);
12728 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_2M);
12729 } else {
12730 kvm_mmu_slot_remove_write_access(kvm, new, PG_LEVEL_4K);
3c9bd400 12731 }
b64d740e
JS
12732
12733 /*
12734 * Unconditionally flush the TLBs after enabling dirty logging.
12735 * A flush is almost always going to be necessary (see below),
12736 * and unconditionally flushing allows the helpers to omit
12737 * the subtly complex checks when removing write access.
12738 *
12739 * Do the flush outside of mmu_lock to reduce the amount of
12740 * time mmu_lock is held. Flushing after dropping mmu_lock is
12741 * safe as KVM only needs to guarantee the slot is fully
12742 * write-protected before returning to userspace, i.e. before
12743 * userspace can consume the dirty status.
12744 *
12745 * Flushing outside of mmu_lock requires KVM to be careful when
12746 * making decisions based on writable status of an SPTE, e.g. a
12747 * !writable SPTE doesn't guarantee a CPU can't perform writes.
12748 *
12749 * Specifically, KVM also write-protects guest page tables to
12750 * monitor changes when using shadow paging, and must guarantee
12751 * no CPUs can write to those page before mmu_lock is dropped.
12752 * Because CPUs may have stale TLB entries at this point, a
12753 * !writable SPTE doesn't guarantee CPUs can't perform writes.
12754 *
12755 * KVM also allows making SPTES writable outside of mmu_lock,
12756 * e.g. to allow dirty logging without taking mmu_lock.
12757 *
12758 * To handle these scenarios, KVM uses a separate software-only
12759 * bit (MMU-writable) to track if a SPTE is !writable due to
12760 * a guest page table being write-protected (KVM clears the
12761 * MMU-writable flag when write-protecting for shadow paging).
12762 *
12763 * The use of MMU-writable is also the primary motivation for
12764 * the unconditional flush. Because KVM must guarantee that a
12765 * CPU doesn't contain stale, writable TLB entries for a
12766 * !MMU-writable SPTE, KVM must flush if it encounters any
12767 * MMU-writable SPTE regardless of whether the actual hardware
12768 * writable bit was set. I.e. KVM is almost guaranteed to need
12769 * to flush, while unconditionally flushing allows the "remove
12770 * write access" helpers to ignore MMU-writable entirely.
12771 *
12772 * See is_writable_pte() for more details (the case involving
12773 * access-tracked SPTEs is particularly relevant).
12774 */
12775 kvm_arch_flush_remote_tlbs_memslot(kvm, new);
88178fd4
KH
12776 }
12777}
12778
f7784b8e 12779void kvm_arch_commit_memory_region(struct kvm *kvm,
9d4c197c 12780 struct kvm_memory_slot *old,
f36f3f28 12781 const struct kvm_memory_slot *new,
8482644a 12782 enum kvm_mr_change change)
f7784b8e 12783{
e0c2b633 12784 if (!kvm->arch.n_requested_mmu_pages &&
f5756029
MS
12785 (change == KVM_MR_CREATE || change == KVM_MR_DELETE)) {
12786 unsigned long nr_mmu_pages;
12787
12788 nr_mmu_pages = kvm->nr_memslot_pages / KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO;
12789 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
12790 kvm_mmu_change_mmu_pages(kvm, nr_mmu_pages);
12791 }
1c91cad4 12792
269e9552 12793 kvm_mmu_slot_apply_flags(kvm, old, new, change);
21198846
SC
12794
12795 /* Free the arrays associated with the old memslot. */
12796 if (change == KVM_MR_MOVE)
e96c81ee 12797 kvm_arch_free_memslot(kvm, old);
0de10343 12798}
1d737c8a 12799
2df72e9b 12800void kvm_arch_flush_shadow_all(struct kvm *kvm)
34d4cb8f 12801{
7390de1e 12802 kvm_mmu_zap_all(kvm);
34d4cb8f
MT
12803}
12804
2df72e9b
MT
12805void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
12806 struct kvm_memory_slot *slot)
12807{
ae7cd873 12808 kvm_page_track_flush_slot(kvm, slot);
2df72e9b
MT
12809}
12810
e6c67d8c
LA
12811static inline bool kvm_guest_apic_has_interrupt(struct kvm_vcpu *vcpu)
12812{
12813 return (is_guest_mode(vcpu) &&
5be2226f 12814 static_call(kvm_x86_guest_apic_has_interrupt)(vcpu));
e6c67d8c
LA
12815}
12816
5d9bc648
PB
12817static inline bool kvm_vcpu_has_events(struct kvm_vcpu *vcpu)
12818{
12819 if (!list_empty_careful(&vcpu->async_pf.done))
12820 return true;
12821
bf7f9352
PB
12822 if (kvm_apic_has_pending_init_or_sipi(vcpu) &&
12823 kvm_apic_init_sipi_allowed(vcpu))
5d9bc648
PB
12824 return true;
12825
12826 if (vcpu->arch.pv.pv_unhalted)
12827 return true;
12828
7709aba8 12829 if (kvm_is_exception_pending(vcpu))
a5f01f8e
WL
12830 return true;
12831
47a66eed
Z
12832 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
12833 (vcpu->arch.nmi_pending &&
b3646477 12834 static_call(kvm_x86_nmi_allowed)(vcpu, false)))
5d9bc648
PB
12835 return true;
12836
31e83e21 12837#ifdef CONFIG_KVM_SMM
47a66eed 12838 if (kvm_test_request(KVM_REQ_SMI, vcpu) ||
a9fa7cb6 12839 (vcpu->arch.smi_pending &&
b3646477 12840 static_call(kvm_x86_smi_allowed)(vcpu, false)))
73917739 12841 return true;
31e83e21 12842#endif
73917739 12843
5d9bc648 12844 if (kvm_arch_interrupt_allowed(vcpu) &&
e6c67d8c
LA
12845 (kvm_cpu_has_interrupt(vcpu) ||
12846 kvm_guest_apic_has_interrupt(vcpu)))
5d9bc648
PB
12847 return true;
12848
1f4b34f8
AS
12849 if (kvm_hv_has_stimer_pending(vcpu))
12850 return true;
12851
d2060bd4 12852 if (is_guest_mode(vcpu) &&
5b4ac1a1
PB
12853 kvm_x86_ops.nested_ops->has_events &&
12854 kvm_x86_ops.nested_ops->has_events(vcpu))
d2060bd4
SC
12855 return true;
12856
7caf9571
DW
12857 if (kvm_xen_has_pending_events(vcpu))
12858 return true;
12859
5d9bc648
PB
12860 return false;
12861}
12862
1d737c8a
ZX
12863int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
12864{
5d9bc648 12865 return kvm_vcpu_running(vcpu) || kvm_vcpu_has_events(vcpu);
1d737c8a 12866}
5736199a 12867
10dbdf98 12868bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu)
17e433b5 12869{
ae801e13
SC
12870 if (kvm_vcpu_apicv_active(vcpu) &&
12871 static_call(kvm_x86_dy_apicv_has_pending_interrupt)(vcpu))
52acd22f
WL
12872 return true;
12873
12874 return false;
12875}
12876
17e433b5
WL
12877bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu)
12878{
12879 if (READ_ONCE(vcpu->arch.pv.pv_unhalted))
12880 return true;
12881
12882 if (kvm_test_request(KVM_REQ_NMI, vcpu) ||
cf7316d0 12883#ifdef CONFIG_KVM_SMM
17e433b5 12884 kvm_test_request(KVM_REQ_SMI, vcpu) ||
cf7316d0 12885#endif
17e433b5
WL
12886 kvm_test_request(KVM_REQ_EVENT, vcpu))
12887 return true;
12888
10dbdf98 12889 return kvm_arch_dy_has_pending_interrupt(vcpu);
17e433b5
WL
12890}
12891
199b5763
LM
12892bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
12893{
b86bb11e
WL
12894 if (vcpu->arch.guest_state_protected)
12895 return true;
12896
de63ad4c 12897 return vcpu->arch.preempted_in_kernel;
199b5763
LM
12898}
12899
e1bfc245
SC
12900unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu)
12901{
12902 return kvm_rip_read(vcpu);
12903}
12904
b6d33834 12905int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
5736199a 12906{
b6d33834 12907 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
5736199a 12908}
78646121
GN
12909
12910int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu)
12911{
b3646477 12912 return static_call(kvm_x86_interrupt_allowed)(vcpu, false);
78646121 12913}
229456fc 12914
82b32774 12915unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu)
f92653ee 12916{
7ed9abfe
TL
12917 /* Can't read the RIP when guest state is protected, just return 0 */
12918 if (vcpu->arch.guest_state_protected)
12919 return 0;
12920
82b32774
NA
12921 if (is_64_bit_mode(vcpu))
12922 return kvm_rip_read(vcpu);
12923 return (u32)(get_segment_base(vcpu, VCPU_SREG_CS) +
12924 kvm_rip_read(vcpu));
12925}
12926EXPORT_SYMBOL_GPL(kvm_get_linear_rip);
f92653ee 12927
82b32774
NA
12928bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip)
12929{
12930 return kvm_get_linear_rip(vcpu) == linear_rip;
f92653ee
JK
12931}
12932EXPORT_SYMBOL_GPL(kvm_is_linear_rip);
12933
94fe45da
JK
12934unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu)
12935{
12936 unsigned long rflags;
12937
b3646477 12938 rflags = static_call(kvm_x86_get_rflags)(vcpu);
94fe45da 12939 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
c310bac5 12940 rflags &= ~X86_EFLAGS_TF;
94fe45da
JK
12941 return rflags;
12942}
12943EXPORT_SYMBOL_GPL(kvm_get_rflags);
12944
6addfc42 12945static void __kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
94fe45da
JK
12946{
12947 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP &&
f92653ee 12948 kvm_is_linear_rip(vcpu, vcpu->arch.singlestep_rip))
c310bac5 12949 rflags |= X86_EFLAGS_TF;
b3646477 12950 static_call(kvm_x86_set_rflags)(vcpu, rflags);
6addfc42
PB
12951}
12952
12953void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
12954{
12955 __kvm_set_rflags(vcpu, rflags);
3842d135 12956 kvm_make_request(KVM_REQ_EVENT, vcpu);
94fe45da
JK
12957}
12958EXPORT_SYMBOL_GPL(kvm_set_rflags);
12959
af585b92
GN
12960static inline u32 kvm_async_pf_hash_fn(gfn_t gfn)
12961{
dd03bcaa
PX
12962 BUILD_BUG_ON(!is_power_of_2(ASYNC_PF_PER_VCPU));
12963
af585b92
GN
12964 return hash_32(gfn & 0xffffffff, order_base_2(ASYNC_PF_PER_VCPU));
12965}
12966
12967static inline u32 kvm_async_pf_next_probe(u32 key)
12968{
dd03bcaa 12969 return (key + 1) & (ASYNC_PF_PER_VCPU - 1);
af585b92
GN
12970}
12971
12972static void kvm_add_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12973{
12974 u32 key = kvm_async_pf_hash_fn(gfn);
12975
12976 while (vcpu->arch.apf.gfns[key] != ~0)
12977 key = kvm_async_pf_next_probe(key);
12978
12979 vcpu->arch.apf.gfns[key] = gfn;
12980}
12981
12982static u32 kvm_async_pf_gfn_slot(struct kvm_vcpu *vcpu, gfn_t gfn)
12983{
12984 int i;
12985 u32 key = kvm_async_pf_hash_fn(gfn);
12986
dd03bcaa 12987 for (i = 0; i < ASYNC_PF_PER_VCPU &&
c7d28c24
XG
12988 (vcpu->arch.apf.gfns[key] != gfn &&
12989 vcpu->arch.apf.gfns[key] != ~0); i++)
af585b92
GN
12990 key = kvm_async_pf_next_probe(key);
12991
12992 return key;
12993}
12994
12995bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
12996{
12997 return vcpu->arch.apf.gfns[kvm_async_pf_gfn_slot(vcpu, gfn)] == gfn;
12998}
12999
13000static void kvm_del_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn)
13001{
13002 u32 i, j, k;
13003
13004 i = j = kvm_async_pf_gfn_slot(vcpu, gfn);
0fd46044
PX
13005
13006 if (WARN_ON_ONCE(vcpu->arch.apf.gfns[i] != gfn))
13007 return;
13008
af585b92
GN
13009 while (true) {
13010 vcpu->arch.apf.gfns[i] = ~0;
13011 do {
13012 j = kvm_async_pf_next_probe(j);
13013 if (vcpu->arch.apf.gfns[j] == ~0)
13014 return;
13015 k = kvm_async_pf_hash_fn(vcpu->arch.apf.gfns[j]);
13016 /*
13017 * k lies cyclically in ]i,j]
13018 * | i.k.j |
13019 * |....j i.k.| or |.k..j i...|
13020 */
13021 } while ((i <= j) ? (i < k && k <= j) : (i < k || k <= j));
13022 vcpu->arch.apf.gfns[i] = vcpu->arch.apf.gfns[j];
13023 i = j;
13024 }
13025}
13026
68fd66f1 13027static inline int apf_put_user_notpresent(struct kvm_vcpu *vcpu)
7c90705b 13028{
68fd66f1
VK
13029 u32 reason = KVM_PV_REASON_PAGE_NOT_PRESENT;
13030
13031 return kvm_write_guest_cached(vcpu->kvm, &vcpu->arch.apf.data, &reason,
13032 sizeof(reason));
13033}
13034
13035static inline int apf_put_user_ready(struct kvm_vcpu *vcpu, u32 token)
13036{
2635b5c4 13037 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
4e335d9e 13038
2635b5c4
VK
13039 return kvm_write_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13040 &token, offset, sizeof(token));
13041}
13042
13043static inline bool apf_pageready_slot_free(struct kvm_vcpu *vcpu)
13044{
13045 unsigned int offset = offsetof(struct kvm_vcpu_pv_apf_data, token);
13046 u32 val;
13047
13048 if (kvm_read_guest_offset_cached(vcpu->kvm, &vcpu->arch.apf.data,
13049 &val, offset, sizeof(val)))
13050 return false;
13051
13052 return !val;
7c90705b
GN
13053}
13054
1dfdb45e
PB
13055static bool kvm_can_deliver_async_pf(struct kvm_vcpu *vcpu)
13056{
57cb3bb0
PB
13057
13058 if (!kvm_pv_async_pf_enabled(vcpu))
1dfdb45e
PB
13059 return false;
13060
57cb3bb0
PB
13061 if (vcpu->arch.apf.send_user_only &&
13062 static_call(kvm_x86_get_cpl)(vcpu) == 0)
1dfdb45e
PB
13063 return false;
13064
57cb3bb0
PB
13065 if (is_guest_mode(vcpu)) {
13066 /*
13067 * L1 needs to opt into the special #PF vmexits that are
13068 * used to deliver async page faults.
13069 */
13070 return vcpu->arch.apf.delivery_as_pf_vmexit;
13071 } else {
13072 /*
13073 * Play it safe in case the guest temporarily disables paging.
13074 * The real mode IDT in particular is unlikely to have a #PF
13075 * exception setup.
13076 */
13077 return is_paging(vcpu);
13078 }
1dfdb45e
PB
13079}
13080
13081bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
13082{
13083 if (unlikely(!lapic_in_kernel(vcpu) ||
13084 kvm_event_needs_reinjection(vcpu) ||
7709aba8 13085 kvm_is_exception_pending(vcpu)))
1dfdb45e
PB
13086 return false;
13087
13088 if (kvm_hlt_in_guest(vcpu->kvm) && !kvm_can_deliver_async_pf(vcpu))
13089 return false;
13090
13091 /*
13092 * If interrupts are off we cannot even use an artificial
13093 * halt state.
13094 */
c300ab9f 13095 return kvm_arch_interrupt_allowed(vcpu);
1dfdb45e
PB
13096}
13097
2a18b7e7 13098bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
af585b92
GN
13099 struct kvm_async_pf *work)
13100{
6389ee94
AK
13101 struct x86_exception fault;
13102
736c291c 13103 trace_kvm_async_pf_not_present(work->arch.token, work->cr2_or_gpa);
af585b92 13104 kvm_add_async_pf_gfn(vcpu, work->arch.gfn);
7c90705b 13105
1dfdb45e 13106 if (kvm_can_deliver_async_pf(vcpu) &&
68fd66f1 13107 !apf_put_user_notpresent(vcpu)) {
6389ee94
AK
13108 fault.vector = PF_VECTOR;
13109 fault.error_code_valid = true;
13110 fault.error_code = 0;
13111 fault.nested_page_fault = false;
13112 fault.address = work->arch.token;
adfe20fb 13113 fault.async_page_fault = true;
6389ee94 13114 kvm_inject_page_fault(vcpu, &fault);
2a18b7e7 13115 return true;
1dfdb45e
PB
13116 } else {
13117 /*
13118 * It is not possible to deliver a paravirtualized asynchronous
13119 * page fault, but putting the guest in an artificial halt state
13120 * can be beneficial nevertheless: if an interrupt arrives, we
13121 * can deliver it timely and perhaps the guest will schedule
13122 * another process. When the instruction that triggered a page
13123 * fault is retried, hopefully the page will be ready in the host.
13124 */
13125 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
2a18b7e7 13126 return false;
7c90705b 13127 }
af585b92
GN
13128}
13129
13130void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
13131 struct kvm_async_pf *work)
13132{
2635b5c4
VK
13133 struct kvm_lapic_irq irq = {
13134 .delivery_mode = APIC_DM_FIXED,
13135 .vector = vcpu->arch.apf.vec
13136 };
6389ee94 13137
f2e10669 13138 if (work->wakeup_all)
7c90705b
GN
13139 work->arch.token = ~0; /* broadcast wakeup */
13140 else
13141 kvm_del_async_pf_gfn(vcpu, work->arch.gfn);
736c291c 13142 trace_kvm_async_pf_ready(work->arch.token, work->cr2_or_gpa);
7c90705b 13143
2a18b7e7
VK
13144 if ((work->wakeup_all || work->notpresent_injected) &&
13145 kvm_pv_async_pf_enabled(vcpu) &&
557a961a
VK
13146 !apf_put_user_ready(vcpu, work->arch.token)) {
13147 vcpu->arch.apf.pageready_pending = true;
2635b5c4 13148 kvm_apic_set_irq(vcpu, &irq, NULL);
557a961a 13149 }
2635b5c4 13150
e6d53e3b 13151 vcpu->arch.apf.halted = false;
a4fa1635 13152 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
7c90705b
GN
13153}
13154
557a961a
VK
13155void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu)
13156{
13157 kvm_make_request(KVM_REQ_APF_READY, vcpu);
13158 if (!vcpu->arch.apf.pageready_pending)
13159 kvm_vcpu_kick(vcpu);
13160}
13161
7c0ade6c 13162bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu)
7c90705b 13163{
2635b5c4 13164 if (!kvm_pv_async_pf_enabled(vcpu))
7c90705b
GN
13165 return true;
13166 else
2f15d027 13167 return kvm_lapic_enabled(vcpu) && apf_pageready_slot_free(vcpu);
af585b92
GN
13168}
13169
5544eb9b
PB
13170void kvm_arch_start_assignment(struct kvm *kvm)
13171{
57ab8794 13172 if (atomic_inc_return(&kvm->arch.assigned_device_count) == 1)
e27bc044 13173 static_call_cond(kvm_x86_pi_start_assignment)(kvm);
5544eb9b
PB
13174}
13175EXPORT_SYMBOL_GPL(kvm_arch_start_assignment);
13176
13177void kvm_arch_end_assignment(struct kvm *kvm)
13178{
13179 atomic_dec(&kvm->arch.assigned_device_count);
13180}
13181EXPORT_SYMBOL_GPL(kvm_arch_end_assignment);
13182
742ab6df 13183bool noinstr kvm_arch_has_assigned_device(struct kvm *kvm)
5544eb9b 13184{
0f613bfa 13185 return raw_atomic_read(&kvm->arch.assigned_device_count);
5544eb9b
PB
13186}
13187EXPORT_SYMBOL_GPL(kvm_arch_has_assigned_device);
13188
e0f0bbc5
AW
13189void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
13190{
13191 atomic_inc(&kvm->arch.noncoherent_dma_count);
13192}
13193EXPORT_SYMBOL_GPL(kvm_arch_register_noncoherent_dma);
13194
13195void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
13196{
13197 atomic_dec(&kvm->arch.noncoherent_dma_count);
13198}
13199EXPORT_SYMBOL_GPL(kvm_arch_unregister_noncoherent_dma);
13200
13201bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
13202{
13203 return atomic_read(&kvm->arch.noncoherent_dma_count);
13204}
13205EXPORT_SYMBOL_GPL(kvm_arch_has_noncoherent_dma);
13206
14717e20
AW
13207bool kvm_arch_has_irq_bypass(void)
13208{
5e1fe4a2 13209 return enable_apicv && irq_remapping_cap(IRQ_POSTING_CAP);
14717e20
AW
13210}
13211
87276880
FW
13212int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
13213 struct irq_bypass_producer *prod)
13214{
13215 struct kvm_kernel_irqfd *irqfd =
13216 container_of(cons, struct kvm_kernel_irqfd, consumer);
2edd9cb7 13217 int ret;
87276880 13218
14717e20 13219 irqfd->producer = prod;
2edd9cb7 13220 kvm_arch_start_assignment(irqfd->kvm);
e27bc044 13221 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm,
2edd9cb7
ZL
13222 prod->irq, irqfd->gsi, 1);
13223
13224 if (ret)
13225 kvm_arch_end_assignment(irqfd->kvm);
87276880 13226
2edd9cb7 13227 return ret;
87276880
FW
13228}
13229
13230void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
13231 struct irq_bypass_producer *prod)
13232{
13233 int ret;
13234 struct kvm_kernel_irqfd *irqfd =
13235 container_of(cons, struct kvm_kernel_irqfd, consumer);
13236
87276880
FW
13237 WARN_ON(irqfd->producer != prod);
13238 irqfd->producer = NULL;
13239
13240 /*
13241 * When producer of consumer is unregistered, we change back to
13242 * remapped mode, so we can re-use the current implementation
bb3541f1 13243 * when the irq is masked/disabled or the consumer side (KVM
87276880
FW
13244 * int this case doesn't want to receive the interrupts.
13245 */
e27bc044 13246 ret = static_call(kvm_x86_pi_update_irte)(irqfd->kvm, prod->irq, irqfd->gsi, 0);
87276880
FW
13247 if (ret)
13248 printk(KERN_INFO "irq bypass consumer (token %p) unregistration"
13249 " fails: %d\n", irqfd->consumer.token, ret);
2edd9cb7
ZL
13250
13251 kvm_arch_end_assignment(irqfd->kvm);
87276880
FW
13252}
13253
13254int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
13255 uint32_t guest_irq, bool set)
13256{
e27bc044 13257 return static_call(kvm_x86_pi_update_irte)(kvm, host_irq, guest_irq, set);
87276880
FW
13258}
13259
515a0c79
LM
13260bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *old,
13261 struct kvm_kernel_irq_routing_entry *new)
13262{
13263 if (new->type != KVM_IRQ_ROUTING_MSI)
13264 return true;
13265
13266 return !!memcmp(&old->msi, &new->msi, sizeof(new->msi));
13267}
13268
52004014
FW
13269bool kvm_vector_hashing_enabled(void)
13270{
13271 return vector_hashing;
13272}
52004014 13273
2d5ba19b
MT
13274bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
13275{
13276 return (vcpu->arch.msr_kvm_poll_control & 1) == 0;
13277}
13278EXPORT_SYMBOL_GPL(kvm_arch_no_poll);
13279
841c2be0
ML
13280
13281int kvm_spec_ctrl_test_value(u64 value)
6441fa61 13282{
841c2be0
ML
13283 /*
13284 * test that setting IA32_SPEC_CTRL to given value
13285 * is allowed by the host processor
13286 */
6441fa61 13287
841c2be0
ML
13288 u64 saved_value;
13289 unsigned long flags;
13290 int ret = 0;
6441fa61 13291
841c2be0 13292 local_irq_save(flags);
6441fa61 13293
841c2be0
ML
13294 if (rdmsrl_safe(MSR_IA32_SPEC_CTRL, &saved_value))
13295 ret = 1;
13296 else if (wrmsrl_safe(MSR_IA32_SPEC_CTRL, value))
13297 ret = 1;
13298 else
13299 wrmsrl(MSR_IA32_SPEC_CTRL, saved_value);
6441fa61 13300
841c2be0 13301 local_irq_restore(flags);
6441fa61 13302
841c2be0 13303 return ret;
6441fa61 13304}
841c2be0 13305EXPORT_SYMBOL_GPL(kvm_spec_ctrl_test_value);
2d5ba19b 13306
89786147
MG
13307void kvm_fixup_and_inject_pf_error(struct kvm_vcpu *vcpu, gva_t gva, u16 error_code)
13308{
1f5a21ee 13309 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
89786147 13310 struct x86_exception fault;
5b22bbe7 13311 u64 access = error_code &
19cf4b7e 13312 (PFERR_WRITE_MASK | PFERR_FETCH_MASK | PFERR_USER_MASK);
89786147
MG
13313
13314 if (!(error_code & PFERR_PRESENT_MASK) ||
6e1d2a3f 13315 mmu->gva_to_gpa(vcpu, mmu, gva, access, &fault) != INVALID_GPA) {
89786147
MG
13316 /*
13317 * If vcpu->arch.walk_mmu->gva_to_gpa succeeded, the page
13318 * tables probably do not match the TLB. Just proceed
13319 * with the error code that the processor gave.
13320 */
13321 fault.vector = PF_VECTOR;
13322 fault.error_code_valid = true;
13323 fault.error_code = error_code;
13324 fault.nested_page_fault = false;
13325 fault.address = gva;
2bc685e6 13326 fault.async_page_fault = false;
89786147
MG
13327 }
13328 vcpu->arch.walk_mmu->inject_page_fault(vcpu, &fault);
6441fa61 13329}
89786147 13330EXPORT_SYMBOL_GPL(kvm_fixup_and_inject_pf_error);
2d5ba19b 13331
3f3393b3
BM
13332/*
13333 * Handles kvm_read/write_guest_virt*() result and either injects #PF or returns
13334 * KVM_EXIT_INTERNAL_ERROR for cases not currently handled by KVM. Return value
13335 * indicates whether exit to userspace is needed.
13336 */
13337int kvm_handle_memory_failure(struct kvm_vcpu *vcpu, int r,
13338 struct x86_exception *e)
13339{
13340 if (r == X86EMUL_PROPAGATE_FAULT) {
77b1908e
SC
13341 if (KVM_BUG_ON(!e, vcpu->kvm))
13342 return -EIO;
13343
3f3393b3
BM
13344 kvm_inject_emulated_page_fault(vcpu, e);
13345 return 1;
13346 }
13347
13348 /*
13349 * In case kvm_read/write_guest_virt*() failed with X86EMUL_IO_NEEDED
13350 * while handling a VMX instruction KVM could've handled the request
13351 * correctly by exiting to userspace and performing I/O but there
13352 * doesn't seem to be a real use-case behind such requests, just return
13353 * KVM_EXIT_INTERNAL_ERROR for now.
13354 */
e615e355 13355 kvm_prepare_emulation_failure_exit(vcpu);
3f3393b3
BM
13356
13357 return 0;
13358}
13359EXPORT_SYMBOL_GPL(kvm_handle_memory_failure);
13360
9715092f
BM
13361int kvm_handle_invpcid(struct kvm_vcpu *vcpu, unsigned long type, gva_t gva)
13362{
13363 bool pcid_enabled;
13364 struct x86_exception e;
9715092f
BM
13365 struct {
13366 u64 pcid;
13367 u64 gla;
13368 } operand;
13369 int r;
13370
13371 r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
13372 if (r != X86EMUL_CONTINUE)
13373 return kvm_handle_memory_failure(vcpu, r, &e);
13374
13375 if (operand.pcid >> 12 != 0) {
13376 kvm_inject_gp(vcpu, 0);
13377 return 1;
13378 }
13379
607475cf 13380 pcid_enabled = kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE);
9715092f
BM
13381
13382 switch (type) {
13383 case INVPCID_TYPE_INDIV_ADDR:
13384 if ((!pcid_enabled && (operand.pcid != 0)) ||
13385 is_noncanonical_address(operand.gla, vcpu)) {
13386 kvm_inject_gp(vcpu, 0);
13387 return 1;
13388 }
13389 kvm_mmu_invpcid_gva(vcpu, operand.gla, operand.pcid);
13390 return kvm_skip_emulated_instruction(vcpu);
13391
13392 case INVPCID_TYPE_SINGLE_CTXT:
13393 if (!pcid_enabled && (operand.pcid != 0)) {
13394 kvm_inject_gp(vcpu, 0);
13395 return 1;
13396 }
13397
21823fbd 13398 kvm_invalidate_pcid(vcpu, operand.pcid);
9715092f
BM
13399 return kvm_skip_emulated_instruction(vcpu);
13400
13401 case INVPCID_TYPE_ALL_NON_GLOBAL:
13402 /*
13403 * Currently, KVM doesn't mark global entries in the shadow
13404 * page tables, so a non-global flush just degenerates to a
13405 * global flush. If needed, we could optimize this later by
13406 * keeping track of global entries in shadow page tables.
13407 */
13408
13409 fallthrough;
13410 case INVPCID_TYPE_ALL_INCL_GLOBAL:
28f28d45 13411 kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
9715092f
BM
13412 return kvm_skip_emulated_instruction(vcpu);
13413
13414 default:
796c83c5
VS
13415 kvm_inject_gp(vcpu, 0);
13416 return 1;
9715092f
BM
13417 }
13418}
13419EXPORT_SYMBOL_GPL(kvm_handle_invpcid);
13420
8f423a80
TL
13421static int complete_sev_es_emulated_mmio(struct kvm_vcpu *vcpu)
13422{
13423 struct kvm_run *run = vcpu->run;
13424 struct kvm_mmio_fragment *frag;
13425 unsigned int len;
13426
13427 BUG_ON(!vcpu->mmio_needed);
13428
13429 /* Complete previous fragment */
13430 frag = &vcpu->mmio_fragments[vcpu->mmio_cur_fragment];
13431 len = min(8u, frag->len);
13432 if (!vcpu->mmio_is_write)
13433 memcpy(frag->data, run->mmio.data, len);
13434
13435 if (frag->len <= 8) {
13436 /* Switch to the next fragment. */
13437 frag++;
13438 vcpu->mmio_cur_fragment++;
13439 } else {
13440 /* Go forward to the next mmio piece. */
13441 frag->data += len;
13442 frag->gpa += len;
13443 frag->len -= len;
13444 }
13445
13446 if (vcpu->mmio_cur_fragment >= vcpu->mmio_nr_fragments) {
13447 vcpu->mmio_needed = 0;
13448
13449 // VMG change, at this point, we're always done
13450 // RIP has already been advanced
13451 return 1;
13452 }
13453
13454 // More MMIO is needed
13455 run->mmio.phys_addr = frag->gpa;
13456 run->mmio.len = min(8u, frag->len);
13457 run->mmio.is_write = vcpu->mmio_is_write;
13458 if (run->mmio.is_write)
13459 memcpy(run->mmio.data, frag->data, min(8u, frag->len));
13460 run->exit_reason = KVM_EXIT_MMIO;
13461
13462 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13463
13464 return 0;
13465}
13466
13467int kvm_sev_es_mmio_write(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13468 void *data)
13469{
13470 int handled;
13471 struct kvm_mmio_fragment *frag;
13472
13473 if (!data)
13474 return -EINVAL;
13475
13476 handled = write_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13477 if (handled == bytes)
13478 return 1;
13479
13480 bytes -= handled;
13481 gpa += handled;
13482 data += handled;
13483
13484 /*TODO: Check if need to increment number of frags */
13485 frag = vcpu->mmio_fragments;
13486 vcpu->mmio_nr_fragments = 1;
13487 frag->len = bytes;
13488 frag->gpa = gpa;
13489 frag->data = data;
13490
13491 vcpu->mmio_needed = 1;
13492 vcpu->mmio_cur_fragment = 0;
13493
13494 vcpu->run->mmio.phys_addr = gpa;
13495 vcpu->run->mmio.len = min(8u, frag->len);
13496 vcpu->run->mmio.is_write = 1;
13497 memcpy(vcpu->run->mmio.data, frag->data, min(8u, frag->len));
13498 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13499
13500 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13501
13502 return 0;
13503}
13504EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_write);
13505
13506int kvm_sev_es_mmio_read(struct kvm_vcpu *vcpu, gpa_t gpa, unsigned int bytes,
13507 void *data)
13508{
13509 int handled;
13510 struct kvm_mmio_fragment *frag;
13511
13512 if (!data)
13513 return -EINVAL;
13514
13515 handled = read_emultor.read_write_mmio(vcpu, gpa, bytes, data);
13516 if (handled == bytes)
13517 return 1;
13518
13519 bytes -= handled;
13520 gpa += handled;
13521 data += handled;
13522
13523 /*TODO: Check if need to increment number of frags */
13524 frag = vcpu->mmio_fragments;
13525 vcpu->mmio_nr_fragments = 1;
13526 frag->len = bytes;
13527 frag->gpa = gpa;
13528 frag->data = data;
13529
13530 vcpu->mmio_needed = 1;
13531 vcpu->mmio_cur_fragment = 0;
13532
13533 vcpu->run->mmio.phys_addr = gpa;
13534 vcpu->run->mmio.len = min(8u, frag->len);
13535 vcpu->run->mmio.is_write = 0;
13536 vcpu->run->exit_reason = KVM_EXIT_MMIO;
13537
13538 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_mmio;
13539
13540 return 0;
13541}
13542EXPORT_SYMBOL_GPL(kvm_sev_es_mmio_read);
13543
db209369
PB
13544static void advance_sev_es_emulated_pio(struct kvm_vcpu *vcpu, unsigned count, int size)
13545{
13546 vcpu->arch.sev_pio_count -= count;
13547 vcpu->arch.sev_pio_data += count * size;
13548}
13549
7ed9abfe 13550static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
95e16b47
PB
13551 unsigned int port);
13552
13553static int complete_sev_es_emulated_outs(struct kvm_vcpu *vcpu)
7ed9abfe 13554{
95e16b47
PB
13555 int size = vcpu->arch.pio.size;
13556 int port = vcpu->arch.pio.port;
13557
13558 vcpu->arch.pio.count = 0;
13559 if (vcpu->arch.sev_pio_count)
13560 return kvm_sev_es_outs(vcpu, size, port);
13561 return 1;
13562}
13563
13564static int kvm_sev_es_outs(struct kvm_vcpu *vcpu, unsigned int size,
13565 unsigned int port)
13566{
13567 for (;;) {
13568 unsigned int count =
13569 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
13570 int ret = emulator_pio_out(vcpu, size, port, vcpu->arch.sev_pio_data, count);
13571
13572 /* memcpy done already by emulator_pio_out. */
db209369 13573 advance_sev_es_emulated_pio(vcpu, count, size);
95e16b47
PB
13574 if (!ret)
13575 break;
7ed9abfe 13576
ea724ea4 13577 /* Emulation done by the kernel. */
95e16b47
PB
13578 if (!vcpu->arch.sev_pio_count)
13579 return 1;
ea724ea4 13580 }
7ed9abfe 13581
95e16b47 13582 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_outs;
7ed9abfe
TL
13583 return 0;
13584}
13585
95e16b47
PB
13586static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
13587 unsigned int port);
13588
4fa4b38d
PB
13589static int complete_sev_es_emulated_ins(struct kvm_vcpu *vcpu)
13590{
0c05e10b 13591 unsigned count = vcpu->arch.pio.count;
95e16b47
PB
13592 int size = vcpu->arch.pio.size;
13593 int port = vcpu->arch.pio.port;
4fa4b38d 13594
0c05e10b 13595 complete_emulator_pio_in(vcpu, vcpu->arch.sev_pio_data);
db209369 13596 advance_sev_es_emulated_pio(vcpu, count, size);
95e16b47
PB
13597 if (vcpu->arch.sev_pio_count)
13598 return kvm_sev_es_ins(vcpu, size, port);
4fa4b38d
PB
13599 return 1;
13600}
13601
7ed9abfe 13602static int kvm_sev_es_ins(struct kvm_vcpu *vcpu, unsigned int size,
95e16b47 13603 unsigned int port)
7ed9abfe 13604{
95e16b47
PB
13605 for (;;) {
13606 unsigned int count =
13607 min_t(unsigned int, PAGE_SIZE / size, vcpu->arch.sev_pio_count);
f35cee4a 13608 if (!emulator_pio_in(vcpu, size, port, vcpu->arch.sev_pio_data, count))
95e16b47 13609 break;
7ed9abfe 13610
ea724ea4 13611 /* Emulation done by the kernel. */
db209369 13612 advance_sev_es_emulated_pio(vcpu, count, size);
95e16b47
PB
13613 if (!vcpu->arch.sev_pio_count)
13614 return 1;
7ed9abfe
TL
13615 }
13616
ea724ea4 13617 vcpu->arch.complete_userspace_io = complete_sev_es_emulated_ins;
7ed9abfe
TL
13618 return 0;
13619}
13620
13621int kvm_sev_es_string_io(struct kvm_vcpu *vcpu, unsigned int size,
13622 unsigned int port, void *data, unsigned int count,
13623 int in)
13624{
ea724ea4 13625 vcpu->arch.sev_pio_data = data;
95e16b47
PB
13626 vcpu->arch.sev_pio_count = count;
13627 return in ? kvm_sev_es_ins(vcpu, size, port)
13628 : kvm_sev_es_outs(vcpu, size, port);
7ed9abfe
TL
13629}
13630EXPORT_SYMBOL_GPL(kvm_sev_es_string_io);
13631
d95df951 13632EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_entry);
229456fc 13633EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_exit);
931c33b1 13634EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_fast_mmio);
229456fc
MT
13635EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_inj_virq);
13636EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_page_fault);
13637EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_msr);
13638EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_cr);
89e54ec5 13639EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter);
d8cabddf 13640EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit);
17897f36 13641EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmexit_inject);
236649de 13642EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intr_vmexit);
5497b955 13643EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_vmenter_failed);
ec1ff790 13644EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_invlpga);
532a46b9 13645EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_skinit);
2e554e8d 13646EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_nested_intercepts);
489223ed 13647EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_write_tsc_offset);
4f75bcc3 13648EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ple_window_update);
843e4330 13649EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pml_full);
efc64404 13650EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_pi_irte_update);
18f40c53
SS
13651EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_unaccelerated_access);
13652EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_incomplete_ipi);
ab56f8e6 13653EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_ga_log);
9f084f7c 13654EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_kick_vcpu_slowpath);
39b6b8c3 13655EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_avic_doorbell);
8e819d75 13656EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_apicv_accept_irq);
d523ab6b
TL
13657EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_enter);
13658EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_exit);
59e38b58
TL
13659EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_enter);
13660EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_vmgexit_msr_protocol_exit);
1d0e8480
SC
13661
13662static int __init kvm_x86_init(void)
13663{
13664 kvm_mmu_x86_module_init();
6f0f2d5e 13665 mitigate_smt_rsb &= boot_cpu_has_bug(X86_BUG_SMT_RSB) && cpu_smt_possible();
1d0e8480
SC
13666 return 0;
13667}
13668module_init(kvm_x86_init);
13669
13670static void __exit kvm_x86_exit(void)
13671{
13672 /*
13673 * If module_init() is implemented, module_exit() must also be
13674 * implemented to allow module unload.
13675 */
13676}
13677module_exit(kvm_x86_exit);