KVM: Track TSC synchronization in generations
[linux-block.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
e495606d 22
edf88417 23#include <linux/kvm_host.h>
6aa8b732 24#include <linux/module.h>
9d8f549d 25#include <linux/kernel.h>
6aa8b732
AK
26#include <linux/mm.h>
27#include <linux/highmem.h>
e8edc6e0 28#include <linux/sched.h>
c7addb90 29#include <linux/moduleparam.h>
229456fc 30#include <linux/ftrace_event.h>
5a0e3ad6 31#include <linux/slab.h>
cafd6659 32#include <linux/tboot.h>
5fdbf976 33#include "kvm_cache_regs.h"
35920a35 34#include "x86.h"
e495606d 35
6aa8b732 36#include <asm/io.h>
3b3be0d1 37#include <asm/desc.h>
13673a90 38#include <asm/vmx.h>
6210e37b 39#include <asm/virtext.h>
a0861c02 40#include <asm/mce.h>
2acf923e
DC
41#include <asm/i387.h>
42#include <asm/xcr.h>
d7cd9796 43#include <asm/perf_event.h>
6aa8b732 44
229456fc
MT
45#include "trace.h"
46
4ecac3fd 47#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
48#define __ex_clear(x, reg) \
49 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 50
6aa8b732
AK
51MODULE_AUTHOR("Qumranet");
52MODULE_LICENSE("GPL");
53
476bc001 54static bool __read_mostly enable_vpid = 1;
736caefe 55module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 56
476bc001 57static bool __read_mostly flexpriority_enabled = 1;
736caefe 58module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 59
476bc001 60static bool __read_mostly enable_ept = 1;
736caefe 61module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 62
476bc001 63static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
64module_param_named(unrestricted_guest,
65 enable_unrestricted_guest, bool, S_IRUGO);
66
476bc001 67static bool __read_mostly emulate_invalid_guest_state = 0;
c1f8bc04 68module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 69
476bc001 70static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
71module_param(vmm_exclusive, bool, S_IRUGO);
72
476bc001 73static bool __read_mostly yield_on_hlt = 1;
443381a8
AL
74module_param(yield_on_hlt, bool, S_IRUGO);
75
476bc001 76static bool __read_mostly fasteoi = 1;
58fbbf26
KT
77module_param(fasteoi, bool, S_IRUGO);
78
801d3424
NHE
79/*
80 * If nested=1, nested virtualization is supported, i.e., guests may use
81 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
82 * use VMX instructions.
83 */
476bc001 84static bool __read_mostly nested = 0;
801d3424
NHE
85module_param(nested, bool, S_IRUGO);
86
cdc0e244
AK
87#define KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST \
88 (X86_CR0_WP | X86_CR0_NE | X86_CR0_NW | X86_CR0_CD)
89#define KVM_GUEST_CR0_MASK \
90 (KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
91#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST \
81231c69 92 (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
93#define KVM_VM_CR0_ALWAYS_ON \
94 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
95#define KVM_CR4_GUEST_OWNED_BITS \
96 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
97 | X86_CR4_OSXMMEXCPT)
98
cdc0e244
AK
99#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
100#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
101
78ac8b47
AK
102#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
103
4b8d54f9
ZE
104/*
105 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
106 * ple_gap: upper bound on the amount of time between two successive
107 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 108 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
109 * ple_window: upper bound on the amount of time a guest is allowed to execute
110 * in a PAUSE loop. Tests indicate that most spinlocks are held for
111 * less than 2^12 cycles
112 * Time is measured based on a counter that runs at the same rate as the TSC,
113 * refer SDM volume 3b section 21.6.13 & 22.1.3.
114 */
00c25bce 115#define KVM_VMX_DEFAULT_PLE_GAP 128
4b8d54f9
ZE
116#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
117static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
118module_param(ple_gap, int, S_IRUGO);
119
120static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
121module_param(ple_window, int, S_IRUGO);
122
8bf00a52 123#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 124#define VMCS02_POOL_SIZE 1
61d2ef2c 125
a2fa3e9f
GH
126struct vmcs {
127 u32 revision_id;
128 u32 abort;
129 char data[0];
130};
131
d462b819
NHE
132/*
133 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
134 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
135 * loaded on this CPU (so we can clear them if the CPU goes down).
136 */
137struct loaded_vmcs {
138 struct vmcs *vmcs;
139 int cpu;
140 int launched;
141 struct list_head loaded_vmcss_on_cpu_link;
142};
143
26bb0981
AK
144struct shared_msr_entry {
145 unsigned index;
146 u64 data;
d5696725 147 u64 mask;
26bb0981
AK
148};
149
a9d30f33
NHE
150/*
151 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
152 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
153 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
154 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
155 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
156 * More than one of these structures may exist, if L1 runs multiple L2 guests.
157 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
158 * underlying hardware which will be used to run L2.
159 * This structure is packed to ensure that its layout is identical across
160 * machines (necessary for live migration).
161 * If there are changes in this struct, VMCS12_REVISION must be changed.
162 */
22bd0358 163typedef u64 natural_width;
a9d30f33
NHE
164struct __packed vmcs12 {
165 /* According to the Intel spec, a VMCS region must start with the
166 * following two fields. Then follow implementation-specific data.
167 */
168 u32 revision_id;
169 u32 abort;
22bd0358 170
27d6c865
NHE
171 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
172 u32 padding[7]; /* room for future expansion */
173
22bd0358
NHE
174 u64 io_bitmap_a;
175 u64 io_bitmap_b;
176 u64 msr_bitmap;
177 u64 vm_exit_msr_store_addr;
178 u64 vm_exit_msr_load_addr;
179 u64 vm_entry_msr_load_addr;
180 u64 tsc_offset;
181 u64 virtual_apic_page_addr;
182 u64 apic_access_addr;
183 u64 ept_pointer;
184 u64 guest_physical_address;
185 u64 vmcs_link_pointer;
186 u64 guest_ia32_debugctl;
187 u64 guest_ia32_pat;
188 u64 guest_ia32_efer;
189 u64 guest_ia32_perf_global_ctrl;
190 u64 guest_pdptr0;
191 u64 guest_pdptr1;
192 u64 guest_pdptr2;
193 u64 guest_pdptr3;
194 u64 host_ia32_pat;
195 u64 host_ia32_efer;
196 u64 host_ia32_perf_global_ctrl;
197 u64 padding64[8]; /* room for future expansion */
198 /*
199 * To allow migration of L1 (complete with its L2 guests) between
200 * machines of different natural widths (32 or 64 bit), we cannot have
201 * unsigned long fields with no explict size. We use u64 (aliased
202 * natural_width) instead. Luckily, x86 is little-endian.
203 */
204 natural_width cr0_guest_host_mask;
205 natural_width cr4_guest_host_mask;
206 natural_width cr0_read_shadow;
207 natural_width cr4_read_shadow;
208 natural_width cr3_target_value0;
209 natural_width cr3_target_value1;
210 natural_width cr3_target_value2;
211 natural_width cr3_target_value3;
212 natural_width exit_qualification;
213 natural_width guest_linear_address;
214 natural_width guest_cr0;
215 natural_width guest_cr3;
216 natural_width guest_cr4;
217 natural_width guest_es_base;
218 natural_width guest_cs_base;
219 natural_width guest_ss_base;
220 natural_width guest_ds_base;
221 natural_width guest_fs_base;
222 natural_width guest_gs_base;
223 natural_width guest_ldtr_base;
224 natural_width guest_tr_base;
225 natural_width guest_gdtr_base;
226 natural_width guest_idtr_base;
227 natural_width guest_dr7;
228 natural_width guest_rsp;
229 natural_width guest_rip;
230 natural_width guest_rflags;
231 natural_width guest_pending_dbg_exceptions;
232 natural_width guest_sysenter_esp;
233 natural_width guest_sysenter_eip;
234 natural_width host_cr0;
235 natural_width host_cr3;
236 natural_width host_cr4;
237 natural_width host_fs_base;
238 natural_width host_gs_base;
239 natural_width host_tr_base;
240 natural_width host_gdtr_base;
241 natural_width host_idtr_base;
242 natural_width host_ia32_sysenter_esp;
243 natural_width host_ia32_sysenter_eip;
244 natural_width host_rsp;
245 natural_width host_rip;
246 natural_width paddingl[8]; /* room for future expansion */
247 u32 pin_based_vm_exec_control;
248 u32 cpu_based_vm_exec_control;
249 u32 exception_bitmap;
250 u32 page_fault_error_code_mask;
251 u32 page_fault_error_code_match;
252 u32 cr3_target_count;
253 u32 vm_exit_controls;
254 u32 vm_exit_msr_store_count;
255 u32 vm_exit_msr_load_count;
256 u32 vm_entry_controls;
257 u32 vm_entry_msr_load_count;
258 u32 vm_entry_intr_info_field;
259 u32 vm_entry_exception_error_code;
260 u32 vm_entry_instruction_len;
261 u32 tpr_threshold;
262 u32 secondary_vm_exec_control;
263 u32 vm_instruction_error;
264 u32 vm_exit_reason;
265 u32 vm_exit_intr_info;
266 u32 vm_exit_intr_error_code;
267 u32 idt_vectoring_info_field;
268 u32 idt_vectoring_error_code;
269 u32 vm_exit_instruction_len;
270 u32 vmx_instruction_info;
271 u32 guest_es_limit;
272 u32 guest_cs_limit;
273 u32 guest_ss_limit;
274 u32 guest_ds_limit;
275 u32 guest_fs_limit;
276 u32 guest_gs_limit;
277 u32 guest_ldtr_limit;
278 u32 guest_tr_limit;
279 u32 guest_gdtr_limit;
280 u32 guest_idtr_limit;
281 u32 guest_es_ar_bytes;
282 u32 guest_cs_ar_bytes;
283 u32 guest_ss_ar_bytes;
284 u32 guest_ds_ar_bytes;
285 u32 guest_fs_ar_bytes;
286 u32 guest_gs_ar_bytes;
287 u32 guest_ldtr_ar_bytes;
288 u32 guest_tr_ar_bytes;
289 u32 guest_interruptibility_info;
290 u32 guest_activity_state;
291 u32 guest_sysenter_cs;
292 u32 host_ia32_sysenter_cs;
293 u32 padding32[8]; /* room for future expansion */
294 u16 virtual_processor_id;
295 u16 guest_es_selector;
296 u16 guest_cs_selector;
297 u16 guest_ss_selector;
298 u16 guest_ds_selector;
299 u16 guest_fs_selector;
300 u16 guest_gs_selector;
301 u16 guest_ldtr_selector;
302 u16 guest_tr_selector;
303 u16 host_es_selector;
304 u16 host_cs_selector;
305 u16 host_ss_selector;
306 u16 host_ds_selector;
307 u16 host_fs_selector;
308 u16 host_gs_selector;
309 u16 host_tr_selector;
a9d30f33
NHE
310};
311
312/*
313 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
314 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
315 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
316 */
317#define VMCS12_REVISION 0x11e57ed0
318
319/*
320 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
321 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
322 * current implementation, 4K are reserved to avoid future complications.
323 */
324#define VMCS12_SIZE 0x1000
325
ff2f6fe9
NHE
326/* Used to remember the last vmcs02 used for some recently used vmcs12s */
327struct vmcs02_list {
328 struct list_head list;
329 gpa_t vmptr;
330 struct loaded_vmcs vmcs02;
331};
332
ec378aee
NHE
333/*
334 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
335 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
336 */
337struct nested_vmx {
338 /* Has the level1 guest done vmxon? */
339 bool vmxon;
a9d30f33
NHE
340
341 /* The guest-physical address of the current VMCS L1 keeps for L2 */
342 gpa_t current_vmptr;
343 /* The host-usable pointer to the above */
344 struct page *current_vmcs12_page;
345 struct vmcs12 *current_vmcs12;
ff2f6fe9
NHE
346
347 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
348 struct list_head vmcs02_pool;
349 int vmcs02_num;
fe3ef05c 350 u64 vmcs01_tsc_offset;
644d711a
NHE
351 /* L2 must run next, and mustn't decide to exit to L1. */
352 bool nested_run_pending;
fe3ef05c
NHE
353 /*
354 * Guest pages referred to in vmcs02 with host-physical pointers, so
355 * we must keep them pinned while L2 runs.
356 */
357 struct page *apic_access_page;
ec378aee
NHE
358};
359
a2fa3e9f 360struct vcpu_vmx {
fb3f0f51 361 struct kvm_vcpu vcpu;
313dbd49 362 unsigned long host_rsp;
29bd8a78 363 u8 fail;
69c73028 364 u8 cpl;
9d58b931 365 bool nmi_known_unmasked;
51aa01d1 366 u32 exit_intr_info;
1155f76a 367 u32 idt_vectoring_info;
6de12732 368 ulong rflags;
26bb0981 369 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
370 int nmsrs;
371 int save_nmsrs;
a2fa3e9f 372#ifdef CONFIG_X86_64
44ea2b17
AK
373 u64 msr_host_kernel_gs_base;
374 u64 msr_guest_kernel_gs_base;
a2fa3e9f 375#endif
d462b819
NHE
376 /*
377 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
378 * non-nested (L1) guest, it always points to vmcs01. For a nested
379 * guest (L2), it points to a different VMCS.
380 */
381 struct loaded_vmcs vmcs01;
382 struct loaded_vmcs *loaded_vmcs;
383 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
384 struct msr_autoload {
385 unsigned nr;
386 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
387 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
388 } msr_autoload;
a2fa3e9f
GH
389 struct {
390 int loaded;
391 u16 fs_sel, gs_sel, ldt_sel;
152d3f2f
LV
392 int gs_ldt_reload_needed;
393 int fs_reload_needed;
d77c26fc 394 } host_state;
9c8cba37 395 struct {
7ffd92c5 396 int vm86_active;
78ac8b47 397 ulong save_rflags;
7ffd92c5
AK
398 struct kvm_save_segment {
399 u16 selector;
400 unsigned long base;
401 u32 limit;
402 u32 ar;
403 } tr, es, ds, fs, gs;
9c8cba37 404 } rmode;
2fb92db1
AK
405 struct {
406 u32 bitmask; /* 4 bits per segment (1 bit per field) */
407 struct kvm_save_segment seg[8];
408 } segment_cache;
2384d2b3 409 int vpid;
04fa4d32 410 bool emulation_required;
3b86cd99
JK
411
412 /* Support for vnmi-less CPUs */
413 int soft_vnmi_blocked;
414 ktime_t entry_time;
415 s64 vnmi_blocked_time;
a0861c02 416 u32 exit_reason;
4e47c7a6
SY
417
418 bool rdtscp_enabled;
ec378aee
NHE
419
420 /* Support for a guest hypervisor (nested VMX) */
421 struct nested_vmx nested;
a2fa3e9f
GH
422};
423
2fb92db1
AK
424enum segment_cache_field {
425 SEG_FIELD_SEL = 0,
426 SEG_FIELD_BASE = 1,
427 SEG_FIELD_LIMIT = 2,
428 SEG_FIELD_AR = 3,
429
430 SEG_FIELD_NR = 4
431};
432
a2fa3e9f
GH
433static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
434{
fb3f0f51 435 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
436}
437
22bd0358
NHE
438#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
439#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
440#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
441 [number##_HIGH] = VMCS12_OFFSET(name)+4
442
443static unsigned short vmcs_field_to_offset_table[] = {
444 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
445 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
446 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
447 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
448 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
449 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
450 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
451 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
452 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
453 FIELD(HOST_ES_SELECTOR, host_es_selector),
454 FIELD(HOST_CS_SELECTOR, host_cs_selector),
455 FIELD(HOST_SS_SELECTOR, host_ss_selector),
456 FIELD(HOST_DS_SELECTOR, host_ds_selector),
457 FIELD(HOST_FS_SELECTOR, host_fs_selector),
458 FIELD(HOST_GS_SELECTOR, host_gs_selector),
459 FIELD(HOST_TR_SELECTOR, host_tr_selector),
460 FIELD64(IO_BITMAP_A, io_bitmap_a),
461 FIELD64(IO_BITMAP_B, io_bitmap_b),
462 FIELD64(MSR_BITMAP, msr_bitmap),
463 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
464 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
465 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
466 FIELD64(TSC_OFFSET, tsc_offset),
467 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
468 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
469 FIELD64(EPT_POINTER, ept_pointer),
470 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
471 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
472 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
473 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
474 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
475 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
476 FIELD64(GUEST_PDPTR0, guest_pdptr0),
477 FIELD64(GUEST_PDPTR1, guest_pdptr1),
478 FIELD64(GUEST_PDPTR2, guest_pdptr2),
479 FIELD64(GUEST_PDPTR3, guest_pdptr3),
480 FIELD64(HOST_IA32_PAT, host_ia32_pat),
481 FIELD64(HOST_IA32_EFER, host_ia32_efer),
482 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
483 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
484 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
485 FIELD(EXCEPTION_BITMAP, exception_bitmap),
486 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
487 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
488 FIELD(CR3_TARGET_COUNT, cr3_target_count),
489 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
490 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
491 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
492 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
493 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
494 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
495 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
496 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
497 FIELD(TPR_THRESHOLD, tpr_threshold),
498 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
499 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
500 FIELD(VM_EXIT_REASON, vm_exit_reason),
501 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
502 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
503 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
504 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
505 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
506 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
507 FIELD(GUEST_ES_LIMIT, guest_es_limit),
508 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
509 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
510 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
511 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
512 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
513 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
514 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
515 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
516 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
517 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
518 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
519 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
520 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
521 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
522 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
523 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
524 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
525 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
526 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
527 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
528 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
529 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
530 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
531 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
532 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
533 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
534 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
535 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
536 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
537 FIELD(EXIT_QUALIFICATION, exit_qualification),
538 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
539 FIELD(GUEST_CR0, guest_cr0),
540 FIELD(GUEST_CR3, guest_cr3),
541 FIELD(GUEST_CR4, guest_cr4),
542 FIELD(GUEST_ES_BASE, guest_es_base),
543 FIELD(GUEST_CS_BASE, guest_cs_base),
544 FIELD(GUEST_SS_BASE, guest_ss_base),
545 FIELD(GUEST_DS_BASE, guest_ds_base),
546 FIELD(GUEST_FS_BASE, guest_fs_base),
547 FIELD(GUEST_GS_BASE, guest_gs_base),
548 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
549 FIELD(GUEST_TR_BASE, guest_tr_base),
550 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
551 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
552 FIELD(GUEST_DR7, guest_dr7),
553 FIELD(GUEST_RSP, guest_rsp),
554 FIELD(GUEST_RIP, guest_rip),
555 FIELD(GUEST_RFLAGS, guest_rflags),
556 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
557 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
558 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
559 FIELD(HOST_CR0, host_cr0),
560 FIELD(HOST_CR3, host_cr3),
561 FIELD(HOST_CR4, host_cr4),
562 FIELD(HOST_FS_BASE, host_fs_base),
563 FIELD(HOST_GS_BASE, host_gs_base),
564 FIELD(HOST_TR_BASE, host_tr_base),
565 FIELD(HOST_GDTR_BASE, host_gdtr_base),
566 FIELD(HOST_IDTR_BASE, host_idtr_base),
567 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
568 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
569 FIELD(HOST_RSP, host_rsp),
570 FIELD(HOST_RIP, host_rip),
571};
572static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
573
574static inline short vmcs_field_to_offset(unsigned long field)
575{
576 if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
577 return -1;
578 return vmcs_field_to_offset_table[field];
579}
580
a9d30f33
NHE
581static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
582{
583 return to_vmx(vcpu)->nested.current_vmcs12;
584}
585
586static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
587{
588 struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
589 if (is_error_page(page)) {
590 kvm_release_page_clean(page);
591 return NULL;
592 }
593 return page;
594}
595
596static void nested_release_page(struct page *page)
597{
598 kvm_release_page_dirty(page);
599}
600
601static void nested_release_page_clean(struct page *page)
602{
603 kvm_release_page_clean(page);
604}
605
4e1096d2 606static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
607static void kvm_cpu_vmxon(u64 addr);
608static void kvm_cpu_vmxoff(void);
aff48baa 609static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
776e58ea 610static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
75880a01 611
6aa8b732
AK
612static DEFINE_PER_CPU(struct vmcs *, vmxarea);
613static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
614/*
615 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
616 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
617 */
618static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 619static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 620
3e7c73e9
AK
621static unsigned long *vmx_io_bitmap_a;
622static unsigned long *vmx_io_bitmap_b;
5897297b
AK
623static unsigned long *vmx_msr_bitmap_legacy;
624static unsigned long *vmx_msr_bitmap_longmode;
fdef3ad1 625
110312c8 626static bool cpu_has_load_ia32_efer;
8bf00a52 627static bool cpu_has_load_perf_global_ctrl;
110312c8 628
2384d2b3
SY
629static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
630static DEFINE_SPINLOCK(vmx_vpid_lock);
631
1c3d14fe 632static struct vmcs_config {
6aa8b732
AK
633 int size;
634 int order;
635 u32 revision_id;
1c3d14fe
YS
636 u32 pin_based_exec_ctrl;
637 u32 cpu_based_exec_ctrl;
f78e0e2e 638 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
639 u32 vmexit_ctrl;
640 u32 vmentry_ctrl;
641} vmcs_config;
6aa8b732 642
efff9e53 643static struct vmx_capability {
d56f546d
SY
644 u32 ept;
645 u32 vpid;
646} vmx_capability;
647
6aa8b732
AK
648#define VMX_SEGMENT_FIELD(seg) \
649 [VCPU_SREG_##seg] = { \
650 .selector = GUEST_##seg##_SELECTOR, \
651 .base = GUEST_##seg##_BASE, \
652 .limit = GUEST_##seg##_LIMIT, \
653 .ar_bytes = GUEST_##seg##_AR_BYTES, \
654 }
655
656static struct kvm_vmx_segment_field {
657 unsigned selector;
658 unsigned base;
659 unsigned limit;
660 unsigned ar_bytes;
661} kvm_vmx_segment_fields[] = {
662 VMX_SEGMENT_FIELD(CS),
663 VMX_SEGMENT_FIELD(DS),
664 VMX_SEGMENT_FIELD(ES),
665 VMX_SEGMENT_FIELD(FS),
666 VMX_SEGMENT_FIELD(GS),
667 VMX_SEGMENT_FIELD(SS),
668 VMX_SEGMENT_FIELD(TR),
669 VMX_SEGMENT_FIELD(LDTR),
670};
671
26bb0981
AK
672static u64 host_efer;
673
6de4f3ad
AK
674static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
675
4d56c8a7 676/*
8c06585d 677 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
678 * away by decrementing the array size.
679 */
6aa8b732 680static const u32 vmx_msr_index[] = {
05b3e0c2 681#ifdef CONFIG_X86_64
44ea2b17 682 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 683#endif
8c06585d 684 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 685};
9d8f549d 686#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
6aa8b732 687
31299944 688static inline bool is_page_fault(u32 intr_info)
6aa8b732
AK
689{
690 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
691 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 692 (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
6aa8b732
AK
693}
694
31299944 695static inline bool is_no_device(u32 intr_info)
2ab455cc
AL
696{
697 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
698 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 699 (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
2ab455cc
AL
700}
701
31299944 702static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0
AL
703{
704 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
705 INTR_INFO_VALID_MASK)) ==
8ab2d2e2 706 (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
7aa81cc0
AL
707}
708
31299944 709static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
710{
711 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
712 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
713}
714
31299944 715static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
716{
717 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
718 INTR_INFO_VALID_MASK)) ==
719 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
720}
721
31299944 722static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 723{
04547156 724 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
725}
726
31299944 727static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 728{
04547156 729 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
730}
731
31299944 732static inline bool vm_need_tpr_shadow(struct kvm *kvm)
6e5d865c 733{
04547156 734 return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
6e5d865c
YS
735}
736
31299944 737static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 738{
04547156
SY
739 return vmcs_config.cpu_based_exec_ctrl &
740 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
741}
742
774ead3a 743static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 744{
04547156
SY
745 return vmcs_config.cpu_based_2nd_exec_ctrl &
746 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
747}
748
749static inline bool cpu_has_vmx_flexpriority(void)
750{
751 return cpu_has_vmx_tpr_shadow() &&
752 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
753}
754
e799794e
MT
755static inline bool cpu_has_vmx_ept_execute_only(void)
756{
31299944 757 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
758}
759
760static inline bool cpu_has_vmx_eptp_uncacheable(void)
761{
31299944 762 return vmx_capability.ept & VMX_EPTP_UC_BIT;
e799794e
MT
763}
764
765static inline bool cpu_has_vmx_eptp_writeback(void)
766{
31299944 767 return vmx_capability.ept & VMX_EPTP_WB_BIT;
e799794e
MT
768}
769
770static inline bool cpu_has_vmx_ept_2m_page(void)
771{
31299944 772 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
773}
774
878403b7
SY
775static inline bool cpu_has_vmx_ept_1g_page(void)
776{
31299944 777 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
778}
779
4bc9b982
SY
780static inline bool cpu_has_vmx_ept_4levels(void)
781{
782 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
783}
784
31299944 785static inline bool cpu_has_vmx_invept_individual_addr(void)
d56f546d 786{
31299944 787 return vmx_capability.ept & VMX_EPT_EXTENT_INDIVIDUAL_BIT;
d56f546d
SY
788}
789
31299944 790static inline bool cpu_has_vmx_invept_context(void)
d56f546d 791{
31299944 792 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
793}
794
31299944 795static inline bool cpu_has_vmx_invept_global(void)
d56f546d 796{
31299944 797 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
798}
799
518c8aee
GJ
800static inline bool cpu_has_vmx_invvpid_single(void)
801{
802 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
803}
804
b9d762fa
GJ
805static inline bool cpu_has_vmx_invvpid_global(void)
806{
807 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
808}
809
31299944 810static inline bool cpu_has_vmx_ept(void)
d56f546d 811{
04547156
SY
812 return vmcs_config.cpu_based_2nd_exec_ctrl &
813 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
814}
815
31299944 816static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
817{
818 return vmcs_config.cpu_based_2nd_exec_ctrl &
819 SECONDARY_EXEC_UNRESTRICTED_GUEST;
820}
821
31299944 822static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
823{
824 return vmcs_config.cpu_based_2nd_exec_ctrl &
825 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
826}
827
31299944 828static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
f78e0e2e 829{
6d3e435e 830 return flexpriority_enabled && irqchip_in_kernel(kvm);
f78e0e2e
SY
831}
832
31299944 833static inline bool cpu_has_vmx_vpid(void)
2384d2b3 834{
04547156
SY
835 return vmcs_config.cpu_based_2nd_exec_ctrl &
836 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
837}
838
31299944 839static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
840{
841 return vmcs_config.cpu_based_2nd_exec_ctrl &
842 SECONDARY_EXEC_RDTSCP;
843}
844
31299944 845static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
846{
847 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
848}
849
f5f48ee1
SY
850static inline bool cpu_has_vmx_wbinvd_exit(void)
851{
852 return vmcs_config.cpu_based_2nd_exec_ctrl &
853 SECONDARY_EXEC_WBINVD_EXITING;
854}
855
04547156
SY
856static inline bool report_flexpriority(void)
857{
858 return flexpriority_enabled;
859}
860
fe3ef05c
NHE
861static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
862{
863 return vmcs12->cpu_based_vm_exec_control & bit;
864}
865
866static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
867{
868 return (vmcs12->cpu_based_vm_exec_control &
869 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
870 (vmcs12->secondary_vm_exec_control & bit);
871}
872
644d711a
NHE
873static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
874 struct kvm_vcpu *vcpu)
875{
876 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
877}
878
879static inline bool is_exception(u32 intr_info)
880{
881 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
882 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
883}
884
885static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
7c177938
NHE
886static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
887 struct vmcs12 *vmcs12,
888 u32 reason, unsigned long qualification);
889
8b9cf98c 890static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
891{
892 int i;
893
a2fa3e9f 894 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 895 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
896 return i;
897 return -1;
898}
899
2384d2b3
SY
900static inline void __invvpid(int ext, u16 vpid, gva_t gva)
901{
902 struct {
903 u64 vpid : 16;
904 u64 rsvd : 48;
905 u64 gva;
906 } operand = { vpid, 0, gva };
907
4ecac3fd 908 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
909 /* CF==1 or ZF==1 --> rc = -1 */
910 "; ja 1f ; ud2 ; 1:"
911 : : "a"(&operand), "c"(ext) : "cc", "memory");
912}
913
1439442c
SY
914static inline void __invept(int ext, u64 eptp, gpa_t gpa)
915{
916 struct {
917 u64 eptp, gpa;
918 } operand = {eptp, gpa};
919
4ecac3fd 920 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
921 /* CF==1 or ZF==1 --> rc = -1 */
922 "; ja 1f ; ud2 ; 1:\n"
923 : : "a" (&operand), "c" (ext) : "cc", "memory");
924}
925
26bb0981 926static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
927{
928 int i;
929
8b9cf98c 930 i = __find_msr_index(vmx, msr);
a75beee6 931 if (i >= 0)
a2fa3e9f 932 return &vmx->guest_msrs[i];
8b6d44c7 933 return NULL;
7725f0ba
AK
934}
935
6aa8b732
AK
936static void vmcs_clear(struct vmcs *vmcs)
937{
938 u64 phys_addr = __pa(vmcs);
939 u8 error;
940
4ecac3fd 941 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 942 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
943 : "cc", "memory");
944 if (error)
945 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
946 vmcs, phys_addr);
947}
948
d462b819
NHE
949static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
950{
951 vmcs_clear(loaded_vmcs->vmcs);
952 loaded_vmcs->cpu = -1;
953 loaded_vmcs->launched = 0;
954}
955
7725b894
DX
956static void vmcs_load(struct vmcs *vmcs)
957{
958 u64 phys_addr = __pa(vmcs);
959 u8 error;
960
961 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 962 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
963 : "cc", "memory");
964 if (error)
2844d849 965 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
966 vmcs, phys_addr);
967}
968
d462b819 969static void __loaded_vmcs_clear(void *arg)
6aa8b732 970{
d462b819 971 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 972 int cpu = raw_smp_processor_id();
6aa8b732 973
d462b819
NHE
974 if (loaded_vmcs->cpu != cpu)
975 return; /* vcpu migration can race with cpu offline */
976 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 977 per_cpu(current_vmcs, cpu) = NULL;
d462b819
NHE
978 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
979 loaded_vmcs_init(loaded_vmcs);
6aa8b732
AK
980}
981
d462b819 982static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 983{
d462b819
NHE
984 if (loaded_vmcs->cpu != -1)
985 smp_call_function_single(
986 loaded_vmcs->cpu, __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
987}
988
1760dd49 989static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
2384d2b3
SY
990{
991 if (vmx->vpid == 0)
992 return;
993
518c8aee
GJ
994 if (cpu_has_vmx_invvpid_single())
995 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
2384d2b3
SY
996}
997
b9d762fa
GJ
998static inline void vpid_sync_vcpu_global(void)
999{
1000 if (cpu_has_vmx_invvpid_global())
1001 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1002}
1003
1004static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1005{
1006 if (cpu_has_vmx_invvpid_single())
1760dd49 1007 vpid_sync_vcpu_single(vmx);
b9d762fa
GJ
1008 else
1009 vpid_sync_vcpu_global();
1010}
1011
1439442c
SY
1012static inline void ept_sync_global(void)
1013{
1014 if (cpu_has_vmx_invept_global())
1015 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1016}
1017
1018static inline void ept_sync_context(u64 eptp)
1019{
089d034e 1020 if (enable_ept) {
1439442c
SY
1021 if (cpu_has_vmx_invept_context())
1022 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1023 else
1024 ept_sync_global();
1025 }
1026}
1027
1028static inline void ept_sync_individual_addr(u64 eptp, gpa_t gpa)
1029{
089d034e 1030 if (enable_ept) {
1439442c
SY
1031 if (cpu_has_vmx_invept_individual_addr())
1032 __invept(VMX_EPT_EXTENT_INDIVIDUAL_ADDR,
1033 eptp, gpa);
1034 else
1035 ept_sync_context(eptp);
1036 }
1037}
1038
96304217 1039static __always_inline unsigned long vmcs_readl(unsigned long field)
6aa8b732 1040{
5e520e62 1041 unsigned long value;
6aa8b732 1042
5e520e62
AK
1043 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1044 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1045 return value;
1046}
1047
96304217 1048static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732
AK
1049{
1050 return vmcs_readl(field);
1051}
1052
96304217 1053static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732
AK
1054{
1055 return vmcs_readl(field);
1056}
1057
96304217 1058static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1059{
05b3e0c2 1060#ifdef CONFIG_X86_64
6aa8b732
AK
1061 return vmcs_readl(field);
1062#else
1063 return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1064#endif
1065}
1066
e52de1b8
AK
1067static noinline void vmwrite_error(unsigned long field, unsigned long value)
1068{
1069 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1070 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1071 dump_stack();
1072}
1073
6aa8b732
AK
1074static void vmcs_writel(unsigned long field, unsigned long value)
1075{
1076 u8 error;
1077
4ecac3fd 1078 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1079 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1080 if (unlikely(error))
1081 vmwrite_error(field, value);
6aa8b732
AK
1082}
1083
1084static void vmcs_write16(unsigned long field, u16 value)
1085{
1086 vmcs_writel(field, value);
1087}
1088
1089static void vmcs_write32(unsigned long field, u32 value)
1090{
1091 vmcs_writel(field, value);
1092}
1093
1094static void vmcs_write64(unsigned long field, u64 value)
1095{
6aa8b732 1096 vmcs_writel(field, value);
7682f2d0 1097#ifndef CONFIG_X86_64
6aa8b732
AK
1098 asm volatile ("");
1099 vmcs_writel(field+1, value >> 32);
1100#endif
1101}
1102
2ab455cc
AL
1103static void vmcs_clear_bits(unsigned long field, u32 mask)
1104{
1105 vmcs_writel(field, vmcs_readl(field) & ~mask);
1106}
1107
1108static void vmcs_set_bits(unsigned long field, u32 mask)
1109{
1110 vmcs_writel(field, vmcs_readl(field) | mask);
1111}
1112
2fb92db1
AK
1113static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1114{
1115 vmx->segment_cache.bitmask = 0;
1116}
1117
1118static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1119 unsigned field)
1120{
1121 bool ret;
1122 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1123
1124 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1125 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1126 vmx->segment_cache.bitmask = 0;
1127 }
1128 ret = vmx->segment_cache.bitmask & mask;
1129 vmx->segment_cache.bitmask |= mask;
1130 return ret;
1131}
1132
1133static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1134{
1135 u16 *p = &vmx->segment_cache.seg[seg].selector;
1136
1137 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1138 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1139 return *p;
1140}
1141
1142static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1143{
1144 ulong *p = &vmx->segment_cache.seg[seg].base;
1145
1146 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1147 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1148 return *p;
1149}
1150
1151static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1152{
1153 u32 *p = &vmx->segment_cache.seg[seg].limit;
1154
1155 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1156 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1157 return *p;
1158}
1159
1160static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1161{
1162 u32 *p = &vmx->segment_cache.seg[seg].ar;
1163
1164 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1165 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1166 return *p;
1167}
1168
abd3f2d6
AK
1169static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1170{
1171 u32 eb;
1172
fd7373cc
JK
1173 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1174 (1u << NM_VECTOR) | (1u << DB_VECTOR);
1175 if ((vcpu->guest_debug &
1176 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1177 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1178 eb |= 1u << BP_VECTOR;
7ffd92c5 1179 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1180 eb = ~0;
089d034e 1181 if (enable_ept)
1439442c 1182 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1183 if (vcpu->fpu_active)
1184 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1185
1186 /* When we are running a nested L2 guest and L1 specified for it a
1187 * certain exception bitmap, we must trap the same exceptions and pass
1188 * them to L1. When running L2, we will only handle the exceptions
1189 * specified above if L1 did not want them.
1190 */
1191 if (is_guest_mode(vcpu))
1192 eb |= get_vmcs12(vcpu)->exception_bitmap;
1193
abd3f2d6
AK
1194 vmcs_write32(EXCEPTION_BITMAP, eb);
1195}
1196
8bf00a52
GN
1197static void clear_atomic_switch_msr_special(unsigned long entry,
1198 unsigned long exit)
1199{
1200 vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1201 vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1202}
1203
61d2ef2c
AK
1204static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1205{
1206 unsigned i;
1207 struct msr_autoload *m = &vmx->msr_autoload;
1208
8bf00a52
GN
1209 switch (msr) {
1210 case MSR_EFER:
1211 if (cpu_has_load_ia32_efer) {
1212 clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1213 VM_EXIT_LOAD_IA32_EFER);
1214 return;
1215 }
1216 break;
1217 case MSR_CORE_PERF_GLOBAL_CTRL:
1218 if (cpu_has_load_perf_global_ctrl) {
1219 clear_atomic_switch_msr_special(
1220 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1221 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1222 return;
1223 }
1224 break;
110312c8
AK
1225 }
1226
61d2ef2c
AK
1227 for (i = 0; i < m->nr; ++i)
1228 if (m->guest[i].index == msr)
1229 break;
1230
1231 if (i == m->nr)
1232 return;
1233 --m->nr;
1234 m->guest[i] = m->guest[m->nr];
1235 m->host[i] = m->host[m->nr];
1236 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1237 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1238}
1239
8bf00a52
GN
1240static void add_atomic_switch_msr_special(unsigned long entry,
1241 unsigned long exit, unsigned long guest_val_vmcs,
1242 unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1243{
1244 vmcs_write64(guest_val_vmcs, guest_val);
1245 vmcs_write64(host_val_vmcs, host_val);
1246 vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1247 vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1248}
1249
61d2ef2c
AK
1250static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1251 u64 guest_val, u64 host_val)
1252{
1253 unsigned i;
1254 struct msr_autoload *m = &vmx->msr_autoload;
1255
8bf00a52
GN
1256 switch (msr) {
1257 case MSR_EFER:
1258 if (cpu_has_load_ia32_efer) {
1259 add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1260 VM_EXIT_LOAD_IA32_EFER,
1261 GUEST_IA32_EFER,
1262 HOST_IA32_EFER,
1263 guest_val, host_val);
1264 return;
1265 }
1266 break;
1267 case MSR_CORE_PERF_GLOBAL_CTRL:
1268 if (cpu_has_load_perf_global_ctrl) {
1269 add_atomic_switch_msr_special(
1270 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1271 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1272 GUEST_IA32_PERF_GLOBAL_CTRL,
1273 HOST_IA32_PERF_GLOBAL_CTRL,
1274 guest_val, host_val);
1275 return;
1276 }
1277 break;
110312c8
AK
1278 }
1279
61d2ef2c
AK
1280 for (i = 0; i < m->nr; ++i)
1281 if (m->guest[i].index == msr)
1282 break;
1283
e7fc6f93
GN
1284 if (i == NR_AUTOLOAD_MSRS) {
1285 printk_once(KERN_WARNING"Not enough mst switch entries. "
1286 "Can't add msr %x\n", msr);
1287 return;
1288 } else if (i == m->nr) {
61d2ef2c
AK
1289 ++m->nr;
1290 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1291 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1292 }
1293
1294 m->guest[i].index = msr;
1295 m->guest[i].value = guest_val;
1296 m->host[i].index = msr;
1297 m->host[i].value = host_val;
1298}
1299
33ed6329
AK
1300static void reload_tss(void)
1301{
33ed6329
AK
1302 /*
1303 * VT restores TR but not its size. Useless.
1304 */
d359192f 1305 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
a5f61300 1306 struct desc_struct *descs;
33ed6329 1307
d359192f 1308 descs = (void *)gdt->address;
33ed6329
AK
1309 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1310 load_TR_desc();
33ed6329
AK
1311}
1312
92c0d900 1313static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1314{
3a34a881 1315 u64 guest_efer;
51c6cf66
AK
1316 u64 ignore_bits;
1317
f6801dff 1318 guest_efer = vmx->vcpu.arch.efer;
3a34a881 1319
51c6cf66
AK
1320 /*
1321 * NX is emulated; LMA and LME handled by hardware; SCE meaninless
1322 * outside long mode
1323 */
1324 ignore_bits = EFER_NX | EFER_SCE;
1325#ifdef CONFIG_X86_64
1326 ignore_bits |= EFER_LMA | EFER_LME;
1327 /* SCE is meaningful only in long mode on Intel */
1328 if (guest_efer & EFER_LMA)
1329 ignore_bits &= ~(u64)EFER_SCE;
1330#endif
51c6cf66
AK
1331 guest_efer &= ~ignore_bits;
1332 guest_efer |= host_efer & ignore_bits;
26bb0981 1333 vmx->guest_msrs[efer_offset].data = guest_efer;
d5696725 1334 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef
AK
1335
1336 clear_atomic_switch_msr(vmx, MSR_EFER);
1337 /* On ept, can't emulate nx, and must switch nx atomically */
1338 if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1339 guest_efer = vmx->vcpu.arch.efer;
1340 if (!(guest_efer & EFER_LMA))
1341 guest_efer &= ~EFER_LME;
1342 add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1343 return false;
1344 }
1345
26bb0981 1346 return true;
51c6cf66
AK
1347}
1348
2d49ec72
GN
1349static unsigned long segment_base(u16 selector)
1350{
d359192f 1351 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
2d49ec72
GN
1352 struct desc_struct *d;
1353 unsigned long table_base;
1354 unsigned long v;
1355
1356 if (!(selector & ~3))
1357 return 0;
1358
d359192f 1359 table_base = gdt->address;
2d49ec72
GN
1360
1361 if (selector & 4) { /* from ldt */
1362 u16 ldt_selector = kvm_read_ldt();
1363
1364 if (!(ldt_selector & ~3))
1365 return 0;
1366
1367 table_base = segment_base(ldt_selector);
1368 }
1369 d = (struct desc_struct *)(table_base + (selector & ~7));
1370 v = get_desc_base(d);
1371#ifdef CONFIG_X86_64
1372 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1373 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1374#endif
1375 return v;
1376}
1377
1378static inline unsigned long kvm_read_tr_base(void)
1379{
1380 u16 tr;
1381 asm("str %0" : "=g"(tr));
1382 return segment_base(tr);
1383}
1384
04d2cc77 1385static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1386{
04d2cc77 1387 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1388 int i;
04d2cc77 1389
a2fa3e9f 1390 if (vmx->host_state.loaded)
33ed6329
AK
1391 return;
1392
a2fa3e9f 1393 vmx->host_state.loaded = 1;
33ed6329
AK
1394 /*
1395 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1396 * allow segment selectors with cpl > 0 or ti == 1.
1397 */
d6e88aec 1398 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1399 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1400 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1401 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1402 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1403 vmx->host_state.fs_reload_needed = 0;
1404 } else {
33ed6329 1405 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1406 vmx->host_state.fs_reload_needed = 1;
33ed6329 1407 }
9581d442 1408 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1409 if (!(vmx->host_state.gs_sel & 7))
1410 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1411 else {
1412 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1413 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1414 }
1415
1416#ifdef CONFIG_X86_64
1417 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1418 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1419#else
a2fa3e9f
GH
1420 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1421 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 1422#endif
707c0874
AK
1423
1424#ifdef CONFIG_X86_64
c8770e7b
AK
1425 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1426 if (is_long_mode(&vmx->vcpu))
44ea2b17 1427 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 1428#endif
26bb0981
AK
1429 for (i = 0; i < vmx->save_nmsrs; ++i)
1430 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
1431 vmx->guest_msrs[i].data,
1432 vmx->guest_msrs[i].mask);
33ed6329
AK
1433}
1434
a9b21b62 1435static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 1436{
a2fa3e9f 1437 if (!vmx->host_state.loaded)
33ed6329
AK
1438 return;
1439
e1beb1d3 1440 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 1441 vmx->host_state.loaded = 0;
c8770e7b
AK
1442#ifdef CONFIG_X86_64
1443 if (is_long_mode(&vmx->vcpu))
1444 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1445#endif
152d3f2f 1446 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 1447 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 1448#ifdef CONFIG_X86_64
9581d442 1449 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
1450#else
1451 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 1452#endif
33ed6329 1453 }
0a77fe4c
AK
1454 if (vmx->host_state.fs_reload_needed)
1455 loadsegment(fs, vmx->host_state.fs_sel);
152d3f2f 1456 reload_tss();
44ea2b17 1457#ifdef CONFIG_X86_64
c8770e7b 1458 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 1459#endif
f94edacf 1460 if (__thread_has_fpu(current))
1c11e713 1461 clts();
3444d7da 1462 load_gdt(&__get_cpu_var(host_gdt));
33ed6329
AK
1463}
1464
a9b21b62
AK
1465static void vmx_load_host_state(struct vcpu_vmx *vmx)
1466{
1467 preempt_disable();
1468 __vmx_load_host_state(vmx);
1469 preempt_enable();
1470}
1471
6aa8b732
AK
1472/*
1473 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1474 * vcpu mutex is already taken.
1475 */
15ad7146 1476static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 1477{
a2fa3e9f 1478 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 1479 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 1480
4610c9cc
DX
1481 if (!vmm_exclusive)
1482 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
1483 else if (vmx->loaded_vmcs->cpu != cpu)
1484 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 1485
d462b819
NHE
1486 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1487 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1488 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
1489 }
1490
d462b819 1491 if (vmx->loaded_vmcs->cpu != cpu) {
d359192f 1492 struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
6aa8b732
AK
1493 unsigned long sysenter_esp;
1494
a8eeb04a 1495 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 1496 local_irq_disable();
d462b819
NHE
1497 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1498 &per_cpu(loaded_vmcss_on_cpu, cpu));
92fe13be
DX
1499 local_irq_enable();
1500
6aa8b732
AK
1501 /*
1502 * Linux uses per-cpu TSS and GDT, so set these when switching
1503 * processors.
1504 */
d6e88aec 1505 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 1506 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
1507
1508 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1509 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
d462b819 1510 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 1511 }
6aa8b732
AK
1512}
1513
1514static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1515{
a9b21b62 1516 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 1517 if (!vmm_exclusive) {
d462b819
NHE
1518 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1519 vcpu->cpu = -1;
4610c9cc
DX
1520 kvm_cpu_vmxoff();
1521 }
6aa8b732
AK
1522}
1523
5fd86fcf
AK
1524static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1525{
81231c69
AK
1526 ulong cr0;
1527
5fd86fcf
AK
1528 if (vcpu->fpu_active)
1529 return;
1530 vcpu->fpu_active = 1;
81231c69
AK
1531 cr0 = vmcs_readl(GUEST_CR0);
1532 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1533 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1534 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 1535 update_exception_bitmap(vcpu);
edcafe3c 1536 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
1537 if (is_guest_mode(vcpu))
1538 vcpu->arch.cr0_guest_owned_bits &=
1539 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 1540 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
1541}
1542
edcafe3c
AK
1543static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1544
fe3ef05c
NHE
1545/*
1546 * Return the cr0 value that a nested guest would read. This is a combination
1547 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1548 * its hypervisor (cr0_read_shadow).
1549 */
1550static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1551{
1552 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1553 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1554}
1555static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1556{
1557 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1558 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1559}
1560
5fd86fcf
AK
1561static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1562{
36cf24e0
NHE
1563 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1564 * set this *before* calling this function.
1565 */
edcafe3c 1566 vmx_decache_cr0_guest_bits(vcpu);
81231c69 1567 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 1568 update_exception_bitmap(vcpu);
edcafe3c
AK
1569 vcpu->arch.cr0_guest_owned_bits = 0;
1570 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
1571 if (is_guest_mode(vcpu)) {
1572 /*
1573 * L1's specified read shadow might not contain the TS bit,
1574 * so now that we turned on shadowing of this bit, we need to
1575 * set this bit of the shadow. Like in nested_vmx_run we need
1576 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1577 * up-to-date here because we just decached cr0.TS (and we'll
1578 * only update vmcs12->guest_cr0 on nested exit).
1579 */
1580 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1581 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1582 (vcpu->arch.cr0 & X86_CR0_TS);
1583 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1584 } else
1585 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
1586}
1587
6aa8b732
AK
1588static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1589{
78ac8b47 1590 unsigned long rflags, save_rflags;
345dcaa8 1591
6de12732
AK
1592 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1593 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1594 rflags = vmcs_readl(GUEST_RFLAGS);
1595 if (to_vmx(vcpu)->rmode.vm86_active) {
1596 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1597 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1598 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1599 }
1600 to_vmx(vcpu)->rflags = rflags;
78ac8b47 1601 }
6de12732 1602 return to_vmx(vcpu)->rflags;
6aa8b732
AK
1603}
1604
1605static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1606{
6de12732 1607 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
69c73028 1608 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6de12732 1609 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
1610 if (to_vmx(vcpu)->rmode.vm86_active) {
1611 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 1612 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 1613 }
6aa8b732
AK
1614 vmcs_writel(GUEST_RFLAGS, rflags);
1615}
1616
2809f5d2
GC
1617static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1618{
1619 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1620 int ret = 0;
1621
1622 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 1623 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 1624 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 1625 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2
GC
1626
1627 return ret & mask;
1628}
1629
1630static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1631{
1632 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1633 u32 interruptibility = interruptibility_old;
1634
1635 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1636
48005f64 1637 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 1638 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 1639 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
1640 interruptibility |= GUEST_INTR_STATE_STI;
1641
1642 if ((interruptibility != interruptibility_old))
1643 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1644}
1645
6aa8b732
AK
1646static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1647{
1648 unsigned long rip;
6aa8b732 1649
5fdbf976 1650 rip = kvm_rip_read(vcpu);
6aa8b732 1651 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 1652 kvm_rip_write(vcpu, rip);
6aa8b732 1653
2809f5d2
GC
1654 /* skipping an emulated instruction also counts */
1655 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
1656}
1657
443381a8
AL
1658static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
1659{
1660 /* Ensure that we clear the HLT state in the VMCS. We don't need to
1661 * explicitly skip the instruction because if the HLT state is set, then
1662 * the instruction is already executing and RIP has already been
1663 * advanced. */
1664 if (!yield_on_hlt &&
1665 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
1666 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
1667}
1668
0b6ac343
NHE
1669/*
1670 * KVM wants to inject page-faults which it got to the guest. This function
1671 * checks whether in a nested guest, we need to inject them to L1 or L2.
1672 * This function assumes it is called with the exit reason in vmcs02 being
1673 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1674 * is running).
1675 */
1676static int nested_pf_handled(struct kvm_vcpu *vcpu)
1677{
1678 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1679
1680 /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1681 if (!(vmcs12->exception_bitmap & PF_VECTOR))
1682 return 0;
1683
1684 nested_vmx_vmexit(vcpu);
1685 return 1;
1686}
1687
298101da 1688static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
1689 bool has_error_code, u32 error_code,
1690 bool reinject)
298101da 1691{
77ab6db0 1692 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 1693 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 1694
0b6ac343
NHE
1695 if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1696 nested_pf_handled(vcpu))
1697 return;
1698
8ab2d2e2 1699 if (has_error_code) {
77ab6db0 1700 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
1701 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1702 }
77ab6db0 1703
7ffd92c5 1704 if (vmx->rmode.vm86_active) {
71f9833b
SH
1705 int inc_eip = 0;
1706 if (kvm_exception_is_soft(nr))
1707 inc_eip = vcpu->arch.event_exit_inst_len;
1708 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 1709 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
1710 return;
1711 }
1712
66fd3f7f
GN
1713 if (kvm_exception_is_soft(nr)) {
1714 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1715 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
1716 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1717 } else
1718 intr_info |= INTR_TYPE_HARD_EXCEPTION;
1719
1720 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
443381a8 1721 vmx_clear_hlt(vcpu);
298101da
AK
1722}
1723
4e47c7a6
SY
1724static bool vmx_rdtscp_supported(void)
1725{
1726 return cpu_has_vmx_rdtscp();
1727}
1728
a75beee6
ED
1729/*
1730 * Swap MSR entry in host/guest MSR entry array.
1731 */
8b9cf98c 1732static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 1733{
26bb0981 1734 struct shared_msr_entry tmp;
a2fa3e9f
GH
1735
1736 tmp = vmx->guest_msrs[to];
1737 vmx->guest_msrs[to] = vmx->guest_msrs[from];
1738 vmx->guest_msrs[from] = tmp;
a75beee6
ED
1739}
1740
e38aea3e
AK
1741/*
1742 * Set up the vmcs to automatically save and restore system
1743 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
1744 * mode, as fiddling with msrs is very expensive.
1745 */
8b9cf98c 1746static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 1747{
26bb0981 1748 int save_nmsrs, index;
5897297b 1749 unsigned long *msr_bitmap;
e38aea3e 1750
a75beee6
ED
1751 save_nmsrs = 0;
1752#ifdef CONFIG_X86_64
8b9cf98c 1753 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 1754 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 1755 if (index >= 0)
8b9cf98c
RR
1756 move_msr_up(vmx, index, save_nmsrs++);
1757 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 1758 if (index >= 0)
8b9cf98c
RR
1759 move_msr_up(vmx, index, save_nmsrs++);
1760 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 1761 if (index >= 0)
8b9cf98c 1762 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6
SY
1763 index = __find_msr_index(vmx, MSR_TSC_AUX);
1764 if (index >= 0 && vmx->rdtscp_enabled)
1765 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 1766 /*
8c06585d 1767 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
1768 * if efer.sce is enabled.
1769 */
8c06585d 1770 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 1771 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 1772 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
1773 }
1774#endif
92c0d900
AK
1775 index = __find_msr_index(vmx, MSR_EFER);
1776 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 1777 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 1778
26bb0981 1779 vmx->save_nmsrs = save_nmsrs;
5897297b
AK
1780
1781 if (cpu_has_vmx_msr_bitmap()) {
1782 if (is_long_mode(&vmx->vcpu))
1783 msr_bitmap = vmx_msr_bitmap_longmode;
1784 else
1785 msr_bitmap = vmx_msr_bitmap_legacy;
1786
1787 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1788 }
e38aea3e
AK
1789}
1790
6aa8b732
AK
1791/*
1792 * reads and returns guest's timestamp counter "register"
1793 * guest_tsc = host_tsc + tsc_offset -- 21.3
1794 */
1795static u64 guest_read_tsc(void)
1796{
1797 u64 host_tsc, tsc_offset;
1798
1799 rdtscll(host_tsc);
1800 tsc_offset = vmcs_read64(TSC_OFFSET);
1801 return host_tsc + tsc_offset;
1802}
1803
d5c1785d
NHE
1804/*
1805 * Like guest_read_tsc, but always returns L1's notion of the timestamp
1806 * counter, even if a nested guest (L2) is currently running.
1807 */
1808u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu)
1809{
1810 u64 host_tsc, tsc_offset;
1811
1812 rdtscll(host_tsc);
1813 tsc_offset = is_guest_mode(vcpu) ?
1814 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
1815 vmcs_read64(TSC_OFFSET);
1816 return host_tsc + tsc_offset;
1817}
1818
4051b188 1819/*
cc578287
ZA
1820 * Engage any workarounds for mis-matched TSC rates. Currently limited to
1821 * software catchup for faster rates on slower CPUs.
4051b188 1822 */
cc578287 1823static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
4051b188 1824{
cc578287
ZA
1825 if (!scale)
1826 return;
1827
1828 if (user_tsc_khz > tsc_khz) {
1829 vcpu->arch.tsc_catchup = 1;
1830 vcpu->arch.tsc_always_catchup = 1;
1831 } else
1832 WARN(1, "user requested TSC rate below hardware speed\n");
4051b188
JR
1833}
1834
6aa8b732 1835/*
99e3e30a 1836 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 1837 */
99e3e30a 1838static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 1839{
27fc51b2 1840 if (is_guest_mode(vcpu)) {
7991825b 1841 /*
27fc51b2
NHE
1842 * We're here if L1 chose not to trap WRMSR to TSC. According
1843 * to the spec, this should set L1's TSC; The offset that L1
1844 * set for L2 remains unchanged, and still needs to be added
1845 * to the newly set TSC to get L2's TSC.
7991825b 1846 */
27fc51b2
NHE
1847 struct vmcs12 *vmcs12;
1848 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
1849 /* recalculate vmcs02.TSC_OFFSET: */
1850 vmcs12 = get_vmcs12(vcpu);
1851 vmcs_write64(TSC_OFFSET, offset +
1852 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
1853 vmcs12->tsc_offset : 0));
1854 } else {
1855 vmcs_write64(TSC_OFFSET, offset);
1856 }
6aa8b732
AK
1857}
1858
f1e2b260 1859static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
e48672fa
ZA
1860{
1861 u64 offset = vmcs_read64(TSC_OFFSET);
1862 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
1863 if (is_guest_mode(vcpu)) {
1864 /* Even when running L2, the adjustment needs to apply to L1 */
1865 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
1866 }
e48672fa
ZA
1867}
1868
857e4099
JR
1869static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1870{
1871 return target_tsc - native_read_tsc();
1872}
1873
801d3424
NHE
1874static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
1875{
1876 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
1877 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
1878}
1879
1880/*
1881 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
1882 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
1883 * all guests if the "nested" module option is off, and can also be disabled
1884 * for a single guest by disabling its VMX cpuid bit.
1885 */
1886static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
1887{
1888 return nested && guest_cpuid_has_vmx(vcpu);
1889}
1890
b87a51ae
NHE
1891/*
1892 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
1893 * returned for the various VMX controls MSRs when nested VMX is enabled.
1894 * The same values should also be used to verify that vmcs12 control fields are
1895 * valid during nested entry from L1 to L2.
1896 * Each of these control msrs has a low and high 32-bit half: A low bit is on
1897 * if the corresponding bit in the (32-bit) control field *must* be on, and a
1898 * bit in the high half is on if the corresponding bit in the control field
1899 * may be on. See also vmx_control_verify().
1900 * TODO: allow these variables to be modified (downgraded) by module options
1901 * or other means.
1902 */
1903static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
1904static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
1905static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
1906static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
1907static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
1908static __init void nested_vmx_setup_ctls_msrs(void)
1909{
1910 /*
1911 * Note that as a general rule, the high half of the MSRs (bits in
1912 * the control fields which may be 1) should be initialized by the
1913 * intersection of the underlying hardware's MSR (i.e., features which
1914 * can be supported) and the list of features we want to expose -
1915 * because they are known to be properly supported in our code.
1916 * Also, usually, the low half of the MSRs (bits which must be 1) can
1917 * be set to 0, meaning that L1 may turn off any of these bits. The
1918 * reason is that if one of these bits is necessary, it will appear
1919 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
1920 * fields of vmcs01 and vmcs02, will turn these bits off - and
1921 * nested_vmx_exit_handled() will not pass related exits to L1.
1922 * These rules have exceptions below.
1923 */
1924
1925 /* pin-based controls */
1926 /*
1927 * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
1928 * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
1929 */
1930 nested_vmx_pinbased_ctls_low = 0x16 ;
1931 nested_vmx_pinbased_ctls_high = 0x16 |
1932 PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING |
1933 PIN_BASED_VIRTUAL_NMIS;
1934
1935 /* exit controls */
1936 nested_vmx_exit_ctls_low = 0;
b6f1250e 1937 /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
b87a51ae
NHE
1938#ifdef CONFIG_X86_64
1939 nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
1940#else
1941 nested_vmx_exit_ctls_high = 0;
1942#endif
1943
1944 /* entry controls */
1945 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
1946 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
1947 nested_vmx_entry_ctls_low = 0;
1948 nested_vmx_entry_ctls_high &=
1949 VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
1950
1951 /* cpu-based controls */
1952 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
1953 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
1954 nested_vmx_procbased_ctls_low = 0;
1955 nested_vmx_procbased_ctls_high &=
1956 CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
1957 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
1958 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
1959 CPU_BASED_CR3_STORE_EXITING |
1960#ifdef CONFIG_X86_64
1961 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
1962#endif
1963 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
1964 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
fee84b07 1965 CPU_BASED_RDPMC_EXITING |
b87a51ae
NHE
1966 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1967 /*
1968 * We can allow some features even when not supported by the
1969 * hardware. For example, L1 can specify an MSR bitmap - and we
1970 * can use it to avoid exits to L1 - even when L0 runs L2
1971 * without MSR bitmaps.
1972 */
1973 nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
1974
1975 /* secondary cpu-based controls */
1976 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
1977 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
1978 nested_vmx_secondary_ctls_low = 0;
1979 nested_vmx_secondary_ctls_high &=
1980 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1981}
1982
1983static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
1984{
1985 /*
1986 * Bits 0 in high must be 0, and bits 1 in low must be 1.
1987 */
1988 return ((control & high) | low) == control;
1989}
1990
1991static inline u64 vmx_control_msr(u32 low, u32 high)
1992{
1993 return low | ((u64)high << 32);
1994}
1995
1996/*
1997 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
1998 * also let it use VMX-specific MSRs.
1999 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2000 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2001 * like all other MSRs).
2002 */
2003static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2004{
2005 if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2006 msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2007 /*
2008 * According to the spec, processors which do not support VMX
2009 * should throw a #GP(0) when VMX capability MSRs are read.
2010 */
2011 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2012 return 1;
2013 }
2014
2015 switch (msr_index) {
2016 case MSR_IA32_FEATURE_CONTROL:
2017 *pdata = 0;
2018 break;
2019 case MSR_IA32_VMX_BASIC:
2020 /*
2021 * This MSR reports some information about VMX support. We
2022 * should return information about the VMX we emulate for the
2023 * guest, and the VMCS structure we give it - not about the
2024 * VMX support of the underlying hardware.
2025 */
2026 *pdata = VMCS12_REVISION |
2027 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2028 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2029 break;
2030 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2031 case MSR_IA32_VMX_PINBASED_CTLS:
2032 *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2033 nested_vmx_pinbased_ctls_high);
2034 break;
2035 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2036 case MSR_IA32_VMX_PROCBASED_CTLS:
2037 *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2038 nested_vmx_procbased_ctls_high);
2039 break;
2040 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2041 case MSR_IA32_VMX_EXIT_CTLS:
2042 *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2043 nested_vmx_exit_ctls_high);
2044 break;
2045 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2046 case MSR_IA32_VMX_ENTRY_CTLS:
2047 *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2048 nested_vmx_entry_ctls_high);
2049 break;
2050 case MSR_IA32_VMX_MISC:
2051 *pdata = 0;
2052 break;
2053 /*
2054 * These MSRs specify bits which the guest must keep fixed (on or off)
2055 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2056 * We picked the standard core2 setting.
2057 */
2058#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2059#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2060 case MSR_IA32_VMX_CR0_FIXED0:
2061 *pdata = VMXON_CR0_ALWAYSON;
2062 break;
2063 case MSR_IA32_VMX_CR0_FIXED1:
2064 *pdata = -1ULL;
2065 break;
2066 case MSR_IA32_VMX_CR4_FIXED0:
2067 *pdata = VMXON_CR4_ALWAYSON;
2068 break;
2069 case MSR_IA32_VMX_CR4_FIXED1:
2070 *pdata = -1ULL;
2071 break;
2072 case MSR_IA32_VMX_VMCS_ENUM:
2073 *pdata = 0x1f;
2074 break;
2075 case MSR_IA32_VMX_PROCBASED_CTLS2:
2076 *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2077 nested_vmx_secondary_ctls_high);
2078 break;
2079 case MSR_IA32_VMX_EPT_VPID_CAP:
2080 /* Currently, no nested ept or nested vpid */
2081 *pdata = 0;
2082 break;
2083 default:
2084 return 0;
2085 }
2086
2087 return 1;
2088}
2089
2090static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2091{
2092 if (!nested_vmx_allowed(vcpu))
2093 return 0;
2094
2095 if (msr_index == MSR_IA32_FEATURE_CONTROL)
2096 /* TODO: the right thing. */
2097 return 1;
2098 /*
2099 * No need to treat VMX capability MSRs specially: If we don't handle
2100 * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2101 */
2102 return 0;
2103}
2104
6aa8b732
AK
2105/*
2106 * Reads an msr value (of 'msr_index') into 'pdata'.
2107 * Returns 0 on success, non-0 otherwise.
2108 * Assumes vcpu_load() was already called.
2109 */
2110static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2111{
2112 u64 data;
26bb0981 2113 struct shared_msr_entry *msr;
6aa8b732
AK
2114
2115 if (!pdata) {
2116 printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2117 return -EINVAL;
2118 }
2119
2120 switch (msr_index) {
05b3e0c2 2121#ifdef CONFIG_X86_64
6aa8b732
AK
2122 case MSR_FS_BASE:
2123 data = vmcs_readl(GUEST_FS_BASE);
2124 break;
2125 case MSR_GS_BASE:
2126 data = vmcs_readl(GUEST_GS_BASE);
2127 break;
44ea2b17
AK
2128 case MSR_KERNEL_GS_BASE:
2129 vmx_load_host_state(to_vmx(vcpu));
2130 data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2131 break;
26bb0981 2132#endif
6aa8b732 2133 case MSR_EFER:
3bab1f5d 2134 return kvm_get_msr_common(vcpu, msr_index, pdata);
af24a4e4 2135 case MSR_IA32_TSC:
6aa8b732
AK
2136 data = guest_read_tsc();
2137 break;
2138 case MSR_IA32_SYSENTER_CS:
2139 data = vmcs_read32(GUEST_SYSENTER_CS);
2140 break;
2141 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2142 data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2143 break;
2144 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2145 data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2146 break;
4e47c7a6
SY
2147 case MSR_TSC_AUX:
2148 if (!to_vmx(vcpu)->rdtscp_enabled)
2149 return 1;
2150 /* Otherwise falls through */
6aa8b732 2151 default:
b87a51ae
NHE
2152 if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2153 return 0;
8b9cf98c 2154 msr = find_msr_entry(to_vmx(vcpu), msr_index);
3bab1f5d
AK
2155 if (msr) {
2156 data = msr->data;
2157 break;
6aa8b732 2158 }
3bab1f5d 2159 return kvm_get_msr_common(vcpu, msr_index, pdata);
6aa8b732
AK
2160 }
2161
2162 *pdata = data;
2163 return 0;
2164}
2165
2166/*
2167 * Writes msr value into into the appropriate "register".
2168 * Returns 0 on success, non-0 otherwise.
2169 * Assumes vcpu_load() was already called.
2170 */
2171static int vmx_set_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2172{
a2fa3e9f 2173 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2174 struct shared_msr_entry *msr;
2cc51560
ED
2175 int ret = 0;
2176
6aa8b732 2177 switch (msr_index) {
3bab1f5d 2178 case MSR_EFER:
2cc51560 2179 ret = kvm_set_msr_common(vcpu, msr_index, data);
2cc51560 2180 break;
16175a79 2181#ifdef CONFIG_X86_64
6aa8b732 2182 case MSR_FS_BASE:
2fb92db1 2183 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2184 vmcs_writel(GUEST_FS_BASE, data);
2185 break;
2186 case MSR_GS_BASE:
2fb92db1 2187 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2188 vmcs_writel(GUEST_GS_BASE, data);
2189 break;
44ea2b17
AK
2190 case MSR_KERNEL_GS_BASE:
2191 vmx_load_host_state(vmx);
2192 vmx->msr_guest_kernel_gs_base = data;
2193 break;
6aa8b732
AK
2194#endif
2195 case MSR_IA32_SYSENTER_CS:
2196 vmcs_write32(GUEST_SYSENTER_CS, data);
2197 break;
2198 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2199 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2200 break;
2201 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2202 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2203 break;
af24a4e4 2204 case MSR_IA32_TSC:
99e3e30a 2205 kvm_write_tsc(vcpu, data);
6aa8b732 2206 break;
468d472f
SY
2207 case MSR_IA32_CR_PAT:
2208 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2209 vmcs_write64(GUEST_IA32_PAT, data);
2210 vcpu->arch.pat = data;
2211 break;
2212 }
4e47c7a6
SY
2213 ret = kvm_set_msr_common(vcpu, msr_index, data);
2214 break;
2215 case MSR_TSC_AUX:
2216 if (!vmx->rdtscp_enabled)
2217 return 1;
2218 /* Check reserved bit, higher 32 bits should be zero */
2219 if ((data >> 32) != 0)
2220 return 1;
2221 /* Otherwise falls through */
6aa8b732 2222 default:
b87a51ae
NHE
2223 if (vmx_set_vmx_msr(vcpu, msr_index, data))
2224 break;
8b9cf98c 2225 msr = find_msr_entry(vmx, msr_index);
3bab1f5d
AK
2226 if (msr) {
2227 msr->data = data;
2228 break;
6aa8b732 2229 }
2cc51560 2230 ret = kvm_set_msr_common(vcpu, msr_index, data);
6aa8b732
AK
2231 }
2232
2cc51560 2233 return ret;
6aa8b732
AK
2234}
2235
5fdbf976 2236static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 2237{
5fdbf976
MT
2238 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2239 switch (reg) {
2240 case VCPU_REGS_RSP:
2241 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2242 break;
2243 case VCPU_REGS_RIP:
2244 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2245 break;
6de4f3ad
AK
2246 case VCPU_EXREG_PDPTR:
2247 if (enable_ept)
2248 ept_save_pdptrs(vcpu);
2249 break;
5fdbf976
MT
2250 default:
2251 break;
2252 }
6aa8b732
AK
2253}
2254
355be0b9 2255static void set_guest_debug(struct kvm_vcpu *vcpu, struct kvm_guest_debug *dbg)
6aa8b732 2256{
ae675ef0
JK
2257 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
2258 vmcs_writel(GUEST_DR7, dbg->arch.debugreg[7]);
2259 else
2260 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
2261
abd3f2d6 2262 update_exception_bitmap(vcpu);
6aa8b732
AK
2263}
2264
2265static __init int cpu_has_kvm_support(void)
2266{
6210e37b 2267 return cpu_has_vmx();
6aa8b732
AK
2268}
2269
2270static __init int vmx_disabled_by_bios(void)
2271{
2272 u64 msr;
2273
2274 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 2275 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 2276 /* launched w/ TXT and VMX disabled */
cafd6659
SW
2277 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2278 && tboot_enabled())
2279 return 1;
23f3e991 2280 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 2281 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 2282 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
2283 && !tboot_enabled()) {
2284 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 2285 "activate TXT before enabling KVM\n");
cafd6659 2286 return 1;
f9335afe 2287 }
23f3e991
JC
2288 /* launched w/o TXT and VMX disabled */
2289 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2290 && !tboot_enabled())
2291 return 1;
cafd6659
SW
2292 }
2293
2294 return 0;
6aa8b732
AK
2295}
2296
7725b894
DX
2297static void kvm_cpu_vmxon(u64 addr)
2298{
2299 asm volatile (ASM_VMX_VMXON_RAX
2300 : : "a"(&addr), "m"(addr)
2301 : "memory", "cc");
2302}
2303
10474ae8 2304static int hardware_enable(void *garbage)
6aa8b732
AK
2305{
2306 int cpu = raw_smp_processor_id();
2307 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 2308 u64 old, test_bits;
6aa8b732 2309
10474ae8
AG
2310 if (read_cr4() & X86_CR4_VMXE)
2311 return -EBUSY;
2312
d462b819 2313 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
6aa8b732 2314 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
2315
2316 test_bits = FEATURE_CONTROL_LOCKED;
2317 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2318 if (tboot_enabled())
2319 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2320
2321 if ((old & test_bits) != test_bits) {
6aa8b732 2322 /* enable and lock */
cafd6659
SW
2323 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2324 }
66aee91a 2325 write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
10474ae8 2326
4610c9cc
DX
2327 if (vmm_exclusive) {
2328 kvm_cpu_vmxon(phys_addr);
2329 ept_sync_global();
2330 }
10474ae8 2331
3444d7da
AK
2332 store_gdt(&__get_cpu_var(host_gdt));
2333
10474ae8 2334 return 0;
6aa8b732
AK
2335}
2336
d462b819 2337static void vmclear_local_loaded_vmcss(void)
543e4243
AK
2338{
2339 int cpu = raw_smp_processor_id();
d462b819 2340 struct loaded_vmcs *v, *n;
543e4243 2341
d462b819
NHE
2342 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2343 loaded_vmcss_on_cpu_link)
2344 __loaded_vmcs_clear(v);
543e4243
AK
2345}
2346
710ff4a8
EH
2347
2348/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2349 * tricks.
2350 */
2351static void kvm_cpu_vmxoff(void)
6aa8b732 2352{
4ecac3fd 2353 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
6aa8b732
AK
2354}
2355
710ff4a8
EH
2356static void hardware_disable(void *garbage)
2357{
4610c9cc 2358 if (vmm_exclusive) {
d462b819 2359 vmclear_local_loaded_vmcss();
4610c9cc
DX
2360 kvm_cpu_vmxoff();
2361 }
7725b894 2362 write_cr4(read_cr4() & ~X86_CR4_VMXE);
710ff4a8
EH
2363}
2364
1c3d14fe 2365static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 2366 u32 msr, u32 *result)
1c3d14fe
YS
2367{
2368 u32 vmx_msr_low, vmx_msr_high;
2369 u32 ctl = ctl_min | ctl_opt;
2370
2371 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2372
2373 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2374 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
2375
2376 /* Ensure minimum (required) set of control bits are supported. */
2377 if (ctl_min & ~ctl)
002c7f7c 2378 return -EIO;
1c3d14fe
YS
2379
2380 *result = ctl;
2381 return 0;
2382}
2383
110312c8
AK
2384static __init bool allow_1_setting(u32 msr, u32 ctl)
2385{
2386 u32 vmx_msr_low, vmx_msr_high;
2387
2388 rdmsr(msr, vmx_msr_low, vmx_msr_high);
2389 return vmx_msr_high & ctl;
2390}
2391
002c7f7c 2392static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
2393{
2394 u32 vmx_msr_low, vmx_msr_high;
d56f546d 2395 u32 min, opt, min2, opt2;
1c3d14fe
YS
2396 u32 _pin_based_exec_control = 0;
2397 u32 _cpu_based_exec_control = 0;
f78e0e2e 2398 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
2399 u32 _vmexit_control = 0;
2400 u32 _vmentry_control = 0;
2401
2402 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
f08864b4 2403 opt = PIN_BASED_VIRTUAL_NMIS;
1c3d14fe
YS
2404 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2405 &_pin_based_exec_control) < 0)
002c7f7c 2406 return -EIO;
1c3d14fe 2407
443381a8 2408 min =
1c3d14fe
YS
2409#ifdef CONFIG_X86_64
2410 CPU_BASED_CR8_LOAD_EXITING |
2411 CPU_BASED_CR8_STORE_EXITING |
2412#endif
d56f546d
SY
2413 CPU_BASED_CR3_LOAD_EXITING |
2414 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
2415 CPU_BASED_USE_IO_BITMAPS |
2416 CPU_BASED_MOV_DR_EXITING |
a7052897 2417 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
2418 CPU_BASED_MWAIT_EXITING |
2419 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
2420 CPU_BASED_INVLPG_EXITING |
2421 CPU_BASED_RDPMC_EXITING;
443381a8
AL
2422
2423 if (yield_on_hlt)
2424 min |= CPU_BASED_HLT_EXITING;
2425
f78e0e2e 2426 opt = CPU_BASED_TPR_SHADOW |
25c5f225 2427 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 2428 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
2429 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2430 &_cpu_based_exec_control) < 0)
002c7f7c 2431 return -EIO;
6e5d865c
YS
2432#ifdef CONFIG_X86_64
2433 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2434 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2435 ~CPU_BASED_CR8_STORE_EXITING;
2436#endif
f78e0e2e 2437 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
2438 min2 = 0;
2439 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2384d2b3 2440 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 2441 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 2442 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 2443 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6
SY
2444 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2445 SECONDARY_EXEC_RDTSCP;
d56f546d
SY
2446 if (adjust_vmx_controls(min2, opt2,
2447 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
2448 &_cpu_based_2nd_exec_control) < 0)
2449 return -EIO;
2450 }
2451#ifndef CONFIG_X86_64
2452 if (!(_cpu_based_2nd_exec_control &
2453 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2454 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2455#endif
d56f546d 2456 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
2457 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2458 enabled */
5fff7d27
GN
2459 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2460 CPU_BASED_CR3_STORE_EXITING |
2461 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
2462 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2463 vmx_capability.ept, vmx_capability.vpid);
2464 }
1c3d14fe
YS
2465
2466 min = 0;
2467#ifdef CONFIG_X86_64
2468 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2469#endif
468d472f 2470 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT;
1c3d14fe
YS
2471 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2472 &_vmexit_control) < 0)
002c7f7c 2473 return -EIO;
1c3d14fe 2474
468d472f
SY
2475 min = 0;
2476 opt = VM_ENTRY_LOAD_IA32_PAT;
1c3d14fe
YS
2477 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2478 &_vmentry_control) < 0)
002c7f7c 2479 return -EIO;
6aa8b732 2480
c68876fd 2481 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
2482
2483 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2484 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 2485 return -EIO;
1c3d14fe
YS
2486
2487#ifdef CONFIG_X86_64
2488 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2489 if (vmx_msr_high & (1u<<16))
002c7f7c 2490 return -EIO;
1c3d14fe
YS
2491#endif
2492
2493 /* Require Write-Back (WB) memory type for VMCS accesses. */
2494 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 2495 return -EIO;
1c3d14fe 2496
002c7f7c
YS
2497 vmcs_conf->size = vmx_msr_high & 0x1fff;
2498 vmcs_conf->order = get_order(vmcs_config.size);
2499 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 2500
002c7f7c
YS
2501 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2502 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 2503 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
2504 vmcs_conf->vmexit_ctrl = _vmexit_control;
2505 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 2506
110312c8
AK
2507 cpu_has_load_ia32_efer =
2508 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2509 VM_ENTRY_LOAD_IA32_EFER)
2510 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2511 VM_EXIT_LOAD_IA32_EFER);
2512
8bf00a52
GN
2513 cpu_has_load_perf_global_ctrl =
2514 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2515 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2516 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2517 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2518
2519 /*
2520 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2521 * but due to arrata below it can't be used. Workaround is to use
2522 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2523 *
2524 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2525 *
2526 * AAK155 (model 26)
2527 * AAP115 (model 30)
2528 * AAT100 (model 37)
2529 * BC86,AAY89,BD102 (model 44)
2530 * BA97 (model 46)
2531 *
2532 */
2533 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2534 switch (boot_cpu_data.x86_model) {
2535 case 26:
2536 case 30:
2537 case 37:
2538 case 44:
2539 case 46:
2540 cpu_has_load_perf_global_ctrl = false;
2541 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2542 "does not work properly. Using workaround\n");
2543 break;
2544 default:
2545 break;
2546 }
2547 }
2548
1c3d14fe 2549 return 0;
c68876fd 2550}
6aa8b732
AK
2551
2552static struct vmcs *alloc_vmcs_cpu(int cpu)
2553{
2554 int node = cpu_to_node(cpu);
2555 struct page *pages;
2556 struct vmcs *vmcs;
2557
6484eb3e 2558 pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
2559 if (!pages)
2560 return NULL;
2561 vmcs = page_address(pages);
1c3d14fe
YS
2562 memset(vmcs, 0, vmcs_config.size);
2563 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
2564 return vmcs;
2565}
2566
2567static struct vmcs *alloc_vmcs(void)
2568{
d3b2c338 2569 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
2570}
2571
2572static void free_vmcs(struct vmcs *vmcs)
2573{
1c3d14fe 2574 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
2575}
2576
d462b819
NHE
2577/*
2578 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2579 */
2580static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2581{
2582 if (!loaded_vmcs->vmcs)
2583 return;
2584 loaded_vmcs_clear(loaded_vmcs);
2585 free_vmcs(loaded_vmcs->vmcs);
2586 loaded_vmcs->vmcs = NULL;
2587}
2588
39959588 2589static void free_kvm_area(void)
6aa8b732
AK
2590{
2591 int cpu;
2592
3230bb47 2593 for_each_possible_cpu(cpu) {
6aa8b732 2594 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
2595 per_cpu(vmxarea, cpu) = NULL;
2596 }
6aa8b732
AK
2597}
2598
6aa8b732
AK
2599static __init int alloc_kvm_area(void)
2600{
2601 int cpu;
2602
3230bb47 2603 for_each_possible_cpu(cpu) {
6aa8b732
AK
2604 struct vmcs *vmcs;
2605
2606 vmcs = alloc_vmcs_cpu(cpu);
2607 if (!vmcs) {
2608 free_kvm_area();
2609 return -ENOMEM;
2610 }
2611
2612 per_cpu(vmxarea, cpu) = vmcs;
2613 }
2614 return 0;
2615}
2616
2617static __init int hardware_setup(void)
2618{
002c7f7c
YS
2619 if (setup_vmcs_config(&vmcs_config) < 0)
2620 return -EIO;
50a37eb4
JR
2621
2622 if (boot_cpu_has(X86_FEATURE_NX))
2623 kvm_enable_efer_bits(EFER_NX);
2624
93ba03c2
SY
2625 if (!cpu_has_vmx_vpid())
2626 enable_vpid = 0;
2627
4bc9b982
SY
2628 if (!cpu_has_vmx_ept() ||
2629 !cpu_has_vmx_ept_4levels()) {
93ba03c2 2630 enable_ept = 0;
3a624e29
NK
2631 enable_unrestricted_guest = 0;
2632 }
2633
2634 if (!cpu_has_vmx_unrestricted_guest())
2635 enable_unrestricted_guest = 0;
93ba03c2
SY
2636
2637 if (!cpu_has_vmx_flexpriority())
2638 flexpriority_enabled = 0;
2639
95ba8273
GN
2640 if (!cpu_has_vmx_tpr_shadow())
2641 kvm_x86_ops->update_cr8_intercept = NULL;
2642
54dee993
MT
2643 if (enable_ept && !cpu_has_vmx_ept_2m_page())
2644 kvm_disable_largepages();
2645
4b8d54f9
ZE
2646 if (!cpu_has_vmx_ple())
2647 ple_gap = 0;
2648
b87a51ae
NHE
2649 if (nested)
2650 nested_vmx_setup_ctls_msrs();
2651
6aa8b732
AK
2652 return alloc_kvm_area();
2653}
2654
2655static __exit void hardware_unsetup(void)
2656{
2657 free_kvm_area();
2658}
2659
6aa8b732
AK
2660static void fix_pmode_dataseg(int seg, struct kvm_save_segment *save)
2661{
2662 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2663
6af11b9e 2664 if (vmcs_readl(sf->base) == save->base && (save->base & AR_S_MASK)) {
6aa8b732
AK
2665 vmcs_write16(sf->selector, save->selector);
2666 vmcs_writel(sf->base, save->base);
2667 vmcs_write32(sf->limit, save->limit);
2668 vmcs_write32(sf->ar_bytes, save->ar);
2669 } else {
2670 u32 dpl = (vmcs_read16(sf->selector) & SELECTOR_RPL_MASK)
2671 << AR_DPL_SHIFT;
2672 vmcs_write32(sf->ar_bytes, 0x93 | dpl);
2673 }
2674}
2675
2676static void enter_pmode(struct kvm_vcpu *vcpu)
2677{
2678 unsigned long flags;
a89a8fb9 2679 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2680
a89a8fb9 2681 vmx->emulation_required = 1;
7ffd92c5 2682 vmx->rmode.vm86_active = 0;
6aa8b732 2683
2fb92db1
AK
2684 vmx_segment_cache_clear(vmx);
2685
d0ba64f9 2686 vmcs_write16(GUEST_TR_SELECTOR, vmx->rmode.tr.selector);
7ffd92c5
AK
2687 vmcs_writel(GUEST_TR_BASE, vmx->rmode.tr.base);
2688 vmcs_write32(GUEST_TR_LIMIT, vmx->rmode.tr.limit);
2689 vmcs_write32(GUEST_TR_AR_BYTES, vmx->rmode.tr.ar);
6aa8b732
AK
2690
2691 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
2692 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2693 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
2694 vmcs_writel(GUEST_RFLAGS, flags);
2695
66aee91a
RR
2696 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
2697 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
2698
2699 update_exception_bitmap(vcpu);
2700
a89a8fb9
MG
2701 if (emulate_invalid_guest_state)
2702 return;
2703
7ffd92c5
AK
2704 fix_pmode_dataseg(VCPU_SREG_ES, &vmx->rmode.es);
2705 fix_pmode_dataseg(VCPU_SREG_DS, &vmx->rmode.ds);
2706 fix_pmode_dataseg(VCPU_SREG_GS, &vmx->rmode.gs);
2707 fix_pmode_dataseg(VCPU_SREG_FS, &vmx->rmode.fs);
6aa8b732 2708
2fb92db1
AK
2709 vmx_segment_cache_clear(vmx);
2710
6aa8b732
AK
2711 vmcs_write16(GUEST_SS_SELECTOR, 0);
2712 vmcs_write32(GUEST_SS_AR_BYTES, 0x93);
2713
2714 vmcs_write16(GUEST_CS_SELECTOR,
2715 vmcs_read16(GUEST_CS_SELECTOR) & ~SELECTOR_RPL_MASK);
2716 vmcs_write32(GUEST_CS_AR_BYTES, 0x9b);
2717}
2718
d77c26fc 2719static gva_t rmode_tss_base(struct kvm *kvm)
6aa8b732 2720{
bfc6d222 2721 if (!kvm->arch.tss_addr) {
bc6678a3 2722 struct kvm_memslots *slots;
28a37544 2723 struct kvm_memory_slot *slot;
bc6678a3
MT
2724 gfn_t base_gfn;
2725
90d83dc3 2726 slots = kvm_memslots(kvm);
28a37544
XG
2727 slot = id_to_memslot(slots, 0);
2728 base_gfn = slot->base_gfn + slot->npages - 3;
2729
cbc94022
IE
2730 return base_gfn << PAGE_SHIFT;
2731 }
bfc6d222 2732 return kvm->arch.tss_addr;
6aa8b732
AK
2733}
2734
2735static void fix_rmode_seg(int seg, struct kvm_save_segment *save)
2736{
2737 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
2738
2739 save->selector = vmcs_read16(sf->selector);
2740 save->base = vmcs_readl(sf->base);
2741 save->limit = vmcs_read32(sf->limit);
2742 save->ar = vmcs_read32(sf->ar_bytes);
15b00f32 2743 vmcs_write16(sf->selector, save->base >> 4);
444e863d 2744 vmcs_write32(sf->base, save->base & 0xffff0);
6aa8b732
AK
2745 vmcs_write32(sf->limit, 0xffff);
2746 vmcs_write32(sf->ar_bytes, 0xf3);
444e863d
GN
2747 if (save->base & 0xf)
2748 printk_once(KERN_WARNING "kvm: segment base is not paragraph"
2749 " aligned when entering protected mode (seg=%d)",
2750 seg);
6aa8b732
AK
2751}
2752
2753static void enter_rmode(struct kvm_vcpu *vcpu)
2754{
2755 unsigned long flags;
a89a8fb9 2756 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 2757
3a624e29
NK
2758 if (enable_unrestricted_guest)
2759 return;
2760
a89a8fb9 2761 vmx->emulation_required = 1;
7ffd92c5 2762 vmx->rmode.vm86_active = 1;
6aa8b732 2763
776e58ea
GN
2764 /*
2765 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
2766 * vcpu. Call it here with phys address pointing 16M below 4G.
2767 */
2768 if (!vcpu->kvm->arch.tss_addr) {
2769 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
2770 "called before entering vcpu\n");
2771 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2772 vmx_set_tss_addr(vcpu->kvm, 0xfeffd000);
2773 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2774 }
2775
2fb92db1
AK
2776 vmx_segment_cache_clear(vmx);
2777
d0ba64f9 2778 vmx->rmode.tr.selector = vmcs_read16(GUEST_TR_SELECTOR);
7ffd92c5 2779 vmx->rmode.tr.base = vmcs_readl(GUEST_TR_BASE);
6aa8b732
AK
2780 vmcs_writel(GUEST_TR_BASE, rmode_tss_base(vcpu->kvm));
2781
7ffd92c5 2782 vmx->rmode.tr.limit = vmcs_read32(GUEST_TR_LIMIT);
6aa8b732
AK
2783 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
2784
7ffd92c5 2785 vmx->rmode.tr.ar = vmcs_read32(GUEST_TR_AR_BYTES);
6aa8b732
AK
2786 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
2787
2788 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 2789 vmx->rmode.save_rflags = flags;
6aa8b732 2790
053de044 2791 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
2792
2793 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 2794 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
2795 update_exception_bitmap(vcpu);
2796
a89a8fb9
MG
2797 if (emulate_invalid_guest_state)
2798 goto continue_rmode;
2799
6aa8b732
AK
2800 vmcs_write16(GUEST_SS_SELECTOR, vmcs_readl(GUEST_SS_BASE) >> 4);
2801 vmcs_write32(GUEST_SS_LIMIT, 0xffff);
2802 vmcs_write32(GUEST_SS_AR_BYTES, 0xf3);
2803
2804 vmcs_write32(GUEST_CS_AR_BYTES, 0xf3);
abacf8df 2805 vmcs_write32(GUEST_CS_LIMIT, 0xffff);
8cb5b033
AK
2806 if (vmcs_readl(GUEST_CS_BASE) == 0xffff0000)
2807 vmcs_writel(GUEST_CS_BASE, 0xf0000);
6aa8b732
AK
2808 vmcs_write16(GUEST_CS_SELECTOR, vmcs_readl(GUEST_CS_BASE) >> 4);
2809
7ffd92c5
AK
2810 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.es);
2811 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.ds);
2812 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.gs);
2813 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.fs);
75880a01 2814
a89a8fb9 2815continue_rmode:
8668a3c4 2816 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
2817}
2818
401d10de
AS
2819static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
2820{
2821 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
2822 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
2823
2824 if (!msr)
2825 return;
401d10de 2826
44ea2b17
AK
2827 /*
2828 * Force kernel_gs_base reloading before EFER changes, as control
2829 * of this msr depends on is_long_mode().
2830 */
2831 vmx_load_host_state(to_vmx(vcpu));
f6801dff 2832 vcpu->arch.efer = efer;
401d10de
AS
2833 if (efer & EFER_LMA) {
2834 vmcs_write32(VM_ENTRY_CONTROLS,
2835 vmcs_read32(VM_ENTRY_CONTROLS) |
2836 VM_ENTRY_IA32E_MODE);
2837 msr->data = efer;
2838 } else {
2839 vmcs_write32(VM_ENTRY_CONTROLS,
2840 vmcs_read32(VM_ENTRY_CONTROLS) &
2841 ~VM_ENTRY_IA32E_MODE);
2842
2843 msr->data = efer & ~EFER_LME;
2844 }
2845 setup_msrs(vmx);
2846}
2847
05b3e0c2 2848#ifdef CONFIG_X86_64
6aa8b732
AK
2849
2850static void enter_lmode(struct kvm_vcpu *vcpu)
2851{
2852 u32 guest_tr_ar;
2853
2fb92db1
AK
2854 vmx_segment_cache_clear(to_vmx(vcpu));
2855
6aa8b732
AK
2856 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
2857 if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
2858 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
2859 __func__);
6aa8b732
AK
2860 vmcs_write32(GUEST_TR_AR_BYTES,
2861 (guest_tr_ar & ~AR_TYPE_MASK)
2862 | AR_TYPE_BUSY_64_TSS);
2863 }
da38f438 2864 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
2865}
2866
2867static void exit_lmode(struct kvm_vcpu *vcpu)
2868{
6aa8b732
AK
2869 vmcs_write32(VM_ENTRY_CONTROLS,
2870 vmcs_read32(VM_ENTRY_CONTROLS)
1e4e6e00 2871 & ~VM_ENTRY_IA32E_MODE);
da38f438 2872 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
2873}
2874
2875#endif
2876
2384d2b3
SY
2877static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
2878{
b9d762fa 2879 vpid_sync_context(to_vmx(vcpu));
dd180b3e
XG
2880 if (enable_ept) {
2881 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2882 return;
4e1096d2 2883 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 2884 }
2384d2b3
SY
2885}
2886
e8467fda
AK
2887static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
2888{
2889 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
2890
2891 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
2892 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
2893}
2894
aff48baa
AK
2895static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
2896{
2897 if (enable_ept && is_paging(vcpu))
2898 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
2899 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
2900}
2901
25c4c276 2902static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 2903{
fc78f519
AK
2904 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
2905
2906 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
2907 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
2908}
2909
1439442c
SY
2910static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
2911{
6de4f3ad
AK
2912 if (!test_bit(VCPU_EXREG_PDPTR,
2913 (unsigned long *)&vcpu->arch.regs_dirty))
2914 return;
2915
1439442c 2916 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2917 vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
2918 vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
2919 vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
2920 vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
1439442c
SY
2921 }
2922}
2923
8f5d549f
AK
2924static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
2925{
2926 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
ff03a073
JR
2927 vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
2928 vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
2929 vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
2930 vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 2931 }
6de4f3ad
AK
2932
2933 __set_bit(VCPU_EXREG_PDPTR,
2934 (unsigned long *)&vcpu->arch.regs_avail);
2935 __set_bit(VCPU_EXREG_PDPTR,
2936 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
2937}
2938
5e1746d6 2939static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
2940
2941static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
2942 unsigned long cr0,
2943 struct kvm_vcpu *vcpu)
2944{
5233dd51
MT
2945 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
2946 vmx_decache_cr3(vcpu);
1439442c
SY
2947 if (!(cr0 & X86_CR0_PG)) {
2948 /* From paging/starting to nonpaging */
2949 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2950 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
2951 (CPU_BASED_CR3_LOAD_EXITING |
2952 CPU_BASED_CR3_STORE_EXITING));
2953 vcpu->arch.cr0 = cr0;
fc78f519 2954 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
2955 } else if (!is_paging(vcpu)) {
2956 /* From nonpaging to paging */
2957 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 2958 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
2959 ~(CPU_BASED_CR3_LOAD_EXITING |
2960 CPU_BASED_CR3_STORE_EXITING));
2961 vcpu->arch.cr0 = cr0;
fc78f519 2962 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 2963 }
95eb84a7
SY
2964
2965 if (!(cr0 & X86_CR0_WP))
2966 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
2967}
2968
6aa8b732
AK
2969static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
2970{
7ffd92c5 2971 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
2972 unsigned long hw_cr0;
2973
2974 if (enable_unrestricted_guest)
2975 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK_UNRESTRICTED_GUEST)
2976 | KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
2977 else
2978 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK) | KVM_VM_CR0_ALWAYS_ON;
1439442c 2979
7ffd92c5 2980 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
6aa8b732
AK
2981 enter_pmode(vcpu);
2982
7ffd92c5 2983 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
6aa8b732
AK
2984 enter_rmode(vcpu);
2985
05b3e0c2 2986#ifdef CONFIG_X86_64
f6801dff 2987 if (vcpu->arch.efer & EFER_LME) {
707d92fa 2988 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 2989 enter_lmode(vcpu);
707d92fa 2990 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
2991 exit_lmode(vcpu);
2992 }
2993#endif
2994
089d034e 2995 if (enable_ept)
1439442c
SY
2996 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
2997
02daab21 2998 if (!vcpu->fpu_active)
81231c69 2999 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3000
6aa8b732 3001 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3002 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3003 vcpu->arch.cr0 = cr0;
69c73028 3004 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3005}
3006
1439442c
SY
3007static u64 construct_eptp(unsigned long root_hpa)
3008{
3009 u64 eptp;
3010
3011 /* TODO write the value reading from MSR */
3012 eptp = VMX_EPT_DEFAULT_MT |
3013 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3014 eptp |= (root_hpa & PAGE_MASK);
3015
3016 return eptp;
3017}
3018
6aa8b732
AK
3019static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3020{
1439442c
SY
3021 unsigned long guest_cr3;
3022 u64 eptp;
3023
3024 guest_cr3 = cr3;
089d034e 3025 if (enable_ept) {
1439442c
SY
3026 eptp = construct_eptp(cr3);
3027 vmcs_write64(EPT_POINTER, eptp);
9f8fe504 3028 guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
b927a3ce 3029 vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3030 ept_load_pdptrs(vcpu);
1439442c
SY
3031 }
3032
2384d2b3 3033 vmx_flush_tlb(vcpu);
1439442c 3034 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3035}
3036
5e1746d6 3037static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3038{
7ffd92c5 3039 unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
1439442c
SY
3040 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3041
5e1746d6
NHE
3042 if (cr4 & X86_CR4_VMXE) {
3043 /*
3044 * To use VMXON (and later other VMX instructions), a guest
3045 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3046 * So basically the check on whether to allow nested VMX
3047 * is here.
3048 */
3049 if (!nested_vmx_allowed(vcpu))
3050 return 1;
3051 } else if (to_vmx(vcpu)->nested.vmxon)
3052 return 1;
3053
ad312c7c 3054 vcpu->arch.cr4 = cr4;
bc23008b
AK
3055 if (enable_ept) {
3056 if (!is_paging(vcpu)) {
3057 hw_cr4 &= ~X86_CR4_PAE;
3058 hw_cr4 |= X86_CR4_PSE;
3059 } else if (!(cr4 & X86_CR4_PAE)) {
3060 hw_cr4 &= ~X86_CR4_PAE;
3061 }
3062 }
1439442c
SY
3063
3064 vmcs_writel(CR4_READ_SHADOW, cr4);
3065 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3066 return 0;
6aa8b732
AK
3067}
3068
6aa8b732
AK
3069static void vmx_get_segment(struct kvm_vcpu *vcpu,
3070 struct kvm_segment *var, int seg)
3071{
a9179499 3072 struct vcpu_vmx *vmx = to_vmx(vcpu);
a9179499 3073 struct kvm_save_segment *save;
6aa8b732
AK
3074 u32 ar;
3075
a9179499
AK
3076 if (vmx->rmode.vm86_active
3077 && (seg == VCPU_SREG_TR || seg == VCPU_SREG_ES
3078 || seg == VCPU_SREG_DS || seg == VCPU_SREG_FS
3079 || seg == VCPU_SREG_GS)
3080 && !emulate_invalid_guest_state) {
3081 switch (seg) {
3082 case VCPU_SREG_TR: save = &vmx->rmode.tr; break;
3083 case VCPU_SREG_ES: save = &vmx->rmode.es; break;
3084 case VCPU_SREG_DS: save = &vmx->rmode.ds; break;
3085 case VCPU_SREG_FS: save = &vmx->rmode.fs; break;
3086 case VCPU_SREG_GS: save = &vmx->rmode.gs; break;
3087 default: BUG();
3088 }
3089 var->selector = save->selector;
3090 var->base = save->base;
3091 var->limit = save->limit;
3092 ar = save->ar;
3093 if (seg == VCPU_SREG_TR
2fb92db1 3094 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
a9179499
AK
3095 goto use_saved_rmode_seg;
3096 }
2fb92db1
AK
3097 var->base = vmx_read_guest_seg_base(vmx, seg);
3098 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3099 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3100 ar = vmx_read_guest_seg_ar(vmx, seg);
a9179499 3101use_saved_rmode_seg:
9fd4a3b7 3102 if ((ar & AR_UNUSABLE_MASK) && !emulate_invalid_guest_state)
6aa8b732
AK
3103 ar = 0;
3104 var->type = ar & 15;
3105 var->s = (ar >> 4) & 1;
3106 var->dpl = (ar >> 5) & 3;
3107 var->present = (ar >> 7) & 1;
3108 var->avl = (ar >> 12) & 1;
3109 var->l = (ar >> 13) & 1;
3110 var->db = (ar >> 14) & 1;
3111 var->g = (ar >> 15) & 1;
3112 var->unusable = (ar >> 16) & 1;
3113}
3114
a9179499
AK
3115static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3116{
a9179499
AK
3117 struct kvm_segment s;
3118
3119 if (to_vmx(vcpu)->rmode.vm86_active) {
3120 vmx_get_segment(vcpu, &s, seg);
3121 return s.base;
3122 }
2fb92db1 3123 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3124}
3125
69c73028 3126static int __vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3127{
3eeb3288 3128 if (!is_protmode(vcpu))
2e4d2653
IE
3129 return 0;
3130
f4c63e5d
AK
3131 if (!is_long_mode(vcpu)
3132 && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
2e4d2653
IE
3133 return 3;
3134
2fb92db1 3135 return vmx_read_guest_seg_selector(to_vmx(vcpu), VCPU_SREG_CS) & 3;
2e4d2653
IE
3136}
3137
69c73028
AK
3138static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3139{
3140 if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3141 __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3142 to_vmx(vcpu)->cpl = __vmx_get_cpl(vcpu);
3143 }
3144 return to_vmx(vcpu)->cpl;
3145}
3146
3147
653e3108 3148static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3149{
6aa8b732
AK
3150 u32 ar;
3151
653e3108 3152 if (var->unusable)
6aa8b732
AK
3153 ar = 1 << 16;
3154 else {
3155 ar = var->type & 15;
3156 ar |= (var->s & 1) << 4;
3157 ar |= (var->dpl & 3) << 5;
3158 ar |= (var->present & 1) << 7;
3159 ar |= (var->avl & 1) << 12;
3160 ar |= (var->l & 1) << 13;
3161 ar |= (var->db & 1) << 14;
3162 ar |= (var->g & 1) << 15;
3163 }
f7fbf1fd
UL
3164 if (ar == 0) /* a 0 value means unusable */
3165 ar = AR_UNUSABLE_MASK;
653e3108
AK
3166
3167 return ar;
3168}
3169
3170static void vmx_set_segment(struct kvm_vcpu *vcpu,
3171 struct kvm_segment *var, int seg)
3172{
7ffd92c5 3173 struct vcpu_vmx *vmx = to_vmx(vcpu);
653e3108
AK
3174 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3175 u32 ar;
3176
2fb92db1
AK
3177 vmx_segment_cache_clear(vmx);
3178
7ffd92c5 3179 if (vmx->rmode.vm86_active && seg == VCPU_SREG_TR) {
a8ba6c26 3180 vmcs_write16(sf->selector, var->selector);
7ffd92c5
AK
3181 vmx->rmode.tr.selector = var->selector;
3182 vmx->rmode.tr.base = var->base;
3183 vmx->rmode.tr.limit = var->limit;
3184 vmx->rmode.tr.ar = vmx_segment_access_rights(var);
653e3108
AK
3185 return;
3186 }
3187 vmcs_writel(sf->base, var->base);
3188 vmcs_write32(sf->limit, var->limit);
3189 vmcs_write16(sf->selector, var->selector);
7ffd92c5 3190 if (vmx->rmode.vm86_active && var->s) {
653e3108
AK
3191 /*
3192 * Hack real-mode segments into vm86 compatibility.
3193 */
3194 if (var->base == 0xffff0000 && var->selector == 0xf000)
3195 vmcs_writel(sf->base, 0xf0000);
3196 ar = 0xf3;
3197 } else
3198 ar = vmx_segment_access_rights(var);
3a624e29
NK
3199
3200 /*
3201 * Fix the "Accessed" bit in AR field of segment registers for older
3202 * qemu binaries.
3203 * IA32 arch specifies that at the time of processor reset the
3204 * "Accessed" bit in the AR field of segment registers is 1. And qemu
3205 * is setting it to 0 in the usedland code. This causes invalid guest
3206 * state vmexit when "unrestricted guest" mode is turned on.
3207 * Fix for this setup issue in cpu_reset is being pushed in the qemu
3208 * tree. Newer qemu binaries with that qemu fix would not need this
3209 * kvm hack.
3210 */
3211 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3212 ar |= 0x1; /* Accessed */
3213
6aa8b732 3214 vmcs_write32(sf->ar_bytes, ar);
69c73028 3215 __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
6aa8b732
AK
3216}
3217
6aa8b732
AK
3218static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3219{
2fb92db1 3220 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
3221
3222 *db = (ar >> 14) & 1;
3223 *l = (ar >> 13) & 1;
3224}
3225
89a27f4d 3226static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3227{
89a27f4d
GN
3228 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3229 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
3230}
3231
89a27f4d 3232static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3233{
89a27f4d
GN
3234 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3235 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
3236}
3237
89a27f4d 3238static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3239{
89a27f4d
GN
3240 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3241 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
3242}
3243
89a27f4d 3244static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 3245{
89a27f4d
GN
3246 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3247 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
3248}
3249
648dfaa7
MG
3250static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3251{
3252 struct kvm_segment var;
3253 u32 ar;
3254
3255 vmx_get_segment(vcpu, &var, seg);
3256 ar = vmx_segment_access_rights(&var);
3257
3258 if (var.base != (var.selector << 4))
3259 return false;
3260 if (var.limit != 0xffff)
3261 return false;
3262 if (ar != 0xf3)
3263 return false;
3264
3265 return true;
3266}
3267
3268static bool code_segment_valid(struct kvm_vcpu *vcpu)
3269{
3270 struct kvm_segment cs;
3271 unsigned int cs_rpl;
3272
3273 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3274 cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3275
1872a3f4
AK
3276 if (cs.unusable)
3277 return false;
648dfaa7
MG
3278 if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3279 return false;
3280 if (!cs.s)
3281 return false;
1872a3f4 3282 if (cs.type & AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
3283 if (cs.dpl > cs_rpl)
3284 return false;
1872a3f4 3285 } else {
648dfaa7
MG
3286 if (cs.dpl != cs_rpl)
3287 return false;
3288 }
3289 if (!cs.present)
3290 return false;
3291
3292 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3293 return true;
3294}
3295
3296static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3297{
3298 struct kvm_segment ss;
3299 unsigned int ss_rpl;
3300
3301 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3302 ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3303
1872a3f4
AK
3304 if (ss.unusable)
3305 return true;
3306 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
3307 return false;
3308 if (!ss.s)
3309 return false;
3310 if (ss.dpl != ss_rpl) /* DPL != RPL */
3311 return false;
3312 if (!ss.present)
3313 return false;
3314
3315 return true;
3316}
3317
3318static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3319{
3320 struct kvm_segment var;
3321 unsigned int rpl;
3322
3323 vmx_get_segment(vcpu, &var, seg);
3324 rpl = var.selector & SELECTOR_RPL_MASK;
3325
1872a3f4
AK
3326 if (var.unusable)
3327 return true;
648dfaa7
MG
3328 if (!var.s)
3329 return false;
3330 if (!var.present)
3331 return false;
3332 if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3333 if (var.dpl < rpl) /* DPL < RPL */
3334 return false;
3335 }
3336
3337 /* TODO: Add other members to kvm_segment_field to allow checking for other access
3338 * rights flags
3339 */
3340 return true;
3341}
3342
3343static bool tr_valid(struct kvm_vcpu *vcpu)
3344{
3345 struct kvm_segment tr;
3346
3347 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3348
1872a3f4
AK
3349 if (tr.unusable)
3350 return false;
648dfaa7
MG
3351 if (tr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3352 return false;
1872a3f4 3353 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
3354 return false;
3355 if (!tr.present)
3356 return false;
3357
3358 return true;
3359}
3360
3361static bool ldtr_valid(struct kvm_vcpu *vcpu)
3362{
3363 struct kvm_segment ldtr;
3364
3365 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3366
1872a3f4
AK
3367 if (ldtr.unusable)
3368 return true;
648dfaa7
MG
3369 if (ldtr.selector & SELECTOR_TI_MASK) /* TI = 1 */
3370 return false;
3371 if (ldtr.type != 2)
3372 return false;
3373 if (!ldtr.present)
3374 return false;
3375
3376 return true;
3377}
3378
3379static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3380{
3381 struct kvm_segment cs, ss;
3382
3383 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3384 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3385
3386 return ((cs.selector & SELECTOR_RPL_MASK) ==
3387 (ss.selector & SELECTOR_RPL_MASK));
3388}
3389
3390/*
3391 * Check if guest state is valid. Returns true if valid, false if
3392 * not.
3393 * We assume that registers are always usable
3394 */
3395static bool guest_state_valid(struct kvm_vcpu *vcpu)
3396{
3397 /* real mode guest state checks */
3eeb3288 3398 if (!is_protmode(vcpu)) {
648dfaa7
MG
3399 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3400 return false;
3401 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3402 return false;
3403 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3404 return false;
3405 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3406 return false;
3407 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3408 return false;
3409 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3410 return false;
3411 } else {
3412 /* protected mode guest state checks */
3413 if (!cs_ss_rpl_check(vcpu))
3414 return false;
3415 if (!code_segment_valid(vcpu))
3416 return false;
3417 if (!stack_segment_valid(vcpu))
3418 return false;
3419 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3420 return false;
3421 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3422 return false;
3423 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3424 return false;
3425 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3426 return false;
3427 if (!tr_valid(vcpu))
3428 return false;
3429 if (!ldtr_valid(vcpu))
3430 return false;
3431 }
3432 /* TODO:
3433 * - Add checks on RIP
3434 * - Add checks on RFLAGS
3435 */
3436
3437 return true;
3438}
3439
d77c26fc 3440static int init_rmode_tss(struct kvm *kvm)
6aa8b732 3441{
40dcaa9f 3442 gfn_t fn;
195aefde 3443 u16 data = 0;
40dcaa9f 3444 int r, idx, ret = 0;
6aa8b732 3445
40dcaa9f
XG
3446 idx = srcu_read_lock(&kvm->srcu);
3447 fn = rmode_tss_base(kvm) >> PAGE_SHIFT;
195aefde
IE
3448 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3449 if (r < 0)
10589a46 3450 goto out;
195aefde 3451 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
3452 r = kvm_write_guest_page(kvm, fn++, &data,
3453 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 3454 if (r < 0)
10589a46 3455 goto out;
195aefde
IE
3456 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3457 if (r < 0)
10589a46 3458 goto out;
195aefde
IE
3459 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3460 if (r < 0)
10589a46 3461 goto out;
195aefde 3462 data = ~0;
10589a46
MT
3463 r = kvm_write_guest_page(kvm, fn, &data,
3464 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3465 sizeof(u8));
195aefde 3466 if (r < 0)
10589a46
MT
3467 goto out;
3468
3469 ret = 1;
3470out:
40dcaa9f 3471 srcu_read_unlock(&kvm->srcu, idx);
10589a46 3472 return ret;
6aa8b732
AK
3473}
3474
b7ebfb05
SY
3475static int init_rmode_identity_map(struct kvm *kvm)
3476{
40dcaa9f 3477 int i, idx, r, ret;
b7ebfb05
SY
3478 pfn_t identity_map_pfn;
3479 u32 tmp;
3480
089d034e 3481 if (!enable_ept)
b7ebfb05
SY
3482 return 1;
3483 if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3484 printk(KERN_ERR "EPT: identity-mapping pagetable "
3485 "haven't been allocated!\n");
3486 return 0;
3487 }
3488 if (likely(kvm->arch.ept_identity_pagetable_done))
3489 return 1;
3490 ret = 0;
b927a3ce 3491 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
40dcaa9f 3492 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
3493 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3494 if (r < 0)
3495 goto out;
3496 /* Set up identity-mapping pagetable for EPT in real mode */
3497 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3498 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3499 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3500 r = kvm_write_guest_page(kvm, identity_map_pfn,
3501 &tmp, i * sizeof(tmp), sizeof(tmp));
3502 if (r < 0)
3503 goto out;
3504 }
3505 kvm->arch.ept_identity_pagetable_done = true;
3506 ret = 1;
3507out:
40dcaa9f 3508 srcu_read_unlock(&kvm->srcu, idx);
b7ebfb05
SY
3509 return ret;
3510}
3511
6aa8b732
AK
3512static void seg_setup(int seg)
3513{
3514 struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 3515 unsigned int ar;
6aa8b732
AK
3516
3517 vmcs_write16(sf->selector, 0);
3518 vmcs_writel(sf->base, 0);
3519 vmcs_write32(sf->limit, 0xffff);
3a624e29
NK
3520 if (enable_unrestricted_guest) {
3521 ar = 0x93;
3522 if (seg == VCPU_SREG_CS)
3523 ar |= 0x08; /* code segment */
3524 } else
3525 ar = 0xf3;
3526
3527 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
3528}
3529
f78e0e2e
SY
3530static int alloc_apic_access_page(struct kvm *kvm)
3531{
3532 struct kvm_userspace_memory_region kvm_userspace_mem;
3533 int r = 0;
3534
79fac95e 3535 mutex_lock(&kvm->slots_lock);
bfc6d222 3536 if (kvm->arch.apic_access_page)
f78e0e2e
SY
3537 goto out;
3538 kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3539 kvm_userspace_mem.flags = 0;
3540 kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3541 kvm_userspace_mem.memory_size = PAGE_SIZE;
3542 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3543 if (r)
3544 goto out;
72dc67a6 3545
bfc6d222 3546 kvm->arch.apic_access_page = gfn_to_page(kvm, 0xfee00);
f78e0e2e 3547out:
79fac95e 3548 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
3549 return r;
3550}
3551
b7ebfb05
SY
3552static int alloc_identity_pagetable(struct kvm *kvm)
3553{
3554 struct kvm_userspace_memory_region kvm_userspace_mem;
3555 int r = 0;
3556
79fac95e 3557 mutex_lock(&kvm->slots_lock);
b7ebfb05
SY
3558 if (kvm->arch.ept_identity_pagetable)
3559 goto out;
3560 kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3561 kvm_userspace_mem.flags = 0;
b927a3ce
SY
3562 kvm_userspace_mem.guest_phys_addr =
3563 kvm->arch.ept_identity_map_addr;
b7ebfb05
SY
3564 kvm_userspace_mem.memory_size = PAGE_SIZE;
3565 r = __kvm_set_memory_region(kvm, &kvm_userspace_mem, 0);
3566 if (r)
3567 goto out;
3568
b7ebfb05 3569 kvm->arch.ept_identity_pagetable = gfn_to_page(kvm,
b927a3ce 3570 kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
b7ebfb05 3571out:
79fac95e 3572 mutex_unlock(&kvm->slots_lock);
b7ebfb05
SY
3573 return r;
3574}
3575
2384d2b3
SY
3576static void allocate_vpid(struct vcpu_vmx *vmx)
3577{
3578 int vpid;
3579
3580 vmx->vpid = 0;
919818ab 3581 if (!enable_vpid)
2384d2b3
SY
3582 return;
3583 spin_lock(&vmx_vpid_lock);
3584 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3585 if (vpid < VMX_NR_VPIDS) {
3586 vmx->vpid = vpid;
3587 __set_bit(vpid, vmx_vpid_bitmap);
3588 }
3589 spin_unlock(&vmx_vpid_lock);
3590}
3591
cdbecfc3
LJ
3592static void free_vpid(struct vcpu_vmx *vmx)
3593{
3594 if (!enable_vpid)
3595 return;
3596 spin_lock(&vmx_vpid_lock);
3597 if (vmx->vpid != 0)
3598 __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3599 spin_unlock(&vmx_vpid_lock);
3600}
3601
5897297b 3602static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap, u32 msr)
25c5f225 3603{
3e7c73e9 3604 int f = sizeof(unsigned long);
25c5f225
SY
3605
3606 if (!cpu_has_vmx_msr_bitmap())
3607 return;
3608
3609 /*
3610 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3611 * have the write-low and read-high bitmap offsets the wrong way round.
3612 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3613 */
25c5f225 3614 if (msr <= 0x1fff) {
3e7c73e9
AK
3615 __clear_bit(msr, msr_bitmap + 0x000 / f); /* read-low */
3616 __clear_bit(msr, msr_bitmap + 0x800 / f); /* write-low */
25c5f225
SY
3617 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3618 msr &= 0x1fff;
3e7c73e9
AK
3619 __clear_bit(msr, msr_bitmap + 0x400 / f); /* read-high */
3620 __clear_bit(msr, msr_bitmap + 0xc00 / f); /* write-high */
25c5f225 3621 }
25c5f225
SY
3622}
3623
5897297b
AK
3624static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3625{
3626 if (!longmode_only)
3627 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy, msr);
3628 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode, msr);
3629}
3630
a3a8ff8e
NHE
3631/*
3632 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
3633 * will not change in the lifetime of the guest.
3634 * Note that host-state that does change is set elsewhere. E.g., host-state
3635 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
3636 */
3637static void vmx_set_constant_host_state(void)
3638{
3639 u32 low32, high32;
3640 unsigned long tmpl;
3641 struct desc_ptr dt;
3642
3643 vmcs_writel(HOST_CR0, read_cr0() | X86_CR0_TS); /* 22.2.3 */
3644 vmcs_writel(HOST_CR4, read_cr4()); /* 22.2.3, 22.2.5 */
3645 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
3646
3647 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
3648 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3649 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3650 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
3651 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
3652
3653 native_store_idt(&dt);
3654 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
3655
3656 asm("mov $.Lkvm_vmx_return, %0" : "=r"(tmpl));
3657 vmcs_writel(HOST_RIP, tmpl); /* 22.2.5 */
3658
3659 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
3660 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
3661 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
3662 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
3663
3664 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
3665 rdmsr(MSR_IA32_CR_PAT, low32, high32);
3666 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
3667 }
3668}
3669
bf8179a0
NHE
3670static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
3671{
3672 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
3673 if (enable_ept)
3674 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
3675 if (is_guest_mode(&vmx->vcpu))
3676 vmx->vcpu.arch.cr4_guest_owned_bits &=
3677 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
3678 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
3679}
3680
3681static u32 vmx_exec_control(struct vcpu_vmx *vmx)
3682{
3683 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
3684 if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
3685 exec_control &= ~CPU_BASED_TPR_SHADOW;
3686#ifdef CONFIG_X86_64
3687 exec_control |= CPU_BASED_CR8_STORE_EXITING |
3688 CPU_BASED_CR8_LOAD_EXITING;
3689#endif
3690 }
3691 if (!enable_ept)
3692 exec_control |= CPU_BASED_CR3_STORE_EXITING |
3693 CPU_BASED_CR3_LOAD_EXITING |
3694 CPU_BASED_INVLPG_EXITING;
3695 return exec_control;
3696}
3697
3698static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
3699{
3700 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
3701 if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3702 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
3703 if (vmx->vpid == 0)
3704 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
3705 if (!enable_ept) {
3706 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
3707 enable_unrestricted_guest = 0;
3708 }
3709 if (!enable_unrestricted_guest)
3710 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
3711 if (!ple_gap)
3712 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
3713 return exec_control;
3714}
3715
ce88decf
XG
3716static void ept_set_mmio_spte_mask(void)
3717{
3718 /*
3719 * EPT Misconfigurations can be generated if the value of bits 2:0
3720 * of an EPT paging-structure entry is 110b (write/execute).
3721 * Also, magic bits (0xffull << 49) is set to quickly identify mmio
3722 * spte.
3723 */
3724 kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
3725}
3726
6aa8b732
AK
3727/*
3728 * Sets up the vmcs for emulated real mode.
3729 */
8b9cf98c 3730static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 3731{
2e4ce7f5 3732#ifdef CONFIG_X86_64
6aa8b732 3733 unsigned long a;
2e4ce7f5 3734#endif
6aa8b732 3735 int i;
6aa8b732 3736
6aa8b732 3737 /* I/O */
3e7c73e9
AK
3738 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
3739 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 3740
25c5f225 3741 if (cpu_has_vmx_msr_bitmap())
5897297b 3742 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 3743
6aa8b732
AK
3744 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
3745
6aa8b732 3746 /* Control */
1c3d14fe
YS
3747 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
3748 vmcs_config.pin_based_exec_ctrl);
6e5d865c 3749
bf8179a0 3750 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 3751
83ff3b9d 3752 if (cpu_has_secondary_exec_ctrls()) {
bf8179a0
NHE
3753 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
3754 vmx_secondary_exec_control(vmx));
83ff3b9d 3755 }
f78e0e2e 3756
4b8d54f9
ZE
3757 if (ple_gap) {
3758 vmcs_write32(PLE_GAP, ple_gap);
3759 vmcs_write32(PLE_WINDOW, ple_window);
3760 }
3761
c3707958
XG
3762 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
3763 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
3764 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
3765
9581d442
AK
3766 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
3767 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a3a8ff8e 3768 vmx_set_constant_host_state();
05b3e0c2 3769#ifdef CONFIG_X86_64
6aa8b732
AK
3770 rdmsrl(MSR_FS_BASE, a);
3771 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
3772 rdmsrl(MSR_GS_BASE, a);
3773 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
3774#else
3775 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
3776 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
3777#endif
3778
2cc51560
ED
3779 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
3780 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 3781 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 3782 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 3783 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 3784
468d472f 3785 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
a3a8ff8e
NHE
3786 u32 msr_low, msr_high;
3787 u64 host_pat;
468d472f
SY
3788 rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
3789 host_pat = msr_low | ((u64) msr_high << 32);
3790 /* Write the default value follow host pat */
3791 vmcs_write64(GUEST_IA32_PAT, host_pat);
3792 /* Keep arch.pat sync with GUEST_IA32_PAT */
3793 vmx->vcpu.arch.pat = host_pat;
3794 }
3795
6aa8b732
AK
3796 for (i = 0; i < NR_VMX_MSR; ++i) {
3797 u32 index = vmx_msr_index[i];
3798 u32 data_low, data_high;
a2fa3e9f 3799 int j = vmx->nmsrs;
6aa8b732
AK
3800
3801 if (rdmsr_safe(index, &data_low, &data_high) < 0)
3802 continue;
432bd6cb
AK
3803 if (wrmsr_safe(index, data_low, data_high) < 0)
3804 continue;
26bb0981
AK
3805 vmx->guest_msrs[j].index = i;
3806 vmx->guest_msrs[j].data = 0;
d5696725 3807 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 3808 ++vmx->nmsrs;
6aa8b732 3809 }
6aa8b732 3810
1c3d14fe 3811 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
6aa8b732
AK
3812
3813 /* 22.2.1, 20.8.1 */
1c3d14fe
YS
3814 vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
3815
e00c8cf2 3816 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 3817 set_cr4_guest_host_mask(vmx);
e00c8cf2 3818
99e3e30a 3819 kvm_write_tsc(&vmx->vcpu, 0);
f78e0e2e 3820
e00c8cf2
AK
3821 return 0;
3822}
3823
3824static int vmx_vcpu_reset(struct kvm_vcpu *vcpu)
3825{
3826 struct vcpu_vmx *vmx = to_vmx(vcpu);
3827 u64 msr;
4b9d3a04 3828 int ret;
e00c8cf2 3829
5fdbf976 3830 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP));
e00c8cf2 3831
7ffd92c5 3832 vmx->rmode.vm86_active = 0;
e00c8cf2 3833
3b86cd99
JK
3834 vmx->soft_vnmi_blocked = 0;
3835
ad312c7c 3836 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
2d3ad1f4 3837 kvm_set_cr8(&vmx->vcpu, 0);
e00c8cf2 3838 msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
c5af89b6 3839 if (kvm_vcpu_is_bsp(&vmx->vcpu))
e00c8cf2
AK
3840 msr |= MSR_IA32_APICBASE_BSP;
3841 kvm_set_apic_base(&vmx->vcpu, msr);
3842
10ab25cd
JK
3843 ret = fx_init(&vmx->vcpu);
3844 if (ret != 0)
3845 goto out;
e00c8cf2 3846
2fb92db1
AK
3847 vmx_segment_cache_clear(vmx);
3848
5706be0d 3849 seg_setup(VCPU_SREG_CS);
e00c8cf2
AK
3850 /*
3851 * GUEST_CS_BASE should really be 0xffff0000, but VT vm86 mode
3852 * insists on having GUEST_CS_BASE == GUEST_CS_SELECTOR << 4. Sigh.
3853 */
c5af89b6 3854 if (kvm_vcpu_is_bsp(&vmx->vcpu)) {
e00c8cf2
AK
3855 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
3856 vmcs_writel(GUEST_CS_BASE, 0x000f0000);
3857 } else {
ad312c7c
ZX
3858 vmcs_write16(GUEST_CS_SELECTOR, vmx->vcpu.arch.sipi_vector << 8);
3859 vmcs_writel(GUEST_CS_BASE, vmx->vcpu.arch.sipi_vector << 12);
e00c8cf2 3860 }
e00c8cf2
AK
3861
3862 seg_setup(VCPU_SREG_DS);
3863 seg_setup(VCPU_SREG_ES);
3864 seg_setup(VCPU_SREG_FS);
3865 seg_setup(VCPU_SREG_GS);
3866 seg_setup(VCPU_SREG_SS);
3867
3868 vmcs_write16(GUEST_TR_SELECTOR, 0);
3869 vmcs_writel(GUEST_TR_BASE, 0);
3870 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
3871 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3872
3873 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
3874 vmcs_writel(GUEST_LDTR_BASE, 0);
3875 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
3876 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
3877
3878 vmcs_write32(GUEST_SYSENTER_CS, 0);
3879 vmcs_writel(GUEST_SYSENTER_ESP, 0);
3880 vmcs_writel(GUEST_SYSENTER_EIP, 0);
3881
3882 vmcs_writel(GUEST_RFLAGS, 0x02);
c5af89b6 3883 if (kvm_vcpu_is_bsp(&vmx->vcpu))
5fdbf976 3884 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 3885 else
5fdbf976
MT
3886 kvm_rip_write(vcpu, 0);
3887 kvm_register_write(vcpu, VCPU_REGS_RSP, 0);
e00c8cf2 3888
e00c8cf2
AK
3889 vmcs_writel(GUEST_DR7, 0x400);
3890
3891 vmcs_writel(GUEST_GDTR_BASE, 0);
3892 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
3893
3894 vmcs_writel(GUEST_IDTR_BASE, 0);
3895 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
3896
443381a8 3897 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2
AK
3898 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
3899 vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
3900
e00c8cf2
AK
3901 /* Special registers */
3902 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3903
3904 setup_msrs(vmx);
3905
6aa8b732
AK
3906 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
3907
f78e0e2e
SY
3908 if (cpu_has_vmx_tpr_shadow()) {
3909 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
3910 if (vm_need_tpr_shadow(vmx->vcpu.kvm))
3911 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
afc20184 3912 __pa(vmx->vcpu.arch.apic->regs));
f78e0e2e
SY
3913 vmcs_write32(TPR_THRESHOLD, 0);
3914 }
3915
3916 if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
3917 vmcs_write64(APIC_ACCESS_ADDR,
bfc6d222 3918 page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
6aa8b732 3919
2384d2b3
SY
3920 if (vmx->vpid != 0)
3921 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
3922
fa40052c 3923 vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4d4ec087 3924 vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
8b9cf98c 3925 vmx_set_cr4(&vmx->vcpu, 0);
8b9cf98c 3926 vmx_set_efer(&vmx->vcpu, 0);
8b9cf98c
RR
3927 vmx_fpu_activate(&vmx->vcpu);
3928 update_exception_bitmap(&vmx->vcpu);
6aa8b732 3929
b9d762fa 3930 vpid_sync_context(vmx);
2384d2b3 3931
3200f405 3932 ret = 0;
6aa8b732 3933
a89a8fb9
MG
3934 /* HACK: Don't enable emulation on guest boot/reset */
3935 vmx->emulation_required = 0;
3936
6aa8b732
AK
3937out:
3938 return ret;
3939}
3940
b6f1250e
NHE
3941/*
3942 * In nested virtualization, check if L1 asked to exit on external interrupts.
3943 * For most existing hypervisors, this will always return true.
3944 */
3945static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
3946{
3947 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
3948 PIN_BASED_EXT_INTR_MASK;
3949}
3950
3b86cd99
JK
3951static void enable_irq_window(struct kvm_vcpu *vcpu)
3952{
3953 u32 cpu_based_vm_exec_control;
d6185f20
NHE
3954 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
3955 /*
3956 * We get here if vmx_interrupt_allowed() said we can't
3957 * inject to L1 now because L2 must run. Ask L2 to exit
3958 * right after entry, so we can inject to L1 more promptly.
b6f1250e 3959 */
d6185f20 3960 kvm_make_request(KVM_REQ_IMMEDIATE_EXIT, vcpu);
b6f1250e 3961 return;
d6185f20 3962 }
3b86cd99
JK
3963
3964 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3965 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
3966 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3967}
3968
3969static void enable_nmi_window(struct kvm_vcpu *vcpu)
3970{
3971 u32 cpu_based_vm_exec_control;
3972
3973 if (!cpu_has_virtual_nmis()) {
3974 enable_irq_window(vcpu);
3975 return;
3976 }
3977
30bd0c4c
AK
3978 if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
3979 enable_irq_window(vcpu);
3980 return;
3981 }
3b86cd99
JK
3982 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
3983 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
3984 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
3985}
3986
66fd3f7f 3987static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 3988{
9c8cba37 3989 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
3990 uint32_t intr;
3991 int irq = vcpu->arch.interrupt.nr;
9c8cba37 3992
229456fc 3993 trace_kvm_inj_virq(irq);
2714d1d3 3994
fa89a817 3995 ++vcpu->stat.irq_injections;
7ffd92c5 3996 if (vmx->rmode.vm86_active) {
71f9833b
SH
3997 int inc_eip = 0;
3998 if (vcpu->arch.interrupt.soft)
3999 inc_eip = vcpu->arch.event_exit_inst_len;
4000 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 4001 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
4002 return;
4003 }
66fd3f7f
GN
4004 intr = irq | INTR_INFO_VALID_MASK;
4005 if (vcpu->arch.interrupt.soft) {
4006 intr |= INTR_TYPE_SOFT_INTR;
4007 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4008 vmx->vcpu.arch.event_exit_inst_len);
4009 } else
4010 intr |= INTR_TYPE_EXT_INTR;
4011 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
443381a8 4012 vmx_clear_hlt(vcpu);
85f455f7
ED
4013}
4014
f08864b4
SY
4015static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4016{
66a5a347
JK
4017 struct vcpu_vmx *vmx = to_vmx(vcpu);
4018
0b6ac343
NHE
4019 if (is_guest_mode(vcpu))
4020 return;
4021
3b86cd99
JK
4022 if (!cpu_has_virtual_nmis()) {
4023 /*
4024 * Tracking the NMI-blocked state in software is built upon
4025 * finding the next open IRQ window. This, in turn, depends on
4026 * well-behaving guests: They have to keep IRQs disabled at
4027 * least as long as the NMI handler runs. Otherwise we may
4028 * cause NMI nesting, maybe breaking the guest. But as this is
4029 * highly unlikely, we can live with the residual risk.
4030 */
4031 vmx->soft_vnmi_blocked = 1;
4032 vmx->vnmi_blocked_time = 0;
4033 }
4034
487b391d 4035 ++vcpu->stat.nmi_injections;
9d58b931 4036 vmx->nmi_known_unmasked = false;
7ffd92c5 4037 if (vmx->rmode.vm86_active) {
71f9833b 4038 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 4039 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
4040 return;
4041 }
f08864b4
SY
4042 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4043 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
443381a8 4044 vmx_clear_hlt(vcpu);
f08864b4
SY
4045}
4046
c4282df9 4047static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
33f089ca 4048{
3b86cd99 4049 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
c4282df9 4050 return 0;
33f089ca 4051
c4282df9 4052 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
30bd0c4c
AK
4053 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4054 | GUEST_INTR_STATE_NMI));
33f089ca
JK
4055}
4056
3cfc3092
JK
4057static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4058{
4059 if (!cpu_has_virtual_nmis())
4060 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
4061 if (to_vmx(vcpu)->nmi_known_unmasked)
4062 return false;
c332c83a 4063 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
4064}
4065
4066static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4067{
4068 struct vcpu_vmx *vmx = to_vmx(vcpu);
4069
4070 if (!cpu_has_virtual_nmis()) {
4071 if (vmx->soft_vnmi_blocked != masked) {
4072 vmx->soft_vnmi_blocked = masked;
4073 vmx->vnmi_blocked_time = 0;
4074 }
4075 } else {
9d58b931 4076 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
4077 if (masked)
4078 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4079 GUEST_INTR_STATE_NMI);
4080 else
4081 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4082 GUEST_INTR_STATE_NMI);
4083 }
4084}
4085
78646121
GN
4086static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4087{
b6f1250e 4088 if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu)) {
51cfe38e
NHE
4089 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4090 if (to_vmx(vcpu)->nested.nested_run_pending ||
4091 (vmcs12->idt_vectoring_info_field &
4092 VECTORING_INFO_VALID_MASK))
b6f1250e
NHE
4093 return 0;
4094 nested_vmx_vmexit(vcpu);
b6f1250e
NHE
4095 vmcs12->vm_exit_reason = EXIT_REASON_EXTERNAL_INTERRUPT;
4096 vmcs12->vm_exit_intr_info = 0;
4097 /* fall through to normal code, but now in L1, not L2 */
4098 }
4099
c4282df9
GN
4100 return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4101 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4102 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
4103}
4104
cbc94022
IE
4105static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4106{
4107 int ret;
4108 struct kvm_userspace_memory_region tss_mem = {
6fe63979 4109 .slot = TSS_PRIVATE_MEMSLOT,
cbc94022
IE
4110 .guest_phys_addr = addr,
4111 .memory_size = PAGE_SIZE * 3,
4112 .flags = 0,
4113 };
4114
4115 ret = kvm_set_memory_region(kvm, &tss_mem, 0);
4116 if (ret)
4117 return ret;
bfc6d222 4118 kvm->arch.tss_addr = addr;
93ea5388
GN
4119 if (!init_rmode_tss(kvm))
4120 return -ENOMEM;
4121
cbc94022
IE
4122 return 0;
4123}
4124
6aa8b732
AK
4125static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4126 int vec, u32 err_code)
4127{
b3f37707
NK
4128 /*
4129 * Instruction with address size override prefix opcode 0x67
4130 * Cause the #SS fault with 0 error code in VM86 mode.
4131 */
4132 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0)
51d8b661 4133 if (emulate_instruction(vcpu, 0) == EMULATE_DONE)
6aa8b732 4134 return 1;
77ab6db0
JK
4135 /*
4136 * Forward all other exceptions that are valid in real mode.
4137 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4138 * the required debugging infrastructure rework.
4139 */
4140 switch (vec) {
77ab6db0 4141 case DB_VECTOR:
d0bfb940
JK
4142 if (vcpu->guest_debug &
4143 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4144 return 0;
4145 kvm_queue_exception(vcpu, vec);
4146 return 1;
77ab6db0 4147 case BP_VECTOR:
c573cd22
JK
4148 /*
4149 * Update instruction length as we may reinject the exception
4150 * from user space while in guest debugging mode.
4151 */
4152 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4153 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940
JK
4154 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4155 return 0;
4156 /* fall through */
4157 case DE_VECTOR:
77ab6db0
JK
4158 case OF_VECTOR:
4159 case BR_VECTOR:
4160 case UD_VECTOR:
4161 case DF_VECTOR:
4162 case SS_VECTOR:
4163 case GP_VECTOR:
4164 case MF_VECTOR:
4165 kvm_queue_exception(vcpu, vec);
4166 return 1;
4167 }
6aa8b732
AK
4168 return 0;
4169}
4170
a0861c02
AK
4171/*
4172 * Trigger machine check on the host. We assume all the MSRs are already set up
4173 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4174 * We pass a fake environment to the machine check handler because we want
4175 * the guest to be always treated like user space, no matter what context
4176 * it used internally.
4177 */
4178static void kvm_machine_check(void)
4179{
4180#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4181 struct pt_regs regs = {
4182 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4183 .flags = X86_EFLAGS_IF,
4184 };
4185
4186 do_machine_check(&regs, 0);
4187#endif
4188}
4189
851ba692 4190static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
4191{
4192 /* already handled by vcpu_run */
4193 return 1;
4194}
4195
851ba692 4196static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 4197{
1155f76a 4198 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 4199 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 4200 u32 intr_info, ex_no, error_code;
42dbaa5a 4201 unsigned long cr2, rip, dr6;
6aa8b732
AK
4202 u32 vect_info;
4203 enum emulation_result er;
4204
1155f76a 4205 vect_info = vmx->idt_vectoring_info;
88786475 4206 intr_info = vmx->exit_intr_info;
6aa8b732 4207
a0861c02 4208 if (is_machine_check(intr_info))
851ba692 4209 return handle_machine_check(vcpu);
a0861c02 4210
6aa8b732 4211 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
65ac7264
AK
4212 !is_page_fault(intr_info)) {
4213 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4214 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4215 vcpu->run->internal.ndata = 2;
4216 vcpu->run->internal.data[0] = vect_info;
4217 vcpu->run->internal.data[1] = intr_info;
4218 return 0;
4219 }
6aa8b732 4220
e4a41889 4221 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 4222 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
4223
4224 if (is_no_device(intr_info)) {
5fd86fcf 4225 vmx_fpu_activate(vcpu);
2ab455cc
AL
4226 return 1;
4227 }
4228
7aa81cc0 4229 if (is_invalid_opcode(intr_info)) {
51d8b661 4230 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 4231 if (er != EMULATE_DONE)
7ee5d940 4232 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
4233 return 1;
4234 }
4235
6aa8b732 4236 error_code = 0;
2e11384c 4237 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732
AK
4238 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4239 if (is_page_fault(intr_info)) {
1439442c 4240 /* EPT won't cause page fault directly */
cf3ace79 4241 BUG_ON(enable_ept);
6aa8b732 4242 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
4243 trace_kvm_page_fault(cr2, error_code);
4244
3298b75c 4245 if (kvm_event_needs_reinjection(vcpu))
577bdc49 4246 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 4247 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
4248 }
4249
7ffd92c5 4250 if (vmx->rmode.vm86_active &&
6aa8b732 4251 handle_rmode_exception(vcpu, intr_info & INTR_INFO_VECTOR_MASK,
72d6e5a0 4252 error_code)) {
ad312c7c
ZX
4253 if (vcpu->arch.halt_request) {
4254 vcpu->arch.halt_request = 0;
72d6e5a0
AK
4255 return kvm_emulate_halt(vcpu);
4256 }
6aa8b732 4257 return 1;
72d6e5a0 4258 }
6aa8b732 4259
d0bfb940 4260 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
42dbaa5a
JK
4261 switch (ex_no) {
4262 case DB_VECTOR:
4263 dr6 = vmcs_readl(EXIT_QUALIFICATION);
4264 if (!(vcpu->guest_debug &
4265 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4266 vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4267 kvm_queue_exception(vcpu, DB_VECTOR);
4268 return 1;
4269 }
4270 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4271 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4272 /* fall through */
4273 case BP_VECTOR:
c573cd22
JK
4274 /*
4275 * Update instruction length as we may reinject #BP from
4276 * user space while in guest debugging mode. Reading it for
4277 * #DB as well causes no harm, it is not used in that case.
4278 */
4279 vmx->vcpu.arch.event_exit_inst_len =
4280 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 4281 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 4282 rip = kvm_rip_read(vcpu);
d0bfb940
JK
4283 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4284 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
4285 break;
4286 default:
d0bfb940
JK
4287 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4288 kvm_run->ex.exception = ex_no;
4289 kvm_run->ex.error_code = error_code;
42dbaa5a 4290 break;
6aa8b732 4291 }
6aa8b732
AK
4292 return 0;
4293}
4294
851ba692 4295static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 4296{
1165f5fe 4297 ++vcpu->stat.irq_exits;
6aa8b732
AK
4298 return 1;
4299}
4300
851ba692 4301static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 4302{
851ba692 4303 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
4304 return 0;
4305}
6aa8b732 4306
851ba692 4307static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 4308{
bfdaab09 4309 unsigned long exit_qualification;
34c33d16 4310 int size, in, string;
039576c0 4311 unsigned port;
6aa8b732 4312
bfdaab09 4313 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 4314 string = (exit_qualification & 16) != 0;
cf8f70bf 4315 in = (exit_qualification & 8) != 0;
e70669ab 4316
cf8f70bf 4317 ++vcpu->stat.io_exits;
e70669ab 4318
cf8f70bf 4319 if (string || in)
51d8b661 4320 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 4321
cf8f70bf
GN
4322 port = exit_qualification >> 16;
4323 size = (exit_qualification & 7) + 1;
e93f36bc 4324 skip_emulated_instruction(vcpu);
cf8f70bf
GN
4325
4326 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
4327}
4328
102d8325
IM
4329static void
4330vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4331{
4332 /*
4333 * Patch in the VMCALL instruction:
4334 */
4335 hypercall[0] = 0x0f;
4336 hypercall[1] = 0x01;
4337 hypercall[2] = 0xc1;
102d8325
IM
4338}
4339
eeadf9e7
NHE
4340/* called to set cr0 as approriate for a mov-to-cr0 exit. */
4341static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4342{
4343 if (to_vmx(vcpu)->nested.vmxon &&
4344 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4345 return 1;
4346
4347 if (is_guest_mode(vcpu)) {
4348 /*
4349 * We get here when L2 changed cr0 in a way that did not change
4350 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4351 * but did change L0 shadowed bits. This can currently happen
4352 * with the TS bit: L0 may want to leave TS on (for lazy fpu
4353 * loading) while pretending to allow the guest to change it.
4354 */
4355 if (kvm_set_cr0(vcpu, (val & vcpu->arch.cr0_guest_owned_bits) |
4356 (vcpu->arch.cr0 & ~vcpu->arch.cr0_guest_owned_bits)))
4357 return 1;
4358 vmcs_writel(CR0_READ_SHADOW, val);
4359 return 0;
4360 } else
4361 return kvm_set_cr0(vcpu, val);
4362}
4363
4364static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4365{
4366 if (is_guest_mode(vcpu)) {
4367 if (kvm_set_cr4(vcpu, (val & vcpu->arch.cr4_guest_owned_bits) |
4368 (vcpu->arch.cr4 & ~vcpu->arch.cr4_guest_owned_bits)))
4369 return 1;
4370 vmcs_writel(CR4_READ_SHADOW, val);
4371 return 0;
4372 } else
4373 return kvm_set_cr4(vcpu, val);
4374}
4375
4376/* called to set cr0 as approriate for clts instruction exit. */
4377static void handle_clts(struct kvm_vcpu *vcpu)
4378{
4379 if (is_guest_mode(vcpu)) {
4380 /*
4381 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4382 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4383 * just pretend it's off (also in arch.cr0 for fpu_activate).
4384 */
4385 vmcs_writel(CR0_READ_SHADOW,
4386 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4387 vcpu->arch.cr0 &= ~X86_CR0_TS;
4388 } else
4389 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4390}
4391
851ba692 4392static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 4393{
229456fc 4394 unsigned long exit_qualification, val;
6aa8b732
AK
4395 int cr;
4396 int reg;
49a9b07e 4397 int err;
6aa8b732 4398
bfdaab09 4399 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
4400 cr = exit_qualification & 15;
4401 reg = (exit_qualification >> 8) & 15;
4402 switch ((exit_qualification >> 4) & 3) {
4403 case 0: /* mov to cr */
229456fc
MT
4404 val = kvm_register_read(vcpu, reg);
4405 trace_kvm_cr_write(cr, val);
6aa8b732
AK
4406 switch (cr) {
4407 case 0:
eeadf9e7 4408 err = handle_set_cr0(vcpu, val);
db8fcefa 4409 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4410 return 1;
4411 case 3:
2390218b 4412 err = kvm_set_cr3(vcpu, val);
db8fcefa 4413 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
4414 return 1;
4415 case 4:
eeadf9e7 4416 err = handle_set_cr4(vcpu, val);
db8fcefa 4417 kvm_complete_insn_gp(vcpu, err);
6aa8b732 4418 return 1;
0a5fff19
GN
4419 case 8: {
4420 u8 cr8_prev = kvm_get_cr8(vcpu);
4421 u8 cr8 = kvm_register_read(vcpu, reg);
eea1cff9 4422 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 4423 kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
4424 if (irqchip_in_kernel(vcpu->kvm))
4425 return 1;
4426 if (cr8_prev <= cr8)
4427 return 1;
851ba692 4428 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
4429 return 0;
4430 }
6aa8b732
AK
4431 };
4432 break;
25c4c276 4433 case 2: /* clts */
eeadf9e7 4434 handle_clts(vcpu);
4d4ec087 4435 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 4436 skip_emulated_instruction(vcpu);
6b52d186 4437 vmx_fpu_activate(vcpu);
25c4c276 4438 return 1;
6aa8b732
AK
4439 case 1: /*mov from cr*/
4440 switch (cr) {
4441 case 3:
9f8fe504
AK
4442 val = kvm_read_cr3(vcpu);
4443 kvm_register_write(vcpu, reg, val);
4444 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4445 skip_emulated_instruction(vcpu);
4446 return 1;
4447 case 8:
229456fc
MT
4448 val = kvm_get_cr8(vcpu);
4449 kvm_register_write(vcpu, reg, val);
4450 trace_kvm_cr_read(cr, val);
6aa8b732
AK
4451 skip_emulated_instruction(vcpu);
4452 return 1;
4453 }
4454 break;
4455 case 3: /* lmsw */
a1f83a74 4456 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 4457 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 4458 kvm_lmsw(vcpu, val);
6aa8b732
AK
4459
4460 skip_emulated_instruction(vcpu);
4461 return 1;
4462 default:
4463 break;
4464 }
851ba692 4465 vcpu->run->exit_reason = 0;
f0242478 4466 pr_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
4467 (int)(exit_qualification >> 4) & 3, cr);
4468 return 0;
4469}
4470
851ba692 4471static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 4472{
bfdaab09 4473 unsigned long exit_qualification;
6aa8b732
AK
4474 int dr, reg;
4475
f2483415 4476 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
4477 if (!kvm_require_cpl(vcpu, 0))
4478 return 1;
42dbaa5a
JK
4479 dr = vmcs_readl(GUEST_DR7);
4480 if (dr & DR7_GD) {
4481 /*
4482 * As the vm-exit takes precedence over the debug trap, we
4483 * need to emulate the latter, either for the host or the
4484 * guest debugging itself.
4485 */
4486 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692
AK
4487 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4488 vcpu->run->debug.arch.dr7 = dr;
4489 vcpu->run->debug.arch.pc =
42dbaa5a
JK
4490 vmcs_readl(GUEST_CS_BASE) +
4491 vmcs_readl(GUEST_RIP);
851ba692
AK
4492 vcpu->run->debug.arch.exception = DB_VECTOR;
4493 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
4494 return 0;
4495 } else {
4496 vcpu->arch.dr7 &= ~DR7_GD;
4497 vcpu->arch.dr6 |= DR6_BD;
4498 vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4499 kvm_queue_exception(vcpu, DB_VECTOR);
4500 return 1;
4501 }
4502 }
4503
bfdaab09 4504 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
42dbaa5a
JK
4505 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
4506 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
4507 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079
GN
4508 unsigned long val;
4509 if (!kvm_get_dr(vcpu, dr, &val))
4510 kvm_register_write(vcpu, reg, val);
4511 } else
4512 kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
6aa8b732
AK
4513 skip_emulated_instruction(vcpu);
4514 return 1;
4515}
4516
020df079
GN
4517static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
4518{
4519 vmcs_writel(GUEST_DR7, val);
4520}
4521
851ba692 4522static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 4523{
06465c5a
AK
4524 kvm_emulate_cpuid(vcpu);
4525 return 1;
6aa8b732
AK
4526}
4527
851ba692 4528static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 4529{
ad312c7c 4530 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6aa8b732
AK
4531 u64 data;
4532
4533 if (vmx_get_msr(vcpu, ecx, &data)) {
59200273 4534 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 4535 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4536 return 1;
4537 }
4538
229456fc 4539 trace_kvm_msr_read(ecx, data);
2714d1d3 4540
6aa8b732 4541 /* FIXME: handling of bits 32:63 of rax, rdx */
ad312c7c
ZX
4542 vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
4543 vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
6aa8b732
AK
4544 skip_emulated_instruction(vcpu);
4545 return 1;
4546}
4547
851ba692 4548static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 4549{
ad312c7c
ZX
4550 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
4551 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
4552 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732
AK
4553
4554 if (vmx_set_msr(vcpu, ecx, data) != 0) {
59200273 4555 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 4556 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
4557 return 1;
4558 }
4559
59200273 4560 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
4561 skip_emulated_instruction(vcpu);
4562 return 1;
4563}
4564
851ba692 4565static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 4566{
3842d135 4567 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
4568 return 1;
4569}
4570
851ba692 4571static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 4572{
85f455f7
ED
4573 u32 cpu_based_vm_exec_control;
4574
4575 /* clear pending irq */
4576 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4577 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
4578 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 4579
3842d135
AK
4580 kvm_make_request(KVM_REQ_EVENT, vcpu);
4581
a26bf12a 4582 ++vcpu->stat.irq_window_exits;
2714d1d3 4583
c1150d8c
DL
4584 /*
4585 * If the user space waits to inject interrupts, exit as soon as
4586 * possible
4587 */
8061823a 4588 if (!irqchip_in_kernel(vcpu->kvm) &&
851ba692 4589 vcpu->run->request_interrupt_window &&
8061823a 4590 !kvm_cpu_has_interrupt(vcpu)) {
851ba692 4591 vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
c1150d8c
DL
4592 return 0;
4593 }
6aa8b732
AK
4594 return 1;
4595}
4596
851ba692 4597static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732
AK
4598{
4599 skip_emulated_instruction(vcpu);
d3bef15f 4600 return kvm_emulate_halt(vcpu);
6aa8b732
AK
4601}
4602
851ba692 4603static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 4604{
510043da 4605 skip_emulated_instruction(vcpu);
7aa81cc0
AL
4606 kvm_emulate_hypercall(vcpu);
4607 return 1;
c21415e8
IM
4608}
4609
ec25d5e6
GN
4610static int handle_invd(struct kvm_vcpu *vcpu)
4611{
51d8b661 4612 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
4613}
4614
851ba692 4615static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 4616{
f9c617f6 4617 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
4618
4619 kvm_mmu_invlpg(vcpu, exit_qualification);
4620 skip_emulated_instruction(vcpu);
4621 return 1;
4622}
4623
fee84b07
AK
4624static int handle_rdpmc(struct kvm_vcpu *vcpu)
4625{
4626 int err;
4627
4628 err = kvm_rdpmc(vcpu);
4629 kvm_complete_insn_gp(vcpu, err);
4630
4631 return 1;
4632}
4633
851ba692 4634static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01
ED
4635{
4636 skip_emulated_instruction(vcpu);
f5f48ee1 4637 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
4638 return 1;
4639}
4640
2acf923e
DC
4641static int handle_xsetbv(struct kvm_vcpu *vcpu)
4642{
4643 u64 new_bv = kvm_read_edx_eax(vcpu);
4644 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
4645
4646 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
4647 skip_emulated_instruction(vcpu);
4648 return 1;
4649}
4650
851ba692 4651static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 4652{
58fbbf26
KT
4653 if (likely(fasteoi)) {
4654 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4655 int access_type, offset;
4656
4657 access_type = exit_qualification & APIC_ACCESS_TYPE;
4658 offset = exit_qualification & APIC_ACCESS_OFFSET;
4659 /*
4660 * Sane guest uses MOV to write EOI, with written value
4661 * not cared. So make a short-circuit here by avoiding
4662 * heavy instruction emulation.
4663 */
4664 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
4665 (offset == APIC_EOI)) {
4666 kvm_lapic_set_eoi(vcpu);
4667 skip_emulated_instruction(vcpu);
4668 return 1;
4669 }
4670 }
51d8b661 4671 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
4672}
4673
851ba692 4674static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 4675{
60637aac 4676 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 4677 unsigned long exit_qualification;
e269fb21
JK
4678 bool has_error_code = false;
4679 u32 error_code = 0;
37817f29 4680 u16 tss_selector;
64a7ec06
GN
4681 int reason, type, idt_v;
4682
4683 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
4684 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
4685
4686 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4687
4688 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
4689 if (reason == TASK_SWITCH_GATE && idt_v) {
4690 switch (type) {
4691 case INTR_TYPE_NMI_INTR:
4692 vcpu->arch.nmi_injected = false;
654f06fc 4693 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
4694 break;
4695 case INTR_TYPE_EXT_INTR:
66fd3f7f 4696 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
4697 kvm_clear_interrupt_queue(vcpu);
4698 break;
4699 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
4700 if (vmx->idt_vectoring_info &
4701 VECTORING_INFO_DELIVER_CODE_MASK) {
4702 has_error_code = true;
4703 error_code =
4704 vmcs_read32(IDT_VECTORING_ERROR_CODE);
4705 }
4706 /* fall through */
64a7ec06
GN
4707 case INTR_TYPE_SOFT_EXCEPTION:
4708 kvm_clear_exception_queue(vcpu);
4709 break;
4710 default:
4711 break;
4712 }
60637aac 4713 }
37817f29
IE
4714 tss_selector = exit_qualification;
4715
64a7ec06
GN
4716 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
4717 type != INTR_TYPE_EXT_INTR &&
4718 type != INTR_TYPE_NMI_INTR))
4719 skip_emulated_instruction(vcpu);
4720
acb54517
GN
4721 if (kvm_task_switch(vcpu, tss_selector, reason,
4722 has_error_code, error_code) == EMULATE_FAIL) {
4723 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4724 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
4725 vcpu->run->internal.ndata = 0;
42dbaa5a 4726 return 0;
acb54517 4727 }
42dbaa5a
JK
4728
4729 /* clear all local breakpoint enable flags */
4730 vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
4731
4732 /*
4733 * TODO: What about debug traps on tss switch?
4734 * Are we supposed to inject them and update dr6?
4735 */
4736
4737 return 1;
37817f29
IE
4738}
4739
851ba692 4740static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 4741{
f9c617f6 4742 unsigned long exit_qualification;
1439442c 4743 gpa_t gpa;
1439442c 4744 int gla_validity;
1439442c 4745
f9c617f6 4746 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c
SY
4747
4748 if (exit_qualification & (1 << 6)) {
4749 printk(KERN_ERR "EPT: GPA exceeds GAW!\n");
7f582ab6 4750 return -EINVAL;
1439442c
SY
4751 }
4752
4753 gla_validity = (exit_qualification >> 7) & 0x3;
4754 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
4755 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
4756 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
4757 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 4758 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
4759 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
4760 (long unsigned int)exit_qualification);
851ba692
AK
4761 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4762 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 4763 return 0;
1439442c
SY
4764 }
4765
4766 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 4767 trace_kvm_page_fault(gpa, exit_qualification);
dc25e89e 4768 return kvm_mmu_page_fault(vcpu, gpa, exit_qualification & 0x3, NULL, 0);
1439442c
SY
4769}
4770
68f89400
MT
4771static u64 ept_rsvd_mask(u64 spte, int level)
4772{
4773 int i;
4774 u64 mask = 0;
4775
4776 for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
4777 mask |= (1ULL << i);
4778
4779 if (level > 2)
4780 /* bits 7:3 reserved */
4781 mask |= 0xf8;
4782 else if (level == 2) {
4783 if (spte & (1ULL << 7))
4784 /* 2MB ref, bits 20:12 reserved */
4785 mask |= 0x1ff000;
4786 else
4787 /* bits 6:3 reserved */
4788 mask |= 0x78;
4789 }
4790
4791 return mask;
4792}
4793
4794static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
4795 int level)
4796{
4797 printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
4798
4799 /* 010b (write-only) */
4800 WARN_ON((spte & 0x7) == 0x2);
4801
4802 /* 110b (write/execute) */
4803 WARN_ON((spte & 0x7) == 0x6);
4804
4805 /* 100b (execute-only) and value not supported by logical processor */
4806 if (!cpu_has_vmx_ept_execute_only())
4807 WARN_ON((spte & 0x7) == 0x4);
4808
4809 /* not 000b */
4810 if ((spte & 0x7)) {
4811 u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
4812
4813 if (rsvd_bits != 0) {
4814 printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
4815 __func__, rsvd_bits);
4816 WARN_ON(1);
4817 }
4818
4819 if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
4820 u64 ept_mem_type = (spte & 0x38) >> 3;
4821
4822 if (ept_mem_type == 2 || ept_mem_type == 3 ||
4823 ept_mem_type == 7) {
4824 printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
4825 __func__, ept_mem_type);
4826 WARN_ON(1);
4827 }
4828 }
4829 }
4830}
4831
851ba692 4832static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400
MT
4833{
4834 u64 sptes[4];
ce88decf 4835 int nr_sptes, i, ret;
68f89400
MT
4836 gpa_t gpa;
4837
4838 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
4839
ce88decf
XG
4840 ret = handle_mmio_page_fault_common(vcpu, gpa, true);
4841 if (likely(ret == 1))
4842 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
4843 EMULATE_DONE;
4844 if (unlikely(!ret))
4845 return 1;
4846
4847 /* It is the real ept misconfig */
68f89400
MT
4848 printk(KERN_ERR "EPT: Misconfiguration.\n");
4849 printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
4850
4851 nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
4852
4853 for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
4854 ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
4855
851ba692
AK
4856 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
4857 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
4858
4859 return 0;
4860}
4861
851ba692 4862static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
4863{
4864 u32 cpu_based_vm_exec_control;
4865
4866 /* clear pending NMI */
4867 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4868 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
4869 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4870 ++vcpu->stat.nmi_window_exits;
3842d135 4871 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
4872
4873 return 1;
4874}
4875
80ced186 4876static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 4877{
8b3079a5
AK
4878 struct vcpu_vmx *vmx = to_vmx(vcpu);
4879 enum emulation_result err = EMULATE_DONE;
80ced186 4880 int ret = 1;
49e9d557
AK
4881 u32 cpu_exec_ctrl;
4882 bool intr_window_requested;
4883
4884 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4885 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0
MG
4886
4887 while (!guest_state_valid(vcpu)) {
49e9d557
AK
4888 if (intr_window_requested
4889 && (kvm_get_rflags(&vmx->vcpu) & X86_EFLAGS_IF))
4890 return handle_interrupt_window(&vmx->vcpu);
4891
51d8b661 4892 err = emulate_instruction(vcpu, 0);
ea953ef0 4893
80ced186
MG
4894 if (err == EMULATE_DO_MMIO) {
4895 ret = 0;
4896 goto out;
4897 }
1d5a4d9b 4898
6d77dbfc
GN
4899 if (err != EMULATE_DONE)
4900 return 0;
ea953ef0
MG
4901
4902 if (signal_pending(current))
80ced186 4903 goto out;
ea953ef0
MG
4904 if (need_resched())
4905 schedule();
4906 }
4907
80ced186
MG
4908 vmx->emulation_required = 0;
4909out:
4910 return ret;
ea953ef0
MG
4911}
4912
4b8d54f9
ZE
4913/*
4914 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
4915 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
4916 */
9fb41ba8 4917static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9
ZE
4918{
4919 skip_emulated_instruction(vcpu);
4920 kvm_vcpu_on_spin(vcpu);
4921
4922 return 1;
4923}
4924
59708670
SY
4925static int handle_invalid_op(struct kvm_vcpu *vcpu)
4926{
4927 kvm_queue_exception(vcpu, UD_VECTOR);
4928 return 1;
4929}
4930
ff2f6fe9
NHE
4931/*
4932 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
4933 * We could reuse a single VMCS for all the L2 guests, but we also want the
4934 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
4935 * allows keeping them loaded on the processor, and in the future will allow
4936 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
4937 * every entry if they never change.
4938 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
4939 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
4940 *
4941 * The following functions allocate and free a vmcs02 in this pool.
4942 */
4943
4944/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
4945static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
4946{
4947 struct vmcs02_list *item;
4948 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4949 if (item->vmptr == vmx->nested.current_vmptr) {
4950 list_move(&item->list, &vmx->nested.vmcs02_pool);
4951 return &item->vmcs02;
4952 }
4953
4954 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
4955 /* Recycle the least recently used VMCS. */
4956 item = list_entry(vmx->nested.vmcs02_pool.prev,
4957 struct vmcs02_list, list);
4958 item->vmptr = vmx->nested.current_vmptr;
4959 list_move(&item->list, &vmx->nested.vmcs02_pool);
4960 return &item->vmcs02;
4961 }
4962
4963 /* Create a new VMCS */
4964 item = (struct vmcs02_list *)
4965 kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
4966 if (!item)
4967 return NULL;
4968 item->vmcs02.vmcs = alloc_vmcs();
4969 if (!item->vmcs02.vmcs) {
4970 kfree(item);
4971 return NULL;
4972 }
4973 loaded_vmcs_init(&item->vmcs02);
4974 item->vmptr = vmx->nested.current_vmptr;
4975 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
4976 vmx->nested.vmcs02_num++;
4977 return &item->vmcs02;
4978}
4979
4980/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
4981static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
4982{
4983 struct vmcs02_list *item;
4984 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
4985 if (item->vmptr == vmptr) {
4986 free_loaded_vmcs(&item->vmcs02);
4987 list_del(&item->list);
4988 kfree(item);
4989 vmx->nested.vmcs02_num--;
4990 return;
4991 }
4992}
4993
4994/*
4995 * Free all VMCSs saved for this vcpu, except the one pointed by
4996 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
4997 * currently used, if running L2), and vmcs01 when running L2.
4998 */
4999static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5000{
5001 struct vmcs02_list *item, *n;
5002 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5003 if (vmx->loaded_vmcs != &item->vmcs02)
5004 free_loaded_vmcs(&item->vmcs02);
5005 list_del(&item->list);
5006 kfree(item);
5007 }
5008 vmx->nested.vmcs02_num = 0;
5009
5010 if (vmx->loaded_vmcs != &vmx->vmcs01)
5011 free_loaded_vmcs(&vmx->vmcs01);
5012}
5013
ec378aee
NHE
5014/*
5015 * Emulate the VMXON instruction.
5016 * Currently, we just remember that VMX is active, and do not save or even
5017 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5018 * do not currently need to store anything in that guest-allocated memory
5019 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5020 * argument is different from the VMXON pointer (which the spec says they do).
5021 */
5022static int handle_vmon(struct kvm_vcpu *vcpu)
5023{
5024 struct kvm_segment cs;
5025 struct vcpu_vmx *vmx = to_vmx(vcpu);
5026
5027 /* The Intel VMX Instruction Reference lists a bunch of bits that
5028 * are prerequisite to running VMXON, most notably cr4.VMXE must be
5029 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5030 * Otherwise, we should fail with #UD. We test these now:
5031 */
5032 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5033 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5034 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5035 kvm_queue_exception(vcpu, UD_VECTOR);
5036 return 1;
5037 }
5038
5039 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5040 if (is_long_mode(vcpu) && !cs.l) {
5041 kvm_queue_exception(vcpu, UD_VECTOR);
5042 return 1;
5043 }
5044
5045 if (vmx_get_cpl(vcpu)) {
5046 kvm_inject_gp(vcpu, 0);
5047 return 1;
5048 }
5049
ff2f6fe9
NHE
5050 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5051 vmx->nested.vmcs02_num = 0;
5052
ec378aee
NHE
5053 vmx->nested.vmxon = true;
5054
5055 skip_emulated_instruction(vcpu);
5056 return 1;
5057}
5058
5059/*
5060 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5061 * for running VMX instructions (except VMXON, whose prerequisites are
5062 * slightly different). It also specifies what exception to inject otherwise.
5063 */
5064static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5065{
5066 struct kvm_segment cs;
5067 struct vcpu_vmx *vmx = to_vmx(vcpu);
5068
5069 if (!vmx->nested.vmxon) {
5070 kvm_queue_exception(vcpu, UD_VECTOR);
5071 return 0;
5072 }
5073
5074 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5075 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5076 (is_long_mode(vcpu) && !cs.l)) {
5077 kvm_queue_exception(vcpu, UD_VECTOR);
5078 return 0;
5079 }
5080
5081 if (vmx_get_cpl(vcpu)) {
5082 kvm_inject_gp(vcpu, 0);
5083 return 0;
5084 }
5085
5086 return 1;
5087}
5088
5089/*
5090 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5091 * just stops using VMX.
5092 */
5093static void free_nested(struct vcpu_vmx *vmx)
5094{
5095 if (!vmx->nested.vmxon)
5096 return;
5097 vmx->nested.vmxon = false;
a9d30f33
NHE
5098 if (vmx->nested.current_vmptr != -1ull) {
5099 kunmap(vmx->nested.current_vmcs12_page);
5100 nested_release_page(vmx->nested.current_vmcs12_page);
5101 vmx->nested.current_vmptr = -1ull;
5102 vmx->nested.current_vmcs12 = NULL;
5103 }
fe3ef05c
NHE
5104 /* Unpin physical memory we referred to in current vmcs02 */
5105 if (vmx->nested.apic_access_page) {
5106 nested_release_page(vmx->nested.apic_access_page);
5107 vmx->nested.apic_access_page = 0;
5108 }
ff2f6fe9
NHE
5109
5110 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
5111}
5112
5113/* Emulate the VMXOFF instruction */
5114static int handle_vmoff(struct kvm_vcpu *vcpu)
5115{
5116 if (!nested_vmx_check_permission(vcpu))
5117 return 1;
5118 free_nested(to_vmx(vcpu));
5119 skip_emulated_instruction(vcpu);
5120 return 1;
5121}
5122
064aea77
NHE
5123/*
5124 * Decode the memory-address operand of a vmx instruction, as recorded on an
5125 * exit caused by such an instruction (run by a guest hypervisor).
5126 * On success, returns 0. When the operand is invalid, returns 1 and throws
5127 * #UD or #GP.
5128 */
5129static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5130 unsigned long exit_qualification,
5131 u32 vmx_instruction_info, gva_t *ret)
5132{
5133 /*
5134 * According to Vol. 3B, "Information for VM Exits Due to Instruction
5135 * Execution", on an exit, vmx_instruction_info holds most of the
5136 * addressing components of the operand. Only the displacement part
5137 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5138 * For how an actual address is calculated from all these components,
5139 * refer to Vol. 1, "Operand Addressing".
5140 */
5141 int scaling = vmx_instruction_info & 3;
5142 int addr_size = (vmx_instruction_info >> 7) & 7;
5143 bool is_reg = vmx_instruction_info & (1u << 10);
5144 int seg_reg = (vmx_instruction_info >> 15) & 7;
5145 int index_reg = (vmx_instruction_info >> 18) & 0xf;
5146 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5147 int base_reg = (vmx_instruction_info >> 23) & 0xf;
5148 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
5149
5150 if (is_reg) {
5151 kvm_queue_exception(vcpu, UD_VECTOR);
5152 return 1;
5153 }
5154
5155 /* Addr = segment_base + offset */
5156 /* offset = base + [index * scale] + displacement */
5157 *ret = vmx_get_segment_base(vcpu, seg_reg);
5158 if (base_is_valid)
5159 *ret += kvm_register_read(vcpu, base_reg);
5160 if (index_is_valid)
5161 *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5162 *ret += exit_qualification; /* holds the displacement */
5163
5164 if (addr_size == 1) /* 32 bit */
5165 *ret &= 0xffffffff;
5166
5167 /*
5168 * TODO: throw #GP (and return 1) in various cases that the VM*
5169 * instructions require it - e.g., offset beyond segment limit,
5170 * unusable or unreadable/unwritable segment, non-canonical 64-bit
5171 * address, and so on. Currently these are not checked.
5172 */
5173 return 0;
5174}
5175
0140caea
NHE
5176/*
5177 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5178 * set the success or error code of an emulated VMX instruction, as specified
5179 * by Vol 2B, VMX Instruction Reference, "Conventions".
5180 */
5181static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5182{
5183 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5184 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5185 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5186}
5187
5188static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5189{
5190 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5191 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5192 X86_EFLAGS_SF | X86_EFLAGS_OF))
5193 | X86_EFLAGS_CF);
5194}
5195
5196static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5197 u32 vm_instruction_error)
5198{
5199 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5200 /*
5201 * failValid writes the error number to the current VMCS, which
5202 * can't be done there isn't a current VMCS.
5203 */
5204 nested_vmx_failInvalid(vcpu);
5205 return;
5206 }
5207 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5208 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5209 X86_EFLAGS_SF | X86_EFLAGS_OF))
5210 | X86_EFLAGS_ZF);
5211 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5212}
5213
27d6c865
NHE
5214/* Emulate the VMCLEAR instruction */
5215static int handle_vmclear(struct kvm_vcpu *vcpu)
5216{
5217 struct vcpu_vmx *vmx = to_vmx(vcpu);
5218 gva_t gva;
5219 gpa_t vmptr;
5220 struct vmcs12 *vmcs12;
5221 struct page *page;
5222 struct x86_exception e;
5223
5224 if (!nested_vmx_check_permission(vcpu))
5225 return 1;
5226
5227 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5228 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5229 return 1;
5230
5231 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5232 sizeof(vmptr), &e)) {
5233 kvm_inject_page_fault(vcpu, &e);
5234 return 1;
5235 }
5236
5237 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5238 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5239 skip_emulated_instruction(vcpu);
5240 return 1;
5241 }
5242
5243 if (vmptr == vmx->nested.current_vmptr) {
5244 kunmap(vmx->nested.current_vmcs12_page);
5245 nested_release_page(vmx->nested.current_vmcs12_page);
5246 vmx->nested.current_vmptr = -1ull;
5247 vmx->nested.current_vmcs12 = NULL;
5248 }
5249
5250 page = nested_get_page(vcpu, vmptr);
5251 if (page == NULL) {
5252 /*
5253 * For accurate processor emulation, VMCLEAR beyond available
5254 * physical memory should do nothing at all. However, it is
5255 * possible that a nested vmx bug, not a guest hypervisor bug,
5256 * resulted in this case, so let's shut down before doing any
5257 * more damage:
5258 */
5259 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5260 return 1;
5261 }
5262 vmcs12 = kmap(page);
5263 vmcs12->launch_state = 0;
5264 kunmap(page);
5265 nested_release_page(page);
5266
5267 nested_free_vmcs02(vmx, vmptr);
5268
5269 skip_emulated_instruction(vcpu);
5270 nested_vmx_succeed(vcpu);
5271 return 1;
5272}
5273
cd232ad0
NHE
5274static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5275
5276/* Emulate the VMLAUNCH instruction */
5277static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5278{
5279 return nested_vmx_run(vcpu, true);
5280}
5281
5282/* Emulate the VMRESUME instruction */
5283static int handle_vmresume(struct kvm_vcpu *vcpu)
5284{
5285
5286 return nested_vmx_run(vcpu, false);
5287}
5288
49f705c5
NHE
5289enum vmcs_field_type {
5290 VMCS_FIELD_TYPE_U16 = 0,
5291 VMCS_FIELD_TYPE_U64 = 1,
5292 VMCS_FIELD_TYPE_U32 = 2,
5293 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5294};
5295
5296static inline int vmcs_field_type(unsigned long field)
5297{
5298 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
5299 return VMCS_FIELD_TYPE_U32;
5300 return (field >> 13) & 0x3 ;
5301}
5302
5303static inline int vmcs_field_readonly(unsigned long field)
5304{
5305 return (((field >> 10) & 0x3) == 1);
5306}
5307
5308/*
5309 * Read a vmcs12 field. Since these can have varying lengths and we return
5310 * one type, we chose the biggest type (u64) and zero-extend the return value
5311 * to that size. Note that the caller, handle_vmread, might need to use only
5312 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5313 * 64-bit fields are to be returned).
5314 */
5315static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5316 unsigned long field, u64 *ret)
5317{
5318 short offset = vmcs_field_to_offset(field);
5319 char *p;
5320
5321 if (offset < 0)
5322 return 0;
5323
5324 p = ((char *)(get_vmcs12(vcpu))) + offset;
5325
5326 switch (vmcs_field_type(field)) {
5327 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5328 *ret = *((natural_width *)p);
5329 return 1;
5330 case VMCS_FIELD_TYPE_U16:
5331 *ret = *((u16 *)p);
5332 return 1;
5333 case VMCS_FIELD_TYPE_U32:
5334 *ret = *((u32 *)p);
5335 return 1;
5336 case VMCS_FIELD_TYPE_U64:
5337 *ret = *((u64 *)p);
5338 return 1;
5339 default:
5340 return 0; /* can never happen. */
5341 }
5342}
5343
5344/*
5345 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
5346 * used before) all generate the same failure when it is missing.
5347 */
5348static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
5349{
5350 struct vcpu_vmx *vmx = to_vmx(vcpu);
5351 if (vmx->nested.current_vmptr == -1ull) {
5352 nested_vmx_failInvalid(vcpu);
5353 skip_emulated_instruction(vcpu);
5354 return 0;
5355 }
5356 return 1;
5357}
5358
5359static int handle_vmread(struct kvm_vcpu *vcpu)
5360{
5361 unsigned long field;
5362 u64 field_value;
5363 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5364 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5365 gva_t gva = 0;
5366
5367 if (!nested_vmx_check_permission(vcpu) ||
5368 !nested_vmx_check_vmcs12(vcpu))
5369 return 1;
5370
5371 /* Decode instruction info and find the field to read */
5372 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5373 /* Read the field, zero-extended to a u64 field_value */
5374 if (!vmcs12_read_any(vcpu, field, &field_value)) {
5375 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5376 skip_emulated_instruction(vcpu);
5377 return 1;
5378 }
5379 /*
5380 * Now copy part of this value to register or memory, as requested.
5381 * Note that the number of bits actually copied is 32 or 64 depending
5382 * on the guest's mode (32 or 64 bit), not on the given field's length.
5383 */
5384 if (vmx_instruction_info & (1u << 10)) {
5385 kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
5386 field_value);
5387 } else {
5388 if (get_vmx_mem_address(vcpu, exit_qualification,
5389 vmx_instruction_info, &gva))
5390 return 1;
5391 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
5392 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
5393 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
5394 }
5395
5396 nested_vmx_succeed(vcpu);
5397 skip_emulated_instruction(vcpu);
5398 return 1;
5399}
5400
5401
5402static int handle_vmwrite(struct kvm_vcpu *vcpu)
5403{
5404 unsigned long field;
5405 gva_t gva;
5406 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5407 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5408 char *p;
5409 short offset;
5410 /* The value to write might be 32 or 64 bits, depending on L1's long
5411 * mode, and eventually we need to write that into a field of several
5412 * possible lengths. The code below first zero-extends the value to 64
5413 * bit (field_value), and then copies only the approriate number of
5414 * bits into the vmcs12 field.
5415 */
5416 u64 field_value = 0;
5417 struct x86_exception e;
5418
5419 if (!nested_vmx_check_permission(vcpu) ||
5420 !nested_vmx_check_vmcs12(vcpu))
5421 return 1;
5422
5423 if (vmx_instruction_info & (1u << 10))
5424 field_value = kvm_register_read(vcpu,
5425 (((vmx_instruction_info) >> 3) & 0xf));
5426 else {
5427 if (get_vmx_mem_address(vcpu, exit_qualification,
5428 vmx_instruction_info, &gva))
5429 return 1;
5430 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
5431 &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
5432 kvm_inject_page_fault(vcpu, &e);
5433 return 1;
5434 }
5435 }
5436
5437
5438 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5439 if (vmcs_field_readonly(field)) {
5440 nested_vmx_failValid(vcpu,
5441 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5442 skip_emulated_instruction(vcpu);
5443 return 1;
5444 }
5445
5446 offset = vmcs_field_to_offset(field);
5447 if (offset < 0) {
5448 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5449 skip_emulated_instruction(vcpu);
5450 return 1;
5451 }
5452 p = ((char *) get_vmcs12(vcpu)) + offset;
5453
5454 switch (vmcs_field_type(field)) {
5455 case VMCS_FIELD_TYPE_U16:
5456 *(u16 *)p = field_value;
5457 break;
5458 case VMCS_FIELD_TYPE_U32:
5459 *(u32 *)p = field_value;
5460 break;
5461 case VMCS_FIELD_TYPE_U64:
5462 *(u64 *)p = field_value;
5463 break;
5464 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5465 *(natural_width *)p = field_value;
5466 break;
5467 default:
5468 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5469 skip_emulated_instruction(vcpu);
5470 return 1;
5471 }
5472
5473 nested_vmx_succeed(vcpu);
5474 skip_emulated_instruction(vcpu);
5475 return 1;
5476}
5477
63846663
NHE
5478/* Emulate the VMPTRLD instruction */
5479static int handle_vmptrld(struct kvm_vcpu *vcpu)
5480{
5481 struct vcpu_vmx *vmx = to_vmx(vcpu);
5482 gva_t gva;
5483 gpa_t vmptr;
5484 struct x86_exception e;
5485
5486 if (!nested_vmx_check_permission(vcpu))
5487 return 1;
5488
5489 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5490 vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5491 return 1;
5492
5493 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5494 sizeof(vmptr), &e)) {
5495 kvm_inject_page_fault(vcpu, &e);
5496 return 1;
5497 }
5498
5499 if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5500 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5501 skip_emulated_instruction(vcpu);
5502 return 1;
5503 }
5504
5505 if (vmx->nested.current_vmptr != vmptr) {
5506 struct vmcs12 *new_vmcs12;
5507 struct page *page;
5508 page = nested_get_page(vcpu, vmptr);
5509 if (page == NULL) {
5510 nested_vmx_failInvalid(vcpu);
5511 skip_emulated_instruction(vcpu);
5512 return 1;
5513 }
5514 new_vmcs12 = kmap(page);
5515 if (new_vmcs12->revision_id != VMCS12_REVISION) {
5516 kunmap(page);
5517 nested_release_page_clean(page);
5518 nested_vmx_failValid(vcpu,
5519 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5520 skip_emulated_instruction(vcpu);
5521 return 1;
5522 }
5523 if (vmx->nested.current_vmptr != -1ull) {
5524 kunmap(vmx->nested.current_vmcs12_page);
5525 nested_release_page(vmx->nested.current_vmcs12_page);
5526 }
5527
5528 vmx->nested.current_vmptr = vmptr;
5529 vmx->nested.current_vmcs12 = new_vmcs12;
5530 vmx->nested.current_vmcs12_page = page;
5531 }
5532
5533 nested_vmx_succeed(vcpu);
5534 skip_emulated_instruction(vcpu);
5535 return 1;
5536}
5537
6a4d7550
NHE
5538/* Emulate the VMPTRST instruction */
5539static int handle_vmptrst(struct kvm_vcpu *vcpu)
5540{
5541 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5542 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5543 gva_t vmcs_gva;
5544 struct x86_exception e;
5545
5546 if (!nested_vmx_check_permission(vcpu))
5547 return 1;
5548
5549 if (get_vmx_mem_address(vcpu, exit_qualification,
5550 vmx_instruction_info, &vmcs_gva))
5551 return 1;
5552 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
5553 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
5554 (void *)&to_vmx(vcpu)->nested.current_vmptr,
5555 sizeof(u64), &e)) {
5556 kvm_inject_page_fault(vcpu, &e);
5557 return 1;
5558 }
5559 nested_vmx_succeed(vcpu);
5560 skip_emulated_instruction(vcpu);
5561 return 1;
5562}
5563
6aa8b732
AK
5564/*
5565 * The exit handlers return 1 if the exit was handled fully and guest execution
5566 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
5567 * to be done to userspace and return 0.
5568 */
851ba692 5569static int (*kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
5570 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
5571 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 5572 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 5573 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 5574 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
5575 [EXIT_REASON_CR_ACCESS] = handle_cr,
5576 [EXIT_REASON_DR_ACCESS] = handle_dr,
5577 [EXIT_REASON_CPUID] = handle_cpuid,
5578 [EXIT_REASON_MSR_READ] = handle_rdmsr,
5579 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
5580 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
5581 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 5582 [EXIT_REASON_INVD] = handle_invd,
a7052897 5583 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 5584 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 5585 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 5586 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 5587 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 5588 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 5589 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 5590 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 5591 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 5592 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
5593 [EXIT_REASON_VMOFF] = handle_vmoff,
5594 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
5595 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
5596 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
e5edaa01 5597 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 5598 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 5599 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 5600 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
5601 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
5602 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 5603 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
59708670
SY
5604 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_invalid_op,
5605 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_invalid_op,
6aa8b732
AK
5606};
5607
5608static const int kvm_vmx_max_exit_handlers =
50a3485c 5609 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 5610
644d711a
NHE
5611/*
5612 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5613 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5614 * disinterest in the current event (read or write a specific MSR) by using an
5615 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5616 */
5617static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5618 struct vmcs12 *vmcs12, u32 exit_reason)
5619{
5620 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
5621 gpa_t bitmap;
5622
5623 if (!nested_cpu_has(get_vmcs12(vcpu), CPU_BASED_USE_MSR_BITMAPS))
5624 return 1;
5625
5626 /*
5627 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5628 * for the four combinations of read/write and low/high MSR numbers.
5629 * First we need to figure out which of the four to use:
5630 */
5631 bitmap = vmcs12->msr_bitmap;
5632 if (exit_reason == EXIT_REASON_MSR_WRITE)
5633 bitmap += 2048;
5634 if (msr_index >= 0xc0000000) {
5635 msr_index -= 0xc0000000;
5636 bitmap += 1024;
5637 }
5638
5639 /* Then read the msr_index'th bit from this bitmap: */
5640 if (msr_index < 1024*8) {
5641 unsigned char b;
5642 kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1);
5643 return 1 & (b >> (msr_index & 7));
5644 } else
5645 return 1; /* let L1 handle the wrong parameter */
5646}
5647
5648/*
5649 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5650 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5651 * intercept (via guest_host_mask etc.) the current event.
5652 */
5653static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5654 struct vmcs12 *vmcs12)
5655{
5656 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5657 int cr = exit_qualification & 15;
5658 int reg = (exit_qualification >> 8) & 15;
5659 unsigned long val = kvm_register_read(vcpu, reg);
5660
5661 switch ((exit_qualification >> 4) & 3) {
5662 case 0: /* mov to cr */
5663 switch (cr) {
5664 case 0:
5665 if (vmcs12->cr0_guest_host_mask &
5666 (val ^ vmcs12->cr0_read_shadow))
5667 return 1;
5668 break;
5669 case 3:
5670 if ((vmcs12->cr3_target_count >= 1 &&
5671 vmcs12->cr3_target_value0 == val) ||
5672 (vmcs12->cr3_target_count >= 2 &&
5673 vmcs12->cr3_target_value1 == val) ||
5674 (vmcs12->cr3_target_count >= 3 &&
5675 vmcs12->cr3_target_value2 == val) ||
5676 (vmcs12->cr3_target_count >= 4 &&
5677 vmcs12->cr3_target_value3 == val))
5678 return 0;
5679 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5680 return 1;
5681 break;
5682 case 4:
5683 if (vmcs12->cr4_guest_host_mask &
5684 (vmcs12->cr4_read_shadow ^ val))
5685 return 1;
5686 break;
5687 case 8:
5688 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5689 return 1;
5690 break;
5691 }
5692 break;
5693 case 2: /* clts */
5694 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5695 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5696 return 1;
5697 break;
5698 case 1: /* mov from cr */
5699 switch (cr) {
5700 case 3:
5701 if (vmcs12->cpu_based_vm_exec_control &
5702 CPU_BASED_CR3_STORE_EXITING)
5703 return 1;
5704 break;
5705 case 8:
5706 if (vmcs12->cpu_based_vm_exec_control &
5707 CPU_BASED_CR8_STORE_EXITING)
5708 return 1;
5709 break;
5710 }
5711 break;
5712 case 3: /* lmsw */
5713 /*
5714 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5715 * cr0. Other attempted changes are ignored, with no exit.
5716 */
5717 if (vmcs12->cr0_guest_host_mask & 0xe &
5718 (val ^ vmcs12->cr0_read_shadow))
5719 return 1;
5720 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5721 !(vmcs12->cr0_read_shadow & 0x1) &&
5722 (val & 0x1))
5723 return 1;
5724 break;
5725 }
5726 return 0;
5727}
5728
5729/*
5730 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5731 * should handle it ourselves in L0 (and then continue L2). Only call this
5732 * when in is_guest_mode (L2).
5733 */
5734static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
5735{
5736 u32 exit_reason = vmcs_read32(VM_EXIT_REASON);
5737 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5738 struct vcpu_vmx *vmx = to_vmx(vcpu);
5739 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5740
5741 if (vmx->nested.nested_run_pending)
5742 return 0;
5743
5744 if (unlikely(vmx->fail)) {
bd80158a
JK
5745 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5746 vmcs_read32(VM_INSTRUCTION_ERROR));
644d711a
NHE
5747 return 1;
5748 }
5749
5750 switch (exit_reason) {
5751 case EXIT_REASON_EXCEPTION_NMI:
5752 if (!is_exception(intr_info))
5753 return 0;
5754 else if (is_page_fault(intr_info))
5755 return enable_ept;
5756 return vmcs12->exception_bitmap &
5757 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5758 case EXIT_REASON_EXTERNAL_INTERRUPT:
5759 return 0;
5760 case EXIT_REASON_TRIPLE_FAULT:
5761 return 1;
5762 case EXIT_REASON_PENDING_INTERRUPT:
5763 case EXIT_REASON_NMI_WINDOW:
5764 /*
5765 * prepare_vmcs02() set the CPU_BASED_VIRTUAL_INTR_PENDING bit
5766 * (aka Interrupt Window Exiting) only when L1 turned it on,
5767 * so if we got a PENDING_INTERRUPT exit, this must be for L1.
5768 * Same for NMI Window Exiting.
5769 */
5770 return 1;
5771 case EXIT_REASON_TASK_SWITCH:
5772 return 1;
5773 case EXIT_REASON_CPUID:
5774 return 1;
5775 case EXIT_REASON_HLT:
5776 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5777 case EXIT_REASON_INVD:
5778 return 1;
5779 case EXIT_REASON_INVLPG:
5780 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5781 case EXIT_REASON_RDPMC:
5782 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5783 case EXIT_REASON_RDTSC:
5784 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5785 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5786 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5787 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
5788 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
5789 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5790 /*
5791 * VMX instructions trap unconditionally. This allows L1 to
5792 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5793 */
5794 return 1;
5795 case EXIT_REASON_CR_ACCESS:
5796 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5797 case EXIT_REASON_DR_ACCESS:
5798 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5799 case EXIT_REASON_IO_INSTRUCTION:
5800 /* TODO: support IO bitmaps */
5801 return 1;
5802 case EXIT_REASON_MSR_READ:
5803 case EXIT_REASON_MSR_WRITE:
5804 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5805 case EXIT_REASON_INVALID_STATE:
5806 return 1;
5807 case EXIT_REASON_MWAIT_INSTRUCTION:
5808 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5809 case EXIT_REASON_MONITOR_INSTRUCTION:
5810 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5811 case EXIT_REASON_PAUSE_INSTRUCTION:
5812 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5813 nested_cpu_has2(vmcs12,
5814 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5815 case EXIT_REASON_MCE_DURING_VMENTRY:
5816 return 0;
5817 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5818 return 1;
5819 case EXIT_REASON_APIC_ACCESS:
5820 return nested_cpu_has2(vmcs12,
5821 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
5822 case EXIT_REASON_EPT_VIOLATION:
5823 case EXIT_REASON_EPT_MISCONFIG:
5824 return 0;
5825 case EXIT_REASON_WBINVD:
5826 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5827 case EXIT_REASON_XSETBV:
5828 return 1;
5829 default:
5830 return 1;
5831 }
5832}
5833
586f9607
AK
5834static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
5835{
5836 *info1 = vmcs_readl(EXIT_QUALIFICATION);
5837 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
5838}
5839
6aa8b732
AK
5840/*
5841 * The guest has exited. See if we can fix it or if we need userspace
5842 * assistance.
5843 */
851ba692 5844static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 5845{
29bd8a78 5846 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 5847 u32 exit_reason = vmx->exit_reason;
1155f76a 5848 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 5849
80ced186
MG
5850 /* If guest state is invalid, start emulating */
5851 if (vmx->emulation_required && emulate_invalid_guest_state)
5852 return handle_invalid_guest_state(vcpu);
1d5a4d9b 5853
b6f1250e
NHE
5854 /*
5855 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
5856 * we did not inject a still-pending event to L1 now because of
5857 * nested_run_pending, we need to re-enable this bit.
5858 */
5859 if (vmx->nested.nested_run_pending)
5860 kvm_make_request(KVM_REQ_EVENT, vcpu);
5861
509c75ea
NHE
5862 if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
5863 exit_reason == EXIT_REASON_VMRESUME))
644d711a
NHE
5864 vmx->nested.nested_run_pending = 1;
5865 else
5866 vmx->nested.nested_run_pending = 0;
5867
5868 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
5869 nested_vmx_vmexit(vcpu);
5870 return 1;
5871 }
5872
5120702e
MG
5873 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
5874 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5875 vcpu->run->fail_entry.hardware_entry_failure_reason
5876 = exit_reason;
5877 return 0;
5878 }
5879
29bd8a78 5880 if (unlikely(vmx->fail)) {
851ba692
AK
5881 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
5882 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
5883 = vmcs_read32(VM_INSTRUCTION_ERROR);
5884 return 0;
5885 }
6aa8b732 5886
d77c26fc 5887 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 5888 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac
JK
5889 exit_reason != EXIT_REASON_EPT_VIOLATION &&
5890 exit_reason != EXIT_REASON_TASK_SWITCH))
5891 printk(KERN_WARNING "%s: unexpected, valid vectoring info "
5892 "(0x%x) and exit reason is 0x%x\n",
5893 __func__, vectoring_info, exit_reason);
3b86cd99 5894
644d711a
NHE
5895 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
5896 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
5897 get_vmcs12(vcpu), vcpu)))) {
c4282df9 5898 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 5899 vmx->soft_vnmi_blocked = 0;
3b86cd99 5900 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 5901 vcpu->arch.nmi_pending) {
3b86cd99
JK
5902 /*
5903 * This CPU don't support us in finding the end of an
5904 * NMI-blocked window if the guest runs with IRQs
5905 * disabled. So we pull the trigger after 1 s of
5906 * futile waiting, but inform the user about this.
5907 */
5908 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
5909 "state on VCPU %d after 1 s timeout\n",
5910 __func__, vcpu->vcpu_id);
5911 vmx->soft_vnmi_blocked = 0;
3b86cd99 5912 }
3b86cd99
JK
5913 }
5914
6aa8b732
AK
5915 if (exit_reason < kvm_vmx_max_exit_handlers
5916 && kvm_vmx_exit_handlers[exit_reason])
851ba692 5917 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 5918 else {
851ba692
AK
5919 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5920 vcpu->run->hw.hardware_exit_reason = exit_reason;
6aa8b732
AK
5921 }
5922 return 0;
5923}
5924
95ba8273 5925static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 5926{
95ba8273 5927 if (irr == -1 || tpr < irr) {
6e5d865c
YS
5928 vmcs_write32(TPR_THRESHOLD, 0);
5929 return;
5930 }
5931
95ba8273 5932 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
5933}
5934
51aa01d1 5935static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 5936{
00eba012
AK
5937 u32 exit_intr_info;
5938
5939 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
5940 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
5941 return;
5942
c5ca8e57 5943 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 5944 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
5945
5946 /* Handle machine checks before interrupts are enabled */
00eba012 5947 if (is_machine_check(exit_intr_info))
a0861c02
AK
5948 kvm_machine_check();
5949
20f65983 5950 /* We need to handle NMIs before interrupts are enabled */
00eba012 5951 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
5952 (exit_intr_info & INTR_INFO_VALID_MASK)) {
5953 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 5954 asm("int $2");
ff9d07a0
ZY
5955 kvm_after_handle_nmi(&vmx->vcpu);
5956 }
51aa01d1 5957}
20f65983 5958
51aa01d1
AK
5959static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
5960{
c5ca8e57 5961 u32 exit_intr_info;
51aa01d1
AK
5962 bool unblock_nmi;
5963 u8 vector;
5964 bool idtv_info_valid;
5965
5966 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 5967
cf393f75 5968 if (cpu_has_virtual_nmis()) {
9d58b931
AK
5969 if (vmx->nmi_known_unmasked)
5970 return;
c5ca8e57
AK
5971 /*
5972 * Can't use vmx->exit_intr_info since we're not sure what
5973 * the exit reason is.
5974 */
5975 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
5976 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
5977 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
5978 /*
7b4a25cb 5979 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
5980 * Re-set bit "block by NMI" before VM entry if vmexit caused by
5981 * a guest IRET fault.
7b4a25cb
GN
5982 * SDM 3: 23.2.2 (September 2008)
5983 * Bit 12 is undefined in any of the following cases:
5984 * If the VM exit sets the valid bit in the IDT-vectoring
5985 * information field.
5986 * If the VM exit is due to a double fault.
cf393f75 5987 */
7b4a25cb
GN
5988 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
5989 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
5990 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5991 GUEST_INTR_STATE_NMI);
9d58b931
AK
5992 else
5993 vmx->nmi_known_unmasked =
5994 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
5995 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
5996 } else if (unlikely(vmx->soft_vnmi_blocked))
5997 vmx->vnmi_blocked_time +=
5998 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
5999}
6000
83422e17
AK
6001static void __vmx_complete_interrupts(struct vcpu_vmx *vmx,
6002 u32 idt_vectoring_info,
6003 int instr_len_field,
6004 int error_code_field)
51aa01d1 6005{
51aa01d1
AK
6006 u8 vector;
6007 int type;
6008 bool idtv_info_valid;
6009
6010 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 6011
37b96e98
GN
6012 vmx->vcpu.arch.nmi_injected = false;
6013 kvm_clear_exception_queue(&vmx->vcpu);
6014 kvm_clear_interrupt_queue(&vmx->vcpu);
6015
6016 if (!idtv_info_valid)
6017 return;
6018
3842d135
AK
6019 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6020
668f612f
AK
6021 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6022 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 6023
64a7ec06 6024 switch (type) {
37b96e98
GN
6025 case INTR_TYPE_NMI_INTR:
6026 vmx->vcpu.arch.nmi_injected = true;
668f612f 6027 /*
7b4a25cb 6028 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
6029 * Clear bit "block by NMI" before VM entry if a NMI
6030 * delivery faulted.
668f612f 6031 */
654f06fc 6032 vmx_set_nmi_mask(&vmx->vcpu, false);
37b96e98 6033 break;
37b96e98 6034 case INTR_TYPE_SOFT_EXCEPTION:
66fd3f7f 6035 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6036 vmcs_read32(instr_len_field);
66fd3f7f
GN
6037 /* fall through */
6038 case INTR_TYPE_HARD_EXCEPTION:
35920a35 6039 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 6040 u32 err = vmcs_read32(error_code_field);
37b96e98 6041 kvm_queue_exception_e(&vmx->vcpu, vector, err);
35920a35
AK
6042 } else
6043 kvm_queue_exception(&vmx->vcpu, vector);
37b96e98 6044 break;
66fd3f7f
GN
6045 case INTR_TYPE_SOFT_INTR:
6046 vmx->vcpu.arch.event_exit_inst_len =
83422e17 6047 vmcs_read32(instr_len_field);
66fd3f7f 6048 /* fall through */
37b96e98 6049 case INTR_TYPE_EXT_INTR:
66fd3f7f
GN
6050 kvm_queue_interrupt(&vmx->vcpu, vector,
6051 type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
6052 break;
6053 default:
6054 break;
f7d9238f 6055 }
cf393f75
AK
6056}
6057
83422e17
AK
6058static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6059{
66c78ae4
NHE
6060 if (is_guest_mode(&vmx->vcpu))
6061 return;
83422e17
AK
6062 __vmx_complete_interrupts(vmx, vmx->idt_vectoring_info,
6063 VM_EXIT_INSTRUCTION_LEN,
6064 IDT_VECTORING_ERROR_CODE);
6065}
6066
b463a6f7
AK
6067static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6068{
66c78ae4
NHE
6069 if (is_guest_mode(vcpu))
6070 return;
b463a6f7
AK
6071 __vmx_complete_interrupts(to_vmx(vcpu),
6072 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6073 VM_ENTRY_INSTRUCTION_LEN,
6074 VM_ENTRY_EXCEPTION_ERROR_CODE);
6075
6076 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6077}
6078
d7cd9796
GN
6079static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6080{
6081 int i, nr_msrs;
6082 struct perf_guest_switch_msr *msrs;
6083
6084 msrs = perf_guest_get_msrs(&nr_msrs);
6085
6086 if (!msrs)
6087 return;
6088
6089 for (i = 0; i < nr_msrs; i++)
6090 if (msrs[i].host == msrs[i].guest)
6091 clear_atomic_switch_msr(vmx, msrs[i].msr);
6092 else
6093 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6094 msrs[i].host);
6095}
6096
c801949d
AK
6097#ifdef CONFIG_X86_64
6098#define R "r"
6099#define Q "q"
6100#else
6101#define R "e"
6102#define Q "l"
6103#endif
6104
a3b5ba49 6105static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 6106{
a2fa3e9f 6107 struct vcpu_vmx *vmx = to_vmx(vcpu);
104f226b 6108
66c78ae4
NHE
6109 if (is_guest_mode(vcpu) && !vmx->nested.nested_run_pending) {
6110 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6111 if (vmcs12->idt_vectoring_info_field &
6112 VECTORING_INFO_VALID_MASK) {
6113 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6114 vmcs12->idt_vectoring_info_field);
6115 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6116 vmcs12->vm_exit_instruction_len);
6117 if (vmcs12->idt_vectoring_info_field &
6118 VECTORING_INFO_DELIVER_CODE_MASK)
6119 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6120 vmcs12->idt_vectoring_error_code);
6121 }
6122 }
6123
104f226b
AK
6124 /* Record the guest's net vcpu time for enforced NMI injections. */
6125 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6126 vmx->entry_time = ktime_get();
6127
6128 /* Don't enter VMX if guest state is invalid, let the exit handler
6129 start emulation until we arrive back to a valid state */
6130 if (vmx->emulation_required && emulate_invalid_guest_state)
6131 return;
6132
6133 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6134 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6135 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6136 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6137
6138 /* When single-stepping over STI and MOV SS, we must clear the
6139 * corresponding interruptibility bits in the guest state. Otherwise
6140 * vmentry fails as it then expects bit 14 (BS) in pending debug
6141 * exceptions being set, but that's not correct for the guest debugging
6142 * case. */
6143 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6144 vmx_set_interrupt_shadow(vcpu, 0);
6145
d7cd9796
GN
6146 atomic_switch_perf_msrs(vmx);
6147
d462b819 6148 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 6149 asm(
6aa8b732 6150 /* Store host registers */
c801949d 6151 "push %%"R"dx; push %%"R"bp;"
40712fae 6152 "push %%"R"cx \n\t" /* placeholder for guest rcx */
c801949d 6153 "push %%"R"cx \n\t"
313dbd49
AK
6154 "cmp %%"R"sp, %c[host_rsp](%0) \n\t"
6155 "je 1f \n\t"
6156 "mov %%"R"sp, %c[host_rsp](%0) \n\t"
4ecac3fd 6157 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 6158 "1: \n\t"
d3edefc0
AK
6159 /* Reload cr2 if changed */
6160 "mov %c[cr2](%0), %%"R"ax \n\t"
6161 "mov %%cr2, %%"R"dx \n\t"
6162 "cmp %%"R"ax, %%"R"dx \n\t"
6163 "je 2f \n\t"
6164 "mov %%"R"ax, %%cr2 \n\t"
6165 "2: \n\t"
6aa8b732 6166 /* Check if vmlaunch of vmresume is needed */
e08aa78a 6167 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 6168 /* Load guest registers. Don't clobber flags. */
c801949d
AK
6169 "mov %c[rax](%0), %%"R"ax \n\t"
6170 "mov %c[rbx](%0), %%"R"bx \n\t"
6171 "mov %c[rdx](%0), %%"R"dx \n\t"
6172 "mov %c[rsi](%0), %%"R"si \n\t"
6173 "mov %c[rdi](%0), %%"R"di \n\t"
6174 "mov %c[rbp](%0), %%"R"bp \n\t"
05b3e0c2 6175#ifdef CONFIG_X86_64
e08aa78a
AK
6176 "mov %c[r8](%0), %%r8 \n\t"
6177 "mov %c[r9](%0), %%r9 \n\t"
6178 "mov %c[r10](%0), %%r10 \n\t"
6179 "mov %c[r11](%0), %%r11 \n\t"
6180 "mov %c[r12](%0), %%r12 \n\t"
6181 "mov %c[r13](%0), %%r13 \n\t"
6182 "mov %c[r14](%0), %%r14 \n\t"
6183 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 6184#endif
c801949d
AK
6185 "mov %c[rcx](%0), %%"R"cx \n\t" /* kills %0 (ecx) */
6186
6aa8b732 6187 /* Enter guest mode */
cd2276a7 6188 "jne .Llaunched \n\t"
4ecac3fd 6189 __ex(ASM_VMX_VMLAUNCH) "\n\t"
cd2276a7 6190 "jmp .Lkvm_vmx_return \n\t"
4ecac3fd 6191 ".Llaunched: " __ex(ASM_VMX_VMRESUME) "\n\t"
cd2276a7 6192 ".Lkvm_vmx_return: "
6aa8b732 6193 /* Save guest registers, load host registers, keep flags */
40712fae
AK
6194 "mov %0, %c[wordsize](%%"R"sp) \n\t"
6195 "pop %0 \n\t"
c801949d
AK
6196 "mov %%"R"ax, %c[rax](%0) \n\t"
6197 "mov %%"R"bx, %c[rbx](%0) \n\t"
1c696d0e 6198 "pop"Q" %c[rcx](%0) \n\t"
c801949d
AK
6199 "mov %%"R"dx, %c[rdx](%0) \n\t"
6200 "mov %%"R"si, %c[rsi](%0) \n\t"
6201 "mov %%"R"di, %c[rdi](%0) \n\t"
6202 "mov %%"R"bp, %c[rbp](%0) \n\t"
05b3e0c2 6203#ifdef CONFIG_X86_64
e08aa78a
AK
6204 "mov %%r8, %c[r8](%0) \n\t"
6205 "mov %%r9, %c[r9](%0) \n\t"
6206 "mov %%r10, %c[r10](%0) \n\t"
6207 "mov %%r11, %c[r11](%0) \n\t"
6208 "mov %%r12, %c[r12](%0) \n\t"
6209 "mov %%r13, %c[r13](%0) \n\t"
6210 "mov %%r14, %c[r14](%0) \n\t"
6211 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 6212#endif
c801949d
AK
6213 "mov %%cr2, %%"R"ax \n\t"
6214 "mov %%"R"ax, %c[cr2](%0) \n\t"
6215
1c696d0e 6216 "pop %%"R"bp; pop %%"R"dx \n\t"
e08aa78a
AK
6217 "setbe %c[fail](%0) \n\t"
6218 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 6219 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 6220 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 6221 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
6222 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
6223 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
6224 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
6225 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
6226 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
6227 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
6228 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 6229#ifdef CONFIG_X86_64
ad312c7c
ZX
6230 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
6231 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
6232 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
6233 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
6234 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
6235 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
6236 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
6237 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 6238#endif
40712fae
AK
6239 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
6240 [wordsize]"i"(sizeof(ulong))
c2036300 6241 : "cc", "memory"
07d6f555 6242 , R"ax", R"bx", R"di", R"si"
c2036300 6243#ifdef CONFIG_X86_64
c2036300
LV
6244 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
6245#endif
6246 );
6aa8b732 6247
6de4f3ad 6248 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 6249 | (1 << VCPU_EXREG_RFLAGS)
69c73028 6250 | (1 << VCPU_EXREG_CPL)
aff48baa 6251 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 6252 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 6253 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
6254 vcpu->arch.regs_dirty = 0;
6255
1155f76a
AK
6256 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
6257
66c78ae4
NHE
6258 if (is_guest_mode(vcpu)) {
6259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6260 vmcs12->idt_vectoring_info_field = vmx->idt_vectoring_info;
6261 if (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK) {
6262 vmcs12->idt_vectoring_error_code =
6263 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6264 vmcs12->vm_exit_instruction_len =
6265 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6266 }
6267 }
6268
d77c26fc 6269 asm("mov %0, %%ds; mov %0, %%es" : : "r"(__USER_DS));
d462b819 6270 vmx->loaded_vmcs->launched = 1;
1b6269db 6271
51aa01d1 6272 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
1e2b1dd7 6273 trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
51aa01d1
AK
6274
6275 vmx_complete_atomic_exit(vmx);
6276 vmx_recover_nmi_blocking(vmx);
cf393f75 6277 vmx_complete_interrupts(vmx);
6aa8b732
AK
6278}
6279
c801949d
AK
6280#undef R
6281#undef Q
6282
6aa8b732
AK
6283static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
6284{
fb3f0f51
RR
6285 struct vcpu_vmx *vmx = to_vmx(vcpu);
6286
cdbecfc3 6287 free_vpid(vmx);
ec378aee 6288 free_nested(vmx);
d462b819 6289 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
6290 kfree(vmx->guest_msrs);
6291 kvm_vcpu_uninit(vcpu);
a4770347 6292 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
6293}
6294
fb3f0f51 6295static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 6296{
fb3f0f51 6297 int err;
c16f862d 6298 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 6299 int cpu;
6aa8b732 6300
a2fa3e9f 6301 if (!vmx)
fb3f0f51
RR
6302 return ERR_PTR(-ENOMEM);
6303
2384d2b3
SY
6304 allocate_vpid(vmx);
6305
fb3f0f51
RR
6306 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
6307 if (err)
6308 goto free_vcpu;
965b58a5 6309
a2fa3e9f 6310 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
be6d05cf 6311 err = -ENOMEM;
fb3f0f51 6312 if (!vmx->guest_msrs) {
fb3f0f51
RR
6313 goto uninit_vcpu;
6314 }
965b58a5 6315
d462b819
NHE
6316 vmx->loaded_vmcs = &vmx->vmcs01;
6317 vmx->loaded_vmcs->vmcs = alloc_vmcs();
6318 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 6319 goto free_msrs;
d462b819
NHE
6320 if (!vmm_exclusive)
6321 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
6322 loaded_vmcs_init(vmx->loaded_vmcs);
6323 if (!vmm_exclusive)
6324 kvm_cpu_vmxoff();
a2fa3e9f 6325
15ad7146
AK
6326 cpu = get_cpu();
6327 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 6328 vmx->vcpu.cpu = cpu;
8b9cf98c 6329 err = vmx_vcpu_setup(vmx);
fb3f0f51 6330 vmx_vcpu_put(&vmx->vcpu);
15ad7146 6331 put_cpu();
fb3f0f51
RR
6332 if (err)
6333 goto free_vmcs;
5e4a0b3c 6334 if (vm_need_virtualize_apic_accesses(kvm))
be6d05cf
JK
6335 err = alloc_apic_access_page(kvm);
6336 if (err)
5e4a0b3c 6337 goto free_vmcs;
fb3f0f51 6338
b927a3ce
SY
6339 if (enable_ept) {
6340 if (!kvm->arch.ept_identity_map_addr)
6341 kvm->arch.ept_identity_map_addr =
6342 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
93ea5388 6343 err = -ENOMEM;
b7ebfb05
SY
6344 if (alloc_identity_pagetable(kvm) != 0)
6345 goto free_vmcs;
93ea5388
GN
6346 if (!init_rmode_identity_map(kvm))
6347 goto free_vmcs;
b927a3ce 6348 }
b7ebfb05 6349
a9d30f33
NHE
6350 vmx->nested.current_vmptr = -1ull;
6351 vmx->nested.current_vmcs12 = NULL;
6352
fb3f0f51
RR
6353 return &vmx->vcpu;
6354
6355free_vmcs:
d462b819 6356 free_vmcs(vmx->loaded_vmcs->vmcs);
fb3f0f51 6357free_msrs:
fb3f0f51
RR
6358 kfree(vmx->guest_msrs);
6359uninit_vcpu:
6360 kvm_vcpu_uninit(&vmx->vcpu);
6361free_vcpu:
cdbecfc3 6362 free_vpid(vmx);
a4770347 6363 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 6364 return ERR_PTR(err);
6aa8b732
AK
6365}
6366
002c7f7c
YS
6367static void __init vmx_check_processor_compat(void *rtn)
6368{
6369 struct vmcs_config vmcs_conf;
6370
6371 *(int *)rtn = 0;
6372 if (setup_vmcs_config(&vmcs_conf) < 0)
6373 *(int *)rtn = -EIO;
6374 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
6375 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
6376 smp_processor_id());
6377 *(int *)rtn = -EIO;
6378 }
6379}
6380
67253af5
SY
6381static int get_ept_level(void)
6382{
6383 return VMX_EPT_DEFAULT_GAW + 1;
6384}
6385
4b12f0de 6386static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 6387{
4b12f0de
SY
6388 u64 ret;
6389
522c68c4
SY
6390 /* For VT-d and EPT combination
6391 * 1. MMIO: always map as UC
6392 * 2. EPT with VT-d:
6393 * a. VT-d without snooping control feature: can't guarantee the
6394 * result, try to trust guest.
6395 * b. VT-d with snooping control feature: snooping control feature of
6396 * VT-d engine can guarantee the cache correctness. Just set it
6397 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 6398 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
6399 * consistent with host MTRR
6400 */
4b12f0de
SY
6401 if (is_mmio)
6402 ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
522c68c4
SY
6403 else if (vcpu->kvm->arch.iommu_domain &&
6404 !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
6405 ret = kvm_get_guest_memory_type(vcpu, gfn) <<
6406 VMX_EPT_MT_EPTE_SHIFT;
4b12f0de 6407 else
522c68c4 6408 ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
a19a6d11 6409 | VMX_EPT_IPAT_BIT;
4b12f0de
SY
6410
6411 return ret;
64d4d521
SY
6412}
6413
17cc3935 6414static int vmx_get_lpage_level(void)
344f414f 6415{
878403b7
SY
6416 if (enable_ept && !cpu_has_vmx_ept_1g_page())
6417 return PT_DIRECTORY_LEVEL;
6418 else
6419 /* For shadow and EPT supported 1GB page */
6420 return PT_PDPE_LEVEL;
344f414f
JR
6421}
6422
0e851880
SY
6423static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
6424{
4e47c7a6
SY
6425 struct kvm_cpuid_entry2 *best;
6426 struct vcpu_vmx *vmx = to_vmx(vcpu);
6427 u32 exec_control;
6428
6429 vmx->rdtscp_enabled = false;
6430 if (vmx_rdtscp_supported()) {
6431 exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6432 if (exec_control & SECONDARY_EXEC_RDTSCP) {
6433 best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
6434 if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
6435 vmx->rdtscp_enabled = true;
6436 else {
6437 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6438 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
6439 exec_control);
6440 }
6441 }
6442 }
0e851880
SY
6443}
6444
d4330ef2
JR
6445static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
6446{
7b8050f5
NHE
6447 if (func == 1 && nested)
6448 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
6449}
6450
fe3ef05c
NHE
6451/*
6452 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
6453 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
6454 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
6455 * guest in a way that will both be appropriate to L1's requests, and our
6456 * needs. In addition to modifying the active vmcs (which is vmcs02), this
6457 * function also has additional necessary side-effects, like setting various
6458 * vcpu->arch fields.
6459 */
6460static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6461{
6462 struct vcpu_vmx *vmx = to_vmx(vcpu);
6463 u32 exec_control;
6464
6465 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
6466 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
6467 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
6468 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
6469 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
6470 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
6471 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
6472 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
6473 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
6474 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
6475 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
6476 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
6477 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
6478 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
6479 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
6480 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
6481 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
6482 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
6483 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
6484 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
6485 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
6486 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
6487 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
6488 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
6489 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
6490 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
6491 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
6492 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
6493 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
6494 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
6495 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
6496 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
6497 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
6498 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
6499 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
6500 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
6501
6502 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
6503 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6504 vmcs12->vm_entry_intr_info_field);
6505 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
6506 vmcs12->vm_entry_exception_error_code);
6507 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6508 vmcs12->vm_entry_instruction_len);
6509 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
6510 vmcs12->guest_interruptibility_info);
6511 vmcs_write32(GUEST_ACTIVITY_STATE, vmcs12->guest_activity_state);
6512 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
6513 vmcs_writel(GUEST_DR7, vmcs12->guest_dr7);
6514 vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
6515 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
6516 vmcs12->guest_pending_dbg_exceptions);
6517 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
6518 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
6519
6520 vmcs_write64(VMCS_LINK_POINTER, -1ull);
6521
6522 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
6523 (vmcs_config.pin_based_exec_ctrl |
6524 vmcs12->pin_based_vm_exec_control));
6525
6526 /*
6527 * Whether page-faults are trapped is determined by a combination of
6528 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
6529 * If enable_ept, L0 doesn't care about page faults and we should
6530 * set all of these to L1's desires. However, if !enable_ept, L0 does
6531 * care about (at least some) page faults, and because it is not easy
6532 * (if at all possible?) to merge L0 and L1's desires, we simply ask
6533 * to exit on each and every L2 page fault. This is done by setting
6534 * MASK=MATCH=0 and (see below) EB.PF=1.
6535 * Note that below we don't need special code to set EB.PF beyond the
6536 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
6537 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
6538 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
6539 *
6540 * A problem with this approach (when !enable_ept) is that L1 may be
6541 * injected with more page faults than it asked for. This could have
6542 * caused problems, but in practice existing hypervisors don't care.
6543 * To fix this, we will need to emulate the PFEC checking (on the L1
6544 * page tables), using walk_addr(), when injecting PFs to L1.
6545 */
6546 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
6547 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
6548 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
6549 enable_ept ? vmcs12->page_fault_error_code_match : 0);
6550
6551 if (cpu_has_secondary_exec_ctrls()) {
6552 u32 exec_control = vmx_secondary_exec_control(vmx);
6553 if (!vmx->rdtscp_enabled)
6554 exec_control &= ~SECONDARY_EXEC_RDTSCP;
6555 /* Take the following fields only from vmcs12 */
6556 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6557 if (nested_cpu_has(vmcs12,
6558 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
6559 exec_control |= vmcs12->secondary_vm_exec_control;
6560
6561 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
6562 /*
6563 * Translate L1 physical address to host physical
6564 * address for vmcs02. Keep the page pinned, so this
6565 * physical address remains valid. We keep a reference
6566 * to it so we can release it later.
6567 */
6568 if (vmx->nested.apic_access_page) /* shouldn't happen */
6569 nested_release_page(vmx->nested.apic_access_page);
6570 vmx->nested.apic_access_page =
6571 nested_get_page(vcpu, vmcs12->apic_access_addr);
6572 /*
6573 * If translation failed, no matter: This feature asks
6574 * to exit when accessing the given address, and if it
6575 * can never be accessed, this feature won't do
6576 * anything anyway.
6577 */
6578 if (!vmx->nested.apic_access_page)
6579 exec_control &=
6580 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6581 else
6582 vmcs_write64(APIC_ACCESS_ADDR,
6583 page_to_phys(vmx->nested.apic_access_page));
6584 }
6585
6586 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6587 }
6588
6589
6590 /*
6591 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
6592 * Some constant fields are set here by vmx_set_constant_host_state().
6593 * Other fields are different per CPU, and will be set later when
6594 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
6595 */
6596 vmx_set_constant_host_state();
6597
6598 /*
6599 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
6600 * entry, but only if the current (host) sp changed from the value
6601 * we wrote last (vmx->host_rsp). This cache is no longer relevant
6602 * if we switch vmcs, and rather than hold a separate cache per vmcs,
6603 * here we just force the write to happen on entry.
6604 */
6605 vmx->host_rsp = 0;
6606
6607 exec_control = vmx_exec_control(vmx); /* L0's desires */
6608 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
6609 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6610 exec_control &= ~CPU_BASED_TPR_SHADOW;
6611 exec_control |= vmcs12->cpu_based_vm_exec_control;
6612 /*
6613 * Merging of IO and MSR bitmaps not currently supported.
6614 * Rather, exit every time.
6615 */
6616 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
6617 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
6618 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
6619
6620 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
6621
6622 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
6623 * bitwise-or of what L1 wants to trap for L2, and what we want to
6624 * trap. Note that CR0.TS also needs updating - we do this later.
6625 */
6626 update_exception_bitmap(vcpu);
6627 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
6628 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6629
6630 /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
6631 vmcs_write32(VM_EXIT_CONTROLS,
6632 vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
6633 vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
6634 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
6635
6636 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
6637 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
6638 else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6639 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
6640
6641
6642 set_cr4_guest_host_mask(vmx);
6643
27fc51b2
NHE
6644 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
6645 vmcs_write64(TSC_OFFSET,
6646 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
6647 else
6648 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
6649
6650 if (enable_vpid) {
6651 /*
6652 * Trivially support vpid by letting L2s share their parent
6653 * L1's vpid. TODO: move to a more elaborate solution, giving
6654 * each L2 its own vpid and exposing the vpid feature to L1.
6655 */
6656 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6657 vmx_flush_tlb(vcpu);
6658 }
6659
6660 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
6661 vcpu->arch.efer = vmcs12->guest_ia32_efer;
6662 if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
6663 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6664 else
6665 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6666 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
6667 vmx_set_efer(vcpu, vcpu->arch.efer);
6668
6669 /*
6670 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
6671 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
6672 * The CR0_READ_SHADOW is what L2 should have expected to read given
6673 * the specifications by L1; It's not enough to take
6674 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
6675 * have more bits than L1 expected.
6676 */
6677 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
6678 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
6679
6680 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
6681 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
6682
6683 /* shadow page tables on either EPT or shadow page tables */
6684 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
6685 kvm_mmu_reset_context(vcpu);
6686
6687 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
6688 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
6689}
6690
cd232ad0
NHE
6691/*
6692 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
6693 * for running an L2 nested guest.
6694 */
6695static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
6696{
6697 struct vmcs12 *vmcs12;
6698 struct vcpu_vmx *vmx = to_vmx(vcpu);
6699 int cpu;
6700 struct loaded_vmcs *vmcs02;
6701
6702 if (!nested_vmx_check_permission(vcpu) ||
6703 !nested_vmx_check_vmcs12(vcpu))
6704 return 1;
6705
6706 skip_emulated_instruction(vcpu);
6707 vmcs12 = get_vmcs12(vcpu);
6708
7c177938
NHE
6709 /*
6710 * The nested entry process starts with enforcing various prerequisites
6711 * on vmcs12 as required by the Intel SDM, and act appropriately when
6712 * they fail: As the SDM explains, some conditions should cause the
6713 * instruction to fail, while others will cause the instruction to seem
6714 * to succeed, but return an EXIT_REASON_INVALID_STATE.
6715 * To speed up the normal (success) code path, we should avoid checking
6716 * for misconfigurations which will anyway be caught by the processor
6717 * when using the merged vmcs02.
6718 */
6719 if (vmcs12->launch_state == launch) {
6720 nested_vmx_failValid(vcpu,
6721 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
6722 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
6723 return 1;
6724 }
6725
6726 if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
6727 !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
6728 /*TODO: Also verify bits beyond physical address width are 0*/
6729 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6730 return 1;
6731 }
6732
6733 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
6734 !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
6735 /*TODO: Also verify bits beyond physical address width are 0*/
6736 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6737 return 1;
6738 }
6739
6740 if (vmcs12->vm_entry_msr_load_count > 0 ||
6741 vmcs12->vm_exit_msr_load_count > 0 ||
6742 vmcs12->vm_exit_msr_store_count > 0) {
bd80158a
JK
6743 pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
6744 __func__);
7c177938
NHE
6745 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6746 return 1;
6747 }
6748
6749 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6750 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
6751 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6752 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
6753 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6754 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
6755 !vmx_control_verify(vmcs12->vm_exit_controls,
6756 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
6757 !vmx_control_verify(vmcs12->vm_entry_controls,
6758 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
6759 {
6760 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
6761 return 1;
6762 }
6763
6764 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6765 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6766 nested_vmx_failValid(vcpu,
6767 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
6768 return 1;
6769 }
6770
6771 if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
6772 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
6773 nested_vmx_entry_failure(vcpu, vmcs12,
6774 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
6775 return 1;
6776 }
6777 if (vmcs12->vmcs_link_pointer != -1ull) {
6778 nested_vmx_entry_failure(vcpu, vmcs12,
6779 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
6780 return 1;
6781 }
6782
6783 /*
6784 * We're finally done with prerequisite checking, and can start with
6785 * the nested entry.
6786 */
6787
cd232ad0
NHE
6788 vmcs02 = nested_get_current_vmcs02(vmx);
6789 if (!vmcs02)
6790 return -ENOMEM;
6791
6792 enter_guest_mode(vcpu);
6793
6794 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
6795
6796 cpu = get_cpu();
6797 vmx->loaded_vmcs = vmcs02;
6798 vmx_vcpu_put(vcpu);
6799 vmx_vcpu_load(vcpu, cpu);
6800 vcpu->cpu = cpu;
6801 put_cpu();
6802
6803 vmcs12->launch_state = 1;
6804
6805 prepare_vmcs02(vcpu, vmcs12);
6806
6807 /*
6808 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
6809 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
6810 * returned as far as L1 is concerned. It will only return (and set
6811 * the success flag) when L2 exits (see nested_vmx_vmexit()).
6812 */
6813 return 1;
6814}
6815
4704d0be
NHE
6816/*
6817 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
6818 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
6819 * This function returns the new value we should put in vmcs12.guest_cr0.
6820 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
6821 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
6822 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
6823 * didn't trap the bit, because if L1 did, so would L0).
6824 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
6825 * been modified by L2, and L1 knows it. So just leave the old value of
6826 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
6827 * isn't relevant, because if L0 traps this bit it can set it to anything.
6828 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
6829 * changed these bits, and therefore they need to be updated, but L0
6830 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
6831 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
6832 */
6833static inline unsigned long
6834vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6835{
6836 return
6837 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
6838 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
6839 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
6840 vcpu->arch.cr0_guest_owned_bits));
6841}
6842
6843static inline unsigned long
6844vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6845{
6846 return
6847 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
6848 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
6849 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
6850 vcpu->arch.cr4_guest_owned_bits));
6851}
6852
6853/*
6854 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
6855 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
6856 * and this function updates it to reflect the changes to the guest state while
6857 * L2 was running (and perhaps made some exits which were handled directly by L0
6858 * without going back to L1), and to reflect the exit reason.
6859 * Note that we do not have to copy here all VMCS fields, just those that
6860 * could have changed by the L2 guest or the exit - i.e., the guest-state and
6861 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
6862 * which already writes to vmcs12 directly.
6863 */
6864void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6865{
6866 /* update guest state fields: */
6867 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
6868 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
6869
6870 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
6871 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
6872 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
6873 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
6874
6875 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
6876 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
6877 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
6878 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
6879 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
6880 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
6881 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
6882 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
6883 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
6884 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
6885 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
6886 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
6887 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
6888 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
6889 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
6890 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
6891 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
6892 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
6893 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
6894 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
6895 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
6896 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
6897 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
6898 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
6899 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
6900 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
6901 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
6902 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
6903 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
6904 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
6905 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
6906 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
6907 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
6908 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
6909 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
6910 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
6911
6912 vmcs12->guest_activity_state = vmcs_read32(GUEST_ACTIVITY_STATE);
6913 vmcs12->guest_interruptibility_info =
6914 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
6915 vmcs12->guest_pending_dbg_exceptions =
6916 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
6917
6918 /* TODO: These cannot have changed unless we have MSR bitmaps and
6919 * the relevant bit asks not to trap the change */
6920 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
6921 if (vmcs12->vm_entry_controls & VM_EXIT_SAVE_IA32_PAT)
6922 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
6923 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
6924 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
6925 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
6926
6927 /* update exit information fields: */
6928
6929 vmcs12->vm_exit_reason = vmcs_read32(VM_EXIT_REASON);
6930 vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6931
6932 vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6933 vmcs12->vm_exit_intr_error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6934 vmcs12->idt_vectoring_info_field =
6935 vmcs_read32(IDT_VECTORING_INFO_FIELD);
6936 vmcs12->idt_vectoring_error_code =
6937 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6938 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6939 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6940
6941 /* clear vm-entry fields which are to be cleared on exit */
6942 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
6943 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
6944}
6945
6946/*
6947 * A part of what we need to when the nested L2 guest exits and we want to
6948 * run its L1 parent, is to reset L1's guest state to the host state specified
6949 * in vmcs12.
6950 * This function is to be called not only on normal nested exit, but also on
6951 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
6952 * Failures During or After Loading Guest State").
6953 * This function should be called when the active VMCS is L1's (vmcs01).
6954 */
6955void load_vmcs12_host_state(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
6956{
6957 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
6958 vcpu->arch.efer = vmcs12->host_ia32_efer;
6959 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
6960 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
6961 else
6962 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
6963 vmx_set_efer(vcpu, vcpu->arch.efer);
6964
6965 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
6966 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
6967 /*
6968 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
6969 * actually changed, because it depends on the current state of
6970 * fpu_active (which may have changed).
6971 * Note that vmx_set_cr0 refers to efer set above.
6972 */
6973 kvm_set_cr0(vcpu, vmcs12->host_cr0);
6974 /*
6975 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
6976 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
6977 * but we also need to update cr0_guest_host_mask and exception_bitmap.
6978 */
6979 update_exception_bitmap(vcpu);
6980 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
6981 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
6982
6983 /*
6984 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
6985 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
6986 */
6987 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
6988 kvm_set_cr4(vcpu, vmcs12->host_cr4);
6989
6990 /* shadow page tables on either EPT or shadow page tables */
6991 kvm_set_cr3(vcpu, vmcs12->host_cr3);
6992 kvm_mmu_reset_context(vcpu);
6993
6994 if (enable_vpid) {
6995 /*
6996 * Trivially support vpid by letting L2s share their parent
6997 * L1's vpid. TODO: move to a more elaborate solution, giving
6998 * each L2 its own vpid and exposing the vpid feature to L1.
6999 */
7000 vmx_flush_tlb(vcpu);
7001 }
7002
7003
7004 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7005 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7006 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7007 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7008 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7009 vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7010 vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7011 vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7012 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7013 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7014 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7015 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7016 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7017 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7018 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7019
7020 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
7021 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
7022 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
7023 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
7024 vmcs12->host_ia32_perf_global_ctrl);
7025}
7026
7027/*
7028 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
7029 * and modify vmcs12 to make it see what it would expect to see there if
7030 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
7031 */
7032static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
7033{
7034 struct vcpu_vmx *vmx = to_vmx(vcpu);
7035 int cpu;
7036 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
7037
7038 leave_guest_mode(vcpu);
7039 prepare_vmcs12(vcpu, vmcs12);
7040
7041 cpu = get_cpu();
7042 vmx->loaded_vmcs = &vmx->vmcs01;
7043 vmx_vcpu_put(vcpu);
7044 vmx_vcpu_load(vcpu, cpu);
7045 vcpu->cpu = cpu;
7046 put_cpu();
7047
7048 /* if no vmcs02 cache requested, remove the one we used */
7049 if (VMCS02_POOL_SIZE == 0)
7050 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
7051
7052 load_vmcs12_host_state(vcpu, vmcs12);
7053
27fc51b2 7054 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
7055 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7056
7057 /* This is needed for same reason as it was needed in prepare_vmcs02 */
7058 vmx->host_rsp = 0;
7059
7060 /* Unpin physical memory we referred to in vmcs02 */
7061 if (vmx->nested.apic_access_page) {
7062 nested_release_page(vmx->nested.apic_access_page);
7063 vmx->nested.apic_access_page = 0;
7064 }
7065
7066 /*
7067 * Exiting from L2 to L1, we're now back to L1 which thinks it just
7068 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
7069 * success or failure flag accordingly.
7070 */
7071 if (unlikely(vmx->fail)) {
7072 vmx->fail = 0;
7073 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
7074 } else
7075 nested_vmx_succeed(vcpu);
7076}
7077
7c177938
NHE
7078/*
7079 * L1's failure to enter L2 is a subset of a normal exit, as explained in
7080 * 23.7 "VM-entry failures during or after loading guest state" (this also
7081 * lists the acceptable exit-reason and exit-qualification parameters).
7082 * It should only be called before L2 actually succeeded to run, and when
7083 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
7084 */
7085static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
7086 struct vmcs12 *vmcs12,
7087 u32 reason, unsigned long qualification)
7088{
7089 load_vmcs12_host_state(vcpu, vmcs12);
7090 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
7091 vmcs12->exit_qualification = qualification;
7092 nested_vmx_succeed(vcpu);
7093}
7094
8a76d7f2
JR
7095static int vmx_check_intercept(struct kvm_vcpu *vcpu,
7096 struct x86_instruction_info *info,
7097 enum x86_intercept_stage stage)
7098{
7099 return X86EMUL_CONTINUE;
7100}
7101
cbdd1bea 7102static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
7103 .cpu_has_kvm_support = cpu_has_kvm_support,
7104 .disabled_by_bios = vmx_disabled_by_bios,
7105 .hardware_setup = hardware_setup,
7106 .hardware_unsetup = hardware_unsetup,
002c7f7c 7107 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
7108 .hardware_enable = hardware_enable,
7109 .hardware_disable = hardware_disable,
04547156 7110 .cpu_has_accelerated_tpr = report_flexpriority,
6aa8b732
AK
7111
7112 .vcpu_create = vmx_create_vcpu,
7113 .vcpu_free = vmx_free_vcpu,
04d2cc77 7114 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 7115
04d2cc77 7116 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
7117 .vcpu_load = vmx_vcpu_load,
7118 .vcpu_put = vmx_vcpu_put,
7119
7120 .set_guest_debug = set_guest_debug,
7121 .get_msr = vmx_get_msr,
7122 .set_msr = vmx_set_msr,
7123 .get_segment_base = vmx_get_segment_base,
7124 .get_segment = vmx_get_segment,
7125 .set_segment = vmx_set_segment,
2e4d2653 7126 .get_cpl = vmx_get_cpl,
6aa8b732 7127 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 7128 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 7129 .decache_cr3 = vmx_decache_cr3,
25c4c276 7130 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 7131 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
7132 .set_cr3 = vmx_set_cr3,
7133 .set_cr4 = vmx_set_cr4,
6aa8b732 7134 .set_efer = vmx_set_efer,
6aa8b732
AK
7135 .get_idt = vmx_get_idt,
7136 .set_idt = vmx_set_idt,
7137 .get_gdt = vmx_get_gdt,
7138 .set_gdt = vmx_set_gdt,
020df079 7139 .set_dr7 = vmx_set_dr7,
5fdbf976 7140 .cache_reg = vmx_cache_reg,
6aa8b732
AK
7141 .get_rflags = vmx_get_rflags,
7142 .set_rflags = vmx_set_rflags,
ebcbab4c 7143 .fpu_activate = vmx_fpu_activate,
02daab21 7144 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
7145
7146 .tlb_flush = vmx_flush_tlb,
6aa8b732 7147
6aa8b732 7148 .run = vmx_vcpu_run,
6062d012 7149 .handle_exit = vmx_handle_exit,
6aa8b732 7150 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
7151 .set_interrupt_shadow = vmx_set_interrupt_shadow,
7152 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 7153 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 7154 .set_irq = vmx_inject_irq,
95ba8273 7155 .set_nmi = vmx_inject_nmi,
298101da 7156 .queue_exception = vmx_queue_exception,
b463a6f7 7157 .cancel_injection = vmx_cancel_injection,
78646121 7158 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 7159 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
7160 .get_nmi_mask = vmx_get_nmi_mask,
7161 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
7162 .enable_nmi_window = enable_nmi_window,
7163 .enable_irq_window = enable_irq_window,
7164 .update_cr8_intercept = update_cr8_intercept,
95ba8273 7165
cbc94022 7166 .set_tss_addr = vmx_set_tss_addr,
67253af5 7167 .get_tdp_level = get_ept_level,
4b12f0de 7168 .get_mt_mask = vmx_get_mt_mask,
229456fc 7169
586f9607 7170 .get_exit_info = vmx_get_exit_info,
586f9607 7171
17cc3935 7172 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
7173
7174 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
7175
7176 .rdtscp_supported = vmx_rdtscp_supported,
d4330ef2
JR
7177
7178 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
7179
7180 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 7181
4051b188 7182 .set_tsc_khz = vmx_set_tsc_khz,
99e3e30a 7183 .write_tsc_offset = vmx_write_tsc_offset,
e48672fa 7184 .adjust_tsc_offset = vmx_adjust_tsc_offset,
857e4099 7185 .compute_tsc_offset = vmx_compute_tsc_offset,
d5c1785d 7186 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
7187
7188 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
7189
7190 .check_intercept = vmx_check_intercept,
6aa8b732
AK
7191};
7192
7193static int __init vmx_init(void)
7194{
26bb0981
AK
7195 int r, i;
7196
7197 rdmsrl_safe(MSR_EFER, &host_efer);
7198
7199 for (i = 0; i < NR_VMX_MSR; ++i)
7200 kvm_define_shared_msr(i, vmx_msr_index[i]);
fdef3ad1 7201
3e7c73e9 7202 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7203 if (!vmx_io_bitmap_a)
7204 return -ENOMEM;
7205
3e7c73e9 7206 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
fdef3ad1
HQ
7207 if (!vmx_io_bitmap_b) {
7208 r = -ENOMEM;
7209 goto out;
7210 }
7211
5897297b
AK
7212 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
7213 if (!vmx_msr_bitmap_legacy) {
25c5f225
SY
7214 r = -ENOMEM;
7215 goto out1;
7216 }
7217
5897297b
AK
7218 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
7219 if (!vmx_msr_bitmap_longmode) {
7220 r = -ENOMEM;
7221 goto out2;
7222 }
7223
fdef3ad1
HQ
7224 /*
7225 * Allow direct access to the PC debug port (it is often used for I/O
7226 * delays, but the vmexits simply slow things down).
7227 */
3e7c73e9
AK
7228 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
7229 clear_bit(0x80, vmx_io_bitmap_a);
fdef3ad1 7230
3e7c73e9 7231 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
fdef3ad1 7232
5897297b
AK
7233 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
7234 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
25c5f225 7235
2384d2b3
SY
7236 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7237
0ee75bea
AK
7238 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
7239 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 7240 if (r)
5897297b 7241 goto out3;
25c5f225 7242
5897297b
AK
7243 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
7244 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
7245 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
7246 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
7247 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
7248 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
fdef3ad1 7249
089d034e 7250 if (enable_ept) {
534e38b4 7251 kvm_mmu_set_mask_ptes(0ull, 0ull, 0ull, 0ull,
4b12f0de 7252 VMX_EPT_EXECUTABLE_MASK);
ce88decf 7253 ept_set_mmio_spte_mask();
5fdbcb9d
SY
7254 kvm_enable_tdp();
7255 } else
7256 kvm_disable_tdp();
1439442c 7257
fdef3ad1
HQ
7258 return 0;
7259
5897297b
AK
7260out3:
7261 free_page((unsigned long)vmx_msr_bitmap_longmode);
25c5f225 7262out2:
5897297b 7263 free_page((unsigned long)vmx_msr_bitmap_legacy);
fdef3ad1 7264out1:
3e7c73e9 7265 free_page((unsigned long)vmx_io_bitmap_b);
fdef3ad1 7266out:
3e7c73e9 7267 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7268 return r;
6aa8b732
AK
7269}
7270
7271static void __exit vmx_exit(void)
7272{
5897297b
AK
7273 free_page((unsigned long)vmx_msr_bitmap_legacy);
7274 free_page((unsigned long)vmx_msr_bitmap_longmode);
3e7c73e9
AK
7275 free_page((unsigned long)vmx_io_bitmap_b);
7276 free_page((unsigned long)vmx_io_bitmap_a);
fdef3ad1 7277
cb498ea2 7278 kvm_exit();
6aa8b732
AK
7279}
7280
7281module_init(vmx_init)
7282module_exit(vmx_exit)