x86/bugs: Rename _RDS to _SSBD
[linux-block.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
c207aee4 36#include <linux/frame.h>
085331df 37#include <linux/nospec.h>
5fdbf976 38#include "kvm_cache_regs.h"
35920a35 39#include "x86.h"
e495606d 40
28b835d6 41#include <asm/cpu.h>
6aa8b732 42#include <asm/io.h>
3b3be0d1 43#include <asm/desc.h>
13673a90 44#include <asm/vmx.h>
6210e37b 45#include <asm/virtext.h>
a0861c02 46#include <asm/mce.h>
952f07ec 47#include <asm/fpu/internal.h>
d7cd9796 48#include <asm/perf_event.h>
81908bf4 49#include <asm/debugreg.h>
8f536b76 50#include <asm/kexec.h>
dab2087d 51#include <asm/apic.h>
efc64404 52#include <asm/irq_remapping.h>
d6e41f11 53#include <asm/mmu_context.h>
28a27752 54#include <asm/spec-ctrl.h>
773e8a04 55#include <asm/mshyperv.h>
6aa8b732 56
229456fc 57#include "trace.h"
25462f7f 58#include "pmu.h"
773e8a04 59#include "vmx_evmcs.h"
229456fc 60
4ecac3fd 61#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
62#define __ex_clear(x, reg) \
63 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 64
6aa8b732
AK
65MODULE_AUTHOR("Qumranet");
66MODULE_LICENSE("GPL");
67
e9bda3b3
JT
68static const struct x86_cpu_id vmx_cpu_id[] = {
69 X86_FEATURE_MATCH(X86_FEATURE_VMX),
70 {}
71};
72MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
73
476bc001 74static bool __read_mostly enable_vpid = 1;
736caefe 75module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 76
d02fcf50
PB
77static bool __read_mostly enable_vnmi = 1;
78module_param_named(vnmi, enable_vnmi, bool, S_IRUGO);
79
476bc001 80static bool __read_mostly flexpriority_enabled = 1;
736caefe 81module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 82
476bc001 83static bool __read_mostly enable_ept = 1;
736caefe 84module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 85
476bc001 86static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
87module_param_named(unrestricted_guest,
88 enable_unrestricted_guest, bool, S_IRUGO);
89
83c3a331
XH
90static bool __read_mostly enable_ept_ad_bits = 1;
91module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
92
a27685c3 93static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 94module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 95
476bc001 96static bool __read_mostly fasteoi = 1;
58fbbf26
KT
97module_param(fasteoi, bool, S_IRUGO);
98
5a71785d 99static bool __read_mostly enable_apicv = 1;
01e439be 100module_param(enable_apicv, bool, S_IRUGO);
83d4c286 101
abc4fc58
AG
102static bool __read_mostly enable_shadow_vmcs = 1;
103module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
104/*
105 * If nested=1, nested virtualization is supported, i.e., guests may use
106 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
107 * use VMX instructions.
108 */
476bc001 109static bool __read_mostly nested = 0;
801d3424
NHE
110module_param(nested, bool, S_IRUGO);
111
20300099
WL
112static u64 __read_mostly host_xss;
113
843e4330
KH
114static bool __read_mostly enable_pml = 1;
115module_param_named(pml, enable_pml, bool, S_IRUGO);
116
904e14fb
PB
117#define MSR_TYPE_R 1
118#define MSR_TYPE_W 2
119#define MSR_TYPE_RW 3
120
121#define MSR_BITMAP_MODE_X2APIC 1
122#define MSR_BITMAP_MODE_X2APIC_APICV 2
123#define MSR_BITMAP_MODE_LM 4
124
64903d61
HZ
125#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
126
64672c95
YJ
127/* Guest_tsc -> host_tsc conversion requires 64-bit division. */
128static int __read_mostly cpu_preemption_timer_multi;
129static bool __read_mostly enable_preemption_timer = 1;
130#ifdef CONFIG_X86_64
131module_param_named(preemption_timer, enable_preemption_timer, bool, S_IRUGO);
132#endif
133
5037878e 134#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
1706bd0c
SC
135#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR0_NE
136#define KVM_VM_CR0_ALWAYS_ON \
137 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | \
138 X86_CR0_WP | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
139#define KVM_CR4_GUEST_OWNED_BITS \
140 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
fd8cb433 141 | X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_TSD)
4c38609a 142
5dc1f044 143#define KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST X86_CR4_VMXE
cdc0e244
AK
144#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
145#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
146
78ac8b47
AK
147#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
148
f4124500
JK
149#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
150
16c2aec6
JD
151/*
152 * Hyper-V requires all of these, so mark them as supported even though
153 * they are just treated the same as all-context.
154 */
155#define VMX_VPID_EXTENT_SUPPORTED_MASK \
156 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
157 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
158 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
159 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
160
4b8d54f9
ZE
161/*
162 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
163 * ple_gap: upper bound on the amount of time between two successive
164 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 165 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
166 * ple_window: upper bound on the amount of time a guest is allowed to execute
167 * in a PAUSE loop. Tests indicate that most spinlocks are held for
168 * less than 2^12 cycles
169 * Time is measured based on a counter that runs at the same rate as the TSC,
170 * refer SDM volume 3b section 21.6.13 & 22.1.3.
171 */
c8e88717 172static unsigned int ple_gap = KVM_DEFAULT_PLE_GAP;
b4a2d31d 173
7fbc85a5
BM
174static unsigned int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
175module_param(ple_window, uint, 0444);
4b8d54f9 176
b4a2d31d 177/* Default doubles per-vcpu window every exit. */
c8e88717 178static unsigned int ple_window_grow = KVM_DEFAULT_PLE_WINDOW_GROW;
7fbc85a5 179module_param(ple_window_grow, uint, 0444);
b4a2d31d
RK
180
181/* Default resets per-vcpu window every exit to ple_window. */
c8e88717 182static unsigned int ple_window_shrink = KVM_DEFAULT_PLE_WINDOW_SHRINK;
7fbc85a5 183module_param(ple_window_shrink, uint, 0444);
b4a2d31d
RK
184
185/* Default is to compute the maximum so we can never overflow. */
7fbc85a5
BM
186static unsigned int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
187module_param(ple_window_max, uint, 0444);
b4a2d31d 188
83287ea4
AK
189extern const ulong vmx_return;
190
40bbb9d0
SC
191struct kvm_vmx {
192 struct kvm kvm;
193
194 unsigned int tss_addr;
195 bool ept_identity_pagetable_done;
196 gpa_t ept_identity_map_addr;
197};
198
8bf00a52 199#define NR_AUTOLOAD_MSRS 8
61d2ef2c 200
a2fa3e9f
GH
201struct vmcs {
202 u32 revision_id;
203 u32 abort;
204 char data[0];
205};
206
d462b819
NHE
207/*
208 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
209 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
210 * loaded on this CPU (so we can clear them if the CPU goes down).
211 */
212struct loaded_vmcs {
213 struct vmcs *vmcs;
355f4fb1 214 struct vmcs *shadow_vmcs;
d462b819 215 int cpu;
4c4a6f79
PB
216 bool launched;
217 bool nmi_known_unmasked;
44889942
LP
218 unsigned long vmcs_host_cr3; /* May not match real cr3 */
219 unsigned long vmcs_host_cr4; /* May not match real cr4 */
8a1b4392
PB
220 /* Support for vnmi-less CPUs */
221 int soft_vnmi_blocked;
222 ktime_t entry_time;
223 s64 vnmi_blocked_time;
904e14fb 224 unsigned long *msr_bitmap;
d462b819
NHE
225 struct list_head loaded_vmcss_on_cpu_link;
226};
227
26bb0981
AK
228struct shared_msr_entry {
229 unsigned index;
230 u64 data;
d5696725 231 u64 mask;
26bb0981
AK
232};
233
a9d30f33
NHE
234/*
235 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
236 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
237 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
238 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
239 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
240 * More than one of these structures may exist, if L1 runs multiple L2 guests.
de3a0021 241 * nested_vmx_run() will use the data here to build the vmcs02: a VMCS for the
a9d30f33
NHE
242 * underlying hardware which will be used to run L2.
243 * This structure is packed to ensure that its layout is identical across
244 * machines (necessary for live migration).
245 * If there are changes in this struct, VMCS12_REVISION must be changed.
246 */
22bd0358 247typedef u64 natural_width;
a9d30f33
NHE
248struct __packed vmcs12 {
249 /* According to the Intel spec, a VMCS region must start with the
250 * following two fields. Then follow implementation-specific data.
251 */
252 u32 revision_id;
253 u32 abort;
22bd0358 254
27d6c865
NHE
255 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
256 u32 padding[7]; /* room for future expansion */
257
22bd0358
NHE
258 u64 io_bitmap_a;
259 u64 io_bitmap_b;
260 u64 msr_bitmap;
261 u64 vm_exit_msr_store_addr;
262 u64 vm_exit_msr_load_addr;
263 u64 vm_entry_msr_load_addr;
264 u64 tsc_offset;
265 u64 virtual_apic_page_addr;
266 u64 apic_access_addr;
705699a1 267 u64 posted_intr_desc_addr;
27c42a1b 268 u64 vm_function_control;
22bd0358 269 u64 ept_pointer;
608406e2
WV
270 u64 eoi_exit_bitmap0;
271 u64 eoi_exit_bitmap1;
272 u64 eoi_exit_bitmap2;
273 u64 eoi_exit_bitmap3;
41ab9372 274 u64 eptp_list_address;
81dc01f7 275 u64 xss_exit_bitmap;
22bd0358
NHE
276 u64 guest_physical_address;
277 u64 vmcs_link_pointer;
c5f983f6 278 u64 pml_address;
22bd0358
NHE
279 u64 guest_ia32_debugctl;
280 u64 guest_ia32_pat;
281 u64 guest_ia32_efer;
282 u64 guest_ia32_perf_global_ctrl;
283 u64 guest_pdptr0;
284 u64 guest_pdptr1;
285 u64 guest_pdptr2;
286 u64 guest_pdptr3;
36be0b9d 287 u64 guest_bndcfgs;
22bd0358
NHE
288 u64 host_ia32_pat;
289 u64 host_ia32_efer;
290 u64 host_ia32_perf_global_ctrl;
291 u64 padding64[8]; /* room for future expansion */
292 /*
293 * To allow migration of L1 (complete with its L2 guests) between
294 * machines of different natural widths (32 or 64 bit), we cannot have
295 * unsigned long fields with no explict size. We use u64 (aliased
296 * natural_width) instead. Luckily, x86 is little-endian.
297 */
298 natural_width cr0_guest_host_mask;
299 natural_width cr4_guest_host_mask;
300 natural_width cr0_read_shadow;
301 natural_width cr4_read_shadow;
302 natural_width cr3_target_value0;
303 natural_width cr3_target_value1;
304 natural_width cr3_target_value2;
305 natural_width cr3_target_value3;
306 natural_width exit_qualification;
307 natural_width guest_linear_address;
308 natural_width guest_cr0;
309 natural_width guest_cr3;
310 natural_width guest_cr4;
311 natural_width guest_es_base;
312 natural_width guest_cs_base;
313 natural_width guest_ss_base;
314 natural_width guest_ds_base;
315 natural_width guest_fs_base;
316 natural_width guest_gs_base;
317 natural_width guest_ldtr_base;
318 natural_width guest_tr_base;
319 natural_width guest_gdtr_base;
320 natural_width guest_idtr_base;
321 natural_width guest_dr7;
322 natural_width guest_rsp;
323 natural_width guest_rip;
324 natural_width guest_rflags;
325 natural_width guest_pending_dbg_exceptions;
326 natural_width guest_sysenter_esp;
327 natural_width guest_sysenter_eip;
328 natural_width host_cr0;
329 natural_width host_cr3;
330 natural_width host_cr4;
331 natural_width host_fs_base;
332 natural_width host_gs_base;
333 natural_width host_tr_base;
334 natural_width host_gdtr_base;
335 natural_width host_idtr_base;
336 natural_width host_ia32_sysenter_esp;
337 natural_width host_ia32_sysenter_eip;
338 natural_width host_rsp;
339 natural_width host_rip;
340 natural_width paddingl[8]; /* room for future expansion */
341 u32 pin_based_vm_exec_control;
342 u32 cpu_based_vm_exec_control;
343 u32 exception_bitmap;
344 u32 page_fault_error_code_mask;
345 u32 page_fault_error_code_match;
346 u32 cr3_target_count;
347 u32 vm_exit_controls;
348 u32 vm_exit_msr_store_count;
349 u32 vm_exit_msr_load_count;
350 u32 vm_entry_controls;
351 u32 vm_entry_msr_load_count;
352 u32 vm_entry_intr_info_field;
353 u32 vm_entry_exception_error_code;
354 u32 vm_entry_instruction_len;
355 u32 tpr_threshold;
356 u32 secondary_vm_exec_control;
357 u32 vm_instruction_error;
358 u32 vm_exit_reason;
359 u32 vm_exit_intr_info;
360 u32 vm_exit_intr_error_code;
361 u32 idt_vectoring_info_field;
362 u32 idt_vectoring_error_code;
363 u32 vm_exit_instruction_len;
364 u32 vmx_instruction_info;
365 u32 guest_es_limit;
366 u32 guest_cs_limit;
367 u32 guest_ss_limit;
368 u32 guest_ds_limit;
369 u32 guest_fs_limit;
370 u32 guest_gs_limit;
371 u32 guest_ldtr_limit;
372 u32 guest_tr_limit;
373 u32 guest_gdtr_limit;
374 u32 guest_idtr_limit;
375 u32 guest_es_ar_bytes;
376 u32 guest_cs_ar_bytes;
377 u32 guest_ss_ar_bytes;
378 u32 guest_ds_ar_bytes;
379 u32 guest_fs_ar_bytes;
380 u32 guest_gs_ar_bytes;
381 u32 guest_ldtr_ar_bytes;
382 u32 guest_tr_ar_bytes;
383 u32 guest_interruptibility_info;
384 u32 guest_activity_state;
385 u32 guest_sysenter_cs;
386 u32 host_ia32_sysenter_cs;
0238ea91
JK
387 u32 vmx_preemption_timer_value;
388 u32 padding32[7]; /* room for future expansion */
22bd0358 389 u16 virtual_processor_id;
705699a1 390 u16 posted_intr_nv;
22bd0358
NHE
391 u16 guest_es_selector;
392 u16 guest_cs_selector;
393 u16 guest_ss_selector;
394 u16 guest_ds_selector;
395 u16 guest_fs_selector;
396 u16 guest_gs_selector;
397 u16 guest_ldtr_selector;
398 u16 guest_tr_selector;
608406e2 399 u16 guest_intr_status;
c5f983f6 400 u16 guest_pml_index;
22bd0358
NHE
401 u16 host_es_selector;
402 u16 host_cs_selector;
403 u16 host_ss_selector;
404 u16 host_ds_selector;
405 u16 host_fs_selector;
406 u16 host_gs_selector;
407 u16 host_tr_selector;
a9d30f33
NHE
408};
409
410/*
411 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
412 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
413 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
414 */
415#define VMCS12_REVISION 0x11e57ed0
416
417/*
418 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
419 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
420 * current implementation, 4K are reserved to avoid future complications.
421 */
422#define VMCS12_SIZE 0x1000
423
5b15706d
JM
424/*
425 * VMCS12_MAX_FIELD_INDEX is the highest index value used in any
426 * supported VMCS12 field encoding.
427 */
428#define VMCS12_MAX_FIELD_INDEX 0x17
429
6677f3da
PB
430struct nested_vmx_msrs {
431 /*
432 * We only store the "true" versions of the VMX capability MSRs. We
433 * generate the "non-true" versions by setting the must-be-1 bits
434 * according to the SDM.
435 */
436 u32 procbased_ctls_low;
437 u32 procbased_ctls_high;
438 u32 secondary_ctls_low;
439 u32 secondary_ctls_high;
440 u32 pinbased_ctls_low;
441 u32 pinbased_ctls_high;
442 u32 exit_ctls_low;
443 u32 exit_ctls_high;
444 u32 entry_ctls_low;
445 u32 entry_ctls_high;
446 u32 misc_low;
447 u32 misc_high;
448 u32 ept_caps;
449 u32 vpid_caps;
450 u64 basic;
451 u64 cr0_fixed0;
452 u64 cr0_fixed1;
453 u64 cr4_fixed0;
454 u64 cr4_fixed1;
455 u64 vmcs_enum;
456 u64 vmfunc_controls;
457};
458
ec378aee
NHE
459/*
460 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
461 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
462 */
463struct nested_vmx {
464 /* Has the level1 guest done vmxon? */
465 bool vmxon;
3573e22c 466 gpa_t vmxon_ptr;
c5f983f6 467 bool pml_full;
a9d30f33
NHE
468
469 /* The guest-physical address of the current VMCS L1 keeps for L2 */
470 gpa_t current_vmptr;
4f2777bc
DM
471 /*
472 * Cache of the guest's VMCS, existing outside of guest memory.
473 * Loaded from guest memory during VMPTRLD. Flushed to guest
8ca44e88 474 * memory during VMCLEAR and VMPTRLD.
4f2777bc
DM
475 */
476 struct vmcs12 *cached_vmcs12;
012f83cb
AG
477 /*
478 * Indicates if the shadow vmcs must be updated with the
479 * data hold by vmcs12
480 */
481 bool sync_shadow_vmcs;
74a497fa 482 bool dirty_vmcs12;
ff2f6fe9 483
dccbfcf5 484 bool change_vmcs01_virtual_x2apic_mode;
644d711a
NHE
485 /* L2 must run next, and mustn't decide to exit to L1. */
486 bool nested_run_pending;
de3a0021
JM
487
488 struct loaded_vmcs vmcs02;
489
fe3ef05c 490 /*
de3a0021
JM
491 * Guest pages referred to in the vmcs02 with host-physical
492 * pointers, so we must keep them pinned while L2 runs.
fe3ef05c
NHE
493 */
494 struct page *apic_access_page;
a7c0b07d 495 struct page *virtual_apic_page;
705699a1
WV
496 struct page *pi_desc_page;
497 struct pi_desc *pi_desc;
498 bool pi_pending;
499 u16 posted_intr_nv;
f4124500
JK
500
501 struct hrtimer preemption_timer;
502 bool preemption_timer_expired;
2996fca0
JK
503
504 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
505 u64 vmcs01_debugctl;
b9c237bb 506
5c614b35
WL
507 u16 vpid02;
508 u16 last_vpid;
509
6677f3da 510 struct nested_vmx_msrs msrs;
72e9cbdb
LP
511
512 /* SMM related state */
513 struct {
514 /* in VMX operation on SMM entry? */
515 bool vmxon;
516 /* in guest mode on SMM entry? */
517 bool guest_mode;
518 } smm;
ec378aee
NHE
519};
520
01e439be 521#define POSTED_INTR_ON 0
ebbfc765
FW
522#define POSTED_INTR_SN 1
523
01e439be
YZ
524/* Posted-Interrupt Descriptor */
525struct pi_desc {
526 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
527 union {
528 struct {
529 /* bit 256 - Outstanding Notification */
530 u16 on : 1,
531 /* bit 257 - Suppress Notification */
532 sn : 1,
533 /* bit 271:258 - Reserved */
534 rsvd_1 : 14;
535 /* bit 279:272 - Notification Vector */
536 u8 nv;
537 /* bit 287:280 - Reserved */
538 u8 rsvd_2;
539 /* bit 319:288 - Notification Destination */
540 u32 ndst;
541 };
542 u64 control;
543 };
544 u32 rsvd[6];
01e439be
YZ
545} __aligned(64);
546
a20ed54d
YZ
547static bool pi_test_and_set_on(struct pi_desc *pi_desc)
548{
549 return test_and_set_bit(POSTED_INTR_ON,
550 (unsigned long *)&pi_desc->control);
551}
552
553static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
554{
555 return test_and_clear_bit(POSTED_INTR_ON,
556 (unsigned long *)&pi_desc->control);
557}
558
559static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
560{
561 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
562}
563
ebbfc765
FW
564static inline void pi_clear_sn(struct pi_desc *pi_desc)
565{
566 return clear_bit(POSTED_INTR_SN,
567 (unsigned long *)&pi_desc->control);
568}
569
570static inline void pi_set_sn(struct pi_desc *pi_desc)
571{
572 return set_bit(POSTED_INTR_SN,
573 (unsigned long *)&pi_desc->control);
574}
575
ad361091
PB
576static inline void pi_clear_on(struct pi_desc *pi_desc)
577{
578 clear_bit(POSTED_INTR_ON,
579 (unsigned long *)&pi_desc->control);
580}
581
ebbfc765
FW
582static inline int pi_test_on(struct pi_desc *pi_desc)
583{
584 return test_bit(POSTED_INTR_ON,
585 (unsigned long *)&pi_desc->control);
586}
587
588static inline int pi_test_sn(struct pi_desc *pi_desc)
589{
590 return test_bit(POSTED_INTR_SN,
591 (unsigned long *)&pi_desc->control);
592}
593
a2fa3e9f 594struct vcpu_vmx {
fb3f0f51 595 struct kvm_vcpu vcpu;
313dbd49 596 unsigned long host_rsp;
29bd8a78 597 u8 fail;
904e14fb 598 u8 msr_bitmap_mode;
51aa01d1 599 u32 exit_intr_info;
1155f76a 600 u32 idt_vectoring_info;
6de12732 601 ulong rflags;
26bb0981 602 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
603 int nmsrs;
604 int save_nmsrs;
a547c6db 605 unsigned long host_idt_base;
a2fa3e9f 606#ifdef CONFIG_X86_64
44ea2b17
AK
607 u64 msr_host_kernel_gs_base;
608 u64 msr_guest_kernel_gs_base;
a2fa3e9f 609#endif
15d45071 610
28c1c9fa 611 u64 arch_capabilities;
d28b387f 612 u64 spec_ctrl;
28c1c9fa 613
2961e876
GN
614 u32 vm_entry_controls_shadow;
615 u32 vm_exit_controls_shadow;
80154d77
PB
616 u32 secondary_exec_control;
617
d462b819
NHE
618 /*
619 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
620 * non-nested (L1) guest, it always points to vmcs01. For a nested
621 * guest (L2), it points to a different VMCS.
622 */
623 struct loaded_vmcs vmcs01;
624 struct loaded_vmcs *loaded_vmcs;
625 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
626 struct msr_autoload {
627 unsigned nr;
628 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
629 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
630 } msr_autoload;
a2fa3e9f
GH
631 struct {
632 int loaded;
633 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
634#ifdef CONFIG_X86_64
635 u16 ds_sel, es_sel;
636#endif
152d3f2f
LV
637 int gs_ldt_reload_needed;
638 int fs_reload_needed;
da8999d3 639 u64 msr_host_bndcfgs;
d77c26fc 640 } host_state;
9c8cba37 641 struct {
7ffd92c5 642 int vm86_active;
78ac8b47 643 ulong save_rflags;
f5f7b2fe
AK
644 struct kvm_segment segs[8];
645 } rmode;
646 struct {
647 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
648 struct kvm_save_segment {
649 u16 selector;
650 unsigned long base;
651 u32 limit;
652 u32 ar;
f5f7b2fe 653 } seg[8];
2fb92db1 654 } segment_cache;
2384d2b3 655 int vpid;
04fa4d32 656 bool emulation_required;
3b86cd99 657
a0861c02 658 u32 exit_reason;
4e47c7a6 659
01e439be
YZ
660 /* Posted interrupt descriptor */
661 struct pi_desc pi_desc;
662
ec378aee
NHE
663 /* Support for a guest hypervisor (nested VMX) */
664 struct nested_vmx nested;
a7653ecd
RK
665
666 /* Dynamic PLE window. */
667 int ple_window;
668 bool ple_window_dirty;
843e4330
KH
669
670 /* Support for PML */
671#define PML_ENTITY_NUM 512
672 struct page *pml_pg;
2680d6da 673
64672c95
YJ
674 /* apic deadline value in host tsc */
675 u64 hv_deadline_tsc;
676
2680d6da 677 u64 current_tsc_ratio;
1be0e61c 678
1be0e61c 679 u32 host_pkru;
3b84080b 680
74c55931
WL
681 unsigned long host_debugctlmsr;
682
37e4c997
HZ
683 /*
684 * Only bits masked by msr_ia32_feature_control_valid_bits can be set in
685 * msr_ia32_feature_control. FEATURE_CONTROL_LOCKED is always included
686 * in msr_ia32_feature_control_valid_bits.
687 */
3b84080b 688 u64 msr_ia32_feature_control;
37e4c997 689 u64 msr_ia32_feature_control_valid_bits;
a2fa3e9f
GH
690};
691
2fb92db1
AK
692enum segment_cache_field {
693 SEG_FIELD_SEL = 0,
694 SEG_FIELD_BASE = 1,
695 SEG_FIELD_LIMIT = 2,
696 SEG_FIELD_AR = 3,
697
698 SEG_FIELD_NR = 4
699};
700
40bbb9d0
SC
701static inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
702{
703 return container_of(kvm, struct kvm_vmx, kvm);
704}
705
a2fa3e9f
GH
706static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
707{
fb3f0f51 708 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
709}
710
efc64404
FW
711static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
712{
713 return &(to_vmx(vcpu)->pi_desc);
714}
715
58e9ffae 716#define ROL16(val, n) ((u16)(((u16)(val) << (n)) | ((u16)(val) >> (16 - (n)))))
22bd0358 717#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
58e9ffae
JM
718#define FIELD(number, name) [ROL16(number, 6)] = VMCS12_OFFSET(name)
719#define FIELD64(number, name) \
720 FIELD(number, name), \
721 [ROL16(number##_HIGH, 6)] = VMCS12_OFFSET(name) + sizeof(u32)
22bd0358 722
4607c2d7 723
44900ba6 724static u16 shadow_read_only_fields[] = {
c9e9deae
PB
725#define SHADOW_FIELD_RO(x) x,
726#include "vmx_shadow_fields.h"
4607c2d7 727};
fe2b201b 728static int max_shadow_read_only_fields =
4607c2d7
AG
729 ARRAY_SIZE(shadow_read_only_fields);
730
44900ba6 731static u16 shadow_read_write_fields[] = {
c9e9deae
PB
732#define SHADOW_FIELD_RW(x) x,
733#include "vmx_shadow_fields.h"
4607c2d7 734};
fe2b201b 735static int max_shadow_read_write_fields =
4607c2d7
AG
736 ARRAY_SIZE(shadow_read_write_fields);
737
772e0318 738static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 739 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 740 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
741 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
742 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
743 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
744 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
745 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
746 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
747 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
748 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 749 FIELD(GUEST_INTR_STATUS, guest_intr_status),
c5f983f6 750 FIELD(GUEST_PML_INDEX, guest_pml_index),
22bd0358
NHE
751 FIELD(HOST_ES_SELECTOR, host_es_selector),
752 FIELD(HOST_CS_SELECTOR, host_cs_selector),
753 FIELD(HOST_SS_SELECTOR, host_ss_selector),
754 FIELD(HOST_DS_SELECTOR, host_ds_selector),
755 FIELD(HOST_FS_SELECTOR, host_fs_selector),
756 FIELD(HOST_GS_SELECTOR, host_gs_selector),
757 FIELD(HOST_TR_SELECTOR, host_tr_selector),
758 FIELD64(IO_BITMAP_A, io_bitmap_a),
759 FIELD64(IO_BITMAP_B, io_bitmap_b),
760 FIELD64(MSR_BITMAP, msr_bitmap),
761 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
762 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
763 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
764 FIELD64(TSC_OFFSET, tsc_offset),
765 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
766 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 767 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
27c42a1b 768 FIELD64(VM_FUNCTION_CONTROL, vm_function_control),
22bd0358 769 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
770 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
771 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
772 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
773 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
41ab9372 774 FIELD64(EPTP_LIST_ADDRESS, eptp_list_address),
81dc01f7 775 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
776 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
777 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
c5f983f6 778 FIELD64(PML_ADDRESS, pml_address),
22bd0358
NHE
779 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
780 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
781 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
782 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
783 FIELD64(GUEST_PDPTR0, guest_pdptr0),
784 FIELD64(GUEST_PDPTR1, guest_pdptr1),
785 FIELD64(GUEST_PDPTR2, guest_pdptr2),
786 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 787 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
788 FIELD64(HOST_IA32_PAT, host_ia32_pat),
789 FIELD64(HOST_IA32_EFER, host_ia32_efer),
790 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
791 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
792 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
793 FIELD(EXCEPTION_BITMAP, exception_bitmap),
794 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
795 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
796 FIELD(CR3_TARGET_COUNT, cr3_target_count),
797 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
798 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
799 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
800 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
801 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
802 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
803 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
804 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
805 FIELD(TPR_THRESHOLD, tpr_threshold),
806 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
807 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
808 FIELD(VM_EXIT_REASON, vm_exit_reason),
809 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
810 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
811 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
812 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
813 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
814 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
815 FIELD(GUEST_ES_LIMIT, guest_es_limit),
816 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
817 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
818 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
819 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
820 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
821 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
822 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
823 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
824 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
825 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
826 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
827 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
828 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
829 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
830 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
831 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
832 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
833 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
834 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
835 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
836 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 837 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
838 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
839 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
840 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
841 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
842 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
843 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
844 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
845 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
846 FIELD(EXIT_QUALIFICATION, exit_qualification),
847 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
848 FIELD(GUEST_CR0, guest_cr0),
849 FIELD(GUEST_CR3, guest_cr3),
850 FIELD(GUEST_CR4, guest_cr4),
851 FIELD(GUEST_ES_BASE, guest_es_base),
852 FIELD(GUEST_CS_BASE, guest_cs_base),
853 FIELD(GUEST_SS_BASE, guest_ss_base),
854 FIELD(GUEST_DS_BASE, guest_ds_base),
855 FIELD(GUEST_FS_BASE, guest_fs_base),
856 FIELD(GUEST_GS_BASE, guest_gs_base),
857 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
858 FIELD(GUEST_TR_BASE, guest_tr_base),
859 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
860 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
861 FIELD(GUEST_DR7, guest_dr7),
862 FIELD(GUEST_RSP, guest_rsp),
863 FIELD(GUEST_RIP, guest_rip),
864 FIELD(GUEST_RFLAGS, guest_rflags),
865 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
866 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
867 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
868 FIELD(HOST_CR0, host_cr0),
869 FIELD(HOST_CR3, host_cr3),
870 FIELD(HOST_CR4, host_cr4),
871 FIELD(HOST_FS_BASE, host_fs_base),
872 FIELD(HOST_GS_BASE, host_gs_base),
873 FIELD(HOST_TR_BASE, host_tr_base),
874 FIELD(HOST_GDTR_BASE, host_gdtr_base),
875 FIELD(HOST_IDTR_BASE, host_idtr_base),
876 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
877 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
878 FIELD(HOST_RSP, host_rsp),
879 FIELD(HOST_RIP, host_rip),
880};
22bd0358
NHE
881
882static inline short vmcs_field_to_offset(unsigned long field)
883{
085331df
DW
884 const size_t size = ARRAY_SIZE(vmcs_field_to_offset_table);
885 unsigned short offset;
58e9ffae
JM
886 unsigned index;
887
888 if (field >> 15)
889 return -ENOENT;
a2ae9df7 890
58e9ffae 891 index = ROL16(field, 6);
15303ba5 892 if (index >= size)
75f139aa
AH
893 return -ENOENT;
894
15303ba5
LT
895 index = array_index_nospec(index, size);
896 offset = vmcs_field_to_offset_table[index];
085331df 897 if (offset == 0)
a2ae9df7 898 return -ENOENT;
085331df 899 return offset;
22bd0358
NHE
900}
901
a9d30f33
NHE
902static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
903{
4f2777bc 904 return to_vmx(vcpu)->nested.cached_vmcs12;
a9d30f33
NHE
905}
906
995f00a6 907static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu);
bfd0a56b 908static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
995f00a6 909static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa);
f53cd63c 910static bool vmx_xsaves_supported(void);
b246dd5d
OW
911static void vmx_set_segment(struct kvm_vcpu *vcpu,
912 struct kvm_segment *var, int seg);
913static void vmx_get_segment(struct kvm_vcpu *vcpu,
914 struct kvm_segment *var, int seg);
d99e4152
GN
915static bool guest_state_valid(struct kvm_vcpu *vcpu);
916static u32 vmx_segment_access_rights(struct kvm_segment *var);
16f5b903 917static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
b96fb439
PB
918static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
919static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
920static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
921 u16 error_code);
904e14fb 922static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu);
15d45071
AR
923static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
924 u32 msr, int type);
75880a01 925
6aa8b732
AK
926static DEFINE_PER_CPU(struct vmcs *, vmxarea);
927static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
928/*
929 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
930 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
931 */
932static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
6aa8b732 933
bf9f6ac8
FW
934/*
935 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
936 * can find which vCPU should be waken up.
937 */
938static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
939static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
940
23611332 941enum {
23611332
RK
942 VMX_VMREAD_BITMAP,
943 VMX_VMWRITE_BITMAP,
944 VMX_BITMAP_NR
945};
946
947static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
948
23611332
RK
949#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
950#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
fdef3ad1 951
110312c8 952static bool cpu_has_load_ia32_efer;
8bf00a52 953static bool cpu_has_load_perf_global_ctrl;
110312c8 954
2384d2b3
SY
955static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
956static DEFINE_SPINLOCK(vmx_vpid_lock);
957
1c3d14fe 958static struct vmcs_config {
6aa8b732
AK
959 int size;
960 int order;
9ac7e3e8 961 u32 basic_cap;
6aa8b732 962 u32 revision_id;
1c3d14fe
YS
963 u32 pin_based_exec_ctrl;
964 u32 cpu_based_exec_ctrl;
f78e0e2e 965 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
966 u32 vmexit_ctrl;
967 u32 vmentry_ctrl;
1389309c 968 struct nested_vmx_msrs nested;
1c3d14fe 969} vmcs_config;
6aa8b732 970
efff9e53 971static struct vmx_capability {
d56f546d
SY
972 u32 ept;
973 u32 vpid;
974} vmx_capability;
975
6aa8b732
AK
976#define VMX_SEGMENT_FIELD(seg) \
977 [VCPU_SREG_##seg] = { \
978 .selector = GUEST_##seg##_SELECTOR, \
979 .base = GUEST_##seg##_BASE, \
980 .limit = GUEST_##seg##_LIMIT, \
981 .ar_bytes = GUEST_##seg##_AR_BYTES, \
982 }
983
772e0318 984static const struct kvm_vmx_segment_field {
6aa8b732
AK
985 unsigned selector;
986 unsigned base;
987 unsigned limit;
988 unsigned ar_bytes;
989} kvm_vmx_segment_fields[] = {
990 VMX_SEGMENT_FIELD(CS),
991 VMX_SEGMENT_FIELD(DS),
992 VMX_SEGMENT_FIELD(ES),
993 VMX_SEGMENT_FIELD(FS),
994 VMX_SEGMENT_FIELD(GS),
995 VMX_SEGMENT_FIELD(SS),
996 VMX_SEGMENT_FIELD(TR),
997 VMX_SEGMENT_FIELD(LDTR),
998};
999
26bb0981
AK
1000static u64 host_efer;
1001
6de4f3ad
AK
1002static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
1003
4d56c8a7 1004/*
8c06585d 1005 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
1006 * away by decrementing the array size.
1007 */
6aa8b732 1008static const u32 vmx_msr_index[] = {
05b3e0c2 1009#ifdef CONFIG_X86_64
44ea2b17 1010 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 1011#endif
8c06585d 1012 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 1013};
6aa8b732 1014
773e8a04
VK
1015DEFINE_STATIC_KEY_FALSE(enable_evmcs);
1016
1017#define current_evmcs ((struct hv_enlightened_vmcs *)this_cpu_read(current_vmcs))
1018
1019#define KVM_EVMCS_VERSION 1
1020
1021#if IS_ENABLED(CONFIG_HYPERV)
1022static bool __read_mostly enlightened_vmcs = true;
1023module_param(enlightened_vmcs, bool, 0444);
1024
1025static inline void evmcs_write64(unsigned long field, u64 value)
1026{
1027 u16 clean_field;
1028 int offset = get_evmcs_offset(field, &clean_field);
1029
1030 if (offset < 0)
1031 return;
1032
1033 *(u64 *)((char *)current_evmcs + offset) = value;
1034
1035 current_evmcs->hv_clean_fields &= ~clean_field;
1036}
1037
1038static inline void evmcs_write32(unsigned long field, u32 value)
1039{
1040 u16 clean_field;
1041 int offset = get_evmcs_offset(field, &clean_field);
1042
1043 if (offset < 0)
1044 return;
1045
1046 *(u32 *)((char *)current_evmcs + offset) = value;
1047 current_evmcs->hv_clean_fields &= ~clean_field;
1048}
1049
1050static inline void evmcs_write16(unsigned long field, u16 value)
1051{
1052 u16 clean_field;
1053 int offset = get_evmcs_offset(field, &clean_field);
1054
1055 if (offset < 0)
1056 return;
1057
1058 *(u16 *)((char *)current_evmcs + offset) = value;
1059 current_evmcs->hv_clean_fields &= ~clean_field;
1060}
1061
1062static inline u64 evmcs_read64(unsigned long field)
1063{
1064 int offset = get_evmcs_offset(field, NULL);
1065
1066 if (offset < 0)
1067 return 0;
1068
1069 return *(u64 *)((char *)current_evmcs + offset);
1070}
1071
1072static inline u32 evmcs_read32(unsigned long field)
1073{
1074 int offset = get_evmcs_offset(field, NULL);
1075
1076 if (offset < 0)
1077 return 0;
1078
1079 return *(u32 *)((char *)current_evmcs + offset);
1080}
1081
1082static inline u16 evmcs_read16(unsigned long field)
1083{
1084 int offset = get_evmcs_offset(field, NULL);
1085
1086 if (offset < 0)
1087 return 0;
1088
1089 return *(u16 *)((char *)current_evmcs + offset);
1090}
1091
1092static void evmcs_load(u64 phys_addr)
1093{
1094 struct hv_vp_assist_page *vp_ap =
1095 hv_get_vp_assist_page(smp_processor_id());
1096
1097 vp_ap->current_nested_vmcs = phys_addr;
1098 vp_ap->enlighten_vmentry = 1;
1099}
1100
1101static void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf)
1102{
1103 /*
1104 * Enlightened VMCSv1 doesn't support these:
1105 *
1106 * POSTED_INTR_NV = 0x00000002,
1107 * GUEST_INTR_STATUS = 0x00000810,
1108 * APIC_ACCESS_ADDR = 0x00002014,
1109 * POSTED_INTR_DESC_ADDR = 0x00002016,
1110 * EOI_EXIT_BITMAP0 = 0x0000201c,
1111 * EOI_EXIT_BITMAP1 = 0x0000201e,
1112 * EOI_EXIT_BITMAP2 = 0x00002020,
1113 * EOI_EXIT_BITMAP3 = 0x00002022,
1114 */
1115 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
1116 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1117 ~SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1118 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1119 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1120 vmcs_conf->cpu_based_2nd_exec_ctrl &=
1121 ~SECONDARY_EXEC_APIC_REGISTER_VIRT;
1122
1123 /*
1124 * GUEST_PML_INDEX = 0x00000812,
1125 * PML_ADDRESS = 0x0000200e,
1126 */
1127 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_PML;
1128
1129 /* VM_FUNCTION_CONTROL = 0x00002018, */
1130 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_ENABLE_VMFUNC;
1131
1132 /*
1133 * EPTP_LIST_ADDRESS = 0x00002024,
1134 * VMREAD_BITMAP = 0x00002026,
1135 * VMWRITE_BITMAP = 0x00002028,
1136 */
1137 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_SHADOW_VMCS;
1138
1139 /*
1140 * TSC_MULTIPLIER = 0x00002032,
1141 */
1142 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_TSC_SCALING;
1143
1144 /*
1145 * PLE_GAP = 0x00004020,
1146 * PLE_WINDOW = 0x00004022,
1147 */
1148 vmcs_conf->cpu_based_2nd_exec_ctrl &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1149
1150 /*
1151 * VMX_PREEMPTION_TIMER_VALUE = 0x0000482E,
1152 */
1153 vmcs_conf->pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
1154
1155 /*
1156 * GUEST_IA32_PERF_GLOBAL_CTRL = 0x00002808,
1157 * HOST_IA32_PERF_GLOBAL_CTRL = 0x00002c04,
1158 */
1159 vmcs_conf->vmexit_ctrl &= ~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
1160 vmcs_conf->vmentry_ctrl &= ~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
1161
1162 /*
1163 * Currently unsupported in KVM:
1164 * GUEST_IA32_RTIT_CTL = 0x00002814,
1165 */
1166}
1167#else /* !IS_ENABLED(CONFIG_HYPERV) */
1168static inline void evmcs_write64(unsigned long field, u64 value) {}
1169static inline void evmcs_write32(unsigned long field, u32 value) {}
1170static inline void evmcs_write16(unsigned long field, u16 value) {}
1171static inline u64 evmcs_read64(unsigned long field) { return 0; }
1172static inline u32 evmcs_read32(unsigned long field) { return 0; }
1173static inline u16 evmcs_read16(unsigned long field) { return 0; }
1174static inline void evmcs_load(u64 phys_addr) {}
1175static inline void evmcs_sanitize_exec_ctrls(struct vmcs_config *vmcs_conf) {}
1176#endif /* IS_ENABLED(CONFIG_HYPERV) */
1177
5bb16016 1178static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
1179{
1180 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1181 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
1182 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
1183}
1184
6f05485d
JK
1185static inline bool is_debug(u32 intr_info)
1186{
1187 return is_exception_n(intr_info, DB_VECTOR);
1188}
1189
1190static inline bool is_breakpoint(u32 intr_info)
1191{
1192 return is_exception_n(intr_info, BP_VECTOR);
1193}
1194
5bb16016
JK
1195static inline bool is_page_fault(u32 intr_info)
1196{
1197 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
1198}
1199
31299944 1200static inline bool is_no_device(u32 intr_info)
2ab455cc 1201{
5bb16016 1202 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
1203}
1204
31299944 1205static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 1206{
5bb16016 1207 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
1208}
1209
9e869480
LA
1210static inline bool is_gp_fault(u32 intr_info)
1211{
1212 return is_exception_n(intr_info, GP_VECTOR);
1213}
1214
31299944 1215static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1216{
1217 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1218 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1219}
1220
31299944 1221static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1222{
1223 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1224 INTR_INFO_VALID_MASK)) ==
1225 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1226}
1227
32d43cd3
LT
1228/* Undocumented: icebp/int1 */
1229static inline bool is_icebp(u32 intr_info)
1230{
1231 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1232 == (INTR_TYPE_PRIV_SW_EXCEPTION | INTR_INFO_VALID_MASK);
1233}
1234
31299944 1235static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1236{
04547156 1237 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1238}
1239
31299944 1240static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1241{
04547156 1242 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1243}
1244
35754c98 1245static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1246{
35754c98 1247 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1248}
1249
31299944 1250static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1251{
04547156
SY
1252 return vmcs_config.cpu_based_exec_ctrl &
1253 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1254}
1255
774ead3a 1256static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1257{
04547156
SY
1258 return vmcs_config.cpu_based_2nd_exec_ctrl &
1259 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1260}
1261
8d14695f
YZ
1262static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1263{
1264 return vmcs_config.cpu_based_2nd_exec_ctrl &
1265 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1266}
1267
83d4c286
YZ
1268static inline bool cpu_has_vmx_apic_register_virt(void)
1269{
1270 return vmcs_config.cpu_based_2nd_exec_ctrl &
1271 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1272}
1273
c7c9c56c
YZ
1274static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1275{
1276 return vmcs_config.cpu_based_2nd_exec_ctrl &
1277 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1278}
1279
64672c95
YJ
1280/*
1281 * Comment's format: document - errata name - stepping - processor name.
1282 * Refer from
1283 * https://www.virtualbox.org/svn/vbox/trunk/src/VBox/VMM/VMMR0/HMR0.cpp
1284 */
1285static u32 vmx_preemption_cpu_tfms[] = {
1286/* 323344.pdf - BA86 - D0 - Xeon 7500 Series */
12870x000206E6,
1288/* 323056.pdf - AAX65 - C2 - Xeon L3406 */
1289/* 322814.pdf - AAT59 - C2 - i7-600, i5-500, i5-400 and i3-300 Mobile */
1290/* 322911.pdf - AAU65 - C2 - i5-600, i3-500 Desktop and Pentium G6950 */
12910x00020652,
1292/* 322911.pdf - AAU65 - K0 - i5-600, i3-500 Desktop and Pentium G6950 */
12930x00020655,
1294/* 322373.pdf - AAO95 - B1 - Xeon 3400 Series */
1295/* 322166.pdf - AAN92 - B1 - i7-800 and i5-700 Desktop */
1296/*
1297 * 320767.pdf - AAP86 - B1 -
1298 * i7-900 Mobile Extreme, i7-800 and i7-700 Mobile
1299 */
13000x000106E5,
1301/* 321333.pdf - AAM126 - C0 - Xeon 3500 */
13020x000106A0,
1303/* 321333.pdf - AAM126 - C1 - Xeon 3500 */
13040x000106A1,
1305/* 320836.pdf - AAJ124 - C0 - i7-900 Desktop Extreme and i7-900 Desktop */
13060x000106A4,
1307 /* 321333.pdf - AAM126 - D0 - Xeon 3500 */
1308 /* 321324.pdf - AAK139 - D0 - Xeon 5500 */
1309 /* 320836.pdf - AAJ124 - D0 - i7-900 Extreme and i7-900 Desktop */
13100x000106A5,
1311};
1312
1313static inline bool cpu_has_broken_vmx_preemption_timer(void)
1314{
1315 u32 eax = cpuid_eax(0x00000001), i;
1316
1317 /* Clear the reserved bits */
1318 eax &= ~(0x3U << 14 | 0xfU << 28);
03f6a22a 1319 for (i = 0; i < ARRAY_SIZE(vmx_preemption_cpu_tfms); i++)
64672c95
YJ
1320 if (eax == vmx_preemption_cpu_tfms[i])
1321 return true;
1322
1323 return false;
1324}
1325
1326static inline bool cpu_has_vmx_preemption_timer(void)
1327{
64672c95
YJ
1328 return vmcs_config.pin_based_exec_ctrl &
1329 PIN_BASED_VMX_PREEMPTION_TIMER;
1330}
1331
01e439be
YZ
1332static inline bool cpu_has_vmx_posted_intr(void)
1333{
d6a858d1
PB
1334 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1335 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1336}
1337
1338static inline bool cpu_has_vmx_apicv(void)
1339{
1340 return cpu_has_vmx_apic_register_virt() &&
1341 cpu_has_vmx_virtual_intr_delivery() &&
1342 cpu_has_vmx_posted_intr();
1343}
1344
04547156
SY
1345static inline bool cpu_has_vmx_flexpriority(void)
1346{
1347 return cpu_has_vmx_tpr_shadow() &&
1348 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1349}
1350
e799794e
MT
1351static inline bool cpu_has_vmx_ept_execute_only(void)
1352{
31299944 1353 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1354}
1355
e799794e
MT
1356static inline bool cpu_has_vmx_ept_2m_page(void)
1357{
31299944 1358 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1359}
1360
878403b7
SY
1361static inline bool cpu_has_vmx_ept_1g_page(void)
1362{
31299944 1363 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1364}
1365
4bc9b982
SY
1366static inline bool cpu_has_vmx_ept_4levels(void)
1367{
1368 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1369}
1370
42aa53b4
DH
1371static inline bool cpu_has_vmx_ept_mt_wb(void)
1372{
1373 return vmx_capability.ept & VMX_EPTP_WB_BIT;
1374}
1375
855feb67
YZ
1376static inline bool cpu_has_vmx_ept_5levels(void)
1377{
1378 return vmx_capability.ept & VMX_EPT_PAGE_WALK_5_BIT;
1379}
1380
83c3a331
XH
1381static inline bool cpu_has_vmx_ept_ad_bits(void)
1382{
1383 return vmx_capability.ept & VMX_EPT_AD_BIT;
1384}
1385
31299944 1386static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1387{
31299944 1388 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1389}
1390
31299944 1391static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1392{
31299944 1393 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1394}
1395
518c8aee
GJ
1396static inline bool cpu_has_vmx_invvpid_single(void)
1397{
1398 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1399}
1400
b9d762fa
GJ
1401static inline bool cpu_has_vmx_invvpid_global(void)
1402{
1403 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1404}
1405
08d839c4
WL
1406static inline bool cpu_has_vmx_invvpid(void)
1407{
1408 return vmx_capability.vpid & VMX_VPID_INVVPID_BIT;
1409}
1410
31299944 1411static inline bool cpu_has_vmx_ept(void)
d56f546d 1412{
04547156
SY
1413 return vmcs_config.cpu_based_2nd_exec_ctrl &
1414 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1415}
1416
31299944 1417static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1418{
1419 return vmcs_config.cpu_based_2nd_exec_ctrl &
1420 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1421}
1422
31299944 1423static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1424{
1425 return vmcs_config.cpu_based_2nd_exec_ctrl &
1426 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1427}
1428
9ac7e3e8
JD
1429static inline bool cpu_has_vmx_basic_inout(void)
1430{
1431 return (((u64)vmcs_config.basic_cap << 32) & VMX_BASIC_INOUT);
1432}
1433
35754c98 1434static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1435{
35754c98 1436 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1437}
1438
31299944 1439static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1440{
04547156
SY
1441 return vmcs_config.cpu_based_2nd_exec_ctrl &
1442 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1443}
1444
31299944 1445static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1446{
1447 return vmcs_config.cpu_based_2nd_exec_ctrl &
1448 SECONDARY_EXEC_RDTSCP;
1449}
1450
ad756a16
MJ
1451static inline bool cpu_has_vmx_invpcid(void)
1452{
1453 return vmcs_config.cpu_based_2nd_exec_ctrl &
1454 SECONDARY_EXEC_ENABLE_INVPCID;
1455}
1456
8a1b4392
PB
1457static inline bool cpu_has_virtual_nmis(void)
1458{
1459 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1460}
1461
f5f48ee1
SY
1462static inline bool cpu_has_vmx_wbinvd_exit(void)
1463{
1464 return vmcs_config.cpu_based_2nd_exec_ctrl &
1465 SECONDARY_EXEC_WBINVD_EXITING;
1466}
1467
abc4fc58
AG
1468static inline bool cpu_has_vmx_shadow_vmcs(void)
1469{
1470 u64 vmx_msr;
1471 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1472 /* check if the cpu supports writing r/o exit information fields */
1473 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1474 return false;
1475
1476 return vmcs_config.cpu_based_2nd_exec_ctrl &
1477 SECONDARY_EXEC_SHADOW_VMCS;
1478}
1479
843e4330
KH
1480static inline bool cpu_has_vmx_pml(void)
1481{
1482 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1483}
1484
64903d61
HZ
1485static inline bool cpu_has_vmx_tsc_scaling(void)
1486{
1487 return vmcs_config.cpu_based_2nd_exec_ctrl &
1488 SECONDARY_EXEC_TSC_SCALING;
1489}
1490
2a499e49
BD
1491static inline bool cpu_has_vmx_vmfunc(void)
1492{
1493 return vmcs_config.cpu_based_2nd_exec_ctrl &
1494 SECONDARY_EXEC_ENABLE_VMFUNC;
1495}
1496
04547156
SY
1497static inline bool report_flexpriority(void)
1498{
1499 return flexpriority_enabled;
1500}
1501
c7c2c709
JM
1502static inline unsigned nested_cpu_vmx_misc_cr3_count(struct kvm_vcpu *vcpu)
1503{
6677f3da 1504 return vmx_misc_cr3_count(to_vmx(vcpu)->nested.msrs.misc_low);
c7c2c709
JM
1505}
1506
fe3ef05c
NHE
1507static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1508{
1509 return vmcs12->cpu_based_vm_exec_control & bit;
1510}
1511
1512static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1513{
1514 return (vmcs12->cpu_based_vm_exec_control &
1515 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1516 (vmcs12->secondary_vm_exec_control & bit);
1517}
1518
f4124500
JK
1519static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1520{
1521 return vmcs12->pin_based_vm_exec_control &
1522 PIN_BASED_VMX_PREEMPTION_TIMER;
1523}
1524
0c7f650e
KS
1525static inline bool nested_cpu_has_nmi_exiting(struct vmcs12 *vmcs12)
1526{
1527 return vmcs12->pin_based_vm_exec_control & PIN_BASED_NMI_EXITING;
1528}
1529
1530static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
1531{
1532 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1533}
1534
155a97a3
NHE
1535static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1536{
1537 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1538}
1539
81dc01f7
WL
1540static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1541{
3db13480 1542 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
81dc01f7
WL
1543}
1544
c5f983f6
BD
1545static inline bool nested_cpu_has_pml(struct vmcs12 *vmcs12)
1546{
1547 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML);
1548}
1549
f2b93280
WV
1550static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1551{
1552 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1553}
1554
5c614b35
WL
1555static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1556{
1557 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1558}
1559
82f0dd4b
WV
1560static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1561{
1562 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1563}
1564
608406e2
WV
1565static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1566{
1567 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1568}
1569
705699a1
WV
1570static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1571{
1572 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1573}
1574
27c42a1b
BD
1575static inline bool nested_cpu_has_vmfunc(struct vmcs12 *vmcs12)
1576{
1577 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VMFUNC);
1578}
1579
41ab9372
BD
1580static inline bool nested_cpu_has_eptp_switching(struct vmcs12 *vmcs12)
1581{
1582 return nested_cpu_has_vmfunc(vmcs12) &&
1583 (vmcs12->vm_function_control &
1584 VMX_VMFUNC_EPTP_SWITCHING);
1585}
1586
ef85b673 1587static inline bool is_nmi(u32 intr_info)
644d711a
NHE
1588{
1589 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
ef85b673 1590 == (INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK);
644d711a
NHE
1591}
1592
533558bc
JK
1593static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1594 u32 exit_intr_info,
1595 unsigned long exit_qualification);
7c177938
NHE
1596static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1597 struct vmcs12 *vmcs12,
1598 u32 reason, unsigned long qualification);
1599
8b9cf98c 1600static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1601{
1602 int i;
1603
a2fa3e9f 1604 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1605 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1606 return i;
1607 return -1;
1608}
1609
2384d2b3
SY
1610static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1611{
1612 struct {
1613 u64 vpid : 16;
1614 u64 rsvd : 48;
1615 u64 gva;
1616 } operand = { vpid, 0, gva };
1617
4ecac3fd 1618 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1619 /* CF==1 or ZF==1 --> rc = -1 */
1620 "; ja 1f ; ud2 ; 1:"
1621 : : "a"(&operand), "c"(ext) : "cc", "memory");
1622}
1623
1439442c
SY
1624static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1625{
1626 struct {
1627 u64 eptp, gpa;
1628 } operand = {eptp, gpa};
1629
4ecac3fd 1630 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1631 /* CF==1 or ZF==1 --> rc = -1 */
1632 "; ja 1f ; ud2 ; 1:\n"
1633 : : "a" (&operand), "c" (ext) : "cc", "memory");
1634}
1635
26bb0981 1636static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1637{
1638 int i;
1639
8b9cf98c 1640 i = __find_msr_index(vmx, msr);
a75beee6 1641 if (i >= 0)
a2fa3e9f 1642 return &vmx->guest_msrs[i];
8b6d44c7 1643 return NULL;
7725f0ba
AK
1644}
1645
6aa8b732
AK
1646static void vmcs_clear(struct vmcs *vmcs)
1647{
1648 u64 phys_addr = __pa(vmcs);
1649 u8 error;
1650
4ecac3fd 1651 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1652 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1653 : "cc", "memory");
1654 if (error)
1655 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1656 vmcs, phys_addr);
1657}
1658
d462b819
NHE
1659static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1660{
1661 vmcs_clear(loaded_vmcs->vmcs);
355f4fb1
JM
1662 if (loaded_vmcs->shadow_vmcs && loaded_vmcs->launched)
1663 vmcs_clear(loaded_vmcs->shadow_vmcs);
d462b819
NHE
1664 loaded_vmcs->cpu = -1;
1665 loaded_vmcs->launched = 0;
1666}
1667
7725b894
DX
1668static void vmcs_load(struct vmcs *vmcs)
1669{
1670 u64 phys_addr = __pa(vmcs);
1671 u8 error;
1672
773e8a04
VK
1673 if (static_branch_unlikely(&enable_evmcs))
1674 return evmcs_load(phys_addr);
1675
7725b894 1676 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1677 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1678 : "cc", "memory");
1679 if (error)
2844d849 1680 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1681 vmcs, phys_addr);
1682}
1683
2965faa5 1684#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1685/*
1686 * This bitmap is used to indicate whether the vmclear
1687 * operation is enabled on all cpus. All disabled by
1688 * default.
1689 */
1690static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1691
1692static inline void crash_enable_local_vmclear(int cpu)
1693{
1694 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1695}
1696
1697static inline void crash_disable_local_vmclear(int cpu)
1698{
1699 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1700}
1701
1702static inline int crash_local_vmclear_enabled(int cpu)
1703{
1704 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1705}
1706
1707static void crash_vmclear_local_loaded_vmcss(void)
1708{
1709 int cpu = raw_smp_processor_id();
1710 struct loaded_vmcs *v;
1711
1712 if (!crash_local_vmclear_enabled(cpu))
1713 return;
1714
1715 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1716 loaded_vmcss_on_cpu_link)
1717 vmcs_clear(v->vmcs);
1718}
1719#else
1720static inline void crash_enable_local_vmclear(int cpu) { }
1721static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1722#endif /* CONFIG_KEXEC_CORE */
8f536b76 1723
d462b819 1724static void __loaded_vmcs_clear(void *arg)
6aa8b732 1725{
d462b819 1726 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1727 int cpu = raw_smp_processor_id();
6aa8b732 1728
d462b819
NHE
1729 if (loaded_vmcs->cpu != cpu)
1730 return; /* vcpu migration can race with cpu offline */
1731 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1732 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1733 crash_disable_local_vmclear(cpu);
d462b819 1734 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1735
1736 /*
1737 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1738 * is before setting loaded_vmcs->vcpu to -1 which is done in
1739 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1740 * then adds the vmcs into percpu list before it is deleted.
1741 */
1742 smp_wmb();
1743
d462b819 1744 loaded_vmcs_init(loaded_vmcs);
8f536b76 1745 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1746}
1747
d462b819 1748static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1749{
e6c7d321
XG
1750 int cpu = loaded_vmcs->cpu;
1751
1752 if (cpu != -1)
1753 smp_call_function_single(cpu,
1754 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1755}
1756
dd5f5341 1757static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1758{
dd5f5341 1759 if (vpid == 0)
2384d2b3
SY
1760 return;
1761
518c8aee 1762 if (cpu_has_vmx_invvpid_single())
dd5f5341 1763 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1764}
1765
b9d762fa
GJ
1766static inline void vpid_sync_vcpu_global(void)
1767{
1768 if (cpu_has_vmx_invvpid_global())
1769 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1770}
1771
dd5f5341 1772static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1773{
1774 if (cpu_has_vmx_invvpid_single())
dd5f5341 1775 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1776 else
1777 vpid_sync_vcpu_global();
1778}
1779
1439442c
SY
1780static inline void ept_sync_global(void)
1781{
f5f51586 1782 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1439442c
SY
1783}
1784
1785static inline void ept_sync_context(u64 eptp)
1786{
0e1252dc
DH
1787 if (cpu_has_vmx_invept_context())
1788 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1789 else
1790 ept_sync_global();
1439442c
SY
1791}
1792
8a86aea9
PB
1793static __always_inline void vmcs_check16(unsigned long field)
1794{
1795 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1796 "16-bit accessor invalid for 64-bit field");
1797 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1798 "16-bit accessor invalid for 64-bit high field");
1799 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1800 "16-bit accessor invalid for 32-bit high field");
1801 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1802 "16-bit accessor invalid for natural width field");
1803}
1804
1805static __always_inline void vmcs_check32(unsigned long field)
1806{
1807 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1808 "32-bit accessor invalid for 16-bit field");
1809 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1810 "32-bit accessor invalid for natural width field");
1811}
1812
1813static __always_inline void vmcs_check64(unsigned long field)
1814{
1815 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1816 "64-bit accessor invalid for 16-bit field");
1817 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1818 "64-bit accessor invalid for 64-bit high field");
1819 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1820 "64-bit accessor invalid for 32-bit field");
1821 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1822 "64-bit accessor invalid for natural width field");
1823}
1824
1825static __always_inline void vmcs_checkl(unsigned long field)
1826{
1827 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1828 "Natural width accessor invalid for 16-bit field");
1829 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1830 "Natural width accessor invalid for 64-bit field");
1831 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1832 "Natural width accessor invalid for 64-bit high field");
1833 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1834 "Natural width accessor invalid for 32-bit field");
1835}
1836
1837static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1838{
5e520e62 1839 unsigned long value;
6aa8b732 1840
5e520e62
AK
1841 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1842 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1843 return value;
1844}
1845
96304217 1846static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1847{
8a86aea9 1848 vmcs_check16(field);
773e8a04
VK
1849 if (static_branch_unlikely(&enable_evmcs))
1850 return evmcs_read16(field);
8a86aea9 1851 return __vmcs_readl(field);
6aa8b732
AK
1852}
1853
96304217 1854static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1855{
8a86aea9 1856 vmcs_check32(field);
773e8a04
VK
1857 if (static_branch_unlikely(&enable_evmcs))
1858 return evmcs_read32(field);
8a86aea9 1859 return __vmcs_readl(field);
6aa8b732
AK
1860}
1861
96304217 1862static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1863{
8a86aea9 1864 vmcs_check64(field);
773e8a04
VK
1865 if (static_branch_unlikely(&enable_evmcs))
1866 return evmcs_read64(field);
05b3e0c2 1867#ifdef CONFIG_X86_64
8a86aea9 1868 return __vmcs_readl(field);
6aa8b732 1869#else
8a86aea9 1870 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1871#endif
1872}
1873
8a86aea9
PB
1874static __always_inline unsigned long vmcs_readl(unsigned long field)
1875{
1876 vmcs_checkl(field);
773e8a04
VK
1877 if (static_branch_unlikely(&enable_evmcs))
1878 return evmcs_read64(field);
8a86aea9
PB
1879 return __vmcs_readl(field);
1880}
1881
e52de1b8
AK
1882static noinline void vmwrite_error(unsigned long field, unsigned long value)
1883{
1884 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1885 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1886 dump_stack();
1887}
1888
8a86aea9 1889static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1890{
1891 u8 error;
1892
4ecac3fd 1893 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1894 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1895 if (unlikely(error))
1896 vmwrite_error(field, value);
6aa8b732
AK
1897}
1898
8a86aea9 1899static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1900{
8a86aea9 1901 vmcs_check16(field);
773e8a04
VK
1902 if (static_branch_unlikely(&enable_evmcs))
1903 return evmcs_write16(field, value);
1904
8a86aea9 1905 __vmcs_writel(field, value);
6aa8b732
AK
1906}
1907
8a86aea9 1908static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1909{
8a86aea9 1910 vmcs_check32(field);
773e8a04
VK
1911 if (static_branch_unlikely(&enable_evmcs))
1912 return evmcs_write32(field, value);
1913
8a86aea9 1914 __vmcs_writel(field, value);
6aa8b732
AK
1915}
1916
8a86aea9 1917static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1918{
8a86aea9 1919 vmcs_check64(field);
773e8a04
VK
1920 if (static_branch_unlikely(&enable_evmcs))
1921 return evmcs_write64(field, value);
1922
8a86aea9 1923 __vmcs_writel(field, value);
7682f2d0 1924#ifndef CONFIG_X86_64
6aa8b732 1925 asm volatile ("");
8a86aea9 1926 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1927#endif
1928}
1929
8a86aea9 1930static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1931{
8a86aea9 1932 vmcs_checkl(field);
773e8a04
VK
1933 if (static_branch_unlikely(&enable_evmcs))
1934 return evmcs_write64(field, value);
1935
8a86aea9 1936 __vmcs_writel(field, value);
2ab455cc
AL
1937}
1938
8a86aea9 1939static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1940{
8a86aea9
PB
1941 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1942 "vmcs_clear_bits does not support 64-bit fields");
773e8a04
VK
1943 if (static_branch_unlikely(&enable_evmcs))
1944 return evmcs_write32(field, evmcs_read32(field) & ~mask);
1945
8a86aea9 1946 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1947}
1948
8a86aea9 1949static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1950{
8a86aea9
PB
1951 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1952 "vmcs_set_bits does not support 64-bit fields");
773e8a04
VK
1953 if (static_branch_unlikely(&enable_evmcs))
1954 return evmcs_write32(field, evmcs_read32(field) | mask);
1955
8a86aea9 1956 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1957}
1958
8391ce44
PB
1959static inline void vm_entry_controls_reset_shadow(struct vcpu_vmx *vmx)
1960{
1961 vmx->vm_entry_controls_shadow = vmcs_read32(VM_ENTRY_CONTROLS);
1962}
1963
2961e876
GN
1964static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1965{
1966 vmcs_write32(VM_ENTRY_CONTROLS, val);
1967 vmx->vm_entry_controls_shadow = val;
1968}
1969
1970static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1971{
1972 if (vmx->vm_entry_controls_shadow != val)
1973 vm_entry_controls_init(vmx, val);
1974}
1975
1976static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1977{
1978 return vmx->vm_entry_controls_shadow;
1979}
1980
1981
1982static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1983{
1984 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1985}
1986
1987static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1988{
1989 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1990}
1991
8391ce44
PB
1992static inline void vm_exit_controls_reset_shadow(struct vcpu_vmx *vmx)
1993{
1994 vmx->vm_exit_controls_shadow = vmcs_read32(VM_EXIT_CONTROLS);
1995}
1996
2961e876
GN
1997static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1998{
1999 vmcs_write32(VM_EXIT_CONTROLS, val);
2000 vmx->vm_exit_controls_shadow = val;
2001}
2002
2003static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
2004{
2005 if (vmx->vm_exit_controls_shadow != val)
2006 vm_exit_controls_init(vmx, val);
2007}
2008
2009static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
2010{
2011 return vmx->vm_exit_controls_shadow;
2012}
2013
2014
2015static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
2016{
2017 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
2018}
2019
2020static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
2021{
2022 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
2023}
2024
2fb92db1
AK
2025static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
2026{
2027 vmx->segment_cache.bitmask = 0;
2028}
2029
2030static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
2031 unsigned field)
2032{
2033 bool ret;
2034 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
2035
2036 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
2037 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
2038 vmx->segment_cache.bitmask = 0;
2039 }
2040 ret = vmx->segment_cache.bitmask & mask;
2041 vmx->segment_cache.bitmask |= mask;
2042 return ret;
2043}
2044
2045static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
2046{
2047 u16 *p = &vmx->segment_cache.seg[seg].selector;
2048
2049 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
2050 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
2051 return *p;
2052}
2053
2054static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
2055{
2056 ulong *p = &vmx->segment_cache.seg[seg].base;
2057
2058 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
2059 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
2060 return *p;
2061}
2062
2063static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
2064{
2065 u32 *p = &vmx->segment_cache.seg[seg].limit;
2066
2067 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
2068 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
2069 return *p;
2070}
2071
2072static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
2073{
2074 u32 *p = &vmx->segment_cache.seg[seg].ar;
2075
2076 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
2077 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
2078 return *p;
2079}
2080
abd3f2d6
AK
2081static void update_exception_bitmap(struct kvm_vcpu *vcpu)
2082{
2083 u32 eb;
2084
fd7373cc 2085 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
bd7e5b08 2086 (1u << DB_VECTOR) | (1u << AC_VECTOR);
9e869480
LA
2087 /*
2088 * Guest access to VMware backdoor ports could legitimately
2089 * trigger #GP because of TSS I/O permission bitmap.
2090 * We intercept those #GP and allow access to them anyway
2091 * as VMware does.
2092 */
2093 if (enable_vmware_backdoor)
2094 eb |= (1u << GP_VECTOR);
fd7373cc
JK
2095 if ((vcpu->guest_debug &
2096 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
2097 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
2098 eb |= 1u << BP_VECTOR;
7ffd92c5 2099 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 2100 eb = ~0;
089d034e 2101 if (enable_ept)
1439442c 2102 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
36cf24e0
NHE
2103
2104 /* When we are running a nested L2 guest and L1 specified for it a
2105 * certain exception bitmap, we must trap the same exceptions and pass
2106 * them to L1. When running L2, we will only handle the exceptions
2107 * specified above if L1 did not want them.
2108 */
2109 if (is_guest_mode(vcpu))
2110 eb |= get_vmcs12(vcpu)->exception_bitmap;
2111
abd3f2d6
AK
2112 vmcs_write32(EXCEPTION_BITMAP, eb);
2113}
2114
d28b387f
KA
2115/*
2116 * Check if MSR is intercepted for currently loaded MSR bitmap.
2117 */
2118static bool msr_write_intercepted(struct kvm_vcpu *vcpu, u32 msr)
2119{
2120 unsigned long *msr_bitmap;
2121 int f = sizeof(unsigned long);
2122
2123 if (!cpu_has_vmx_msr_bitmap())
2124 return true;
2125
2126 msr_bitmap = to_vmx(vcpu)->loaded_vmcs->msr_bitmap;
2127
2128 if (msr <= 0x1fff) {
2129 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2130 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2131 msr &= 0x1fff;
2132 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2133 }
2134
2135 return true;
2136}
2137
15d45071
AR
2138/*
2139 * Check if MSR is intercepted for L01 MSR bitmap.
2140 */
2141static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
2142{
2143 unsigned long *msr_bitmap;
2144 int f = sizeof(unsigned long);
2145
2146 if (!cpu_has_vmx_msr_bitmap())
2147 return true;
2148
2149 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
2150
2151 if (msr <= 0x1fff) {
2152 return !!test_bit(msr, msr_bitmap + 0x800 / f);
2153 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
2154 msr &= 0x1fff;
2155 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
2156 }
2157
2158 return true;
2159}
2160
2961e876
GN
2161static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2162 unsigned long entry, unsigned long exit)
8bf00a52 2163{
2961e876
GN
2164 vm_entry_controls_clearbit(vmx, entry);
2165 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
2166}
2167
61d2ef2c
AK
2168static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
2169{
2170 unsigned i;
2171 struct msr_autoload *m = &vmx->msr_autoload;
2172
8bf00a52
GN
2173 switch (msr) {
2174 case MSR_EFER:
2175 if (cpu_has_load_ia32_efer) {
2961e876
GN
2176 clear_atomic_switch_msr_special(vmx,
2177 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
2178 VM_EXIT_LOAD_IA32_EFER);
2179 return;
2180 }
2181 break;
2182 case MSR_CORE_PERF_GLOBAL_CTRL:
2183 if (cpu_has_load_perf_global_ctrl) {
2961e876 2184 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
2185 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2186 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2187 return;
2188 }
2189 break;
110312c8
AK
2190 }
2191
61d2ef2c
AK
2192 for (i = 0; i < m->nr; ++i)
2193 if (m->guest[i].index == msr)
2194 break;
2195
2196 if (i == m->nr)
2197 return;
2198 --m->nr;
2199 m->guest[i] = m->guest[m->nr];
2200 m->host[i] = m->host[m->nr];
2201 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2202 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2203}
2204
2961e876
GN
2205static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
2206 unsigned long entry, unsigned long exit,
2207 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
2208 u64 guest_val, u64 host_val)
8bf00a52
GN
2209{
2210 vmcs_write64(guest_val_vmcs, guest_val);
2211 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
2212 vm_entry_controls_setbit(vmx, entry);
2213 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
2214}
2215
61d2ef2c
AK
2216static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
2217 u64 guest_val, u64 host_val)
2218{
2219 unsigned i;
2220 struct msr_autoload *m = &vmx->msr_autoload;
2221
8bf00a52
GN
2222 switch (msr) {
2223 case MSR_EFER:
2224 if (cpu_has_load_ia32_efer) {
2961e876
GN
2225 add_atomic_switch_msr_special(vmx,
2226 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
2227 VM_EXIT_LOAD_IA32_EFER,
2228 GUEST_IA32_EFER,
2229 HOST_IA32_EFER,
2230 guest_val, host_val);
2231 return;
2232 }
2233 break;
2234 case MSR_CORE_PERF_GLOBAL_CTRL:
2235 if (cpu_has_load_perf_global_ctrl) {
2961e876 2236 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
2237 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
2238 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
2239 GUEST_IA32_PERF_GLOBAL_CTRL,
2240 HOST_IA32_PERF_GLOBAL_CTRL,
2241 guest_val, host_val);
2242 return;
2243 }
2244 break;
7099e2e1
RK
2245 case MSR_IA32_PEBS_ENABLE:
2246 /* PEBS needs a quiescent period after being disabled (to write
2247 * a record). Disabling PEBS through VMX MSR swapping doesn't
2248 * provide that period, so a CPU could write host's record into
2249 * guest's memory.
2250 */
2251 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
2252 }
2253
61d2ef2c
AK
2254 for (i = 0; i < m->nr; ++i)
2255 if (m->guest[i].index == msr)
2256 break;
2257
e7fc6f93 2258 if (i == NR_AUTOLOAD_MSRS) {
60266204 2259 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
2260 "Can't add msr %x\n", msr);
2261 return;
2262 } else if (i == m->nr) {
61d2ef2c
AK
2263 ++m->nr;
2264 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
2265 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
2266 }
2267
2268 m->guest[i].index = msr;
2269 m->guest[i].value = guest_val;
2270 m->host[i].index = msr;
2271 m->host[i].value = host_val;
2272}
2273
92c0d900 2274static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 2275{
844a5fe2
PB
2276 u64 guest_efer = vmx->vcpu.arch.efer;
2277 u64 ignore_bits = 0;
2278
2279 if (!enable_ept) {
2280 /*
2281 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
2282 * host CPUID is more efficient than testing guest CPUID
2283 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
2284 */
2285 if (boot_cpu_has(X86_FEATURE_SMEP))
2286 guest_efer |= EFER_NX;
2287 else if (!(guest_efer & EFER_NX))
2288 ignore_bits |= EFER_NX;
2289 }
3a34a881 2290
51c6cf66 2291 /*
844a5fe2 2292 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 2293 */
844a5fe2 2294 ignore_bits |= EFER_SCE;
51c6cf66
AK
2295#ifdef CONFIG_X86_64
2296 ignore_bits |= EFER_LMA | EFER_LME;
2297 /* SCE is meaningful only in long mode on Intel */
2298 if (guest_efer & EFER_LMA)
2299 ignore_bits &= ~(u64)EFER_SCE;
2300#endif
84ad33ef
AK
2301
2302 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
2303
2304 /*
2305 * On EPT, we can't emulate NX, so we must switch EFER atomically.
2306 * On CPUs that support "load IA32_EFER", always switch EFER
2307 * atomically, since it's faster than switching it manually.
2308 */
2309 if (cpu_has_load_ia32_efer ||
2310 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
2311 if (!(guest_efer & EFER_LMA))
2312 guest_efer &= ~EFER_LME;
54b98bff
AL
2313 if (guest_efer != host_efer)
2314 add_atomic_switch_msr(vmx, MSR_EFER,
2315 guest_efer, host_efer);
84ad33ef 2316 return false;
844a5fe2
PB
2317 } else {
2318 guest_efer &= ~ignore_bits;
2319 guest_efer |= host_efer & ignore_bits;
2320
2321 vmx->guest_msrs[efer_offset].data = guest_efer;
2322 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 2323
844a5fe2
PB
2324 return true;
2325 }
51c6cf66
AK
2326}
2327
e28baead
AL
2328#ifdef CONFIG_X86_32
2329/*
2330 * On 32-bit kernels, VM exits still load the FS and GS bases from the
2331 * VMCS rather than the segment table. KVM uses this helper to figure
2332 * out the current bases to poke them into the VMCS before entry.
2333 */
2d49ec72
GN
2334static unsigned long segment_base(u16 selector)
2335{
8c2e41f7 2336 struct desc_struct *table;
2d49ec72
GN
2337 unsigned long v;
2338
8c2e41f7 2339 if (!(selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2340 return 0;
2341
45fc8757 2342 table = get_current_gdt_ro();
2d49ec72 2343
8c2e41f7 2344 if ((selector & SEGMENT_TI_MASK) == SEGMENT_LDT) {
2d49ec72
GN
2345 u16 ldt_selector = kvm_read_ldt();
2346
8c2e41f7 2347 if (!(ldt_selector & ~SEGMENT_RPL_MASK))
2d49ec72
GN
2348 return 0;
2349
8c2e41f7 2350 table = (struct desc_struct *)segment_base(ldt_selector);
2d49ec72 2351 }
8c2e41f7 2352 v = get_desc_base(&table[selector >> 3]);
2d49ec72
GN
2353 return v;
2354}
e28baead 2355#endif
2d49ec72 2356
04d2cc77 2357static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 2358{
04d2cc77 2359 struct vcpu_vmx *vmx = to_vmx(vcpu);
51e8a8cc 2360#ifdef CONFIG_X86_64
35060ed6 2361 int cpu = raw_smp_processor_id();
51e8a8cc 2362#endif
26bb0981 2363 int i;
04d2cc77 2364
a2fa3e9f 2365 if (vmx->host_state.loaded)
33ed6329
AK
2366 return;
2367
a2fa3e9f 2368 vmx->host_state.loaded = 1;
33ed6329
AK
2369 /*
2370 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
2371 * allow segment selectors with cpl > 0 or ti == 1.
2372 */
d6e88aec 2373 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 2374 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
42b933b5
VK
2375
2376#ifdef CONFIG_X86_64
2377 save_fsgs_for_kvm();
2378 vmx->host_state.fs_sel = current->thread.fsindex;
2379 vmx->host_state.gs_sel = current->thread.gsindex;
2380#else
9581d442 2381 savesegment(fs, vmx->host_state.fs_sel);
42b933b5
VK
2382 savesegment(gs, vmx->host_state.gs_sel);
2383#endif
152d3f2f 2384 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 2385 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
2386 vmx->host_state.fs_reload_needed = 0;
2387 } else {
33ed6329 2388 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 2389 vmx->host_state.fs_reload_needed = 1;
33ed6329 2390 }
a2fa3e9f
GH
2391 if (!(vmx->host_state.gs_sel & 7))
2392 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
2393 else {
2394 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 2395 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
2396 }
2397
b2da15ac
AK
2398#ifdef CONFIG_X86_64
2399 savesegment(ds, vmx->host_state.ds_sel);
2400 savesegment(es, vmx->host_state.es_sel);
b2da15ac 2401
42b933b5 2402 vmcs_writel(HOST_FS_BASE, current->thread.fsbase);
35060ed6 2403 vmcs_writel(HOST_GS_BASE, cpu_kernelmode_gs_base(cpu));
707c0874 2404
42b933b5 2405 vmx->msr_host_kernel_gs_base = current->thread.gsbase;
c8770e7b 2406 if (is_long_mode(&vmx->vcpu))
44ea2b17 2407 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
4fde8d57
PB
2408#else
2409 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2410 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
707c0874 2411#endif
da8999d3
LJ
2412 if (boot_cpu_has(X86_FEATURE_MPX))
2413 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2414 for (i = 0; i < vmx->save_nmsrs; ++i)
2415 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2416 vmx->guest_msrs[i].data,
2417 vmx->guest_msrs[i].mask);
33ed6329
AK
2418}
2419
a9b21b62 2420static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2421{
a2fa3e9f 2422 if (!vmx->host_state.loaded)
33ed6329
AK
2423 return;
2424
e1beb1d3 2425 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2426 vmx->host_state.loaded = 0;
c8770e7b
AK
2427#ifdef CONFIG_X86_64
2428 if (is_long_mode(&vmx->vcpu))
2429 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2430#endif
152d3f2f 2431 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2432 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2433#ifdef CONFIG_X86_64
9581d442 2434 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2435#else
2436 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2437#endif
33ed6329 2438 }
0a77fe4c
AK
2439 if (vmx->host_state.fs_reload_needed)
2440 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2441#ifdef CONFIG_X86_64
2442 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2443 loadsegment(ds, vmx->host_state.ds_sel);
2444 loadsegment(es, vmx->host_state.es_sel);
2445 }
b2da15ac 2446#endif
b7ffc44d 2447 invalidate_tss_limit();
44ea2b17 2448#ifdef CONFIG_X86_64
c8770e7b 2449 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2450#endif
da8999d3
LJ
2451 if (vmx->host_state.msr_host_bndcfgs)
2452 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
45fc8757 2453 load_fixmap_gdt(raw_smp_processor_id());
33ed6329
AK
2454}
2455
a9b21b62
AK
2456static void vmx_load_host_state(struct vcpu_vmx *vmx)
2457{
2458 preempt_disable();
2459 __vmx_load_host_state(vmx);
2460 preempt_enable();
2461}
2462
28b835d6
FW
2463static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2464{
2465 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2466 struct pi_desc old, new;
2467 unsigned int dest;
2468
31afb2ea
PB
2469 /*
2470 * In case of hot-plug or hot-unplug, we may have to undo
2471 * vmx_vcpu_pi_put even if there is no assigned device. And we
2472 * always keep PI.NDST up to date for simplicity: it makes the
2473 * code easier, and CPU migration is not a fast path.
2474 */
2475 if (!pi_test_sn(pi_desc) && vcpu->cpu == cpu)
28b835d6
FW
2476 return;
2477
31afb2ea
PB
2478 /*
2479 * First handle the simple case where no cmpxchg is necessary; just
2480 * allow posting non-urgent interrupts.
2481 *
2482 * If the 'nv' field is POSTED_INTR_WAKEUP_VECTOR, do not change
2483 * PI.NDST: pi_post_block will do it for us and the wakeup_handler
2484 * expects the VCPU to be on the blocked_vcpu_list that matches
2485 * PI.NDST.
2486 */
2487 if (pi_desc->nv == POSTED_INTR_WAKEUP_VECTOR ||
2488 vcpu->cpu == cpu) {
2489 pi_clear_sn(pi_desc);
28b835d6 2490 return;
31afb2ea 2491 }
28b835d6 2492
31afb2ea 2493 /* The full case. */
28b835d6
FW
2494 do {
2495 old.control = new.control = pi_desc->control;
2496
31afb2ea 2497 dest = cpu_physical_id(cpu);
28b835d6 2498
31afb2ea
PB
2499 if (x2apic_enabled())
2500 new.ndst = dest;
2501 else
2502 new.ndst = (dest << 8) & 0xFF00;
28b835d6 2503
28b835d6 2504 new.sn = 0;
c0a1666b
PB
2505 } while (cmpxchg64(&pi_desc->control, old.control,
2506 new.control) != old.control);
28b835d6 2507}
1be0e61c 2508
c95ba92a
PF
2509static void decache_tsc_multiplier(struct vcpu_vmx *vmx)
2510{
2511 vmx->current_tsc_ratio = vmx->vcpu.arch.tsc_scaling_ratio;
2512 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2513}
2514
6aa8b732
AK
2515/*
2516 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2517 * vcpu mutex is already taken.
2518 */
15ad7146 2519static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2520{
a2fa3e9f 2521 struct vcpu_vmx *vmx = to_vmx(vcpu);
b80c76ec 2522 bool already_loaded = vmx->loaded_vmcs->cpu == cpu;
6aa8b732 2523
b80c76ec 2524 if (!already_loaded) {
fe0e80be 2525 loaded_vmcs_clear(vmx->loaded_vmcs);
92fe13be 2526 local_irq_disable();
8f536b76 2527 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2528
2529 /*
2530 * Read loaded_vmcs->cpu should be before fetching
2531 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2532 * See the comments in __loaded_vmcs_clear().
2533 */
2534 smp_rmb();
2535
d462b819
NHE
2536 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2537 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2538 crash_enable_local_vmclear(cpu);
92fe13be 2539 local_irq_enable();
b80c76ec
JM
2540 }
2541
2542 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2543 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2544 vmcs_load(vmx->loaded_vmcs->vmcs);
15d45071 2545 indirect_branch_prediction_barrier();
b80c76ec
JM
2546 }
2547
2548 if (!already_loaded) {
59c58ceb 2549 void *gdt = get_current_gdt_ro();
b80c76ec
JM
2550 unsigned long sysenter_esp;
2551
2552 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2553
6aa8b732
AK
2554 /*
2555 * Linux uses per-cpu TSS and GDT, so set these when switching
e0c23063 2556 * processors. See 22.2.4.
6aa8b732 2557 */
e0c23063 2558 vmcs_writel(HOST_TR_BASE,
72f5e08d 2559 (unsigned long)&get_cpu_entry_area(cpu)->tss.x86_tss);
59c58ceb 2560 vmcs_writel(HOST_GDTR_BASE, (unsigned long)gdt); /* 22.2.4 */
6aa8b732 2561
b7ffc44d
AL
2562 /*
2563 * VM exits change the host TR limit to 0x67 after a VM
2564 * exit. This is okay, since 0x67 covers everything except
2565 * the IO bitmap and have have code to handle the IO bitmap
2566 * being lost after a VM exit.
2567 */
2568 BUILD_BUG_ON(IO_BITMAP_OFFSET - 1 != 0x67);
2569
6aa8b732
AK
2570 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2571 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2572
d462b819 2573 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2574 }
28b835d6 2575
2680d6da
OH
2576 /* Setup TSC multiplier */
2577 if (kvm_has_tsc_control &&
c95ba92a
PF
2578 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio)
2579 decache_tsc_multiplier(vmx);
2680d6da 2580
28b835d6 2581 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2582 vmx->host_pkru = read_pkru();
74c55931 2583 vmx->host_debugctlmsr = get_debugctlmsr();
28b835d6
FW
2584}
2585
2586static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2587{
2588 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2589
2590 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
2591 !irq_remapping_cap(IRQ_POSTING_CAP) ||
2592 !kvm_vcpu_apicv_active(vcpu))
28b835d6
FW
2593 return;
2594
2595 /* Set SN when the vCPU is preempted */
2596 if (vcpu->preempted)
2597 pi_set_sn(pi_desc);
6aa8b732
AK
2598}
2599
2600static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2601{
28b835d6
FW
2602 vmx_vcpu_pi_put(vcpu);
2603
a9b21b62 2604 __vmx_load_host_state(to_vmx(vcpu));
6aa8b732
AK
2605}
2606
f244deed
WL
2607static bool emulation_required(struct kvm_vcpu *vcpu)
2608{
2609 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2610}
2611
edcafe3c
AK
2612static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2613
fe3ef05c
NHE
2614/*
2615 * Return the cr0 value that a nested guest would read. This is a combination
2616 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2617 * its hypervisor (cr0_read_shadow).
2618 */
2619static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2620{
2621 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2622 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2623}
2624static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2625{
2626 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2627 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2628}
2629
6aa8b732
AK
2630static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2631{
78ac8b47 2632 unsigned long rflags, save_rflags;
345dcaa8 2633
6de12732
AK
2634 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2635 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2636 rflags = vmcs_readl(GUEST_RFLAGS);
2637 if (to_vmx(vcpu)->rmode.vm86_active) {
2638 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2639 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2640 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2641 }
2642 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2643 }
6de12732 2644 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2645}
2646
2647static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2648{
f244deed
WL
2649 unsigned long old_rflags = vmx_get_rflags(vcpu);
2650
6de12732
AK
2651 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2652 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2653 if (to_vmx(vcpu)->rmode.vm86_active) {
2654 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2655 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2656 }
6aa8b732 2657 vmcs_writel(GUEST_RFLAGS, rflags);
f244deed
WL
2658
2659 if ((old_rflags ^ to_vmx(vcpu)->rflags) & X86_EFLAGS_VM)
2660 to_vmx(vcpu)->emulation_required = emulation_required(vcpu);
6aa8b732
AK
2661}
2662
37ccdcbe 2663static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2664{
2665 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2666 int ret = 0;
2667
2668 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2669 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2670 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2671 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2672
37ccdcbe 2673 return ret;
2809f5d2
GC
2674}
2675
2676static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2677{
2678 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2679 u32 interruptibility = interruptibility_old;
2680
2681 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2682
48005f64 2683 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2684 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2685 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2686 interruptibility |= GUEST_INTR_STATE_STI;
2687
2688 if ((interruptibility != interruptibility_old))
2689 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2690}
2691
6aa8b732
AK
2692static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2693{
2694 unsigned long rip;
6aa8b732 2695
5fdbf976 2696 rip = kvm_rip_read(vcpu);
6aa8b732 2697 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2698 kvm_rip_write(vcpu, rip);
6aa8b732 2699
2809f5d2
GC
2700 /* skipping an emulated instruction also counts */
2701 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2702}
2703
b96fb439
PB
2704static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
2705 unsigned long exit_qual)
2706{
2707 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2708 unsigned int nr = vcpu->arch.exception.nr;
2709 u32 intr_info = nr | INTR_INFO_VALID_MASK;
2710
2711 if (vcpu->arch.exception.has_error_code) {
2712 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
2713 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2714 }
2715
2716 if (kvm_exception_is_soft(nr))
2717 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2718 else
2719 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2720
2721 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
2722 vmx_get_nmi_mask(vcpu))
2723 intr_info |= INTR_INFO_UNBLOCK_NMI;
2724
2725 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
2726}
2727
0b6ac343
NHE
2728/*
2729 * KVM wants to inject page-faults which it got to the guest. This function
2730 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2731 */
bfcf83b1 2732static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
0b6ac343
NHE
2733{
2734 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
adfe20fb 2735 unsigned int nr = vcpu->arch.exception.nr;
0b6ac343 2736
b96fb439
PB
2737 if (nr == PF_VECTOR) {
2738 if (vcpu->arch.exception.nested_apf) {
bfcf83b1 2739 *exit_qual = vcpu->arch.apf.nested_apf_token;
b96fb439
PB
2740 return 1;
2741 }
2742 /*
2743 * FIXME: we must not write CR2 when L1 intercepts an L2 #PF exception.
2744 * The fix is to add the ancillary datum (CR2 or DR6) to structs
2745 * kvm_queued_exception and kvm_vcpu_events, so that CR2 and DR6
2746 * can be written only when inject_pending_event runs. This should be
2747 * conditional on a new capability---if the capability is disabled,
2748 * kvm_multiple_exception would write the ancillary information to
2749 * CR2 or DR6, for backwards ABI-compatibility.
2750 */
2751 if (nested_vmx_is_page_fault_vmexit(vmcs12,
2752 vcpu->arch.exception.error_code)) {
bfcf83b1 2753 *exit_qual = vcpu->arch.cr2;
b96fb439
PB
2754 return 1;
2755 }
2756 } else {
b96fb439 2757 if (vmcs12->exception_bitmap & (1u << nr)) {
bfcf83b1
WL
2758 if (nr == DB_VECTOR)
2759 *exit_qual = vcpu->arch.dr6;
2760 else
2761 *exit_qual = 0;
b96fb439
PB
2762 return 1;
2763 }
adfe20fb
WL
2764 }
2765
b96fb439 2766 return 0;
0b6ac343
NHE
2767}
2768
caa057a2
WL
2769static void vmx_clear_hlt(struct kvm_vcpu *vcpu)
2770{
2771 /*
2772 * Ensure that we clear the HLT state in the VMCS. We don't need to
2773 * explicitly skip the instruction because if the HLT state is set,
2774 * then the instruction is already executing and RIP has already been
2775 * advanced.
2776 */
2777 if (kvm_hlt_in_guest(vcpu->kvm) &&
2778 vmcs_read32(GUEST_ACTIVITY_STATE) == GUEST_ACTIVITY_HLT)
2779 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
2780}
2781
cfcd20e5 2782static void vmx_queue_exception(struct kvm_vcpu *vcpu)
298101da 2783{
77ab6db0 2784 struct vcpu_vmx *vmx = to_vmx(vcpu);
cfcd20e5
WL
2785 unsigned nr = vcpu->arch.exception.nr;
2786 bool has_error_code = vcpu->arch.exception.has_error_code;
cfcd20e5 2787 u32 error_code = vcpu->arch.exception.error_code;
8ab2d2e2 2788 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2789
8ab2d2e2 2790 if (has_error_code) {
77ab6db0 2791 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2792 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2793 }
77ab6db0 2794
7ffd92c5 2795 if (vmx->rmode.vm86_active) {
71f9833b
SH
2796 int inc_eip = 0;
2797 if (kvm_exception_is_soft(nr))
2798 inc_eip = vcpu->arch.event_exit_inst_len;
2799 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2800 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2801 return;
2802 }
2803
add5ff7a
SC
2804 WARN_ON_ONCE(vmx->emulation_required);
2805
66fd3f7f
GN
2806 if (kvm_exception_is_soft(nr)) {
2807 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2808 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2809 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2810 } else
2811 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2812
2813 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
caa057a2
WL
2814
2815 vmx_clear_hlt(vcpu);
298101da
AK
2816}
2817
4e47c7a6
SY
2818static bool vmx_rdtscp_supported(void)
2819{
2820 return cpu_has_vmx_rdtscp();
2821}
2822
ad756a16
MJ
2823static bool vmx_invpcid_supported(void)
2824{
2825 return cpu_has_vmx_invpcid() && enable_ept;
2826}
2827
a75beee6
ED
2828/*
2829 * Swap MSR entry in host/guest MSR entry array.
2830 */
8b9cf98c 2831static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2832{
26bb0981 2833 struct shared_msr_entry tmp;
a2fa3e9f
GH
2834
2835 tmp = vmx->guest_msrs[to];
2836 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2837 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2838}
2839
e38aea3e
AK
2840/*
2841 * Set up the vmcs to automatically save and restore system
2842 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2843 * mode, as fiddling with msrs is very expensive.
2844 */
8b9cf98c 2845static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2846{
26bb0981 2847 int save_nmsrs, index;
e38aea3e 2848
a75beee6
ED
2849 save_nmsrs = 0;
2850#ifdef CONFIG_X86_64
8b9cf98c 2851 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2852 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2853 if (index >= 0)
8b9cf98c
RR
2854 move_msr_up(vmx, index, save_nmsrs++);
2855 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2856 if (index >= 0)
8b9cf98c
RR
2857 move_msr_up(vmx, index, save_nmsrs++);
2858 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2859 if (index >= 0)
8b9cf98c 2860 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2861 index = __find_msr_index(vmx, MSR_TSC_AUX);
d6321d49 2862 if (index >= 0 && guest_cpuid_has(&vmx->vcpu, X86_FEATURE_RDTSCP))
4e47c7a6 2863 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2864 /*
8c06585d 2865 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2866 * if efer.sce is enabled.
2867 */
8c06585d 2868 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2869 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2870 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2871 }
2872#endif
92c0d900
AK
2873 index = __find_msr_index(vmx, MSR_EFER);
2874 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2875 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2876
26bb0981 2877 vmx->save_nmsrs = save_nmsrs;
5897297b 2878
8d14695f 2879 if (cpu_has_vmx_msr_bitmap())
904e14fb 2880 vmx_update_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2881}
2882
e79f245d 2883static u64 vmx_read_l1_tsc_offset(struct kvm_vcpu *vcpu)
6aa8b732 2884{
e79f245d 2885 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6aa8b732 2886
e79f245d
KA
2887 if (is_guest_mode(vcpu) &&
2888 (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING))
2889 return vcpu->arch.tsc_offset - vmcs12->tsc_offset;
2890
2891 return vcpu->arch.tsc_offset;
6aa8b732
AK
2892}
2893
2894/*
99e3e30a 2895 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2896 */
99e3e30a 2897static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2898{
27fc51b2 2899 if (is_guest_mode(vcpu)) {
7991825b 2900 /*
27fc51b2
NHE
2901 * We're here if L1 chose not to trap WRMSR to TSC. According
2902 * to the spec, this should set L1's TSC; The offset that L1
2903 * set for L2 remains unchanged, and still needs to be added
2904 * to the newly set TSC to get L2's TSC.
7991825b 2905 */
27fc51b2 2906 struct vmcs12 *vmcs12;
27fc51b2
NHE
2907 /* recalculate vmcs02.TSC_OFFSET: */
2908 vmcs12 = get_vmcs12(vcpu);
2909 vmcs_write64(TSC_OFFSET, offset +
2910 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2911 vmcs12->tsc_offset : 0));
2912 } else {
489223ed
YY
2913 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2914 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2915 vmcs_write64(TSC_OFFSET, offset);
2916 }
6aa8b732
AK
2917}
2918
801d3424
NHE
2919/*
2920 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2921 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2922 * all guests if the "nested" module option is off, and can also be disabled
2923 * for a single guest by disabling its VMX cpuid bit.
2924 */
2925static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2926{
d6321d49 2927 return nested && guest_cpuid_has(vcpu, X86_FEATURE_VMX);
801d3424
NHE
2928}
2929
b87a51ae
NHE
2930/*
2931 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2932 * returned for the various VMX controls MSRs when nested VMX is enabled.
2933 * The same values should also be used to verify that vmcs12 control fields are
2934 * valid during nested entry from L1 to L2.
2935 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2936 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2937 * bit in the high half is on if the corresponding bit in the control field
2938 * may be on. See also vmx_control_verify().
b87a51ae 2939 */
6677f3da 2940static void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, bool apicv)
b87a51ae 2941{
1389309c
PB
2942 if (!nested) {
2943 memset(msrs, 0, sizeof(*msrs));
2944 return;
2945 }
2946
b87a51ae
NHE
2947 /*
2948 * Note that as a general rule, the high half of the MSRs (bits in
2949 * the control fields which may be 1) should be initialized by the
2950 * intersection of the underlying hardware's MSR (i.e., features which
2951 * can be supported) and the list of features we want to expose -
2952 * because they are known to be properly supported in our code.
2953 * Also, usually, the low half of the MSRs (bits which must be 1) can
2954 * be set to 0, meaning that L1 may turn off any of these bits. The
2955 * reason is that if one of these bits is necessary, it will appear
2956 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2957 * fields of vmcs01 and vmcs02, will turn these bits off - and
7313c698 2958 * nested_vmx_exit_reflected() will not pass related exits to L1.
b87a51ae
NHE
2959 * These rules have exceptions below.
2960 */
2961
2962 /* pin-based controls */
eabeaacc 2963 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6677f3da
PB
2964 msrs->pinbased_ctls_low,
2965 msrs->pinbased_ctls_high);
2966 msrs->pinbased_ctls_low |=
b9c237bb 2967 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 2968 msrs->pinbased_ctls_high &=
b9c237bb
WV
2969 PIN_BASED_EXT_INTR_MASK |
2970 PIN_BASED_NMI_EXITING |
1389309c
PB
2971 PIN_BASED_VIRTUAL_NMIS |
2972 (apicv ? PIN_BASED_POSTED_INTR : 0);
6677f3da 2973 msrs->pinbased_ctls_high |=
b9c237bb 2974 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2975 PIN_BASED_VMX_PREEMPTION_TIMER;
b87a51ae 2976
3dbcd8da 2977 /* exit controls */
c0dfee58 2978 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6677f3da
PB
2979 msrs->exit_ctls_low,
2980 msrs->exit_ctls_high);
2981 msrs->exit_ctls_low =
b9c237bb 2982 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2983
6677f3da 2984 msrs->exit_ctls_high &=
b87a51ae 2985#ifdef CONFIG_X86_64
c0dfee58 2986 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2987#endif
f4124500 2988 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
6677f3da 2989 msrs->exit_ctls_high |=
b9c237bb 2990 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2991 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2992 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2993
a87036ad 2994 if (kvm_mpx_supported())
6677f3da 2995 msrs->exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2996
2996fca0 2997 /* We support free control of debug control saving. */
6677f3da 2998 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2996fca0 2999
b87a51ae
NHE
3000 /* entry controls */
3001 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6677f3da
PB
3002 msrs->entry_ctls_low,
3003 msrs->entry_ctls_high);
3004 msrs->entry_ctls_low =
b9c237bb 3005 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 3006 msrs->entry_ctls_high &=
57435349
JK
3007#ifdef CONFIG_X86_64
3008 VM_ENTRY_IA32E_MODE |
3009#endif
3010 VM_ENTRY_LOAD_IA32_PAT;
6677f3da 3011 msrs->entry_ctls_high |=
b9c237bb 3012 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 3013 if (kvm_mpx_supported())
6677f3da 3014 msrs->entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 3015
2996fca0 3016 /* We support free control of debug control loading. */
6677f3da 3017 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2996fca0 3018
b87a51ae
NHE
3019 /* cpu-based controls */
3020 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6677f3da
PB
3021 msrs->procbased_ctls_low,
3022 msrs->procbased_ctls_high);
3023 msrs->procbased_ctls_low =
b9c237bb 3024 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6677f3da 3025 msrs->procbased_ctls_high &=
a294c9bb
JK
3026 CPU_BASED_VIRTUAL_INTR_PENDING |
3027 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
3028 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
3029 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
3030 CPU_BASED_CR3_STORE_EXITING |
3031#ifdef CONFIG_X86_64
3032 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
3033#endif
3034 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
3035 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
3036 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
3037 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
3038 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
3039 /*
3040 * We can allow some features even when not supported by the
3041 * hardware. For example, L1 can specify an MSR bitmap - and we
3042 * can use it to avoid exits to L1 - even when L0 runs L2
3043 * without MSR bitmaps.
3044 */
6677f3da 3045 msrs->procbased_ctls_high |=
b9c237bb 3046 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 3047 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 3048
3dcdf3ec 3049 /* We support free control of CR3 access interception. */
6677f3da 3050 msrs->procbased_ctls_low &=
3dcdf3ec
JK
3051 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
3052
80154d77
PB
3053 /*
3054 * secondary cpu-based controls. Do not include those that
3055 * depend on CPUID bits, they are added later by vmx_cpuid_update.
3056 */
b87a51ae 3057 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6677f3da
PB
3058 msrs->secondary_ctls_low,
3059 msrs->secondary_ctls_high);
3060 msrs->secondary_ctls_low = 0;
3061 msrs->secondary_ctls_high &=
d6851fbe 3062 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
1b07304c 3063 SECONDARY_EXEC_DESC |
f2b93280 3064 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
82f0dd4b 3065 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 3066 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
3db13480 3067 SECONDARY_EXEC_WBINVD_EXITING;
c18911a2 3068
afa61f75
NHE
3069 if (enable_ept) {
3070 /* nested EPT: emulate EPT also to L1 */
6677f3da 3071 msrs->secondary_ctls_high |=
0790ec17 3072 SECONDARY_EXEC_ENABLE_EPT;
6677f3da 3073 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
7db74265 3074 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
02120c45 3075 if (cpu_has_vmx_ept_execute_only())
6677f3da 3076 msrs->ept_caps |=
02120c45 3077 VMX_EPT_EXECUTE_ONLY_BIT;
6677f3da
PB
3078 msrs->ept_caps &= vmx_capability.ept;
3079 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
7db74265
PB
3080 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
3081 VMX_EPT_1GB_PAGE_BIT;
03efce6f 3082 if (enable_ept_ad_bits) {
6677f3da 3083 msrs->secondary_ctls_high |=
03efce6f 3084 SECONDARY_EXEC_ENABLE_PML;
6677f3da 3085 msrs->ept_caps |= VMX_EPT_AD_BIT;
03efce6f 3086 }
1c13bffd 3087 }
afa61f75 3088
27c42a1b 3089 if (cpu_has_vmx_vmfunc()) {
6677f3da 3090 msrs->secondary_ctls_high |=
27c42a1b 3091 SECONDARY_EXEC_ENABLE_VMFUNC;
41ab9372
BD
3092 /*
3093 * Advertise EPTP switching unconditionally
3094 * since we emulate it
3095 */
575b3a2c 3096 if (enable_ept)
6677f3da 3097 msrs->vmfunc_controls =
575b3a2c 3098 VMX_VMFUNC_EPTP_SWITCHING;
27c42a1b
BD
3099 }
3100
ef697a71
PB
3101 /*
3102 * Old versions of KVM use the single-context version without
3103 * checking for support, so declare that it is supported even
3104 * though it is treated as global context. The alternative is
3105 * not failing the single-context invvpid, and it is worse.
3106 */
63cb6d5f 3107 if (enable_vpid) {
6677f3da 3108 msrs->secondary_ctls_high |=
63cb6d5f 3109 SECONDARY_EXEC_ENABLE_VPID;
6677f3da 3110 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
bcdde302 3111 VMX_VPID_EXTENT_SUPPORTED_MASK;
1c13bffd 3112 }
99b83ac8 3113
0790ec17 3114 if (enable_unrestricted_guest)
6677f3da 3115 msrs->secondary_ctls_high |=
0790ec17
RK
3116 SECONDARY_EXEC_UNRESTRICTED_GUEST;
3117
c18911a2 3118 /* miscellaneous data */
b9c237bb 3119 rdmsr(MSR_IA32_VMX_MISC,
6677f3da
PB
3120 msrs->misc_low,
3121 msrs->misc_high);
3122 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
3123 msrs->misc_low |=
b9c237bb 3124 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 3125 VMX_MISC_ACTIVITY_HLT;
6677f3da 3126 msrs->misc_high = 0;
62cc6b9d
DM
3127
3128 /*
3129 * This MSR reports some information about VMX support. We
3130 * should return information about the VMX we emulate for the
3131 * guest, and the VMCS structure we give it - not about the
3132 * VMX support of the underlying hardware.
3133 */
6677f3da 3134 msrs->basic =
62cc6b9d
DM
3135 VMCS12_REVISION |
3136 VMX_BASIC_TRUE_CTLS |
3137 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
3138 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
3139
3140 if (cpu_has_vmx_basic_inout())
6677f3da 3141 msrs->basic |= VMX_BASIC_INOUT;
62cc6b9d
DM
3142
3143 /*
8322ebbb 3144 * These MSRs specify bits which the guest must keep fixed on
62cc6b9d
DM
3145 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
3146 * We picked the standard core2 setting.
3147 */
3148#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
3149#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
6677f3da
PB
3150 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
3151 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
8322ebbb
DM
3152
3153 /* These MSRs specify bits which the guest must keep fixed off. */
6677f3da
PB
3154 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
3155 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
62cc6b9d
DM
3156
3157 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6677f3da 3158 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
b87a51ae
NHE
3159}
3160
3899152c
DM
3161/*
3162 * if fixed0[i] == 1: val[i] must be 1
3163 * if fixed1[i] == 0: val[i] must be 0
3164 */
3165static inline bool fixed_bits_valid(u64 val, u64 fixed0, u64 fixed1)
3166{
3167 return ((val & fixed1) | fixed0) == val;
b87a51ae
NHE
3168}
3169
3170static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
3171{
3899152c 3172 return fixed_bits_valid(control, low, high);
b87a51ae
NHE
3173}
3174
3175static inline u64 vmx_control_msr(u32 low, u32 high)
3176{
3177 return low | ((u64)high << 32);
3178}
3179
62cc6b9d
DM
3180static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
3181{
3182 superset &= mask;
3183 subset &= mask;
3184
3185 return (superset | subset) == superset;
3186}
3187
3188static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
3189{
3190 const u64 feature_and_reserved =
3191 /* feature (except bit 48; see below) */
3192 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
3193 /* reserved */
3194 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
6677f3da 3195 u64 vmx_basic = vmx->nested.msrs.basic;
62cc6b9d
DM
3196
3197 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
3198 return -EINVAL;
3199
3200 /*
3201 * KVM does not emulate a version of VMX that constrains physical
3202 * addresses of VMX structures (e.g. VMCS) to 32-bits.
3203 */
3204 if (data & BIT_ULL(48))
3205 return -EINVAL;
3206
3207 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
3208 vmx_basic_vmcs_revision_id(data))
3209 return -EINVAL;
3210
3211 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
3212 return -EINVAL;
3213
6677f3da 3214 vmx->nested.msrs.basic = data;
62cc6b9d
DM
3215 return 0;
3216}
3217
3218static int
3219vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3220{
3221 u64 supported;
3222 u32 *lowp, *highp;
3223
3224 switch (msr_index) {
3225 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
6677f3da
PB
3226 lowp = &vmx->nested.msrs.pinbased_ctls_low;
3227 highp = &vmx->nested.msrs.pinbased_ctls_high;
62cc6b9d
DM
3228 break;
3229 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
6677f3da
PB
3230 lowp = &vmx->nested.msrs.procbased_ctls_low;
3231 highp = &vmx->nested.msrs.procbased_ctls_high;
62cc6b9d
DM
3232 break;
3233 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
6677f3da
PB
3234 lowp = &vmx->nested.msrs.exit_ctls_low;
3235 highp = &vmx->nested.msrs.exit_ctls_high;
62cc6b9d
DM
3236 break;
3237 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
6677f3da
PB
3238 lowp = &vmx->nested.msrs.entry_ctls_low;
3239 highp = &vmx->nested.msrs.entry_ctls_high;
62cc6b9d
DM
3240 break;
3241 case MSR_IA32_VMX_PROCBASED_CTLS2:
6677f3da
PB
3242 lowp = &vmx->nested.msrs.secondary_ctls_low;
3243 highp = &vmx->nested.msrs.secondary_ctls_high;
62cc6b9d
DM
3244 break;
3245 default:
3246 BUG();
3247 }
3248
3249 supported = vmx_control_msr(*lowp, *highp);
3250
3251 /* Check must-be-1 bits are still 1. */
3252 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
3253 return -EINVAL;
3254
3255 /* Check must-be-0 bits are still 0. */
3256 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
3257 return -EINVAL;
3258
3259 *lowp = data;
3260 *highp = data >> 32;
3261 return 0;
3262}
3263
3264static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
3265{
3266 const u64 feature_and_reserved_bits =
3267 /* feature */
3268 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
3269 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
3270 /* reserved */
3271 GENMASK_ULL(13, 9) | BIT_ULL(31);
3272 u64 vmx_misc;
3273
6677f3da
PB
3274 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
3275 vmx->nested.msrs.misc_high);
62cc6b9d
DM
3276
3277 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
3278 return -EINVAL;
3279
6677f3da 3280 if ((vmx->nested.msrs.pinbased_ctls_high &
62cc6b9d
DM
3281 PIN_BASED_VMX_PREEMPTION_TIMER) &&
3282 vmx_misc_preemption_timer_rate(data) !=
3283 vmx_misc_preemption_timer_rate(vmx_misc))
3284 return -EINVAL;
3285
3286 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
3287 return -EINVAL;
3288
3289 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
3290 return -EINVAL;
3291
3292 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
3293 return -EINVAL;
3294
6677f3da
PB
3295 vmx->nested.msrs.misc_low = data;
3296 vmx->nested.msrs.misc_high = data >> 32;
62cc6b9d
DM
3297 return 0;
3298}
3299
3300static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
3301{
3302 u64 vmx_ept_vpid_cap;
3303
6677f3da
PB
3304 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
3305 vmx->nested.msrs.vpid_caps);
62cc6b9d
DM
3306
3307 /* Every bit is either reserved or a feature bit. */
3308 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
3309 return -EINVAL;
3310
6677f3da
PB
3311 vmx->nested.msrs.ept_caps = data;
3312 vmx->nested.msrs.vpid_caps = data >> 32;
62cc6b9d
DM
3313 return 0;
3314}
3315
3316static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
3317{
3318 u64 *msr;
3319
3320 switch (msr_index) {
3321 case MSR_IA32_VMX_CR0_FIXED0:
6677f3da 3322 msr = &vmx->nested.msrs.cr0_fixed0;
62cc6b9d
DM
3323 break;
3324 case MSR_IA32_VMX_CR4_FIXED0:
6677f3da 3325 msr = &vmx->nested.msrs.cr4_fixed0;
62cc6b9d
DM
3326 break;
3327 default:
3328 BUG();
3329 }
3330
3331 /*
3332 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
3333 * must be 1 in the restored value.
3334 */
3335 if (!is_bitwise_subset(data, *msr, -1ULL))
3336 return -EINVAL;
3337
3338 *msr = data;
3339 return 0;
3340}
3341
3342/*
3343 * Called when userspace is restoring VMX MSRs.
3344 *
3345 * Returns 0 on success, non-0 otherwise.
3346 */
3347static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
b87a51ae 3348{
b9c237bb
WV
3349 struct vcpu_vmx *vmx = to_vmx(vcpu);
3350
b87a51ae 3351 switch (msr_index) {
b87a51ae 3352 case MSR_IA32_VMX_BASIC:
62cc6b9d
DM
3353 return vmx_restore_vmx_basic(vmx, data);
3354 case MSR_IA32_VMX_PINBASED_CTLS:
3355 case MSR_IA32_VMX_PROCBASED_CTLS:
3356 case MSR_IA32_VMX_EXIT_CTLS:
3357 case MSR_IA32_VMX_ENTRY_CTLS:
b87a51ae 3358 /*
62cc6b9d
DM
3359 * The "non-true" VMX capability MSRs are generated from the
3360 * "true" MSRs, so we do not support restoring them directly.
3361 *
3362 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
3363 * should restore the "true" MSRs with the must-be-1 bits
3364 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
3365 * DEFAULT SETTINGS".
b87a51ae 3366 */
62cc6b9d
DM
3367 return -EINVAL;
3368 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3369 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3370 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3371 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3372 case MSR_IA32_VMX_PROCBASED_CTLS2:
3373 return vmx_restore_control_msr(vmx, msr_index, data);
3374 case MSR_IA32_VMX_MISC:
3375 return vmx_restore_vmx_misc(vmx, data);
3376 case MSR_IA32_VMX_CR0_FIXED0:
3377 case MSR_IA32_VMX_CR4_FIXED0:
3378 return vmx_restore_fixed0_msr(vmx, msr_index, data);
3379 case MSR_IA32_VMX_CR0_FIXED1:
3380 case MSR_IA32_VMX_CR4_FIXED1:
3381 /*
3382 * These MSRs are generated based on the vCPU's CPUID, so we
3383 * do not support restoring them directly.
3384 */
3385 return -EINVAL;
3386 case MSR_IA32_VMX_EPT_VPID_CAP:
3387 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
3388 case MSR_IA32_VMX_VMCS_ENUM:
6677f3da 3389 vmx->nested.msrs.vmcs_enum = data;
62cc6b9d
DM
3390 return 0;
3391 default:
b87a51ae 3392 /*
62cc6b9d 3393 * The rest of the VMX capability MSRs do not support restore.
b87a51ae 3394 */
62cc6b9d
DM
3395 return -EINVAL;
3396 }
3397}
3398
3399/* Returns 0 on success, non-0 otherwise. */
6677f3da 3400static int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
62cc6b9d 3401{
62cc6b9d
DM
3402 switch (msr_index) {
3403 case MSR_IA32_VMX_BASIC:
6677f3da 3404 *pdata = msrs->basic;
b87a51ae
NHE
3405 break;
3406 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
3407 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb 3408 *pdata = vmx_control_msr(
6677f3da
PB
3409 msrs->pinbased_ctls_low,
3410 msrs->pinbased_ctls_high);
0115f9cb
DM
3411 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
3412 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3413 break;
3414 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
3415 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb 3416 *pdata = vmx_control_msr(
6677f3da
PB
3417 msrs->procbased_ctls_low,
3418 msrs->procbased_ctls_high);
0115f9cb
DM
3419 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
3420 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3421 break;
3422 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
3423 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb 3424 *pdata = vmx_control_msr(
6677f3da
PB
3425 msrs->exit_ctls_low,
3426 msrs->exit_ctls_high);
0115f9cb
DM
3427 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
3428 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3429 break;
3430 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
3431 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb 3432 *pdata = vmx_control_msr(
6677f3da
PB
3433 msrs->entry_ctls_low,
3434 msrs->entry_ctls_high);
0115f9cb
DM
3435 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
3436 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
b87a51ae
NHE
3437 break;
3438 case MSR_IA32_VMX_MISC:
b9c237bb 3439 *pdata = vmx_control_msr(
6677f3da
PB
3440 msrs->misc_low,
3441 msrs->misc_high);
b87a51ae 3442 break;
b87a51ae 3443 case MSR_IA32_VMX_CR0_FIXED0:
6677f3da 3444 *pdata = msrs->cr0_fixed0;
b87a51ae
NHE
3445 break;
3446 case MSR_IA32_VMX_CR0_FIXED1:
6677f3da 3447 *pdata = msrs->cr0_fixed1;
b87a51ae
NHE
3448 break;
3449 case MSR_IA32_VMX_CR4_FIXED0:
6677f3da 3450 *pdata = msrs->cr4_fixed0;
b87a51ae
NHE
3451 break;
3452 case MSR_IA32_VMX_CR4_FIXED1:
6677f3da 3453 *pdata = msrs->cr4_fixed1;
b87a51ae
NHE
3454 break;
3455 case MSR_IA32_VMX_VMCS_ENUM:
6677f3da 3456 *pdata = msrs->vmcs_enum;
b87a51ae
NHE
3457 break;
3458 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb 3459 *pdata = vmx_control_msr(
6677f3da
PB
3460 msrs->secondary_ctls_low,
3461 msrs->secondary_ctls_high);
b87a51ae
NHE
3462 break;
3463 case MSR_IA32_VMX_EPT_VPID_CAP:
6677f3da
PB
3464 *pdata = msrs->ept_caps |
3465 ((u64)msrs->vpid_caps << 32);
b87a51ae 3466 break;
27c42a1b 3467 case MSR_IA32_VMX_VMFUNC:
6677f3da 3468 *pdata = msrs->vmfunc_controls;
27c42a1b 3469 break;
b87a51ae 3470 default:
b87a51ae 3471 return 1;
b3897a49
NHE
3472 }
3473
b87a51ae
NHE
3474 return 0;
3475}
3476
37e4c997
HZ
3477static inline bool vmx_feature_control_msr_valid(struct kvm_vcpu *vcpu,
3478 uint64_t val)
3479{
3480 uint64_t valid_bits = to_vmx(vcpu)->msr_ia32_feature_control_valid_bits;
3481
3482 return !(val & ~valid_bits);
3483}
3484
801e459a
TL
3485static int vmx_get_msr_feature(struct kvm_msr_entry *msr)
3486{
1389309c
PB
3487 switch (msr->index) {
3488 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3489 if (!nested)
3490 return 1;
3491 return vmx_get_vmx_msr(&vmcs_config.nested, msr->index, &msr->data);
3492 default:
3493 return 1;
3494 }
3495
3496 return 0;
801e459a
TL
3497}
3498
6aa8b732
AK
3499/*
3500 * Reads an msr value (of 'msr_index') into 'pdata'.
3501 * Returns 0 on success, non-0 otherwise.
3502 * Assumes vcpu_load() was already called.
3503 */
609e36d3 3504static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3505{
a6cb099a 3506 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3507 struct shared_msr_entry *msr;
6aa8b732 3508
609e36d3 3509 switch (msr_info->index) {
05b3e0c2 3510#ifdef CONFIG_X86_64
6aa8b732 3511 case MSR_FS_BASE:
609e36d3 3512 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
3513 break;
3514 case MSR_GS_BASE:
609e36d3 3515 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 3516 break;
44ea2b17 3517 case MSR_KERNEL_GS_BASE:
a6cb099a
BP
3518 vmx_load_host_state(vmx);
3519 msr_info->data = vmx->msr_guest_kernel_gs_base;
44ea2b17 3520 break;
26bb0981 3521#endif
6aa8b732 3522 case MSR_EFER:
609e36d3 3523 return kvm_get_msr_common(vcpu, msr_info);
d28b387f
KA
3524 case MSR_IA32_SPEC_CTRL:
3525 if (!msr_info->host_initiated &&
3526 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS) &&
da39556f 3527 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
9f65fb29 3528 !guest_cpuid_has(vcpu, X86_FEATURE_SSBD))
d28b387f
KA
3529 return 1;
3530
3531 msr_info->data = to_vmx(vcpu)->spec_ctrl;
3532 break;
28c1c9fa
KA
3533 case MSR_IA32_ARCH_CAPABILITIES:
3534 if (!msr_info->host_initiated &&
3535 !guest_cpuid_has(vcpu, X86_FEATURE_ARCH_CAPABILITIES))
3536 return 1;
3537 msr_info->data = to_vmx(vcpu)->arch_capabilities;
3538 break;
6aa8b732 3539 case MSR_IA32_SYSENTER_CS:
609e36d3 3540 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
3541 break;
3542 case MSR_IA32_SYSENTER_EIP:
609e36d3 3543 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
3544 break;
3545 case MSR_IA32_SYSENTER_ESP:
609e36d3 3546 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 3547 break;
0dd376e7 3548 case MSR_IA32_BNDCFGS:
691bd434 3549 if (!kvm_mpx_supported() ||
d6321d49
RK
3550 (!msr_info->host_initiated &&
3551 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3552 return 1;
609e36d3 3553 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 3554 break;
c45dcc71
AR
3555 case MSR_IA32_MCG_EXT_CTL:
3556 if (!msr_info->host_initiated &&
a6cb099a 3557 !(vmx->msr_ia32_feature_control &
c45dcc71 3558 FEATURE_CONTROL_LMCE))
cae50139 3559 return 1;
c45dcc71
AR
3560 msr_info->data = vcpu->arch.mcg_ext_ctl;
3561 break;
cae50139 3562 case MSR_IA32_FEATURE_CONTROL:
a6cb099a 3563 msr_info->data = vmx->msr_ia32_feature_control;
cae50139
JK
3564 break;
3565 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3566 if (!nested_vmx_allowed(vcpu))
3567 return 1;
6677f3da
PB
3568 return vmx_get_vmx_msr(&vmx->nested.msrs, msr_info->index,
3569 &msr_info->data);
20300099
WL
3570 case MSR_IA32_XSS:
3571 if (!vmx_xsaves_supported())
3572 return 1;
609e36d3 3573 msr_info->data = vcpu->arch.ia32_xss;
20300099 3574 break;
4e47c7a6 3575 case MSR_TSC_AUX:
d6321d49
RK
3576 if (!msr_info->host_initiated &&
3577 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3578 return 1;
3579 /* Otherwise falls through */
6aa8b732 3580 default:
a6cb099a 3581 msr = find_msr_entry(vmx, msr_info->index);
3bab1f5d 3582 if (msr) {
609e36d3 3583 msr_info->data = msr->data;
3bab1f5d 3584 break;
6aa8b732 3585 }
609e36d3 3586 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
3587 }
3588
6aa8b732
AK
3589 return 0;
3590}
3591
cae50139
JK
3592static void vmx_leave_nested(struct kvm_vcpu *vcpu);
3593
6aa8b732
AK
3594/*
3595 * Writes msr value into into the appropriate "register".
3596 * Returns 0 on success, non-0 otherwise.
3597 * Assumes vcpu_load() was already called.
3598 */
8fe8ab46 3599static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 3600{
a2fa3e9f 3601 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 3602 struct shared_msr_entry *msr;
2cc51560 3603 int ret = 0;
8fe8ab46
WA
3604 u32 msr_index = msr_info->index;
3605 u64 data = msr_info->data;
2cc51560 3606
6aa8b732 3607 switch (msr_index) {
3bab1f5d 3608 case MSR_EFER:
8fe8ab46 3609 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 3610 break;
16175a79 3611#ifdef CONFIG_X86_64
6aa8b732 3612 case MSR_FS_BASE:
2fb92db1 3613 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3614 vmcs_writel(GUEST_FS_BASE, data);
3615 break;
3616 case MSR_GS_BASE:
2fb92db1 3617 vmx_segment_cache_clear(vmx);
6aa8b732
AK
3618 vmcs_writel(GUEST_GS_BASE, data);
3619 break;
44ea2b17
AK
3620 case MSR_KERNEL_GS_BASE:
3621 vmx_load_host_state(vmx);
3622 vmx->msr_guest_kernel_gs_base = data;
3623 break;
6aa8b732
AK
3624#endif
3625 case MSR_IA32_SYSENTER_CS:
3626 vmcs_write32(GUEST_SYSENTER_CS, data);
3627 break;
3628 case MSR_IA32_SYSENTER_EIP:
f5b42c33 3629 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
3630 break;
3631 case MSR_IA32_SYSENTER_ESP:
f5b42c33 3632 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 3633 break;
0dd376e7 3634 case MSR_IA32_BNDCFGS:
691bd434 3635 if (!kvm_mpx_supported() ||
d6321d49
RK
3636 (!msr_info->host_initiated &&
3637 !guest_cpuid_has(vcpu, X86_FEATURE_MPX)))
93c4adc7 3638 return 1;
fd8cb433 3639 if (is_noncanonical_address(data & PAGE_MASK, vcpu) ||
4531662d 3640 (data & MSR_IA32_BNDCFGS_RSVD))
93c4adc7 3641 return 1;
0dd376e7
LJ
3642 vmcs_write64(GUEST_BNDCFGS, data);
3643 break;
d28b387f
KA
3644 case MSR_IA32_SPEC_CTRL:
3645 if (!msr_info->host_initiated &&
3646 !guest_cpuid_has(vcpu, X86_FEATURE_IBRS) &&
da39556f 3647 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL) &&
9f65fb29 3648 !guest_cpuid_has(vcpu, X86_FEATURE_SSBD))
d28b387f
KA
3649 return 1;
3650
3651 /* The STIBP bit doesn't fault even if it's not advertised */
9f65fb29 3652 if (data & ~(SPEC_CTRL_IBRS | SPEC_CTRL_STIBP | SPEC_CTRL_SSBD))
d28b387f
KA
3653 return 1;
3654
3655 vmx->spec_ctrl = data;
3656
3657 if (!data)
3658 break;
3659
3660 /*
3661 * For non-nested:
3662 * When it's written (to non-zero) for the first time, pass
3663 * it through.
3664 *
3665 * For nested:
3666 * The handling of the MSR bitmap for L2 guests is done in
3667 * nested_vmx_merge_msr_bitmap. We should not touch the
3668 * vmcs02.msr_bitmap here since it gets completely overwritten
3669 * in the merging. We update the vmcs01 here for L1 as well
3670 * since it will end up touching the MSR anyway now.
3671 */
3672 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap,
3673 MSR_IA32_SPEC_CTRL,
3674 MSR_TYPE_RW);
3675 break;
15d45071
AR
3676 case MSR_IA32_PRED_CMD:
3677 if (!msr_info->host_initiated &&
3678 !guest_cpuid_has(vcpu, X86_FEATURE_IBPB) &&
3679 !guest_cpuid_has(vcpu, X86_FEATURE_SPEC_CTRL))
3680 return 1;
3681
3682 if (data & ~PRED_CMD_IBPB)
3683 return 1;
3684
3685 if (!data)
3686 break;
3687
3688 wrmsrl(MSR_IA32_PRED_CMD, PRED_CMD_IBPB);
3689
3690 /*
3691 * For non-nested:
3692 * When it's written (to non-zero) for the first time, pass
3693 * it through.
3694 *
3695 * For nested:
3696 * The handling of the MSR bitmap for L2 guests is done in
3697 * nested_vmx_merge_msr_bitmap. We should not touch the
3698 * vmcs02.msr_bitmap here since it gets completely overwritten
3699 * in the merging.
3700 */
3701 vmx_disable_intercept_for_msr(vmx->vmcs01.msr_bitmap, MSR_IA32_PRED_CMD,
3702 MSR_TYPE_W);
3703 break;
28c1c9fa
KA
3704 case MSR_IA32_ARCH_CAPABILITIES:
3705 if (!msr_info->host_initiated)
3706 return 1;
3707 vmx->arch_capabilities = data;
3708 break;
468d472f
SY
3709 case MSR_IA32_CR_PAT:
3710 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
3711 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
3712 return 1;
468d472f
SY
3713 vmcs_write64(GUEST_IA32_PAT, data);
3714 vcpu->arch.pat = data;
3715 break;
3716 }
8fe8ab46 3717 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3718 break;
ba904635
WA
3719 case MSR_IA32_TSC_ADJUST:
3720 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 3721 break;
c45dcc71
AR
3722 case MSR_IA32_MCG_EXT_CTL:
3723 if ((!msr_info->host_initiated &&
3724 !(to_vmx(vcpu)->msr_ia32_feature_control &
3725 FEATURE_CONTROL_LMCE)) ||
3726 (data & ~MCG_EXT_CTL_LMCE_EN))
3727 return 1;
3728 vcpu->arch.mcg_ext_ctl = data;
3729 break;
cae50139 3730 case MSR_IA32_FEATURE_CONTROL:
37e4c997 3731 if (!vmx_feature_control_msr_valid(vcpu, data) ||
3b84080b 3732 (to_vmx(vcpu)->msr_ia32_feature_control &
cae50139
JK
3733 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3734 return 1;
3b84080b 3735 vmx->msr_ia32_feature_control = data;
cae50139
JK
3736 if (msr_info->host_initiated && data == 0)
3737 vmx_leave_nested(vcpu);
3738 break;
3739 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
62cc6b9d
DM
3740 if (!msr_info->host_initiated)
3741 return 1; /* they are read-only */
3742 if (!nested_vmx_allowed(vcpu))
3743 return 1;
3744 return vmx_set_vmx_msr(vcpu, msr_index, data);
20300099
WL
3745 case MSR_IA32_XSS:
3746 if (!vmx_xsaves_supported())
3747 return 1;
3748 /*
3749 * The only supported bit as of Skylake is bit 8, but
3750 * it is not supported on KVM.
3751 */
3752 if (data != 0)
3753 return 1;
3754 vcpu->arch.ia32_xss = data;
3755 if (vcpu->arch.ia32_xss != host_xss)
3756 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3757 vcpu->arch.ia32_xss, host_xss);
3758 else
3759 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3760 break;
4e47c7a6 3761 case MSR_TSC_AUX:
d6321d49
RK
3762 if (!msr_info->host_initiated &&
3763 !guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP))
4e47c7a6
SY
3764 return 1;
3765 /* Check reserved bit, higher 32 bits should be zero */
3766 if ((data >> 32) != 0)
3767 return 1;
3768 /* Otherwise falls through */
6aa8b732 3769 default:
8b9cf98c 3770 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3771 if (msr) {
8b3c3104 3772 u64 old_msr_data = msr->data;
3bab1f5d 3773 msr->data = data;
2225fd56
AK
3774 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3775 preempt_disable();
8b3c3104
AH
3776 ret = kvm_set_shared_msr(msr->index, msr->data,
3777 msr->mask);
2225fd56 3778 preempt_enable();
8b3c3104
AH
3779 if (ret)
3780 msr->data = old_msr_data;
2225fd56 3781 }
3bab1f5d 3782 break;
6aa8b732 3783 }
8fe8ab46 3784 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3785 }
3786
2cc51560 3787 return ret;
6aa8b732
AK
3788}
3789
5fdbf976 3790static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3791{
5fdbf976
MT
3792 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3793 switch (reg) {
3794 case VCPU_REGS_RSP:
3795 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3796 break;
3797 case VCPU_REGS_RIP:
3798 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3799 break;
6de4f3ad
AK
3800 case VCPU_EXREG_PDPTR:
3801 if (enable_ept)
3802 ept_save_pdptrs(vcpu);
3803 break;
5fdbf976
MT
3804 default:
3805 break;
3806 }
6aa8b732
AK
3807}
3808
6aa8b732
AK
3809static __init int cpu_has_kvm_support(void)
3810{
6210e37b 3811 return cpu_has_vmx();
6aa8b732
AK
3812}
3813
3814static __init int vmx_disabled_by_bios(void)
3815{
3816 u64 msr;
3817
3818 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3819 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3820 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3821 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3822 && tboot_enabled())
3823 return 1;
23f3e991 3824 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3825 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3826 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3827 && !tboot_enabled()) {
3828 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3829 "activate TXT before enabling KVM\n");
cafd6659 3830 return 1;
f9335afe 3831 }
23f3e991
JC
3832 /* launched w/o TXT and VMX disabled */
3833 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3834 && !tboot_enabled())
3835 return 1;
cafd6659
SW
3836 }
3837
3838 return 0;
6aa8b732
AK
3839}
3840
7725b894
DX
3841static void kvm_cpu_vmxon(u64 addr)
3842{
fe0e80be 3843 cr4_set_bits(X86_CR4_VMXE);
1c5ac21a
AS
3844 intel_pt_handle_vmx(1);
3845
7725b894
DX
3846 asm volatile (ASM_VMX_VMXON_RAX
3847 : : "a"(&addr), "m"(addr)
3848 : "memory", "cc");
3849}
3850
13a34e06 3851static int hardware_enable(void)
6aa8b732
AK
3852{
3853 int cpu = raw_smp_processor_id();
3854 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3855 u64 old, test_bits;
6aa8b732 3856
1e02ce4c 3857 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3858 return -EBUSY;
3859
773e8a04
VK
3860 /*
3861 * This can happen if we hot-added a CPU but failed to allocate
3862 * VP assist page for it.
3863 */
3864 if (static_branch_unlikely(&enable_evmcs) &&
3865 !hv_get_vp_assist_page(cpu))
3866 return -EFAULT;
3867
d462b819 3868 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3869 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3870 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3871
3872 /*
3873 * Now we can enable the vmclear operation in kdump
3874 * since the loaded_vmcss_on_cpu list on this cpu
3875 * has been initialized.
3876 *
3877 * Though the cpu is not in VMX operation now, there
3878 * is no problem to enable the vmclear operation
3879 * for the loaded_vmcss_on_cpu list is empty!
3880 */
3881 crash_enable_local_vmclear(cpu);
3882
6aa8b732 3883 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3884
3885 test_bits = FEATURE_CONTROL_LOCKED;
3886 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3887 if (tboot_enabled())
3888 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3889
3890 if ((old & test_bits) != test_bits) {
6aa8b732 3891 /* enable and lock */
cafd6659
SW
3892 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3893 }
fe0e80be 3894 kvm_cpu_vmxon(phys_addr);
fdf288bf
DH
3895 if (enable_ept)
3896 ept_sync_global();
10474ae8
AG
3897
3898 return 0;
6aa8b732
AK
3899}
3900
d462b819 3901static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3902{
3903 int cpu = raw_smp_processor_id();
d462b819 3904 struct loaded_vmcs *v, *n;
543e4243 3905
d462b819
NHE
3906 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3907 loaded_vmcss_on_cpu_link)
3908 __loaded_vmcs_clear(v);
543e4243
AK
3909}
3910
710ff4a8
EH
3911
3912/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3913 * tricks.
3914 */
3915static void kvm_cpu_vmxoff(void)
6aa8b732 3916{
4ecac3fd 3917 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3918
3919 intel_pt_handle_vmx(0);
fe0e80be 3920 cr4_clear_bits(X86_CR4_VMXE);
6aa8b732
AK
3921}
3922
13a34e06 3923static void hardware_disable(void)
710ff4a8 3924{
fe0e80be
DH
3925 vmclear_local_loaded_vmcss();
3926 kvm_cpu_vmxoff();
710ff4a8
EH
3927}
3928
1c3d14fe 3929static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3930 u32 msr, u32 *result)
1c3d14fe
YS
3931{
3932 u32 vmx_msr_low, vmx_msr_high;
3933 u32 ctl = ctl_min | ctl_opt;
3934
3935 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3936
3937 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3938 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3939
3940 /* Ensure minimum (required) set of control bits are supported. */
3941 if (ctl_min & ~ctl)
002c7f7c 3942 return -EIO;
1c3d14fe
YS
3943
3944 *result = ctl;
3945 return 0;
3946}
3947
110312c8
AK
3948static __init bool allow_1_setting(u32 msr, u32 ctl)
3949{
3950 u32 vmx_msr_low, vmx_msr_high;
3951
3952 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3953 return vmx_msr_high & ctl;
3954}
3955
002c7f7c 3956static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3957{
3958 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3959 u32 min, opt, min2, opt2;
1c3d14fe
YS
3960 u32 _pin_based_exec_control = 0;
3961 u32 _cpu_based_exec_control = 0;
f78e0e2e 3962 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3963 u32 _vmexit_control = 0;
3964 u32 _vmentry_control = 0;
3965
1389309c 3966 memset(vmcs_conf, 0, sizeof(*vmcs_conf));
10166744 3967 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3968#ifdef CONFIG_X86_64
3969 CPU_BASED_CR8_LOAD_EXITING |
3970 CPU_BASED_CR8_STORE_EXITING |
3971#endif
d56f546d
SY
3972 CPU_BASED_CR3_LOAD_EXITING |
3973 CPU_BASED_CR3_STORE_EXITING |
8eb73e2d 3974 CPU_BASED_UNCOND_IO_EXITING |
1c3d14fe 3975 CPU_BASED_MOV_DR_EXITING |
a7052897 3976 CPU_BASED_USE_TSC_OFFSETING |
4d5422ce
WL
3977 CPU_BASED_MWAIT_EXITING |
3978 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3979 CPU_BASED_INVLPG_EXITING |
3980 CPU_BASED_RDPMC_EXITING;
443381a8 3981
f78e0e2e 3982 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3983 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3984 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3985 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3986 &_cpu_based_exec_control) < 0)
002c7f7c 3987 return -EIO;
6e5d865c
YS
3988#ifdef CONFIG_X86_64
3989 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3990 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3991 ~CPU_BASED_CR8_STORE_EXITING;
3992#endif
f78e0e2e 3993 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3994 min2 = 0;
3995 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3996 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3997 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3998 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3999 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 4000 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 4001 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
0367f205 4002 SECONDARY_EXEC_DESC |
ad756a16 4003 SECONDARY_EXEC_RDTSCP |
83d4c286 4004 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 4005 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 4006 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 4007 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 4008 SECONDARY_EXEC_XSAVES |
736fdf72
DH
4009 SECONDARY_EXEC_RDSEED_EXITING |
4010 SECONDARY_EXEC_RDRAND_EXITING |
8b3e34e4 4011 SECONDARY_EXEC_ENABLE_PML |
2a499e49
BD
4012 SECONDARY_EXEC_TSC_SCALING |
4013 SECONDARY_EXEC_ENABLE_VMFUNC;
d56f546d
SY
4014 if (adjust_vmx_controls(min2, opt2,
4015 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
4016 &_cpu_based_2nd_exec_control) < 0)
4017 return -EIO;
4018 }
4019#ifndef CONFIG_X86_64
4020 if (!(_cpu_based_2nd_exec_control &
4021 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
4022 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
4023#endif
83d4c286
YZ
4024
4025 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
4026 _cpu_based_2nd_exec_control &= ~(
8d14695f 4027 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
4028 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
4029 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 4030
61f1dd90
WL
4031 rdmsr_safe(MSR_IA32_VMX_EPT_VPID_CAP,
4032 &vmx_capability.ept, &vmx_capability.vpid);
4033
d56f546d 4034 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
4035 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
4036 enabled */
5fff7d27
GN
4037 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
4038 CPU_BASED_CR3_STORE_EXITING |
4039 CPU_BASED_INVLPG_EXITING);
61f1dd90
WL
4040 } else if (vmx_capability.ept) {
4041 vmx_capability.ept = 0;
4042 pr_warn_once("EPT CAP should not exist if not support "
4043 "1-setting enable EPT VM-execution control\n");
4044 }
4045 if (!(_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_VPID) &&
4046 vmx_capability.vpid) {
4047 vmx_capability.vpid = 0;
4048 pr_warn_once("VPID CAP should not exist if not support "
4049 "1-setting enable VPID VM-execution control\n");
d56f546d 4050 }
1c3d14fe 4051
91fa0f8e 4052 min = VM_EXIT_SAVE_DEBUG_CONTROLS | VM_EXIT_ACK_INTR_ON_EXIT;
1c3d14fe
YS
4053#ifdef CONFIG_X86_64
4054 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
4055#endif
a547c6db 4056 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
91fa0f8e 4057 VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
4058 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
4059 &_vmexit_control) < 0)
002c7f7c 4060 return -EIO;
1c3d14fe 4061
8a1b4392
PB
4062 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
4063 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR |
4064 PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
4065 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
4066 &_pin_based_exec_control) < 0)
4067 return -EIO;
4068
1c17c3e6
PB
4069 if (cpu_has_broken_vmx_preemption_timer())
4070 _pin_based_exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be 4071 if (!(_cpu_based_2nd_exec_control &
91fa0f8e 4072 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY))
01e439be
YZ
4073 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
4074
c845f9c6 4075 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 4076 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
4077 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
4078 &_vmentry_control) < 0)
002c7f7c 4079 return -EIO;
6aa8b732 4080
c68876fd 4081 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
4082
4083 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
4084 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 4085 return -EIO;
1c3d14fe
YS
4086
4087#ifdef CONFIG_X86_64
4088 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
4089 if (vmx_msr_high & (1u<<16))
002c7f7c 4090 return -EIO;
1c3d14fe
YS
4091#endif
4092
4093 /* Require Write-Back (WB) memory type for VMCS accesses. */
4094 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 4095 return -EIO;
1c3d14fe 4096
002c7f7c 4097 vmcs_conf->size = vmx_msr_high & 0x1fff;
16cb0255 4098 vmcs_conf->order = get_order(vmcs_conf->size);
9ac7e3e8 4099 vmcs_conf->basic_cap = vmx_msr_high & ~0x1fff;
773e8a04
VK
4100
4101 /* KVM supports Enlightened VMCS v1 only */
4102 if (static_branch_unlikely(&enable_evmcs))
4103 vmcs_conf->revision_id = KVM_EVMCS_VERSION;
4104 else
4105 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 4106
002c7f7c
YS
4107 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
4108 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 4109 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
4110 vmcs_conf->vmexit_ctrl = _vmexit_control;
4111 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 4112
773e8a04
VK
4113 if (static_branch_unlikely(&enable_evmcs))
4114 evmcs_sanitize_exec_ctrls(vmcs_conf);
4115
110312c8
AK
4116 cpu_has_load_ia32_efer =
4117 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4118 VM_ENTRY_LOAD_IA32_EFER)
4119 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4120 VM_EXIT_LOAD_IA32_EFER);
4121
8bf00a52
GN
4122 cpu_has_load_perf_global_ctrl =
4123 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
4124 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
4125 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
4126 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
4127
4128 /*
4129 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
bb3541f1 4130 * but due to errata below it can't be used. Workaround is to use
8bf00a52
GN
4131 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
4132 *
4133 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
4134 *
4135 * AAK155 (model 26)
4136 * AAP115 (model 30)
4137 * AAT100 (model 37)
4138 * BC86,AAY89,BD102 (model 44)
4139 * BA97 (model 46)
4140 *
4141 */
4142 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
4143 switch (boot_cpu_data.x86_model) {
4144 case 26:
4145 case 30:
4146 case 37:
4147 case 44:
4148 case 46:
4149 cpu_has_load_perf_global_ctrl = false;
4150 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
4151 "does not work properly. Using workaround\n");
4152 break;
4153 default:
4154 break;
4155 }
4156 }
4157
782511b0 4158 if (boot_cpu_has(X86_FEATURE_XSAVES))
20300099
WL
4159 rdmsrl(MSR_IA32_XSS, host_xss);
4160
1c3d14fe 4161 return 0;
c68876fd 4162}
6aa8b732
AK
4163
4164static struct vmcs *alloc_vmcs_cpu(int cpu)
4165{
4166 int node = cpu_to_node(cpu);
4167 struct page *pages;
4168 struct vmcs *vmcs;
4169
96db800f 4170 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
4171 if (!pages)
4172 return NULL;
4173 vmcs = page_address(pages);
1c3d14fe
YS
4174 memset(vmcs, 0, vmcs_config.size);
4175 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
4176 return vmcs;
4177}
4178
6aa8b732
AK
4179static void free_vmcs(struct vmcs *vmcs)
4180{
1c3d14fe 4181 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
4182}
4183
d462b819
NHE
4184/*
4185 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
4186 */
4187static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4188{
4189 if (!loaded_vmcs->vmcs)
4190 return;
4191 loaded_vmcs_clear(loaded_vmcs);
4192 free_vmcs(loaded_vmcs->vmcs);
4193 loaded_vmcs->vmcs = NULL;
904e14fb
PB
4194 if (loaded_vmcs->msr_bitmap)
4195 free_page((unsigned long)loaded_vmcs->msr_bitmap);
355f4fb1 4196 WARN_ON(loaded_vmcs->shadow_vmcs != NULL);
d462b819
NHE
4197}
4198
f21f165e
PB
4199static struct vmcs *alloc_vmcs(void)
4200{
4201 return alloc_vmcs_cpu(raw_smp_processor_id());
4202}
4203
4204static int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
4205{
4206 loaded_vmcs->vmcs = alloc_vmcs();
4207 if (!loaded_vmcs->vmcs)
4208 return -ENOMEM;
4209
4210 loaded_vmcs->shadow_vmcs = NULL;
4211 loaded_vmcs_init(loaded_vmcs);
904e14fb
PB
4212
4213 if (cpu_has_vmx_msr_bitmap()) {
4214 loaded_vmcs->msr_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
4215 if (!loaded_vmcs->msr_bitmap)
4216 goto out_vmcs;
4217 memset(loaded_vmcs->msr_bitmap, 0xff, PAGE_SIZE);
4218 }
f21f165e 4219 return 0;
904e14fb
PB
4220
4221out_vmcs:
4222 free_loaded_vmcs(loaded_vmcs);
4223 return -ENOMEM;
f21f165e
PB
4224}
4225
39959588 4226static void free_kvm_area(void)
6aa8b732
AK
4227{
4228 int cpu;
4229
3230bb47 4230 for_each_possible_cpu(cpu) {
6aa8b732 4231 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
4232 per_cpu(vmxarea, cpu) = NULL;
4233 }
6aa8b732
AK
4234}
4235
d37f4267
JM
4236enum vmcs_field_width {
4237 VMCS_FIELD_WIDTH_U16 = 0,
4238 VMCS_FIELD_WIDTH_U64 = 1,
4239 VMCS_FIELD_WIDTH_U32 = 2,
4240 VMCS_FIELD_WIDTH_NATURAL_WIDTH = 3
85fd514e
JM
4241};
4242
d37f4267 4243static inline int vmcs_field_width(unsigned long field)
85fd514e
JM
4244{
4245 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
d37f4267 4246 return VMCS_FIELD_WIDTH_U32;
85fd514e
JM
4247 return (field >> 13) & 0x3 ;
4248}
4249
4250static inline int vmcs_field_readonly(unsigned long field)
4251{
4252 return (((field >> 10) & 0x3) == 1);
4253}
4254
fe2b201b
BD
4255static void init_vmcs_shadow_fields(void)
4256{
4257 int i, j;
4258
44900ba6
PB
4259 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
4260 u16 field = shadow_read_only_fields[i];
d37f4267 4261 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
44900ba6
PB
4262 (i + 1 == max_shadow_read_only_fields ||
4263 shadow_read_only_fields[i + 1] != field + 1))
4264 pr_err("Missing field from shadow_read_only_field %x\n",
4265 field + 1);
4266
4267 clear_bit(field, vmx_vmread_bitmap);
4268#ifdef CONFIG_X86_64
4269 if (field & 1)
4270 continue;
4271#endif
4272 if (j < i)
4273 shadow_read_only_fields[j] = field;
4274 j++;
4275 }
4276 max_shadow_read_only_fields = j;
fe2b201b
BD
4277
4278 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
44900ba6 4279 u16 field = shadow_read_write_fields[i];
d37f4267 4280 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
44900ba6
PB
4281 (i + 1 == max_shadow_read_write_fields ||
4282 shadow_read_write_fields[i + 1] != field + 1))
4283 pr_err("Missing field from shadow_read_write_field %x\n",
4284 field + 1);
4285
c5d167b2
PB
4286 /*
4287 * PML and the preemption timer can be emulated, but the
4288 * processor cannot vmwrite to fields that don't exist
4289 * on bare metal.
4290 */
44900ba6 4291 switch (field) {
c5d167b2
PB
4292 case GUEST_PML_INDEX:
4293 if (!cpu_has_vmx_pml())
4294 continue;
4295 break;
4296 case VMX_PREEMPTION_TIMER_VALUE:
4297 if (!cpu_has_vmx_preemption_timer())
4298 continue;
4299 break;
4300 case GUEST_INTR_STATUS:
4301 if (!cpu_has_vmx_apicv())
fe2b201b
BD
4302 continue;
4303 break;
4304 default:
4305 break;
4306 }
4307
44900ba6
PB
4308 clear_bit(field, vmx_vmwrite_bitmap);
4309 clear_bit(field, vmx_vmread_bitmap);
4310#ifdef CONFIG_X86_64
4311 if (field & 1)
4312 continue;
4313#endif
fe2b201b 4314 if (j < i)
44900ba6 4315 shadow_read_write_fields[j] = field;
fe2b201b
BD
4316 j++;
4317 }
4318 max_shadow_read_write_fields = j;
fe2b201b
BD
4319}
4320
6aa8b732
AK
4321static __init int alloc_kvm_area(void)
4322{
4323 int cpu;
4324
3230bb47 4325 for_each_possible_cpu(cpu) {
6aa8b732
AK
4326 struct vmcs *vmcs;
4327
4328 vmcs = alloc_vmcs_cpu(cpu);
4329 if (!vmcs) {
4330 free_kvm_area();
4331 return -ENOMEM;
4332 }
4333
4334 per_cpu(vmxarea, cpu) = vmcs;
4335 }
4336 return 0;
4337}
4338
91b0aa2c 4339static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 4340 struct kvm_segment *save)
6aa8b732 4341{
d99e4152
GN
4342 if (!emulate_invalid_guest_state) {
4343 /*
4344 * CS and SS RPL should be equal during guest entry according
4345 * to VMX spec, but in reality it is not always so. Since vcpu
4346 * is in the middle of the transition from real mode to
4347 * protected mode it is safe to assume that RPL 0 is a good
4348 * default value.
4349 */
4350 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
4351 save->selector &= ~SEGMENT_RPL_MASK;
4352 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 4353 save->s = 1;
6aa8b732 4354 }
d99e4152 4355 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
4356}
4357
4358static void enter_pmode(struct kvm_vcpu *vcpu)
4359{
4360 unsigned long flags;
a89a8fb9 4361 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 4362
d99e4152
GN
4363 /*
4364 * Update real mode segment cache. It may be not up-to-date if sement
4365 * register was written while vcpu was in a guest mode.
4366 */
4367 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4368 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4369 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4370 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
4371 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4372 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
4373
7ffd92c5 4374 vmx->rmode.vm86_active = 0;
6aa8b732 4375
2fb92db1
AK
4376 vmx_segment_cache_clear(vmx);
4377
f5f7b2fe 4378 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
4379
4380 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
4381 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
4382 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
4383 vmcs_writel(GUEST_RFLAGS, flags);
4384
66aee91a
RR
4385 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
4386 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
4387
4388 update_exception_bitmap(vcpu);
4389
91b0aa2c
GN
4390 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4391 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4392 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4393 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4394 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
4395 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
4396}
4397
f5f7b2fe 4398static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 4399{
772e0318 4400 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
4401 struct kvm_segment var = *save;
4402
4403 var.dpl = 0x3;
4404 if (seg == VCPU_SREG_CS)
4405 var.type = 0x3;
4406
4407 if (!emulate_invalid_guest_state) {
4408 var.selector = var.base >> 4;
4409 var.base = var.base & 0xffff0;
4410 var.limit = 0xffff;
4411 var.g = 0;
4412 var.db = 0;
4413 var.present = 1;
4414 var.s = 1;
4415 var.l = 0;
4416 var.unusable = 0;
4417 var.type = 0x3;
4418 var.avl = 0;
4419 if (save->base & 0xf)
4420 printk_once(KERN_WARNING "kvm: segment base is not "
4421 "paragraph aligned when entering "
4422 "protected mode (seg=%d)", seg);
4423 }
6aa8b732 4424
d99e4152 4425 vmcs_write16(sf->selector, var.selector);
96794e4e 4426 vmcs_writel(sf->base, var.base);
d99e4152
GN
4427 vmcs_write32(sf->limit, var.limit);
4428 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
4429}
4430
4431static void enter_rmode(struct kvm_vcpu *vcpu)
4432{
4433 unsigned long flags;
a89a8fb9 4434 struct vcpu_vmx *vmx = to_vmx(vcpu);
40bbb9d0 4435 struct kvm_vmx *kvm_vmx = to_kvm_vmx(vcpu->kvm);
6aa8b732 4436
f5f7b2fe
AK
4437 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
4438 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
4439 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
4440 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
4441 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
4442 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
4443 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 4444
7ffd92c5 4445 vmx->rmode.vm86_active = 1;
6aa8b732 4446
776e58ea
GN
4447 /*
4448 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 4449 * vcpu. Warn the user that an update is overdue.
776e58ea 4450 */
40bbb9d0 4451 if (!kvm_vmx->tss_addr)
776e58ea
GN
4452 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
4453 "called before entering vcpu\n");
776e58ea 4454
2fb92db1
AK
4455 vmx_segment_cache_clear(vmx);
4456
40bbb9d0 4457 vmcs_writel(GUEST_TR_BASE, kvm_vmx->tss_addr);
6aa8b732 4458 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
4459 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4460
4461 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 4462 vmx->rmode.save_rflags = flags;
6aa8b732 4463
053de044 4464 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
4465
4466 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 4467 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
4468 update_exception_bitmap(vcpu);
4469
d99e4152
GN
4470 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
4471 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
4472 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
4473 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
4474 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
4475 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 4476
8668a3c4 4477 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
4478}
4479
401d10de
AS
4480static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
4481{
4482 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
4483 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
4484
4485 if (!msr)
4486 return;
401d10de 4487
44ea2b17
AK
4488 /*
4489 * Force kernel_gs_base reloading before EFER changes, as control
4490 * of this msr depends on is_long_mode().
4491 */
4492 vmx_load_host_state(to_vmx(vcpu));
f6801dff 4493 vcpu->arch.efer = efer;
401d10de 4494 if (efer & EFER_LMA) {
2961e876 4495 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4496 msr->data = efer;
4497 } else {
2961e876 4498 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
4499
4500 msr->data = efer & ~EFER_LME;
4501 }
4502 setup_msrs(vmx);
4503}
4504
05b3e0c2 4505#ifdef CONFIG_X86_64
6aa8b732
AK
4506
4507static void enter_lmode(struct kvm_vcpu *vcpu)
4508{
4509 u32 guest_tr_ar;
4510
2fb92db1
AK
4511 vmx_segment_cache_clear(to_vmx(vcpu));
4512
6aa8b732 4513 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 4514 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
4515 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
4516 __func__);
6aa8b732 4517 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
4518 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
4519 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 4520 }
da38f438 4521 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
4522}
4523
4524static void exit_lmode(struct kvm_vcpu *vcpu)
4525{
2961e876 4526 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 4527 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
4528}
4529
4530#endif
4531
c2ba05cc
WL
4532static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid,
4533 bool invalidate_gpa)
2384d2b3 4534{
c2ba05cc 4535 if (enable_ept && (invalidate_gpa || !enable_vpid)) {
dd180b3e
XG
4536 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4537 return;
995f00a6 4538 ept_sync_context(construct_eptp(vcpu, vcpu->arch.mmu.root_hpa));
f0b98c02
JM
4539 } else {
4540 vpid_sync_context(vpid);
dd180b3e 4541 }
2384d2b3
SY
4542}
4543
c2ba05cc 4544static void vmx_flush_tlb(struct kvm_vcpu *vcpu, bool invalidate_gpa)
dd5f5341 4545{
c2ba05cc 4546 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid, invalidate_gpa);
dd5f5341
WL
4547}
4548
e8467fda
AK
4549static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
4550{
4551 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
4552
4553 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
4554 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
4555}
4556
aff48baa
AK
4557static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
4558{
b4d18517 4559 if (enable_unrestricted_guest || (enable_ept && is_paging(vcpu)))
aff48baa
AK
4560 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4561 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
4562}
4563
25c4c276 4564static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 4565{
fc78f519
AK
4566 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
4567
4568 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
4569 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
4570}
4571
1439442c
SY
4572static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
4573{
d0d538b9
GN
4574 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4575
6de4f3ad
AK
4576 if (!test_bit(VCPU_EXREG_PDPTR,
4577 (unsigned long *)&vcpu->arch.regs_dirty))
4578 return;
4579
1439442c 4580 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4581 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
4582 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
4583 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
4584 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
4585 }
4586}
4587
8f5d549f
AK
4588static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
4589{
d0d538b9
GN
4590 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4591
8f5d549f 4592 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
4593 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
4594 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
4595 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
4596 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 4597 }
6de4f3ad
AK
4598
4599 __set_bit(VCPU_EXREG_PDPTR,
4600 (unsigned long *)&vcpu->arch.regs_avail);
4601 __set_bit(VCPU_EXREG_PDPTR,
4602 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
4603}
4604
3899152c
DM
4605static bool nested_guest_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4606{
6677f3da
PB
4607 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4608 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
3899152c
DM
4609 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4610
6677f3da 4611 if (to_vmx(vcpu)->nested.msrs.secondary_ctls_high &
3899152c
DM
4612 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
4613 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
4614 fixed0 &= ~(X86_CR0_PE | X86_CR0_PG);
4615
4616 return fixed_bits_valid(val, fixed0, fixed1);
4617}
4618
4619static bool nested_host_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
4620{
6677f3da
PB
4621 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr0_fixed0;
4622 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr0_fixed1;
3899152c
DM
4623
4624 return fixed_bits_valid(val, fixed0, fixed1);
4625}
4626
4627static bool nested_cr4_valid(struct kvm_vcpu *vcpu, unsigned long val)
4628{
6677f3da
PB
4629 u64 fixed0 = to_vmx(vcpu)->nested.msrs.cr4_fixed0;
4630 u64 fixed1 = to_vmx(vcpu)->nested.msrs.cr4_fixed1;
3899152c
DM
4631
4632 return fixed_bits_valid(val, fixed0, fixed1);
4633}
4634
4635/* No difference in the restrictions on guest and host CR4 in VMX operation. */
4636#define nested_guest_cr4_valid nested_cr4_valid
4637#define nested_host_cr4_valid nested_cr4_valid
4638
5e1746d6 4639static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
4640
4641static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
4642 unsigned long cr0,
4643 struct kvm_vcpu *vcpu)
4644{
5233dd51
MT
4645 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
4646 vmx_decache_cr3(vcpu);
1439442c
SY
4647 if (!(cr0 & X86_CR0_PG)) {
4648 /* From paging/starting to nonpaging */
4649 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4650 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
4651 (CPU_BASED_CR3_LOAD_EXITING |
4652 CPU_BASED_CR3_STORE_EXITING));
4653 vcpu->arch.cr0 = cr0;
fc78f519 4654 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
4655 } else if (!is_paging(vcpu)) {
4656 /* From nonpaging to paging */
4657 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 4658 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
4659 ~(CPU_BASED_CR3_LOAD_EXITING |
4660 CPU_BASED_CR3_STORE_EXITING));
4661 vcpu->arch.cr0 = cr0;
fc78f519 4662 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 4663 }
95eb84a7
SY
4664
4665 if (!(cr0 & X86_CR0_WP))
4666 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
4667}
4668
6aa8b732
AK
4669static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
4670{
7ffd92c5 4671 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
4672 unsigned long hw_cr0;
4673
5037878e 4674 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 4675 if (enable_unrestricted_guest)
5037878e 4676 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 4677 else {
5037878e 4678 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 4679
218e763f
GN
4680 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
4681 enter_pmode(vcpu);
6aa8b732 4682
218e763f
GN
4683 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
4684 enter_rmode(vcpu);
4685 }
6aa8b732 4686
05b3e0c2 4687#ifdef CONFIG_X86_64
f6801dff 4688 if (vcpu->arch.efer & EFER_LME) {
707d92fa 4689 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 4690 enter_lmode(vcpu);
707d92fa 4691 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
4692 exit_lmode(vcpu);
4693 }
4694#endif
4695
b4d18517 4696 if (enable_ept && !enable_unrestricted_guest)
1439442c
SY
4697 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
4698
6aa8b732 4699 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 4700 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 4701 vcpu->arch.cr0 = cr0;
14168786
GN
4702
4703 /* depends on vcpu->arch.cr0 to be set to a new value */
4704 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4705}
4706
855feb67
YZ
4707static int get_ept_level(struct kvm_vcpu *vcpu)
4708{
4709 if (cpu_has_vmx_ept_5levels() && (cpuid_maxphyaddr(vcpu) > 48))
4710 return 5;
4711 return 4;
4712}
4713
995f00a6 4714static u64 construct_eptp(struct kvm_vcpu *vcpu, unsigned long root_hpa)
1439442c 4715{
855feb67
YZ
4716 u64 eptp = VMX_EPTP_MT_WB;
4717
4718 eptp |= (get_ept_level(vcpu) == 5) ? VMX_EPTP_PWL_5 : VMX_EPTP_PWL_4;
1439442c 4719
995f00a6
PF
4720 if (enable_ept_ad_bits &&
4721 (!is_guest_mode(vcpu) || nested_ept_ad_enabled(vcpu)))
bb97a016 4722 eptp |= VMX_EPTP_AD_ENABLE_BIT;
1439442c
SY
4723 eptp |= (root_hpa & PAGE_MASK);
4724
4725 return eptp;
4726}
4727
6aa8b732
AK
4728static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
4729{
1439442c
SY
4730 unsigned long guest_cr3;
4731 u64 eptp;
4732
4733 guest_cr3 = cr3;
089d034e 4734 if (enable_ept) {
995f00a6 4735 eptp = construct_eptp(vcpu, cr3);
1439442c 4736 vmcs_write64(EPT_POINTER, eptp);
e90008df
SC
4737 if (enable_unrestricted_guest || is_paging(vcpu) ||
4738 is_guest_mode(vcpu))
59ab5a8f
JK
4739 guest_cr3 = kvm_read_cr3(vcpu);
4740 else
40bbb9d0 4741 guest_cr3 = to_kvm_vmx(vcpu->kvm)->ept_identity_map_addr;
7c93be44 4742 ept_load_pdptrs(vcpu);
1439442c
SY
4743 }
4744
c2ba05cc 4745 vmx_flush_tlb(vcpu, true);
1439442c 4746 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
4747}
4748
5e1746d6 4749static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 4750{
085e68ee
BS
4751 /*
4752 * Pass through host's Machine Check Enable value to hw_cr4, which
4753 * is in force while we are in guest mode. Do not let guests control
4754 * this bit, even if host CR4.MCE == 0.
4755 */
5dc1f044
SC
4756 unsigned long hw_cr4;
4757
4758 hw_cr4 = (cr4_read_shadow() & X86_CR4_MCE) | (cr4 & ~X86_CR4_MCE);
4759 if (enable_unrestricted_guest)
4760 hw_cr4 |= KVM_VM_CR4_ALWAYS_ON_UNRESTRICTED_GUEST;
4761 else if (to_vmx(vcpu)->rmode.vm86_active)
4762 hw_cr4 |= KVM_RMODE_VM_CR4_ALWAYS_ON;
4763 else
4764 hw_cr4 |= KVM_PMODE_VM_CR4_ALWAYS_ON;
1439442c 4765
0367f205
PB
4766 if ((cr4 & X86_CR4_UMIP) && !boot_cpu_has(X86_FEATURE_UMIP)) {
4767 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4768 SECONDARY_EXEC_DESC);
4769 hw_cr4 &= ~X86_CR4_UMIP;
99158246
RK
4770 } else if (!is_guest_mode(vcpu) ||
4771 !nested_cpu_has2(get_vmcs12(vcpu), SECONDARY_EXEC_DESC))
0367f205
PB
4772 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
4773 SECONDARY_EXEC_DESC);
4774
5e1746d6
NHE
4775 if (cr4 & X86_CR4_VMXE) {
4776 /*
4777 * To use VMXON (and later other VMX instructions), a guest
4778 * must first be able to turn on cr4.VMXE (see handle_vmon()).
4779 * So basically the check on whether to allow nested VMX
4780 * is here.
4781 */
4782 if (!nested_vmx_allowed(vcpu))
4783 return 1;
1a0d74e6 4784 }
3899152c
DM
4785
4786 if (to_vmx(vcpu)->nested.vmxon && !nested_cr4_valid(vcpu, cr4))
5e1746d6
NHE
4787 return 1;
4788
ad312c7c 4789 vcpu->arch.cr4 = cr4;
5dc1f044
SC
4790
4791 if (!enable_unrestricted_guest) {
4792 if (enable_ept) {
4793 if (!is_paging(vcpu)) {
4794 hw_cr4 &= ~X86_CR4_PAE;
4795 hw_cr4 |= X86_CR4_PSE;
4796 } else if (!(cr4 & X86_CR4_PAE)) {
4797 hw_cr4 &= ~X86_CR4_PAE;
4798 }
bc23008b 4799 }
1439442c 4800
656ec4a4 4801 /*
ddba2628
HH
4802 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
4803 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
4804 * to be manually disabled when guest switches to non-paging
4805 * mode.
4806 *
4807 * If !enable_unrestricted_guest, the CPU is always running
4808 * with CR0.PG=1 and CR4 needs to be modified.
4809 * If enable_unrestricted_guest, the CPU automatically
4810 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 4811 */
5dc1f044
SC
4812 if (!is_paging(vcpu))
4813 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
4814 }
656ec4a4 4815
1439442c
SY
4816 vmcs_writel(CR4_READ_SHADOW, cr4);
4817 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 4818 return 0;
6aa8b732
AK
4819}
4820
6aa8b732
AK
4821static void vmx_get_segment(struct kvm_vcpu *vcpu,
4822 struct kvm_segment *var, int seg)
4823{
a9179499 4824 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
4825 u32 ar;
4826
c6ad1153 4827 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 4828 *var = vmx->rmode.segs[seg];
a9179499 4829 if (seg == VCPU_SREG_TR
2fb92db1 4830 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 4831 return;
1390a28b
AK
4832 var->base = vmx_read_guest_seg_base(vmx, seg);
4833 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4834 return;
a9179499 4835 }
2fb92db1
AK
4836 var->base = vmx_read_guest_seg_base(vmx, seg);
4837 var->limit = vmx_read_guest_seg_limit(vmx, seg);
4838 var->selector = vmx_read_guest_seg_selector(vmx, seg);
4839 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 4840 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
4841 var->type = ar & 15;
4842 var->s = (ar >> 4) & 1;
4843 var->dpl = (ar >> 5) & 3;
03617c18
GN
4844 /*
4845 * Some userspaces do not preserve unusable property. Since usable
4846 * segment has to be present according to VMX spec we can use present
4847 * property to amend userspace bug by making unusable segment always
4848 * nonpresent. vmx_segment_access_rights() already marks nonpresent
4849 * segment as unusable.
4850 */
4851 var->present = !var->unusable;
6aa8b732
AK
4852 var->avl = (ar >> 12) & 1;
4853 var->l = (ar >> 13) & 1;
4854 var->db = (ar >> 14) & 1;
4855 var->g = (ar >> 15) & 1;
6aa8b732
AK
4856}
4857
a9179499
AK
4858static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
4859{
a9179499
AK
4860 struct kvm_segment s;
4861
4862 if (to_vmx(vcpu)->rmode.vm86_active) {
4863 vmx_get_segment(vcpu, &s, seg);
4864 return s.base;
4865 }
2fb92db1 4866 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
4867}
4868
b09408d0 4869static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 4870{
b09408d0
MT
4871 struct vcpu_vmx *vmx = to_vmx(vcpu);
4872
ae9fedc7 4873 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 4874 return 0;
ae9fedc7
PB
4875 else {
4876 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 4877 return VMX_AR_DPL(ar);
69c73028 4878 }
69c73028
AK
4879}
4880
653e3108 4881static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 4882{
6aa8b732
AK
4883 u32 ar;
4884
f0495f9b 4885 if (var->unusable || !var->present)
6aa8b732
AK
4886 ar = 1 << 16;
4887 else {
4888 ar = var->type & 15;
4889 ar |= (var->s & 1) << 4;
4890 ar |= (var->dpl & 3) << 5;
4891 ar |= (var->present & 1) << 7;
4892 ar |= (var->avl & 1) << 12;
4893 ar |= (var->l & 1) << 13;
4894 ar |= (var->db & 1) << 14;
4895 ar |= (var->g & 1) << 15;
4896 }
653e3108
AK
4897
4898 return ar;
4899}
4900
4901static void vmx_set_segment(struct kvm_vcpu *vcpu,
4902 struct kvm_segment *var, int seg)
4903{
7ffd92c5 4904 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4905 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4906
2fb92db1
AK
4907 vmx_segment_cache_clear(vmx);
4908
1ecd50a9
GN
4909 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4910 vmx->rmode.segs[seg] = *var;
4911 if (seg == VCPU_SREG_TR)
4912 vmcs_write16(sf->selector, var->selector);
4913 else if (var->s)
4914 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4915 goto out;
653e3108 4916 }
1ecd50a9 4917
653e3108
AK
4918 vmcs_writel(sf->base, var->base);
4919 vmcs_write32(sf->limit, var->limit);
4920 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4921
4922 /*
4923 * Fix the "Accessed" bit in AR field of segment registers for older
4924 * qemu binaries.
4925 * IA32 arch specifies that at the time of processor reset the
4926 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4927 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4928 * state vmexit when "unrestricted guest" mode is turned on.
4929 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4930 * tree. Newer qemu binaries with that qemu fix would not need this
4931 * kvm hack.
4932 */
4933 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4934 var->type |= 0x1; /* Accessed */
3a624e29 4935
f924d66d 4936 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4937
4938out:
98eb2f8b 4939 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4940}
4941
6aa8b732
AK
4942static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4943{
2fb92db1 4944 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4945
4946 *db = (ar >> 14) & 1;
4947 *l = (ar >> 13) & 1;
4948}
4949
89a27f4d 4950static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4951{
89a27f4d
GN
4952 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4953 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4954}
4955
89a27f4d 4956static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4957{
89a27f4d
GN
4958 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4959 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4960}
4961
89a27f4d 4962static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4963{
89a27f4d
GN
4964 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4965 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4966}
4967
89a27f4d 4968static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4969{
89a27f4d
GN
4970 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4971 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4972}
4973
648dfaa7
MG
4974static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4975{
4976 struct kvm_segment var;
4977 u32 ar;
4978
4979 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4980 var.dpl = 0x3;
0647f4aa
GN
4981 if (seg == VCPU_SREG_CS)
4982 var.type = 0x3;
648dfaa7
MG
4983 ar = vmx_segment_access_rights(&var);
4984
4985 if (var.base != (var.selector << 4))
4986 return false;
89efbed0 4987 if (var.limit != 0xffff)
648dfaa7 4988 return false;
07f42f5f 4989 if (ar != 0xf3)
648dfaa7
MG
4990 return false;
4991
4992 return true;
4993}
4994
4995static bool code_segment_valid(struct kvm_vcpu *vcpu)
4996{
4997 struct kvm_segment cs;
4998 unsigned int cs_rpl;
4999
5000 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 5001 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 5002
1872a3f4
AK
5003 if (cs.unusable)
5004 return false;
4d283ec9 5005 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
5006 return false;
5007 if (!cs.s)
5008 return false;
4d283ec9 5009 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
5010 if (cs.dpl > cs_rpl)
5011 return false;
1872a3f4 5012 } else {
648dfaa7
MG
5013 if (cs.dpl != cs_rpl)
5014 return false;
5015 }
5016 if (!cs.present)
5017 return false;
5018
5019 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
5020 return true;
5021}
5022
5023static bool stack_segment_valid(struct kvm_vcpu *vcpu)
5024{
5025 struct kvm_segment ss;
5026 unsigned int ss_rpl;
5027
5028 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 5029 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 5030
1872a3f4
AK
5031 if (ss.unusable)
5032 return true;
5033 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
5034 return false;
5035 if (!ss.s)
5036 return false;
5037 if (ss.dpl != ss_rpl) /* DPL != RPL */
5038 return false;
5039 if (!ss.present)
5040 return false;
5041
5042 return true;
5043}
5044
5045static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
5046{
5047 struct kvm_segment var;
5048 unsigned int rpl;
5049
5050 vmx_get_segment(vcpu, &var, seg);
b32a9918 5051 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 5052
1872a3f4
AK
5053 if (var.unusable)
5054 return true;
648dfaa7
MG
5055 if (!var.s)
5056 return false;
5057 if (!var.present)
5058 return false;
4d283ec9 5059 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
5060 if (var.dpl < rpl) /* DPL < RPL */
5061 return false;
5062 }
5063
5064 /* TODO: Add other members to kvm_segment_field to allow checking for other access
5065 * rights flags
5066 */
5067 return true;
5068}
5069
5070static bool tr_valid(struct kvm_vcpu *vcpu)
5071{
5072 struct kvm_segment tr;
5073
5074 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
5075
1872a3f4
AK
5076 if (tr.unusable)
5077 return false;
b32a9918 5078 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 5079 return false;
1872a3f4 5080 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
5081 return false;
5082 if (!tr.present)
5083 return false;
5084
5085 return true;
5086}
5087
5088static bool ldtr_valid(struct kvm_vcpu *vcpu)
5089{
5090 struct kvm_segment ldtr;
5091
5092 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
5093
1872a3f4
AK
5094 if (ldtr.unusable)
5095 return true;
b32a9918 5096 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
5097 return false;
5098 if (ldtr.type != 2)
5099 return false;
5100 if (!ldtr.present)
5101 return false;
5102
5103 return true;
5104}
5105
5106static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
5107{
5108 struct kvm_segment cs, ss;
5109
5110 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5111 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
5112
b32a9918
NA
5113 return ((cs.selector & SEGMENT_RPL_MASK) ==
5114 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
5115}
5116
5117/*
5118 * Check if guest state is valid. Returns true if valid, false if
5119 * not.
5120 * We assume that registers are always usable
5121 */
5122static bool guest_state_valid(struct kvm_vcpu *vcpu)
5123{
c5e97c80
GN
5124 if (enable_unrestricted_guest)
5125 return true;
5126
648dfaa7 5127 /* real mode guest state checks */
f13882d8 5128 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
5129 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
5130 return false;
5131 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
5132 return false;
5133 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
5134 return false;
5135 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
5136 return false;
5137 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
5138 return false;
5139 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
5140 return false;
5141 } else {
5142 /* protected mode guest state checks */
5143 if (!cs_ss_rpl_check(vcpu))
5144 return false;
5145 if (!code_segment_valid(vcpu))
5146 return false;
5147 if (!stack_segment_valid(vcpu))
5148 return false;
5149 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
5150 return false;
5151 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
5152 return false;
5153 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
5154 return false;
5155 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
5156 return false;
5157 if (!tr_valid(vcpu))
5158 return false;
5159 if (!ldtr_valid(vcpu))
5160 return false;
5161 }
5162 /* TODO:
5163 * - Add checks on RIP
5164 * - Add checks on RFLAGS
5165 */
5166
5167 return true;
5168}
5169
5fa99cbe
JM
5170static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
5171{
5172 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
5173}
5174
d77c26fc 5175static int init_rmode_tss(struct kvm *kvm)
6aa8b732 5176{
40dcaa9f 5177 gfn_t fn;
195aefde 5178 u16 data = 0;
1f755a82 5179 int idx, r;
6aa8b732 5180
40dcaa9f 5181 idx = srcu_read_lock(&kvm->srcu);
40bbb9d0 5182 fn = to_kvm_vmx(kvm)->tss_addr >> PAGE_SHIFT;
195aefde
IE
5183 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5184 if (r < 0)
10589a46 5185 goto out;
195aefde 5186 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
5187 r = kvm_write_guest_page(kvm, fn++, &data,
5188 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 5189 if (r < 0)
10589a46 5190 goto out;
195aefde
IE
5191 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
5192 if (r < 0)
10589a46 5193 goto out;
195aefde
IE
5194 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
5195 if (r < 0)
10589a46 5196 goto out;
195aefde 5197 data = ~0;
10589a46
MT
5198 r = kvm_write_guest_page(kvm, fn, &data,
5199 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
5200 sizeof(u8));
10589a46 5201out:
40dcaa9f 5202 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 5203 return r;
6aa8b732
AK
5204}
5205
b7ebfb05
SY
5206static int init_rmode_identity_map(struct kvm *kvm)
5207{
40bbb9d0 5208 struct kvm_vmx *kvm_vmx = to_kvm_vmx(kvm);
f51770ed 5209 int i, idx, r = 0;
ba049e93 5210 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
5211 u32 tmp;
5212
40bbb9d0 5213 /* Protect kvm_vmx->ept_identity_pagetable_done. */
a255d479
TC
5214 mutex_lock(&kvm->slots_lock);
5215
40bbb9d0 5216 if (likely(kvm_vmx->ept_identity_pagetable_done))
a255d479 5217 goto out2;
a255d479 5218
40bbb9d0
SC
5219 if (!kvm_vmx->ept_identity_map_addr)
5220 kvm_vmx->ept_identity_map_addr = VMX_EPT_IDENTITY_PAGETABLE_ADDR;
5221 identity_map_pfn = kvm_vmx->ept_identity_map_addr >> PAGE_SHIFT;
a255d479 5222
d8a6e365 5223 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
40bbb9d0 5224 kvm_vmx->ept_identity_map_addr, PAGE_SIZE);
f51770ed 5225 if (r < 0)
a255d479
TC
5226 goto out2;
5227
40dcaa9f 5228 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
5229 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
5230 if (r < 0)
5231 goto out;
5232 /* Set up identity-mapping pagetable for EPT in real mode */
5233 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
5234 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
5235 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
5236 r = kvm_write_guest_page(kvm, identity_map_pfn,
5237 &tmp, i * sizeof(tmp), sizeof(tmp));
5238 if (r < 0)
5239 goto out;
5240 }
40bbb9d0 5241 kvm_vmx->ept_identity_pagetable_done = true;
f51770ed 5242
b7ebfb05 5243out:
40dcaa9f 5244 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
5245
5246out2:
5247 mutex_unlock(&kvm->slots_lock);
f51770ed 5248 return r;
b7ebfb05
SY
5249}
5250
6aa8b732
AK
5251static void seg_setup(int seg)
5252{
772e0318 5253 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 5254 unsigned int ar;
6aa8b732
AK
5255
5256 vmcs_write16(sf->selector, 0);
5257 vmcs_writel(sf->base, 0);
5258 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
5259 ar = 0x93;
5260 if (seg == VCPU_SREG_CS)
5261 ar |= 0x08; /* code segment */
3a624e29
NK
5262
5263 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
5264}
5265
f78e0e2e
SY
5266static int alloc_apic_access_page(struct kvm *kvm)
5267{
4484141a 5268 struct page *page;
f78e0e2e
SY
5269 int r = 0;
5270
79fac95e 5271 mutex_lock(&kvm->slots_lock);
c24ae0dc 5272 if (kvm->arch.apic_access_page_done)
f78e0e2e 5273 goto out;
1d8007bd
PB
5274 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
5275 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
5276 if (r)
5277 goto out;
72dc67a6 5278
73a6d941 5279 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
5280 if (is_error_page(page)) {
5281 r = -EFAULT;
5282 goto out;
5283 }
5284
c24ae0dc
TC
5285 /*
5286 * Do not pin the page in memory, so that memory hot-unplug
5287 * is able to migrate it.
5288 */
5289 put_page(page);
5290 kvm->arch.apic_access_page_done = true;
f78e0e2e 5291out:
79fac95e 5292 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
5293 return r;
5294}
5295
991e7a0e 5296static int allocate_vpid(void)
2384d2b3
SY
5297{
5298 int vpid;
5299
919818ab 5300 if (!enable_vpid)
991e7a0e 5301 return 0;
2384d2b3
SY
5302 spin_lock(&vmx_vpid_lock);
5303 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 5304 if (vpid < VMX_NR_VPIDS)
2384d2b3 5305 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
5306 else
5307 vpid = 0;
2384d2b3 5308 spin_unlock(&vmx_vpid_lock);
991e7a0e 5309 return vpid;
2384d2b3
SY
5310}
5311
991e7a0e 5312static void free_vpid(int vpid)
cdbecfc3 5313{
991e7a0e 5314 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
5315 return;
5316 spin_lock(&vmx_vpid_lock);
991e7a0e 5317 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
5318 spin_unlock(&vmx_vpid_lock);
5319}
5320
904e14fb
PB
5321static void __always_inline vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
5322 u32 msr, int type)
25c5f225 5323{
3e7c73e9 5324 int f = sizeof(unsigned long);
25c5f225
SY
5325
5326 if (!cpu_has_vmx_msr_bitmap())
5327 return;
5328
5329 /*
5330 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5331 * have the write-low and read-high bitmap offsets the wrong way round.
5332 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5333 */
25c5f225 5334 if (msr <= 0x1fff) {
8d14695f
YZ
5335 if (type & MSR_TYPE_R)
5336 /* read-low */
5337 __clear_bit(msr, msr_bitmap + 0x000 / f);
5338
5339 if (type & MSR_TYPE_W)
5340 /* write-low */
5341 __clear_bit(msr, msr_bitmap + 0x800 / f);
5342
25c5f225
SY
5343 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5344 msr &= 0x1fff;
8d14695f
YZ
5345 if (type & MSR_TYPE_R)
5346 /* read-high */
5347 __clear_bit(msr, msr_bitmap + 0x400 / f);
5348
5349 if (type & MSR_TYPE_W)
5350 /* write-high */
5351 __clear_bit(msr, msr_bitmap + 0xc00 / f);
5352
5353 }
5354}
5355
904e14fb
PB
5356static void __always_inline vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
5357 u32 msr, int type)
5358{
5359 int f = sizeof(unsigned long);
5360
5361 if (!cpu_has_vmx_msr_bitmap())
5362 return;
5363
5364 /*
5365 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5366 * have the write-low and read-high bitmap offsets the wrong way round.
5367 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5368 */
5369 if (msr <= 0x1fff) {
5370 if (type & MSR_TYPE_R)
5371 /* read-low */
5372 __set_bit(msr, msr_bitmap + 0x000 / f);
5373
5374 if (type & MSR_TYPE_W)
5375 /* write-low */
5376 __set_bit(msr, msr_bitmap + 0x800 / f);
5377
5378 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5379 msr &= 0x1fff;
5380 if (type & MSR_TYPE_R)
5381 /* read-high */
5382 __set_bit(msr, msr_bitmap + 0x400 / f);
5383
5384 if (type & MSR_TYPE_W)
5385 /* write-high */
5386 __set_bit(msr, msr_bitmap + 0xc00 / f);
5387
5388 }
5389}
5390
5391static void __always_inline vmx_set_intercept_for_msr(unsigned long *msr_bitmap,
5392 u32 msr, int type, bool value)
5393{
5394 if (value)
5395 vmx_enable_intercept_for_msr(msr_bitmap, msr, type);
5396 else
5397 vmx_disable_intercept_for_msr(msr_bitmap, msr, type);
5398}
5399
f2b93280
WV
5400/*
5401 * If a msr is allowed by L0, we should check whether it is allowed by L1.
5402 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
5403 */
5404static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
5405 unsigned long *msr_bitmap_nested,
5406 u32 msr, int type)
5407{
5408 int f = sizeof(unsigned long);
5409
f2b93280
WV
5410 /*
5411 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
5412 * have the write-low and read-high bitmap offsets the wrong way round.
5413 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
5414 */
5415 if (msr <= 0x1fff) {
5416 if (type & MSR_TYPE_R &&
5417 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
5418 /* read-low */
5419 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
5420
5421 if (type & MSR_TYPE_W &&
5422 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
5423 /* write-low */
5424 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
5425
5426 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
5427 msr &= 0x1fff;
5428 if (type & MSR_TYPE_R &&
5429 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
5430 /* read-high */
5431 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
5432
5433 if (type & MSR_TYPE_W &&
5434 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
5435 /* write-high */
5436 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
5437
5438 }
5439}
5440
904e14fb 5441static u8 vmx_msr_bitmap_mode(struct kvm_vcpu *vcpu)
5897297b 5442{
904e14fb
PB
5443 u8 mode = 0;
5444
5445 if (cpu_has_secondary_exec_ctrls() &&
5446 (vmcs_read32(SECONDARY_VM_EXEC_CONTROL) &
5447 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE)) {
5448 mode |= MSR_BITMAP_MODE_X2APIC;
5449 if (enable_apicv && kvm_vcpu_apicv_active(vcpu))
5450 mode |= MSR_BITMAP_MODE_X2APIC_APICV;
5451 }
5452
5453 if (is_long_mode(vcpu))
5454 mode |= MSR_BITMAP_MODE_LM;
5455
5456 return mode;
8d14695f
YZ
5457}
5458
904e14fb
PB
5459#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
5460
5461static void vmx_update_msr_bitmap_x2apic(unsigned long *msr_bitmap,
5462 u8 mode)
8d14695f 5463{
904e14fb
PB
5464 int msr;
5465
5466 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
5467 unsigned word = msr / BITS_PER_LONG;
5468 msr_bitmap[word] = (mode & MSR_BITMAP_MODE_X2APIC_APICV) ? 0 : ~0;
5469 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
5470 }
5471
5472 if (mode & MSR_BITMAP_MODE_X2APIC) {
5473 /*
5474 * TPR reads and writes can be virtualized even if virtual interrupt
5475 * delivery is not in use.
5476 */
5477 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TASKPRI), MSR_TYPE_RW);
5478 if (mode & MSR_BITMAP_MODE_X2APIC_APICV) {
5479 vmx_enable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_TMCCT), MSR_TYPE_R);
5480 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_EOI), MSR_TYPE_W);
5481 vmx_disable_intercept_for_msr(msr_bitmap, X2APIC_MSR(APIC_SELF_IPI), MSR_TYPE_W);
5482 }
f6e90f9e 5483 }
5897297b
AK
5484}
5485
904e14fb
PB
5486static void vmx_update_msr_bitmap(struct kvm_vcpu *vcpu)
5487{
5488 struct vcpu_vmx *vmx = to_vmx(vcpu);
5489 unsigned long *msr_bitmap = vmx->vmcs01.msr_bitmap;
5490 u8 mode = vmx_msr_bitmap_mode(vcpu);
5491 u8 changed = mode ^ vmx->msr_bitmap_mode;
5492
5493 if (!changed)
5494 return;
5495
5496 vmx_set_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW,
5497 !(mode & MSR_BITMAP_MODE_LM));
5498
5499 if (changed & (MSR_BITMAP_MODE_X2APIC | MSR_BITMAP_MODE_X2APIC_APICV))
5500 vmx_update_msr_bitmap_x2apic(msr_bitmap, mode);
5501
5502 vmx->msr_bitmap_mode = mode;
5503}
5504
b2a05fef 5505static bool vmx_get_enable_apicv(struct kvm_vcpu *vcpu)
d50ab6c1 5506{
d62caabb 5507 return enable_apicv;
d50ab6c1
PB
5508}
5509
c9f04407
DM
5510static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
5511{
5512 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5513 gfn_t gfn;
5514
5515 /*
5516 * Don't need to mark the APIC access page dirty; it is never
5517 * written to by the CPU during APIC virtualization.
5518 */
5519
5520 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5521 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
5522 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5523 }
5524
5525 if (nested_cpu_has_posted_intr(vmcs12)) {
5526 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
5527 kvm_vcpu_mark_page_dirty(vcpu, gfn);
5528 }
5529}
5530
5531
6342c50a 5532static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
705699a1
WV
5533{
5534 struct vcpu_vmx *vmx = to_vmx(vcpu);
5535 int max_irr;
5536 void *vapic_page;
5537 u16 status;
5538
c9f04407
DM
5539 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
5540 return;
705699a1 5541
c9f04407
DM
5542 vmx->nested.pi_pending = false;
5543 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
5544 return;
705699a1 5545
c9f04407
DM
5546 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
5547 if (max_irr != 256) {
705699a1 5548 vapic_page = kmap(vmx->nested.virtual_apic_page);
e7387b0e
LA
5549 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
5550 vapic_page, &max_irr);
705699a1
WV
5551 kunmap(vmx->nested.virtual_apic_page);
5552
5553 status = vmcs_read16(GUEST_INTR_STATUS);
5554 if ((u8)max_irr > ((u8)status & 0xff)) {
5555 status &= ~0xff;
5556 status |= (u8)max_irr;
5557 vmcs_write16(GUEST_INTR_STATUS, status);
5558 }
5559 }
c9f04407
DM
5560
5561 nested_mark_vmcs12_pages_dirty(vcpu);
705699a1
WV
5562}
5563
06a5524f
WV
5564static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu,
5565 bool nested)
21bc8dc5
RK
5566{
5567#ifdef CONFIG_SMP
06a5524f
WV
5568 int pi_vec = nested ? POSTED_INTR_NESTED_VECTOR : POSTED_INTR_VECTOR;
5569
21bc8dc5 5570 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6 5571 /*
5753743f
HZ
5572 * The vector of interrupt to be delivered to vcpu had
5573 * been set in PIR before this function.
5574 *
5575 * Following cases will be reached in this block, and
5576 * we always send a notification event in all cases as
5577 * explained below.
5578 *
5579 * Case 1: vcpu keeps in non-root mode. Sending a
5580 * notification event posts the interrupt to vcpu.
5581 *
5582 * Case 2: vcpu exits to root mode and is still
5583 * runnable. PIR will be synced to vIRR before the
5584 * next vcpu entry. Sending a notification event in
5585 * this case has no effect, as vcpu is not in root
5586 * mode.
28b835d6 5587 *
5753743f
HZ
5588 * Case 3: vcpu exits to root mode and is blocked.
5589 * vcpu_block() has already synced PIR to vIRR and
5590 * never blocks vcpu if vIRR is not cleared. Therefore,
5591 * a blocked vcpu here does not wait for any requested
5592 * interrupts in PIR, and sending a notification event
5593 * which has no effect is safe here.
28b835d6 5594 */
28b835d6 5595
06a5524f 5596 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu), pi_vec);
21bc8dc5
RK
5597 return true;
5598 }
5599#endif
5600 return false;
5601}
5602
705699a1
WV
5603static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
5604 int vector)
5605{
5606 struct vcpu_vmx *vmx = to_vmx(vcpu);
5607
5608 if (is_guest_mode(vcpu) &&
5609 vector == vmx->nested.posted_intr_nv) {
705699a1
WV
5610 /*
5611 * If a posted intr is not recognized by hardware,
5612 * we will accomplish it in the next vmentry.
5613 */
5614 vmx->nested.pi_pending = true;
5615 kvm_make_request(KVM_REQ_EVENT, vcpu);
6b697711
LA
5616 /* the PIR and ON have been set by L1. */
5617 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, true))
5618 kvm_vcpu_kick(vcpu);
705699a1
WV
5619 return 0;
5620 }
5621 return -1;
5622}
a20ed54d
YZ
5623/*
5624 * Send interrupt to vcpu via posted interrupt way.
5625 * 1. If target vcpu is running(non-root mode), send posted interrupt
5626 * notification to vcpu and hardware will sync PIR to vIRR atomically.
5627 * 2. If target vcpu isn't running(root mode), kick it to pick up the
5628 * interrupt from PIR in next vmentry.
5629 */
5630static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
5631{
5632 struct vcpu_vmx *vmx = to_vmx(vcpu);
5633 int r;
5634
705699a1
WV
5635 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
5636 if (!r)
5637 return;
5638
a20ed54d
YZ
5639 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
5640 return;
5641
b95234c8
PB
5642 /* If a previous notification has sent the IPI, nothing to do. */
5643 if (pi_test_and_set_on(&vmx->pi_desc))
5644 return;
5645
06a5524f 5646 if (!kvm_vcpu_trigger_posted_interrupt(vcpu, false))
a20ed54d
YZ
5647 kvm_vcpu_kick(vcpu);
5648}
5649
a3a8ff8e
NHE
5650/*
5651 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
5652 * will not change in the lifetime of the guest.
5653 * Note that host-state that does change is set elsewhere. E.g., host-state
5654 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
5655 */
a547c6db 5656static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
5657{
5658 u32 low32, high32;
5659 unsigned long tmpl;
5660 struct desc_ptr dt;
d6e41f11 5661 unsigned long cr0, cr3, cr4;
a3a8ff8e 5662
04ac88ab
AL
5663 cr0 = read_cr0();
5664 WARN_ON(cr0 & X86_CR0_TS);
5665 vmcs_writel(HOST_CR0, cr0); /* 22.2.3 */
d6e41f11
AL
5666
5667 /*
5668 * Save the most likely value for this task's CR3 in the VMCS.
5669 * We can't use __get_current_cr3_fast() because we're not atomic.
5670 */
6c690ee1 5671 cr3 = __read_cr3();
d6e41f11 5672 vmcs_writel(HOST_CR3, cr3); /* 22.2.3 FIXME: shadow tables */
44889942 5673 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
a3a8ff8e 5674
d974baa3 5675 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 5676 cr4 = cr4_read_shadow();
d974baa3 5677 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
44889942 5678 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3 5679
a3a8ff8e 5680 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
5681#ifdef CONFIG_X86_64
5682 /*
5683 * Load null selectors, so we can avoid reloading them in
5684 * __vmx_load_host_state(), in case userspace uses the null selectors
5685 * too (the expected case).
5686 */
5687 vmcs_write16(HOST_DS_SELECTOR, 0);
5688 vmcs_write16(HOST_ES_SELECTOR, 0);
5689#else
a3a8ff8e
NHE
5690 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5691 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 5692#endif
a3a8ff8e
NHE
5693 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
5694 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
5695
87930019 5696 store_idt(&dt);
a3a8ff8e 5697 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 5698 vmx->host_idt_base = dt.address;
a3a8ff8e 5699
83287ea4 5700 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
5701
5702 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
5703 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
5704 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
5705 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
5706
5707 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
5708 rdmsr(MSR_IA32_CR_PAT, low32, high32);
5709 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
5710 }
5711}
5712
bf8179a0
NHE
5713static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
5714{
5715 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
5716 if (enable_ept)
5717 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
5718 if (is_guest_mode(&vmx->vcpu))
5719 vmx->vcpu.arch.cr4_guest_owned_bits &=
5720 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
5721 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
5722}
5723
01e439be
YZ
5724static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
5725{
5726 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
5727
d62caabb 5728 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be 5729 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
d02fcf50
PB
5730
5731 if (!enable_vnmi)
5732 pin_based_exec_ctrl &= ~PIN_BASED_VIRTUAL_NMIS;
5733
64672c95
YJ
5734 /* Enable the preemption timer dynamically */
5735 pin_based_exec_ctrl &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
01e439be
YZ
5736 return pin_based_exec_ctrl;
5737}
5738
d62caabb
AS
5739static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
5740{
5741 struct vcpu_vmx *vmx = to_vmx(vcpu);
5742
5743 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
3ce424e4
RK
5744 if (cpu_has_secondary_exec_ctrls()) {
5745 if (kvm_vcpu_apicv_active(vcpu))
5746 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
5747 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5748 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5749 else
5750 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
5751 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5752 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
5753 }
5754
5755 if (cpu_has_vmx_msr_bitmap())
904e14fb 5756 vmx_update_msr_bitmap(vcpu);
d62caabb
AS
5757}
5758
bf8179a0
NHE
5759static u32 vmx_exec_control(struct vcpu_vmx *vmx)
5760{
5761 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
5762
5763 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
5764 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
5765
35754c98 5766 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
5767 exec_control &= ~CPU_BASED_TPR_SHADOW;
5768#ifdef CONFIG_X86_64
5769 exec_control |= CPU_BASED_CR8_STORE_EXITING |
5770 CPU_BASED_CR8_LOAD_EXITING;
5771#endif
5772 }
5773 if (!enable_ept)
5774 exec_control |= CPU_BASED_CR3_STORE_EXITING |
5775 CPU_BASED_CR3_LOAD_EXITING |
5776 CPU_BASED_INVLPG_EXITING;
4d5422ce
WL
5777 if (kvm_mwait_in_guest(vmx->vcpu.kvm))
5778 exec_control &= ~(CPU_BASED_MWAIT_EXITING |
5779 CPU_BASED_MONITOR_EXITING);
caa057a2
WL
5780 if (kvm_hlt_in_guest(vmx->vcpu.kvm))
5781 exec_control &= ~CPU_BASED_HLT_EXITING;
bf8179a0
NHE
5782 return exec_control;
5783}
5784
45ec368c 5785static bool vmx_rdrand_supported(void)
bf8179a0 5786{
45ec368c 5787 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5788 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5789}
5790
75f4fc8d
JM
5791static bool vmx_rdseed_supported(void)
5792{
5793 return vmcs_config.cpu_based_2nd_exec_ctrl &
736fdf72 5794 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5795}
5796
80154d77 5797static void vmx_compute_secondary_exec_control(struct vcpu_vmx *vmx)
bf8179a0 5798{
80154d77
PB
5799 struct kvm_vcpu *vcpu = &vmx->vcpu;
5800
bf8179a0 5801 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
0367f205 5802
80154d77 5803 if (!cpu_need_virtualize_apic_accesses(vcpu))
bf8179a0
NHE
5804 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5805 if (vmx->vpid == 0)
5806 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
5807 if (!enable_ept) {
5808 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
5809 enable_unrestricted_guest = 0;
ad756a16
MJ
5810 /* Enable INVPCID for non-ept guests may cause performance regression. */
5811 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
5812 }
5813 if (!enable_unrestricted_guest)
5814 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
b31c114b 5815 if (kvm_pause_in_guest(vmx->vcpu.kvm))
bf8179a0 5816 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
80154d77 5817 if (!kvm_vcpu_apicv_active(vcpu))
c7c9c56c
YZ
5818 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
5819 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 5820 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
0367f205
PB
5821
5822 /* SECONDARY_EXEC_DESC is enabled/disabled on writes to CR4.UMIP,
5823 * in vmx_set_cr4. */
5824 exec_control &= ~SECONDARY_EXEC_DESC;
5825
abc4fc58
AG
5826 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
5827 (handle_vmptrld).
5828 We can NOT enable shadow_vmcs here because we don't have yet
5829 a current VMCS12
5830 */
5831 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
5832
5833 if (!enable_pml)
5834 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 5835
3db13480
PB
5836 if (vmx_xsaves_supported()) {
5837 /* Exposing XSAVES only when XSAVE is exposed */
5838 bool xsaves_enabled =
5839 guest_cpuid_has(vcpu, X86_FEATURE_XSAVE) &&
5840 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES);
5841
5842 if (!xsaves_enabled)
5843 exec_control &= ~SECONDARY_EXEC_XSAVES;
5844
5845 if (nested) {
5846 if (xsaves_enabled)
6677f3da 5847 vmx->nested.msrs.secondary_ctls_high |=
3db13480
PB
5848 SECONDARY_EXEC_XSAVES;
5849 else
6677f3da 5850 vmx->nested.msrs.secondary_ctls_high &=
3db13480
PB
5851 ~SECONDARY_EXEC_XSAVES;
5852 }
5853 }
5854
80154d77
PB
5855 if (vmx_rdtscp_supported()) {
5856 bool rdtscp_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP);
5857 if (!rdtscp_enabled)
5858 exec_control &= ~SECONDARY_EXEC_RDTSCP;
5859
5860 if (nested) {
5861 if (rdtscp_enabled)
6677f3da 5862 vmx->nested.msrs.secondary_ctls_high |=
80154d77
PB
5863 SECONDARY_EXEC_RDTSCP;
5864 else
6677f3da 5865 vmx->nested.msrs.secondary_ctls_high &=
80154d77
PB
5866 ~SECONDARY_EXEC_RDTSCP;
5867 }
5868 }
5869
5870 if (vmx_invpcid_supported()) {
5871 /* Exposing INVPCID only when PCID is exposed */
5872 bool invpcid_enabled =
5873 guest_cpuid_has(vcpu, X86_FEATURE_INVPCID) &&
5874 guest_cpuid_has(vcpu, X86_FEATURE_PCID);
5875
5876 if (!invpcid_enabled) {
5877 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
5878 guest_cpuid_clear(vcpu, X86_FEATURE_INVPCID);
5879 }
5880
5881 if (nested) {
5882 if (invpcid_enabled)
6677f3da 5883 vmx->nested.msrs.secondary_ctls_high |=
80154d77
PB
5884 SECONDARY_EXEC_ENABLE_INVPCID;
5885 else
6677f3da 5886 vmx->nested.msrs.secondary_ctls_high &=
80154d77
PB
5887 ~SECONDARY_EXEC_ENABLE_INVPCID;
5888 }
5889 }
5890
45ec368c
JM
5891 if (vmx_rdrand_supported()) {
5892 bool rdrand_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDRAND);
5893 if (rdrand_enabled)
736fdf72 5894 exec_control &= ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5895
5896 if (nested) {
5897 if (rdrand_enabled)
6677f3da 5898 vmx->nested.msrs.secondary_ctls_high |=
736fdf72 5899 SECONDARY_EXEC_RDRAND_EXITING;
45ec368c 5900 else
6677f3da 5901 vmx->nested.msrs.secondary_ctls_high &=
736fdf72 5902 ~SECONDARY_EXEC_RDRAND_EXITING;
45ec368c
JM
5903 }
5904 }
5905
75f4fc8d
JM
5906 if (vmx_rdseed_supported()) {
5907 bool rdseed_enabled = guest_cpuid_has(vcpu, X86_FEATURE_RDSEED);
5908 if (rdseed_enabled)
736fdf72 5909 exec_control &= ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5910
5911 if (nested) {
5912 if (rdseed_enabled)
6677f3da 5913 vmx->nested.msrs.secondary_ctls_high |=
736fdf72 5914 SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d 5915 else
6677f3da 5916 vmx->nested.msrs.secondary_ctls_high &=
736fdf72 5917 ~SECONDARY_EXEC_RDSEED_EXITING;
75f4fc8d
JM
5918 }
5919 }
5920
80154d77 5921 vmx->secondary_exec_control = exec_control;
bf8179a0
NHE
5922}
5923
ce88decf
XG
5924static void ept_set_mmio_spte_mask(void)
5925{
5926 /*
5927 * EPT Misconfigurations can be generated if the value of bits 2:0
5928 * of an EPT paging-structure entry is 110b (write/execute).
ce88decf 5929 */
dcdca5fe
PF
5930 kvm_mmu_set_mmio_spte_mask(VMX_EPT_RWX_MASK,
5931 VMX_EPT_MISCONFIG_WX_VALUE);
ce88decf
XG
5932}
5933
f53cd63c 5934#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
5935/*
5936 * Sets up the vmcs for emulated real mode.
5937 */
12d79917 5938static void vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 5939{
2e4ce7f5 5940#ifdef CONFIG_X86_64
6aa8b732 5941 unsigned long a;
2e4ce7f5 5942#endif
6aa8b732 5943 int i;
6aa8b732 5944
4607c2d7
AG
5945 if (enable_shadow_vmcs) {
5946 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5947 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
5948 }
25c5f225 5949 if (cpu_has_vmx_msr_bitmap())
904e14fb 5950 vmcs_write64(MSR_BITMAP, __pa(vmx->vmcs01.msr_bitmap));
25c5f225 5951
6aa8b732
AK
5952 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
5953
6aa8b732 5954 /* Control */
01e439be 5955 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
64672c95 5956 vmx->hv_deadline_tsc = -1;
6e5d865c 5957
bf8179a0 5958 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 5959
dfa169bb 5960 if (cpu_has_secondary_exec_ctrls()) {
80154d77 5961 vmx_compute_secondary_exec_control(vmx);
bf8179a0 5962 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
80154d77 5963 vmx->secondary_exec_control);
dfa169bb 5964 }
f78e0e2e 5965
d62caabb 5966 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
5967 vmcs_write64(EOI_EXIT_BITMAP0, 0);
5968 vmcs_write64(EOI_EXIT_BITMAP1, 0);
5969 vmcs_write64(EOI_EXIT_BITMAP2, 0);
5970 vmcs_write64(EOI_EXIT_BITMAP3, 0);
5971
5972 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 5973
0bcf261c 5974 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 5975 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
5976 }
5977
b31c114b 5978 if (!kvm_pause_in_guest(vmx->vcpu.kvm)) {
4b8d54f9 5979 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
5980 vmx->ple_window = ple_window;
5981 vmx->ple_window_dirty = true;
4b8d54f9
ZE
5982 }
5983
c3707958
XG
5984 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
5985 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
5986 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
5987
9581d442
AK
5988 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
5989 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 5990 vmx_set_constant_host_state(vmx);
05b3e0c2 5991#ifdef CONFIG_X86_64
6aa8b732
AK
5992 rdmsrl(MSR_FS_BASE, a);
5993 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
5994 rdmsrl(MSR_GS_BASE, a);
5995 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
5996#else
5997 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
5998 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
5999#endif
6000
2a499e49
BD
6001 if (cpu_has_vmx_vmfunc())
6002 vmcs_write64(VM_FUNCTION_CONTROL, 0);
6003
2cc51560
ED
6004 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
6005 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 6006 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 6007 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 6008 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 6009
74545705
RK
6010 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
6011 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 6012
03916db9 6013 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
6014 u32 index = vmx_msr_index[i];
6015 u32 data_low, data_high;
a2fa3e9f 6016 int j = vmx->nmsrs;
6aa8b732
AK
6017
6018 if (rdmsr_safe(index, &data_low, &data_high) < 0)
6019 continue;
432bd6cb
AK
6020 if (wrmsr_safe(index, data_low, data_high) < 0)
6021 continue;
26bb0981
AK
6022 vmx->guest_msrs[j].index = i;
6023 vmx->guest_msrs[j].data = 0;
d5696725 6024 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 6025 ++vmx->nmsrs;
6aa8b732 6026 }
6aa8b732 6027
28c1c9fa
KA
6028 if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
6029 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, vmx->arch_capabilities);
2961e876
GN
6030
6031 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
6032
6033 /* 22.2.1, 20.8.1 */
2961e876 6034 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 6035
bd7e5b08
PB
6036 vmx->vcpu.arch.cr0_guest_owned_bits = X86_CR0_TS;
6037 vmcs_writel(CR0_GUEST_HOST_MASK, ~X86_CR0_TS);
6038
bf8179a0 6039 set_cr4_guest_host_mask(vmx);
e00c8cf2 6040
f53cd63c
WL
6041 if (vmx_xsaves_supported())
6042 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
6043
4e59516a
PF
6044 if (enable_pml) {
6045 ASSERT(vmx->pml_pg);
6046 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
6047 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
6048 }
e00c8cf2
AK
6049}
6050
d28bc9dd 6051static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
6052{
6053 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 6054 struct msr_data apic_base_msr;
d28bc9dd 6055 u64 cr0;
e00c8cf2 6056
7ffd92c5 6057 vmx->rmode.vm86_active = 0;
d28b387f 6058 vmx->spec_ctrl = 0;
e00c8cf2 6059
518e7b94 6060 vcpu->arch.microcode_version = 0x100000000ULL;
ad312c7c 6061 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
6062 kvm_set_cr8(vcpu, 0);
6063
6064 if (!init_event) {
6065 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
6066 MSR_IA32_APICBASE_ENABLE;
6067 if (kvm_vcpu_is_reset_bsp(vcpu))
6068 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
6069 apic_base_msr.host_initiated = true;
6070 kvm_set_apic_base(vcpu, &apic_base_msr);
6071 }
e00c8cf2 6072
2fb92db1
AK
6073 vmx_segment_cache_clear(vmx);
6074
5706be0d 6075 seg_setup(VCPU_SREG_CS);
66450a21 6076 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 6077 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
6078
6079 seg_setup(VCPU_SREG_DS);
6080 seg_setup(VCPU_SREG_ES);
6081 seg_setup(VCPU_SREG_FS);
6082 seg_setup(VCPU_SREG_GS);
6083 seg_setup(VCPU_SREG_SS);
6084
6085 vmcs_write16(GUEST_TR_SELECTOR, 0);
6086 vmcs_writel(GUEST_TR_BASE, 0);
6087 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
6088 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
6089
6090 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
6091 vmcs_writel(GUEST_LDTR_BASE, 0);
6092 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
6093 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
6094
d28bc9dd
NA
6095 if (!init_event) {
6096 vmcs_write32(GUEST_SYSENTER_CS, 0);
6097 vmcs_writel(GUEST_SYSENTER_ESP, 0);
6098 vmcs_writel(GUEST_SYSENTER_EIP, 0);
6099 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
6100 }
e00c8cf2 6101
c37c2873 6102 kvm_set_rflags(vcpu, X86_EFLAGS_FIXED);
66450a21 6103 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 6104
e00c8cf2
AK
6105 vmcs_writel(GUEST_GDTR_BASE, 0);
6106 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
6107
6108 vmcs_writel(GUEST_IDTR_BASE, 0);
6109 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
6110
443381a8 6111 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 6112 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 6113 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
a554d207
WL
6114 if (kvm_mpx_supported())
6115 vmcs_write64(GUEST_BNDCFGS, 0);
e00c8cf2 6116
e00c8cf2
AK
6117 setup_msrs(vmx);
6118
6aa8b732
AK
6119 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
6120
d28bc9dd 6121 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 6122 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 6123 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 6124 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 6125 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
6126 vmcs_write32(TPR_THRESHOLD, 0);
6127 }
6128
a73896cb 6129 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 6130
2384d2b3
SY
6131 if (vmx->vpid != 0)
6132 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
6133
d28bc9dd 6134 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
d28bc9dd 6135 vmx->vcpu.arch.cr0 = cr0;
f2463247 6136 vmx_set_cr0(vcpu, cr0); /* enter rmode */
d28bc9dd 6137 vmx_set_cr4(vcpu, 0);
5690891b 6138 vmx_set_efer(vcpu, 0);
bd7e5b08 6139
d28bc9dd 6140 update_exception_bitmap(vcpu);
6aa8b732 6141
dd5f5341 6142 vpid_sync_context(vmx->vpid);
caa057a2
WL
6143 if (init_event)
6144 vmx_clear_hlt(vcpu);
6aa8b732
AK
6145}
6146
b6f1250e
NHE
6147/*
6148 * In nested virtualization, check if L1 asked to exit on external interrupts.
6149 * For most existing hypervisors, this will always return true.
6150 */
6151static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
6152{
6153 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
6154 PIN_BASED_EXT_INTR_MASK;
6155}
6156
77b0f5d6
BD
6157/*
6158 * In nested virtualization, check if L1 has set
6159 * VM_EXIT_ACK_INTR_ON_EXIT
6160 */
6161static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
6162{
6163 return get_vmcs12(vcpu)->vm_exit_controls &
6164 VM_EXIT_ACK_INTR_ON_EXIT;
6165}
6166
ea8ceb83
JK
6167static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
6168{
0c7f650e 6169 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
ea8ceb83
JK
6170}
6171
c9a7953f 6172static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99 6173{
47c0152e
PB
6174 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6175 CPU_BASED_VIRTUAL_INTR_PENDING);
3b86cd99
JK
6176}
6177
c9a7953f 6178static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99 6179{
d02fcf50 6180 if (!enable_vnmi ||
8a1b4392 6181 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
c9a7953f
JK
6182 enable_irq_window(vcpu);
6183 return;
6184 }
3b86cd99 6185
47c0152e
PB
6186 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
6187 CPU_BASED_VIRTUAL_NMI_PENDING);
3b86cd99
JK
6188}
6189
66fd3f7f 6190static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 6191{
9c8cba37 6192 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
6193 uint32_t intr;
6194 int irq = vcpu->arch.interrupt.nr;
9c8cba37 6195
229456fc 6196 trace_kvm_inj_virq(irq);
2714d1d3 6197
fa89a817 6198 ++vcpu->stat.irq_injections;
7ffd92c5 6199 if (vmx->rmode.vm86_active) {
71f9833b
SH
6200 int inc_eip = 0;
6201 if (vcpu->arch.interrupt.soft)
6202 inc_eip = vcpu->arch.event_exit_inst_len;
6203 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 6204 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
6205 return;
6206 }
66fd3f7f
GN
6207 intr = irq | INTR_INFO_VALID_MASK;
6208 if (vcpu->arch.interrupt.soft) {
6209 intr |= INTR_TYPE_SOFT_INTR;
6210 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
6211 vmx->vcpu.arch.event_exit_inst_len);
6212 } else
6213 intr |= INTR_TYPE_EXT_INTR;
6214 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
caa057a2
WL
6215
6216 vmx_clear_hlt(vcpu);
85f455f7
ED
6217}
6218
f08864b4
SY
6219static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
6220{
66a5a347
JK
6221 struct vcpu_vmx *vmx = to_vmx(vcpu);
6222
d02fcf50 6223 if (!enable_vnmi) {
8a1b4392
PB
6224 /*
6225 * Tracking the NMI-blocked state in software is built upon
6226 * finding the next open IRQ window. This, in turn, depends on
6227 * well-behaving guests: They have to keep IRQs disabled at
6228 * least as long as the NMI handler runs. Otherwise we may
6229 * cause NMI nesting, maybe breaking the guest. But as this is
6230 * highly unlikely, we can live with the residual risk.
6231 */
6232 vmx->loaded_vmcs->soft_vnmi_blocked = 1;
6233 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6234 }
6235
4c4a6f79
PB
6236 ++vcpu->stat.nmi_injections;
6237 vmx->loaded_vmcs->nmi_known_unmasked = false;
3b86cd99 6238
7ffd92c5 6239 if (vmx->rmode.vm86_active) {
71f9833b 6240 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 6241 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
6242 return;
6243 }
c5a6d5f7 6244
f08864b4
SY
6245 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
6246 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
caa057a2
WL
6247
6248 vmx_clear_hlt(vcpu);
f08864b4
SY
6249}
6250
3cfc3092
JK
6251static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
6252{
4c4a6f79
PB
6253 struct vcpu_vmx *vmx = to_vmx(vcpu);
6254 bool masked;
6255
d02fcf50 6256 if (!enable_vnmi)
8a1b4392 6257 return vmx->loaded_vmcs->soft_vnmi_blocked;
4c4a6f79 6258 if (vmx->loaded_vmcs->nmi_known_unmasked)
9d58b931 6259 return false;
4c4a6f79
PB
6260 masked = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
6261 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6262 return masked;
3cfc3092
JK
6263}
6264
6265static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
6266{
6267 struct vcpu_vmx *vmx = to_vmx(vcpu);
6268
d02fcf50 6269 if (!enable_vnmi) {
8a1b4392
PB
6270 if (vmx->loaded_vmcs->soft_vnmi_blocked != masked) {
6271 vmx->loaded_vmcs->soft_vnmi_blocked = masked;
6272 vmx->loaded_vmcs->vnmi_blocked_time = 0;
6273 }
6274 } else {
6275 vmx->loaded_vmcs->nmi_known_unmasked = !masked;
6276 if (masked)
6277 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6278 GUEST_INTR_STATE_NMI);
6279 else
6280 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
6281 GUEST_INTR_STATE_NMI);
6282 }
3cfc3092
JK
6283}
6284
2505dc9f
JK
6285static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
6286{
b6b8a145
JK
6287 if (to_vmx(vcpu)->nested.nested_run_pending)
6288 return 0;
ea8ceb83 6289
d02fcf50 6290 if (!enable_vnmi &&
8a1b4392
PB
6291 to_vmx(vcpu)->loaded_vmcs->soft_vnmi_blocked)
6292 return 0;
6293
2505dc9f
JK
6294 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6295 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
6296 | GUEST_INTR_STATE_NMI));
6297}
6298
78646121
GN
6299static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
6300{
b6b8a145
JK
6301 return (!to_vmx(vcpu)->nested.nested_run_pending &&
6302 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
6303 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
6304 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
6305}
6306
cbc94022
IE
6307static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
6308{
6309 int ret;
cbc94022 6310
f7eaeb0a
SC
6311 if (enable_unrestricted_guest)
6312 return 0;
6313
1d8007bd
PB
6314 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
6315 PAGE_SIZE * 3);
cbc94022
IE
6316 if (ret)
6317 return ret;
40bbb9d0 6318 to_kvm_vmx(kvm)->tss_addr = addr;
1f755a82 6319 return init_rmode_tss(kvm);
cbc94022
IE
6320}
6321
2ac52ab8
SC
6322static int vmx_set_identity_map_addr(struct kvm *kvm, u64 ident_addr)
6323{
40bbb9d0 6324 to_kvm_vmx(kvm)->ept_identity_map_addr = ident_addr;
2ac52ab8
SC
6325 return 0;
6326}
6327
0ca1b4f4 6328static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 6329{
77ab6db0 6330 switch (vec) {
77ab6db0 6331 case BP_VECTOR:
c573cd22
JK
6332 /*
6333 * Update instruction length as we may reinject the exception
6334 * from user space while in guest debugging mode.
6335 */
6336 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
6337 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 6338 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
6339 return false;
6340 /* fall through */
6341 case DB_VECTOR:
6342 if (vcpu->guest_debug &
6343 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
6344 return false;
d0bfb940
JK
6345 /* fall through */
6346 case DE_VECTOR:
77ab6db0
JK
6347 case OF_VECTOR:
6348 case BR_VECTOR:
6349 case UD_VECTOR:
6350 case DF_VECTOR:
6351 case SS_VECTOR:
6352 case GP_VECTOR:
6353 case MF_VECTOR:
0ca1b4f4
GN
6354 return true;
6355 break;
77ab6db0 6356 }
0ca1b4f4
GN
6357 return false;
6358}
6359
6360static int handle_rmode_exception(struct kvm_vcpu *vcpu,
6361 int vec, u32 err_code)
6362{
6363 /*
6364 * Instruction with address size override prefix opcode 0x67
6365 * Cause the #SS fault with 0 error code in VM86 mode.
6366 */
6367 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
6368 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
6369 if (vcpu->arch.halt_request) {
6370 vcpu->arch.halt_request = 0;
5cb56059 6371 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
6372 }
6373 return 1;
6374 }
6375 return 0;
6376 }
6377
6378 /*
6379 * Forward all other exceptions that are valid in real mode.
6380 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
6381 * the required debugging infrastructure rework.
6382 */
6383 kvm_queue_exception(vcpu, vec);
6384 return 1;
6aa8b732
AK
6385}
6386
a0861c02
AK
6387/*
6388 * Trigger machine check on the host. We assume all the MSRs are already set up
6389 * by the CPU and that we still run on the same CPU as the MCE occurred on.
6390 * We pass a fake environment to the machine check handler because we want
6391 * the guest to be always treated like user space, no matter what context
6392 * it used internally.
6393 */
6394static void kvm_machine_check(void)
6395{
6396#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
6397 struct pt_regs regs = {
6398 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
6399 .flags = X86_EFLAGS_IF,
6400 };
6401
6402 do_machine_check(&regs, 0);
6403#endif
6404}
6405
851ba692 6406static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
6407{
6408 /* already handled by vcpu_run */
6409 return 1;
6410}
6411
851ba692 6412static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 6413{
1155f76a 6414 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 6415 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 6416 u32 intr_info, ex_no, error_code;
42dbaa5a 6417 unsigned long cr2, rip, dr6;
6aa8b732
AK
6418 u32 vect_info;
6419 enum emulation_result er;
6420
1155f76a 6421 vect_info = vmx->idt_vectoring_info;
88786475 6422 intr_info = vmx->exit_intr_info;
6aa8b732 6423
a0861c02 6424 if (is_machine_check(intr_info))
851ba692 6425 return handle_machine_check(vcpu);
a0861c02 6426
ef85b673 6427 if (is_nmi(intr_info))
1b6269db 6428 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc 6429
082d06ed
WL
6430 if (is_invalid_opcode(intr_info))
6431 return handle_ud(vcpu);
7aa81cc0 6432
6aa8b732 6433 error_code = 0;
2e11384c 6434 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 6435 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e 6436
9e869480
LA
6437 if (!vmx->rmode.vm86_active && is_gp_fault(intr_info)) {
6438 WARN_ON_ONCE(!enable_vmware_backdoor);
6439 er = emulate_instruction(vcpu,
6440 EMULTYPE_VMWARE | EMULTYPE_NO_UD_ON_FAIL);
6441 if (er == EMULATE_USER_EXIT)
6442 return 0;
6443 else if (er != EMULATE_DONE)
6444 kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
6445 return 1;
6446 }
6447
bf4ca23e
XG
6448 /*
6449 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
6450 * MMIO, it is better to report an internal error.
6451 * See the comments in vmx_handle_exit.
6452 */
6453 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
6454 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
6455 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6456 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 6457 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
6458 vcpu->run->internal.data[0] = vect_info;
6459 vcpu->run->internal.data[1] = intr_info;
80f0e95d 6460 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
6461 return 0;
6462 }
6463
6aa8b732
AK
6464 if (is_page_fault(intr_info)) {
6465 cr2 = vmcs_readl(EXIT_QUALIFICATION);
1261bfa3
WL
6466 /* EPT won't cause page fault directly */
6467 WARN_ON_ONCE(!vcpu->arch.apf.host_apf_reason && enable_ept);
d0006530 6468 return kvm_handle_page_fault(vcpu, error_code, cr2, NULL, 0);
6aa8b732
AK
6469 }
6470
d0bfb940 6471 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
6472
6473 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
6474 return handle_rmode_exception(vcpu, ex_no, error_code);
6475
42dbaa5a 6476 switch (ex_no) {
54a20552
EN
6477 case AC_VECTOR:
6478 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
6479 return 1;
42dbaa5a
JK
6480 case DB_VECTOR:
6481 dr6 = vmcs_readl(EXIT_QUALIFICATION);
6482 if (!(vcpu->guest_debug &
6483 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 6484 vcpu->arch.dr6 &= ~15;
6f43ed01 6485 vcpu->arch.dr6 |= dr6 | DR6_RTM;
32d43cd3 6486 if (is_icebp(intr_info))
fd2a445a
HD
6487 skip_emulated_instruction(vcpu);
6488
42dbaa5a
JK
6489 kvm_queue_exception(vcpu, DB_VECTOR);
6490 return 1;
6491 }
6492 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
6493 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
6494 /* fall through */
6495 case BP_VECTOR:
c573cd22
JK
6496 /*
6497 * Update instruction length as we may reinject #BP from
6498 * user space while in guest debugging mode. Reading it for
6499 * #DB as well causes no harm, it is not used in that case.
6500 */
6501 vmx->vcpu.arch.event_exit_inst_len =
6502 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 6503 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 6504 rip = kvm_rip_read(vcpu);
d0bfb940
JK
6505 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
6506 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
6507 break;
6508 default:
d0bfb940
JK
6509 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
6510 kvm_run->ex.exception = ex_no;
6511 kvm_run->ex.error_code = error_code;
42dbaa5a 6512 break;
6aa8b732 6513 }
6aa8b732
AK
6514 return 0;
6515}
6516
851ba692 6517static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 6518{
1165f5fe 6519 ++vcpu->stat.irq_exits;
6aa8b732
AK
6520 return 1;
6521}
6522
851ba692 6523static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 6524{
851ba692 6525 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
bbeac283 6526 vcpu->mmio_needed = 0;
988ad74f
AK
6527 return 0;
6528}
6aa8b732 6529
851ba692 6530static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 6531{
bfdaab09 6532 unsigned long exit_qualification;
dca7f128 6533 int size, in, string;
039576c0 6534 unsigned port;
6aa8b732 6535
bfdaab09 6536 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 6537 string = (exit_qualification & 16) != 0;
e70669ab 6538
cf8f70bf 6539 ++vcpu->stat.io_exits;
e70669ab 6540
432baf60 6541 if (string)
51d8b661 6542 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 6543
cf8f70bf
GN
6544 port = exit_qualification >> 16;
6545 size = (exit_qualification & 7) + 1;
432baf60 6546 in = (exit_qualification & 8) != 0;
cf8f70bf 6547
dca7f128 6548 return kvm_fast_pio(vcpu, size, port, in);
6aa8b732
AK
6549}
6550
102d8325
IM
6551static void
6552vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
6553{
6554 /*
6555 * Patch in the VMCALL instruction:
6556 */
6557 hypercall[0] = 0x0f;
6558 hypercall[1] = 0x01;
6559 hypercall[2] = 0xc1;
102d8325
IM
6560}
6561
0fa06071 6562/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
6563static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
6564{
eeadf9e7 6565 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6566 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6567 unsigned long orig_val = val;
6568
eeadf9e7
NHE
6569 /*
6570 * We get here when L2 changed cr0 in a way that did not change
6571 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
6572 * but did change L0 shadowed bits. So we first calculate the
6573 * effective cr0 value that L1 would like to write into the
6574 * hardware. It consists of the L2-owned bits from the new
6575 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 6576 */
1a0d74e6
JK
6577 val = (val & ~vmcs12->cr0_guest_host_mask) |
6578 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
6579
3899152c 6580 if (!nested_guest_cr0_valid(vcpu, val))
eeadf9e7 6581 return 1;
1a0d74e6
JK
6582
6583 if (kvm_set_cr0(vcpu, val))
6584 return 1;
6585 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 6586 return 0;
1a0d74e6
JK
6587 } else {
6588 if (to_vmx(vcpu)->nested.vmxon &&
3899152c 6589 !nested_host_cr0_valid(vcpu, val))
1a0d74e6 6590 return 1;
3899152c 6591
eeadf9e7 6592 return kvm_set_cr0(vcpu, val);
1a0d74e6 6593 }
eeadf9e7
NHE
6594}
6595
6596static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
6597{
6598 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
6599 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6600 unsigned long orig_val = val;
6601
6602 /* analogously to handle_set_cr0 */
6603 val = (val & ~vmcs12->cr4_guest_host_mask) |
6604 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
6605 if (kvm_set_cr4(vcpu, val))
eeadf9e7 6606 return 1;
1a0d74e6 6607 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
6608 return 0;
6609 } else
6610 return kvm_set_cr4(vcpu, val);
6611}
6612
0367f205
PB
6613static int handle_desc(struct kvm_vcpu *vcpu)
6614{
6615 WARN_ON(!(vcpu->arch.cr4 & X86_CR4_UMIP));
6616 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
6617}
6618
851ba692 6619static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 6620{
229456fc 6621 unsigned long exit_qualification, val;
6aa8b732
AK
6622 int cr;
6623 int reg;
49a9b07e 6624 int err;
6affcbed 6625 int ret;
6aa8b732 6626
bfdaab09 6627 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
6628 cr = exit_qualification & 15;
6629 reg = (exit_qualification >> 8) & 15;
6630 switch ((exit_qualification >> 4) & 3) {
6631 case 0: /* mov to cr */
1e32c079 6632 val = kvm_register_readl(vcpu, reg);
229456fc 6633 trace_kvm_cr_write(cr, val);
6aa8b732
AK
6634 switch (cr) {
6635 case 0:
eeadf9e7 6636 err = handle_set_cr0(vcpu, val);
6affcbed 6637 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6638 case 3:
e1de91cc 6639 WARN_ON_ONCE(enable_unrestricted_guest);
2390218b 6640 err = kvm_set_cr3(vcpu, val);
6affcbed 6641 return kvm_complete_insn_gp(vcpu, err);
6aa8b732 6642 case 4:
eeadf9e7 6643 err = handle_set_cr4(vcpu, val);
6affcbed 6644 return kvm_complete_insn_gp(vcpu, err);
0a5fff19
GN
6645 case 8: {
6646 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 6647 u8 cr8 = (u8)val;
eea1cff9 6648 err = kvm_set_cr8(vcpu, cr8);
6affcbed 6649 ret = kvm_complete_insn_gp(vcpu, err);
35754c98 6650 if (lapic_in_kernel(vcpu))
6affcbed 6651 return ret;
0a5fff19 6652 if (cr8_prev <= cr8)
6affcbed
KH
6653 return ret;
6654 /*
6655 * TODO: we might be squashing a
6656 * KVM_GUESTDBG_SINGLESTEP-triggered
6657 * KVM_EXIT_DEBUG here.
6658 */
851ba692 6659 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
6660 return 0;
6661 }
4b8073e4 6662 }
6aa8b732 6663 break;
25c4c276 6664 case 2: /* clts */
bd7e5b08
PB
6665 WARN_ONCE(1, "Guest should always own CR0.TS");
6666 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4d4ec087 6667 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
6affcbed 6668 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6669 case 1: /*mov from cr*/
6670 switch (cr) {
6671 case 3:
e1de91cc 6672 WARN_ON_ONCE(enable_unrestricted_guest);
9f8fe504
AK
6673 val = kvm_read_cr3(vcpu);
6674 kvm_register_write(vcpu, reg, val);
6675 trace_kvm_cr_read(cr, val);
6affcbed 6676 return kvm_skip_emulated_instruction(vcpu);
6aa8b732 6677 case 8:
229456fc
MT
6678 val = kvm_get_cr8(vcpu);
6679 kvm_register_write(vcpu, reg, val);
6680 trace_kvm_cr_read(cr, val);
6affcbed 6681 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6682 }
6683 break;
6684 case 3: /* lmsw */
a1f83a74 6685 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 6686 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 6687 kvm_lmsw(vcpu, val);
6aa8b732 6688
6affcbed 6689 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6690 default:
6691 break;
6692 }
851ba692 6693 vcpu->run->exit_reason = 0;
a737f256 6694 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
6695 (int)(exit_qualification >> 4) & 3, cr);
6696 return 0;
6697}
6698
851ba692 6699static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 6700{
bfdaab09 6701 unsigned long exit_qualification;
16f8a6f9
NA
6702 int dr, dr7, reg;
6703
6704 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6705 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
6706
6707 /* First, if DR does not exist, trigger UD */
6708 if (!kvm_require_dr(vcpu, dr))
6709 return 1;
6aa8b732 6710
f2483415 6711 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
6712 if (!kvm_require_cpl(vcpu, 0))
6713 return 1;
16f8a6f9
NA
6714 dr7 = vmcs_readl(GUEST_DR7);
6715 if (dr7 & DR7_GD) {
42dbaa5a
JK
6716 /*
6717 * As the vm-exit takes precedence over the debug trap, we
6718 * need to emulate the latter, either for the host or the
6719 * guest debugging itself.
6720 */
6721 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 6722 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 6723 vcpu->run->debug.arch.dr7 = dr7;
82b32774 6724 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
6725 vcpu->run->debug.arch.exception = DB_VECTOR;
6726 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
6727 return 0;
6728 } else {
7305eb5d 6729 vcpu->arch.dr6 &= ~15;
6f43ed01 6730 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
6731 kvm_queue_exception(vcpu, DB_VECTOR);
6732 return 1;
6733 }
6734 }
6735
81908bf4 6736 if (vcpu->guest_debug == 0) {
8f22372f
PB
6737 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6738 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6739
6740 /*
6741 * No more DR vmexits; force a reload of the debug registers
6742 * and reenter on this instruction. The next vmexit will
6743 * retrieve the full state of the debug registers.
6744 */
6745 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
6746 return 1;
6747 }
6748
42dbaa5a
JK
6749 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
6750 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 6751 unsigned long val;
4c4d563b
JK
6752
6753 if (kvm_get_dr(vcpu, dr, &val))
6754 return 1;
6755 kvm_register_write(vcpu, reg, val);
020df079 6756 } else
5777392e 6757 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
6758 return 1;
6759
6affcbed 6760 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6761}
6762
73aaf249
JK
6763static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
6764{
6765 return vcpu->arch.dr6;
6766}
6767
6768static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
6769{
6770}
6771
81908bf4
PB
6772static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
6773{
81908bf4
PB
6774 get_debugreg(vcpu->arch.db[0], 0);
6775 get_debugreg(vcpu->arch.db[1], 1);
6776 get_debugreg(vcpu->arch.db[2], 2);
6777 get_debugreg(vcpu->arch.db[3], 3);
6778 get_debugreg(vcpu->arch.dr6, 6);
6779 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
6780
6781 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 6782 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
6783}
6784
020df079
GN
6785static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
6786{
6787 vmcs_writel(GUEST_DR7, val);
6788}
6789
851ba692 6790static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 6791{
6a908b62 6792 return kvm_emulate_cpuid(vcpu);
6aa8b732
AK
6793}
6794
851ba692 6795static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 6796{
ad312c7c 6797 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 6798 struct msr_data msr_info;
6aa8b732 6799
609e36d3
PB
6800 msr_info.index = ecx;
6801 msr_info.host_initiated = false;
6802 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 6803 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 6804 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6805 return 1;
6806 }
6807
609e36d3 6808 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 6809
6aa8b732 6810 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
6811 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
6812 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6affcbed 6813 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6814}
6815
851ba692 6816static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 6817{
8fe8ab46 6818 struct msr_data msr;
ad312c7c
ZX
6819 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
6820 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
6821 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 6822
8fe8ab46
WA
6823 msr.data = data;
6824 msr.index = ecx;
6825 msr.host_initiated = false;
854e8bb1 6826 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 6827 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 6828 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
6829 return 1;
6830 }
6831
59200273 6832 trace_kvm_msr_write(ecx, data);
6affcbed 6833 return kvm_skip_emulated_instruction(vcpu);
6aa8b732
AK
6834}
6835
851ba692 6836static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 6837{
eb90f341 6838 kvm_apic_update_ppr(vcpu);
6e5d865c
YS
6839 return 1;
6840}
6841
851ba692 6842static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 6843{
47c0152e
PB
6844 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
6845 CPU_BASED_VIRTUAL_INTR_PENDING);
2714d1d3 6846
3842d135
AK
6847 kvm_make_request(KVM_REQ_EVENT, vcpu);
6848
a26bf12a 6849 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
6850 return 1;
6851}
6852
851ba692 6853static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 6854{
d3bef15f 6855 return kvm_emulate_halt(vcpu);
6aa8b732
AK
6856}
6857
851ba692 6858static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 6859{
0d9c055e 6860 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
6861}
6862
ec25d5e6
GN
6863static int handle_invd(struct kvm_vcpu *vcpu)
6864{
51d8b661 6865 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
6866}
6867
851ba692 6868static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 6869{
f9c617f6 6870 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
6871
6872 kvm_mmu_invlpg(vcpu, exit_qualification);
6affcbed 6873 return kvm_skip_emulated_instruction(vcpu);
a7052897
MT
6874}
6875
fee84b07
AK
6876static int handle_rdpmc(struct kvm_vcpu *vcpu)
6877{
6878 int err;
6879
6880 err = kvm_rdpmc(vcpu);
6affcbed 6881 return kvm_complete_insn_gp(vcpu, err);
fee84b07
AK
6882}
6883
851ba692 6884static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 6885{
6affcbed 6886 return kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
6887}
6888
2acf923e
DC
6889static int handle_xsetbv(struct kvm_vcpu *vcpu)
6890{
6891 u64 new_bv = kvm_read_edx_eax(vcpu);
6892 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
6893
6894 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
6affcbed 6895 return kvm_skip_emulated_instruction(vcpu);
2acf923e
DC
6896 return 1;
6897}
6898
f53cd63c
WL
6899static int handle_xsaves(struct kvm_vcpu *vcpu)
6900{
6affcbed 6901 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6902 WARN(1, "this should never happen\n");
6903 return 1;
6904}
6905
6906static int handle_xrstors(struct kvm_vcpu *vcpu)
6907{
6affcbed 6908 kvm_skip_emulated_instruction(vcpu);
f53cd63c
WL
6909 WARN(1, "this should never happen\n");
6910 return 1;
6911}
6912
851ba692 6913static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 6914{
58fbbf26
KT
6915 if (likely(fasteoi)) {
6916 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6917 int access_type, offset;
6918
6919 access_type = exit_qualification & APIC_ACCESS_TYPE;
6920 offset = exit_qualification & APIC_ACCESS_OFFSET;
6921 /*
6922 * Sane guest uses MOV to write EOI, with written value
6923 * not cared. So make a short-circuit here by avoiding
6924 * heavy instruction emulation.
6925 */
6926 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
6927 (offset == APIC_EOI)) {
6928 kvm_lapic_set_eoi(vcpu);
6affcbed 6929 return kvm_skip_emulated_instruction(vcpu);
58fbbf26
KT
6930 }
6931 }
51d8b661 6932 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
6933}
6934
c7c9c56c
YZ
6935static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
6936{
6937 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6938 int vector = exit_qualification & 0xff;
6939
6940 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
6941 kvm_apic_set_eoi_accelerated(vcpu, vector);
6942 return 1;
6943}
6944
83d4c286
YZ
6945static int handle_apic_write(struct kvm_vcpu *vcpu)
6946{
6947 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6948 u32 offset = exit_qualification & 0xfff;
6949
6950 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
6951 kvm_apic_write_nodecode(vcpu, offset);
6952 return 1;
6953}
6954
851ba692 6955static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 6956{
60637aac 6957 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 6958 unsigned long exit_qualification;
e269fb21
JK
6959 bool has_error_code = false;
6960 u32 error_code = 0;
37817f29 6961 u16 tss_selector;
7f3d35fd 6962 int reason, type, idt_v, idt_index;
64a7ec06
GN
6963
6964 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 6965 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 6966 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
6967
6968 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6969
6970 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
6971 if (reason == TASK_SWITCH_GATE && idt_v) {
6972 switch (type) {
6973 case INTR_TYPE_NMI_INTR:
6974 vcpu->arch.nmi_injected = false;
654f06fc 6975 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
6976 break;
6977 case INTR_TYPE_EXT_INTR:
66fd3f7f 6978 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
6979 kvm_clear_interrupt_queue(vcpu);
6980 break;
6981 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
6982 if (vmx->idt_vectoring_info &
6983 VECTORING_INFO_DELIVER_CODE_MASK) {
6984 has_error_code = true;
6985 error_code =
6986 vmcs_read32(IDT_VECTORING_ERROR_CODE);
6987 }
6988 /* fall through */
64a7ec06
GN
6989 case INTR_TYPE_SOFT_EXCEPTION:
6990 kvm_clear_exception_queue(vcpu);
6991 break;
6992 default:
6993 break;
6994 }
60637aac 6995 }
37817f29
IE
6996 tss_selector = exit_qualification;
6997
64a7ec06
GN
6998 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
6999 type != INTR_TYPE_EXT_INTR &&
7000 type != INTR_TYPE_NMI_INTR))
7001 skip_emulated_instruction(vcpu);
7002
7f3d35fd
KW
7003 if (kvm_task_switch(vcpu, tss_selector,
7004 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
7005 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
7006 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7007 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7008 vcpu->run->internal.ndata = 0;
42dbaa5a 7009 return 0;
acb54517 7010 }
42dbaa5a 7011
42dbaa5a
JK
7012 /*
7013 * TODO: What about debug traps on tss switch?
7014 * Are we supposed to inject them and update dr6?
7015 */
7016
7017 return 1;
37817f29
IE
7018}
7019
851ba692 7020static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 7021{
f9c617f6 7022 unsigned long exit_qualification;
1439442c 7023 gpa_t gpa;
eebed243 7024 u64 error_code;
1439442c 7025
f9c617f6 7026 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 7027
0be9c7a8
GN
7028 /*
7029 * EPT violation happened while executing iret from NMI,
7030 * "blocked by NMI" bit has to be set before next VM entry.
7031 * There are errata that may cause this bit to not be set:
7032 * AAK134, BY25.
7033 */
bcd1c294 7034 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 7035 enable_vnmi &&
bcd1c294 7036 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
7037 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
7038
1439442c 7039 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 7040 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5 7041
27959a44 7042 /* Is it a read fault? */
ab22a473 7043 error_code = (exit_qualification & EPT_VIOLATION_ACC_READ)
27959a44
JS
7044 ? PFERR_USER_MASK : 0;
7045 /* Is it a write fault? */
ab22a473 7046 error_code |= (exit_qualification & EPT_VIOLATION_ACC_WRITE)
27959a44
JS
7047 ? PFERR_WRITE_MASK : 0;
7048 /* Is it a fetch fault? */
ab22a473 7049 error_code |= (exit_qualification & EPT_VIOLATION_ACC_INSTR)
27959a44
JS
7050 ? PFERR_FETCH_MASK : 0;
7051 /* ept page table entry is present? */
7052 error_code |= (exit_qualification &
7053 (EPT_VIOLATION_READABLE | EPT_VIOLATION_WRITABLE |
7054 EPT_VIOLATION_EXECUTABLE))
7055 ? PFERR_PRESENT_MASK : 0;
4f5982a5 7056
eebed243
PB
7057 error_code |= (exit_qualification & 0x100) != 0 ?
7058 PFERR_GUEST_FINAL_MASK : PFERR_GUEST_PAGE_MASK;
25d92081 7059
25d92081 7060 vcpu->arch.exit_qualification = exit_qualification;
4f5982a5 7061 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
7062}
7063
851ba692 7064static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 7065{
68f89400
MT
7066 gpa_t gpa;
7067
9034e6e8
PB
7068 /*
7069 * A nested guest cannot optimize MMIO vmexits, because we have an
7070 * nGPA here instead of the required GPA.
7071 */
68f89400 7072 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9034e6e8
PB
7073 if (!is_guest_mode(vcpu) &&
7074 !kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
931c33b1 7075 trace_kvm_fast_mmio(gpa);
d391f120
VK
7076 /*
7077 * Doing kvm_skip_emulated_instruction() depends on undefined
7078 * behavior: Intel's manual doesn't mandate
7079 * VM_EXIT_INSTRUCTION_LEN to be set in VMCS when EPT MISCONFIG
7080 * occurs and while on real hardware it was observed to be set,
7081 * other hypervisors (namely Hyper-V) don't set it, we end up
7082 * advancing IP with some random value. Disable fast mmio when
7083 * running nested and keep it for real hardware in hope that
7084 * VM_EXIT_INSTRUCTION_LEN will always be set correctly.
7085 */
7086 if (!static_cpu_has(X86_FEATURE_HYPERVISOR))
7087 return kvm_skip_emulated_instruction(vcpu);
7088 else
7089 return x86_emulate_instruction(vcpu, gpa, EMULTYPE_SKIP,
7090 NULL, 0) == EMULATE_DONE;
68c3b4d1 7091 }
68f89400 7092
c75d0edc 7093 return kvm_mmu_page_fault(vcpu, gpa, PFERR_RSVD_MASK, NULL, 0);
68f89400
MT
7094}
7095
851ba692 7096static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4 7097{
d02fcf50 7098 WARN_ON_ONCE(!enable_vnmi);
47c0152e
PB
7099 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
7100 CPU_BASED_VIRTUAL_NMI_PENDING);
f08864b4 7101 ++vcpu->stat.nmi_window_exits;
3842d135 7102 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
7103
7104 return 1;
7105}
7106
80ced186 7107static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 7108{
8b3079a5
AK
7109 struct vcpu_vmx *vmx = to_vmx(vcpu);
7110 enum emulation_result err = EMULATE_DONE;
80ced186 7111 int ret = 1;
49e9d557
AK
7112 u32 cpu_exec_ctrl;
7113 bool intr_window_requested;
b8405c18 7114 unsigned count = 130;
49e9d557 7115
2bb8cafe
SC
7116 /*
7117 * We should never reach the point where we are emulating L2
7118 * due to invalid guest state as that means we incorrectly
7119 * allowed a nested VMEntry with an invalid vmcs12.
7120 */
7121 WARN_ON_ONCE(vmx->emulation_required && vmx->nested.nested_run_pending);
7122
49e9d557
AK
7123 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
7124 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 7125
98eb2f8b 7126 while (vmx->emulation_required && count-- != 0) {
bdea48e3 7127 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
7128 return handle_interrupt_window(&vmx->vcpu);
7129
72875d8a 7130 if (kvm_test_request(KVM_REQ_EVENT, vcpu))
de87dcdd
AK
7131 return 1;
7132
9b8ae637 7133 err = emulate_instruction(vcpu, 0);
ea953ef0 7134
ac0a48c3 7135 if (err == EMULATE_USER_EXIT) {
94452b9e 7136 ++vcpu->stat.mmio_exits;
80ced186
MG
7137 ret = 0;
7138 goto out;
7139 }
1d5a4d9b 7140
add5ff7a
SC
7141 if (err != EMULATE_DONE)
7142 goto emulation_error;
7143
7144 if (vmx->emulation_required && !vmx->rmode.vm86_active &&
7145 vcpu->arch.exception.pending)
7146 goto emulation_error;
ea953ef0 7147
8d76c49e
GN
7148 if (vcpu->arch.halt_request) {
7149 vcpu->arch.halt_request = 0;
5cb56059 7150 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
7151 goto out;
7152 }
7153
ea953ef0 7154 if (signal_pending(current))
80ced186 7155 goto out;
ea953ef0
MG
7156 if (need_resched())
7157 schedule();
7158 }
7159
80ced186
MG
7160out:
7161 return ret;
b4a2d31d 7162
add5ff7a
SC
7163emulation_error:
7164 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
7165 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
7166 vcpu->run->internal.ndata = 0;
7167 return 0;
b4a2d31d
RK
7168}
7169
7170static void grow_ple_window(struct kvm_vcpu *vcpu)
7171{
7172 struct vcpu_vmx *vmx = to_vmx(vcpu);
7173 int old = vmx->ple_window;
7174
c8e88717
BM
7175 vmx->ple_window = __grow_ple_window(old, ple_window,
7176 ple_window_grow,
7177 ple_window_max);
b4a2d31d
RK
7178
7179 if (vmx->ple_window != old)
7180 vmx->ple_window_dirty = true;
7b46268d
RK
7181
7182 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
7183}
7184
7185static void shrink_ple_window(struct kvm_vcpu *vcpu)
7186{
7187 struct vcpu_vmx *vmx = to_vmx(vcpu);
7188 int old = vmx->ple_window;
7189
c8e88717
BM
7190 vmx->ple_window = __shrink_ple_window(old, ple_window,
7191 ple_window_shrink,
7192 ple_window);
b4a2d31d
RK
7193
7194 if (vmx->ple_window != old)
7195 vmx->ple_window_dirty = true;
7b46268d
RK
7196
7197 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
7198}
7199
bf9f6ac8
FW
7200/*
7201 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
7202 */
7203static void wakeup_handler(void)
7204{
7205 struct kvm_vcpu *vcpu;
7206 int cpu = smp_processor_id();
7207
7208 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7209 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
7210 blocked_vcpu_list) {
7211 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
7212
7213 if (pi_test_on(pi_desc) == 1)
7214 kvm_vcpu_kick(vcpu);
7215 }
7216 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
7217}
7218
e01bca2f 7219static void vmx_enable_tdp(void)
f160c7b7
JS
7220{
7221 kvm_mmu_set_mask_ptes(VMX_EPT_READABLE_MASK,
7222 enable_ept_ad_bits ? VMX_EPT_ACCESS_BIT : 0ull,
7223 enable_ept_ad_bits ? VMX_EPT_DIRTY_BIT : 0ull,
7224 0ull, VMX_EPT_EXECUTABLE_MASK,
7225 cpu_has_vmx_ept_execute_only() ? 0ull : VMX_EPT_READABLE_MASK,
d0ec49d4 7226 VMX_EPT_RWX_MASK, 0ull);
f160c7b7
JS
7227
7228 ept_set_mmio_spte_mask();
7229 kvm_enable_tdp();
7230}
7231
f2c7648d
TC
7232static __init int hardware_setup(void)
7233{
904e14fb 7234 int r = -ENOMEM, i;
34a1cd60
TC
7235
7236 rdmsrl_safe(MSR_EFER, &host_efer);
7237
7238 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
7239 kvm_define_shared_msr(i, vmx_msr_index[i]);
7240
23611332
RK
7241 for (i = 0; i < VMX_BITMAP_NR; i++) {
7242 vmx_bitmap[i] = (unsigned long *)__get_free_page(GFP_KERNEL);
7243 if (!vmx_bitmap[i])
7244 goto out;
7245 }
34a1cd60 7246
34a1cd60
TC
7247 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
7248 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
7249
34a1cd60
TC
7250 if (setup_vmcs_config(&vmcs_config) < 0) {
7251 r = -EIO;
23611332 7252 goto out;
baa03522 7253 }
f2c7648d
TC
7254
7255 if (boot_cpu_has(X86_FEATURE_NX))
7256 kvm_enable_efer_bits(EFER_NX);
7257
08d839c4
WL
7258 if (!cpu_has_vmx_vpid() || !cpu_has_vmx_invvpid() ||
7259 !(cpu_has_vmx_invvpid_single() || cpu_has_vmx_invvpid_global()))
f2c7648d 7260 enable_vpid = 0;
08d839c4 7261
f2c7648d 7262 if (!cpu_has_vmx_ept() ||
42aa53b4 7263 !cpu_has_vmx_ept_4levels() ||
f5f51586 7264 !cpu_has_vmx_ept_mt_wb() ||
8ad8182e 7265 !cpu_has_vmx_invept_global())
f2c7648d 7266 enable_ept = 0;
f2c7648d 7267
fce6ac4c 7268 if (!cpu_has_vmx_ept_ad_bits() || !enable_ept)
f2c7648d
TC
7269 enable_ept_ad_bits = 0;
7270
8ad8182e 7271 if (!cpu_has_vmx_unrestricted_guest() || !enable_ept)
f2c7648d
TC
7272 enable_unrestricted_guest = 0;
7273
ad15a296 7274 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
7275 flexpriority_enabled = 0;
7276
d02fcf50
PB
7277 if (!cpu_has_virtual_nmis())
7278 enable_vnmi = 0;
7279
ad15a296
PB
7280 /*
7281 * set_apic_access_page_addr() is used to reload apic access
7282 * page upon invalidation. No need to do anything if not
7283 * using the APIC_ACCESS_ADDR VMCS field.
7284 */
7285 if (!flexpriority_enabled)
f2c7648d 7286 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
7287
7288 if (!cpu_has_vmx_tpr_shadow())
7289 kvm_x86_ops->update_cr8_intercept = NULL;
7290
7291 if (enable_ept && !cpu_has_vmx_ept_2m_page())
7292 kvm_disable_largepages();
7293
0f107682 7294 if (!cpu_has_vmx_ple()) {
f2c7648d 7295 ple_gap = 0;
0f107682
WL
7296 ple_window = 0;
7297 ple_window_grow = 0;
7298 ple_window_max = 0;
7299 ple_window_shrink = 0;
7300 }
f2c7648d 7301
76dfafd5 7302 if (!cpu_has_vmx_apicv()) {
f2c7648d 7303 enable_apicv = 0;
76dfafd5
PB
7304 kvm_x86_ops->sync_pir_to_irr = NULL;
7305 }
f2c7648d 7306
64903d61
HZ
7307 if (cpu_has_vmx_tsc_scaling()) {
7308 kvm_has_tsc_control = true;
7309 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
7310 kvm_tsc_scaling_ratio_frac_bits = 48;
7311 }
7312
04bb92e4
WL
7313 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
7314
f160c7b7
JS
7315 if (enable_ept)
7316 vmx_enable_tdp();
7317 else
baa03522
TC
7318 kvm_disable_tdp();
7319
843e4330
KH
7320 /*
7321 * Only enable PML when hardware supports PML feature, and both EPT
7322 * and EPT A/D bit features are enabled -- PML depends on them to work.
7323 */
7324 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
7325 enable_pml = 0;
7326
7327 if (!enable_pml) {
7328 kvm_x86_ops->slot_enable_log_dirty = NULL;
7329 kvm_x86_ops->slot_disable_log_dirty = NULL;
7330 kvm_x86_ops->flush_log_dirty = NULL;
7331 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
7332 }
7333
64672c95
YJ
7334 if (cpu_has_vmx_preemption_timer() && enable_preemption_timer) {
7335 u64 vmx_msr;
7336
7337 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
7338 cpu_preemption_timer_multi =
7339 vmx_msr & VMX_MISC_PREEMPTION_TIMER_RATE_MASK;
7340 } else {
7341 kvm_x86_ops->set_hv_timer = NULL;
7342 kvm_x86_ops->cancel_hv_timer = NULL;
7343 }
7344
c5d167b2
PB
7345 if (!cpu_has_vmx_shadow_vmcs())
7346 enable_shadow_vmcs = 0;
7347 if (enable_shadow_vmcs)
7348 init_vmcs_shadow_fields();
7349
bf9f6ac8 7350 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
1389309c 7351 nested_vmx_setup_ctls_msrs(&vmcs_config.nested, enable_apicv);
bf9f6ac8 7352
c45dcc71
AR
7353 kvm_mce_cap_supported |= MCG_LMCE_P;
7354
f2c7648d 7355 return alloc_kvm_area();
34a1cd60 7356
34a1cd60 7357out:
23611332
RK
7358 for (i = 0; i < VMX_BITMAP_NR; i++)
7359 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60
TC
7360
7361 return r;
f2c7648d
TC
7362}
7363
7364static __exit void hardware_unsetup(void)
7365{
23611332
RK
7366 int i;
7367
7368 for (i = 0; i < VMX_BITMAP_NR; i++)
7369 free_page((unsigned long)vmx_bitmap[i]);
34a1cd60 7370
f2c7648d
TC
7371 free_kvm_area();
7372}
7373
4b8d54f9
ZE
7374/*
7375 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
7376 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
7377 */
9fb41ba8 7378static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 7379{
b31c114b 7380 if (!kvm_pause_in_guest(vcpu->kvm))
b4a2d31d
RK
7381 grow_ple_window(vcpu);
7382
de63ad4c
LM
7383 /*
7384 * Intel sdm vol3 ch-25.1.3 says: The "PAUSE-loop exiting"
7385 * VM-execution control is ignored if CPL > 0. OTOH, KVM
7386 * never set PAUSE_EXITING and just set PLE if supported,
7387 * so the vcpu must be CPL=0 if it gets a PAUSE exit.
7388 */
7389 kvm_vcpu_on_spin(vcpu, true);
6affcbed 7390 return kvm_skip_emulated_instruction(vcpu);
4b8d54f9
ZE
7391}
7392
87c00572 7393static int handle_nop(struct kvm_vcpu *vcpu)
59708670 7394{
6affcbed 7395 return kvm_skip_emulated_instruction(vcpu);
59708670
SY
7396}
7397
87c00572
GS
7398static int handle_mwait(struct kvm_vcpu *vcpu)
7399{
7400 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
7401 return handle_nop(vcpu);
7402}
7403
45ec368c
JM
7404static int handle_invalid_op(struct kvm_vcpu *vcpu)
7405{
7406 kvm_queue_exception(vcpu, UD_VECTOR);
7407 return 1;
7408}
7409
5f3d45e7
MD
7410static int handle_monitor_trap(struct kvm_vcpu *vcpu)
7411{
7412 return 1;
7413}
7414
87c00572
GS
7415static int handle_monitor(struct kvm_vcpu *vcpu)
7416{
7417 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
7418 return handle_nop(vcpu);
7419}
7420
0658fbaa
ACL
7421/*
7422 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
7423 * set the success or error code of an emulated VMX instruction, as specified
7424 * by Vol 2B, VMX Instruction Reference, "Conventions".
7425 */
7426static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
7427{
7428 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
7429 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7430 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
7431}
7432
7433static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
7434{
7435 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7436 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
7437 X86_EFLAGS_SF | X86_EFLAGS_OF))
7438 | X86_EFLAGS_CF);
7439}
7440
145c28dd 7441static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
7442 u32 vm_instruction_error)
7443{
7444 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
7445 /*
7446 * failValid writes the error number to the current VMCS, which
7447 * can't be done there isn't a current VMCS.
7448 */
7449 nested_vmx_failInvalid(vcpu);
7450 return;
7451 }
7452 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
7453 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
7454 X86_EFLAGS_SF | X86_EFLAGS_OF))
7455 | X86_EFLAGS_ZF);
7456 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
7457 /*
7458 * We don't need to force a shadow sync because
7459 * VM_INSTRUCTION_ERROR is not shadowed
7460 */
7461}
145c28dd 7462
ff651cb6
WV
7463static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
7464{
7465 /* TODO: not to reset guest simply here. */
7466 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
bbe41b95 7467 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
ff651cb6
WV
7468}
7469
f4124500
JK
7470static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
7471{
7472 struct vcpu_vmx *vmx =
7473 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
7474
7475 vmx->nested.preemption_timer_expired = true;
7476 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
7477 kvm_vcpu_kick(&vmx->vcpu);
7478
7479 return HRTIMER_NORESTART;
7480}
7481
19677e32
BD
7482/*
7483 * Decode the memory-address operand of a vmx instruction, as recorded on an
7484 * exit caused by such an instruction (run by a guest hypervisor).
7485 * On success, returns 0. When the operand is invalid, returns 1 and throws
7486 * #UD or #GP.
7487 */
7488static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
7489 unsigned long exit_qualification,
f9eb4af6 7490 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 7491{
f9eb4af6
EK
7492 gva_t off;
7493 bool exn;
7494 struct kvm_segment s;
7495
19677e32
BD
7496 /*
7497 * According to Vol. 3B, "Information for VM Exits Due to Instruction
7498 * Execution", on an exit, vmx_instruction_info holds most of the
7499 * addressing components of the operand. Only the displacement part
7500 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
7501 * For how an actual address is calculated from all these components,
7502 * refer to Vol. 1, "Operand Addressing".
7503 */
7504 int scaling = vmx_instruction_info & 3;
7505 int addr_size = (vmx_instruction_info >> 7) & 7;
7506 bool is_reg = vmx_instruction_info & (1u << 10);
7507 int seg_reg = (vmx_instruction_info >> 15) & 7;
7508 int index_reg = (vmx_instruction_info >> 18) & 0xf;
7509 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
7510 int base_reg = (vmx_instruction_info >> 23) & 0xf;
7511 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
7512
7513 if (is_reg) {
7514 kvm_queue_exception(vcpu, UD_VECTOR);
7515 return 1;
7516 }
7517
7518 /* Addr = segment_base + offset */
7519 /* offset = base + [index * scale] + displacement */
f9eb4af6 7520 off = exit_qualification; /* holds the displacement */
19677e32 7521 if (base_is_valid)
f9eb4af6 7522 off += kvm_register_read(vcpu, base_reg);
19677e32 7523 if (index_is_valid)
f9eb4af6
EK
7524 off += kvm_register_read(vcpu, index_reg)<<scaling;
7525 vmx_get_segment(vcpu, &s, seg_reg);
7526 *ret = s.base + off;
19677e32
BD
7527
7528 if (addr_size == 1) /* 32 bit */
7529 *ret &= 0xffffffff;
7530
f9eb4af6
EK
7531 /* Checks for #GP/#SS exceptions. */
7532 exn = false;
ff30ef40
QC
7533 if (is_long_mode(vcpu)) {
7534 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
7535 * non-canonical form. This is the only check on the memory
7536 * destination for long mode!
7537 */
fd8cb433 7538 exn = is_noncanonical_address(*ret, vcpu);
ff30ef40 7539 } else if (is_protmode(vcpu)) {
f9eb4af6
EK
7540 /* Protected mode: apply checks for segment validity in the
7541 * following order:
7542 * - segment type check (#GP(0) may be thrown)
7543 * - usability check (#GP(0)/#SS(0))
7544 * - limit check (#GP(0)/#SS(0))
7545 */
7546 if (wr)
7547 /* #GP(0) if the destination operand is located in a
7548 * read-only data segment or any code segment.
7549 */
7550 exn = ((s.type & 0xa) == 0 || (s.type & 8));
7551 else
7552 /* #GP(0) if the source operand is located in an
7553 * execute-only code segment
7554 */
7555 exn = ((s.type & 0xa) == 8);
ff30ef40
QC
7556 if (exn) {
7557 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
7558 return 1;
7559 }
f9eb4af6
EK
7560 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
7561 */
7562 exn = (s.unusable != 0);
7563 /* Protected mode: #GP(0)/#SS(0) if the memory
7564 * operand is outside the segment limit.
7565 */
7566 exn = exn || (off + sizeof(u64) > s.limit);
7567 }
7568 if (exn) {
7569 kvm_queue_exception_e(vcpu,
7570 seg_reg == VCPU_SREG_SS ?
7571 SS_VECTOR : GP_VECTOR,
7572 0);
7573 return 1;
7574 }
7575
19677e32
BD
7576 return 0;
7577}
7578
cbf71279 7579static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
3573e22c
BD
7580{
7581 gva_t gva;
3573e22c 7582 struct x86_exception e;
3573e22c
BD
7583
7584 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7585 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
7586 return 1;
7587
cbf71279
RK
7588 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, vmpointer,
7589 sizeof(*vmpointer), &e)) {
3573e22c
BD
7590 kvm_inject_page_fault(vcpu, &e);
7591 return 1;
7592 }
7593
3573e22c
BD
7594 return 0;
7595}
7596
e29acc55
JM
7597static int enter_vmx_operation(struct kvm_vcpu *vcpu)
7598{
7599 struct vcpu_vmx *vmx = to_vmx(vcpu);
7600 struct vmcs *shadow_vmcs;
f21f165e 7601 int r;
e29acc55 7602
f21f165e
PB
7603 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
7604 if (r < 0)
de3a0021 7605 goto out_vmcs02;
e29acc55
JM
7606
7607 vmx->nested.cached_vmcs12 = kmalloc(VMCS12_SIZE, GFP_KERNEL);
7608 if (!vmx->nested.cached_vmcs12)
7609 goto out_cached_vmcs12;
7610
7611 if (enable_shadow_vmcs) {
7612 shadow_vmcs = alloc_vmcs();
7613 if (!shadow_vmcs)
7614 goto out_shadow_vmcs;
7615 /* mark vmcs as shadow */
7616 shadow_vmcs->revision_id |= (1u << 31);
7617 /* init shadow vmcs */
7618 vmcs_clear(shadow_vmcs);
7619 vmx->vmcs01.shadow_vmcs = shadow_vmcs;
7620 }
7621
e29acc55
JM
7622 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
7623 HRTIMER_MODE_REL_PINNED);
7624 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
7625
7626 vmx->nested.vmxon = true;
7627 return 0;
7628
7629out_shadow_vmcs:
7630 kfree(vmx->nested.cached_vmcs12);
7631
7632out_cached_vmcs12:
de3a0021 7633 free_loaded_vmcs(&vmx->nested.vmcs02);
e29acc55 7634
de3a0021 7635out_vmcs02:
e29acc55
JM
7636 return -ENOMEM;
7637}
7638
ec378aee
NHE
7639/*
7640 * Emulate the VMXON instruction.
7641 * Currently, we just remember that VMX is active, and do not save or even
7642 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
7643 * do not currently need to store anything in that guest-allocated memory
7644 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
7645 * argument is different from the VMXON pointer (which the spec says they do).
7646 */
7647static int handle_vmon(struct kvm_vcpu *vcpu)
7648{
e29acc55 7649 int ret;
cbf71279
RK
7650 gpa_t vmptr;
7651 struct page *page;
ec378aee 7652 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3897a49
NHE
7653 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
7654 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee 7655
70f3aac9
JM
7656 /*
7657 * The Intel VMX Instruction Reference lists a bunch of bits that are
7658 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
7659 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
7660 * Otherwise, we should fail with #UD. But most faulting conditions
7661 * have already been checked by hardware, prior to the VM-exit for
7662 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
7663 * that bit set to 1 in non-root mode.
ec378aee 7664 */
70f3aac9 7665 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
ec378aee
NHE
7666 kvm_queue_exception(vcpu, UD_VECTOR);
7667 return 1;
7668 }
7669
145c28dd
AG
7670 if (vmx->nested.vmxon) {
7671 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6affcbed 7672 return kvm_skip_emulated_instruction(vcpu);
145c28dd 7673 }
b3897a49 7674
3b84080b 7675 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
b3897a49
NHE
7676 != VMXON_NEEDED_FEATURES) {
7677 kvm_inject_gp(vcpu, 0);
7678 return 1;
7679 }
7680
cbf71279 7681 if (nested_vmx_get_vmptr(vcpu, &vmptr))
21e7fbe7 7682 return 1;
cbf71279
RK
7683
7684 /*
7685 * SDM 3: 24.11.5
7686 * The first 4 bytes of VMXON region contain the supported
7687 * VMCS revision identifier
7688 *
7689 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
7690 * which replaces physical address width with 32
7691 */
7692 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7693 nested_vmx_failInvalid(vcpu);
7694 return kvm_skip_emulated_instruction(vcpu);
7695 }
7696
5e2f30b7
DH
7697 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
7698 if (is_error_page(page)) {
cbf71279
RK
7699 nested_vmx_failInvalid(vcpu);
7700 return kvm_skip_emulated_instruction(vcpu);
7701 }
7702 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
7703 kunmap(page);
53a70daf 7704 kvm_release_page_clean(page);
cbf71279
RK
7705 nested_vmx_failInvalid(vcpu);
7706 return kvm_skip_emulated_instruction(vcpu);
7707 }
7708 kunmap(page);
53a70daf 7709 kvm_release_page_clean(page);
cbf71279
RK
7710
7711 vmx->nested.vmxon_ptr = vmptr;
e29acc55
JM
7712 ret = enter_vmx_operation(vcpu);
7713 if (ret)
7714 return ret;
ec378aee 7715
a25eb114 7716 nested_vmx_succeed(vcpu);
6affcbed 7717 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7718}
7719
7720/*
7721 * Intel's VMX Instruction Reference specifies a common set of prerequisites
7722 * for running VMX instructions (except VMXON, whose prerequisites are
7723 * slightly different). It also specifies what exception to inject otherwise.
70f3aac9
JM
7724 * Note that many of these exceptions have priority over VM exits, so they
7725 * don't have to be checked again here.
ec378aee
NHE
7726 */
7727static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
7728{
70f3aac9 7729 if (!to_vmx(vcpu)->nested.vmxon) {
ec378aee
NHE
7730 kvm_queue_exception(vcpu, UD_VECTOR);
7731 return 0;
7732 }
ec378aee
NHE
7733 return 1;
7734}
7735
8ca44e88
DM
7736static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
7737{
7738 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
7739 vmcs_write64(VMCS_LINK_POINTER, -1ull);
7740}
7741
e7953d7f
AG
7742static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
7743{
9a2a05b9
PB
7744 if (vmx->nested.current_vmptr == -1ull)
7745 return;
7746
012f83cb 7747 if (enable_shadow_vmcs) {
9a2a05b9
PB
7748 /* copy to memory all shadowed fields in case
7749 they were modified */
7750 copy_shadow_to_vmcs12(vmx);
7751 vmx->nested.sync_shadow_vmcs = false;
8ca44e88 7752 vmx_disable_shadow_vmcs(vmx);
012f83cb 7753 }
705699a1 7754 vmx->nested.posted_intr_nv = -1;
4f2777bc
DM
7755
7756 /* Flush VMCS12 to guest memory */
9f744c59
PB
7757 kvm_vcpu_write_guest_page(&vmx->vcpu,
7758 vmx->nested.current_vmptr >> PAGE_SHIFT,
7759 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4f2777bc 7760
9a2a05b9 7761 vmx->nested.current_vmptr = -1ull;
e7953d7f
AG
7762}
7763
ec378aee
NHE
7764/*
7765 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
7766 * just stops using VMX.
7767 */
7768static void free_nested(struct vcpu_vmx *vmx)
7769{
b7455825 7770 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
ec378aee 7771 return;
9a2a05b9 7772
ec378aee 7773 vmx->nested.vmxon = false;
b7455825 7774 vmx->nested.smm.vmxon = false;
5c614b35 7775 free_vpid(vmx->nested.vpid02);
8ca44e88
DM
7776 vmx->nested.posted_intr_nv = -1;
7777 vmx->nested.current_vmptr = -1ull;
355f4fb1 7778 if (enable_shadow_vmcs) {
8ca44e88 7779 vmx_disable_shadow_vmcs(vmx);
355f4fb1
JM
7780 vmcs_clear(vmx->vmcs01.shadow_vmcs);
7781 free_vmcs(vmx->vmcs01.shadow_vmcs);
7782 vmx->vmcs01.shadow_vmcs = NULL;
7783 }
4f2777bc 7784 kfree(vmx->nested.cached_vmcs12);
de3a0021 7785 /* Unpin physical memory we referred to in the vmcs02 */
fe3ef05c 7786 if (vmx->nested.apic_access_page) {
53a70daf 7787 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 7788 vmx->nested.apic_access_page = NULL;
fe3ef05c 7789 }
a7c0b07d 7790 if (vmx->nested.virtual_apic_page) {
53a70daf 7791 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 7792 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 7793 }
705699a1
WV
7794 if (vmx->nested.pi_desc_page) {
7795 kunmap(vmx->nested.pi_desc_page);
53a70daf 7796 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
7797 vmx->nested.pi_desc_page = NULL;
7798 vmx->nested.pi_desc = NULL;
7799 }
ff2f6fe9 7800
de3a0021 7801 free_loaded_vmcs(&vmx->nested.vmcs02);
ec378aee
NHE
7802}
7803
7804/* Emulate the VMXOFF instruction */
7805static int handle_vmoff(struct kvm_vcpu *vcpu)
7806{
7807 if (!nested_vmx_check_permission(vcpu))
7808 return 1;
7809 free_nested(to_vmx(vcpu));
a25eb114 7810 nested_vmx_succeed(vcpu);
6affcbed 7811 return kvm_skip_emulated_instruction(vcpu);
ec378aee
NHE
7812}
7813
27d6c865
NHE
7814/* Emulate the VMCLEAR instruction */
7815static int handle_vmclear(struct kvm_vcpu *vcpu)
7816{
7817 struct vcpu_vmx *vmx = to_vmx(vcpu);
587d7e72 7818 u32 zero = 0;
27d6c865 7819 gpa_t vmptr;
27d6c865
NHE
7820
7821 if (!nested_vmx_check_permission(vcpu))
7822 return 1;
7823
cbf71279 7824 if (nested_vmx_get_vmptr(vcpu, &vmptr))
27d6c865 7825 return 1;
27d6c865 7826
cbf71279
RK
7827 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
7828 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
7829 return kvm_skip_emulated_instruction(vcpu);
7830 }
7831
7832 if (vmptr == vmx->nested.vmxon_ptr) {
7833 nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
7834 return kvm_skip_emulated_instruction(vcpu);
7835 }
7836
9a2a05b9 7837 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 7838 nested_release_vmcs12(vmx);
27d6c865 7839
587d7e72
JM
7840 kvm_vcpu_write_guest(vcpu,
7841 vmptr + offsetof(struct vmcs12, launch_state),
7842 &zero, sizeof(zero));
27d6c865 7843
27d6c865 7844 nested_vmx_succeed(vcpu);
6affcbed 7845 return kvm_skip_emulated_instruction(vcpu);
27d6c865
NHE
7846}
7847
cd232ad0
NHE
7848static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7849
7850/* Emulate the VMLAUNCH instruction */
7851static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7852{
7853 return nested_vmx_run(vcpu, true);
7854}
7855
7856/* Emulate the VMRESUME instruction */
7857static int handle_vmresume(struct kvm_vcpu *vcpu)
7858{
7859
7860 return nested_vmx_run(vcpu, false);
7861}
7862
49f705c5
NHE
7863/*
7864 * Read a vmcs12 field. Since these can have varying lengths and we return
7865 * one type, we chose the biggest type (u64) and zero-extend the return value
7866 * to that size. Note that the caller, handle_vmread, might need to use only
7867 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7868 * 64-bit fields are to be returned).
7869 */
a2ae9df7
PB
7870static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7871 unsigned long field, u64 *ret)
49f705c5
NHE
7872{
7873 short offset = vmcs_field_to_offset(field);
7874 char *p;
7875
7876 if (offset < 0)
a2ae9df7 7877 return offset;
49f705c5
NHE
7878
7879 p = ((char *)(get_vmcs12(vcpu))) + offset;
7880
d37f4267
JM
7881 switch (vmcs_field_width(field)) {
7882 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
49f705c5 7883 *ret = *((natural_width *)p);
a2ae9df7 7884 return 0;
d37f4267 7885 case VMCS_FIELD_WIDTH_U16:
49f705c5 7886 *ret = *((u16 *)p);
a2ae9df7 7887 return 0;
d37f4267 7888 case VMCS_FIELD_WIDTH_U32:
49f705c5 7889 *ret = *((u32 *)p);
a2ae9df7 7890 return 0;
d37f4267 7891 case VMCS_FIELD_WIDTH_U64:
49f705c5 7892 *ret = *((u64 *)p);
a2ae9df7 7893 return 0;
49f705c5 7894 default:
a2ae9df7
PB
7895 WARN_ON(1);
7896 return -ENOENT;
49f705c5
NHE
7897 }
7898}
7899
20b97fea 7900
a2ae9df7
PB
7901static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7902 unsigned long field, u64 field_value){
20b97fea
AG
7903 short offset = vmcs_field_to_offset(field);
7904 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7905 if (offset < 0)
a2ae9df7 7906 return offset;
20b97fea 7907
d37f4267
JM
7908 switch (vmcs_field_width(field)) {
7909 case VMCS_FIELD_WIDTH_U16:
20b97fea 7910 *(u16 *)p = field_value;
a2ae9df7 7911 return 0;
d37f4267 7912 case VMCS_FIELD_WIDTH_U32:
20b97fea 7913 *(u32 *)p = field_value;
a2ae9df7 7914 return 0;
d37f4267 7915 case VMCS_FIELD_WIDTH_U64:
20b97fea 7916 *(u64 *)p = field_value;
a2ae9df7 7917 return 0;
d37f4267 7918 case VMCS_FIELD_WIDTH_NATURAL_WIDTH:
20b97fea 7919 *(natural_width *)p = field_value;
a2ae9df7 7920 return 0;
20b97fea 7921 default:
a2ae9df7
PB
7922 WARN_ON(1);
7923 return -ENOENT;
20b97fea
AG
7924 }
7925
7926}
7927
16f5b903
AG
7928static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7929{
7930 int i;
7931 unsigned long field;
7932 u64 field_value;
355f4fb1 7933 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
44900ba6 7934 const u16 *fields = shadow_read_write_fields;
c2bae893 7935 const int num_fields = max_shadow_read_write_fields;
16f5b903 7936
282da870
JK
7937 preempt_disable();
7938
16f5b903
AG
7939 vmcs_load(shadow_vmcs);
7940
7941 for (i = 0; i < num_fields; i++) {
7942 field = fields[i];
44900ba6 7943 field_value = __vmcs_readl(field);
16f5b903
AG
7944 vmcs12_write_any(&vmx->vcpu, field, field_value);
7945 }
7946
7947 vmcs_clear(shadow_vmcs);
7948 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7949
7950 preempt_enable();
16f5b903
AG
7951}
7952
c3114420
AG
7953static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7954{
44900ba6 7955 const u16 *fields[] = {
c2bae893
MK
7956 shadow_read_write_fields,
7957 shadow_read_only_fields
c3114420 7958 };
c2bae893 7959 const int max_fields[] = {
c3114420
AG
7960 max_shadow_read_write_fields,
7961 max_shadow_read_only_fields
7962 };
7963 int i, q;
7964 unsigned long field;
7965 u64 field_value = 0;
355f4fb1 7966 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
c3114420
AG
7967
7968 vmcs_load(shadow_vmcs);
7969
c2bae893 7970 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7971 for (i = 0; i < max_fields[q]; i++) {
7972 field = fields[q][i];
7973 vmcs12_read_any(&vmx->vcpu, field, &field_value);
44900ba6 7974 __vmcs_writel(field, field_value);
c3114420
AG
7975 }
7976 }
7977
7978 vmcs_clear(shadow_vmcs);
7979 vmcs_load(vmx->loaded_vmcs->vmcs);
7980}
7981
49f705c5
NHE
7982/*
7983 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7984 * used before) all generate the same failure when it is missing.
7985 */
7986static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7987{
7988 struct vcpu_vmx *vmx = to_vmx(vcpu);
7989 if (vmx->nested.current_vmptr == -1ull) {
7990 nested_vmx_failInvalid(vcpu);
49f705c5
NHE
7991 return 0;
7992 }
7993 return 1;
7994}
7995
7996static int handle_vmread(struct kvm_vcpu *vcpu)
7997{
7998 unsigned long field;
7999 u64 field_value;
8000 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8001 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8002 gva_t gva = 0;
8003
eb277562 8004 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
8005 return 1;
8006
6affcbed
KH
8007 if (!nested_vmx_check_vmcs12(vcpu))
8008 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8009
8010 /* Decode instruction info and find the field to read */
27e6fb5d 8011 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 8012 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 8013 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5 8014 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 8015 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8016 }
8017 /*
8018 * Now copy part of this value to register or memory, as requested.
8019 * Note that the number of bits actually copied is 32 or 64 depending
8020 * on the guest's mode (32 or 64 bit), not on the given field's length.
8021 */
8022 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 8023 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
8024 field_value);
8025 } else {
8026 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8027 vmx_instruction_info, true, &gva))
49f705c5 8028 return 1;
70f3aac9 8029 /* _system ok, as hardware has verified cpl=0 */
49f705c5
NHE
8030 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
8031 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
8032 }
8033
8034 nested_vmx_succeed(vcpu);
6affcbed 8035 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8036}
8037
8038
8039static int handle_vmwrite(struct kvm_vcpu *vcpu)
8040{
8041 unsigned long field;
8042 gva_t gva;
74a497fa 8043 struct vcpu_vmx *vmx = to_vmx(vcpu);
49f705c5
NHE
8044 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8045 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
74a497fa 8046
49f705c5
NHE
8047 /* The value to write might be 32 or 64 bits, depending on L1's long
8048 * mode, and eventually we need to write that into a field of several
8049 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 8050 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
8051 * bits into the vmcs12 field.
8052 */
8053 u64 field_value = 0;
8054 struct x86_exception e;
8055
eb277562 8056 if (!nested_vmx_check_permission(vcpu))
49f705c5
NHE
8057 return 1;
8058
6affcbed
KH
8059 if (!nested_vmx_check_vmcs12(vcpu))
8060 return kvm_skip_emulated_instruction(vcpu);
eb277562 8061
49f705c5 8062 if (vmx_instruction_info & (1u << 10))
27e6fb5d 8063 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
8064 (((vmx_instruction_info) >> 3) & 0xf));
8065 else {
8066 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8067 vmx_instruction_info, false, &gva))
49f705c5
NHE
8068 return 1;
8069 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 8070 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
8071 kvm_inject_page_fault(vcpu, &e);
8072 return 1;
8073 }
8074 }
8075
8076
27e6fb5d 8077 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
8078 if (vmcs_field_readonly(field)) {
8079 nested_vmx_failValid(vcpu,
8080 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6affcbed 8081 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8082 }
8083
a2ae9df7 8084 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5 8085 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6affcbed 8086 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8087 }
8088
74a497fa
PB
8089 switch (field) {
8090#define SHADOW_FIELD_RW(x) case x:
8091#include "vmx_shadow_fields.h"
8092 /*
8093 * The fields that can be updated by L1 without a vmexit are
8094 * always updated in the vmcs02, the others go down the slow
8095 * path of prepare_vmcs02.
8096 */
8097 break;
8098 default:
8099 vmx->nested.dirty_vmcs12 = true;
8100 break;
8101 }
8102
49f705c5 8103 nested_vmx_succeed(vcpu);
6affcbed 8104 return kvm_skip_emulated_instruction(vcpu);
49f705c5
NHE
8105}
8106
a8bc284e
JM
8107static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
8108{
8109 vmx->nested.current_vmptr = vmptr;
8110 if (enable_shadow_vmcs) {
8111 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
8112 SECONDARY_EXEC_SHADOW_VMCS);
8113 vmcs_write64(VMCS_LINK_POINTER,
8114 __pa(vmx->vmcs01.shadow_vmcs));
8115 vmx->nested.sync_shadow_vmcs = true;
8116 }
74a497fa 8117 vmx->nested.dirty_vmcs12 = true;
a8bc284e
JM
8118}
8119
63846663
NHE
8120/* Emulate the VMPTRLD instruction */
8121static int handle_vmptrld(struct kvm_vcpu *vcpu)
8122{
8123 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 8124 gpa_t vmptr;
63846663
NHE
8125
8126 if (!nested_vmx_check_permission(vcpu))
8127 return 1;
8128
cbf71279 8129 if (nested_vmx_get_vmptr(vcpu, &vmptr))
63846663 8130 return 1;
63846663 8131
cbf71279
RK
8132 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu))) {
8133 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
8134 return kvm_skip_emulated_instruction(vcpu);
8135 }
8136
8137 if (vmptr == vmx->nested.vmxon_ptr) {
8138 nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
8139 return kvm_skip_emulated_instruction(vcpu);
8140 }
8141
63846663
NHE
8142 if (vmx->nested.current_vmptr != vmptr) {
8143 struct vmcs12 *new_vmcs12;
8144 struct page *page;
5e2f30b7
DH
8145 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
8146 if (is_error_page(page)) {
63846663 8147 nested_vmx_failInvalid(vcpu);
6affcbed 8148 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
8149 }
8150 new_vmcs12 = kmap(page);
8151 if (new_vmcs12->revision_id != VMCS12_REVISION) {
8152 kunmap(page);
53a70daf 8153 kvm_release_page_clean(page);
63846663
NHE
8154 nested_vmx_failValid(vcpu,
8155 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6affcbed 8156 return kvm_skip_emulated_instruction(vcpu);
63846663 8157 }
63846663 8158
9a2a05b9 8159 nested_release_vmcs12(vmx);
4f2777bc
DM
8160 /*
8161 * Load VMCS12 from guest memory since it is not already
8162 * cached.
8163 */
9f744c59
PB
8164 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
8165 kunmap(page);
53a70daf 8166 kvm_release_page_clean(page);
9f744c59 8167
a8bc284e 8168 set_current_vmptr(vmx, vmptr);
63846663
NHE
8169 }
8170
8171 nested_vmx_succeed(vcpu);
6affcbed 8172 return kvm_skip_emulated_instruction(vcpu);
63846663
NHE
8173}
8174
6a4d7550
NHE
8175/* Emulate the VMPTRST instruction */
8176static int handle_vmptrst(struct kvm_vcpu *vcpu)
8177{
8178 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8179 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8180 gva_t vmcs_gva;
8181 struct x86_exception e;
8182
8183 if (!nested_vmx_check_permission(vcpu))
8184 return 1;
8185
8186 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 8187 vmx_instruction_info, true, &vmcs_gva))
6a4d7550 8188 return 1;
70f3aac9 8189 /* ok to use *_system, as hardware has verified cpl=0 */
6a4d7550
NHE
8190 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
8191 (void *)&to_vmx(vcpu)->nested.current_vmptr,
8192 sizeof(u64), &e)) {
8193 kvm_inject_page_fault(vcpu, &e);
8194 return 1;
8195 }
8196 nested_vmx_succeed(vcpu);
6affcbed 8197 return kvm_skip_emulated_instruction(vcpu);
6a4d7550
NHE
8198}
8199
bfd0a56b
NHE
8200/* Emulate the INVEPT instruction */
8201static int handle_invept(struct kvm_vcpu *vcpu)
8202{
b9c237bb 8203 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
8204 u32 vmx_instruction_info, types;
8205 unsigned long type;
8206 gva_t gva;
8207 struct x86_exception e;
8208 struct {
8209 u64 eptp, gpa;
8210 } operand;
bfd0a56b 8211
6677f3da 8212 if (!(vmx->nested.msrs.secondary_ctls_high &
b9c237bb 8213 SECONDARY_EXEC_ENABLE_EPT) ||
6677f3da 8214 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
8215 kvm_queue_exception(vcpu, UD_VECTOR);
8216 return 1;
8217 }
8218
8219 if (!nested_vmx_check_permission(vcpu))
8220 return 1;
8221
bfd0a56b 8222 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 8223 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 8224
6677f3da 8225 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b 8226
85c856b3 8227 if (type >= 32 || !(types & (1 << type))) {
bfd0a56b
NHE
8228 nested_vmx_failValid(vcpu,
8229 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8230 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
8231 }
8232
8233 /* According to the Intel VMX instruction reference, the memory
8234 * operand is read even if it isn't needed (e.g., for type==global)
8235 */
8236 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 8237 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
8238 return 1;
8239 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8240 sizeof(operand), &e)) {
8241 kvm_inject_page_fault(vcpu, &e);
8242 return 1;
8243 }
8244
8245 switch (type) {
bfd0a56b 8246 case VMX_EPT_EXTENT_GLOBAL:
45e11817
BD
8247 /*
8248 * TODO: track mappings and invalidate
8249 * single context requests appropriately
8250 */
8251 case VMX_EPT_EXTENT_CONTEXT:
bfd0a56b 8252 kvm_mmu_sync_roots(vcpu);
77c3913b 8253 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
8254 nested_vmx_succeed(vcpu);
8255 break;
8256 default:
8257 BUG_ON(1);
8258 break;
8259 }
8260
6affcbed 8261 return kvm_skip_emulated_instruction(vcpu);
bfd0a56b
NHE
8262}
8263
a642fc30
PM
8264static int handle_invvpid(struct kvm_vcpu *vcpu)
8265{
99b83ac8
WL
8266 struct vcpu_vmx *vmx = to_vmx(vcpu);
8267 u32 vmx_instruction_info;
8268 unsigned long type, types;
8269 gva_t gva;
8270 struct x86_exception e;
40352605
JM
8271 struct {
8272 u64 vpid;
8273 u64 gla;
8274 } operand;
99b83ac8 8275
6677f3da 8276 if (!(vmx->nested.msrs.secondary_ctls_high &
99b83ac8 8277 SECONDARY_EXEC_ENABLE_VPID) ||
6677f3da 8278 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
99b83ac8
WL
8279 kvm_queue_exception(vcpu, UD_VECTOR);
8280 return 1;
8281 }
8282
8283 if (!nested_vmx_check_permission(vcpu))
8284 return 1;
8285
8286 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
8287 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
8288
6677f3da 8289 types = (vmx->nested.msrs.vpid_caps &
bcdde302 8290 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
99b83ac8 8291
85c856b3 8292 if (type >= 32 || !(types & (1 << type))) {
99b83ac8
WL
8293 nested_vmx_failValid(vcpu,
8294 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8295 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8296 }
8297
8298 /* according to the intel vmx instruction reference, the memory
8299 * operand is read even if it isn't needed (e.g., for type==global)
8300 */
8301 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
8302 vmx_instruction_info, false, &gva))
8303 return 1;
40352605
JM
8304 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
8305 sizeof(operand), &e)) {
99b83ac8
WL
8306 kvm_inject_page_fault(vcpu, &e);
8307 return 1;
8308 }
40352605
JM
8309 if (operand.vpid >> 16) {
8310 nested_vmx_failValid(vcpu,
8311 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8312 return kvm_skip_emulated_instruction(vcpu);
8313 }
99b83ac8
WL
8314
8315 switch (type) {
bcdde302 8316 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
fd8cb433 8317 if (is_noncanonical_address(operand.gla, vcpu)) {
40352605
JM
8318 nested_vmx_failValid(vcpu,
8319 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
8320 return kvm_skip_emulated_instruction(vcpu);
8321 }
8322 /* fall through */
ef697a71 8323 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
bcdde302 8324 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
40352605 8325 if (!operand.vpid) {
bcdde302
JD
8326 nested_vmx_failValid(vcpu,
8327 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
6affcbed 8328 return kvm_skip_emulated_instruction(vcpu);
bcdde302
JD
8329 }
8330 break;
99b83ac8 8331 case VMX_VPID_EXTENT_ALL_CONTEXT:
99b83ac8
WL
8332 break;
8333 default:
bcdde302 8334 WARN_ON_ONCE(1);
6affcbed 8335 return kvm_skip_emulated_instruction(vcpu);
99b83ac8
WL
8336 }
8337
c2ba05cc 8338 __vmx_flush_tlb(vcpu, vmx->nested.vpid02, true);
bcdde302
JD
8339 nested_vmx_succeed(vcpu);
8340
6affcbed 8341 return kvm_skip_emulated_instruction(vcpu);
a642fc30
PM
8342}
8343
843e4330
KH
8344static int handle_pml_full(struct kvm_vcpu *vcpu)
8345{
8346 unsigned long exit_qualification;
8347
8348 trace_kvm_pml_full(vcpu->vcpu_id);
8349
8350 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8351
8352 /*
8353 * PML buffer FULL happened while executing iret from NMI,
8354 * "blocked by NMI" bit has to be set before next VM entry.
8355 */
8356 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
d02fcf50 8357 enable_vnmi &&
843e4330
KH
8358 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
8359 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8360 GUEST_INTR_STATE_NMI);
8361
8362 /*
8363 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
8364 * here.., and there's no userspace involvement needed for PML.
8365 */
8366 return 1;
8367}
8368
64672c95
YJ
8369static int handle_preemption_timer(struct kvm_vcpu *vcpu)
8370{
8371 kvm_lapic_expired_hv_timer(vcpu);
8372 return 1;
8373}
8374
41ab9372
BD
8375static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
8376{
8377 struct vcpu_vmx *vmx = to_vmx(vcpu);
41ab9372
BD
8378 int maxphyaddr = cpuid_maxphyaddr(vcpu);
8379
8380 /* Check for memory type validity */
bb97a016
DH
8381 switch (address & VMX_EPTP_MT_MASK) {
8382 case VMX_EPTP_MT_UC:
6677f3da 8383 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
41ab9372
BD
8384 return false;
8385 break;
bb97a016 8386 case VMX_EPTP_MT_WB:
6677f3da 8387 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
41ab9372
BD
8388 return false;
8389 break;
8390 default:
8391 return false;
8392 }
8393
bb97a016
DH
8394 /* only 4 levels page-walk length are valid */
8395 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
41ab9372
BD
8396 return false;
8397
8398 /* Reserved bits should not be set */
8399 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
8400 return false;
8401
8402 /* AD, if set, should be supported */
bb97a016 8403 if (address & VMX_EPTP_AD_ENABLE_BIT) {
6677f3da 8404 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
41ab9372
BD
8405 return false;
8406 }
8407
8408 return true;
8409}
8410
8411static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
8412 struct vmcs12 *vmcs12)
8413{
8414 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
8415 u64 address;
8416 bool accessed_dirty;
8417 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
8418
8419 if (!nested_cpu_has_eptp_switching(vmcs12) ||
8420 !nested_cpu_has_ept(vmcs12))
8421 return 1;
8422
8423 if (index >= VMFUNC_EPTP_ENTRIES)
8424 return 1;
8425
8426
8427 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
8428 &address, index * 8, 8))
8429 return 1;
8430
bb97a016 8431 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
41ab9372
BD
8432
8433 /*
8434 * If the (L2) guest does a vmfunc to the currently
8435 * active ept pointer, we don't have to do anything else
8436 */
8437 if (vmcs12->ept_pointer != address) {
8438 if (!valid_ept_address(vcpu, address))
8439 return 1;
8440
8441 kvm_mmu_unload(vcpu);
8442 mmu->ept_ad = accessed_dirty;
8443 mmu->base_role.ad_disabled = !accessed_dirty;
8444 vmcs12->ept_pointer = address;
8445 /*
8446 * TODO: Check what's the correct approach in case
8447 * mmu reload fails. Currently, we just let the next
8448 * reload potentially fail
8449 */
8450 kvm_mmu_reload(vcpu);
8451 }
8452
8453 return 0;
8454}
8455
2a499e49
BD
8456static int handle_vmfunc(struct kvm_vcpu *vcpu)
8457{
27c42a1b
BD
8458 struct vcpu_vmx *vmx = to_vmx(vcpu);
8459 struct vmcs12 *vmcs12;
8460 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
8461
8462 /*
8463 * VMFUNC is only supported for nested guests, but we always enable the
8464 * secondary control for simplicity; for non-nested mode, fake that we
8465 * didn't by injecting #UD.
8466 */
8467 if (!is_guest_mode(vcpu)) {
8468 kvm_queue_exception(vcpu, UD_VECTOR);
8469 return 1;
8470 }
8471
8472 vmcs12 = get_vmcs12(vcpu);
8473 if ((vmcs12->vm_function_control & (1 << function)) == 0)
8474 goto fail;
41ab9372
BD
8475
8476 switch (function) {
8477 case 0:
8478 if (nested_vmx_eptp_switching(vcpu, vmcs12))
8479 goto fail;
8480 break;
8481 default:
8482 goto fail;
8483 }
8484 return kvm_skip_emulated_instruction(vcpu);
27c42a1b
BD
8485
8486fail:
8487 nested_vmx_vmexit(vcpu, vmx->exit_reason,
8488 vmcs_read32(VM_EXIT_INTR_INFO),
8489 vmcs_readl(EXIT_QUALIFICATION));
2a499e49
BD
8490 return 1;
8491}
8492
6aa8b732
AK
8493/*
8494 * The exit handlers return 1 if the exit was handled fully and guest execution
8495 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
8496 * to be done to userspace and return 0.
8497 */
772e0318 8498static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
8499 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
8500 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 8501 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 8502 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 8503 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
8504 [EXIT_REASON_CR_ACCESS] = handle_cr,
8505 [EXIT_REASON_DR_ACCESS] = handle_dr,
8506 [EXIT_REASON_CPUID] = handle_cpuid,
8507 [EXIT_REASON_MSR_READ] = handle_rdmsr,
8508 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
8509 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
8510 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 8511 [EXIT_REASON_INVD] = handle_invd,
a7052897 8512 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 8513 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 8514 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 8515 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 8516 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 8517 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 8518 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 8519 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 8520 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 8521 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
8522 [EXIT_REASON_VMOFF] = handle_vmoff,
8523 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
8524 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
8525 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 8526 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 8527 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 8528 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 8529 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 8530 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 8531 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
0367f205
PB
8532 [EXIT_REASON_GDTR_IDTR] = handle_desc,
8533 [EXIT_REASON_LDTR_TR] = handle_desc,
68f89400
MT
8534 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
8535 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 8536 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 8537 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 8538 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 8539 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 8540 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 8541 [EXIT_REASON_INVVPID] = handle_invvpid,
45ec368c 8542 [EXIT_REASON_RDRAND] = handle_invalid_op,
75f4fc8d 8543 [EXIT_REASON_RDSEED] = handle_invalid_op,
f53cd63c
WL
8544 [EXIT_REASON_XSAVES] = handle_xsaves,
8545 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 8546 [EXIT_REASON_PML_FULL] = handle_pml_full,
2a499e49 8547 [EXIT_REASON_VMFUNC] = handle_vmfunc,
64672c95 8548 [EXIT_REASON_PREEMPTION_TIMER] = handle_preemption_timer,
6aa8b732
AK
8549};
8550
8551static const int kvm_vmx_max_exit_handlers =
50a3485c 8552 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 8553
908a7bdd
JK
8554static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
8555 struct vmcs12 *vmcs12)
8556{
8557 unsigned long exit_qualification;
8558 gpa_t bitmap, last_bitmap;
8559 unsigned int port;
8560 int size;
8561 u8 b;
8562
908a7bdd 8563 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 8564 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
8565
8566 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8567
8568 port = exit_qualification >> 16;
8569 size = (exit_qualification & 7) + 1;
8570
8571 last_bitmap = (gpa_t)-1;
8572 b = -1;
8573
8574 while (size > 0) {
8575 if (port < 0x8000)
8576 bitmap = vmcs12->io_bitmap_a;
8577 else if (port < 0x10000)
8578 bitmap = vmcs12->io_bitmap_b;
8579 else
1d804d07 8580 return true;
908a7bdd
JK
8581 bitmap += (port & 0x7fff) / 8;
8582
8583 if (last_bitmap != bitmap)
54bf36aa 8584 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 8585 return true;
908a7bdd 8586 if (b & (1 << (port & 7)))
1d804d07 8587 return true;
908a7bdd
JK
8588
8589 port++;
8590 size--;
8591 last_bitmap = bitmap;
8592 }
8593
1d804d07 8594 return false;
908a7bdd
JK
8595}
8596
644d711a
NHE
8597/*
8598 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
8599 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
8600 * disinterest in the current event (read or write a specific MSR) by using an
8601 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
8602 */
8603static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
8604 struct vmcs12 *vmcs12, u32 exit_reason)
8605{
8606 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
8607 gpa_t bitmap;
8608
cbd29cb6 8609 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 8610 return true;
644d711a
NHE
8611
8612 /*
8613 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
8614 * for the four combinations of read/write and low/high MSR numbers.
8615 * First we need to figure out which of the four to use:
8616 */
8617 bitmap = vmcs12->msr_bitmap;
8618 if (exit_reason == EXIT_REASON_MSR_WRITE)
8619 bitmap += 2048;
8620 if (msr_index >= 0xc0000000) {
8621 msr_index -= 0xc0000000;
8622 bitmap += 1024;
8623 }
8624
8625 /* Then read the msr_index'th bit from this bitmap: */
8626 if (msr_index < 1024*8) {
8627 unsigned char b;
54bf36aa 8628 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 8629 return true;
644d711a
NHE
8630 return 1 & (b >> (msr_index & 7));
8631 } else
1d804d07 8632 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
8633}
8634
8635/*
8636 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
8637 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
8638 * intercept (via guest_host_mask etc.) the current event.
8639 */
8640static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
8641 struct vmcs12 *vmcs12)
8642{
8643 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
8644 int cr = exit_qualification & 15;
e1d39b17
JS
8645 int reg;
8646 unsigned long val;
644d711a
NHE
8647
8648 switch ((exit_qualification >> 4) & 3) {
8649 case 0: /* mov to cr */
e1d39b17
JS
8650 reg = (exit_qualification >> 8) & 15;
8651 val = kvm_register_readl(vcpu, reg);
644d711a
NHE
8652 switch (cr) {
8653 case 0:
8654 if (vmcs12->cr0_guest_host_mask &
8655 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8656 return true;
644d711a
NHE
8657 break;
8658 case 3:
8659 if ((vmcs12->cr3_target_count >= 1 &&
8660 vmcs12->cr3_target_value0 == val) ||
8661 (vmcs12->cr3_target_count >= 2 &&
8662 vmcs12->cr3_target_value1 == val) ||
8663 (vmcs12->cr3_target_count >= 3 &&
8664 vmcs12->cr3_target_value2 == val) ||
8665 (vmcs12->cr3_target_count >= 4 &&
8666 vmcs12->cr3_target_value3 == val))
1d804d07 8667 return false;
644d711a 8668 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 8669 return true;
644d711a
NHE
8670 break;
8671 case 4:
8672 if (vmcs12->cr4_guest_host_mask &
8673 (vmcs12->cr4_read_shadow ^ val))
1d804d07 8674 return true;
644d711a
NHE
8675 break;
8676 case 8:
8677 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 8678 return true;
644d711a
NHE
8679 break;
8680 }
8681 break;
8682 case 2: /* clts */
8683 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
8684 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 8685 return true;
644d711a
NHE
8686 break;
8687 case 1: /* mov from cr */
8688 switch (cr) {
8689 case 3:
8690 if (vmcs12->cpu_based_vm_exec_control &
8691 CPU_BASED_CR3_STORE_EXITING)
1d804d07 8692 return true;
644d711a
NHE
8693 break;
8694 case 8:
8695 if (vmcs12->cpu_based_vm_exec_control &
8696 CPU_BASED_CR8_STORE_EXITING)
1d804d07 8697 return true;
644d711a
NHE
8698 break;
8699 }
8700 break;
8701 case 3: /* lmsw */
8702 /*
8703 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
8704 * cr0. Other attempted changes are ignored, with no exit.
8705 */
e1d39b17 8706 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
644d711a
NHE
8707 if (vmcs12->cr0_guest_host_mask & 0xe &
8708 (val ^ vmcs12->cr0_read_shadow))
1d804d07 8709 return true;
644d711a
NHE
8710 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
8711 !(vmcs12->cr0_read_shadow & 0x1) &&
8712 (val & 0x1))
1d804d07 8713 return true;
644d711a
NHE
8714 break;
8715 }
1d804d07 8716 return false;
644d711a
NHE
8717}
8718
8719/*
8720 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
8721 * should handle it ourselves in L0 (and then continue L2). Only call this
8722 * when in is_guest_mode (L2).
8723 */
7313c698 8724static bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
644d711a 8725{
644d711a
NHE
8726 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8727 struct vcpu_vmx *vmx = to_vmx(vcpu);
8728 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8729
4f350c6d
JM
8730 if (vmx->nested.nested_run_pending)
8731 return false;
8732
8733 if (unlikely(vmx->fail)) {
8734 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
8735 vmcs_read32(VM_INSTRUCTION_ERROR));
8736 return true;
8737 }
542060ea 8738
c9f04407
DM
8739 /*
8740 * The host physical addresses of some pages of guest memory
de3a0021
JM
8741 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
8742 * Page). The CPU may write to these pages via their host
8743 * physical address while L2 is running, bypassing any
8744 * address-translation-based dirty tracking (e.g. EPT write
8745 * protection).
c9f04407
DM
8746 *
8747 * Mark them dirty on every exit from L2 to prevent them from
8748 * getting out of sync with dirty tracking.
8749 */
8750 nested_mark_vmcs12_pages_dirty(vcpu);
8751
4f350c6d
JM
8752 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
8753 vmcs_readl(EXIT_QUALIFICATION),
8754 vmx->idt_vectoring_info,
8755 intr_info,
8756 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8757 KVM_ISA_VMX);
644d711a
NHE
8758
8759 switch (exit_reason) {
8760 case EXIT_REASON_EXCEPTION_NMI:
ef85b673 8761 if (is_nmi(intr_info))
1d804d07 8762 return false;
644d711a 8763 else if (is_page_fault(intr_info))
52a5c155 8764 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
e504c909 8765 else if (is_no_device(intr_info) &&
ccf9844e 8766 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 8767 return false;
6f05485d
JK
8768 else if (is_debug(intr_info) &&
8769 vcpu->guest_debug &
8770 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
8771 return false;
8772 else if (is_breakpoint(intr_info) &&
8773 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
8774 return false;
644d711a
NHE
8775 return vmcs12->exception_bitmap &
8776 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
8777 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 8778 return false;
644d711a 8779 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 8780 return true;
644d711a 8781 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 8782 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 8783 case EXIT_REASON_NMI_WINDOW:
3b656cf7 8784 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 8785 case EXIT_REASON_TASK_SWITCH:
1d804d07 8786 return true;
644d711a 8787 case EXIT_REASON_CPUID:
1d804d07 8788 return true;
644d711a
NHE
8789 case EXIT_REASON_HLT:
8790 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
8791 case EXIT_REASON_INVD:
1d804d07 8792 return true;
644d711a
NHE
8793 case EXIT_REASON_INVLPG:
8794 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
8795 case EXIT_REASON_RDPMC:
8796 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
a5f46457 8797 case EXIT_REASON_RDRAND:
736fdf72 8798 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
a5f46457 8799 case EXIT_REASON_RDSEED:
736fdf72 8800 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
b3a2a907 8801 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
8802 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
8803 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
8804 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
8805 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
8806 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
8807 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 8808 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
8809 /*
8810 * VMX instructions trap unconditionally. This allows L1 to
8811 * emulate them for its L2 guest, i.e., allows 3-level nesting!
8812 */
1d804d07 8813 return true;
644d711a
NHE
8814 case EXIT_REASON_CR_ACCESS:
8815 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
8816 case EXIT_REASON_DR_ACCESS:
8817 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
8818 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 8819 return nested_vmx_exit_handled_io(vcpu, vmcs12);
1b07304c
PB
8820 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
8821 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
644d711a
NHE
8822 case EXIT_REASON_MSR_READ:
8823 case EXIT_REASON_MSR_WRITE:
8824 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
8825 case EXIT_REASON_INVALID_STATE:
1d804d07 8826 return true;
644d711a
NHE
8827 case EXIT_REASON_MWAIT_INSTRUCTION:
8828 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
8829 case EXIT_REASON_MONITOR_TRAP_FLAG:
8830 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
8831 case EXIT_REASON_MONITOR_INSTRUCTION:
8832 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
8833 case EXIT_REASON_PAUSE_INSTRUCTION:
8834 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
8835 nested_cpu_has2(vmcs12,
8836 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
8837 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 8838 return false;
644d711a 8839 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 8840 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
8841 case EXIT_REASON_APIC_ACCESS:
8842 return nested_cpu_has2(vmcs12,
8843 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 8844 case EXIT_REASON_APIC_WRITE:
608406e2
WV
8845 case EXIT_REASON_EOI_INDUCED:
8846 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 8847 return true;
644d711a 8848 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
8849 /*
8850 * L0 always deals with the EPT violation. If nested EPT is
8851 * used, and the nested mmu code discovers that the address is
8852 * missing in the guest EPT table (EPT12), the EPT violation
8853 * will be injected with nested_ept_inject_page_fault()
8854 */
1d804d07 8855 return false;
644d711a 8856 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
8857 /*
8858 * L2 never uses directly L1's EPT, but rather L0's own EPT
8859 * table (shadow on EPT) or a merged EPT table that L0 built
8860 * (EPT on EPT). So any problems with the structure of the
8861 * table is L0's fault.
8862 */
1d804d07 8863 return false;
90a2db6d
PB
8864 case EXIT_REASON_INVPCID:
8865 return
8866 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
8867 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
644d711a
NHE
8868 case EXIT_REASON_WBINVD:
8869 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
8870 case EXIT_REASON_XSETBV:
1d804d07 8871 return true;
81dc01f7
WL
8872 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
8873 /*
8874 * This should never happen, since it is not possible to
8875 * set XSS to a non-zero value---neither in L1 nor in L2.
8876 * If if it were, XSS would have to be checked against
8877 * the XSS exit bitmap in vmcs12.
8878 */
8879 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
55123e3c
WL
8880 case EXIT_REASON_PREEMPTION_TIMER:
8881 return false;
ab007cc9 8882 case EXIT_REASON_PML_FULL:
03efce6f 8883 /* We emulate PML support to L1. */
ab007cc9 8884 return false;
2a499e49
BD
8885 case EXIT_REASON_VMFUNC:
8886 /* VM functions are emulated through L2->L0 vmexits. */
8887 return false;
644d711a 8888 default:
1d804d07 8889 return true;
644d711a
NHE
8890 }
8891}
8892
7313c698
PB
8893static int nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason)
8894{
8895 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
8896
8897 /*
8898 * At this point, the exit interruption info in exit_intr_info
8899 * is only valid for EXCEPTION_NMI exits. For EXTERNAL_INTERRUPT
8900 * we need to query the in-kernel LAPIC.
8901 */
8902 WARN_ON(exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT);
8903 if ((exit_intr_info &
8904 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
8905 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) {
8906 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8907 vmcs12->vm_exit_intr_error_code =
8908 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
8909 }
8910
8911 nested_vmx_vmexit(vcpu, exit_reason, exit_intr_info,
8912 vmcs_readl(EXIT_QUALIFICATION));
8913 return 1;
8914}
8915
586f9607
AK
8916static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
8917{
8918 *info1 = vmcs_readl(EXIT_QUALIFICATION);
8919 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
8920}
8921
a3eaa864 8922static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 8923{
a3eaa864
KH
8924 if (vmx->pml_pg) {
8925 __free_page(vmx->pml_pg);
8926 vmx->pml_pg = NULL;
8927 }
843e4330
KH
8928}
8929
54bf36aa 8930static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 8931{
54bf36aa 8932 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
8933 u64 *pml_buf;
8934 u16 pml_idx;
8935
8936 pml_idx = vmcs_read16(GUEST_PML_INDEX);
8937
8938 /* Do nothing if PML buffer is empty */
8939 if (pml_idx == (PML_ENTITY_NUM - 1))
8940 return;
8941
8942 /* PML index always points to next available PML buffer entity */
8943 if (pml_idx >= PML_ENTITY_NUM)
8944 pml_idx = 0;
8945 else
8946 pml_idx++;
8947
8948 pml_buf = page_address(vmx->pml_pg);
8949 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
8950 u64 gpa;
8951
8952 gpa = pml_buf[pml_idx];
8953 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 8954 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
8955 }
8956
8957 /* reset PML index */
8958 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
8959}
8960
8961/*
8962 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
8963 * Called before reporting dirty_bitmap to userspace.
8964 */
8965static void kvm_flush_pml_buffers(struct kvm *kvm)
8966{
8967 int i;
8968 struct kvm_vcpu *vcpu;
8969 /*
8970 * We only need to kick vcpu out of guest mode here, as PML buffer
8971 * is flushed at beginning of all VMEXITs, and it's obvious that only
8972 * vcpus running in guest are possible to have unflushed GPAs in PML
8973 * buffer.
8974 */
8975 kvm_for_each_vcpu(i, vcpu, kvm)
8976 kvm_vcpu_kick(vcpu);
8977}
8978
4eb64dce
PB
8979static void vmx_dump_sel(char *name, uint32_t sel)
8980{
8981 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
96794e4e 8982 name, vmcs_read16(sel),
4eb64dce
PB
8983 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8984 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8985 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8986}
8987
8988static void vmx_dump_dtsel(char *name, uint32_t limit)
8989{
8990 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8991 name, vmcs_read32(limit),
8992 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8993}
8994
8995static void dump_vmcs(void)
8996{
8997 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8998 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8999 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
9000 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
9001 u32 secondary_exec_control = 0;
9002 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 9003 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
9004 int i, n;
9005
9006 if (cpu_has_secondary_exec_ctrls())
9007 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9008
9009 pr_err("*** Guest State ***\n");
9010 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9011 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
9012 vmcs_readl(CR0_GUEST_HOST_MASK));
9013 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
9014 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
9015 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
9016 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
9017 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
9018 {
845c5b40
PB
9019 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
9020 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
9021 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
9022 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
9023 }
9024 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
9025 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
9026 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
9027 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
9028 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9029 vmcs_readl(GUEST_SYSENTER_ESP),
9030 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
9031 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
9032 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
9033 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
9034 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
9035 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
9036 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
9037 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
9038 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
9039 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
9040 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
9041 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
9042 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
9043 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9044 efer, vmcs_read64(GUEST_IA32_PAT));
9045 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
9046 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce 9047 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
773e8a04
VK
9048 if (cpu_has_load_perf_global_ctrl &&
9049 vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
9050 pr_err("PerfGlobCtl = 0x%016llx\n",
9051 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 9052 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 9053 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
9054 pr_err("Interruptibility = %08x ActivityState = %08x\n",
9055 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
9056 vmcs_read32(GUEST_ACTIVITY_STATE));
9057 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
9058 pr_err("InterruptStatus = %04x\n",
9059 vmcs_read16(GUEST_INTR_STATUS));
9060
9061 pr_err("*** Host State ***\n");
9062 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
9063 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
9064 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
9065 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
9066 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
9067 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
9068 vmcs_read16(HOST_TR_SELECTOR));
9069 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
9070 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
9071 vmcs_readl(HOST_TR_BASE));
9072 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
9073 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
9074 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
9075 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
9076 vmcs_readl(HOST_CR4));
9077 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
9078 vmcs_readl(HOST_IA32_SYSENTER_ESP),
9079 vmcs_read32(HOST_IA32_SYSENTER_CS),
9080 vmcs_readl(HOST_IA32_SYSENTER_EIP));
9081 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
9082 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
9083 vmcs_read64(HOST_IA32_EFER),
9084 vmcs_read64(HOST_IA32_PAT));
773e8a04
VK
9085 if (cpu_has_load_perf_global_ctrl &&
9086 vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
9087 pr_err("PerfGlobCtl = 0x%016llx\n",
9088 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
9089
9090 pr_err("*** Control State ***\n");
9091 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
9092 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
9093 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
9094 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
9095 vmcs_read32(EXCEPTION_BITMAP),
9096 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
9097 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
9098 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
9099 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9100 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
9101 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
9102 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
9103 vmcs_read32(VM_EXIT_INTR_INFO),
9104 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
9105 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
9106 pr_err(" reason=%08x qualification=%016lx\n",
9107 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
9108 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
9109 vmcs_read32(IDT_VECTORING_INFO_FIELD),
9110 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 9111 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 9112 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
9113 pr_err("TSC Multiplier = 0x%016llx\n",
9114 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
9115 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
9116 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
9117 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
9118 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
9119 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 9120 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
9121 n = vmcs_read32(CR3_TARGET_COUNT);
9122 for (i = 0; i + 1 < n; i += 4)
9123 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
9124 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
9125 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
9126 if (i < n)
9127 pr_err("CR3 target%u=%016lx\n",
9128 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
9129 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
9130 pr_err("PLE Gap=%08x Window=%08x\n",
9131 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
9132 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
9133 pr_err("Virtual processor ID = 0x%04x\n",
9134 vmcs_read16(VIRTUAL_PROCESSOR_ID));
9135}
9136
6aa8b732
AK
9137/*
9138 * The guest has exited. See if we can fix it or if we need userspace
9139 * assistance.
9140 */
851ba692 9141static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 9142{
29bd8a78 9143 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 9144 u32 exit_reason = vmx->exit_reason;
1155f76a 9145 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 9146
8b89fe1f
PB
9147 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
9148
843e4330
KH
9149 /*
9150 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
9151 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
9152 * querying dirty_bitmap, we only need to kick all vcpus out of guest
9153 * mode as if vcpus is in root mode, the PML buffer must has been
9154 * flushed already.
9155 */
9156 if (enable_pml)
54bf36aa 9157 vmx_flush_pml_buffer(vcpu);
843e4330 9158
80ced186 9159 /* If guest state is invalid, start emulating */
14168786 9160 if (vmx->emulation_required)
80ced186 9161 return handle_invalid_guest_state(vcpu);
1d5a4d9b 9162
7313c698
PB
9163 if (is_guest_mode(vcpu) && nested_vmx_exit_reflected(vcpu, exit_reason))
9164 return nested_vmx_reflect_vmexit(vcpu, exit_reason);
644d711a 9165
5120702e 9166 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 9167 dump_vmcs();
5120702e
MG
9168 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9169 vcpu->run->fail_entry.hardware_entry_failure_reason
9170 = exit_reason;
9171 return 0;
9172 }
9173
29bd8a78 9174 if (unlikely(vmx->fail)) {
851ba692
AK
9175 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
9176 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
9177 = vmcs_read32(VM_INSTRUCTION_ERROR);
9178 return 0;
9179 }
6aa8b732 9180
b9bf6882
XG
9181 /*
9182 * Note:
9183 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
9184 * delivery event since it indicates guest is accessing MMIO.
9185 * The vm-exit can be triggered again after return to guest that
9186 * will cause infinite loop.
9187 */
d77c26fc 9188 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 9189 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 9190 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b244c9fc 9191 exit_reason != EXIT_REASON_PML_FULL &&
b9bf6882
XG
9192 exit_reason != EXIT_REASON_TASK_SWITCH)) {
9193 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
9194 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
70bcd708 9195 vcpu->run->internal.ndata = 3;
b9bf6882
XG
9196 vcpu->run->internal.data[0] = vectoring_info;
9197 vcpu->run->internal.data[1] = exit_reason;
70bcd708
PB
9198 vcpu->run->internal.data[2] = vcpu->arch.exit_qualification;
9199 if (exit_reason == EXIT_REASON_EPT_MISCONFIG) {
9200 vcpu->run->internal.ndata++;
9201 vcpu->run->internal.data[3] =
9202 vmcs_read64(GUEST_PHYSICAL_ADDRESS);
9203 }
b9bf6882
XG
9204 return 0;
9205 }
3b86cd99 9206
d02fcf50 9207 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9208 vmx->loaded_vmcs->soft_vnmi_blocked)) {
9209 if (vmx_interrupt_allowed(vcpu)) {
9210 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9211 } else if (vmx->loaded_vmcs->vnmi_blocked_time > 1000000000LL &&
9212 vcpu->arch.nmi_pending) {
9213 /*
9214 * This CPU don't support us in finding the end of an
9215 * NMI-blocked window if the guest runs with IRQs
9216 * disabled. So we pull the trigger after 1 s of
9217 * futile waiting, but inform the user about this.
9218 */
9219 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
9220 "state on VCPU %d after 1 s timeout\n",
9221 __func__, vcpu->vcpu_id);
9222 vmx->loaded_vmcs->soft_vnmi_blocked = 0;
9223 }
9224 }
9225
6aa8b732
AK
9226 if (exit_reason < kvm_vmx_max_exit_handlers
9227 && kvm_vmx_exit_handlers[exit_reason])
851ba692 9228 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 9229 else {
6c6c5e03
RK
9230 vcpu_unimpl(vcpu, "vmx: unexpected exit reason 0x%x\n",
9231 exit_reason);
2bc19dc3
MT
9232 kvm_queue_exception(vcpu, UD_VECTOR);
9233 return 1;
6aa8b732 9234 }
6aa8b732
AK
9235}
9236
95ba8273 9237static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 9238{
a7c0b07d
WL
9239 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9240
9241 if (is_guest_mode(vcpu) &&
9242 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9243 return;
9244
95ba8273 9245 if (irr == -1 || tpr < irr) {
6e5d865c
YS
9246 vmcs_write32(TPR_THRESHOLD, 0);
9247 return;
9248 }
9249
95ba8273 9250 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
9251}
9252
8d14695f
YZ
9253static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
9254{
9255 u32 sec_exec_control;
9256
dccbfcf5
RK
9257 /* Postpone execution until vmcs01 is the current VMCS. */
9258 if (is_guest_mode(vcpu)) {
9259 to_vmx(vcpu)->nested.change_vmcs01_virtual_x2apic_mode = true;
9260 return;
9261 }
9262
f6e90f9e 9263 if (!cpu_has_vmx_virtualize_x2apic_mode())
8d14695f
YZ
9264 return;
9265
35754c98 9266 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
9267 return;
9268
9269 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9270
9271 if (set) {
9272 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9273 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9274 } else {
9275 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
9276 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
a468f2db 9277 vmx_flush_tlb(vcpu, true);
8d14695f
YZ
9278 }
9279 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
9280
904e14fb 9281 vmx_update_msr_bitmap(vcpu);
8d14695f
YZ
9282}
9283
38b99173
TC
9284static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
9285{
9286 struct vcpu_vmx *vmx = to_vmx(vcpu);
9287
9288 /*
9289 * Currently we do not handle the nested case where L2 has an
9290 * APIC access page of its own; that page is still pinned.
9291 * Hence, we skip the case where the VCPU is in guest mode _and_
9292 * L1 prepared an APIC access page for L2.
9293 *
9294 * For the case where L1 and L2 share the same APIC access page
9295 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
9296 * in the vmcs12), this function will only update either the vmcs01
9297 * or the vmcs02. If the former, the vmcs02 will be updated by
9298 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
9299 * the next L2->L1 exit.
9300 */
9301 if (!is_guest_mode(vcpu) ||
4f2777bc 9302 !nested_cpu_has2(get_vmcs12(&vmx->vcpu),
fb6c8198 9303 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
38b99173 9304 vmcs_write64(APIC_ACCESS_ADDR, hpa);
a468f2db 9305 vmx_flush_tlb(vcpu, true);
fb6c8198 9306 }
38b99173
TC
9307}
9308
67c9dddc 9309static void vmx_hwapic_isr_update(struct kvm_vcpu *vcpu, int max_isr)
c7c9c56c
YZ
9310{
9311 u16 status;
9312 u8 old;
9313
67c9dddc
PB
9314 if (max_isr == -1)
9315 max_isr = 0;
c7c9c56c
YZ
9316
9317 status = vmcs_read16(GUEST_INTR_STATUS);
9318 old = status >> 8;
67c9dddc 9319 if (max_isr != old) {
c7c9c56c 9320 status &= 0xff;
67c9dddc 9321 status |= max_isr << 8;
c7c9c56c
YZ
9322 vmcs_write16(GUEST_INTR_STATUS, status);
9323 }
9324}
9325
9326static void vmx_set_rvi(int vector)
9327{
9328 u16 status;
9329 u8 old;
9330
4114c27d
WW
9331 if (vector == -1)
9332 vector = 0;
9333
c7c9c56c
YZ
9334 status = vmcs_read16(GUEST_INTR_STATUS);
9335 old = (u8)status & 0xff;
9336 if ((u8)vector != old) {
9337 status &= ~0xff;
9338 status |= (u8)vector;
9339 vmcs_write16(GUEST_INTR_STATUS, status);
9340 }
9341}
9342
9343static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
9344{
963fee16 9345 /*
851c1a18
LA
9346 * When running L2, updating RVI is only relevant when
9347 * vmcs12 virtual-interrupt-delivery enabled.
9348 * However, it can be enabled only when L1 also
9349 * intercepts external-interrupts and in that case
9350 * we should not update vmcs02 RVI but instead intercept
9351 * interrupt. Therefore, do nothing when running L2.
963fee16 9352 */
851c1a18
LA
9353 if (!is_guest_mode(vcpu))
9354 vmx_set_rvi(max_irr);
c7c9c56c
YZ
9355}
9356
76dfafd5 9357static int vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
810e6def
PB
9358{
9359 struct vcpu_vmx *vmx = to_vmx(vcpu);
76dfafd5 9360 int max_irr;
f27a85c4 9361 bool max_irr_updated;
810e6def 9362
76dfafd5
PB
9363 WARN_ON(!vcpu->arch.apicv_active);
9364 if (pi_test_on(&vmx->pi_desc)) {
9365 pi_clear_on(&vmx->pi_desc);
9366 /*
9367 * IOMMU can write to PIR.ON, so the barrier matters even on UP.
9368 * But on x86 this is just a compiler barrier anyway.
9369 */
9370 smp_mb__after_atomic();
f27a85c4
LA
9371 max_irr_updated =
9372 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir, &max_irr);
9373
9374 /*
9375 * If we are running L2 and L1 has a new pending interrupt
9376 * which can be injected, we should re-evaluate
9377 * what should be done with this new L1 interrupt.
851c1a18
LA
9378 * If L1 intercepts external-interrupts, we should
9379 * exit from L2 to L1. Otherwise, interrupt should be
9380 * delivered directly to L2.
f27a85c4 9381 */
851c1a18
LA
9382 if (is_guest_mode(vcpu) && max_irr_updated) {
9383 if (nested_exit_on_intr(vcpu))
9384 kvm_vcpu_exiting_guest_mode(vcpu);
9385 else
9386 kvm_make_request(KVM_REQ_EVENT, vcpu);
9387 }
76dfafd5
PB
9388 } else {
9389 max_irr = kvm_lapic_find_highest_irr(vcpu);
9390 }
9391 vmx_hwapic_irr_update(vcpu, max_irr);
9392 return max_irr;
810e6def
PB
9393}
9394
6308630b 9395static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 9396{
d62caabb 9397 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
9398 return;
9399
c7c9c56c
YZ
9400 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
9401 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
9402 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
9403 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
9404}
9405
967235d3
PB
9406static void vmx_apicv_post_state_restore(struct kvm_vcpu *vcpu)
9407{
9408 struct vcpu_vmx *vmx = to_vmx(vcpu);
9409
9410 pi_clear_on(&vmx->pi_desc);
9411 memset(vmx->pi_desc.pir, 0, sizeof(vmx->pi_desc.pir));
9412}
9413
51aa01d1 9414static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 9415{
48ae0fb4
JM
9416 u32 exit_intr_info = 0;
9417 u16 basic_exit_reason = (u16)vmx->exit_reason;
00eba012 9418
48ae0fb4
JM
9419 if (!(basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
9420 || basic_exit_reason == EXIT_REASON_EXCEPTION_NMI))
00eba012
AK
9421 return;
9422
48ae0fb4
JM
9423 if (!(vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9424 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9425 vmx->exit_intr_info = exit_intr_info;
a0861c02 9426
1261bfa3
WL
9427 /* if exit due to PF check for async PF */
9428 if (is_page_fault(exit_intr_info))
9429 vmx->vcpu.arch.apf.host_apf_reason = kvm_read_and_reset_pf_reason();
9430
a0861c02 9431 /* Handle machine checks before interrupts are enabled */
48ae0fb4
JM
9432 if (basic_exit_reason == EXIT_REASON_MCE_DURING_VMENTRY ||
9433 is_machine_check(exit_intr_info))
a0861c02
AK
9434 kvm_machine_check();
9435
20f65983 9436 /* We need to handle NMIs before interrupts are enabled */
ef85b673 9437 if (is_nmi(exit_intr_info)) {
dd60d217 9438 kvm_before_interrupt(&vmx->vcpu);
20f65983 9439 asm("int $2");
dd60d217 9440 kvm_after_interrupt(&vmx->vcpu);
ff9d07a0 9441 }
51aa01d1 9442}
20f65983 9443
a547c6db
YZ
9444static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
9445{
9446 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9447
a547c6db
YZ
9448 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
9449 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
9450 unsigned int vector;
9451 unsigned long entry;
9452 gate_desc *desc;
9453 struct vcpu_vmx *vmx = to_vmx(vcpu);
9454#ifdef CONFIG_X86_64
9455 unsigned long tmp;
9456#endif
9457
9458 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9459 desc = (gate_desc *)vmx->host_idt_base + vector;
64b163fa 9460 entry = gate_offset(desc);
a547c6db
YZ
9461 asm volatile(
9462#ifdef CONFIG_X86_64
9463 "mov %%" _ASM_SP ", %[sp]\n\t"
9464 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
9465 "push $%c[ss]\n\t"
9466 "push %[sp]\n\t"
9467#endif
9468 "pushf\n\t"
a547c6db 9469 __ASM_SIZE(push) " $%c[cs]\n\t"
c940a3fb 9470 CALL_NOSPEC
a547c6db
YZ
9471 :
9472#ifdef CONFIG_X86_64
3f62de5f 9473 [sp]"=&r"(tmp),
a547c6db 9474#endif
f5caf621 9475 ASM_CALL_CONSTRAINT
a547c6db 9476 :
c940a3fb 9477 THUNK_TARGET(entry),
a547c6db
YZ
9478 [ss]"i"(__KERNEL_DS),
9479 [cs]"i"(__KERNEL_CS)
9480 );
f2485b3e 9481 }
a547c6db 9482}
c207aee4 9483STACK_FRAME_NON_STANDARD(vmx_handle_external_intr);
a547c6db 9484
6d396b55
PB
9485static bool vmx_has_high_real_mode_segbase(void)
9486{
9487 return enable_unrestricted_guest || emulate_invalid_guest_state;
9488}
9489
da8999d3
LJ
9490static bool vmx_mpx_supported(void)
9491{
9492 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
9493 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
9494}
9495
55412b2e
WL
9496static bool vmx_xsaves_supported(void)
9497{
9498 return vmcs_config.cpu_based_2nd_exec_ctrl &
9499 SECONDARY_EXEC_XSAVES;
9500}
9501
66336cab
PB
9502static bool vmx_umip_emulated(void)
9503{
0367f205
PB
9504 return vmcs_config.cpu_based_2nd_exec_ctrl &
9505 SECONDARY_EXEC_DESC;
66336cab
PB
9506}
9507
51aa01d1
AK
9508static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
9509{
c5ca8e57 9510 u32 exit_intr_info;
51aa01d1
AK
9511 bool unblock_nmi;
9512 u8 vector;
9513 bool idtv_info_valid;
9514
9515 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 9516
d02fcf50 9517 if (enable_vnmi) {
8a1b4392
PB
9518 if (vmx->loaded_vmcs->nmi_known_unmasked)
9519 return;
9520 /*
9521 * Can't use vmx->exit_intr_info since we're not sure what
9522 * the exit reason is.
9523 */
9524 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
9525 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
9526 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
9527 /*
9528 * SDM 3: 27.7.1.2 (September 2008)
9529 * Re-set bit "block by NMI" before VM entry if vmexit caused by
9530 * a guest IRET fault.
9531 * SDM 3: 23.2.2 (September 2008)
9532 * Bit 12 is undefined in any of the following cases:
9533 * If the VM exit sets the valid bit in the IDT-vectoring
9534 * information field.
9535 * If the VM exit is due to a double fault.
9536 */
9537 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
9538 vector != DF_VECTOR && !idtv_info_valid)
9539 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
9540 GUEST_INTR_STATE_NMI);
9541 else
9542 vmx->loaded_vmcs->nmi_known_unmasked =
9543 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
9544 & GUEST_INTR_STATE_NMI);
9545 } else if (unlikely(vmx->loaded_vmcs->soft_vnmi_blocked))
9546 vmx->loaded_vmcs->vnmi_blocked_time +=
9547 ktime_to_ns(ktime_sub(ktime_get(),
9548 vmx->loaded_vmcs->entry_time));
51aa01d1
AK
9549}
9550
3ab66e8a 9551static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
9552 u32 idt_vectoring_info,
9553 int instr_len_field,
9554 int error_code_field)
51aa01d1 9555{
51aa01d1
AK
9556 u8 vector;
9557 int type;
9558 bool idtv_info_valid;
9559
9560 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 9561
3ab66e8a
JK
9562 vcpu->arch.nmi_injected = false;
9563 kvm_clear_exception_queue(vcpu);
9564 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
9565
9566 if (!idtv_info_valid)
9567 return;
9568
3ab66e8a 9569 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 9570
668f612f
AK
9571 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
9572 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 9573
64a7ec06 9574 switch (type) {
37b96e98 9575 case INTR_TYPE_NMI_INTR:
3ab66e8a 9576 vcpu->arch.nmi_injected = true;
668f612f 9577 /*
7b4a25cb 9578 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
9579 * Clear bit "block by NMI" before VM entry if a NMI
9580 * delivery faulted.
668f612f 9581 */
3ab66e8a 9582 vmx_set_nmi_mask(vcpu, false);
37b96e98 9583 break;
37b96e98 9584 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 9585 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
9586 /* fall through */
9587 case INTR_TYPE_HARD_EXCEPTION:
35920a35 9588 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 9589 u32 err = vmcs_read32(error_code_field);
851eb667 9590 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 9591 } else
851eb667 9592 kvm_requeue_exception(vcpu, vector);
37b96e98 9593 break;
66fd3f7f 9594 case INTR_TYPE_SOFT_INTR:
3ab66e8a 9595 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 9596 /* fall through */
37b96e98 9597 case INTR_TYPE_EXT_INTR:
3ab66e8a 9598 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
9599 break;
9600 default:
9601 break;
f7d9238f 9602 }
cf393f75
AK
9603}
9604
83422e17
AK
9605static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
9606{
3ab66e8a 9607 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
9608 VM_EXIT_INSTRUCTION_LEN,
9609 IDT_VECTORING_ERROR_CODE);
9610}
9611
b463a6f7
AK
9612static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
9613{
3ab66e8a 9614 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
9615 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
9616 VM_ENTRY_INSTRUCTION_LEN,
9617 VM_ENTRY_EXCEPTION_ERROR_CODE);
9618
9619 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
9620}
9621
d7cd9796
GN
9622static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
9623{
9624 int i, nr_msrs;
9625 struct perf_guest_switch_msr *msrs;
9626
9627 msrs = perf_guest_get_msrs(&nr_msrs);
9628
9629 if (!msrs)
9630 return;
9631
9632 for (i = 0; i < nr_msrs; i++)
9633 if (msrs[i].host == msrs[i].guest)
9634 clear_atomic_switch_msr(vmx, msrs[i].msr);
9635 else
9636 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
9637 msrs[i].host);
9638}
9639
33365e7a 9640static void vmx_arm_hv_timer(struct kvm_vcpu *vcpu)
64672c95
YJ
9641{
9642 struct vcpu_vmx *vmx = to_vmx(vcpu);
9643 u64 tscl;
9644 u32 delta_tsc;
9645
9646 if (vmx->hv_deadline_tsc == -1)
9647 return;
9648
9649 tscl = rdtsc();
9650 if (vmx->hv_deadline_tsc > tscl)
9651 /* sure to be 32 bit only because checked on set_hv_timer */
9652 delta_tsc = (u32)((vmx->hv_deadline_tsc - tscl) >>
9653 cpu_preemption_timer_multi);
9654 else
9655 delta_tsc = 0;
9656
9657 vmcs_write32(VMX_PREEMPTION_TIMER_VALUE, delta_tsc);
9658}
9659
a3b5ba49 9660static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 9661{
a2fa3e9f 9662 struct vcpu_vmx *vmx = to_vmx(vcpu);
773e8a04 9663 unsigned long cr3, cr4, evmcs_rsp;
104f226b 9664
8a1b4392 9665 /* Record the guest's net vcpu time for enforced NMI injections. */
d02fcf50 9666 if (unlikely(!enable_vnmi &&
8a1b4392
PB
9667 vmx->loaded_vmcs->soft_vnmi_blocked))
9668 vmx->loaded_vmcs->entry_time = ktime_get();
9669
104f226b
AK
9670 /* Don't enter VMX if guest state is invalid, let the exit handler
9671 start emulation until we arrive back to a valid state */
14168786 9672 if (vmx->emulation_required)
104f226b
AK
9673 return;
9674
a7653ecd
RK
9675 if (vmx->ple_window_dirty) {
9676 vmx->ple_window_dirty = false;
9677 vmcs_write32(PLE_WINDOW, vmx->ple_window);
9678 }
9679
012f83cb
AG
9680 if (vmx->nested.sync_shadow_vmcs) {
9681 copy_vmcs12_to_shadow(vmx);
9682 vmx->nested.sync_shadow_vmcs = false;
9683 }
9684
104f226b
AK
9685 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
9686 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
9687 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
9688 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
9689
d6e41f11 9690 cr3 = __get_current_cr3_fast();
44889942 9691 if (unlikely(cr3 != vmx->loaded_vmcs->vmcs_host_cr3)) {
d6e41f11 9692 vmcs_writel(HOST_CR3, cr3);
44889942 9693 vmx->loaded_vmcs->vmcs_host_cr3 = cr3;
d6e41f11
AL
9694 }
9695
1e02ce4c 9696 cr4 = cr4_read_shadow();
44889942 9697 if (unlikely(cr4 != vmx->loaded_vmcs->vmcs_host_cr4)) {
d974baa3 9698 vmcs_writel(HOST_CR4, cr4);
44889942 9699 vmx->loaded_vmcs->vmcs_host_cr4 = cr4;
d974baa3
AL
9700 }
9701
104f226b
AK
9702 /* When single-stepping over STI and MOV SS, we must clear the
9703 * corresponding interruptibility bits in the guest state. Otherwise
9704 * vmentry fails as it then expects bit 14 (BS) in pending debug
9705 * exceptions being set, but that's not correct for the guest debugging
9706 * case. */
9707 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
9708 vmx_set_interrupt_shadow(vcpu, 0);
9709
b9dd21e1
PB
9710 if (static_cpu_has(X86_FEATURE_PKU) &&
9711 kvm_read_cr4_bits(vcpu, X86_CR4_PKE) &&
9712 vcpu->arch.pkru != vmx->host_pkru)
9713 __write_pkru(vcpu->arch.pkru);
1be0e61c 9714
d7cd9796
GN
9715 atomic_switch_perf_msrs(vmx);
9716
64672c95
YJ
9717 vmx_arm_hv_timer(vcpu);
9718
d28b387f
KA
9719 /*
9720 * If this vCPU has touched SPEC_CTRL, restore the guest's value if
9721 * it's non-zero. Since vmentry is serialising on affected CPUs, there
9722 * is no need to worry about the conditional branch over the wrmsr
9723 * being speculatively taken.
9724 */
5cf68754 9725 x86_spec_ctrl_set_guest(vmx->spec_ctrl);
d28b387f 9726
d462b819 9727 vmx->__launched = vmx->loaded_vmcs->launched;
773e8a04
VK
9728
9729 evmcs_rsp = static_branch_unlikely(&enable_evmcs) ?
9730 (unsigned long)&current_evmcs->host_rsp : 0;
9731
104f226b 9732 asm(
6aa8b732 9733 /* Store host registers */
b188c81f
AK
9734 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
9735 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
9736 "push %%" _ASM_CX " \n\t"
9737 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 9738 "je 1f \n\t"
b188c81f 9739 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
773e8a04
VK
9740 /* Avoid VMWRITE when Enlightened VMCS is in use */
9741 "test %%" _ASM_SI ", %%" _ASM_SI " \n\t"
9742 "jz 2f \n\t"
9743 "mov %%" _ASM_SP ", (%%" _ASM_SI ") \n\t"
9744 "jmp 1f \n\t"
9745 "2: \n\t"
4ecac3fd 9746 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 9747 "1: \n\t"
d3edefc0 9748 /* Reload cr2 if changed */
b188c81f
AK
9749 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
9750 "mov %%cr2, %%" _ASM_DX " \n\t"
9751 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
773e8a04 9752 "je 3f \n\t"
b188c81f 9753 "mov %%" _ASM_AX", %%cr2 \n\t"
773e8a04 9754 "3: \n\t"
6aa8b732 9755 /* Check if vmlaunch of vmresume is needed */
e08aa78a 9756 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 9757 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
9758 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
9759 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
9760 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
9761 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
9762 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
9763 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 9764#ifdef CONFIG_X86_64
e08aa78a
AK
9765 "mov %c[r8](%0), %%r8 \n\t"
9766 "mov %c[r9](%0), %%r9 \n\t"
9767 "mov %c[r10](%0), %%r10 \n\t"
9768 "mov %c[r11](%0), %%r11 \n\t"
9769 "mov %c[r12](%0), %%r12 \n\t"
9770 "mov %c[r13](%0), %%r13 \n\t"
9771 "mov %c[r14](%0), %%r14 \n\t"
9772 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 9773#endif
b188c81f 9774 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 9775
6aa8b732 9776 /* Enter guest mode */
83287ea4 9777 "jne 1f \n\t"
4ecac3fd 9778 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
9779 "jmp 2f \n\t"
9780 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
9781 "2: "
6aa8b732 9782 /* Save guest registers, load host registers, keep flags */
b188c81f 9783 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 9784 "pop %0 \n\t"
0cb5b306 9785 "setbe %c[fail](%0)\n\t"
b188c81f
AK
9786 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
9787 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
9788 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
9789 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
9790 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
9791 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
9792 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 9793#ifdef CONFIG_X86_64
e08aa78a
AK
9794 "mov %%r8, %c[r8](%0) \n\t"
9795 "mov %%r9, %c[r9](%0) \n\t"
9796 "mov %%r10, %c[r10](%0) \n\t"
9797 "mov %%r11, %c[r11](%0) \n\t"
9798 "mov %%r12, %c[r12](%0) \n\t"
9799 "mov %%r13, %c[r13](%0) \n\t"
9800 "mov %%r14, %c[r14](%0) \n\t"
9801 "mov %%r15, %c[r15](%0) \n\t"
0cb5b306
JM
9802 "xor %%r8d, %%r8d \n\t"
9803 "xor %%r9d, %%r9d \n\t"
9804 "xor %%r10d, %%r10d \n\t"
9805 "xor %%r11d, %%r11d \n\t"
9806 "xor %%r12d, %%r12d \n\t"
9807 "xor %%r13d, %%r13d \n\t"
9808 "xor %%r14d, %%r14d \n\t"
9809 "xor %%r15d, %%r15d \n\t"
6aa8b732 9810#endif
b188c81f
AK
9811 "mov %%cr2, %%" _ASM_AX " \n\t"
9812 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 9813
0cb5b306
JM
9814 "xor %%eax, %%eax \n\t"
9815 "xor %%ebx, %%ebx \n\t"
9816 "xor %%esi, %%esi \n\t"
9817 "xor %%edi, %%edi \n\t"
b188c81f 9818 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
83287ea4
AK
9819 ".pushsection .rodata \n\t"
9820 ".global vmx_return \n\t"
9821 "vmx_return: " _ASM_PTR " 2b \n\t"
9822 ".popsection"
773e8a04 9823 : : "c"(vmx), "d"((unsigned long)HOST_RSP), "S"(evmcs_rsp),
d462b819 9824 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 9825 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 9826 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
9827 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
9828 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
9829 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
9830 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
9831 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
9832 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
9833 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 9834#ifdef CONFIG_X86_64
ad312c7c
ZX
9835 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
9836 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
9837 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
9838 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
9839 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
9840 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
9841 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
9842 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 9843#endif
40712fae
AK
9844 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
9845 [wordsize]"i"(sizeof(ulong))
c2036300
LV
9846 : "cc", "memory"
9847#ifdef CONFIG_X86_64
773e8a04 9848 , "rax", "rbx", "rdi"
c2036300 9849 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f 9850#else
773e8a04 9851 , "eax", "ebx", "edi"
c2036300
LV
9852#endif
9853 );
6aa8b732 9854
d28b387f
KA
9855 /*
9856 * We do not use IBRS in the kernel. If this vCPU has used the
9857 * SPEC_CTRL MSR it may have left it on; save the value and
9858 * turn it off. This is much more efficient than blindly adding
9859 * it to the atomic save/restore list. Especially as the former
9860 * (Saving guest MSRs on vmexit) doesn't even exist in KVM.
9861 *
9862 * For non-nested case:
9863 * If the L01 MSR bitmap does not intercept the MSR, then we need to
9864 * save it.
9865 *
9866 * For nested case:
9867 * If the L02 MSR bitmap does not intercept the MSR, then we need to
9868 * save it.
9869 */
946fbbc1 9870 if (unlikely(!msr_write_intercepted(vcpu, MSR_IA32_SPEC_CTRL)))
ecb586bd 9871 vmx->spec_ctrl = native_read_msr(MSR_IA32_SPEC_CTRL);
d28b387f 9872
5cf68754 9873 x86_spec_ctrl_restore_host(vmx->spec_ctrl);
d28b387f 9874
117cc7a9
DW
9875 /* Eliminate branch target predictions from guest mode */
9876 vmexit_fill_RSB();
9877
773e8a04
VK
9878 /* All fields are clean at this point */
9879 if (static_branch_unlikely(&enable_evmcs))
9880 current_evmcs->hv_clean_fields |=
9881 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
9882
2a7921b7 9883 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
74c55931
WL
9884 if (vmx->host_debugctlmsr)
9885 update_debugctlmsr(vmx->host_debugctlmsr);
2a7921b7 9886
aa67f609
AK
9887#ifndef CONFIG_X86_64
9888 /*
9889 * The sysexit path does not restore ds/es, so we must set them to
9890 * a reasonable value ourselves.
9891 *
9892 * We can't defer this to vmx_load_host_state() since that function
9893 * may be executed in interrupt context, which saves and restore segments
9894 * around it, nullifying its effect.
9895 */
9896 loadsegment(ds, __USER_DS);
9897 loadsegment(es, __USER_DS);
9898#endif
9899
6de4f3ad 9900 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 9901 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 9902 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 9903 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 9904 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
9905 vcpu->arch.regs_dirty = 0;
9906
1be0e61c
XG
9907 /*
9908 * eager fpu is enabled if PKEY is supported and CR4 is switched
9909 * back on host, so it is safe to read guest PKRU from current
9910 * XSAVE.
9911 */
b9dd21e1
PB
9912 if (static_cpu_has(X86_FEATURE_PKU) &&
9913 kvm_read_cr4_bits(vcpu, X86_CR4_PKE)) {
9914 vcpu->arch.pkru = __read_pkru();
9915 if (vcpu->arch.pkru != vmx->host_pkru)
1be0e61c 9916 __write_pkru(vmx->host_pkru);
1be0e61c
XG
9917 }
9918
e0b890d3 9919 vmx->nested.nested_run_pending = 0;
b060ca3b
JM
9920 vmx->idt_vectoring_info = 0;
9921
9922 vmx->exit_reason = vmx->fail ? 0xdead : vmcs_read32(VM_EXIT_REASON);
9923 if (vmx->fail || (vmx->exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY))
9924 return;
9925
9926 vmx->loaded_vmcs->launched = 1;
9927 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
e0b890d3 9928
51aa01d1
AK
9929 vmx_complete_atomic_exit(vmx);
9930 vmx_recover_nmi_blocking(vmx);
cf393f75 9931 vmx_complete_interrupts(vmx);
6aa8b732 9932}
c207aee4 9933STACK_FRAME_NON_STANDARD(vmx_vcpu_run);
6aa8b732 9934
434a1e94
SC
9935static struct kvm *vmx_vm_alloc(void)
9936{
40bbb9d0
SC
9937 struct kvm_vmx *kvm_vmx = kzalloc(sizeof(struct kvm_vmx), GFP_KERNEL);
9938 return &kvm_vmx->kvm;
434a1e94
SC
9939}
9940
9941static void vmx_vm_free(struct kvm *kvm)
9942{
40bbb9d0 9943 kfree(to_kvm_vmx(kvm));
434a1e94
SC
9944}
9945
1279a6b1 9946static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
4fa7734c
PB
9947{
9948 struct vcpu_vmx *vmx = to_vmx(vcpu);
9949 int cpu;
9950
1279a6b1 9951 if (vmx->loaded_vmcs == vmcs)
4fa7734c
PB
9952 return;
9953
9954 cpu = get_cpu();
1279a6b1 9955 vmx->loaded_vmcs = vmcs;
4fa7734c
PB
9956 vmx_vcpu_put(vcpu);
9957 vmx_vcpu_load(vcpu, cpu);
4fa7734c
PB
9958 put_cpu();
9959}
9960
2f1fe811
JM
9961/*
9962 * Ensure that the current vmcs of the logical processor is the
9963 * vmcs01 of the vcpu before calling free_nested().
9964 */
9965static void vmx_free_vcpu_nested(struct kvm_vcpu *vcpu)
9966{
9967 struct vcpu_vmx *vmx = to_vmx(vcpu);
2f1fe811 9968
ec7660cc 9969 vcpu_load(vcpu);
1279a6b1 9970 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2f1fe811
JM
9971 free_nested(vmx);
9972 vcpu_put(vcpu);
9973}
9974
6aa8b732
AK
9975static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
9976{
fb3f0f51
RR
9977 struct vcpu_vmx *vmx = to_vmx(vcpu);
9978
843e4330 9979 if (enable_pml)
a3eaa864 9980 vmx_destroy_pml_buffer(vmx);
991e7a0e 9981 free_vpid(vmx->vpid);
4fa7734c 9982 leave_guest_mode(vcpu);
2f1fe811 9983 vmx_free_vcpu_nested(vcpu);
4fa7734c 9984 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
9985 kfree(vmx->guest_msrs);
9986 kvm_vcpu_uninit(vcpu);
a4770347 9987 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
9988}
9989
fb3f0f51 9990static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 9991{
fb3f0f51 9992 int err;
c16f862d 9993 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
904e14fb 9994 unsigned long *msr_bitmap;
15ad7146 9995 int cpu;
6aa8b732 9996
a2fa3e9f 9997 if (!vmx)
fb3f0f51
RR
9998 return ERR_PTR(-ENOMEM);
9999
991e7a0e 10000 vmx->vpid = allocate_vpid();
2384d2b3 10001
fb3f0f51
RR
10002 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
10003 if (err)
10004 goto free_vcpu;
965b58a5 10005
4e59516a
PF
10006 err = -ENOMEM;
10007
10008 /*
10009 * If PML is turned on, failure on enabling PML just results in failure
10010 * of creating the vcpu, therefore we can simplify PML logic (by
10011 * avoiding dealing with cases, such as enabling PML partially on vcpus
10012 * for the guest, etc.
10013 */
10014 if (enable_pml) {
10015 vmx->pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
10016 if (!vmx->pml_pg)
10017 goto uninit_vcpu;
10018 }
10019
a2fa3e9f 10020 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
10021 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
10022 > PAGE_SIZE);
0123be42 10023
4e59516a
PF
10024 if (!vmx->guest_msrs)
10025 goto free_pml;
965b58a5 10026
f21f165e
PB
10027 err = alloc_loaded_vmcs(&vmx->vmcs01);
10028 if (err < 0)
fb3f0f51 10029 goto free_msrs;
a2fa3e9f 10030
904e14fb
PB
10031 msr_bitmap = vmx->vmcs01.msr_bitmap;
10032 vmx_disable_intercept_for_msr(msr_bitmap, MSR_FS_BASE, MSR_TYPE_RW);
10033 vmx_disable_intercept_for_msr(msr_bitmap, MSR_GS_BASE, MSR_TYPE_RW);
10034 vmx_disable_intercept_for_msr(msr_bitmap, MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
10035 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_CS, MSR_TYPE_RW);
10036 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_ESP, MSR_TYPE_RW);
10037 vmx_disable_intercept_for_msr(msr_bitmap, MSR_IA32_SYSENTER_EIP, MSR_TYPE_RW);
10038 vmx->msr_bitmap_mode = 0;
10039
f21f165e 10040 vmx->loaded_vmcs = &vmx->vmcs01;
15ad7146
AK
10041 cpu = get_cpu();
10042 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 10043 vmx->vcpu.cpu = cpu;
12d79917 10044 vmx_vcpu_setup(vmx);
fb3f0f51 10045 vmx_vcpu_put(&vmx->vcpu);
15ad7146 10046 put_cpu();
35754c98 10047 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
10048 err = alloc_apic_access_page(kvm);
10049 if (err)
5e4a0b3c 10050 goto free_vmcs;
a63cb560 10051 }
fb3f0f51 10052
e90008df 10053 if (enable_ept && !enable_unrestricted_guest) {
f51770ed
TC
10054 err = init_rmode_identity_map(kvm);
10055 if (err)
93ea5388 10056 goto free_vmcs;
b927a3ce 10057 }
b7ebfb05 10058
5c614b35 10059 if (nested) {
6677f3da
PB
10060 nested_vmx_setup_ctls_msrs(&vmx->nested.msrs,
10061 kvm_vcpu_apicv_active(&vmx->vcpu));
5c614b35
WL
10062 vmx->nested.vpid02 = allocate_vpid();
10063 }
b9c237bb 10064
705699a1 10065 vmx->nested.posted_intr_nv = -1;
a9d30f33 10066 vmx->nested.current_vmptr = -1ull;
a9d30f33 10067
37e4c997
HZ
10068 vmx->msr_ia32_feature_control_valid_bits = FEATURE_CONTROL_LOCKED;
10069
31afb2ea
PB
10070 /*
10071 * Enforce invariant: pi_desc.nv is always either POSTED_INTR_VECTOR
10072 * or POSTED_INTR_WAKEUP_VECTOR.
10073 */
10074 vmx->pi_desc.nv = POSTED_INTR_VECTOR;
10075 vmx->pi_desc.sn = 1;
10076
fb3f0f51
RR
10077 return &vmx->vcpu;
10078
10079free_vmcs:
5c614b35 10080 free_vpid(vmx->nested.vpid02);
5f3fbc34 10081 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 10082free_msrs:
fb3f0f51 10083 kfree(vmx->guest_msrs);
4e59516a
PF
10084free_pml:
10085 vmx_destroy_pml_buffer(vmx);
fb3f0f51
RR
10086uninit_vcpu:
10087 kvm_vcpu_uninit(&vmx->vcpu);
10088free_vcpu:
991e7a0e 10089 free_vpid(vmx->vpid);
a4770347 10090 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 10091 return ERR_PTR(err);
6aa8b732
AK
10092}
10093
b31c114b
WL
10094static int vmx_vm_init(struct kvm *kvm)
10095{
10096 if (!ple_gap)
10097 kvm->arch.pause_in_guest = true;
10098 return 0;
10099}
10100
002c7f7c
YS
10101static void __init vmx_check_processor_compat(void *rtn)
10102{
10103 struct vmcs_config vmcs_conf;
10104
10105 *(int *)rtn = 0;
10106 if (setup_vmcs_config(&vmcs_conf) < 0)
10107 *(int *)rtn = -EIO;
1389309c 10108 nested_vmx_setup_ctls_msrs(&vmcs_conf.nested, enable_apicv);
002c7f7c
YS
10109 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
10110 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
10111 smp_processor_id());
10112 *(int *)rtn = -EIO;
10113 }
10114}
10115
4b12f0de 10116static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 10117{
b18d5431
XG
10118 u8 cache;
10119 u64 ipat = 0;
4b12f0de 10120
522c68c4 10121 /* For VT-d and EPT combination
606decd6 10122 * 1. MMIO: always map as UC
522c68c4
SY
10123 * 2. EPT with VT-d:
10124 * a. VT-d without snooping control feature: can't guarantee the
606decd6 10125 * result, try to trust guest.
522c68c4
SY
10126 * b. VT-d with snooping control feature: snooping control feature of
10127 * VT-d engine can guarantee the cache correctness. Just set it
10128 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 10129 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
10130 * consistent with host MTRR
10131 */
606decd6
PB
10132 if (is_mmio) {
10133 cache = MTRR_TYPE_UNCACHABLE;
10134 goto exit;
10135 }
10136
10137 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
10138 ipat = VMX_EPT_IPAT_BIT;
10139 cache = MTRR_TYPE_WRBACK;
10140 goto exit;
10141 }
10142
10143 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
10144 ipat = VMX_EPT_IPAT_BIT;
0da029ed 10145 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
10146 cache = MTRR_TYPE_WRBACK;
10147 else
10148 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
10149 goto exit;
10150 }
10151
ff53604b 10152 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
10153
10154exit:
10155 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
10156}
10157
17cc3935 10158static int vmx_get_lpage_level(void)
344f414f 10159{
878403b7
SY
10160 if (enable_ept && !cpu_has_vmx_ept_1g_page())
10161 return PT_DIRECTORY_LEVEL;
10162 else
10163 /* For shadow and EPT supported 1GB page */
10164 return PT_PDPE_LEVEL;
344f414f
JR
10165}
10166
feda805f
XG
10167static void vmcs_set_secondary_exec_control(u32 new_ctl)
10168{
10169 /*
10170 * These bits in the secondary execution controls field
10171 * are dynamic, the others are mostly based on the hypervisor
10172 * architecture and the guest's CPUID. Do not touch the
10173 * dynamic bits.
10174 */
10175 u32 mask =
10176 SECONDARY_EXEC_SHADOW_VMCS |
10177 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
0367f205
PB
10178 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
10179 SECONDARY_EXEC_DESC;
feda805f
XG
10180
10181 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
10182
10183 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
10184 (new_ctl & ~mask) | (cur_ctl & mask));
10185}
10186
8322ebbb
DM
10187/*
10188 * Generate MSR_IA32_VMX_CR{0,4}_FIXED1 according to CPUID. Only set bits
10189 * (indicating "allowed-1") if they are supported in the guest's CPUID.
10190 */
10191static void nested_vmx_cr_fixed1_bits_update(struct kvm_vcpu *vcpu)
10192{
10193 struct vcpu_vmx *vmx = to_vmx(vcpu);
10194 struct kvm_cpuid_entry2 *entry;
10195
6677f3da
PB
10196 vmx->nested.msrs.cr0_fixed1 = 0xffffffff;
10197 vmx->nested.msrs.cr4_fixed1 = X86_CR4_PCE;
8322ebbb
DM
10198
10199#define cr4_fixed1_update(_cr4_mask, _reg, _cpuid_mask) do { \
10200 if (entry && (entry->_reg & (_cpuid_mask))) \
6677f3da 10201 vmx->nested.msrs.cr4_fixed1 |= (_cr4_mask); \
8322ebbb
DM
10202} while (0)
10203
10204 entry = kvm_find_cpuid_entry(vcpu, 0x1, 0);
10205 cr4_fixed1_update(X86_CR4_VME, edx, bit(X86_FEATURE_VME));
10206 cr4_fixed1_update(X86_CR4_PVI, edx, bit(X86_FEATURE_VME));
10207 cr4_fixed1_update(X86_CR4_TSD, edx, bit(X86_FEATURE_TSC));
10208 cr4_fixed1_update(X86_CR4_DE, edx, bit(X86_FEATURE_DE));
10209 cr4_fixed1_update(X86_CR4_PSE, edx, bit(X86_FEATURE_PSE));
10210 cr4_fixed1_update(X86_CR4_PAE, edx, bit(X86_FEATURE_PAE));
10211 cr4_fixed1_update(X86_CR4_MCE, edx, bit(X86_FEATURE_MCE));
10212 cr4_fixed1_update(X86_CR4_PGE, edx, bit(X86_FEATURE_PGE));
10213 cr4_fixed1_update(X86_CR4_OSFXSR, edx, bit(X86_FEATURE_FXSR));
10214 cr4_fixed1_update(X86_CR4_OSXMMEXCPT, edx, bit(X86_FEATURE_XMM));
10215 cr4_fixed1_update(X86_CR4_VMXE, ecx, bit(X86_FEATURE_VMX));
10216 cr4_fixed1_update(X86_CR4_SMXE, ecx, bit(X86_FEATURE_SMX));
10217 cr4_fixed1_update(X86_CR4_PCIDE, ecx, bit(X86_FEATURE_PCID));
10218 cr4_fixed1_update(X86_CR4_OSXSAVE, ecx, bit(X86_FEATURE_XSAVE));
10219
10220 entry = kvm_find_cpuid_entry(vcpu, 0x7, 0);
10221 cr4_fixed1_update(X86_CR4_FSGSBASE, ebx, bit(X86_FEATURE_FSGSBASE));
10222 cr4_fixed1_update(X86_CR4_SMEP, ebx, bit(X86_FEATURE_SMEP));
10223 cr4_fixed1_update(X86_CR4_SMAP, ebx, bit(X86_FEATURE_SMAP));
10224 cr4_fixed1_update(X86_CR4_PKE, ecx, bit(X86_FEATURE_PKU));
c4ad77e0 10225 cr4_fixed1_update(X86_CR4_UMIP, ecx, bit(X86_FEATURE_UMIP));
8322ebbb
DM
10226
10227#undef cr4_fixed1_update
10228}
10229
0e851880
SY
10230static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
10231{
4e47c7a6 10232 struct vcpu_vmx *vmx = to_vmx(vcpu);
4e47c7a6 10233
80154d77
PB
10234 if (cpu_has_secondary_exec_ctrls()) {
10235 vmx_compute_secondary_exec_control(vmx);
10236 vmcs_set_secondary_exec_control(vmx->secondary_exec_control);
ad756a16 10237 }
8b3e34e4 10238
37e4c997
HZ
10239 if (nested_vmx_allowed(vcpu))
10240 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
10241 FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
10242 else
10243 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
10244 ~FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
8322ebbb
DM
10245
10246 if (nested_vmx_allowed(vcpu))
10247 nested_vmx_cr_fixed1_bits_update(vcpu);
0e851880
SY
10248}
10249
d4330ef2
JR
10250static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
10251{
7b8050f5
NHE
10252 if (func == 1 && nested)
10253 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
10254}
10255
25d92081
YZ
10256static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
10257 struct x86_exception *fault)
10258{
533558bc 10259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
c5f983f6 10260 struct vcpu_vmx *vmx = to_vmx(vcpu);
533558bc 10261 u32 exit_reason;
c5f983f6 10262 unsigned long exit_qualification = vcpu->arch.exit_qualification;
25d92081 10263
c5f983f6
BD
10264 if (vmx->nested.pml_full) {
10265 exit_reason = EXIT_REASON_PML_FULL;
10266 vmx->nested.pml_full = false;
10267 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
10268 } else if (fault->error_code & PFERR_RSVD_MASK)
533558bc 10269 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 10270 else
533558bc 10271 exit_reason = EXIT_REASON_EPT_VIOLATION;
c5f983f6
BD
10272
10273 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
25d92081
YZ
10274 vmcs12->guest_physical_address = fault->address;
10275}
10276
995f00a6
PF
10277static bool nested_ept_ad_enabled(struct kvm_vcpu *vcpu)
10278{
bb97a016 10279 return nested_ept_get_cr3(vcpu) & VMX_EPTP_AD_ENABLE_BIT;
995f00a6
PF
10280}
10281
155a97a3
NHE
10282/* Callbacks for nested_ept_init_mmu_context: */
10283
10284static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
10285{
10286 /* return the page table to be shadowed - in our case, EPT12 */
10287 return get_vmcs12(vcpu)->ept_pointer;
10288}
10289
ae1e2d10 10290static int nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 10291{
ad896af0 10292 WARN_ON(mmu_is_nested(vcpu));
a057e0e2 10293 if (!valid_ept_address(vcpu, nested_ept_get_cr3(vcpu)))
ae1e2d10
PB
10294 return 1;
10295
10296 kvm_mmu_unload(vcpu);
ad896af0 10297 kvm_init_shadow_ept_mmu(vcpu,
6677f3da 10298 to_vmx(vcpu)->nested.msrs.ept_caps &
ae1e2d10 10299 VMX_EPT_EXECUTE_ONLY_BIT,
a057e0e2 10300 nested_ept_ad_enabled(vcpu));
155a97a3
NHE
10301 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
10302 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
10303 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
10304
10305 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
ae1e2d10 10306 return 0;
155a97a3
NHE
10307}
10308
10309static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
10310{
10311 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
10312}
10313
19d5f10b
EK
10314static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
10315 u16 error_code)
10316{
10317 bool inequality, bit;
10318
10319 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
10320 inequality =
10321 (error_code & vmcs12->page_fault_error_code_mask) !=
10322 vmcs12->page_fault_error_code_match;
10323 return inequality ^ bit;
10324}
10325
feaf0c7d
GN
10326static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
10327 struct x86_exception *fault)
10328{
10329 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10330
10331 WARN_ON(!is_guest_mode(vcpu));
10332
305d0ab4
WL
10333 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
10334 !to_vmx(vcpu)->nested.nested_run_pending) {
b96fb439
PB
10335 vmcs12->vm_exit_intr_error_code = fault->error_code;
10336 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10337 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
10338 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
10339 fault->address);
7313c698 10340 } else {
feaf0c7d 10341 kvm_inject_page_fault(vcpu, fault);
7313c698 10342 }
feaf0c7d
GN
10343}
10344
c992384b
PB
10345static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10346 struct vmcs12 *vmcs12);
6beb7bd5
JM
10347
10348static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
a2bcba50
WL
10349 struct vmcs12 *vmcs12)
10350{
10351 struct vcpu_vmx *vmx = to_vmx(vcpu);
5e2f30b7 10352 struct page *page;
6beb7bd5 10353 u64 hpa;
a2bcba50
WL
10354
10355 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a2bcba50
WL
10356 /*
10357 * Translate L1 physical address to host physical
10358 * address for vmcs02. Keep the page pinned, so this
10359 * physical address remains valid. We keep a reference
10360 * to it so we can release it later.
10361 */
5e2f30b7 10362 if (vmx->nested.apic_access_page) { /* shouldn't happen */
53a70daf 10363 kvm_release_page_dirty(vmx->nested.apic_access_page);
5e2f30b7
DH
10364 vmx->nested.apic_access_page = NULL;
10365 }
10366 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
6beb7bd5
JM
10367 /*
10368 * If translation failed, no matter: This feature asks
10369 * to exit when accessing the given address, and if it
10370 * can never be accessed, this feature won't do
10371 * anything anyway.
10372 */
5e2f30b7
DH
10373 if (!is_error_page(page)) {
10374 vmx->nested.apic_access_page = page;
6beb7bd5
JM
10375 hpa = page_to_phys(vmx->nested.apic_access_page);
10376 vmcs_write64(APIC_ACCESS_ADDR, hpa);
10377 } else {
10378 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
10379 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10380 }
10381 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
10382 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
10383 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
10384 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
10385 kvm_vcpu_reload_apic_access_page(vcpu);
a2bcba50 10386 }
a7c0b07d
WL
10387
10388 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
5e2f30b7 10389 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
53a70daf 10390 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
5e2f30b7
DH
10391 vmx->nested.virtual_apic_page = NULL;
10392 }
10393 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
a7c0b07d
WL
10394
10395 /*
6beb7bd5
JM
10396 * If translation failed, VM entry will fail because
10397 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
10398 * Failing the vm entry is _not_ what the processor
10399 * does but it's basically the only possibility we
10400 * have. We could still enter the guest if CR8 load
10401 * exits are enabled, CR8 store exits are enabled, and
10402 * virtualize APIC access is disabled; in this case
10403 * the processor would never use the TPR shadow and we
10404 * could simply clear the bit from the execution
10405 * control. But such a configuration is useless, so
10406 * let's keep the code simple.
a7c0b07d 10407 */
5e2f30b7
DH
10408 if (!is_error_page(page)) {
10409 vmx->nested.virtual_apic_page = page;
6beb7bd5
JM
10410 hpa = page_to_phys(vmx->nested.virtual_apic_page);
10411 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
10412 }
a7c0b07d
WL
10413 }
10414
705699a1 10415 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
10416 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
10417 kunmap(vmx->nested.pi_desc_page);
53a70daf 10418 kvm_release_page_dirty(vmx->nested.pi_desc_page);
5e2f30b7 10419 vmx->nested.pi_desc_page = NULL;
705699a1 10420 }
5e2f30b7
DH
10421 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
10422 if (is_error_page(page))
6beb7bd5 10423 return;
5e2f30b7
DH
10424 vmx->nested.pi_desc_page = page;
10425 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
705699a1
WV
10426 vmx->nested.pi_desc =
10427 (struct pi_desc *)((void *)vmx->nested.pi_desc +
10428 (unsigned long)(vmcs12->posted_intr_desc_addr &
10429 (PAGE_SIZE - 1)));
6beb7bd5
JM
10430 vmcs_write64(POSTED_INTR_DESC_ADDR,
10431 page_to_phys(vmx->nested.pi_desc_page) +
10432 (unsigned long)(vmcs12->posted_intr_desc_addr &
10433 (PAGE_SIZE - 1)));
705699a1 10434 }
d4667ca1 10435 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3712caeb
KA
10436 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
10437 CPU_BASED_USE_MSR_BITMAPS);
6beb7bd5
JM
10438 else
10439 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
10440 CPU_BASED_USE_MSR_BITMAPS);
a2bcba50
WL
10441}
10442
f4124500
JK
10443static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
10444{
10445 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
10446 struct vcpu_vmx *vmx = to_vmx(vcpu);
10447
10448 if (vcpu->arch.virtual_tsc_khz == 0)
10449 return;
10450
10451 /* Make sure short timeouts reliably trigger an immediate vmexit.
10452 * hrtimer_start does not guarantee this. */
10453 if (preemption_timeout <= 1) {
10454 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
10455 return;
10456 }
10457
10458 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10459 preemption_timeout *= 1000000;
10460 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
10461 hrtimer_start(&vmx->nested.preemption_timer,
10462 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
10463}
10464
56a20510
JM
10465static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
10466 struct vmcs12 *vmcs12)
10467{
10468 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
10469 return 0;
10470
10471 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
10472 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
10473 return -EINVAL;
10474
10475 return 0;
10476}
10477
3af18d9c
WV
10478static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
10479 struct vmcs12 *vmcs12)
10480{
3af18d9c
WV
10481 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10482 return 0;
10483
5fa99cbe 10484 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
3af18d9c
WV
10485 return -EINVAL;
10486
10487 return 0;
10488}
10489
712b12d7
JM
10490static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
10491 struct vmcs12 *vmcs12)
10492{
10493 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10494 return 0;
10495
10496 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
10497 return -EINVAL;
10498
10499 return 0;
10500}
10501
3af18d9c
WV
10502/*
10503 * Merge L0's and L1's MSR bitmap, return false to indicate that
10504 * we do not use the hardware.
10505 */
c992384b
PB
10506static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
10507 struct vmcs12 *vmcs12)
3af18d9c 10508{
82f0dd4b 10509 int msr;
f2b93280 10510 struct page *page;
d048c098 10511 unsigned long *msr_bitmap_l1;
904e14fb 10512 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
15d45071 10513 /*
d28b387f 10514 * pred_cmd & spec_ctrl are trying to verify two things:
15d45071
AR
10515 *
10516 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
10517 * ensures that we do not accidentally generate an L02 MSR bitmap
10518 * from the L12 MSR bitmap that is too permissive.
10519 * 2. That L1 or L2s have actually used the MSR. This avoids
10520 * unnecessarily merging of the bitmap if the MSR is unused. This
10521 * works properly because we only update the L01 MSR bitmap lazily.
10522 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
10523 * updated to reflect this when L1 (or its L2s) actually write to
10524 * the MSR.
10525 */
206587a9
KA
10526 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
10527 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
f2b93280 10528
c992384b
PB
10529 /* Nothing to do if the MSR bitmap is not in use. */
10530 if (!cpu_has_vmx_msr_bitmap() ||
10531 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
10532 return false;
10533
15d45071 10534 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
d28b387f 10535 !pred_cmd && !spec_ctrl)
f2b93280
WV
10536 return false;
10537
5e2f30b7
DH
10538 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
10539 if (is_error_page(page))
f2b93280 10540 return false;
f2b93280 10541
c992384b
PB
10542 msr_bitmap_l1 = (unsigned long *)kmap(page);
10543 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
10544 /*
10545 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
10546 * just lets the processor take the value from the virtual-APIC page;
10547 * take those 256 bits directly from the L1 bitmap.
10548 */
10549 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10550 unsigned word = msr / BITS_PER_LONG;
10551 msr_bitmap_l0[word] = msr_bitmap_l1[word];
10552 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10553 }
10554 } else {
10555 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
10556 unsigned word = msr / BITS_PER_LONG;
10557 msr_bitmap_l0[word] = ~0;
10558 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
10559 }
10560 }
d048c098 10561
c992384b
PB
10562 nested_vmx_disable_intercept_for_msr(
10563 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10564 X2APIC_MSR(APIC_TASKPRI),
c992384b 10565 MSR_TYPE_W);
d048c098 10566
c992384b 10567 if (nested_cpu_has_vid(vmcs12)) {
d048c098 10568 nested_vmx_disable_intercept_for_msr(
c992384b 10569 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10570 X2APIC_MSR(APIC_EOI),
c992384b
PB
10571 MSR_TYPE_W);
10572 nested_vmx_disable_intercept_for_msr(
10573 msr_bitmap_l1, msr_bitmap_l0,
d7231e75 10574 X2APIC_MSR(APIC_SELF_IPI),
c992384b 10575 MSR_TYPE_W);
82f0dd4b 10576 }
15d45071 10577
d28b387f
KA
10578 if (spec_ctrl)
10579 nested_vmx_disable_intercept_for_msr(
10580 msr_bitmap_l1, msr_bitmap_l0,
10581 MSR_IA32_SPEC_CTRL,
10582 MSR_TYPE_R | MSR_TYPE_W);
10583
15d45071
AR
10584 if (pred_cmd)
10585 nested_vmx_disable_intercept_for_msr(
10586 msr_bitmap_l1, msr_bitmap_l0,
10587 MSR_IA32_PRED_CMD,
10588 MSR_TYPE_W);
10589
f2b93280 10590 kunmap(page);
53a70daf 10591 kvm_release_page_clean(page);
f2b93280
WV
10592
10593 return true;
10594}
10595
f0f4cf5b
KS
10596static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
10597 struct vmcs12 *vmcs12)
10598{
10599 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
10600 !page_address_valid(vcpu, vmcs12->apic_access_addr))
10601 return -EINVAL;
10602 else
10603 return 0;
10604}
10605
f2b93280
WV
10606static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
10607 struct vmcs12 *vmcs12)
10608{
82f0dd4b 10609 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 10610 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
10611 !nested_cpu_has_vid(vmcs12) &&
10612 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
10613 return 0;
10614
10615 /*
10616 * If virtualize x2apic mode is enabled,
10617 * virtualize apic access must be disabled.
10618 */
82f0dd4b
WV
10619 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
10620 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
10621 return -EINVAL;
10622
608406e2
WV
10623 /*
10624 * If virtual interrupt delivery is enabled,
10625 * we must exit on external interrupts.
10626 */
10627 if (nested_cpu_has_vid(vmcs12) &&
10628 !nested_exit_on_intr(vcpu))
10629 return -EINVAL;
10630
705699a1
WV
10631 /*
10632 * bits 15:8 should be zero in posted_intr_nv,
10633 * the descriptor address has been already checked
10634 * in nested_get_vmcs12_pages.
10635 */
10636 if (nested_cpu_has_posted_intr(vmcs12) &&
10637 (!nested_cpu_has_vid(vmcs12) ||
10638 !nested_exit_intr_ack_set(vcpu) ||
10639 vmcs12->posted_intr_nv & 0xff00))
10640 return -EINVAL;
10641
f2b93280
WV
10642 /* tpr shadow is needed by all apicv features. */
10643 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
10644 return -EINVAL;
10645
10646 return 0;
3af18d9c
WV
10647}
10648
e9ac033e
EK
10649static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
10650 unsigned long count_field,
92d71bc6 10651 unsigned long addr_field)
ff651cb6 10652{
92d71bc6 10653 int maxphyaddr;
e9ac033e
EK
10654 u64 count, addr;
10655
10656 if (vmcs12_read_any(vcpu, count_field, &count) ||
10657 vmcs12_read_any(vcpu, addr_field, &addr)) {
10658 WARN_ON(1);
10659 return -EINVAL;
10660 }
10661 if (count == 0)
10662 return 0;
92d71bc6 10663 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
10664 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
10665 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
bbe41b95 10666 pr_debug_ratelimited(
e9ac033e
EK
10667 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
10668 addr_field, maxphyaddr, count, addr);
10669 return -EINVAL;
10670 }
10671 return 0;
10672}
10673
10674static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
10675 struct vmcs12 *vmcs12)
10676{
e9ac033e
EK
10677 if (vmcs12->vm_exit_msr_load_count == 0 &&
10678 vmcs12->vm_exit_msr_store_count == 0 &&
10679 vmcs12->vm_entry_msr_load_count == 0)
10680 return 0; /* Fast path */
e9ac033e 10681 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 10682 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 10683 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 10684 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 10685 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 10686 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
10687 return -EINVAL;
10688 return 0;
10689}
10690
c5f983f6
BD
10691static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
10692 struct vmcs12 *vmcs12)
10693{
10694 u64 address = vmcs12->pml_address;
10695 int maxphyaddr = cpuid_maxphyaddr(vcpu);
10696
10697 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_PML)) {
10698 if (!nested_cpu_has_ept(vmcs12) ||
10699 !IS_ALIGNED(address, 4096) ||
10700 address >> maxphyaddr)
10701 return -EINVAL;
10702 }
10703
10704 return 0;
10705}
10706
e9ac033e
EK
10707static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
10708 struct vmx_msr_entry *e)
10709{
10710 /* x2APIC MSR accesses are not allowed */
8a9781f7 10711 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
10712 return -EINVAL;
10713 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
10714 e->index == MSR_IA32_UCODE_REV)
10715 return -EINVAL;
10716 if (e->reserved != 0)
ff651cb6
WV
10717 return -EINVAL;
10718 return 0;
10719}
10720
e9ac033e
EK
10721static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
10722 struct vmx_msr_entry *e)
ff651cb6
WV
10723{
10724 if (e->index == MSR_FS_BASE ||
10725 e->index == MSR_GS_BASE ||
e9ac033e
EK
10726 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
10727 nested_vmx_msr_check_common(vcpu, e))
10728 return -EINVAL;
10729 return 0;
10730}
10731
10732static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
10733 struct vmx_msr_entry *e)
10734{
10735 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
10736 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
10737 return -EINVAL;
10738 return 0;
10739}
10740
10741/*
10742 * Load guest's/host's msr at nested entry/exit.
10743 * return 0 for success, entry index for failure.
10744 */
10745static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10746{
10747 u32 i;
10748 struct vmx_msr_entry e;
10749 struct msr_data msr;
10750
10751 msr.host_initiated = false;
10752 for (i = 0; i < count; i++) {
54bf36aa
PB
10753 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
10754 &e, sizeof(e))) {
bbe41b95 10755 pr_debug_ratelimited(
e9ac033e
EK
10756 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10757 __func__, i, gpa + i * sizeof(e));
ff651cb6 10758 goto fail;
e9ac033e
EK
10759 }
10760 if (nested_vmx_load_msr_check(vcpu, &e)) {
bbe41b95 10761 pr_debug_ratelimited(
e9ac033e
EK
10762 "%s check failed (%u, 0x%x, 0x%x)\n",
10763 __func__, i, e.index, e.reserved);
10764 goto fail;
10765 }
ff651cb6
WV
10766 msr.index = e.index;
10767 msr.data = e.value;
e9ac033e 10768 if (kvm_set_msr(vcpu, &msr)) {
bbe41b95 10769 pr_debug_ratelimited(
e9ac033e
EK
10770 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
10771 __func__, i, e.index, e.value);
ff651cb6 10772 goto fail;
e9ac033e 10773 }
ff651cb6
WV
10774 }
10775 return 0;
10776fail:
10777 return i + 1;
10778}
10779
10780static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
10781{
10782 u32 i;
10783 struct vmx_msr_entry e;
10784
10785 for (i = 0; i < count; i++) {
609e36d3 10786 struct msr_data msr_info;
54bf36aa
PB
10787 if (kvm_vcpu_read_guest(vcpu,
10788 gpa + i * sizeof(e),
10789 &e, 2 * sizeof(u32))) {
bbe41b95 10790 pr_debug_ratelimited(
e9ac033e
EK
10791 "%s cannot read MSR entry (%u, 0x%08llx)\n",
10792 __func__, i, gpa + i * sizeof(e));
ff651cb6 10793 return -EINVAL;
e9ac033e
EK
10794 }
10795 if (nested_vmx_store_msr_check(vcpu, &e)) {
bbe41b95 10796 pr_debug_ratelimited(
e9ac033e
EK
10797 "%s check failed (%u, 0x%x, 0x%x)\n",
10798 __func__, i, e.index, e.reserved);
ff651cb6 10799 return -EINVAL;
e9ac033e 10800 }
609e36d3
PB
10801 msr_info.host_initiated = false;
10802 msr_info.index = e.index;
10803 if (kvm_get_msr(vcpu, &msr_info)) {
bbe41b95 10804 pr_debug_ratelimited(
e9ac033e
EK
10805 "%s cannot read MSR (%u, 0x%x)\n",
10806 __func__, i, e.index);
10807 return -EINVAL;
10808 }
54bf36aa
PB
10809 if (kvm_vcpu_write_guest(vcpu,
10810 gpa + i * sizeof(e) +
10811 offsetof(struct vmx_msr_entry, value),
10812 &msr_info.data, sizeof(msr_info.data))) {
bbe41b95 10813 pr_debug_ratelimited(
e9ac033e 10814 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 10815 __func__, i, e.index, msr_info.data);
e9ac033e
EK
10816 return -EINVAL;
10817 }
ff651cb6
WV
10818 }
10819 return 0;
10820}
10821
1dc35dac
LP
10822static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
10823{
10824 unsigned long invalid_mask;
10825
10826 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
10827 return (val & invalid_mask) == 0;
10828}
10829
9ed38ffa
LP
10830/*
10831 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
10832 * emulating VM entry into a guest with EPT enabled.
10833 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10834 * is assigned to entry_failure_code on failure.
10835 */
10836static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
ca0bde28 10837 u32 *entry_failure_code)
9ed38ffa 10838{
9ed38ffa 10839 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
1dc35dac 10840 if (!nested_cr3_valid(vcpu, cr3)) {
9ed38ffa
LP
10841 *entry_failure_code = ENTRY_FAIL_DEFAULT;
10842 return 1;
10843 }
10844
10845 /*
10846 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
10847 * must not be dereferenced.
10848 */
10849 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
10850 !nested_ept) {
10851 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
10852 *entry_failure_code = ENTRY_FAIL_PDPTE;
10853 return 1;
10854 }
10855 }
10856
10857 vcpu->arch.cr3 = cr3;
10858 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
10859 }
10860
10861 kvm_mmu_reset_context(vcpu);
10862 return 0;
10863}
10864
74a497fa
PB
10865static void prepare_vmcs02_full(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10866 bool from_vmentry)
fe3ef05c
NHE
10867{
10868 struct vcpu_vmx *vmx = to_vmx(vcpu);
fe3ef05c
NHE
10869
10870 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
fe3ef05c
NHE
10871 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
10872 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
10873 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
10874 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
10875 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
10876 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
10877 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
fe3ef05c
NHE
10878 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
10879 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
10880 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
10881 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
10882 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
10883 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
10884 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
10885 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
10886 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
fe3ef05c
NHE
10887 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
10888 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
10889 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
10890 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
10891 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
10892 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
fe3ef05c
NHE
10893 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
10894 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
10895 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
10896 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
10897 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
10898 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
10899 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
10900 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
10901
25a2e4fe
PB
10902 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
10903 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
10904 vmcs12->guest_pending_dbg_exceptions);
10905 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
10906 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
10907
10908 if (nested_cpu_has_xsaves(vmcs12))
10909 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
10910 vmcs_write64(VMCS_LINK_POINTER, -1ull);
10911
10912 if (cpu_has_vmx_posted_intr())
10913 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
10914
10915 /*
10916 * Whether page-faults are trapped is determined by a combination of
10917 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
10918 * If enable_ept, L0 doesn't care about page faults and we should
10919 * set all of these to L1's desires. However, if !enable_ept, L0 does
10920 * care about (at least some) page faults, and because it is not easy
10921 * (if at all possible?) to merge L0 and L1's desires, we simply ask
10922 * to exit on each and every L2 page fault. This is done by setting
10923 * MASK=MATCH=0 and (see below) EB.PF=1.
10924 * Note that below we don't need special code to set EB.PF beyond the
10925 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
10926 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
10927 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
10928 */
10929 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
10930 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
10931 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
10932 enable_ept ? vmcs12->page_fault_error_code_match : 0);
10933
10934 /* All VMFUNCs are currently emulated through L0 vmexits. */
10935 if (cpu_has_vmx_vmfunc())
10936 vmcs_write64(VM_FUNCTION_CONTROL, 0);
10937
10938 if (cpu_has_vmx_apicv()) {
10939 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
10940 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
10941 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
10942 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
10943 }
10944
10945 /*
10946 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
10947 * Some constant fields are set here by vmx_set_constant_host_state().
10948 * Other fields are different per CPU, and will be set later when
10949 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
10950 */
10951 vmx_set_constant_host_state(vmx);
10952
10953 /*
10954 * Set the MSR load/store lists to match L0's settings.
10955 */
10956 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
10957 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10958 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
10959 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
10960 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
10961
10962 set_cr4_guest_host_mask(vmx);
10963
10964 if (vmx_mpx_supported())
10965 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
10966
10967 if (enable_vpid) {
10968 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
10969 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
10970 else
10971 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
10972 }
10973
10974 /*
10975 * L1 may access the L2's PDPTR, so save them to construct vmcs12
10976 */
10977 if (enable_ept) {
10978 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
10979 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
10980 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
10981 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
10982 }
80132f4c
RK
10983
10984 if (cpu_has_vmx_msr_bitmap())
10985 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
8665c3f9
PB
10986}
10987
10988/*
10989 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
10990 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
10991 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
10992 * guest in a way that will both be appropriate to L1's requests, and our
10993 * needs. In addition to modifying the active vmcs (which is vmcs02), this
10994 * function also has additional necessary side-effects, like setting various
10995 * vcpu->arch fields.
10996 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
10997 * is assigned to entry_failure_code on failure.
10998 */
10999static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11000 bool from_vmentry, u32 *entry_failure_code)
11001{
11002 struct vcpu_vmx *vmx = to_vmx(vcpu);
11003 u32 exec_control, vmcs12_exec_ctrl;
11004
9d1887ef
SC
11005 if (vmx->nested.dirty_vmcs12) {
11006 prepare_vmcs02_full(vcpu, vmcs12, from_vmentry);
11007 vmx->nested.dirty_vmcs12 = false;
11008 }
11009
8665c3f9
PB
11010 /*
11011 * First, the fields that are shadowed. This must be kept in sync
11012 * with vmx_shadow_fields.h.
11013 */
11014
11015 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
11016 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
11017 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
11018 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
11019 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
11020
11021 /*
11022 * Not in vmcs02: GUEST_PML_INDEX, HOST_FS_SELECTOR, HOST_GS_SELECTOR,
11023 * HOST_FS_BASE, HOST_GS_BASE.
11024 */
fe3ef05c 11025
cf8b84f4
JM
11026 if (from_vmentry &&
11027 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2996fca0
JK
11028 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
11029 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
11030 } else {
11031 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
11032 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
11033 }
cf8b84f4
JM
11034 if (from_vmentry) {
11035 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
11036 vmcs12->vm_entry_intr_info_field);
11037 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
11038 vmcs12->vm_entry_exception_error_code);
11039 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
11040 vmcs12->vm_entry_instruction_len);
11041 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
11042 vmcs12->guest_interruptibility_info);
2d6144e3
WL
11043 vmx->loaded_vmcs->nmi_known_unmasked =
11044 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
cf8b84f4
JM
11045 } else {
11046 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
11047 }
63fbf59f 11048 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c 11049
f4124500 11050 exec_control = vmcs12->pin_based_vm_exec_control;
9314006d
PB
11051
11052 /* Preemption timer setting is only taken from vmcs01. */
705699a1 11053 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9314006d
PB
11054 exec_control |= vmcs_config.pin_based_exec_ctrl;
11055 if (vmx->hv_deadline_tsc == -1)
11056 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
705699a1 11057
9314006d 11058 /* Posted interrupts setting is only taken from vmcs12. */
705699a1 11059 if (nested_cpu_has_posted_intr(vmcs12)) {
705699a1
WV
11060 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
11061 vmx->nested.pi_pending = false;
6beb7bd5 11062 } else {
705699a1 11063 exec_control &= ~PIN_BASED_POSTED_INTR;
6beb7bd5 11064 }
705699a1 11065
f4124500 11066 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 11067
f4124500
JK
11068 vmx->nested.preemption_timer_expired = false;
11069 if (nested_cpu_has_preemption_timer(vmcs12))
11070 vmx_start_preemption_timer(vcpu);
0238ea91 11071
fe3ef05c 11072 if (cpu_has_secondary_exec_ctrls()) {
80154d77 11073 exec_control = vmx->secondary_exec_control;
e2821620 11074
fe3ef05c 11075 /* Take the following fields only from vmcs12 */
696dfd95 11076 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
90a2db6d 11077 SECONDARY_EXEC_ENABLE_INVPCID |
b3a2a907 11078 SECONDARY_EXEC_RDTSCP |
3db13480 11079 SECONDARY_EXEC_XSAVES |
696dfd95 11080 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
27c42a1b
BD
11081 SECONDARY_EXEC_APIC_REGISTER_VIRT |
11082 SECONDARY_EXEC_ENABLE_VMFUNC);
fe3ef05c 11083 if (nested_cpu_has(vmcs12,
03efce6f
BD
11084 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
11085 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
11086 ~SECONDARY_EXEC_ENABLE_PML;
11087 exec_control |= vmcs12_exec_ctrl;
11088 }
fe3ef05c 11089
25a2e4fe 11090 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
608406e2
WV
11091 vmcs_write16(GUEST_INTR_STATUS,
11092 vmcs12->guest_intr_status);
608406e2 11093
6beb7bd5
JM
11094 /*
11095 * Write an illegal value to APIC_ACCESS_ADDR. Later,
11096 * nested_get_vmcs12_pages will either fix it up or
11097 * remove the VM execution control.
11098 */
11099 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
11100 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
11101
fe3ef05c
NHE
11102 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
11103 }
11104
fe3ef05c
NHE
11105 /*
11106 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
11107 * entry, but only if the current (host) sp changed from the value
11108 * we wrote last (vmx->host_rsp). This cache is no longer relevant
11109 * if we switch vmcs, and rather than hold a separate cache per vmcs,
11110 * here we just force the write to happen on entry.
11111 */
11112 vmx->host_rsp = 0;
11113
11114 exec_control = vmx_exec_control(vmx); /* L0's desires */
11115 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
11116 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
11117 exec_control &= ~CPU_BASED_TPR_SHADOW;
11118 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d 11119
6beb7bd5
JM
11120 /*
11121 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
11122 * nested_get_vmcs12_pages can't fix it up, the illegal value
11123 * will result in a VM entry failure.
11124 */
a7c0b07d 11125 if (exec_control & CPU_BASED_TPR_SHADOW) {
6beb7bd5 11126 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
a7c0b07d 11127 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
51aa68e7
JM
11128 } else {
11129#ifdef CONFIG_X86_64
11130 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
11131 CPU_BASED_CR8_STORE_EXITING;
11132#endif
a7c0b07d
WL
11133 }
11134
fe3ef05c 11135 /*
8eb73e2d
QX
11136 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
11137 * for I/O port accesses.
fe3ef05c 11138 */
fe3ef05c
NHE
11139 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
11140 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
11141
11142 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
11143
11144 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
11145 * bitwise-or of what L1 wants to trap for L2, and what we want to
11146 * trap. Note that CR0.TS also needs updating - we do this later.
11147 */
11148 update_exception_bitmap(vcpu);
11149 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
11150 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
11151
8049d651
NHE
11152 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
11153 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
11154 * bits are further modified by vmx_set_efer() below.
11155 */
f4124500 11156 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
11157
11158 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
11159 * emulated by vmx_set_efer(), below.
11160 */
2961e876 11161 vm_entry_controls_init(vmx,
8049d651
NHE
11162 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
11163 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
11164 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
11165
cf8b84f4
JM
11166 if (from_vmentry &&
11167 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
fe3ef05c 11168 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02 11169 vcpu->arch.pat = vmcs12->guest_ia32_pat;
cf8b84f4 11170 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 11171 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
cf8b84f4 11172 }
fe3ef05c 11173
e79f245d
KA
11174 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
11175
c95ba92a
PF
11176 if (kvm_has_tsc_control)
11177 decache_tsc_multiplier(vmx);
fe3ef05c
NHE
11178
11179 if (enable_vpid) {
11180 /*
5c614b35
WL
11181 * There is no direct mapping between vpid02 and vpid12, the
11182 * vpid02 is per-vCPU for L0 and reused while the value of
11183 * vpid12 is changed w/ one invvpid during nested vmentry.
11184 * The vpid12 is allocated by L1 for L2, so it will not
11185 * influence global bitmap(for vpid01 and vpid02 allocation)
11186 * even if spawn a lot of nested vCPUs.
fe3ef05c 11187 */
5c614b35 11188 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
5c614b35
WL
11189 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
11190 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
c2ba05cc 11191 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02, true);
5c614b35
WL
11192 }
11193 } else {
c2ba05cc 11194 vmx_flush_tlb(vcpu, true);
5c614b35 11195 }
fe3ef05c
NHE
11196 }
11197
1fb883bb
LP
11198 if (enable_pml) {
11199 /*
11200 * Conceptually we want to copy the PML address and index from
11201 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
11202 * since we always flush the log on each vmexit, this happens
11203 * to be equivalent to simply resetting the fields in vmcs02.
11204 */
11205 ASSERT(vmx->pml_pg);
11206 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
11207 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
11208 }
11209
155a97a3 11210 if (nested_cpu_has_ept(vmcs12)) {
ae1e2d10
PB
11211 if (nested_ept_init_mmu_context(vcpu)) {
11212 *entry_failure_code = ENTRY_FAIL_DEFAULT;
11213 return 1;
11214 }
fb6c8198
JM
11215 } else if (nested_cpu_has2(vmcs12,
11216 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a468f2db 11217 vmx_flush_tlb(vcpu, true);
155a97a3
NHE
11218 }
11219
fe3ef05c 11220 /*
bd7e5b08
PB
11221 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
11222 * bits which we consider mandatory enabled.
fe3ef05c
NHE
11223 * The CR0_READ_SHADOW is what L2 should have expected to read given
11224 * the specifications by L1; It's not enough to take
11225 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
11226 * have more bits than L1 expected.
11227 */
11228 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
11229 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
11230
11231 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
11232 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
11233
cf8b84f4
JM
11234 if (from_vmentry &&
11235 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
5a6a9748
DM
11236 vcpu->arch.efer = vmcs12->guest_ia32_efer;
11237 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
11238 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11239 else
11240 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11241 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
11242 vmx_set_efer(vcpu, vcpu->arch.efer);
11243
2bb8cafe
SC
11244 /*
11245 * Guest state is invalid and unrestricted guest is disabled,
11246 * which means L1 attempted VMEntry to L2 with invalid state.
11247 * Fail the VMEntry.
11248 */
3184a995
PB
11249 if (vmx->emulation_required) {
11250 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2bb8cafe 11251 return 1;
3184a995 11252 }
2bb8cafe 11253
9ed38ffa 11254 /* Shadow page tables on either EPT or shadow page tables. */
7ad658b6 11255 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
9ed38ffa
LP
11256 entry_failure_code))
11257 return 1;
7ca29de2 11258
feaf0c7d
GN
11259 if (!enable_ept)
11260 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
11261
fe3ef05c
NHE
11262 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
11263 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
ee146c1c 11264 return 0;
fe3ef05c
NHE
11265}
11266
0c7f650e
KS
11267static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
11268{
11269 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
11270 nested_cpu_has_virtual_nmis(vmcs12))
11271 return -EINVAL;
11272
11273 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
11274 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
11275 return -EINVAL;
11276
11277 return 0;
11278}
11279
ca0bde28 11280static int check_vmentry_prereqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
cd232ad0 11281{
cd232ad0 11282 struct vcpu_vmx *vmx = to_vmx(vcpu);
7c177938 11283
6dfacadd 11284 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
ca0bde28
JM
11285 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
11286 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
26539bd0 11287
56a20510
JM
11288 if (nested_vmx_check_io_bitmap_controls(vcpu, vmcs12))
11289 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11290
ca0bde28
JM
11291 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12))
11292 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11293
f0f4cf5b
KS
11294 if (nested_vmx_check_apic_access_controls(vcpu, vmcs12))
11295 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11296
712b12d7
JM
11297 if (nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12))
11298 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11299
ca0bde28
JM
11300 if (nested_vmx_check_apicv_controls(vcpu, vmcs12))
11301 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
f2b93280 11302
ca0bde28
JM
11303 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12))
11304 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
e9ac033e 11305
c5f983f6
BD
11306 if (nested_vmx_check_pml_controls(vcpu, vmcs12))
11307 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11308
7c177938 11309 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
6677f3da
PB
11310 vmx->nested.msrs.procbased_ctls_low,
11311 vmx->nested.msrs.procbased_ctls_high) ||
2e5b0bd9
JM
11312 (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
11313 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
6677f3da
PB
11314 vmx->nested.msrs.secondary_ctls_low,
11315 vmx->nested.msrs.secondary_ctls_high)) ||
7c177938 11316 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
6677f3da
PB
11317 vmx->nested.msrs.pinbased_ctls_low,
11318 vmx->nested.msrs.pinbased_ctls_high) ||
7c177938 11319 !vmx_control_verify(vmcs12->vm_exit_controls,
6677f3da
PB
11320 vmx->nested.msrs.exit_ctls_low,
11321 vmx->nested.msrs.exit_ctls_high) ||
7c177938 11322 !vmx_control_verify(vmcs12->vm_entry_controls,
6677f3da
PB
11323 vmx->nested.msrs.entry_ctls_low,
11324 vmx->nested.msrs.entry_ctls_high))
ca0bde28 11325 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11326
0c7f650e 11327 if (nested_vmx_check_nmi_controls(vmcs12))
ca0bde28 11328 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
7c177938 11329
41ab9372
BD
11330 if (nested_cpu_has_vmfunc(vmcs12)) {
11331 if (vmcs12->vm_function_control &
6677f3da 11332 ~vmx->nested.msrs.vmfunc_controls)
41ab9372
BD
11333 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11334
11335 if (nested_cpu_has_eptp_switching(vmcs12)) {
11336 if (!nested_cpu_has_ept(vmcs12) ||
11337 !page_address_valid(vcpu, vmcs12->eptp_list_address))
11338 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11339 }
11340 }
27c42a1b 11341
c7c2c709
JM
11342 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu))
11343 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
11344
3899152c 11345 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
1dc35dac 11346 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
ca0bde28
JM
11347 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
11348 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
11349
11350 return 0;
11351}
11352
11353static int check_vmentry_postreqs(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11354 u32 *exit_qual)
11355{
11356 bool ia32e;
11357
11358 *exit_qual = ENTRY_FAIL_DEFAULT;
7c177938 11359
3899152c 11360 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
ca0bde28 11361 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
b428018a 11362 return 1;
ca0bde28
JM
11363
11364 if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_SHADOW_VMCS) &&
11365 vmcs12->vmcs_link_pointer != -1ull) {
11366 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
b428018a 11367 return 1;
7c177938
NHE
11368 }
11369
384bb783 11370 /*
cb0c8cda 11371 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
11372 * are performed on the field for the IA32_EFER MSR:
11373 * - Bits reserved in the IA32_EFER MSR must be 0.
11374 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
11375 * the IA-32e mode guest VM-exit control. It must also be identical
11376 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
11377 * CR0.PG) is 1.
11378 */
ca0bde28
JM
11379 if (to_vmx(vcpu)->nested.nested_run_pending &&
11380 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
384bb783
JK
11381 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
11382 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
11383 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
11384 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
ca0bde28 11385 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
b428018a 11386 return 1;
384bb783
JK
11387 }
11388
11389 /*
11390 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
11391 * IA32_EFER MSR must be 0 in the field for that register. In addition,
11392 * the values of the LMA and LME bits in the field must each be that of
11393 * the host address-space size VM-exit control.
11394 */
11395 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
11396 ia32e = (vmcs12->vm_exit_controls &
11397 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
11398 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
11399 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
ca0bde28 11400 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
b428018a 11401 return 1;
ca0bde28
JM
11402 }
11403
f1b026a3
WL
11404 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
11405 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
11406 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
11407 return 1;
11408
ca0bde28
JM
11409 return 0;
11410}
11411
858e25c0
JM
11412static int enter_vmx_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
11413{
11414 struct vcpu_vmx *vmx = to_vmx(vcpu);
11415 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
858e25c0
JM
11416 u32 msr_entry_idx;
11417 u32 exit_qual;
e79f245d 11418 int r;
858e25c0 11419
858e25c0
JM
11420 enter_guest_mode(vcpu);
11421
11422 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
11423 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11424
de3a0021 11425 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
858e25c0
JM
11426 vmx_segment_cache_clear(vmx);
11427
e79f245d
KA
11428 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11429 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
11430
11431 r = EXIT_REASON_INVALID_STATE;
11432 if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &exit_qual))
11433 goto fail;
858e25c0
JM
11434
11435 nested_get_vmcs12_pages(vcpu, vmcs12);
11436
e79f245d 11437 r = EXIT_REASON_MSR_LOAD_FAIL;
858e25c0
JM
11438 msr_entry_idx = nested_vmx_load_msr(vcpu,
11439 vmcs12->vm_entry_msr_load_addr,
11440 vmcs12->vm_entry_msr_load_count);
e79f245d
KA
11441 if (msr_entry_idx)
11442 goto fail;
858e25c0 11443
858e25c0
JM
11444 /*
11445 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
11446 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
11447 * returned as far as L1 is concerned. It will only return (and set
11448 * the success flag) when L2 exits (see nested_vmx_vmexit()).
11449 */
11450 return 0;
e79f245d
KA
11451
11452fail:
11453 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
11454 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
11455 leave_guest_mode(vcpu);
11456 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
11457 nested_vmx_entry_failure(vcpu, vmcs12, r, exit_qual);
11458 return 1;
858e25c0
JM
11459}
11460
ca0bde28
JM
11461/*
11462 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
11463 * for running an L2 nested guest.
11464 */
11465static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
11466{
11467 struct vmcs12 *vmcs12;
11468 struct vcpu_vmx *vmx = to_vmx(vcpu);
b3f1dfb6 11469 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
ca0bde28
JM
11470 u32 exit_qual;
11471 int ret;
11472
11473 if (!nested_vmx_check_permission(vcpu))
11474 return 1;
11475
11476 if (!nested_vmx_check_vmcs12(vcpu))
11477 goto out;
11478
11479 vmcs12 = get_vmcs12(vcpu);
11480
11481 if (enable_shadow_vmcs)
11482 copy_shadow_to_vmcs12(vmx);
11483
11484 /*
11485 * The nested entry process starts with enforcing various prerequisites
11486 * on vmcs12 as required by the Intel SDM, and act appropriately when
11487 * they fail: As the SDM explains, some conditions should cause the
11488 * instruction to fail, while others will cause the instruction to seem
11489 * to succeed, but return an EXIT_REASON_INVALID_STATE.
11490 * To speed up the normal (success) code path, we should avoid checking
11491 * for misconfigurations which will anyway be caught by the processor
11492 * when using the merged vmcs02.
11493 */
b3f1dfb6
JM
11494 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS) {
11495 nested_vmx_failValid(vcpu,
11496 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
11497 goto out;
11498 }
11499
ca0bde28
JM
11500 if (vmcs12->launch_state == launch) {
11501 nested_vmx_failValid(vcpu,
11502 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
11503 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
11504 goto out;
11505 }
11506
11507 ret = check_vmentry_prereqs(vcpu, vmcs12);
11508 if (ret) {
11509 nested_vmx_failValid(vcpu, ret);
11510 goto out;
11511 }
11512
11513 /*
11514 * After this point, the trap flag no longer triggers a singlestep trap
11515 * on the vm entry instructions; don't call kvm_skip_emulated_instruction.
11516 * This is not 100% correct; for performance reasons, we delegate most
11517 * of the checks on host state to the processor. If those fail,
11518 * the singlestep trap is missed.
11519 */
11520 skip_emulated_instruction(vcpu);
11521
11522 ret = check_vmentry_postreqs(vcpu, vmcs12, &exit_qual);
11523 if (ret) {
11524 nested_vmx_entry_failure(vcpu, vmcs12,
11525 EXIT_REASON_INVALID_STATE, exit_qual);
11526 return 1;
384bb783
JK
11527 }
11528
7c177938
NHE
11529 /*
11530 * We're finally done with prerequisite checking, and can start with
11531 * the nested entry.
11532 */
11533
858e25c0
JM
11534 ret = enter_vmx_non_root_mode(vcpu, true);
11535 if (ret)
11536 return ret;
ff651cb6 11537
135a06c3
CG
11538 /*
11539 * If we're entering a halted L2 vcpu and the L2 vcpu won't be woken
11540 * by event injection, halt vcpu.
11541 */
11542 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
11543 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK))
5cb56059 11544 return kvm_vcpu_halt(vcpu);
6dfacadd 11545
7af40ad3
JK
11546 vmx->nested.nested_run_pending = 1;
11547
cd232ad0 11548 return 1;
eb277562
KH
11549
11550out:
6affcbed 11551 return kvm_skip_emulated_instruction(vcpu);
cd232ad0
NHE
11552}
11553
4704d0be
NHE
11554/*
11555 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
11556 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
11557 * This function returns the new value we should put in vmcs12.guest_cr0.
11558 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
11559 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
11560 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
11561 * didn't trap the bit, because if L1 did, so would L0).
11562 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
11563 * been modified by L2, and L1 knows it. So just leave the old value of
11564 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
11565 * isn't relevant, because if L0 traps this bit it can set it to anything.
11566 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
11567 * changed these bits, and therefore they need to be updated, but L0
11568 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
11569 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
11570 */
11571static inline unsigned long
11572vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11573{
11574 return
11575 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
11576 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
11577 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
11578 vcpu->arch.cr0_guest_owned_bits));
11579}
11580
11581static inline unsigned long
11582vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
11583{
11584 return
11585 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
11586 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
11587 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
11588 vcpu->arch.cr4_guest_owned_bits));
11589}
11590
5f3d5799
JK
11591static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
11592 struct vmcs12 *vmcs12)
11593{
11594 u32 idt_vectoring;
11595 unsigned int nr;
11596
664f8e26 11597 if (vcpu->arch.exception.injected) {
5f3d5799
JK
11598 nr = vcpu->arch.exception.nr;
11599 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11600
11601 if (kvm_exception_is_soft(nr)) {
11602 vmcs12->vm_exit_instruction_len =
11603 vcpu->arch.event_exit_inst_len;
11604 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
11605 } else
11606 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
11607
11608 if (vcpu->arch.exception.has_error_code) {
11609 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
11610 vmcs12->idt_vectoring_error_code =
11611 vcpu->arch.exception.error_code;
11612 }
11613
11614 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 11615 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
11616 vmcs12->idt_vectoring_info_field =
11617 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
04140b41 11618 } else if (vcpu->arch.interrupt.injected) {
5f3d5799
JK
11619 nr = vcpu->arch.interrupt.nr;
11620 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
11621
11622 if (vcpu->arch.interrupt.soft) {
11623 idt_vectoring |= INTR_TYPE_SOFT_INTR;
11624 vmcs12->vm_entry_instruction_len =
11625 vcpu->arch.event_exit_inst_len;
11626 } else
11627 idt_vectoring |= INTR_TYPE_EXT_INTR;
11628
11629 vmcs12->idt_vectoring_info_field = idt_vectoring;
11630 }
11631}
11632
b6b8a145
JK
11633static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
11634{
11635 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfcf83b1 11636 unsigned long exit_qual;
917dc606
LA
11637 bool block_nested_events =
11638 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
acc9ab60 11639
bfcf83b1
WL
11640 if (vcpu->arch.exception.pending &&
11641 nested_vmx_check_exception(vcpu, &exit_qual)) {
917dc606 11642 if (block_nested_events)
bfcf83b1
WL
11643 return -EBUSY;
11644 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
bfcf83b1
WL
11645 return 0;
11646 }
11647
f4124500
JK
11648 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
11649 vmx->nested.preemption_timer_expired) {
917dc606 11650 if (block_nested_events)
f4124500
JK
11651 return -EBUSY;
11652 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
11653 return 0;
11654 }
11655
b6b8a145 11656 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
917dc606 11657 if (block_nested_events)
b6b8a145
JK
11658 return -EBUSY;
11659 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
11660 NMI_VECTOR | INTR_TYPE_NMI_INTR |
11661 INTR_INFO_VALID_MASK, 0);
11662 /*
11663 * The NMI-triggered VM exit counts as injection:
11664 * clear this one and block further NMIs.
11665 */
11666 vcpu->arch.nmi_pending = 0;
11667 vmx_set_nmi_mask(vcpu, true);
11668 return 0;
11669 }
11670
11671 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
11672 nested_exit_on_intr(vcpu)) {
917dc606 11673 if (block_nested_events)
b6b8a145
JK
11674 return -EBUSY;
11675 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 11676 return 0;
b6b8a145
JK
11677 }
11678
6342c50a
DH
11679 vmx_complete_nested_posted_interrupt(vcpu);
11680 return 0;
b6b8a145
JK
11681}
11682
f4124500
JK
11683static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
11684{
11685 ktime_t remaining =
11686 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
11687 u64 value;
11688
11689 if (ktime_to_ns(remaining) <= 0)
11690 return 0;
11691
11692 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
11693 do_div(value, 1000000);
11694 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
11695}
11696
4704d0be 11697/*
cf8b84f4
JM
11698 * Update the guest state fields of vmcs12 to reflect changes that
11699 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
11700 * VM-entry controls is also updated, since this is really a guest
11701 * state bit.)
4704d0be 11702 */
cf8b84f4 11703static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4704d0be 11704{
4704d0be
NHE
11705 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
11706 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
11707
4704d0be
NHE
11708 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
11709 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
11710 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
11711
11712 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
11713 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
11714 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
11715 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
11716 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
11717 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
11718 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
11719 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
11720 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
11721 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
11722 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
11723 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
11724 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
11725 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
11726 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
11727 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
11728 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
11729 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
11730 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
11731 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
11732 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
11733 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
11734 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
11735 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
11736 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
11737 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
11738 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
11739 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
11740 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
11741 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
11742 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
11743 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
11744 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
11745 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
11746 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
11747 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
11748
4704d0be
NHE
11749 vmcs12->guest_interruptibility_info =
11750 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
11751 vmcs12->guest_pending_dbg_exceptions =
11752 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
11753 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
11754 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
11755 else
11756 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 11757
f4124500
JK
11758 if (nested_cpu_has_preemption_timer(vmcs12)) {
11759 if (vmcs12->vm_exit_controls &
11760 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
11761 vmcs12->vmx_preemption_timer_value =
11762 vmx_get_preemption_timer_value(vcpu);
11763 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
11764 }
7854cbca 11765
3633cfc3
NHE
11766 /*
11767 * In some cases (usually, nested EPT), L2 is allowed to change its
11768 * own CR3 without exiting. If it has changed it, we must keep it.
11769 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
11770 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
11771 *
11772 * Additionally, restore L2's PDPTR to vmcs12.
11773 */
11774 if (enable_ept) {
f3531054 11775 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
11776 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
11777 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
11778 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
11779 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
11780 }
11781
d281e13b 11782 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
119a9c01 11783
608406e2
WV
11784 if (nested_cpu_has_vid(vmcs12))
11785 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
11786
c18911a2
JK
11787 vmcs12->vm_entry_controls =
11788 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 11789 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 11790
2996fca0
JK
11791 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
11792 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
11793 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
11794 }
11795
4704d0be
NHE
11796 /* TODO: These cannot have changed unless we have MSR bitmaps and
11797 * the relevant bit asks not to trap the change */
b8c07d55 11798 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 11799 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
11800 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
11801 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
11802 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
11803 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
11804 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 11805 if (kvm_mpx_supported())
36be0b9d 11806 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
cf8b84f4
JM
11807}
11808
11809/*
11810 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
11811 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
11812 * and this function updates it to reflect the changes to the guest state while
11813 * L2 was running (and perhaps made some exits which were handled directly by L0
11814 * without going back to L1), and to reflect the exit reason.
11815 * Note that we do not have to copy here all VMCS fields, just those that
11816 * could have changed by the L2 guest or the exit - i.e., the guest-state and
11817 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
11818 * which already writes to vmcs12 directly.
11819 */
11820static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
11821 u32 exit_reason, u32 exit_intr_info,
11822 unsigned long exit_qualification)
11823{
11824 /* update guest state fields: */
11825 sync_vmcs12(vcpu, vmcs12);
4704d0be
NHE
11826
11827 /* update exit information fields: */
11828
533558bc
JK
11829 vmcs12->vm_exit_reason = exit_reason;
11830 vmcs12->exit_qualification = exit_qualification;
533558bc 11831 vmcs12->vm_exit_intr_info = exit_intr_info;
7313c698 11832
5f3d5799 11833 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
11834 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
11835 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
11836
5f3d5799 11837 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7cdc2d62
JM
11838 vmcs12->launch_state = 1;
11839
5f3d5799
JK
11840 /* vm_entry_intr_info_field is cleared on exit. Emulate this
11841 * instead of reading the real value. */
4704d0be 11842 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
11843
11844 /*
11845 * Transfer the event that L0 or L1 may wanted to inject into
11846 * L2 to IDT_VECTORING_INFO_FIELD.
11847 */
11848 vmcs12_save_pending_event(vcpu, vmcs12);
11849 }
11850
11851 /*
11852 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
11853 * preserved above and would only end up incorrectly in L1.
11854 */
11855 vcpu->arch.nmi_injected = false;
11856 kvm_clear_exception_queue(vcpu);
11857 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
11858}
11859
5af41573
WL
11860static void load_vmcs12_mmu_host_state(struct kvm_vcpu *vcpu,
11861 struct vmcs12 *vmcs12)
11862{
11863 u32 entry_failure_code;
11864
11865 nested_ept_uninit_mmu_context(vcpu);
11866
11867 /*
11868 * Only PDPTE load can fail as the value of cr3 was checked on entry and
11869 * couldn't have changed.
11870 */
11871 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
11872 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
11873
11874 if (!enable_ept)
11875 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
11876}
11877
4704d0be
NHE
11878/*
11879 * A part of what we need to when the nested L2 guest exits and we want to
11880 * run its L1 parent, is to reset L1's guest state to the host state specified
11881 * in vmcs12.
11882 * This function is to be called not only on normal nested exit, but also on
11883 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
11884 * Failures During or After Loading Guest State").
11885 * This function should be called when the active VMCS is L1's (vmcs01).
11886 */
733568f9
JK
11887static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
11888 struct vmcs12 *vmcs12)
4704d0be 11889{
21feb4eb
ACL
11890 struct kvm_segment seg;
11891
4704d0be
NHE
11892 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
11893 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 11894 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
11895 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
11896 else
11897 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
11898 vmx_set_efer(vcpu, vcpu->arch.efer);
11899
11900 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
11901 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 11902 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
11903 /*
11904 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
bd7e5b08
PB
11905 * actually changed, because vmx_set_cr0 refers to efer set above.
11906 *
11907 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
11908 * (KVM doesn't change it);
4704d0be 11909 */
bd7e5b08 11910 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
9e3e4dbf 11911 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be 11912
bd7e5b08 11913 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
4704d0be 11914 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
8eb3f87d 11915 vmx_set_cr4(vcpu, vmcs12->host_cr4);
4704d0be 11916
5af41573 11917 load_vmcs12_mmu_host_state(vcpu, vmcs12);
feaf0c7d 11918
4704d0be
NHE
11919 if (enable_vpid) {
11920 /*
11921 * Trivially support vpid by letting L2s share their parent
11922 * L1's vpid. TODO: move to a more elaborate solution, giving
11923 * each L2 its own vpid and exposing the vpid feature to L1.
11924 */
c2ba05cc 11925 vmx_flush_tlb(vcpu, true);
4704d0be 11926 }
4704d0be
NHE
11927
11928 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
11929 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
11930 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
11931 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
11932 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
21f2d551
LP
11933 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
11934 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4704d0be 11935
36be0b9d
PB
11936 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
11937 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
11938 vmcs_write64(GUEST_BNDCFGS, 0);
11939
44811c02 11940 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 11941 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
11942 vcpu->arch.pat = vmcs12->host_ia32_pat;
11943 }
4704d0be
NHE
11944 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
11945 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
11946 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 11947
21feb4eb
ACL
11948 /* Set L1 segment info according to Intel SDM
11949 27.5.2 Loading Host Segment and Descriptor-Table Registers */
11950 seg = (struct kvm_segment) {
11951 .base = 0,
11952 .limit = 0xFFFFFFFF,
11953 .selector = vmcs12->host_cs_selector,
11954 .type = 11,
11955 .present = 1,
11956 .s = 1,
11957 .g = 1
11958 };
11959 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
11960 seg.l = 1;
11961 else
11962 seg.db = 1;
11963 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
11964 seg = (struct kvm_segment) {
11965 .base = 0,
11966 .limit = 0xFFFFFFFF,
11967 .type = 3,
11968 .present = 1,
11969 .s = 1,
11970 .db = 1,
11971 .g = 1
11972 };
11973 seg.selector = vmcs12->host_ds_selector;
11974 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
11975 seg.selector = vmcs12->host_es_selector;
11976 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
11977 seg.selector = vmcs12->host_ss_selector;
11978 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
11979 seg.selector = vmcs12->host_fs_selector;
11980 seg.base = vmcs12->host_fs_base;
11981 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
11982 seg.selector = vmcs12->host_gs_selector;
11983 seg.base = vmcs12->host_gs_base;
11984 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
11985 seg = (struct kvm_segment) {
205befd9 11986 .base = vmcs12->host_tr_base,
21feb4eb
ACL
11987 .limit = 0x67,
11988 .selector = vmcs12->host_tr_selector,
11989 .type = 11,
11990 .present = 1
11991 };
11992 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
11993
503cd0c5
JK
11994 kvm_set_dr(vcpu, 7, 0x400);
11995 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 11996
3af18d9c 11997 if (cpu_has_vmx_msr_bitmap())
904e14fb 11998 vmx_update_msr_bitmap(vcpu);
3af18d9c 11999
ff651cb6
WV
12000 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
12001 vmcs12->vm_exit_msr_load_count))
12002 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
12003}
12004
12005/*
12006 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
12007 * and modify vmcs12 to make it see what it would expect to see there if
12008 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
12009 */
533558bc
JK
12010static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
12011 u32 exit_intr_info,
12012 unsigned long exit_qualification)
4704d0be
NHE
12013{
12014 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
12015 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12016
5f3d5799
JK
12017 /* trying to cancel vmlaunch/vmresume is a bug */
12018 WARN_ON_ONCE(vmx->nested.nested_run_pending);
12019
4f350c6d
JM
12020 /*
12021 * The only expected VM-instruction error is "VM entry with
12022 * invalid control field(s)." Anything else indicates a
12023 * problem with L0.
12024 */
12025 WARN_ON_ONCE(vmx->fail && (vmcs_read32(VM_INSTRUCTION_ERROR) !=
12026 VMXERR_ENTRY_INVALID_CONTROL_FIELD));
12027
4704d0be 12028 leave_guest_mode(vcpu);
4704d0be 12029
e79f245d
KA
12030 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
12031 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
12032
4f350c6d 12033 if (likely(!vmx->fail)) {
72e9cbdb
LP
12034 if (exit_reason == -1)
12035 sync_vmcs12(vcpu, vmcs12);
12036 else
12037 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
12038 exit_qualification);
ff651cb6 12039
4f350c6d
JM
12040 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
12041 vmcs12->vm_exit_msr_store_count))
12042 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
12043 }
cf3215d9 12044
1279a6b1 12045 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
8391ce44
PB
12046 vm_entry_controls_reset_shadow(vmx);
12047 vm_exit_controls_reset_shadow(vmx);
36c3cc42
JK
12048 vmx_segment_cache_clear(vmx);
12049
9314006d 12050 /* Update any VMCS fields that might have changed while L2 ran */
83bafef1
JM
12051 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
12052 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.nr);
ea26e4ec 12053 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
9314006d
PB
12054 if (vmx->hv_deadline_tsc == -1)
12055 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12056 PIN_BASED_VMX_PREEMPTION_TIMER);
12057 else
12058 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12059 PIN_BASED_VMX_PREEMPTION_TIMER);
c95ba92a
PF
12060 if (kvm_has_tsc_control)
12061 decache_tsc_multiplier(vmx);
4704d0be 12062
dccbfcf5
RK
12063 if (vmx->nested.change_vmcs01_virtual_x2apic_mode) {
12064 vmx->nested.change_vmcs01_virtual_x2apic_mode = false;
12065 vmx_set_virtual_x2apic_mode(vcpu,
12066 vcpu->arch.apic_base & X2APIC_ENABLE);
fb6c8198
JM
12067 } else if (!nested_cpu_has_ept(vmcs12) &&
12068 nested_cpu_has2(vmcs12,
12069 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
a468f2db 12070 vmx_flush_tlb(vcpu, true);
dccbfcf5 12071 }
4704d0be
NHE
12072
12073 /* This is needed for same reason as it was needed in prepare_vmcs02 */
12074 vmx->host_rsp = 0;
12075
12076 /* Unpin physical memory we referred to in vmcs02 */
12077 if (vmx->nested.apic_access_page) {
53a70daf 12078 kvm_release_page_dirty(vmx->nested.apic_access_page);
48d89b92 12079 vmx->nested.apic_access_page = NULL;
4704d0be 12080 }
a7c0b07d 12081 if (vmx->nested.virtual_apic_page) {
53a70daf 12082 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
48d89b92 12083 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 12084 }
705699a1
WV
12085 if (vmx->nested.pi_desc_page) {
12086 kunmap(vmx->nested.pi_desc_page);
53a70daf 12087 kvm_release_page_dirty(vmx->nested.pi_desc_page);
705699a1
WV
12088 vmx->nested.pi_desc_page = NULL;
12089 vmx->nested.pi_desc = NULL;
12090 }
4704d0be 12091
38b99173
TC
12092 /*
12093 * We are now running in L2, mmu_notifier will force to reload the
12094 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
12095 */
c83b6d15 12096 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
38b99173 12097
72e9cbdb 12098 if (enable_shadow_vmcs && exit_reason != -1)
012f83cb 12099 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
12100
12101 /* in case we halted in L2 */
12102 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4f350c6d
JM
12103
12104 if (likely(!vmx->fail)) {
12105 /*
12106 * TODO: SDM says that with acknowledge interrupt on
12107 * exit, bit 31 of the VM-exit interrupt information
12108 * (valid interrupt) is always set to 1 on
12109 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
12110 * need kvm_cpu_has_interrupt(). See the commit
12111 * message for details.
12112 */
12113 if (nested_exit_intr_ack_set(vcpu) &&
12114 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
12115 kvm_cpu_has_interrupt(vcpu)) {
12116 int irq = kvm_cpu_get_interrupt(vcpu);
12117 WARN_ON(irq < 0);
12118 vmcs12->vm_exit_intr_info = irq |
12119 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
12120 }
12121
72e9cbdb
LP
12122 if (exit_reason != -1)
12123 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
12124 vmcs12->exit_qualification,
12125 vmcs12->idt_vectoring_info_field,
12126 vmcs12->vm_exit_intr_info,
12127 vmcs12->vm_exit_intr_error_code,
12128 KVM_ISA_VMX);
4f350c6d
JM
12129
12130 load_vmcs12_host_state(vcpu, vmcs12);
12131
12132 return;
12133 }
12134
12135 /*
12136 * After an early L2 VM-entry failure, we're now back
12137 * in L1 which thinks it just finished a VMLAUNCH or
12138 * VMRESUME instruction, so we need to set the failure
12139 * flag and the VM-instruction error field of the VMCS
12140 * accordingly.
12141 */
12142 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5af41573
WL
12143
12144 load_vmcs12_mmu_host_state(vcpu, vmcs12);
12145
4f350c6d
JM
12146 /*
12147 * The emulated instruction was already skipped in
12148 * nested_vmx_run, but the updated RIP was never
12149 * written back to the vmcs01.
12150 */
12151 skip_emulated_instruction(vcpu);
12152 vmx->fail = 0;
4704d0be
NHE
12153}
12154
42124925
JK
12155/*
12156 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
12157 */
12158static void vmx_leave_nested(struct kvm_vcpu *vcpu)
12159{
2f707d97
WL
12160 if (is_guest_mode(vcpu)) {
12161 to_vmx(vcpu)->nested.nested_run_pending = 0;
533558bc 12162 nested_vmx_vmexit(vcpu, -1, 0, 0);
2f707d97 12163 }
42124925
JK
12164 free_nested(to_vmx(vcpu));
12165}
12166
7c177938
NHE
12167/*
12168 * L1's failure to enter L2 is a subset of a normal exit, as explained in
12169 * 23.7 "VM-entry failures during or after loading guest state" (this also
12170 * lists the acceptable exit-reason and exit-qualification parameters).
12171 * It should only be called before L2 actually succeeded to run, and when
12172 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
12173 */
12174static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
12175 struct vmcs12 *vmcs12,
12176 u32 reason, unsigned long qualification)
12177{
12178 load_vmcs12_host_state(vcpu, vmcs12);
12179 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
12180 vmcs12->exit_qualification = qualification;
12181 nested_vmx_succeed(vcpu);
012f83cb
AG
12182 if (enable_shadow_vmcs)
12183 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
12184}
12185
8a76d7f2
JR
12186static int vmx_check_intercept(struct kvm_vcpu *vcpu,
12187 struct x86_instruction_info *info,
12188 enum x86_intercept_stage stage)
12189{
fb6d4d34
PB
12190 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
12191 struct x86_emulate_ctxt *ctxt = &vcpu->arch.emulate_ctxt;
12192
12193 /*
12194 * RDPID causes #UD if disabled through secondary execution controls.
12195 * Because it is marked as EmulateOnUD, we need to intercept it here.
12196 */
12197 if (info->intercept == x86_intercept_rdtscp &&
12198 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDTSCP)) {
12199 ctxt->exception.vector = UD_VECTOR;
12200 ctxt->exception.error_code_valid = false;
12201 return X86EMUL_PROPAGATE_FAULT;
12202 }
12203
12204 /* TODO: check more intercepts... */
8a76d7f2
JR
12205 return X86EMUL_CONTINUE;
12206}
12207
64672c95
YJ
12208#ifdef CONFIG_X86_64
12209/* (a << shift) / divisor, return 1 if overflow otherwise 0 */
12210static inline int u64_shl_div_u64(u64 a, unsigned int shift,
12211 u64 divisor, u64 *result)
12212{
12213 u64 low = a << shift, high = a >> (64 - shift);
12214
12215 /* To avoid the overflow on divq */
12216 if (high >= divisor)
12217 return 1;
12218
12219 /* Low hold the result, high hold rem which is discarded */
12220 asm("divq %2\n\t" : "=a" (low), "=d" (high) :
12221 "rm" (divisor), "0" (low), "1" (high));
12222 *result = low;
12223
12224 return 0;
12225}
12226
12227static int vmx_set_hv_timer(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc)
12228{
386c6ddb
KA
12229 struct vcpu_vmx *vmx;
12230 u64 tscl, guest_tscl, delta_tsc;
12231
12232 if (kvm_mwait_in_guest(vcpu->kvm))
12233 return -EOPNOTSUPP;
12234
12235 vmx = to_vmx(vcpu);
12236 tscl = rdtsc();
12237 guest_tscl = kvm_read_l1_tsc(vcpu, tscl);
12238 delta_tsc = max(guest_deadline_tsc, guest_tscl) - guest_tscl;
64672c95
YJ
12239
12240 /* Convert to host delta tsc if tsc scaling is enabled */
12241 if (vcpu->arch.tsc_scaling_ratio != kvm_default_tsc_scaling_ratio &&
12242 u64_shl_div_u64(delta_tsc,
12243 kvm_tsc_scaling_ratio_frac_bits,
12244 vcpu->arch.tsc_scaling_ratio,
12245 &delta_tsc))
12246 return -ERANGE;
12247
12248 /*
12249 * If the delta tsc can't fit in the 32 bit after the multi shift,
12250 * we can't use the preemption timer.
12251 * It's possible that it fits on later vmentries, but checking
12252 * on every vmentry is costly so we just use an hrtimer.
12253 */
12254 if (delta_tsc >> (cpu_preemption_timer_multi + 32))
12255 return -ERANGE;
12256
12257 vmx->hv_deadline_tsc = tscl + delta_tsc;
12258 vmcs_set_bits(PIN_BASED_VM_EXEC_CONTROL,
12259 PIN_BASED_VMX_PREEMPTION_TIMER);
c8533544
WL
12260
12261 return delta_tsc == 0;
64672c95
YJ
12262}
12263
12264static void vmx_cancel_hv_timer(struct kvm_vcpu *vcpu)
12265{
12266 struct vcpu_vmx *vmx = to_vmx(vcpu);
12267 vmx->hv_deadline_tsc = -1;
12268 vmcs_clear_bits(PIN_BASED_VM_EXEC_CONTROL,
12269 PIN_BASED_VMX_PREEMPTION_TIMER);
12270}
12271#endif
12272
48d89b92 12273static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 12274{
b31c114b 12275 if (!kvm_pause_in_guest(vcpu->kvm))
b4a2d31d 12276 shrink_ple_window(vcpu);
ae97a3b8
RK
12277}
12278
843e4330
KH
12279static void vmx_slot_enable_log_dirty(struct kvm *kvm,
12280 struct kvm_memory_slot *slot)
12281{
12282 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
12283 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
12284}
12285
12286static void vmx_slot_disable_log_dirty(struct kvm *kvm,
12287 struct kvm_memory_slot *slot)
12288{
12289 kvm_mmu_slot_set_dirty(kvm, slot);
12290}
12291
12292static void vmx_flush_log_dirty(struct kvm *kvm)
12293{
12294 kvm_flush_pml_buffers(kvm);
12295}
12296
c5f983f6
BD
12297static int vmx_write_pml_buffer(struct kvm_vcpu *vcpu)
12298{
12299 struct vmcs12 *vmcs12;
12300 struct vcpu_vmx *vmx = to_vmx(vcpu);
12301 gpa_t gpa;
12302 struct page *page = NULL;
12303 u64 *pml_address;
12304
12305 if (is_guest_mode(vcpu)) {
12306 WARN_ON_ONCE(vmx->nested.pml_full);
12307
12308 /*
12309 * Check if PML is enabled for the nested guest.
12310 * Whether eptp bit 6 is set is already checked
12311 * as part of A/D emulation.
12312 */
12313 vmcs12 = get_vmcs12(vcpu);
12314 if (!nested_cpu_has_pml(vmcs12))
12315 return 0;
12316
4769886b 12317 if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
c5f983f6
BD
12318 vmx->nested.pml_full = true;
12319 return 1;
12320 }
12321
12322 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS) & ~0xFFFull;
12323
5e2f30b7
DH
12324 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->pml_address);
12325 if (is_error_page(page))
c5f983f6
BD
12326 return 0;
12327
12328 pml_address = kmap(page);
12329 pml_address[vmcs12->guest_pml_index--] = gpa;
12330 kunmap(page);
53a70daf 12331 kvm_release_page_clean(page);
c5f983f6
BD
12332 }
12333
12334 return 0;
12335}
12336
843e4330
KH
12337static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
12338 struct kvm_memory_slot *memslot,
12339 gfn_t offset, unsigned long mask)
12340{
12341 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
12342}
12343
cd39e117
PB
12344static void __pi_post_block(struct kvm_vcpu *vcpu)
12345{
12346 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12347 struct pi_desc old, new;
12348 unsigned int dest;
cd39e117
PB
12349
12350 do {
12351 old.control = new.control = pi_desc->control;
8b306e2f
PB
12352 WARN(old.nv != POSTED_INTR_WAKEUP_VECTOR,
12353 "Wakeup handler not enabled while the VCPU is blocked\n");
cd39e117
PB
12354
12355 dest = cpu_physical_id(vcpu->cpu);
12356
12357 if (x2apic_enabled())
12358 new.ndst = dest;
12359 else
12360 new.ndst = (dest << 8) & 0xFF00;
12361
cd39e117
PB
12362 /* set 'NV' to 'notification vector' */
12363 new.nv = POSTED_INTR_VECTOR;
c0a1666b
PB
12364 } while (cmpxchg64(&pi_desc->control, old.control,
12365 new.control) != old.control);
cd39e117 12366
8b306e2f
PB
12367 if (!WARN_ON_ONCE(vcpu->pre_pcpu == -1)) {
12368 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117 12369 list_del(&vcpu->blocked_vcpu_list);
8b306e2f 12370 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
cd39e117
PB
12371 vcpu->pre_pcpu = -1;
12372 }
12373}
12374
bf9f6ac8
FW
12375/*
12376 * This routine does the following things for vCPU which is going
12377 * to be blocked if VT-d PI is enabled.
12378 * - Store the vCPU to the wakeup list, so when interrupts happen
12379 * we can find the right vCPU to wake up.
12380 * - Change the Posted-interrupt descriptor as below:
12381 * 'NDST' <-- vcpu->pre_pcpu
12382 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
12383 * - If 'ON' is set during this process, which means at least one
12384 * interrupt is posted for this vCPU, we cannot block it, in
12385 * this case, return 1, otherwise, return 0.
12386 *
12387 */
bc22512b 12388static int pi_pre_block(struct kvm_vcpu *vcpu)
bf9f6ac8 12389{
bf9f6ac8
FW
12390 unsigned int dest;
12391 struct pi_desc old, new;
12392 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
12393
12394 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
a0052191
YZ
12395 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12396 !kvm_vcpu_apicv_active(vcpu))
bf9f6ac8
FW
12397 return 0;
12398
8b306e2f
PB
12399 WARN_ON(irqs_disabled());
12400 local_irq_disable();
12401 if (!WARN_ON_ONCE(vcpu->pre_pcpu != -1)) {
12402 vcpu->pre_pcpu = vcpu->cpu;
12403 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12404 list_add_tail(&vcpu->blocked_vcpu_list,
12405 &per_cpu(blocked_vcpu_on_cpu,
12406 vcpu->pre_pcpu));
12407 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, vcpu->pre_pcpu));
12408 }
bf9f6ac8
FW
12409
12410 do {
12411 old.control = new.control = pi_desc->control;
12412
bf9f6ac8
FW
12413 WARN((pi_desc->sn == 1),
12414 "Warning: SN field of posted-interrupts "
12415 "is set before blocking\n");
12416
12417 /*
12418 * Since vCPU can be preempted during this process,
12419 * vcpu->cpu could be different with pre_pcpu, we
12420 * need to set pre_pcpu as the destination of wakeup
12421 * notification event, then we can find the right vCPU
12422 * to wakeup in wakeup handler if interrupts happen
12423 * when the vCPU is in blocked state.
12424 */
12425 dest = cpu_physical_id(vcpu->pre_pcpu);
12426
12427 if (x2apic_enabled())
12428 new.ndst = dest;
12429 else
12430 new.ndst = (dest << 8) & 0xFF00;
12431
12432 /* set 'NV' to 'wakeup vector' */
12433 new.nv = POSTED_INTR_WAKEUP_VECTOR;
c0a1666b
PB
12434 } while (cmpxchg64(&pi_desc->control, old.control,
12435 new.control) != old.control);
bf9f6ac8 12436
8b306e2f
PB
12437 /* We should not block the vCPU if an interrupt is posted for it. */
12438 if (pi_test_on(pi_desc) == 1)
12439 __pi_post_block(vcpu);
12440
12441 local_irq_enable();
12442 return (vcpu->pre_pcpu == -1);
bf9f6ac8
FW
12443}
12444
bc22512b
YJ
12445static int vmx_pre_block(struct kvm_vcpu *vcpu)
12446{
12447 if (pi_pre_block(vcpu))
12448 return 1;
12449
64672c95
YJ
12450 if (kvm_lapic_hv_timer_in_use(vcpu))
12451 kvm_lapic_switch_to_sw_timer(vcpu);
12452
bc22512b
YJ
12453 return 0;
12454}
12455
12456static void pi_post_block(struct kvm_vcpu *vcpu)
bf9f6ac8 12457{
8b306e2f 12458 if (vcpu->pre_pcpu == -1)
bf9f6ac8
FW
12459 return;
12460
8b306e2f
PB
12461 WARN_ON(irqs_disabled());
12462 local_irq_disable();
cd39e117 12463 __pi_post_block(vcpu);
8b306e2f 12464 local_irq_enable();
bf9f6ac8
FW
12465}
12466
bc22512b
YJ
12467static void vmx_post_block(struct kvm_vcpu *vcpu)
12468{
64672c95
YJ
12469 if (kvm_x86_ops->set_hv_timer)
12470 kvm_lapic_switch_to_hv_timer(vcpu);
12471
bc22512b
YJ
12472 pi_post_block(vcpu);
12473}
12474
efc64404
FW
12475/*
12476 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
12477 *
12478 * @kvm: kvm
12479 * @host_irq: host irq of the interrupt
12480 * @guest_irq: gsi of the interrupt
12481 * @set: set or unset PI
12482 * returns 0 on success, < 0 on failure
12483 */
12484static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
12485 uint32_t guest_irq, bool set)
12486{
12487 struct kvm_kernel_irq_routing_entry *e;
12488 struct kvm_irq_routing_table *irq_rt;
12489 struct kvm_lapic_irq irq;
12490 struct kvm_vcpu *vcpu;
12491 struct vcpu_data vcpu_info;
3a8b0677 12492 int idx, ret = 0;
efc64404
FW
12493
12494 if (!kvm_arch_has_assigned_device(kvm) ||
a0052191
YZ
12495 !irq_remapping_cap(IRQ_POSTING_CAP) ||
12496 !kvm_vcpu_apicv_active(kvm->vcpus[0]))
efc64404
FW
12497 return 0;
12498
12499 idx = srcu_read_lock(&kvm->irq_srcu);
12500 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
3a8b0677
JS
12501 if (guest_irq >= irq_rt->nr_rt_entries ||
12502 hlist_empty(&irq_rt->map[guest_irq])) {
12503 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
12504 guest_irq, irq_rt->nr_rt_entries);
12505 goto out;
12506 }
efc64404
FW
12507
12508 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
12509 if (e->type != KVM_IRQ_ROUTING_MSI)
12510 continue;
12511 /*
12512 * VT-d PI cannot support posting multicast/broadcast
12513 * interrupts to a vCPU, we still use interrupt remapping
12514 * for these kind of interrupts.
12515 *
12516 * For lowest-priority interrupts, we only support
12517 * those with single CPU as the destination, e.g. user
12518 * configures the interrupts via /proc/irq or uses
12519 * irqbalance to make the interrupts single-CPU.
12520 *
12521 * We will support full lowest-priority interrupt later.
12522 */
12523
37131313 12524 kvm_set_msi_irq(kvm, e, &irq);
23a1c257
FW
12525 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
12526 /*
12527 * Make sure the IRTE is in remapped mode if
12528 * we don't handle it in posted mode.
12529 */
12530 ret = irq_set_vcpu_affinity(host_irq, NULL);
12531 if (ret < 0) {
12532 printk(KERN_INFO
12533 "failed to back to remapped mode, irq: %u\n",
12534 host_irq);
12535 goto out;
12536 }
12537
efc64404 12538 continue;
23a1c257 12539 }
efc64404
FW
12540
12541 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
12542 vcpu_info.vector = irq.vector;
12543
2698d82e 12544 trace_kvm_pi_irte_update(host_irq, vcpu->vcpu_id, e->gsi,
efc64404
FW
12545 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
12546
12547 if (set)
12548 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
dc91f2eb 12549 else
efc64404 12550 ret = irq_set_vcpu_affinity(host_irq, NULL);
efc64404
FW
12551
12552 if (ret < 0) {
12553 printk(KERN_INFO "%s: failed to update PI IRTE\n",
12554 __func__);
12555 goto out;
12556 }
12557 }
12558
12559 ret = 0;
12560out:
12561 srcu_read_unlock(&kvm->irq_srcu, idx);
12562 return ret;
12563}
12564
c45dcc71
AR
12565static void vmx_setup_mce(struct kvm_vcpu *vcpu)
12566{
12567 if (vcpu->arch.mcg_cap & MCG_LMCE_P)
12568 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits |=
12569 FEATURE_CONTROL_LMCE;
12570 else
12571 to_vmx(vcpu)->msr_ia32_feature_control_valid_bits &=
12572 ~FEATURE_CONTROL_LMCE;
12573}
12574
72d7b374
LP
12575static int vmx_smi_allowed(struct kvm_vcpu *vcpu)
12576{
72e9cbdb
LP
12577 /* we need a nested vmexit to enter SMM, postpone if run is pending */
12578 if (to_vmx(vcpu)->nested.nested_run_pending)
12579 return 0;
72d7b374
LP
12580 return 1;
12581}
12582
0234bf88
LP
12583static int vmx_pre_enter_smm(struct kvm_vcpu *vcpu, char *smstate)
12584{
72e9cbdb
LP
12585 struct vcpu_vmx *vmx = to_vmx(vcpu);
12586
12587 vmx->nested.smm.guest_mode = is_guest_mode(vcpu);
12588 if (vmx->nested.smm.guest_mode)
12589 nested_vmx_vmexit(vcpu, -1, 0, 0);
12590
12591 vmx->nested.smm.vmxon = vmx->nested.vmxon;
12592 vmx->nested.vmxon = false;
caa057a2 12593 vmx_clear_hlt(vcpu);
0234bf88
LP
12594 return 0;
12595}
12596
12597static int vmx_pre_leave_smm(struct kvm_vcpu *vcpu, u64 smbase)
12598{
72e9cbdb
LP
12599 struct vcpu_vmx *vmx = to_vmx(vcpu);
12600 int ret;
12601
12602 if (vmx->nested.smm.vmxon) {
12603 vmx->nested.vmxon = true;
12604 vmx->nested.smm.vmxon = false;
12605 }
12606
12607 if (vmx->nested.smm.guest_mode) {
12608 vcpu->arch.hflags &= ~HF_SMM_MASK;
12609 ret = enter_vmx_non_root_mode(vcpu, false);
12610 vcpu->arch.hflags |= HF_SMM_MASK;
12611 if (ret)
12612 return ret;
12613
12614 vmx->nested.smm.guest_mode = false;
12615 }
0234bf88
LP
12616 return 0;
12617}
12618
cc3d967f
LP
12619static int enable_smi_window(struct kvm_vcpu *vcpu)
12620{
12621 return 0;
12622}
12623
404f6aac 12624static struct kvm_x86_ops vmx_x86_ops __ro_after_init = {
6aa8b732
AK
12625 .cpu_has_kvm_support = cpu_has_kvm_support,
12626 .disabled_by_bios = vmx_disabled_by_bios,
12627 .hardware_setup = hardware_setup,
12628 .hardware_unsetup = hardware_unsetup,
002c7f7c 12629 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
12630 .hardware_enable = hardware_enable,
12631 .hardware_disable = hardware_disable,
04547156 12632 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 12633 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732 12634
b31c114b 12635 .vm_init = vmx_vm_init,
434a1e94
SC
12636 .vm_alloc = vmx_vm_alloc,
12637 .vm_free = vmx_vm_free,
b31c114b 12638
6aa8b732
AK
12639 .vcpu_create = vmx_create_vcpu,
12640 .vcpu_free = vmx_free_vcpu,
04d2cc77 12641 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 12642
04d2cc77 12643 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
12644 .vcpu_load = vmx_vcpu_load,
12645 .vcpu_put = vmx_vcpu_put,
12646
a96036b8 12647 .update_bp_intercept = update_exception_bitmap,
801e459a 12648 .get_msr_feature = vmx_get_msr_feature,
6aa8b732
AK
12649 .get_msr = vmx_get_msr,
12650 .set_msr = vmx_set_msr,
12651 .get_segment_base = vmx_get_segment_base,
12652 .get_segment = vmx_get_segment,
12653 .set_segment = vmx_set_segment,
2e4d2653 12654 .get_cpl = vmx_get_cpl,
6aa8b732 12655 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 12656 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 12657 .decache_cr3 = vmx_decache_cr3,
25c4c276 12658 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 12659 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
12660 .set_cr3 = vmx_set_cr3,
12661 .set_cr4 = vmx_set_cr4,
6aa8b732 12662 .set_efer = vmx_set_efer,
6aa8b732
AK
12663 .get_idt = vmx_get_idt,
12664 .set_idt = vmx_set_idt,
12665 .get_gdt = vmx_get_gdt,
12666 .set_gdt = vmx_set_gdt,
73aaf249
JK
12667 .get_dr6 = vmx_get_dr6,
12668 .set_dr6 = vmx_set_dr6,
020df079 12669 .set_dr7 = vmx_set_dr7,
81908bf4 12670 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 12671 .cache_reg = vmx_cache_reg,
6aa8b732
AK
12672 .get_rflags = vmx_get_rflags,
12673 .set_rflags = vmx_set_rflags,
be94f6b7 12674
6aa8b732 12675 .tlb_flush = vmx_flush_tlb,
6aa8b732 12676
6aa8b732 12677 .run = vmx_vcpu_run,
6062d012 12678 .handle_exit = vmx_handle_exit,
6aa8b732 12679 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
12680 .set_interrupt_shadow = vmx_set_interrupt_shadow,
12681 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 12682 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 12683 .set_irq = vmx_inject_irq,
95ba8273 12684 .set_nmi = vmx_inject_nmi,
298101da 12685 .queue_exception = vmx_queue_exception,
b463a6f7 12686 .cancel_injection = vmx_cancel_injection,
78646121 12687 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 12688 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
12689 .get_nmi_mask = vmx_get_nmi_mask,
12690 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
12691 .enable_nmi_window = enable_nmi_window,
12692 .enable_irq_window = enable_irq_window,
12693 .update_cr8_intercept = update_cr8_intercept,
8d14695f 12694 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 12695 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
12696 .get_enable_apicv = vmx_get_enable_apicv,
12697 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c 12698 .load_eoi_exitmap = vmx_load_eoi_exitmap,
967235d3 12699 .apicv_post_state_restore = vmx_apicv_post_state_restore,
c7c9c56c
YZ
12700 .hwapic_irr_update = vmx_hwapic_irr_update,
12701 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
12702 .sync_pir_to_irr = vmx_sync_pir_to_irr,
12703 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 12704
cbc94022 12705 .set_tss_addr = vmx_set_tss_addr,
2ac52ab8 12706 .set_identity_map_addr = vmx_set_identity_map_addr,
67253af5 12707 .get_tdp_level = get_ept_level,
4b12f0de 12708 .get_mt_mask = vmx_get_mt_mask,
229456fc 12709
586f9607 12710 .get_exit_info = vmx_get_exit_info,
586f9607 12711
17cc3935 12712 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
12713
12714 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
12715
12716 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 12717 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
12718
12719 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
12720
12721 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 12722
e79f245d 12723 .read_l1_tsc_offset = vmx_read_l1_tsc_offset,
99e3e30a 12724 .write_tsc_offset = vmx_write_tsc_offset,
1c97f0a0
JR
12725
12726 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
12727
12728 .check_intercept = vmx_check_intercept,
a547c6db 12729 .handle_external_intr = vmx_handle_external_intr,
da8999d3 12730 .mpx_supported = vmx_mpx_supported,
55412b2e 12731 .xsaves_supported = vmx_xsaves_supported,
66336cab 12732 .umip_emulated = vmx_umip_emulated,
b6b8a145
JK
12733
12734 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
12735
12736 .sched_in = vmx_sched_in,
843e4330
KH
12737
12738 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
12739 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
12740 .flush_log_dirty = vmx_flush_log_dirty,
12741 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
c5f983f6 12742 .write_log_dirty = vmx_write_pml_buffer,
25462f7f 12743
bf9f6ac8
FW
12744 .pre_block = vmx_pre_block,
12745 .post_block = vmx_post_block,
12746
25462f7f 12747 .pmu_ops = &intel_pmu_ops,
efc64404
FW
12748
12749 .update_pi_irte = vmx_update_pi_irte,
64672c95
YJ
12750
12751#ifdef CONFIG_X86_64
12752 .set_hv_timer = vmx_set_hv_timer,
12753 .cancel_hv_timer = vmx_cancel_hv_timer,
12754#endif
c45dcc71
AR
12755
12756 .setup_mce = vmx_setup_mce,
0234bf88 12757
72d7b374 12758 .smi_allowed = vmx_smi_allowed,
0234bf88
LP
12759 .pre_enter_smm = vmx_pre_enter_smm,
12760 .pre_leave_smm = vmx_pre_leave_smm,
cc3d967f 12761 .enable_smi_window = enable_smi_window,
6aa8b732
AK
12762};
12763
12764static int __init vmx_init(void)
12765{
773e8a04
VK
12766 int r;
12767
12768#if IS_ENABLED(CONFIG_HYPERV)
12769 /*
12770 * Enlightened VMCS usage should be recommended and the host needs
12771 * to support eVMCS v1 or above. We can also disable eVMCS support
12772 * with module parameter.
12773 */
12774 if (enlightened_vmcs &&
12775 ms_hyperv.hints & HV_X64_ENLIGHTENED_VMCS_RECOMMENDED &&
12776 (ms_hyperv.nested_features & HV_X64_ENLIGHTENED_VMCS_VERSION) >=
12777 KVM_EVMCS_VERSION) {
12778 int cpu;
12779
12780 /* Check that we have assist pages on all online CPUs */
12781 for_each_online_cpu(cpu) {
12782 if (!hv_get_vp_assist_page(cpu)) {
12783 enlightened_vmcs = false;
12784 break;
12785 }
12786 }
12787
12788 if (enlightened_vmcs) {
12789 pr_info("KVM: vmx: using Hyper-V Enlightened VMCS\n");
12790 static_branch_enable(&enable_evmcs);
12791 }
12792 } else {
12793 enlightened_vmcs = false;
12794 }
12795#endif
12796
12797 r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
34a1cd60 12798 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 12799 if (r)
34a1cd60 12800 return r;
25c5f225 12801
2965faa5 12802#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
12803 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
12804 crash_vmclear_local_loaded_vmcss);
12805#endif
12806
fdef3ad1 12807 return 0;
6aa8b732
AK
12808}
12809
12810static void __exit vmx_exit(void)
12811{
2965faa5 12812#ifdef CONFIG_KEXEC_CORE
3b63a43f 12813 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
12814 synchronize_rcu();
12815#endif
12816
cb498ea2 12817 kvm_exit();
773e8a04
VK
12818
12819#if IS_ENABLED(CONFIG_HYPERV)
12820 if (static_branch_unlikely(&enable_evmcs)) {
12821 int cpu;
12822 struct hv_vp_assist_page *vp_ap;
12823 /*
12824 * Reset everything to support using non-enlightened VMCS
12825 * access later (e.g. when we reload the module with
12826 * enlightened_vmcs=0)
12827 */
12828 for_each_online_cpu(cpu) {
12829 vp_ap = hv_get_vp_assist_page(cpu);
12830
12831 if (!vp_ap)
12832 continue;
12833
12834 vp_ap->current_nested_vmcs = 0;
12835 vp_ap->enlighten_vmentry = 0;
12836 }
12837
12838 static_branch_disable(&enable_evmcs);
12839 }
12840#endif
6aa8b732
AK
12841}
12842
12843module_init(vmx_init)
12844module_exit(vmx_exit)