Merge branch 'drm-fixes-5.0' of git://people.freedesktop.org/~agd5f/linux into drm...
[linux-2.6-block.git] / arch / x86 / kvm / vmx / nested.c
CommitLineData
55d2375e
SC
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/frame.h>
4#include <linux/percpu.h>
5
6#include <asm/debugreg.h>
7#include <asm/mmu_context.h>
8
9#include "cpuid.h"
10#include "hyperv.h"
11#include "mmu.h"
12#include "nested.h"
13#include "trace.h"
14#include "x86.h"
15
16static bool __read_mostly enable_shadow_vmcs = 1;
17module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19static bool __read_mostly nested_early_check = 0;
20module_param(nested_early_check, bool, S_IRUGO);
21
55d2375e
SC
22/*
23 * Hyper-V requires all of these, so mark them as supported even though
24 * they are just treated the same as all-context.
25 */
26#define VMX_VPID_EXTENT_SUPPORTED_MASK \
27 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
28 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
29 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
30 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
31
32#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
33
34enum {
35 VMX_VMREAD_BITMAP,
36 VMX_VMWRITE_BITMAP,
37 VMX_BITMAP_NR
38};
39static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
40
41#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
42#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
43
44static u16 shadow_read_only_fields[] = {
45#define SHADOW_FIELD_RO(x) x,
46#include "vmcs_shadow_fields.h"
47};
48static int max_shadow_read_only_fields =
49 ARRAY_SIZE(shadow_read_only_fields);
50
51static u16 shadow_read_write_fields[] = {
52#define SHADOW_FIELD_RW(x) x,
53#include "vmcs_shadow_fields.h"
54};
55static int max_shadow_read_write_fields =
56 ARRAY_SIZE(shadow_read_write_fields);
57
8997f657 58static void init_vmcs_shadow_fields(void)
55d2375e
SC
59{
60 int i, j;
61
62 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
63 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
64
65 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
66 u16 field = shadow_read_only_fields[i];
67
68 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
69 (i + 1 == max_shadow_read_only_fields ||
70 shadow_read_only_fields[i + 1] != field + 1))
71 pr_err("Missing field from shadow_read_only_field %x\n",
72 field + 1);
73
74 clear_bit(field, vmx_vmread_bitmap);
75#ifdef CONFIG_X86_64
76 if (field & 1)
77 continue;
78#endif
79 if (j < i)
80 shadow_read_only_fields[j] = field;
81 j++;
82 }
83 max_shadow_read_only_fields = j;
84
85 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
86 u16 field = shadow_read_write_fields[i];
87
88 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
89 (i + 1 == max_shadow_read_write_fields ||
90 shadow_read_write_fields[i + 1] != field + 1))
91 pr_err("Missing field from shadow_read_write_field %x\n",
92 field + 1);
93
94 /*
95 * PML and the preemption timer can be emulated, but the
96 * processor cannot vmwrite to fields that don't exist
97 * on bare metal.
98 */
99 switch (field) {
100 case GUEST_PML_INDEX:
101 if (!cpu_has_vmx_pml())
102 continue;
103 break;
104 case VMX_PREEMPTION_TIMER_VALUE:
105 if (!cpu_has_vmx_preemption_timer())
106 continue;
107 break;
108 case GUEST_INTR_STATUS:
109 if (!cpu_has_vmx_apicv())
110 continue;
111 break;
112 default:
113 break;
114 }
115
116 clear_bit(field, vmx_vmwrite_bitmap);
117 clear_bit(field, vmx_vmread_bitmap);
118#ifdef CONFIG_X86_64
119 if (field & 1)
120 continue;
121#endif
122 if (j < i)
123 shadow_read_write_fields[j] = field;
124 j++;
125 }
126 max_shadow_read_write_fields = j;
127}
128
129/*
130 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
131 * set the success or error code of an emulated VMX instruction (as specified
132 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
133 * instruction.
134 */
135static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
136{
137 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
138 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
139 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
140 return kvm_skip_emulated_instruction(vcpu);
141}
142
143static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
144{
145 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
146 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
147 X86_EFLAGS_SF | X86_EFLAGS_OF))
148 | X86_EFLAGS_CF);
149 return kvm_skip_emulated_instruction(vcpu);
150}
151
152static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
153 u32 vm_instruction_error)
154{
155 struct vcpu_vmx *vmx = to_vmx(vcpu);
156
157 /*
158 * failValid writes the error number to the current VMCS, which
159 * can't be done if there isn't a current VMCS.
160 */
161 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
162 return nested_vmx_failInvalid(vcpu);
163
164 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
165 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
166 X86_EFLAGS_SF | X86_EFLAGS_OF))
167 | X86_EFLAGS_ZF);
168 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
169 /*
170 * We don't need to force a shadow sync because
171 * VM_INSTRUCTION_ERROR is not shadowed
172 */
173 return kvm_skip_emulated_instruction(vcpu);
174}
175
176static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
177{
178 /* TODO: not to reset guest simply here. */
179 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
180 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
181}
182
183static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
184{
185 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL, SECONDARY_EXEC_SHADOW_VMCS);
186 vmcs_write64(VMCS_LINK_POINTER, -1ull);
187}
188
189static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
190{
191 struct vcpu_vmx *vmx = to_vmx(vcpu);
192
193 if (!vmx->nested.hv_evmcs)
194 return;
195
196 kunmap(vmx->nested.hv_evmcs_page);
197 kvm_release_page_dirty(vmx->nested.hv_evmcs_page);
198 vmx->nested.hv_evmcs_vmptr = -1ull;
199 vmx->nested.hv_evmcs_page = NULL;
200 vmx->nested.hv_evmcs = NULL;
201}
202
203/*
204 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
205 * just stops using VMX.
206 */
207static void free_nested(struct kvm_vcpu *vcpu)
208{
209 struct vcpu_vmx *vmx = to_vmx(vcpu);
210
211 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
212 return;
213
ecec7688 214 hrtimer_cancel(&vmx->nested.preemption_timer);
55d2375e
SC
215 vmx->nested.vmxon = false;
216 vmx->nested.smm.vmxon = false;
217 free_vpid(vmx->nested.vpid02);
218 vmx->nested.posted_intr_nv = -1;
219 vmx->nested.current_vmptr = -1ull;
220 if (enable_shadow_vmcs) {
221 vmx_disable_shadow_vmcs(vmx);
222 vmcs_clear(vmx->vmcs01.shadow_vmcs);
223 free_vmcs(vmx->vmcs01.shadow_vmcs);
224 vmx->vmcs01.shadow_vmcs = NULL;
225 }
226 kfree(vmx->nested.cached_vmcs12);
227 kfree(vmx->nested.cached_shadow_vmcs12);
228 /* Unpin physical memory we referred to in the vmcs02 */
229 if (vmx->nested.apic_access_page) {
230 kvm_release_page_dirty(vmx->nested.apic_access_page);
231 vmx->nested.apic_access_page = NULL;
232 }
233 if (vmx->nested.virtual_apic_page) {
234 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
235 vmx->nested.virtual_apic_page = NULL;
236 }
237 if (vmx->nested.pi_desc_page) {
238 kunmap(vmx->nested.pi_desc_page);
239 kvm_release_page_dirty(vmx->nested.pi_desc_page);
240 vmx->nested.pi_desc_page = NULL;
241 vmx->nested.pi_desc = NULL;
242 }
243
244 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
245
246 nested_release_evmcs(vcpu);
247
248 free_loaded_vmcs(&vmx->nested.vmcs02);
249}
250
251static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
252{
253 struct vcpu_vmx *vmx = to_vmx(vcpu);
254 int cpu;
255
256 if (vmx->loaded_vmcs == vmcs)
257 return;
258
259 cpu = get_cpu();
260 vmx_vcpu_put(vcpu);
261 vmx->loaded_vmcs = vmcs;
262 vmx_vcpu_load(vcpu, cpu);
263 put_cpu();
264
265 vm_entry_controls_reset_shadow(vmx);
266 vm_exit_controls_reset_shadow(vmx);
267 vmx_segment_cache_clear(vmx);
268}
269
270/*
271 * Ensure that the current vmcs of the logical processor is the
272 * vmcs01 of the vcpu before calling free_nested().
273 */
274void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
275{
276 vcpu_load(vcpu);
277 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
278 free_nested(vcpu);
279 vcpu_put(vcpu);
280}
281
282static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
283 struct x86_exception *fault)
284{
285 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
286 struct vcpu_vmx *vmx = to_vmx(vcpu);
287 u32 exit_reason;
288 unsigned long exit_qualification = vcpu->arch.exit_qualification;
289
290 if (vmx->nested.pml_full) {
291 exit_reason = EXIT_REASON_PML_FULL;
292 vmx->nested.pml_full = false;
293 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
294 } else if (fault->error_code & PFERR_RSVD_MASK)
295 exit_reason = EXIT_REASON_EPT_MISCONFIG;
296 else
297 exit_reason = EXIT_REASON_EPT_VIOLATION;
298
299 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
300 vmcs12->guest_physical_address = fault->address;
301}
302
303static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
304{
305 WARN_ON(mmu_is_nested(vcpu));
306
307 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
308 kvm_init_shadow_ept_mmu(vcpu,
309 to_vmx(vcpu)->nested.msrs.ept_caps &
310 VMX_EPT_EXECUTE_ONLY_BIT,
311 nested_ept_ad_enabled(vcpu),
312 nested_ept_get_cr3(vcpu));
313 vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
314 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
315 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
316 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
317
318 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
319}
320
321static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
322{
323 vcpu->arch.mmu = &vcpu->arch.root_mmu;
324 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
325}
326
327static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
328 u16 error_code)
329{
330 bool inequality, bit;
331
332 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
333 inequality =
334 (error_code & vmcs12->page_fault_error_code_mask) !=
335 vmcs12->page_fault_error_code_match;
336 return inequality ^ bit;
337}
338
339
340/*
341 * KVM wants to inject page-faults which it got to the guest. This function
342 * checks whether in a nested guest, we need to inject them to L1 or L2.
343 */
344static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
345{
346 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
347 unsigned int nr = vcpu->arch.exception.nr;
348 bool has_payload = vcpu->arch.exception.has_payload;
349 unsigned long payload = vcpu->arch.exception.payload;
350
351 if (nr == PF_VECTOR) {
352 if (vcpu->arch.exception.nested_apf) {
353 *exit_qual = vcpu->arch.apf.nested_apf_token;
354 return 1;
355 }
356 if (nested_vmx_is_page_fault_vmexit(vmcs12,
357 vcpu->arch.exception.error_code)) {
358 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
359 return 1;
360 }
361 } else if (vmcs12->exception_bitmap & (1u << nr)) {
362 if (nr == DB_VECTOR) {
363 if (!has_payload) {
364 payload = vcpu->arch.dr6;
365 payload &= ~(DR6_FIXED_1 | DR6_BT);
366 payload ^= DR6_RTM;
367 }
368 *exit_qual = payload;
369 } else
370 *exit_qual = 0;
371 return 1;
372 }
373
374 return 0;
375}
376
377
378static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
379 struct x86_exception *fault)
380{
381 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
382
383 WARN_ON(!is_guest_mode(vcpu));
384
385 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
386 !to_vmx(vcpu)->nested.nested_run_pending) {
387 vmcs12->vm_exit_intr_error_code = fault->error_code;
388 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
389 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
390 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
391 fault->address);
392 } else {
393 kvm_inject_page_fault(vcpu, fault);
394 }
395}
396
397static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
398{
399 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
400}
401
402static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
403 struct vmcs12 *vmcs12)
404{
405 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
406 return 0;
407
408 if (!page_address_valid(vcpu, vmcs12->io_bitmap_a) ||
409 !page_address_valid(vcpu, vmcs12->io_bitmap_b))
410 return -EINVAL;
411
412 return 0;
413}
414
415static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
416 struct vmcs12 *vmcs12)
417{
418 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
419 return 0;
420
421 if (!page_address_valid(vcpu, vmcs12->msr_bitmap))
422 return -EINVAL;
423
424 return 0;
425}
426
427static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
428 struct vmcs12 *vmcs12)
429{
430 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
431 return 0;
432
433 if (!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr))
434 return -EINVAL;
435
436 return 0;
437}
438
439/*
440 * Check if MSR is intercepted for L01 MSR bitmap.
441 */
442static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
443{
444 unsigned long *msr_bitmap;
445 int f = sizeof(unsigned long);
446
447 if (!cpu_has_vmx_msr_bitmap())
448 return true;
449
450 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
451
452 if (msr <= 0x1fff) {
453 return !!test_bit(msr, msr_bitmap + 0x800 / f);
454 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
455 msr &= 0x1fff;
456 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
457 }
458
459 return true;
460}
461
462/*
463 * If a msr is allowed by L0, we should check whether it is allowed by L1.
464 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
465 */
466static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
467 unsigned long *msr_bitmap_nested,
468 u32 msr, int type)
469{
470 int f = sizeof(unsigned long);
471
472 /*
473 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
474 * have the write-low and read-high bitmap offsets the wrong way round.
475 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
476 */
477 if (msr <= 0x1fff) {
478 if (type & MSR_TYPE_R &&
479 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
480 /* read-low */
481 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
482
483 if (type & MSR_TYPE_W &&
484 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
485 /* write-low */
486 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
487
488 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
489 msr &= 0x1fff;
490 if (type & MSR_TYPE_R &&
491 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
492 /* read-high */
493 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
494
495 if (type & MSR_TYPE_W &&
496 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
497 /* write-high */
498 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
499
500 }
501}
502
503/*
504 * Merge L0's and L1's MSR bitmap, return false to indicate that
505 * we do not use the hardware.
506 */
507static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
508 struct vmcs12 *vmcs12)
509{
510 int msr;
511 struct page *page;
512 unsigned long *msr_bitmap_l1;
513 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
514 /*
515 * pred_cmd & spec_ctrl are trying to verify two things:
516 *
517 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
518 * ensures that we do not accidentally generate an L02 MSR bitmap
519 * from the L12 MSR bitmap that is too permissive.
520 * 2. That L1 or L2s have actually used the MSR. This avoids
521 * unnecessarily merging of the bitmap if the MSR is unused. This
522 * works properly because we only update the L01 MSR bitmap lazily.
523 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
524 * updated to reflect this when L1 (or its L2s) actually write to
525 * the MSR.
526 */
527 bool pred_cmd = !msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD);
528 bool spec_ctrl = !msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL);
529
530 /* Nothing to do if the MSR bitmap is not in use. */
531 if (!cpu_has_vmx_msr_bitmap() ||
532 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
533 return false;
534
535 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
536 !pred_cmd && !spec_ctrl)
537 return false;
538
539 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->msr_bitmap);
540 if (is_error_page(page))
541 return false;
542
543 msr_bitmap_l1 = (unsigned long *)kmap(page);
544 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
545 /*
546 * L0 need not intercept reads for MSRs between 0x800 and 0x8ff, it
547 * just lets the processor take the value from the virtual-APIC page;
548 * take those 256 bits directly from the L1 bitmap.
549 */
550 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
551 unsigned word = msr / BITS_PER_LONG;
552 msr_bitmap_l0[word] = msr_bitmap_l1[word];
553 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
554 }
555 } else {
556 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
557 unsigned word = msr / BITS_PER_LONG;
558 msr_bitmap_l0[word] = ~0;
559 msr_bitmap_l0[word + (0x800 / sizeof(long))] = ~0;
560 }
561 }
562
563 nested_vmx_disable_intercept_for_msr(
564 msr_bitmap_l1, msr_bitmap_l0,
565 X2APIC_MSR(APIC_TASKPRI),
566 MSR_TYPE_W);
567
568 if (nested_cpu_has_vid(vmcs12)) {
569 nested_vmx_disable_intercept_for_msr(
570 msr_bitmap_l1, msr_bitmap_l0,
571 X2APIC_MSR(APIC_EOI),
572 MSR_TYPE_W);
573 nested_vmx_disable_intercept_for_msr(
574 msr_bitmap_l1, msr_bitmap_l0,
575 X2APIC_MSR(APIC_SELF_IPI),
576 MSR_TYPE_W);
577 }
578
579 if (spec_ctrl)
580 nested_vmx_disable_intercept_for_msr(
581 msr_bitmap_l1, msr_bitmap_l0,
582 MSR_IA32_SPEC_CTRL,
583 MSR_TYPE_R | MSR_TYPE_W);
584
585 if (pred_cmd)
586 nested_vmx_disable_intercept_for_msr(
587 msr_bitmap_l1, msr_bitmap_l0,
588 MSR_IA32_PRED_CMD,
589 MSR_TYPE_W);
590
591 kunmap(page);
592 kvm_release_page_clean(page);
593
594 return true;
595}
596
597static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
598 struct vmcs12 *vmcs12)
599{
600 struct vmcs12 *shadow;
601 struct page *page;
602
603 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
604 vmcs12->vmcs_link_pointer == -1ull)
605 return;
606
607 shadow = get_shadow_vmcs12(vcpu);
608 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
609
610 memcpy(shadow, kmap(page), VMCS12_SIZE);
611
612 kunmap(page);
613 kvm_release_page_clean(page);
614}
615
616static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
617 struct vmcs12 *vmcs12)
618{
619 struct vcpu_vmx *vmx = to_vmx(vcpu);
620
621 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
622 vmcs12->vmcs_link_pointer == -1ull)
623 return;
624
625 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
626 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
627}
628
629/*
630 * In nested virtualization, check if L1 has set
631 * VM_EXIT_ACK_INTR_ON_EXIT
632 */
633static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
634{
635 return get_vmcs12(vcpu)->vm_exit_controls &
636 VM_EXIT_ACK_INTR_ON_EXIT;
637}
638
639static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
640{
641 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
642}
643
644static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
645 struct vmcs12 *vmcs12)
646{
647 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
648 !page_address_valid(vcpu, vmcs12->apic_access_addr))
649 return -EINVAL;
650 else
651 return 0;
652}
653
654static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
655 struct vmcs12 *vmcs12)
656{
657 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
658 !nested_cpu_has_apic_reg_virt(vmcs12) &&
659 !nested_cpu_has_vid(vmcs12) &&
660 !nested_cpu_has_posted_intr(vmcs12))
661 return 0;
662
663 /*
664 * If virtualize x2apic mode is enabled,
665 * virtualize apic access must be disabled.
666 */
667 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
668 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
669 return -EINVAL;
670
671 /*
672 * If virtual interrupt delivery is enabled,
673 * we must exit on external interrupts.
674 */
675 if (nested_cpu_has_vid(vmcs12) &&
676 !nested_exit_on_intr(vcpu))
677 return -EINVAL;
678
679 /*
680 * bits 15:8 should be zero in posted_intr_nv,
681 * the descriptor address has been already checked
682 * in nested_get_vmcs12_pages.
683 *
684 * bits 5:0 of posted_intr_desc_addr should be zero.
685 */
686 if (nested_cpu_has_posted_intr(vmcs12) &&
687 (!nested_cpu_has_vid(vmcs12) ||
688 !nested_exit_intr_ack_set(vcpu) ||
689 (vmcs12->posted_intr_nv & 0xff00) ||
690 (vmcs12->posted_intr_desc_addr & 0x3f) ||
691 (vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu))))
692 return -EINVAL;
693
694 /* tpr shadow is needed by all apicv features. */
695 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
696 return -EINVAL;
697
698 return 0;
699}
700
701static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
f9b245e1 702 u32 count, u64 addr)
55d2375e 703{
55d2375e 704 int maxphyaddr;
55d2375e 705
55d2375e
SC
706 if (count == 0)
707 return 0;
708 maxphyaddr = cpuid_maxphyaddr(vcpu);
709 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
f9b245e1 710 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
55d2375e 711 return -EINVAL;
f9b245e1 712
55d2375e
SC
713 return 0;
714}
715
61446ba7
KS
716static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
717 struct vmcs12 *vmcs12)
55d2375e 718{
f9b245e1
SC
719 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_load_count,
720 vmcs12->vm_exit_msr_load_addr) ||
721 nested_vmx_check_msr_switch(vcpu, vmcs12->vm_exit_msr_store_count,
61446ba7 722 vmcs12->vm_exit_msr_store_addr))
55d2375e 723 return -EINVAL;
f9b245e1 724
55d2375e
SC
725 return 0;
726}
727
5fbf9634
KS
728static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
729 struct vmcs12 *vmcs12)
61446ba7
KS
730{
731 if (nested_vmx_check_msr_switch(vcpu, vmcs12->vm_entry_msr_load_count,
732 vmcs12->vm_entry_msr_load_addr))
733 return -EINVAL;
734
735 return 0;
736}
737
55d2375e
SC
738static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
739 struct vmcs12 *vmcs12)
740{
741 if (!nested_cpu_has_pml(vmcs12))
742 return 0;
743
744 if (!nested_cpu_has_ept(vmcs12) ||
745 !page_address_valid(vcpu, vmcs12->pml_address))
746 return -EINVAL;
747
748 return 0;
749}
750
751static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
752 struct vmcs12 *vmcs12)
753{
754 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
755 !nested_cpu_has_ept(vmcs12))
756 return -EINVAL;
757 return 0;
758}
759
760static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
761 struct vmcs12 *vmcs12)
762{
763 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
764 !nested_cpu_has_ept(vmcs12))
765 return -EINVAL;
766 return 0;
767}
768
769static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
770 struct vmcs12 *vmcs12)
771{
772 if (!nested_cpu_has_shadow_vmcs(vmcs12))
773 return 0;
774
775 if (!page_address_valid(vcpu, vmcs12->vmread_bitmap) ||
776 !page_address_valid(vcpu, vmcs12->vmwrite_bitmap))
777 return -EINVAL;
778
779 return 0;
780}
781
782static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
783 struct vmx_msr_entry *e)
784{
785 /* x2APIC MSR accesses are not allowed */
786 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
787 return -EINVAL;
788 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
789 e->index == MSR_IA32_UCODE_REV)
790 return -EINVAL;
791 if (e->reserved != 0)
792 return -EINVAL;
793 return 0;
794}
795
796static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
797 struct vmx_msr_entry *e)
798{
799 if (e->index == MSR_FS_BASE ||
800 e->index == MSR_GS_BASE ||
801 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
802 nested_vmx_msr_check_common(vcpu, e))
803 return -EINVAL;
804 return 0;
805}
806
807static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
808 struct vmx_msr_entry *e)
809{
810 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
811 nested_vmx_msr_check_common(vcpu, e))
812 return -EINVAL;
813 return 0;
814}
815
816/*
817 * Load guest's/host's msr at nested entry/exit.
818 * return 0 for success, entry index for failure.
819 */
820static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
821{
822 u32 i;
823 struct vmx_msr_entry e;
824 struct msr_data msr;
825
826 msr.host_initiated = false;
827 for (i = 0; i < count; i++) {
828 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
829 &e, sizeof(e))) {
830 pr_debug_ratelimited(
831 "%s cannot read MSR entry (%u, 0x%08llx)\n",
832 __func__, i, gpa + i * sizeof(e));
833 goto fail;
834 }
835 if (nested_vmx_load_msr_check(vcpu, &e)) {
836 pr_debug_ratelimited(
837 "%s check failed (%u, 0x%x, 0x%x)\n",
838 __func__, i, e.index, e.reserved);
839 goto fail;
840 }
841 msr.index = e.index;
842 msr.data = e.value;
843 if (kvm_set_msr(vcpu, &msr)) {
844 pr_debug_ratelimited(
845 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
846 __func__, i, e.index, e.value);
847 goto fail;
848 }
849 }
850 return 0;
851fail:
852 return i + 1;
853}
854
855static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
856{
857 u32 i;
858 struct vmx_msr_entry e;
859
860 for (i = 0; i < count; i++) {
861 struct msr_data msr_info;
862 if (kvm_vcpu_read_guest(vcpu,
863 gpa + i * sizeof(e),
864 &e, 2 * sizeof(u32))) {
865 pr_debug_ratelimited(
866 "%s cannot read MSR entry (%u, 0x%08llx)\n",
867 __func__, i, gpa + i * sizeof(e));
868 return -EINVAL;
869 }
870 if (nested_vmx_store_msr_check(vcpu, &e)) {
871 pr_debug_ratelimited(
872 "%s check failed (%u, 0x%x, 0x%x)\n",
873 __func__, i, e.index, e.reserved);
874 return -EINVAL;
875 }
876 msr_info.host_initiated = false;
877 msr_info.index = e.index;
878 if (kvm_get_msr(vcpu, &msr_info)) {
879 pr_debug_ratelimited(
880 "%s cannot read MSR (%u, 0x%x)\n",
881 __func__, i, e.index);
882 return -EINVAL;
883 }
884 if (kvm_vcpu_write_guest(vcpu,
885 gpa + i * sizeof(e) +
886 offsetof(struct vmx_msr_entry, value),
887 &msr_info.data, sizeof(msr_info.data))) {
888 pr_debug_ratelimited(
889 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
890 __func__, i, e.index, msr_info.data);
891 return -EINVAL;
892 }
893 }
894 return 0;
895}
896
897static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
898{
899 unsigned long invalid_mask;
900
901 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
902 return (val & invalid_mask) == 0;
903}
904
905/*
906 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
907 * emulating VM entry into a guest with EPT enabled.
908 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
909 * is assigned to entry_failure_code on failure.
910 */
911static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
912 u32 *entry_failure_code)
913{
914 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
915 if (!nested_cr3_valid(vcpu, cr3)) {
916 *entry_failure_code = ENTRY_FAIL_DEFAULT;
917 return 1;
918 }
919
920 /*
921 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
922 * must not be dereferenced.
923 */
924 if (!is_long_mode(vcpu) && is_pae(vcpu) && is_paging(vcpu) &&
925 !nested_ept) {
926 if (!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3)) {
927 *entry_failure_code = ENTRY_FAIL_PDPTE;
928 return 1;
929 }
930 }
931 }
932
933 if (!nested_ept)
934 kvm_mmu_new_cr3(vcpu, cr3, false);
935
936 vcpu->arch.cr3 = cr3;
937 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
938
939 kvm_init_mmu(vcpu, false);
940
941 return 0;
942}
943
944/*
945 * Returns if KVM is able to config CPU to tag TLB entries
946 * populated by L2 differently than TLB entries populated
947 * by L1.
948 *
949 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
950 *
951 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
952 * with different VPID (L1 entries are tagged with vmx->vpid
953 * while L2 entries are tagged with vmx->nested.vpid02).
954 */
955static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
956{
957 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
958
959 return nested_cpu_has_ept(vmcs12) ||
960 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
961}
962
963static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
964{
965 struct vcpu_vmx *vmx = to_vmx(vcpu);
966
967 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
968}
969
970
971static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
972{
973 return fixed_bits_valid(control, low, high);
974}
975
976static inline u64 vmx_control_msr(u32 low, u32 high)
977{
978 return low | ((u64)high << 32);
979}
980
981static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
982{
983 superset &= mask;
984 subset &= mask;
985
986 return (superset | subset) == superset;
987}
988
989static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
990{
991 const u64 feature_and_reserved =
992 /* feature (except bit 48; see below) */
993 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
994 /* reserved */
995 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
996 u64 vmx_basic = vmx->nested.msrs.basic;
997
998 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
999 return -EINVAL;
1000
1001 /*
1002 * KVM does not emulate a version of VMX that constrains physical
1003 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1004 */
1005 if (data & BIT_ULL(48))
1006 return -EINVAL;
1007
1008 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1009 vmx_basic_vmcs_revision_id(data))
1010 return -EINVAL;
1011
1012 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1013 return -EINVAL;
1014
1015 vmx->nested.msrs.basic = data;
1016 return 0;
1017}
1018
1019static int
1020vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1021{
1022 u64 supported;
1023 u32 *lowp, *highp;
1024
1025 switch (msr_index) {
1026 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1027 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1028 highp = &vmx->nested.msrs.pinbased_ctls_high;
1029 break;
1030 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1031 lowp = &vmx->nested.msrs.procbased_ctls_low;
1032 highp = &vmx->nested.msrs.procbased_ctls_high;
1033 break;
1034 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1035 lowp = &vmx->nested.msrs.exit_ctls_low;
1036 highp = &vmx->nested.msrs.exit_ctls_high;
1037 break;
1038 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1039 lowp = &vmx->nested.msrs.entry_ctls_low;
1040 highp = &vmx->nested.msrs.entry_ctls_high;
1041 break;
1042 case MSR_IA32_VMX_PROCBASED_CTLS2:
1043 lowp = &vmx->nested.msrs.secondary_ctls_low;
1044 highp = &vmx->nested.msrs.secondary_ctls_high;
1045 break;
1046 default:
1047 BUG();
1048 }
1049
1050 supported = vmx_control_msr(*lowp, *highp);
1051
1052 /* Check must-be-1 bits are still 1. */
1053 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1054 return -EINVAL;
1055
1056 /* Check must-be-0 bits are still 0. */
1057 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1058 return -EINVAL;
1059
1060 *lowp = data;
1061 *highp = data >> 32;
1062 return 0;
1063}
1064
1065static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1066{
1067 const u64 feature_and_reserved_bits =
1068 /* feature */
1069 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1070 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1071 /* reserved */
1072 GENMASK_ULL(13, 9) | BIT_ULL(31);
1073 u64 vmx_misc;
1074
1075 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1076 vmx->nested.msrs.misc_high);
1077
1078 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1079 return -EINVAL;
1080
1081 if ((vmx->nested.msrs.pinbased_ctls_high &
1082 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1083 vmx_misc_preemption_timer_rate(data) !=
1084 vmx_misc_preemption_timer_rate(vmx_misc))
1085 return -EINVAL;
1086
1087 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1088 return -EINVAL;
1089
1090 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1091 return -EINVAL;
1092
1093 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1094 return -EINVAL;
1095
1096 vmx->nested.msrs.misc_low = data;
1097 vmx->nested.msrs.misc_high = data >> 32;
1098
1099 /*
1100 * If L1 has read-only VM-exit information fields, use the
1101 * less permissive vmx_vmwrite_bitmap to specify write
1102 * permissions for the shadow VMCS.
1103 */
1104 if (enable_shadow_vmcs && !nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1105 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
1106
1107 return 0;
1108}
1109
1110static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1111{
1112 u64 vmx_ept_vpid_cap;
1113
1114 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1115 vmx->nested.msrs.vpid_caps);
1116
1117 /* Every bit is either reserved or a feature bit. */
1118 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1119 return -EINVAL;
1120
1121 vmx->nested.msrs.ept_caps = data;
1122 vmx->nested.msrs.vpid_caps = data >> 32;
1123 return 0;
1124}
1125
1126static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1127{
1128 u64 *msr;
1129
1130 switch (msr_index) {
1131 case MSR_IA32_VMX_CR0_FIXED0:
1132 msr = &vmx->nested.msrs.cr0_fixed0;
1133 break;
1134 case MSR_IA32_VMX_CR4_FIXED0:
1135 msr = &vmx->nested.msrs.cr4_fixed0;
1136 break;
1137 default:
1138 BUG();
1139 }
1140
1141 /*
1142 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1143 * must be 1 in the restored value.
1144 */
1145 if (!is_bitwise_subset(data, *msr, -1ULL))
1146 return -EINVAL;
1147
1148 *msr = data;
1149 return 0;
1150}
1151
1152/*
1153 * Called when userspace is restoring VMX MSRs.
1154 *
1155 * Returns 0 on success, non-0 otherwise.
1156 */
1157int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1158{
1159 struct vcpu_vmx *vmx = to_vmx(vcpu);
1160
1161 /*
1162 * Don't allow changes to the VMX capability MSRs while the vCPU
1163 * is in VMX operation.
1164 */
1165 if (vmx->nested.vmxon)
1166 return -EBUSY;
1167
1168 switch (msr_index) {
1169 case MSR_IA32_VMX_BASIC:
1170 return vmx_restore_vmx_basic(vmx, data);
1171 case MSR_IA32_VMX_PINBASED_CTLS:
1172 case MSR_IA32_VMX_PROCBASED_CTLS:
1173 case MSR_IA32_VMX_EXIT_CTLS:
1174 case MSR_IA32_VMX_ENTRY_CTLS:
1175 /*
1176 * The "non-true" VMX capability MSRs are generated from the
1177 * "true" MSRs, so we do not support restoring them directly.
1178 *
1179 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1180 * should restore the "true" MSRs with the must-be-1 bits
1181 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1182 * DEFAULT SETTINGS".
1183 */
1184 return -EINVAL;
1185 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1186 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1187 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1188 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1189 case MSR_IA32_VMX_PROCBASED_CTLS2:
1190 return vmx_restore_control_msr(vmx, msr_index, data);
1191 case MSR_IA32_VMX_MISC:
1192 return vmx_restore_vmx_misc(vmx, data);
1193 case MSR_IA32_VMX_CR0_FIXED0:
1194 case MSR_IA32_VMX_CR4_FIXED0:
1195 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1196 case MSR_IA32_VMX_CR0_FIXED1:
1197 case MSR_IA32_VMX_CR4_FIXED1:
1198 /*
1199 * These MSRs are generated based on the vCPU's CPUID, so we
1200 * do not support restoring them directly.
1201 */
1202 return -EINVAL;
1203 case MSR_IA32_VMX_EPT_VPID_CAP:
1204 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1205 case MSR_IA32_VMX_VMCS_ENUM:
1206 vmx->nested.msrs.vmcs_enum = data;
1207 return 0;
1208 default:
1209 /*
1210 * The rest of the VMX capability MSRs do not support restore.
1211 */
1212 return -EINVAL;
1213 }
1214}
1215
1216/* Returns 0 on success, non-0 otherwise. */
1217int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1218{
1219 switch (msr_index) {
1220 case MSR_IA32_VMX_BASIC:
1221 *pdata = msrs->basic;
1222 break;
1223 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1224 case MSR_IA32_VMX_PINBASED_CTLS:
1225 *pdata = vmx_control_msr(
1226 msrs->pinbased_ctls_low,
1227 msrs->pinbased_ctls_high);
1228 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1229 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1230 break;
1231 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1232 case MSR_IA32_VMX_PROCBASED_CTLS:
1233 *pdata = vmx_control_msr(
1234 msrs->procbased_ctls_low,
1235 msrs->procbased_ctls_high);
1236 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1237 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1238 break;
1239 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1240 case MSR_IA32_VMX_EXIT_CTLS:
1241 *pdata = vmx_control_msr(
1242 msrs->exit_ctls_low,
1243 msrs->exit_ctls_high);
1244 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1245 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1246 break;
1247 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248 case MSR_IA32_VMX_ENTRY_CTLS:
1249 *pdata = vmx_control_msr(
1250 msrs->entry_ctls_low,
1251 msrs->entry_ctls_high);
1252 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1253 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1254 break;
1255 case MSR_IA32_VMX_MISC:
1256 *pdata = vmx_control_msr(
1257 msrs->misc_low,
1258 msrs->misc_high);
1259 break;
1260 case MSR_IA32_VMX_CR0_FIXED0:
1261 *pdata = msrs->cr0_fixed0;
1262 break;
1263 case MSR_IA32_VMX_CR0_FIXED1:
1264 *pdata = msrs->cr0_fixed1;
1265 break;
1266 case MSR_IA32_VMX_CR4_FIXED0:
1267 *pdata = msrs->cr4_fixed0;
1268 break;
1269 case MSR_IA32_VMX_CR4_FIXED1:
1270 *pdata = msrs->cr4_fixed1;
1271 break;
1272 case MSR_IA32_VMX_VMCS_ENUM:
1273 *pdata = msrs->vmcs_enum;
1274 break;
1275 case MSR_IA32_VMX_PROCBASED_CTLS2:
1276 *pdata = vmx_control_msr(
1277 msrs->secondary_ctls_low,
1278 msrs->secondary_ctls_high);
1279 break;
1280 case MSR_IA32_VMX_EPT_VPID_CAP:
1281 *pdata = msrs->ept_caps |
1282 ((u64)msrs->vpid_caps << 32);
1283 break;
1284 case MSR_IA32_VMX_VMFUNC:
1285 *pdata = msrs->vmfunc_controls;
1286 break;
1287 default:
1288 return 1;
1289 }
1290
1291 return 0;
1292}
1293
1294/*
1295 * Copy the writable VMCS shadow fields back to the VMCS12, in case
1296 * they have been modified by the L1 guest. Note that the "read-only"
1297 * VM-exit information fields are actually writable if the vCPU is
1298 * configured to support "VMWRITE to any supported field in the VMCS."
1299 */
1300static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1301{
1302 const u16 *fields[] = {
1303 shadow_read_write_fields,
1304 shadow_read_only_fields
1305 };
1306 const int max_fields[] = {
1307 max_shadow_read_write_fields,
1308 max_shadow_read_only_fields
1309 };
1310 int i, q;
1311 unsigned long field;
1312 u64 field_value;
1313 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1314
1315 preempt_disable();
1316
1317 vmcs_load(shadow_vmcs);
1318
1319 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1320 for (i = 0; i < max_fields[q]; i++) {
1321 field = fields[q][i];
1322 field_value = __vmcs_readl(field);
1323 vmcs12_write_any(get_vmcs12(&vmx->vcpu), field, field_value);
1324 }
1325 /*
1326 * Skip the VM-exit information fields if they are read-only.
1327 */
1328 if (!nested_cpu_has_vmwrite_any_field(&vmx->vcpu))
1329 break;
1330 }
1331
1332 vmcs_clear(shadow_vmcs);
1333 vmcs_load(vmx->loaded_vmcs->vmcs);
1334
1335 preempt_enable();
1336}
1337
1338static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1339{
1340 const u16 *fields[] = {
1341 shadow_read_write_fields,
1342 shadow_read_only_fields
1343 };
1344 const int max_fields[] = {
1345 max_shadow_read_write_fields,
1346 max_shadow_read_only_fields
1347 };
1348 int i, q;
1349 unsigned long field;
1350 u64 field_value = 0;
1351 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1352
1353 vmcs_load(shadow_vmcs);
1354
1355 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1356 for (i = 0; i < max_fields[q]; i++) {
1357 field = fields[q][i];
1358 vmcs12_read_any(get_vmcs12(&vmx->vcpu), field, &field_value);
1359 __vmcs_writel(field, field_value);
1360 }
1361 }
1362
1363 vmcs_clear(shadow_vmcs);
1364 vmcs_load(vmx->loaded_vmcs->vmcs);
1365}
1366
1367static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1368{
1369 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1370 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1371
1372 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1373 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1374 vmcs12->guest_rip = evmcs->guest_rip;
1375
1376 if (unlikely(!(evmcs->hv_clean_fields &
1377 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1378 vmcs12->guest_rsp = evmcs->guest_rsp;
1379 vmcs12->guest_rflags = evmcs->guest_rflags;
1380 vmcs12->guest_interruptibility_info =
1381 evmcs->guest_interruptibility_info;
1382 }
1383
1384 if (unlikely(!(evmcs->hv_clean_fields &
1385 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1386 vmcs12->cpu_based_vm_exec_control =
1387 evmcs->cpu_based_vm_exec_control;
1388 }
1389
1390 if (unlikely(!(evmcs->hv_clean_fields &
1391 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1392 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1393 }
1394
1395 if (unlikely(!(evmcs->hv_clean_fields &
1396 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1397 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1398 }
1399
1400 if (unlikely(!(evmcs->hv_clean_fields &
1401 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1402 vmcs12->vm_entry_intr_info_field =
1403 evmcs->vm_entry_intr_info_field;
1404 vmcs12->vm_entry_exception_error_code =
1405 evmcs->vm_entry_exception_error_code;
1406 vmcs12->vm_entry_instruction_len =
1407 evmcs->vm_entry_instruction_len;
1408 }
1409
1410 if (unlikely(!(evmcs->hv_clean_fields &
1411 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1412 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1413 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1414 vmcs12->host_cr0 = evmcs->host_cr0;
1415 vmcs12->host_cr3 = evmcs->host_cr3;
1416 vmcs12->host_cr4 = evmcs->host_cr4;
1417 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1418 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1419 vmcs12->host_rip = evmcs->host_rip;
1420 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1421 vmcs12->host_es_selector = evmcs->host_es_selector;
1422 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1423 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1424 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1425 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1426 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1427 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1428 }
1429
1430 if (unlikely(!(evmcs->hv_clean_fields &
1431 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1432 vmcs12->pin_based_vm_exec_control =
1433 evmcs->pin_based_vm_exec_control;
1434 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1435 vmcs12->secondary_vm_exec_control =
1436 evmcs->secondary_vm_exec_control;
1437 }
1438
1439 if (unlikely(!(evmcs->hv_clean_fields &
1440 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1441 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1442 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1443 }
1444
1445 if (unlikely(!(evmcs->hv_clean_fields &
1446 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1447 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1448 }
1449
1450 if (unlikely(!(evmcs->hv_clean_fields &
1451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1452 vmcs12->guest_es_base = evmcs->guest_es_base;
1453 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1454 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1455 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1456 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1457 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1458 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1459 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1460 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1461 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1462 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1463 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1464 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1465 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1466 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1467 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1468 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1469 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1470 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1471 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1472 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1473 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1474 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1475 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1476 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1477 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1478 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1479 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1480 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1481 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1482 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1483 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1484 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1485 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1486 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1487 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1488 }
1489
1490 if (unlikely(!(evmcs->hv_clean_fields &
1491 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1492 vmcs12->tsc_offset = evmcs->tsc_offset;
1493 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1494 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1495 }
1496
1497 if (unlikely(!(evmcs->hv_clean_fields &
1498 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1499 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1500 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1501 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1502 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1503 vmcs12->guest_cr0 = evmcs->guest_cr0;
1504 vmcs12->guest_cr3 = evmcs->guest_cr3;
1505 vmcs12->guest_cr4 = evmcs->guest_cr4;
1506 vmcs12->guest_dr7 = evmcs->guest_dr7;
1507 }
1508
1509 if (unlikely(!(evmcs->hv_clean_fields &
1510 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1511 vmcs12->host_fs_base = evmcs->host_fs_base;
1512 vmcs12->host_gs_base = evmcs->host_gs_base;
1513 vmcs12->host_tr_base = evmcs->host_tr_base;
1514 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1515 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1516 vmcs12->host_rsp = evmcs->host_rsp;
1517 }
1518
1519 if (unlikely(!(evmcs->hv_clean_fields &
1520 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1521 vmcs12->ept_pointer = evmcs->ept_pointer;
1522 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1523 }
1524
1525 if (unlikely(!(evmcs->hv_clean_fields &
1526 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1527 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1528 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1529 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1530 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1531 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1532 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1533 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1534 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1535 vmcs12->guest_pending_dbg_exceptions =
1536 evmcs->guest_pending_dbg_exceptions;
1537 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1538 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1539 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1540 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1541 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1542 }
1543
1544 /*
1545 * Not used?
1546 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1547 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1548 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1549 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1550 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1551 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1552 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1553 * vmcs12->page_fault_error_code_mask =
1554 * evmcs->page_fault_error_code_mask;
1555 * vmcs12->page_fault_error_code_match =
1556 * evmcs->page_fault_error_code_match;
1557 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1558 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1559 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1560 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1561 */
1562
1563 /*
1564 * Read only fields:
1565 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1566 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1567 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1568 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1569 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1570 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1571 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1572 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1573 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1574 * vmcs12->exit_qualification = evmcs->exit_qualification;
1575 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1576 *
1577 * Not present in struct vmcs12:
1578 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1579 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1580 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1581 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1582 */
1583
1584 return 0;
1585}
1586
1587static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1588{
1589 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1590 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1591
1592 /*
1593 * Should not be changed by KVM:
1594 *
1595 * evmcs->host_es_selector = vmcs12->host_es_selector;
1596 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1597 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1598 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1599 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1600 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1601 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1602 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1603 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1604 * evmcs->host_cr0 = vmcs12->host_cr0;
1605 * evmcs->host_cr3 = vmcs12->host_cr3;
1606 * evmcs->host_cr4 = vmcs12->host_cr4;
1607 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1608 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1609 * evmcs->host_rip = vmcs12->host_rip;
1610 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1611 * evmcs->host_fs_base = vmcs12->host_fs_base;
1612 * evmcs->host_gs_base = vmcs12->host_gs_base;
1613 * evmcs->host_tr_base = vmcs12->host_tr_base;
1614 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1615 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1616 * evmcs->host_rsp = vmcs12->host_rsp;
1617 * sync_vmcs12() doesn't read these:
1618 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1619 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1620 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1621 * evmcs->ept_pointer = vmcs12->ept_pointer;
1622 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1623 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1624 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1625 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1626 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1627 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1628 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1629 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1630 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1631 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1632 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1633 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1634 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1635 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1636 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1637 * evmcs->page_fault_error_code_mask =
1638 * vmcs12->page_fault_error_code_mask;
1639 * evmcs->page_fault_error_code_match =
1640 * vmcs12->page_fault_error_code_match;
1641 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1642 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1643 * evmcs->tsc_offset = vmcs12->tsc_offset;
1644 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1645 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1646 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1647 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1648 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1649 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1650 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1651 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1652 *
1653 * Not present in struct vmcs12:
1654 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1655 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1656 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1657 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1658 */
1659
1660 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1661 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1662 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1663 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1664 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1665 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1666 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1667 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1668
1669 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1670 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1671 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1672 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1673 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1674 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1675 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1676 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1677 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1678 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1679
1680 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1681 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1682 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1683 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1684 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1685 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1686 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1687 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1688
1689 evmcs->guest_es_base = vmcs12->guest_es_base;
1690 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1691 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1692 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1693 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1694 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1695 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1696 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1697 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1698 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1699
1700 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1701 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1702
1703 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1704 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1705 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1706 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1707
1708 evmcs->guest_pending_dbg_exceptions =
1709 vmcs12->guest_pending_dbg_exceptions;
1710 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1711 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1712
1713 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1714 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1715
1716 evmcs->guest_cr0 = vmcs12->guest_cr0;
1717 evmcs->guest_cr3 = vmcs12->guest_cr3;
1718 evmcs->guest_cr4 = vmcs12->guest_cr4;
1719 evmcs->guest_dr7 = vmcs12->guest_dr7;
1720
1721 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1722
1723 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1724 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1725 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1726 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1727 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1728 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1729 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1730 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1731
1732 evmcs->exit_qualification = vmcs12->exit_qualification;
1733
1734 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1735 evmcs->guest_rsp = vmcs12->guest_rsp;
1736 evmcs->guest_rflags = vmcs12->guest_rflags;
1737
1738 evmcs->guest_interruptibility_info =
1739 vmcs12->guest_interruptibility_info;
1740 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1741 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1742 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1743 evmcs->vm_entry_exception_error_code =
1744 vmcs12->vm_entry_exception_error_code;
1745 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1746
1747 evmcs->guest_rip = vmcs12->guest_rip;
1748
1749 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1750
1751 return 0;
1752}
1753
1754/*
1755 * This is an equivalent of the nested hypervisor executing the vmptrld
1756 * instruction.
1757 */
1758static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1759 bool from_launch)
1760{
1761 struct vcpu_vmx *vmx = to_vmx(vcpu);
1762 struct hv_vp_assist_page assist_page;
1763
1764 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1765 return 1;
1766
1767 if (unlikely(!kvm_hv_get_assist_page(vcpu, &assist_page)))
1768 return 1;
1769
1770 if (unlikely(!assist_page.enlighten_vmentry))
1771 return 1;
1772
1773 if (unlikely(assist_page.current_nested_vmcs !=
1774 vmx->nested.hv_evmcs_vmptr)) {
1775
1776 if (!vmx->nested.hv_evmcs)
1777 vmx->nested.current_vmptr = -1ull;
1778
1779 nested_release_evmcs(vcpu);
1780
1781 vmx->nested.hv_evmcs_page = kvm_vcpu_gpa_to_page(
1782 vcpu, assist_page.current_nested_vmcs);
1783
1784 if (unlikely(is_error_page(vmx->nested.hv_evmcs_page)))
1785 return 0;
1786
1787 vmx->nested.hv_evmcs = kmap(vmx->nested.hv_evmcs_page);
1788
1789 /*
1790 * Currently, KVM only supports eVMCS version 1
1791 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1792 * value to first u32 field of eVMCS which should specify eVMCS
1793 * VersionNumber.
1794 *
1795 * Guest should be aware of supported eVMCS versions by host by
1796 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1797 * expected to set this CPUID leaf according to the value
1798 * returned in vmcs_version from nested_enable_evmcs().
1799 *
1800 * However, it turns out that Microsoft Hyper-V fails to comply
1801 * to their own invented interface: When Hyper-V use eVMCS, it
1802 * just sets first u32 field of eVMCS to revision_id specified
1803 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1804 * which is one of the supported versions specified in
1805 * CPUID.0x4000000A.EAX[0:15].
1806 *
1807 * To overcome Hyper-V bug, we accept here either a supported
1808 * eVMCS version or VMCS12 revision_id as valid values for first
1809 * u32 field of eVMCS.
1810 */
1811 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1812 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1813 nested_release_evmcs(vcpu);
1814 return 0;
1815 }
1816
1817 vmx->nested.dirty_vmcs12 = true;
1818 /*
1819 * As we keep L2 state for one guest only 'hv_clean_fields' mask
1820 * can't be used when we switch between them. Reset it here for
1821 * simplicity.
1822 */
1823 vmx->nested.hv_evmcs->hv_clean_fields &=
1824 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1825 vmx->nested.hv_evmcs_vmptr = assist_page.current_nested_vmcs;
1826
1827 /*
1828 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1829 * reloaded from guest's memory (read only fields, fields not
1830 * present in struct hv_enlightened_vmcs, ...). Make sure there
1831 * are no leftovers.
1832 */
1833 if (from_launch) {
1834 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1835 memset(vmcs12, 0, sizeof(*vmcs12));
1836 vmcs12->hdr.revision_id = VMCS12_REVISION;
1837 }
1838
1839 }
1840 return 1;
1841}
1842
1843void nested_sync_from_vmcs12(struct kvm_vcpu *vcpu)
1844{
1845 struct vcpu_vmx *vmx = to_vmx(vcpu);
1846
1847 /*
1848 * hv_evmcs may end up being not mapped after migration (when
1849 * L2 was running), map it here to make sure vmcs12 changes are
1850 * properly reflected.
1851 */
1852 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1853 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1854
1855 if (vmx->nested.hv_evmcs) {
1856 copy_vmcs12_to_enlightened(vmx);
1857 /* All fields are clean */
1858 vmx->nested.hv_evmcs->hv_clean_fields |=
1859 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1860 } else {
1861 copy_vmcs12_to_shadow(vmx);
1862 }
1863
1864 vmx->nested.need_vmcs12_sync = false;
1865}
1866
1867static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1868{
1869 struct vcpu_vmx *vmx =
1870 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1871
1872 vmx->nested.preemption_timer_expired = true;
1873 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1874 kvm_vcpu_kick(&vmx->vcpu);
1875
1876 return HRTIMER_NORESTART;
1877}
1878
1879static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1880{
1881 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1882 struct vcpu_vmx *vmx = to_vmx(vcpu);
1883
1884 /*
1885 * A timer value of zero is architecturally guaranteed to cause
1886 * a VMExit prior to executing any instructions in the guest.
1887 */
1888 if (preemption_timeout == 0) {
1889 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1890 return;
1891 }
1892
1893 if (vcpu->arch.virtual_tsc_khz == 0)
1894 return;
1895
1896 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1897 preemption_timeout *= 1000000;
1898 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1899 hrtimer_start(&vmx->nested.preemption_timer,
1900 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1901}
1902
1903static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1904{
1905 if (vmx->nested.nested_run_pending &&
1906 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1907 return vmcs12->guest_ia32_efer;
1908 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1909 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1910 else
1911 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1912}
1913
1914static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1915{
1916 /*
1917 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1918 * according to L0's settings (vmcs12 is irrelevant here). Host
1919 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1920 * will be set as needed prior to VMLAUNCH/VMRESUME.
1921 */
1922 if (vmx->nested.vmcs02_initialized)
1923 return;
1924 vmx->nested.vmcs02_initialized = true;
1925
1926 /*
1927 * We don't care what the EPTP value is we just need to guarantee
1928 * it's valid so we don't get a false positive when doing early
1929 * consistency checks.
1930 */
1931 if (enable_ept && nested_early_check)
1932 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1933
1934 /* All VMFUNCs are currently emulated through L0 vmexits. */
1935 if (cpu_has_vmx_vmfunc())
1936 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1937
1938 if (cpu_has_vmx_posted_intr())
1939 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1940
1941 if (cpu_has_vmx_msr_bitmap())
1942 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
1943
1944 if (enable_pml)
1945 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
1946
1947 /*
1948 * Set the MSR load/store lists to match L0's settings. Only the
1949 * addresses are constant (for vmcs02), the counts can change based
1950 * on L2's behavior, e.g. switching to/from long mode.
1951 */
1952 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
1953 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
1954 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
1955
1956 vmx_set_constant_host_state(vmx);
1957}
1958
1959static void prepare_vmcs02_early_full(struct vcpu_vmx *vmx,
1960 struct vmcs12 *vmcs12)
1961{
1962 prepare_vmcs02_constant_state(vmx);
1963
1964 vmcs_write64(VMCS_LINK_POINTER, -1ull);
1965
1966 if (enable_vpid) {
1967 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
1968 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
1969 else
1970 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
1971 }
1972}
1973
1974static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1975{
1976 u32 exec_control, vmcs12_exec_ctrl;
1977 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
1978
1979 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
1980 prepare_vmcs02_early_full(vmx, vmcs12);
1981
1982 /*
1983 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
1984 * entry, but only if the current (host) sp changed from the value
1985 * we wrote last (vmx->host_rsp). This cache is no longer relevant
1986 * if we switch vmcs, and rather than hold a separate cache per vmcs,
1987 * here we just force the write to happen on entry. host_rsp will
1988 * also be written unconditionally by nested_vmx_check_vmentry_hw()
1989 * if we are doing early consistency checks via hardware.
1990 */
1991 vmx->host_rsp = 0;
1992
1993 /*
1994 * PIN CONTROLS
1995 */
1996 exec_control = vmcs12->pin_based_vm_exec_control;
1997
1998 /* Preemption timer setting is computed directly in vmx_vcpu_run. */
1999 exec_control |= vmcs_config.pin_based_exec_ctrl;
2000 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
2001 vmx->loaded_vmcs->hv_timer_armed = false;
2002
2003 /* Posted interrupts setting is only taken from vmcs12. */
2004 if (nested_cpu_has_posted_intr(vmcs12)) {
2005 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2006 vmx->nested.pi_pending = false;
2007 } else {
2008 exec_control &= ~PIN_BASED_POSTED_INTR;
2009 }
2010 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
2011
2012 /*
2013 * EXEC CONTROLS
2014 */
2015 exec_control = vmx_exec_control(vmx); /* L0's desires */
2016 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2017 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2018 exec_control &= ~CPU_BASED_TPR_SHADOW;
2019 exec_control |= vmcs12->cpu_based_vm_exec_control;
2020
2021 /*
2022 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR. Later, if
2023 * nested_get_vmcs12_pages can't fix it up, the illegal value
2024 * will result in a VM entry failure.
2025 */
2026 if (exec_control & CPU_BASED_TPR_SHADOW) {
2027 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
2028 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2029 } else {
2030#ifdef CONFIG_X86_64
2031 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2032 CPU_BASED_CR8_STORE_EXITING;
2033#endif
2034 }
2035
2036 /*
2037 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2038 * for I/O port accesses.
2039 */
2040 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2041 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2042 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
2043
2044 /*
2045 * SECONDARY EXEC CONTROLS
2046 */
2047 if (cpu_has_secondary_exec_ctrls()) {
2048 exec_control = vmx->secondary_exec_control;
2049
2050 /* Take the following fields only from vmcs12 */
2051 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2052 SECONDARY_EXEC_ENABLE_INVPCID |
2053 SECONDARY_EXEC_RDTSCP |
2054 SECONDARY_EXEC_XSAVES |
2055 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2056 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2057 SECONDARY_EXEC_ENABLE_VMFUNC);
2058 if (nested_cpu_has(vmcs12,
2059 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2060 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2061 ~SECONDARY_EXEC_ENABLE_PML;
2062 exec_control |= vmcs12_exec_ctrl;
2063 }
2064
2065 /* VMCS shadowing for L2 is emulated for now */
2066 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2067
2068 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2069 vmcs_write16(GUEST_INTR_STATUS,
2070 vmcs12->guest_intr_status);
2071
2072 /*
2073 * Write an illegal value to APIC_ACCESS_ADDR. Later,
2074 * nested_get_vmcs12_pages will either fix it up or
2075 * remove the VM execution control.
2076 */
2077 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)
2078 vmcs_write64(APIC_ACCESS_ADDR, -1ull);
2079
2080 if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2081 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
2082
2083 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
2084 }
2085
2086 /*
2087 * ENTRY CONTROLS
2088 *
2089 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2090 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2091 * on the related bits (if supported by the CPU) in the hope that
2092 * we can avoid VMWrites during vmx_set_efer().
2093 */
2094 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2095 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2096 if (cpu_has_load_ia32_efer()) {
2097 if (guest_efer & EFER_LMA)
2098 exec_control |= VM_ENTRY_IA32E_MODE;
2099 if (guest_efer != host_efer)
2100 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2101 }
2102 vm_entry_controls_init(vmx, exec_control);
2103
2104 /*
2105 * EXIT CONTROLS
2106 *
2107 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2108 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2109 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2110 */
2111 exec_control = vmx_vmexit_ctrl();
2112 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2113 exec_control |= VM_EXIT_LOAD_IA32_EFER;
2114 vm_exit_controls_init(vmx, exec_control);
2115
2116 /*
2117 * Conceptually we want to copy the PML address and index from
2118 * vmcs01 here, and then back to vmcs01 on nested vmexit. But,
2119 * since we always flush the log on each vmexit and never change
2120 * the PML address (once set), this happens to be equivalent to
2121 * simply resetting the index in vmcs02.
2122 */
2123 if (enable_pml)
2124 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2125
2126 /*
2127 * Interrupt/Exception Fields
2128 */
2129 if (vmx->nested.nested_run_pending) {
2130 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2131 vmcs12->vm_entry_intr_info_field);
2132 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2133 vmcs12->vm_entry_exception_error_code);
2134 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2135 vmcs12->vm_entry_instruction_len);
2136 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2137 vmcs12->guest_interruptibility_info);
2138 vmx->loaded_vmcs->nmi_known_unmasked =
2139 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2140 } else {
2141 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2142 }
2143}
2144
2145static void prepare_vmcs02_full(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2146{
2147 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2148
2149 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2150 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2151 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2152 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2153 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2154 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2155 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2156 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2157 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2158 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2159 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2160 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2161 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2162 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2163 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2164 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2165 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2166 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2167 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2168 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2169 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2170 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2171 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2172 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2173 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2174 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2175 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2176 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2177 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2178 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2179 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2180 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2181 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2182 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2183 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2184 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2185 }
2186
2187 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2188 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2189 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2190 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2191 vmcs12->guest_pending_dbg_exceptions);
2192 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2193 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2194
2195 /*
2196 * L1 may access the L2's PDPTR, so save them to construct
2197 * vmcs12
2198 */
2199 if (enable_ept) {
2200 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2201 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2202 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2203 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2204 }
2205 }
2206
2207 if (nested_cpu_has_xsaves(vmcs12))
2208 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2209
2210 /*
2211 * Whether page-faults are trapped is determined by a combination of
2212 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2213 * If enable_ept, L0 doesn't care about page faults and we should
2214 * set all of these to L1's desires. However, if !enable_ept, L0 does
2215 * care about (at least some) page faults, and because it is not easy
2216 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2217 * to exit on each and every L2 page fault. This is done by setting
2218 * MASK=MATCH=0 and (see below) EB.PF=1.
2219 * Note that below we don't need special code to set EB.PF beyond the
2220 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2221 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2222 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2223 */
2224 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2225 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2226 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2227 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2228
2229 if (cpu_has_vmx_apicv()) {
2230 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2231 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2232 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2233 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2234 }
2235
2236 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2237 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2238
2239 set_cr4_guest_host_mask(vmx);
2240
2241 if (kvm_mpx_supported()) {
2242 if (vmx->nested.nested_run_pending &&
2243 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2244 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2245 else
2246 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2247 }
2248}
2249
2250/*
2251 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2252 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2253 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2254 * guest in a way that will both be appropriate to L1's requests, and our
2255 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2256 * function also has additional necessary side-effects, like setting various
2257 * vcpu->arch fields.
2258 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2259 * is assigned to entry_failure_code on failure.
2260 */
2261static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2262 u32 *entry_failure_code)
2263{
2264 struct vcpu_vmx *vmx = to_vmx(vcpu);
2265 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2266
2267 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs) {
2268 prepare_vmcs02_full(vmx, vmcs12);
2269 vmx->nested.dirty_vmcs12 = false;
2270 }
2271
2272 /*
2273 * First, the fields that are shadowed. This must be kept in sync
2274 * with vmcs_shadow_fields.h.
2275 */
2276 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2277 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2278 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2279 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2280 }
2281
2282 if (vmx->nested.nested_run_pending &&
2283 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2284 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2285 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2286 } else {
2287 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2288 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2289 }
2290 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2291
2292 vmx->nested.preemption_timer_expired = false;
2293 if (nested_cpu_has_preemption_timer(vmcs12))
2294 vmx_start_preemption_timer(vcpu);
2295
2296 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2297 * bitwise-or of what L1 wants to trap for L2, and what we want to
2298 * trap. Note that CR0.TS also needs updating - we do this later.
2299 */
2300 update_exception_bitmap(vcpu);
2301 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2302 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2303
2304 if (vmx->nested.nested_run_pending &&
2305 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2306 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2307 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2308 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2309 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2310 }
2311
2312 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2313
2314 if (kvm_has_tsc_control)
2315 decache_tsc_multiplier(vmx);
2316
2317 if (enable_vpid) {
2318 /*
2319 * There is no direct mapping between vpid02 and vpid12, the
2320 * vpid02 is per-vCPU for L0 and reused while the value of
2321 * vpid12 is changed w/ one invvpid during nested vmentry.
2322 * The vpid12 is allocated by L1 for L2, so it will not
2323 * influence global bitmap(for vpid01 and vpid02 allocation)
2324 * even if spawn a lot of nested vCPUs.
2325 */
2326 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2327 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2328 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2329 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2330 }
2331 } else {
2332 /*
2333 * If L1 use EPT, then L0 needs to execute INVEPT on
2334 * EPTP02 instead of EPTP01. Therefore, delay TLB
2335 * flush until vmcs02->eptp is fully updated by
2336 * KVM_REQ_LOAD_CR3. Note that this assumes
2337 * KVM_REQ_TLB_FLUSH is evaluated after
2338 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2339 */
2340 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2341 }
2342 }
2343
2344 if (nested_cpu_has_ept(vmcs12))
2345 nested_ept_init_mmu_context(vcpu);
2346 else if (nested_cpu_has2(vmcs12,
2347 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2348 vmx_flush_tlb(vcpu, true);
2349
2350 /*
2351 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2352 * bits which we consider mandatory enabled.
2353 * The CR0_READ_SHADOW is what L2 should have expected to read given
2354 * the specifications by L1; It's not enough to take
2355 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2356 * have more bits than L1 expected.
2357 */
2358 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2359 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2360
2361 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2362 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2363
2364 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2365 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2366 vmx_set_efer(vcpu, vcpu->arch.efer);
2367
2368 /*
2369 * Guest state is invalid and unrestricted guest is disabled,
2370 * which means L1 attempted VMEntry to L2 with invalid state.
2371 * Fail the VMEntry.
2372 */
2373 if (vmx->emulation_required) {
2374 *entry_failure_code = ENTRY_FAIL_DEFAULT;
2375 return 1;
2376 }
2377
2378 /* Shadow page tables on either EPT or shadow page tables. */
2379 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2380 entry_failure_code))
2381 return 1;
2382
2383 if (!enable_ept)
2384 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2385
2386 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
2387 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
2388 return 0;
2389}
2390
2391static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2392{
2393 if (!nested_cpu_has_nmi_exiting(vmcs12) &&
2394 nested_cpu_has_virtual_nmis(vmcs12))
2395 return -EINVAL;
2396
2397 if (!nested_cpu_has_virtual_nmis(vmcs12) &&
2398 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING))
2399 return -EINVAL;
2400
2401 return 0;
2402}
2403
2404static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2405{
2406 struct vcpu_vmx *vmx = to_vmx(vcpu);
2407 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2408
2409 /* Check for memory type validity */
2410 switch (address & VMX_EPTP_MT_MASK) {
2411 case VMX_EPTP_MT_UC:
2412 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT))
2413 return false;
2414 break;
2415 case VMX_EPTP_MT_WB:
2416 if (!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT))
2417 return false;
2418 break;
2419 default:
2420 return false;
2421 }
2422
2423 /* only 4 levels page-walk length are valid */
2424 if ((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4)
2425 return false;
2426
2427 /* Reserved bits should not be set */
2428 if (address >> maxphyaddr || ((address >> 7) & 0x1f))
2429 return false;
2430
2431 /* AD, if set, should be supported */
2432 if (address & VMX_EPTP_AD_ENABLE_BIT) {
2433 if (!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT))
2434 return false;
2435 }
2436
2437 return true;
2438}
2439
461b4ba4
KS
2440/*
2441 * Checks related to VM-Execution Control Fields
2442 */
2443static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2444 struct vmcs12 *vmcs12)
55d2375e
SC
2445{
2446 struct vcpu_vmx *vmx = to_vmx(vcpu);
55d2375e 2447
461b4ba4 2448 if (!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
55d2375e
SC
2449 vmx->nested.msrs.pinbased_ctls_low,
2450 vmx->nested.msrs.pinbased_ctls_high) ||
461b4ba4
KS
2451 !vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2452 vmx->nested.msrs.procbased_ctls_low,
2453 vmx->nested.msrs.procbased_ctls_high))
2454 return -EINVAL;
55d2375e 2455
461b4ba4
KS
2456 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2457 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
2458 vmx->nested.msrs.secondary_ctls_low,
2459 vmx->nested.msrs.secondary_ctls_high))
2460 return -EINVAL;
2461
2462 if (vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu) ||
2463 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2464 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2465 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2466 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2467 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2468 nested_vmx_check_nmi_controls(vmcs12) ||
2469 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2470 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2471 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2472 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2473 (nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2474 return -EINVAL;
2475
2476 if (nested_cpu_has_ept(vmcs12) &&
2477 !valid_ept_address(vcpu, vmcs12->ept_pointer))
2478 return -EINVAL;
55d2375e
SC
2479
2480 if (nested_cpu_has_vmfunc(vmcs12)) {
2481 if (vmcs12->vm_function_control &
2482 ~vmx->nested.msrs.vmfunc_controls)
461b4ba4 2483 return -EINVAL;
55d2375e
SC
2484
2485 if (nested_cpu_has_eptp_switching(vmcs12)) {
2486 if (!nested_cpu_has_ept(vmcs12) ||
2487 !page_address_valid(vcpu, vmcs12->eptp_list_address))
461b4ba4 2488 return -EINVAL;
55d2375e
SC
2489 }
2490 }
2491
461b4ba4
KS
2492 return 0;
2493}
2494
61446ba7
KS
2495/*
2496 * Checks related to VM-Exit Control Fields
2497 */
2498static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2499 struct vmcs12 *vmcs12)
2500{
2501 struct vcpu_vmx *vmx = to_vmx(vcpu);
2502
2503 if (!vmx_control_verify(vmcs12->vm_exit_controls,
2504 vmx->nested.msrs.exit_ctls_low,
2505 vmx->nested.msrs.exit_ctls_high) ||
2506 nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12))
2507 return -EINVAL;
2508
2509 return 0;
2510}
2511
5fbf9634
KS
2512/*
2513 * Checks related to VM-Entry Control Fields
2514 */
2515static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2516 struct vmcs12 *vmcs12)
461b4ba4
KS
2517{
2518 struct vcpu_vmx *vmx = to_vmx(vcpu);
55d2375e 2519
61446ba7 2520 if (!vmx_control_verify(vmcs12->vm_entry_controls,
461b4ba4
KS
2521 vmx->nested.msrs.entry_ctls_low,
2522 vmx->nested.msrs.entry_ctls_high))
5fbf9634 2523 return -EINVAL;
55d2375e
SC
2524
2525 /*
2526 * From the Intel SDM, volume 3:
2527 * Fields relevant to VM-entry event injection must be set properly.
2528 * These fields are the VM-entry interruption-information field, the
2529 * VM-entry exception error code, and the VM-entry instruction length.
2530 */
2531 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2532 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2533 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2534 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2535 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2536 bool should_have_error_code;
2537 bool urg = nested_cpu_has2(vmcs12,
2538 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2539 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2540
2541 /* VM-entry interruption-info field: interruption type */
2542 if (intr_type == INTR_TYPE_RESERVED ||
2543 (intr_type == INTR_TYPE_OTHER_EVENT &&
2544 !nested_cpu_supports_monitor_trap_flag(vcpu)))
5fbf9634 2545 return -EINVAL;
55d2375e
SC
2546
2547 /* VM-entry interruption-info field: vector */
2548 if ((intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2549 (intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2550 (intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
5fbf9634 2551 return -EINVAL;
55d2375e
SC
2552
2553 /* VM-entry interruption-info field: deliver error code */
2554 should_have_error_code =
2555 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2556 x86_exception_has_error_code(vector);
2557 if (has_error_code != should_have_error_code)
5fbf9634 2558 return -EINVAL;
55d2375e
SC
2559
2560 /* VM-entry exception error code */
2561 if (has_error_code &&
2562 vmcs12->vm_entry_exception_error_code & GENMASK(31, 15))
5fbf9634 2563 return -EINVAL;
55d2375e
SC
2564
2565 /* VM-entry interruption-info field: reserved bits */
2566 if (intr_info & INTR_INFO_RESVD_BITS_MASK)
5fbf9634 2567 return -EINVAL;
55d2375e
SC
2568
2569 /* VM-entry instruction length */
2570 switch (intr_type) {
2571 case INTR_TYPE_SOFT_EXCEPTION:
2572 case INTR_TYPE_SOFT_INTR:
2573 case INTR_TYPE_PRIV_SW_EXCEPTION:
2574 if ((vmcs12->vm_entry_instruction_len > 15) ||
2575 (vmcs12->vm_entry_instruction_len == 0 &&
2576 !nested_cpu_has_zero_length_injection(vcpu)))
5fbf9634 2577 return -EINVAL;
55d2375e
SC
2578 }
2579 }
2580
5fbf9634
KS
2581 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2582 return -EINVAL;
2583
2584 return 0;
2585}
2586
254b2f3b
KS
2587/*
2588 * Checks related to Host Control Registers and MSRs
2589 */
2590static int nested_check_host_control_regs(struct kvm_vcpu *vcpu,
2591 struct vmcs12 *vmcs12)
5fbf9634
KS
2592{
2593 bool ia32e;
2594
5fbf9634
KS
2595 if (!nested_host_cr0_valid(vcpu, vmcs12->host_cr0) ||
2596 !nested_host_cr4_valid(vcpu, vmcs12->host_cr4) ||
2597 !nested_cr3_valid(vcpu, vmcs12->host_cr3))
254b2f3b 2598 return -EINVAL;
5fbf9634
KS
2599 /*
2600 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2601 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2602 * the values of the LMA and LME bits in the field must each be that of
2603 * the host address-space size VM-exit control.
2604 */
2605 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2606 ia32e = (vmcs12->vm_exit_controls &
2607 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
2608 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
2609 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
2610 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME))
254b2f3b 2611 return -EINVAL;
5fbf9634
KS
2612 }
2613
55d2375e
SC
2614 return 0;
2615}
2616
4e445aee
KS
2617/*
2618 * Checks related to Guest Non-register State
2619 */
2620static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
254b2f3b
KS
2621{
2622 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2623 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT)
4e445aee
KS
2624 return -EINVAL;
2625
2626 return 0;
2627}
254b2f3b 2628
4e445aee
KS
2629static int nested_vmx_check_vmentry_prereqs(struct kvm_vcpu *vcpu,
2630 struct vmcs12 *vmcs12)
2631{
254b2f3b
KS
2632 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2633 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2634 nested_check_vm_entry_controls(vcpu, vmcs12))
2635 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2636
2637 if (nested_check_host_control_regs(vcpu, vmcs12))
2638 return VMXERR_ENTRY_INVALID_HOST_STATE_FIELD;
2639
4e445aee
KS
2640 if (nested_check_guest_non_reg_state(vmcs12))
2641 return VMXERR_ENTRY_INVALID_CONTROL_FIELD;
2642
254b2f3b
KS
2643 return 0;
2644}
2645
55d2375e
SC
2646static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2647 struct vmcs12 *vmcs12)
2648{
2649 int r;
2650 struct page *page;
2651 struct vmcs12 *shadow;
2652
2653 if (vmcs12->vmcs_link_pointer == -1ull)
2654 return 0;
2655
2656 if (!page_address_valid(vcpu, vmcs12->vmcs_link_pointer))
2657 return -EINVAL;
2658
2659 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->vmcs_link_pointer);
2660 if (is_error_page(page))
2661 return -EINVAL;
2662
2663 r = 0;
2664 shadow = kmap(page);
2665 if (shadow->hdr.revision_id != VMCS12_REVISION ||
2666 shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12))
2667 r = -EINVAL;
2668 kunmap(page);
2669 kvm_release_page_clean(page);
2670 return r;
2671}
2672
16322a3b 2673static int nested_vmx_check_vmentry_postreqs(struct kvm_vcpu *vcpu,
461b4ba4
KS
2674 struct vmcs12 *vmcs12,
2675 u32 *exit_qual)
55d2375e
SC
2676{
2677 bool ia32e;
2678
2679 *exit_qual = ENTRY_FAIL_DEFAULT;
2680
2681 if (!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0) ||
2682 !nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4))
2683 return 1;
2684
2685 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2686 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
2687 return 1;
2688 }
2689
2690 /*
2691 * If the load IA32_EFER VM-entry control is 1, the following checks
2692 * are performed on the field for the IA32_EFER MSR:
2693 * - Bits reserved in the IA32_EFER MSR must be 0.
2694 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2695 * the IA-32e mode guest VM-exit control. It must also be identical
2696 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2697 * CR0.PG) is 1.
2698 */
2699 if (to_vmx(vcpu)->nested.nested_run_pending &&
2700 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2701 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
2702 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
2703 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
2704 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
2705 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME)))
2706 return 1;
2707 }
2708
2709 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
2710 (is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu) ||
2711 (vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD)))
2712 return 1;
2713
2714 return 0;
2715}
2716
453eafbe 2717static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
55d2375e
SC
2718{
2719 struct vcpu_vmx *vmx = to_vmx(vcpu);
2720 unsigned long cr3, cr4;
2721
2722 if (!nested_early_check)
2723 return 0;
2724
2725 if (vmx->msr_autoload.host.nr)
2726 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2727 if (vmx->msr_autoload.guest.nr)
2728 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2729
2730 preempt_disable();
2731
2732 vmx_prepare_switch_to_guest(vcpu);
2733
2734 /*
2735 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2736 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
2737 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2738 * there is no need to preserve other bits or save/restore the field.
2739 */
2740 vmcs_writel(GUEST_RFLAGS, 0);
2741
55d2375e
SC
2742 cr3 = __get_current_cr3_fast();
2743 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2744 vmcs_writel(HOST_CR3, cr3);
2745 vmx->loaded_vmcs->host_state.cr3 = cr3;
2746 }
2747
2748 cr4 = cr4_read_shadow();
2749 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2750 vmcs_writel(HOST_CR4, cr4);
2751 vmx->loaded_vmcs->host_state.cr4 = cr4;
2752 }
2753
2754 vmx->__launched = vmx->loaded_vmcs->launched;
2755
2756 asm(
2757 /* Set HOST_RSP */
453eafbe 2758 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
55d2375e 2759 __ex("vmwrite %%" _ASM_SP ", %%" _ASM_DX) "\n\t"
453eafbe
SC
2760 "mov %%" _ASM_SP ", %c[host_rsp](%1)\n\t"
2761 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
55d2375e
SC
2762
2763 /* Check if vmlaunch or vmresume is needed */
051a2d3e 2764 "cmpl $0, %c[launched](%% " _ASM_CX")\n\t"
453eafbe
SC
2765
2766 "call vmx_vmenter\n\t"
2767
55d2375e 2768 /* Set vmx->fail accordingly */
051a2d3e 2769 "setbe %c[fail](%% " _ASM_CX")\n\t"
453eafbe 2770 : ASM_CALL_CONSTRAINT
55d2375e
SC
2771 : "c"(vmx), "d"((unsigned long)HOST_RSP),
2772 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
2773 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
453eafbe
SC
2774 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
2775 [wordsize]"i"(sizeof(ulong))
55d2375e
SC
2776 : "rax", "cc", "memory"
2777 );
2778
55d2375e
SC
2779 preempt_enable();
2780
2781 if (vmx->msr_autoload.host.nr)
2782 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2783 if (vmx->msr_autoload.guest.nr)
2784 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2785
2786 if (vmx->fail) {
2787 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
2788 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
2789 vmx->fail = 0;
2790 return 1;
2791 }
2792
2793 /*
2794 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2795 */
2796 local_irq_enable();
2797 if (hw_breakpoint_active())
2798 set_debugreg(__this_cpu_read(cpu_dr7), 7);
2799
2800 /*
2801 * A non-failing VMEntry means we somehow entered guest mode with
2802 * an illegal RIP, and that's just the tip of the iceberg. There
2803 * is no telling what memory has been modified or what state has
2804 * been exposed to unknown code. Hitting this all but guarantees
2805 * a (very critical) hardware issue.
2806 */
2807 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2808 VMX_EXIT_REASONS_FAILED_VMENTRY));
2809
2810 return 0;
2811}
2812STACK_FRAME_NON_STANDARD(nested_vmx_check_vmentry_hw);
2813
2814
2815static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2816 struct vmcs12 *vmcs12);
2817
2818static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2819{
2820 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2821 struct vcpu_vmx *vmx = to_vmx(vcpu);
2822 struct page *page;
2823 u64 hpa;
2824
2825 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2826 /*
2827 * Translate L1 physical address to host physical
2828 * address for vmcs02. Keep the page pinned, so this
2829 * physical address remains valid. We keep a reference
2830 * to it so we can release it later.
2831 */
2832 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2833 kvm_release_page_dirty(vmx->nested.apic_access_page);
2834 vmx->nested.apic_access_page = NULL;
2835 }
2836 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2837 /*
2838 * If translation failed, no matter: This feature asks
2839 * to exit when accessing the given address, and if it
2840 * can never be accessed, this feature won't do
2841 * anything anyway.
2842 */
2843 if (!is_error_page(page)) {
2844 vmx->nested.apic_access_page = page;
2845 hpa = page_to_phys(vmx->nested.apic_access_page);
2846 vmcs_write64(APIC_ACCESS_ADDR, hpa);
2847 } else {
2848 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
2849 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
2850 }
2851 }
2852
2853 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
2854 if (vmx->nested.virtual_apic_page) { /* shouldn't happen */
2855 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
2856 vmx->nested.virtual_apic_page = NULL;
2857 }
2858 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->virtual_apic_page_addr);
2859
2860 /*
2861 * If translation failed, VM entry will fail because
2862 * prepare_vmcs02 set VIRTUAL_APIC_PAGE_ADDR to -1ull.
2863 * Failing the vm entry is _not_ what the processor
2864 * does but it's basically the only possibility we
2865 * have. We could still enter the guest if CR8 load
2866 * exits are enabled, CR8 store exits are enabled, and
2867 * virtualize APIC access is disabled; in this case
2868 * the processor would never use the TPR shadow and we
2869 * could simply clear the bit from the execution
2870 * control. But such a configuration is useless, so
2871 * let's keep the code simple.
2872 */
2873 if (!is_error_page(page)) {
2874 vmx->nested.virtual_apic_page = page;
2875 hpa = page_to_phys(vmx->nested.virtual_apic_page);
2876 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, hpa);
2877 }
2878 }
2879
2880 if (nested_cpu_has_posted_intr(vmcs12)) {
2881 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
2882 kunmap(vmx->nested.pi_desc_page);
2883 kvm_release_page_dirty(vmx->nested.pi_desc_page);
2884 vmx->nested.pi_desc_page = NULL;
42b00f12
LT
2885 vmx->nested.pi_desc = NULL;
2886 vmcs_write64(POSTED_INTR_DESC_ADDR, -1ull);
55d2375e
SC
2887 }
2888 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->posted_intr_desc_addr);
2889 if (is_error_page(page))
2890 return;
2891 vmx->nested.pi_desc_page = page;
2892 vmx->nested.pi_desc = kmap(vmx->nested.pi_desc_page);
2893 vmx->nested.pi_desc =
2894 (struct pi_desc *)((void *)vmx->nested.pi_desc +
2895 (unsigned long)(vmcs12->posted_intr_desc_addr &
2896 (PAGE_SIZE - 1)));
2897 vmcs_write64(POSTED_INTR_DESC_ADDR,
2898 page_to_phys(vmx->nested.pi_desc_page) +
2899 (unsigned long)(vmcs12->posted_intr_desc_addr &
2900 (PAGE_SIZE - 1)));
2901 }
2902 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2903 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL,
2904 CPU_BASED_USE_MSR_BITMAPS);
2905 else
2906 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
2907 CPU_BASED_USE_MSR_BITMAPS);
2908}
2909
2910/*
2911 * Intel's VMX Instruction Reference specifies a common set of prerequisites
2912 * for running VMX instructions (except VMXON, whose prerequisites are
2913 * slightly different). It also specifies what exception to inject otherwise.
2914 * Note that many of these exceptions have priority over VM exits, so they
2915 * don't have to be checked again here.
2916 */
2917static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
2918{
2919 if (!to_vmx(vcpu)->nested.vmxon) {
2920 kvm_queue_exception(vcpu, UD_VECTOR);
2921 return 0;
2922 }
2923
2924 if (vmx_get_cpl(vcpu)) {
2925 kvm_inject_gp(vcpu, 0);
2926 return 0;
2927 }
2928
2929 return 1;
2930}
2931
2932static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
2933{
2934 u8 rvi = vmx_get_rvi();
2935 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
2936
2937 return ((rvi & 0xf0) > (vppr & 0xf0));
2938}
2939
2940static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
2941 struct vmcs12 *vmcs12);
2942
2943/*
2944 * If from_vmentry is false, this is being called from state restore (either RSM
2945 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
2946+ *
2947+ * Returns:
2948+ * 0 - success, i.e. proceed with actual VMEnter
2949+ * 1 - consistency check VMExit
2950+ * -1 - consistency check VMFail
2951 */
2952int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
2953{
2954 struct vcpu_vmx *vmx = to_vmx(vcpu);
2955 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2956 bool evaluate_pending_interrupts;
2957 u32 exit_reason = EXIT_REASON_INVALID_STATE;
2958 u32 exit_qual;
2959
2960 evaluate_pending_interrupts = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
2961 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
2962 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
2963 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
2964
2965 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
2966 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
2967 if (kvm_mpx_supported() &&
2968 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2969 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
2970
2971 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
2972
2973 prepare_vmcs02_early(vmx, vmcs12);
2974
2975 if (from_vmentry) {
2976 nested_get_vmcs12_pages(vcpu);
2977
2978 if (nested_vmx_check_vmentry_hw(vcpu)) {
2979 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
2980 return -1;
2981 }
2982
16322a3b 2983 if (nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
55d2375e
SC
2984 goto vmentry_fail_vmexit;
2985 }
2986
2987 enter_guest_mode(vcpu);
2988 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
2989 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
2990
2991 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
2992 goto vmentry_fail_vmexit_guest_mode;
2993
2994 if (from_vmentry) {
2995 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
2996 exit_qual = nested_vmx_load_msr(vcpu,
2997 vmcs12->vm_entry_msr_load_addr,
2998 vmcs12->vm_entry_msr_load_count);
2999 if (exit_qual)
3000 goto vmentry_fail_vmexit_guest_mode;
3001 } else {
3002 /*
3003 * The MMU is not initialized to point at the right entities yet and
3004 * "get pages" would need to read data from the guest (i.e. we will
3005 * need to perform gpa to hpa translation). Request a call
3006 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3007 * have already been set at vmentry time and should not be reset.
3008 */
3009 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3010 }
3011
3012 /*
3013 * If L1 had a pending IRQ/NMI until it executed
3014 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3015 * disallowed (e.g. interrupts disabled), L0 needs to
3016 * evaluate if this pending event should cause an exit from L2
3017 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3018 * intercept EXTERNAL_INTERRUPT).
3019 *
3020 * Usually this would be handled by the processor noticing an
3021 * IRQ/NMI window request, or checking RVI during evaluation of
3022 * pending virtual interrupts. However, this setting was done
3023 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3024 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3025 */
3026 if (unlikely(evaluate_pending_interrupts))
3027 kvm_make_request(KVM_REQ_EVENT, vcpu);
3028
3029 /*
3030 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3031 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3032 * returned as far as L1 is concerned. It will only return (and set
3033 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3034 */
3035 return 0;
3036
3037 /*
3038 * A failed consistency check that leads to a VMExit during L1's
3039 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3040 * 26.7 "VM-entry failures during or after loading guest state".
3041 */
3042vmentry_fail_vmexit_guest_mode:
3043 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3044 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3045 leave_guest_mode(vcpu);
3046
3047vmentry_fail_vmexit:
3048 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3049
3050 if (!from_vmentry)
3051 return 1;
3052
3053 load_vmcs12_host_state(vcpu, vmcs12);
3054 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3055 vmcs12->exit_qualification = exit_qual;
3056 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3057 vmx->nested.need_vmcs12_sync = true;
3058 return 1;
3059}
3060
3061/*
3062 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3063 * for running an L2 nested guest.
3064 */
3065static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3066{
3067 struct vmcs12 *vmcs12;
3068 struct vcpu_vmx *vmx = to_vmx(vcpu);
3069 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3070 int ret;
3071
3072 if (!nested_vmx_check_permission(vcpu))
3073 return 1;
3074
3075 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, true))
3076 return 1;
3077
3078 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3079 return nested_vmx_failInvalid(vcpu);
3080
3081 vmcs12 = get_vmcs12(vcpu);
3082
3083 /*
3084 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3085 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3086 * rather than RFLAGS.ZF, and no error number is stored to the
3087 * VM-instruction error field.
3088 */
3089 if (vmcs12->hdr.shadow_vmcs)
3090 return nested_vmx_failInvalid(vcpu);
3091
3092 if (vmx->nested.hv_evmcs) {
3093 copy_enlightened_to_vmcs12(vmx);
3094 /* Enlightened VMCS doesn't have launch state */
3095 vmcs12->launch_state = !launch;
3096 } else if (enable_shadow_vmcs) {
3097 copy_shadow_to_vmcs12(vmx);
3098 }
3099
3100 /*
3101 * The nested entry process starts with enforcing various prerequisites
3102 * on vmcs12 as required by the Intel SDM, and act appropriately when
3103 * they fail: As the SDM explains, some conditions should cause the
3104 * instruction to fail, while others will cause the instruction to seem
3105 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3106 * To speed up the normal (success) code path, we should avoid checking
3107 * for misconfigurations which will anyway be caught by the processor
3108 * when using the merged vmcs02.
3109 */
3110 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3111 return nested_vmx_failValid(vcpu,
3112 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3113
3114 if (vmcs12->launch_state == launch)
3115 return nested_vmx_failValid(vcpu,
3116 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3117 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3118
16322a3b 3119 ret = nested_vmx_check_vmentry_prereqs(vcpu, vmcs12);
55d2375e
SC
3120 if (ret)
3121 return nested_vmx_failValid(vcpu, ret);
3122
3123 /*
3124 * We're finally done with prerequisite checking, and can start with
3125 * the nested entry.
3126 */
3127 vmx->nested.nested_run_pending = 1;
3128 ret = nested_vmx_enter_non_root_mode(vcpu, true);
3129 vmx->nested.nested_run_pending = !ret;
3130 if (ret > 0)
3131 return 1;
3132 else if (ret)
3133 return nested_vmx_failValid(vcpu,
3134 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3135
3136 /* Hide L1D cache contents from the nested guest. */
3137 vmx->vcpu.arch.l1tf_flush_l1d = true;
3138
3139 /*
3140 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3141 * also be used as part of restoring nVMX state for
3142 * snapshot restore (migration).
3143 *
3144 * In this flow, it is assumed that vmcs12 cache was
3145 * trasferred as part of captured nVMX state and should
3146 * therefore not be read from guest memory (which may not
3147 * exist on destination host yet).
3148 */
3149 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3150
3151 /*
9ebdfe52
JM
3152 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3153 * awakened by event injection or by an NMI-window VM-exit or
3154 * by an interrupt-window VM-exit, halt the vcpu.
55d2375e
SC
3155 */
3156 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
9ebdfe52
JM
3157 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3158 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3159 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3160 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
55d2375e
SC
3161 vmx->nested.nested_run_pending = 0;
3162 return kvm_vcpu_halt(vcpu);
3163 }
3164 return 1;
3165}
3166
3167/*
3168 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3169 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3170 * This function returns the new value we should put in vmcs12.guest_cr0.
3171 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3172 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3173 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3174 * didn't trap the bit, because if L1 did, so would L0).
3175 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3176 * been modified by L2, and L1 knows it. So just leave the old value of
3177 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3178 * isn't relevant, because if L0 traps this bit it can set it to anything.
3179 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3180 * changed these bits, and therefore they need to be updated, but L0
3181 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3182 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3183 */
3184static inline unsigned long
3185vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3186{
3187 return
3188 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3189 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3190 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3191 vcpu->arch.cr0_guest_owned_bits));
3192}
3193
3194static inline unsigned long
3195vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3196{
3197 return
3198 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3199 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3200 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3201 vcpu->arch.cr4_guest_owned_bits));
3202}
3203
3204static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3205 struct vmcs12 *vmcs12)
3206{
3207 u32 idt_vectoring;
3208 unsigned int nr;
3209
3210 if (vcpu->arch.exception.injected) {
3211 nr = vcpu->arch.exception.nr;
3212 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3213
3214 if (kvm_exception_is_soft(nr)) {
3215 vmcs12->vm_exit_instruction_len =
3216 vcpu->arch.event_exit_inst_len;
3217 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3218 } else
3219 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3220
3221 if (vcpu->arch.exception.has_error_code) {
3222 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3223 vmcs12->idt_vectoring_error_code =
3224 vcpu->arch.exception.error_code;
3225 }
3226
3227 vmcs12->idt_vectoring_info_field = idt_vectoring;
3228 } else if (vcpu->arch.nmi_injected) {
3229 vmcs12->idt_vectoring_info_field =
3230 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3231 } else if (vcpu->arch.interrupt.injected) {
3232 nr = vcpu->arch.interrupt.nr;
3233 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3234
3235 if (vcpu->arch.interrupt.soft) {
3236 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3237 vmcs12->vm_entry_instruction_len =
3238 vcpu->arch.event_exit_inst_len;
3239 } else
3240 idt_vectoring |= INTR_TYPE_EXT_INTR;
3241
3242 vmcs12->idt_vectoring_info_field = idt_vectoring;
3243 }
3244}
3245
3246
3247static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3248{
3249 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3250 gfn_t gfn;
3251
3252 /*
3253 * Don't need to mark the APIC access page dirty; it is never
3254 * written to by the CPU during APIC virtualization.
3255 */
3256
3257 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3258 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3259 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3260 }
3261
3262 if (nested_cpu_has_posted_intr(vmcs12)) {
3263 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3264 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3265 }
3266}
3267
3268static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3269{
3270 struct vcpu_vmx *vmx = to_vmx(vcpu);
3271 int max_irr;
3272 void *vapic_page;
3273 u16 status;
3274
3275 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3276 return;
3277
3278 vmx->nested.pi_pending = false;
3279 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3280 return;
3281
3282 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3283 if (max_irr != 256) {
3284 vapic_page = kmap(vmx->nested.virtual_apic_page);
3285 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3286 vapic_page, &max_irr);
3287 kunmap(vmx->nested.virtual_apic_page);
3288
3289 status = vmcs_read16(GUEST_INTR_STATUS);
3290 if ((u8)max_irr > ((u8)status & 0xff)) {
3291 status &= ~0xff;
3292 status |= (u8)max_irr;
3293 vmcs_write16(GUEST_INTR_STATUS, status);
3294 }
3295 }
3296
3297 nested_mark_vmcs12_pages_dirty(vcpu);
3298}
3299
3300static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3301 unsigned long exit_qual)
3302{
3303 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3304 unsigned int nr = vcpu->arch.exception.nr;
3305 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3306
3307 if (vcpu->arch.exception.has_error_code) {
3308 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3309 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3310 }
3311
3312 if (kvm_exception_is_soft(nr))
3313 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3314 else
3315 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3316
3317 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3318 vmx_get_nmi_mask(vcpu))
3319 intr_info |= INTR_INFO_UNBLOCK_NMI;
3320
3321 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3322}
3323
3324static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3325{
3326 struct vcpu_vmx *vmx = to_vmx(vcpu);
3327 unsigned long exit_qual;
3328 bool block_nested_events =
3329 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3330
3331 if (vcpu->arch.exception.pending &&
3332 nested_vmx_check_exception(vcpu, &exit_qual)) {
3333 if (block_nested_events)
3334 return -EBUSY;
3335 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3336 return 0;
3337 }
3338
3339 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3340 vmx->nested.preemption_timer_expired) {
3341 if (block_nested_events)
3342 return -EBUSY;
3343 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3344 return 0;
3345 }
3346
3347 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3348 if (block_nested_events)
3349 return -EBUSY;
3350 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3351 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3352 INTR_INFO_VALID_MASK, 0);
3353 /*
3354 * The NMI-triggered VM exit counts as injection:
3355 * clear this one and block further NMIs.
3356 */
3357 vcpu->arch.nmi_pending = 0;
3358 vmx_set_nmi_mask(vcpu, true);
3359 return 0;
3360 }
3361
3362 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3363 nested_exit_on_intr(vcpu)) {
3364 if (block_nested_events)
3365 return -EBUSY;
3366 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3367 return 0;
3368 }
3369
3370 vmx_complete_nested_posted_interrupt(vcpu);
3371 return 0;
3372}
3373
3374static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3375{
3376 ktime_t remaining =
3377 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3378 u64 value;
3379
3380 if (ktime_to_ns(remaining) <= 0)
3381 return 0;
3382
3383 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3384 do_div(value, 1000000);
3385 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3386}
3387
3388/*
3389 * Update the guest state fields of vmcs12 to reflect changes that
3390 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3391 * VM-entry controls is also updated, since this is really a guest
3392 * state bit.)
3393 */
3394static void sync_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3395{
3396 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3397 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3398
3399 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
3400 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
3401 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3402
3403 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3404 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3405 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3406 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3407 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3408 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3409 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3410 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3411 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3412 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3413 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3414 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3415 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3416 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3417 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3418 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3419 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3420 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3421 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
3422 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3423 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
3424 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3425 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3426 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3427 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3428 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3429 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3430 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3431 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3432 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3433 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3434 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3435 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3436 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3437 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3438 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
3439
3440 vmcs12->guest_interruptibility_info =
3441 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
3442 vmcs12->guest_pending_dbg_exceptions =
3443 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3444 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3445 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3446 else
3447 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3448
3449 if (nested_cpu_has_preemption_timer(vmcs12)) {
3450 if (vmcs12->vm_exit_controls &
3451 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
3452 vmcs12->vmx_preemption_timer_value =
3453 vmx_get_preemption_timer_value(vcpu);
3454 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
3455 }
3456
3457 /*
3458 * In some cases (usually, nested EPT), L2 is allowed to change its
3459 * own CR3 without exiting. If it has changed it, we must keep it.
3460 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3461 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3462 *
3463 * Additionally, restore L2's PDPTR to vmcs12.
3464 */
3465 if (enable_ept) {
3466 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3467 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3468 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3469 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3470 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3471 }
3472
3473 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3474
3475 if (nested_cpu_has_vid(vmcs12))
3476 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3477
3478 vmcs12->vm_entry_controls =
3479 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3480 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3481
3482 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
3483 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
3484 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3485 }
3486
3487 /* TODO: These cannot have changed unless we have MSR bitmaps and
3488 * the relevant bit asks not to trap the change */
3489 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
3490 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
3491 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3492 vmcs12->guest_ia32_efer = vcpu->arch.efer;
3493 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3494 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3495 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
3496 if (kvm_mpx_supported())
3497 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3498}
3499
3500/*
3501 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3502 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3503 * and this function updates it to reflect the changes to the guest state while
3504 * L2 was running (and perhaps made some exits which were handled directly by L0
3505 * without going back to L1), and to reflect the exit reason.
3506 * Note that we do not have to copy here all VMCS fields, just those that
3507 * could have changed by the L2 guest or the exit - i.e., the guest-state and
3508 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3509 * which already writes to vmcs12 directly.
3510 */
3511static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3512 u32 exit_reason, u32 exit_intr_info,
3513 unsigned long exit_qualification)
3514{
3515 /* update guest state fields: */
3516 sync_vmcs12(vcpu, vmcs12);
3517
3518 /* update exit information fields: */
3519
3520 vmcs12->vm_exit_reason = exit_reason;
3521 vmcs12->exit_qualification = exit_qualification;
3522 vmcs12->vm_exit_intr_info = exit_intr_info;
3523
3524 vmcs12->idt_vectoring_info_field = 0;
3525 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3526 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3527
3528 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3529 vmcs12->launch_state = 1;
3530
3531 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3532 * instead of reading the real value. */
3533 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3534
3535 /*
3536 * Transfer the event that L0 or L1 may wanted to inject into
3537 * L2 to IDT_VECTORING_INFO_FIELD.
3538 */
3539 vmcs12_save_pending_event(vcpu, vmcs12);
a0d4f803
KS
3540
3541 /*
3542 * According to spec, there's no need to store the guest's
3543 * MSRs if the exit is due to a VM-entry failure that occurs
3544 * during or after loading the guest state. Since this exit
3545 * does not fall in that category, we need to save the MSRs.
3546 */
3547 if (nested_vmx_store_msr(vcpu,
3548 vmcs12->vm_exit_msr_store_addr,
3549 vmcs12->vm_exit_msr_store_count))
3550 nested_vmx_abort(vcpu,
3551 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
55d2375e
SC
3552 }
3553
3554 /*
3555 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3556 * preserved above and would only end up incorrectly in L1.
3557 */
3558 vcpu->arch.nmi_injected = false;
3559 kvm_clear_exception_queue(vcpu);
3560 kvm_clear_interrupt_queue(vcpu);
3561}
3562
3563/*
3564 * A part of what we need to when the nested L2 guest exits and we want to
3565 * run its L1 parent, is to reset L1's guest state to the host state specified
3566 * in vmcs12.
3567 * This function is to be called not only on normal nested exit, but also on
3568 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3569 * Failures During or After Loading Guest State").
3570 * This function should be called when the active VMCS is L1's (vmcs01).
3571 */
3572static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3573 struct vmcs12 *vmcs12)
3574{
3575 struct kvm_segment seg;
3576 u32 entry_failure_code;
3577
3578 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3579 vcpu->arch.efer = vmcs12->host_ia32_efer;
3580 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3581 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3582 else
3583 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3584 vmx_set_efer(vcpu, vcpu->arch.efer);
3585
3586 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
3587 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
3588 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3589 vmx_set_interrupt_shadow(vcpu, 0);
3590
3591 /*
3592 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3593 * actually changed, because vmx_set_cr0 refers to efer set above.
3594 *
3595 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3596 * (KVM doesn't change it);
3597 */
3598 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3599 vmx_set_cr0(vcpu, vmcs12->host_cr0);
3600
3601 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
3602 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3603 vmx_set_cr4(vcpu, vmcs12->host_cr4);
3604
3605 nested_ept_uninit_mmu_context(vcpu);
3606
3607 /*
3608 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3609 * couldn't have changed.
3610 */
3611 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3612 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3613
3614 if (!enable_ept)
3615 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3616
3617 /*
3618 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3619 * VMEntry/VMExit. Thus, no need to flush TLB.
3620 *
3621 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3622 * flushed on every VMEntry/VMExit.
3623 *
3624 * Otherwise, we can preserve TLB entries as long as we are
3625 * able to tag L1 TLB entries differently than L2 TLB entries.
3626 *
3627 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3628 * and therefore we request the TLB flush to happen only after VMCS EPTP
3629 * has been set by KVM_REQ_LOAD_CR3.
3630 */
3631 if (enable_vpid &&
3632 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3633 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3634 }
3635
3636 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3637 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3638 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3639 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3640 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3641 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3642 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3643
3644 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
3645 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3646 vmcs_write64(GUEST_BNDCFGS, 0);
3647
3648 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3649 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3650 vcpu->arch.pat = vmcs12->host_ia32_pat;
3651 }
3652 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3653 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3654 vmcs12->host_ia32_perf_global_ctrl);
3655
3656 /* Set L1 segment info according to Intel SDM
3657 27.5.2 Loading Host Segment and Descriptor-Table Registers */
3658 seg = (struct kvm_segment) {
3659 .base = 0,
3660 .limit = 0xFFFFFFFF,
3661 .selector = vmcs12->host_cs_selector,
3662 .type = 11,
3663 .present = 1,
3664 .s = 1,
3665 .g = 1
3666 };
3667 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3668 seg.l = 1;
3669 else
3670 seg.db = 1;
3671 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3672 seg = (struct kvm_segment) {
3673 .base = 0,
3674 .limit = 0xFFFFFFFF,
3675 .type = 3,
3676 .present = 1,
3677 .s = 1,
3678 .db = 1,
3679 .g = 1
3680 };
3681 seg.selector = vmcs12->host_ds_selector;
3682 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3683 seg.selector = vmcs12->host_es_selector;
3684 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3685 seg.selector = vmcs12->host_ss_selector;
3686 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3687 seg.selector = vmcs12->host_fs_selector;
3688 seg.base = vmcs12->host_fs_base;
3689 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3690 seg.selector = vmcs12->host_gs_selector;
3691 seg.base = vmcs12->host_gs_base;
3692 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3693 seg = (struct kvm_segment) {
3694 .base = vmcs12->host_tr_base,
3695 .limit = 0x67,
3696 .selector = vmcs12->host_tr_selector,
3697 .type = 11,
3698 .present = 1
3699 };
3700 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3701
3702 kvm_set_dr(vcpu, 7, 0x400);
3703 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3704
3705 if (cpu_has_vmx_msr_bitmap())
3706 vmx_update_msr_bitmap(vcpu);
3707
3708 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3709 vmcs12->vm_exit_msr_load_count))
3710 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3711}
3712
3713static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3714{
3715 struct shared_msr_entry *efer_msr;
3716 unsigned int i;
3717
3718 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3719 return vmcs_read64(GUEST_IA32_EFER);
3720
3721 if (cpu_has_load_ia32_efer())
3722 return host_efer;
3723
3724 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3725 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3726 return vmx->msr_autoload.guest.val[i].value;
3727 }
3728
3729 efer_msr = find_msr_entry(vmx, MSR_EFER);
3730 if (efer_msr)
3731 return efer_msr->data;
3732
3733 return host_efer;
3734}
3735
3736static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3737{
3738 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3739 struct vcpu_vmx *vmx = to_vmx(vcpu);
3740 struct vmx_msr_entry g, h;
3741 struct msr_data msr;
3742 gpa_t gpa;
3743 u32 i, j;
3744
3745 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3746
3747 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3748 /*
3749 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3750 * as vmcs01.GUEST_DR7 contains a userspace defined value
3751 * and vcpu->arch.dr7 is not squirreled away before the
3752 * nested VMENTER (not worth adding a variable in nested_vmx).
3753 */
3754 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3755 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3756 else
3757 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3758 }
3759
3760 /*
3761 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3762 * handle a variety of side effects to KVM's software model.
3763 */
3764 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3765
3766 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3767 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3768
3769 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3770 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3771
3772 nested_ept_uninit_mmu_context(vcpu);
3773 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3774 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3775
3776 /*
3777 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3778 * from vmcs01 (if necessary). The PDPTRs are not loaded on
3779 * VMFail, like everything else we just need to ensure our
3780 * software model is up-to-date.
3781 */
3782 ept_save_pdptrs(vcpu);
3783
3784 kvm_mmu_reset_context(vcpu);
3785
3786 if (cpu_has_vmx_msr_bitmap())
3787 vmx_update_msr_bitmap(vcpu);
3788
3789 /*
3790 * This nasty bit of open coding is a compromise between blindly
3791 * loading L1's MSRs using the exit load lists (incorrect emulation
3792 * of VMFail), leaving the nested VM's MSRs in the software model
3793 * (incorrect behavior) and snapshotting the modified MSRs (too
3794 * expensive since the lists are unbound by hardware). For each
3795 * MSR that was (prematurely) loaded from the nested VMEntry load
3796 * list, reload it from the exit load list if it exists and differs
3797 * from the guest value. The intent is to stuff host state as
3798 * silently as possible, not to fully process the exit load list.
3799 */
3800 msr.host_initiated = false;
3801 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
3802 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
3803 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
3804 pr_debug_ratelimited(
3805 "%s read MSR index failed (%u, 0x%08llx)\n",
3806 __func__, i, gpa);
3807 goto vmabort;
3808 }
3809
3810 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
3811 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
3812 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
3813 pr_debug_ratelimited(
3814 "%s read MSR failed (%u, 0x%08llx)\n",
3815 __func__, j, gpa);
3816 goto vmabort;
3817 }
3818 if (h.index != g.index)
3819 continue;
3820 if (h.value == g.value)
3821 break;
3822
3823 if (nested_vmx_load_msr_check(vcpu, &h)) {
3824 pr_debug_ratelimited(
3825 "%s check failed (%u, 0x%x, 0x%x)\n",
3826 __func__, j, h.index, h.reserved);
3827 goto vmabort;
3828 }
3829
3830 msr.index = h.index;
3831 msr.data = h.value;
3832 if (kvm_set_msr(vcpu, &msr)) {
3833 pr_debug_ratelimited(
3834 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
3835 __func__, j, h.index, h.value);
3836 goto vmabort;
3837 }
3838 }
3839 }
3840
3841 return;
3842
3843vmabort:
3844 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3845}
3846
3847/*
3848 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
3849 * and modify vmcs12 to make it see what it would expect to see there if
3850 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
3851 */
3852void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
3853 u32 exit_intr_info, unsigned long exit_qualification)
3854{
3855 struct vcpu_vmx *vmx = to_vmx(vcpu);
3856 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3857
3858 /* trying to cancel vmlaunch/vmresume is a bug */
3859 WARN_ON_ONCE(vmx->nested.nested_run_pending);
3860
3861 leave_guest_mode(vcpu);
3862
3863 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3864 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3865
3866 if (likely(!vmx->fail)) {
3867 if (exit_reason == -1)
3868 sync_vmcs12(vcpu, vmcs12);
3869 else
3870 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
3871 exit_qualification);
3872
3873 /*
3874 * Must happen outside of sync_vmcs12() as it will
3875 * also be used to capture vmcs12 cache as part of
3876 * capturing nVMX state for snapshot (migration).
3877 *
3878 * Otherwise, this flush will dirty guest memory at a
3879 * point it is already assumed by user-space to be
3880 * immutable.
3881 */
3882 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
55d2375e
SC
3883 } else {
3884 /*
3885 * The only expected VM-instruction error is "VM entry with
3886 * invalid control field(s)." Anything else indicates a
3887 * problem with L0. And we should never get here with a
3888 * VMFail of any type if early consistency checks are enabled.
3889 */
3890 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
3891 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3892 WARN_ON_ONCE(nested_early_check);
3893 }
3894
3895 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3896
3897 /* Update any VMCS fields that might have changed while L2 ran */
3898 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3899 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3900 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
3901
3902 if (kvm_has_tsc_control)
3903 decache_tsc_multiplier(vmx);
3904
3905 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
3906 vmx->nested.change_vmcs01_virtual_apic_mode = false;
3907 vmx_set_virtual_apic_mode(vcpu);
3908 } else if (!nested_cpu_has_ept(vmcs12) &&
3909 nested_cpu_has2(vmcs12,
3910 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3911 vmx_flush_tlb(vcpu, true);
3912 }
3913
3914 /* This is needed for same reason as it was needed in prepare_vmcs02 */
3915 vmx->host_rsp = 0;
3916
3917 /* Unpin physical memory we referred to in vmcs02 */
3918 if (vmx->nested.apic_access_page) {
3919 kvm_release_page_dirty(vmx->nested.apic_access_page);
3920 vmx->nested.apic_access_page = NULL;
3921 }
3922 if (vmx->nested.virtual_apic_page) {
3923 kvm_release_page_dirty(vmx->nested.virtual_apic_page);
3924 vmx->nested.virtual_apic_page = NULL;
3925 }
3926 if (vmx->nested.pi_desc_page) {
3927 kunmap(vmx->nested.pi_desc_page);
3928 kvm_release_page_dirty(vmx->nested.pi_desc_page);
3929 vmx->nested.pi_desc_page = NULL;
3930 vmx->nested.pi_desc = NULL;
3931 }
3932
3933 /*
3934 * We are now running in L2, mmu_notifier will force to reload the
3935 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
3936 */
3937 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
3938
3939 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3940 vmx->nested.need_vmcs12_sync = true;
3941
3942 /* in case we halted in L2 */
3943 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
3944
3945 if (likely(!vmx->fail)) {
3946 /*
3947 * TODO: SDM says that with acknowledge interrupt on
3948 * exit, bit 31 of the VM-exit interrupt information
3949 * (valid interrupt) is always set to 1 on
3950 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
3951 * need kvm_cpu_has_interrupt(). See the commit
3952 * message for details.
3953 */
3954 if (nested_exit_intr_ack_set(vcpu) &&
3955 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
3956 kvm_cpu_has_interrupt(vcpu)) {
3957 int irq = kvm_cpu_get_interrupt(vcpu);
3958 WARN_ON(irq < 0);
3959 vmcs12->vm_exit_intr_info = irq |
3960 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
3961 }
3962
3963 if (exit_reason != -1)
3964 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
3965 vmcs12->exit_qualification,
3966 vmcs12->idt_vectoring_info_field,
3967 vmcs12->vm_exit_intr_info,
3968 vmcs12->vm_exit_intr_error_code,
3969 KVM_ISA_VMX);
3970
3971 load_vmcs12_host_state(vcpu, vmcs12);
3972
3973 return;
3974 }
3975
3976 /*
3977 * After an early L2 VM-entry failure, we're now back
3978 * in L1 which thinks it just finished a VMLAUNCH or
3979 * VMRESUME instruction, so we need to set the failure
3980 * flag and the VM-instruction error field of the VMCS
3981 * accordingly, and skip the emulated instruction.
3982 */
3983 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3984
3985 /*
3986 * Restore L1's host state to KVM's software model. We're here
3987 * because a consistency check was caught by hardware, which
3988 * means some amount of guest state has been propagated to KVM's
3989 * model and needs to be unwound to the host's state.
3990 */
3991 nested_vmx_restore_host_state(vcpu);
3992
3993 vmx->fail = 0;
3994}
3995
3996/*
3997 * Decode the memory-address operand of a vmx instruction, as recorded on an
3998 * exit caused by such an instruction (run by a guest hypervisor).
3999 * On success, returns 0. When the operand is invalid, returns 1 and throws
4000 * #UD or #GP.
4001 */
4002int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4003 u32 vmx_instruction_info, bool wr, gva_t *ret)
4004{
4005 gva_t off;
4006 bool exn;
4007 struct kvm_segment s;
4008
4009 /*
4010 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4011 * Execution", on an exit, vmx_instruction_info holds most of the
4012 * addressing components of the operand. Only the displacement part
4013 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4014 * For how an actual address is calculated from all these components,
4015 * refer to Vol. 1, "Operand Addressing".
4016 */
4017 int scaling = vmx_instruction_info & 3;
4018 int addr_size = (vmx_instruction_info >> 7) & 7;
4019 bool is_reg = vmx_instruction_info & (1u << 10);
4020 int seg_reg = (vmx_instruction_info >> 15) & 7;
4021 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4022 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4023 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4024 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4025
4026 if (is_reg) {
4027 kvm_queue_exception(vcpu, UD_VECTOR);
4028 return 1;
4029 }
4030
4031 /* Addr = segment_base + offset */
4032 /* offset = base + [index * scale] + displacement */
4033 off = exit_qualification; /* holds the displacement */
4034 if (base_is_valid)
4035 off += kvm_register_read(vcpu, base_reg);
4036 if (index_is_valid)
4037 off += kvm_register_read(vcpu, index_reg)<<scaling;
4038 vmx_get_segment(vcpu, &s, seg_reg);
4039 *ret = s.base + off;
4040
4041 if (addr_size == 1) /* 32 bit */
4042 *ret &= 0xffffffff;
4043
4044 /* Checks for #GP/#SS exceptions. */
4045 exn = false;
4046 if (is_long_mode(vcpu)) {
4047 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4048 * non-canonical form. This is the only check on the memory
4049 * destination for long mode!
4050 */
4051 exn = is_noncanonical_address(*ret, vcpu);
4052 } else if (is_protmode(vcpu)) {
4053 /* Protected mode: apply checks for segment validity in the
4054 * following order:
4055 * - segment type check (#GP(0) may be thrown)
4056 * - usability check (#GP(0)/#SS(0))
4057 * - limit check (#GP(0)/#SS(0))
4058 */
4059 if (wr)
4060 /* #GP(0) if the destination operand is located in a
4061 * read-only data segment or any code segment.
4062 */
4063 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4064 else
4065 /* #GP(0) if the source operand is located in an
4066 * execute-only code segment
4067 */
4068 exn = ((s.type & 0xa) == 8);
4069 if (exn) {
4070 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4071 return 1;
4072 }
4073 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4074 */
4075 exn = (s.unusable != 0);
4076 /* Protected mode: #GP(0)/#SS(0) if the memory
4077 * operand is outside the segment limit.
4078 */
4079 exn = exn || (off + sizeof(u64) > s.limit);
4080 }
4081 if (exn) {
4082 kvm_queue_exception_e(vcpu,
4083 seg_reg == VCPU_SREG_SS ?
4084 SS_VECTOR : GP_VECTOR,
4085 0);
4086 return 1;
4087 }
4088
4089 return 0;
4090}
4091
4092static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4093{
4094 gva_t gva;
4095 struct x86_exception e;
4096
4097 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4098 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
4099 return 1;
4100
4101 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4102 kvm_inject_page_fault(vcpu, &e);
4103 return 1;
4104 }
4105
4106 return 0;
4107}
4108
4109/*
4110 * Allocate a shadow VMCS and associate it with the currently loaded
4111 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4112 * VMCS is also VMCLEARed, so that it is ready for use.
4113 */
4114static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4115{
4116 struct vcpu_vmx *vmx = to_vmx(vcpu);
4117 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4118
4119 /*
4120 * We should allocate a shadow vmcs for vmcs01 only when L1
4121 * executes VMXON and free it when L1 executes VMXOFF.
4122 * As it is invalid to execute VMXON twice, we shouldn't reach
4123 * here when vmcs01 already have an allocated shadow vmcs.
4124 */
4125 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4126
4127 if (!loaded_vmcs->shadow_vmcs) {
4128 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4129 if (loaded_vmcs->shadow_vmcs)
4130 vmcs_clear(loaded_vmcs->shadow_vmcs);
4131 }
4132 return loaded_vmcs->shadow_vmcs;
4133}
4134
4135static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4136{
4137 struct vcpu_vmx *vmx = to_vmx(vcpu);
4138 int r;
4139
4140 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4141 if (r < 0)
4142 goto out_vmcs02;
4143
3a33d030 4144 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
55d2375e
SC
4145 if (!vmx->nested.cached_vmcs12)
4146 goto out_cached_vmcs12;
4147
3a33d030 4148 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL);
55d2375e
SC
4149 if (!vmx->nested.cached_shadow_vmcs12)
4150 goto out_cached_shadow_vmcs12;
4151
4152 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4153 goto out_shadow_vmcs;
4154
4155 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4156 HRTIMER_MODE_REL_PINNED);
4157 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4158
4159 vmx->nested.vpid02 = allocate_vpid();
4160
4161 vmx->nested.vmcs02_initialized = false;
4162 vmx->nested.vmxon = true;
ee85dec2
LK
4163
4164 if (pt_mode == PT_MODE_HOST_GUEST) {
4165 vmx->pt_desc.guest.ctl = 0;
4166 pt_update_intercept_for_msr(vmx);
4167 }
4168
55d2375e
SC
4169 return 0;
4170
4171out_shadow_vmcs:
4172 kfree(vmx->nested.cached_shadow_vmcs12);
4173
4174out_cached_shadow_vmcs12:
4175 kfree(vmx->nested.cached_vmcs12);
4176
4177out_cached_vmcs12:
4178 free_loaded_vmcs(&vmx->nested.vmcs02);
4179
4180out_vmcs02:
4181 return -ENOMEM;
4182}
4183
4184/*
4185 * Emulate the VMXON instruction.
4186 * Currently, we just remember that VMX is active, and do not save or even
4187 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4188 * do not currently need to store anything in that guest-allocated memory
4189 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4190 * argument is different from the VMXON pointer (which the spec says they do).
4191 */
4192static int handle_vmon(struct kvm_vcpu *vcpu)
4193{
4194 int ret;
4195 gpa_t vmptr;
4196 struct page *page;
4197 struct vcpu_vmx *vmx = to_vmx(vcpu);
4198 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4199 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4200
4201 /*
4202 * The Intel VMX Instruction Reference lists a bunch of bits that are
4203 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4204 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4205 * Otherwise, we should fail with #UD. But most faulting conditions
4206 * have already been checked by hardware, prior to the VM-exit for
4207 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4208 * that bit set to 1 in non-root mode.
4209 */
4210 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4211 kvm_queue_exception(vcpu, UD_VECTOR);
4212 return 1;
4213 }
4214
4215 /* CPL=0 must be checked manually. */
4216 if (vmx_get_cpl(vcpu)) {
4217 kvm_inject_gp(vcpu, 0);
4218 return 1;
4219 }
4220
4221 if (vmx->nested.vmxon)
4222 return nested_vmx_failValid(vcpu,
4223 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4224
4225 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4226 != VMXON_NEEDED_FEATURES) {
4227 kvm_inject_gp(vcpu, 0);
4228 return 1;
4229 }
4230
4231 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4232 return 1;
4233
4234 /*
4235 * SDM 3: 24.11.5
4236 * The first 4 bytes of VMXON region contain the supported
4237 * VMCS revision identifier
4238 *
4239 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4240 * which replaces physical address width with 32
4241 */
4242 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4243 return nested_vmx_failInvalid(vcpu);
4244
4245 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4246 if (is_error_page(page))
4247 return nested_vmx_failInvalid(vcpu);
4248
4249 if (*(u32 *)kmap(page) != VMCS12_REVISION) {
4250 kunmap(page);
4251 kvm_release_page_clean(page);
4252 return nested_vmx_failInvalid(vcpu);
4253 }
4254 kunmap(page);
4255 kvm_release_page_clean(page);
4256
4257 vmx->nested.vmxon_ptr = vmptr;
4258 ret = enter_vmx_operation(vcpu);
4259 if (ret)
4260 return ret;
4261
4262 return nested_vmx_succeed(vcpu);
4263}
4264
4265static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4266{
4267 struct vcpu_vmx *vmx = to_vmx(vcpu);
4268
4269 if (vmx->nested.current_vmptr == -1ull)
4270 return;
4271
4272 if (enable_shadow_vmcs) {
4273 /* copy to memory all shadowed fields in case
4274 they were modified */
4275 copy_shadow_to_vmcs12(vmx);
4276 vmx->nested.need_vmcs12_sync = false;
4277 vmx_disable_shadow_vmcs(vmx);
4278 }
4279 vmx->nested.posted_intr_nv = -1;
4280
4281 /* Flush VMCS12 to guest memory */
4282 kvm_vcpu_write_guest_page(vcpu,
4283 vmx->nested.current_vmptr >> PAGE_SHIFT,
4284 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4285
4286 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4287
4288 vmx->nested.current_vmptr = -1ull;
4289}
4290
4291/* Emulate the VMXOFF instruction */
4292static int handle_vmoff(struct kvm_vcpu *vcpu)
4293{
4294 if (!nested_vmx_check_permission(vcpu))
4295 return 1;
4296 free_nested(vcpu);
4297 return nested_vmx_succeed(vcpu);
4298}
4299
4300/* Emulate the VMCLEAR instruction */
4301static int handle_vmclear(struct kvm_vcpu *vcpu)
4302{
4303 struct vcpu_vmx *vmx = to_vmx(vcpu);
4304 u32 zero = 0;
4305 gpa_t vmptr;
4306
4307 if (!nested_vmx_check_permission(vcpu))
4308 return 1;
4309
4310 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4311 return 1;
4312
4313 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4314 return nested_vmx_failValid(vcpu,
4315 VMXERR_VMCLEAR_INVALID_ADDRESS);
4316
4317 if (vmptr == vmx->nested.vmxon_ptr)
4318 return nested_vmx_failValid(vcpu,
4319 VMXERR_VMCLEAR_VMXON_POINTER);
4320
4321 if (vmx->nested.hv_evmcs_page) {
4322 if (vmptr == vmx->nested.hv_evmcs_vmptr)
4323 nested_release_evmcs(vcpu);
4324 } else {
4325 if (vmptr == vmx->nested.current_vmptr)
4326 nested_release_vmcs12(vcpu);
4327
4328 kvm_vcpu_write_guest(vcpu,
4329 vmptr + offsetof(struct vmcs12,
4330 launch_state),
4331 &zero, sizeof(zero));
4332 }
4333
4334 return nested_vmx_succeed(vcpu);
4335}
4336
4337static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4338
4339/* Emulate the VMLAUNCH instruction */
4340static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4341{
4342 return nested_vmx_run(vcpu, true);
4343}
4344
4345/* Emulate the VMRESUME instruction */
4346static int handle_vmresume(struct kvm_vcpu *vcpu)
4347{
4348
4349 return nested_vmx_run(vcpu, false);
4350}
4351
4352static int handle_vmread(struct kvm_vcpu *vcpu)
4353{
4354 unsigned long field;
4355 u64 field_value;
4356 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4357 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4358 gva_t gva = 0;
4359 struct vmcs12 *vmcs12;
4360
4361 if (!nested_vmx_check_permission(vcpu))
4362 return 1;
4363
4364 if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4365 return nested_vmx_failInvalid(vcpu);
4366
4367 if (!is_guest_mode(vcpu))
4368 vmcs12 = get_vmcs12(vcpu);
4369 else {
4370 /*
4371 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4372 * to shadowed-field sets the ALU flags for VMfailInvalid.
4373 */
4374 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4375 return nested_vmx_failInvalid(vcpu);
4376 vmcs12 = get_shadow_vmcs12(vcpu);
4377 }
4378
4379 /* Decode instruction info and find the field to read */
4380 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4381 /* Read the field, zero-extended to a u64 field_value */
4382 if (vmcs12_read_any(vmcs12, field, &field_value) < 0)
4383 return nested_vmx_failValid(vcpu,
4384 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4385
4386 /*
4387 * Now copy part of this value to register or memory, as requested.
4388 * Note that the number of bits actually copied is 32 or 64 depending
4389 * on the guest's mode (32 or 64 bit), not on the given field's length.
4390 */
4391 if (vmx_instruction_info & (1u << 10)) {
4392 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4393 field_value);
4394 } else {
4395 if (get_vmx_mem_address(vcpu, exit_qualification,
4396 vmx_instruction_info, true, &gva))
4397 return 1;
4398 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
4399 kvm_write_guest_virt_system(vcpu, gva, &field_value,
4400 (is_long_mode(vcpu) ? 8 : 4), NULL);
4401 }
4402
4403 return nested_vmx_succeed(vcpu);
4404}
4405
4406
4407static int handle_vmwrite(struct kvm_vcpu *vcpu)
4408{
4409 unsigned long field;
4410 gva_t gva;
4411 struct vcpu_vmx *vmx = to_vmx(vcpu);
4412 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4413 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4414
4415 /* The value to write might be 32 or 64 bits, depending on L1's long
4416 * mode, and eventually we need to write that into a field of several
4417 * possible lengths. The code below first zero-extends the value to 64
4418 * bit (field_value), and then copies only the appropriate number of
4419 * bits into the vmcs12 field.
4420 */
4421 u64 field_value = 0;
4422 struct x86_exception e;
4423 struct vmcs12 *vmcs12;
4424
4425 if (!nested_vmx_check_permission(vcpu))
4426 return 1;
4427
4428 if (vmx->nested.current_vmptr == -1ull)
4429 return nested_vmx_failInvalid(vcpu);
4430
4431 if (vmx_instruction_info & (1u << 10))
4432 field_value = kvm_register_readl(vcpu,
4433 (((vmx_instruction_info) >> 3) & 0xf));
4434 else {
4435 if (get_vmx_mem_address(vcpu, exit_qualification,
4436 vmx_instruction_info, false, &gva))
4437 return 1;
4438 if (kvm_read_guest_virt(vcpu, gva, &field_value,
4439 (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
4440 kvm_inject_page_fault(vcpu, &e);
4441 return 1;
4442 }
4443 }
4444
4445
4446 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4447 /*
4448 * If the vCPU supports "VMWRITE to any supported field in the
4449 * VMCS," then the "read-only" fields are actually read/write.
4450 */
4451 if (vmcs_field_readonly(field) &&
4452 !nested_cpu_has_vmwrite_any_field(vcpu))
4453 return nested_vmx_failValid(vcpu,
4454 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4455
4456 if (!is_guest_mode(vcpu))
4457 vmcs12 = get_vmcs12(vcpu);
4458 else {
4459 /*
4460 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4461 * to shadowed-field sets the ALU flags for VMfailInvalid.
4462 */
4463 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4464 return nested_vmx_failInvalid(vcpu);
4465 vmcs12 = get_shadow_vmcs12(vcpu);
4466 }
4467
4468 if (vmcs12_write_any(vmcs12, field, field_value) < 0)
4469 return nested_vmx_failValid(vcpu,
4470 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4471
4472 /*
4473 * Do not track vmcs12 dirty-state if in guest-mode
4474 * as we actually dirty shadow vmcs12 instead of vmcs12.
4475 */
4476 if (!is_guest_mode(vcpu)) {
4477 switch (field) {
4478#define SHADOW_FIELD_RW(x) case x:
4479#include "vmcs_shadow_fields.h"
4480 /*
4481 * The fields that can be updated by L1 without a vmexit are
4482 * always updated in the vmcs02, the others go down the slow
4483 * path of prepare_vmcs02.
4484 */
4485 break;
4486 default:
4487 vmx->nested.dirty_vmcs12 = true;
4488 break;
4489 }
4490 }
4491
4492 return nested_vmx_succeed(vcpu);
4493}
4494
4495static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4496{
4497 vmx->nested.current_vmptr = vmptr;
4498 if (enable_shadow_vmcs) {
4499 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
4500 SECONDARY_EXEC_SHADOW_VMCS);
4501 vmcs_write64(VMCS_LINK_POINTER,
4502 __pa(vmx->vmcs01.shadow_vmcs));
4503 vmx->nested.need_vmcs12_sync = true;
4504 }
4505 vmx->nested.dirty_vmcs12 = true;
4506}
4507
4508/* Emulate the VMPTRLD instruction */
4509static int handle_vmptrld(struct kvm_vcpu *vcpu)
4510{
4511 struct vcpu_vmx *vmx = to_vmx(vcpu);
4512 gpa_t vmptr;
4513
4514 if (!nested_vmx_check_permission(vcpu))
4515 return 1;
4516
4517 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4518 return 1;
4519
4520 if (!PAGE_ALIGNED(vmptr) || (vmptr >> cpuid_maxphyaddr(vcpu)))
4521 return nested_vmx_failValid(vcpu,
4522 VMXERR_VMPTRLD_INVALID_ADDRESS);
4523
4524 if (vmptr == vmx->nested.vmxon_ptr)
4525 return nested_vmx_failValid(vcpu,
4526 VMXERR_VMPTRLD_VMXON_POINTER);
4527
4528 /* Forbid normal VMPTRLD if Enlightened version was used */
4529 if (vmx->nested.hv_evmcs)
4530 return 1;
4531
4532 if (vmx->nested.current_vmptr != vmptr) {
4533 struct vmcs12 *new_vmcs12;
4534 struct page *page;
4535
4536 page = kvm_vcpu_gpa_to_page(vcpu, vmptr);
4537 if (is_error_page(page)) {
4538 /*
4539 * Reads from an unbacked page return all 1s,
4540 * which means that the 32 bits located at the
4541 * given physical address won't match the required
4542 * VMCS12_REVISION identifier.
4543 */
826c1362 4544 return nested_vmx_failValid(vcpu,
55d2375e 4545 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
55d2375e
SC
4546 }
4547 new_vmcs12 = kmap(page);
4548 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4549 (new_vmcs12->hdr.shadow_vmcs &&
4550 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
4551 kunmap(page);
4552 kvm_release_page_clean(page);
4553 return nested_vmx_failValid(vcpu,
4554 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4555 }
4556
4557 nested_release_vmcs12(vcpu);
4558
4559 /*
4560 * Load VMCS12 from guest memory since it is not already
4561 * cached.
4562 */
4563 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
4564 kunmap(page);
4565 kvm_release_page_clean(page);
4566
4567 set_current_vmptr(vmx, vmptr);
4568 }
4569
4570 return nested_vmx_succeed(vcpu);
4571}
4572
4573/* Emulate the VMPTRST instruction */
4574static int handle_vmptrst(struct kvm_vcpu *vcpu)
4575{
4576 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4577 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4578 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4579 struct x86_exception e;
4580 gva_t gva;
4581
4582 if (!nested_vmx_check_permission(vcpu))
4583 return 1;
4584
4585 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4586 return 1;
4587
4588 if (get_vmx_mem_address(vcpu, exit_qual, instr_info, true, &gva))
4589 return 1;
4590 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4591 if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4592 sizeof(gpa_t), &e)) {
4593 kvm_inject_page_fault(vcpu, &e);
4594 return 1;
4595 }
4596 return nested_vmx_succeed(vcpu);
4597}
4598
4599/* Emulate the INVEPT instruction */
4600static int handle_invept(struct kvm_vcpu *vcpu)
4601{
4602 struct vcpu_vmx *vmx = to_vmx(vcpu);
4603 u32 vmx_instruction_info, types;
4604 unsigned long type;
4605 gva_t gva;
4606 struct x86_exception e;
4607 struct {
4608 u64 eptp, gpa;
4609 } operand;
4610
4611 if (!(vmx->nested.msrs.secondary_ctls_high &
4612 SECONDARY_EXEC_ENABLE_EPT) ||
4613 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4614 kvm_queue_exception(vcpu, UD_VECTOR);
4615 return 1;
4616 }
4617
4618 if (!nested_vmx_check_permission(vcpu))
4619 return 1;
4620
4621 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4622 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4623
4624 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4625
4626 if (type >= 32 || !(types & (1 << type)))
4627 return nested_vmx_failValid(vcpu,
4628 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4629
4630 /* According to the Intel VMX instruction reference, the memory
4631 * operand is read even if it isn't needed (e.g., for type==global)
4632 */
4633 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4634 vmx_instruction_info, false, &gva))
4635 return 1;
4636 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4637 kvm_inject_page_fault(vcpu, &e);
4638 return 1;
4639 }
4640
4641 switch (type) {
4642 case VMX_EPT_EXTENT_GLOBAL:
4643 /*
4644 * TODO: track mappings and invalidate
4645 * single context requests appropriately
4646 */
4647 case VMX_EPT_EXTENT_CONTEXT:
4648 kvm_mmu_sync_roots(vcpu);
4649 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4650 break;
4651 default:
4652 BUG_ON(1);
4653 break;
4654 }
4655
4656 return nested_vmx_succeed(vcpu);
4657}
4658
4659static int handle_invvpid(struct kvm_vcpu *vcpu)
4660{
4661 struct vcpu_vmx *vmx = to_vmx(vcpu);
4662 u32 vmx_instruction_info;
4663 unsigned long type, types;
4664 gva_t gva;
4665 struct x86_exception e;
4666 struct {
4667 u64 vpid;
4668 u64 gla;
4669 } operand;
4670 u16 vpid02;
4671
4672 if (!(vmx->nested.msrs.secondary_ctls_high &
4673 SECONDARY_EXEC_ENABLE_VPID) ||
4674 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4675 kvm_queue_exception(vcpu, UD_VECTOR);
4676 return 1;
4677 }
4678
4679 if (!nested_vmx_check_permission(vcpu))
4680 return 1;
4681
4682 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4683 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4684
4685 types = (vmx->nested.msrs.vpid_caps &
4686 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4687
4688 if (type >= 32 || !(types & (1 << type)))
4689 return nested_vmx_failValid(vcpu,
4690 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4691
4692 /* according to the intel vmx instruction reference, the memory
4693 * operand is read even if it isn't needed (e.g., for type==global)
4694 */
4695 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
4696 vmx_instruction_info, false, &gva))
4697 return 1;
4698 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4699 kvm_inject_page_fault(vcpu, &e);
4700 return 1;
4701 }
4702 if (operand.vpid >> 16)
4703 return nested_vmx_failValid(vcpu,
4704 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4705
4706 vpid02 = nested_get_vpid02(vcpu);
4707 switch (type) {
4708 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
4709 if (!operand.vpid ||
4710 is_noncanonical_address(operand.gla, vcpu))
4711 return nested_vmx_failValid(vcpu,
4712 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4713 if (cpu_has_vmx_invvpid_individual_addr()) {
4714 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
4715 vpid02, operand.gla);
4716 } else
4717 __vmx_flush_tlb(vcpu, vpid02, false);
4718 break;
4719 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
4720 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
4721 if (!operand.vpid)
4722 return nested_vmx_failValid(vcpu,
4723 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4724 __vmx_flush_tlb(vcpu, vpid02, false);
4725 break;
4726 case VMX_VPID_EXTENT_ALL_CONTEXT:
4727 __vmx_flush_tlb(vcpu, vpid02, false);
4728 break;
4729 default:
4730 WARN_ON_ONCE(1);
4731 return kvm_skip_emulated_instruction(vcpu);
4732 }
4733
4734 return nested_vmx_succeed(vcpu);
4735}
4736
4737static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
4738 struct vmcs12 *vmcs12)
4739{
4740 u32 index = vcpu->arch.regs[VCPU_REGS_RCX];
4741 u64 address;
4742 bool accessed_dirty;
4743 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
4744
4745 if (!nested_cpu_has_eptp_switching(vmcs12) ||
4746 !nested_cpu_has_ept(vmcs12))
4747 return 1;
4748
4749 if (index >= VMFUNC_EPTP_ENTRIES)
4750 return 1;
4751
4752
4753 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
4754 &address, index * 8, 8))
4755 return 1;
4756
4757 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
4758
4759 /*
4760 * If the (L2) guest does a vmfunc to the currently
4761 * active ept pointer, we don't have to do anything else
4762 */
4763 if (vmcs12->ept_pointer != address) {
4764 if (!valid_ept_address(vcpu, address))
4765 return 1;
4766
4767 kvm_mmu_unload(vcpu);
4768 mmu->ept_ad = accessed_dirty;
4769 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
4770 vmcs12->ept_pointer = address;
4771 /*
4772 * TODO: Check what's the correct approach in case
4773 * mmu reload fails. Currently, we just let the next
4774 * reload potentially fail
4775 */
4776 kvm_mmu_reload(vcpu);
4777 }
4778
4779 return 0;
4780}
4781
4782static int handle_vmfunc(struct kvm_vcpu *vcpu)
4783{
4784 struct vcpu_vmx *vmx = to_vmx(vcpu);
4785 struct vmcs12 *vmcs12;
4786 u32 function = vcpu->arch.regs[VCPU_REGS_RAX];
4787
4788 /*
4789 * VMFUNC is only supported for nested guests, but we always enable the
4790 * secondary control for simplicity; for non-nested mode, fake that we
4791 * didn't by injecting #UD.
4792 */
4793 if (!is_guest_mode(vcpu)) {
4794 kvm_queue_exception(vcpu, UD_VECTOR);
4795 return 1;
4796 }
4797
4798 vmcs12 = get_vmcs12(vcpu);
4799 if ((vmcs12->vm_function_control & (1 << function)) == 0)
4800 goto fail;
4801
4802 switch (function) {
4803 case 0:
4804 if (nested_vmx_eptp_switching(vcpu, vmcs12))
4805 goto fail;
4806 break;
4807 default:
4808 goto fail;
4809 }
4810 return kvm_skip_emulated_instruction(vcpu);
4811
4812fail:
4813 nested_vmx_vmexit(vcpu, vmx->exit_reason,
4814 vmcs_read32(VM_EXIT_INTR_INFO),
4815 vmcs_readl(EXIT_QUALIFICATION));
4816 return 1;
4817}
4818
4819
4820static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
4821 struct vmcs12 *vmcs12)
4822{
4823 unsigned long exit_qualification;
4824 gpa_t bitmap, last_bitmap;
4825 unsigned int port;
4826 int size;
4827 u8 b;
4828
4829 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
4830 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
4831
4832 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4833
4834 port = exit_qualification >> 16;
4835 size = (exit_qualification & 7) + 1;
4836
4837 last_bitmap = (gpa_t)-1;
4838 b = -1;
4839
4840 while (size > 0) {
4841 if (port < 0x8000)
4842 bitmap = vmcs12->io_bitmap_a;
4843 else if (port < 0x10000)
4844 bitmap = vmcs12->io_bitmap_b;
4845 else
4846 return true;
4847 bitmap += (port & 0x7fff) / 8;
4848
4849 if (last_bitmap != bitmap)
4850 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
4851 return true;
4852 if (b & (1 << (port & 7)))
4853 return true;
4854
4855 port++;
4856 size--;
4857 last_bitmap = bitmap;
4858 }
4859
4860 return false;
4861}
4862
4863/*
4864 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
4865 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
4866 * disinterest in the current event (read or write a specific MSR) by using an
4867 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
4868 */
4869static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
4870 struct vmcs12 *vmcs12, u32 exit_reason)
4871{
4872 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
4873 gpa_t bitmap;
4874
4875 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
4876 return true;
4877
4878 /*
4879 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
4880 * for the four combinations of read/write and low/high MSR numbers.
4881 * First we need to figure out which of the four to use:
4882 */
4883 bitmap = vmcs12->msr_bitmap;
4884 if (exit_reason == EXIT_REASON_MSR_WRITE)
4885 bitmap += 2048;
4886 if (msr_index >= 0xc0000000) {
4887 msr_index -= 0xc0000000;
4888 bitmap += 1024;
4889 }
4890
4891 /* Then read the msr_index'th bit from this bitmap: */
4892 if (msr_index < 1024*8) {
4893 unsigned char b;
4894 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
4895 return true;
4896 return 1 & (b >> (msr_index & 7));
4897 } else
4898 return true; /* let L1 handle the wrong parameter */
4899}
4900
4901/*
4902 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
4903 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
4904 * intercept (via guest_host_mask etc.) the current event.
4905 */
4906static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
4907 struct vmcs12 *vmcs12)
4908{
4909 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4910 int cr = exit_qualification & 15;
4911 int reg;
4912 unsigned long val;
4913
4914 switch ((exit_qualification >> 4) & 3) {
4915 case 0: /* mov to cr */
4916 reg = (exit_qualification >> 8) & 15;
4917 val = kvm_register_readl(vcpu, reg);
4918 switch (cr) {
4919 case 0:
4920 if (vmcs12->cr0_guest_host_mask &
4921 (val ^ vmcs12->cr0_read_shadow))
4922 return true;
4923 break;
4924 case 3:
4925 if ((vmcs12->cr3_target_count >= 1 &&
4926 vmcs12->cr3_target_value0 == val) ||
4927 (vmcs12->cr3_target_count >= 2 &&
4928 vmcs12->cr3_target_value1 == val) ||
4929 (vmcs12->cr3_target_count >= 3 &&
4930 vmcs12->cr3_target_value2 == val) ||
4931 (vmcs12->cr3_target_count >= 4 &&
4932 vmcs12->cr3_target_value3 == val))
4933 return false;
4934 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
4935 return true;
4936 break;
4937 case 4:
4938 if (vmcs12->cr4_guest_host_mask &
4939 (vmcs12->cr4_read_shadow ^ val))
4940 return true;
4941 break;
4942 case 8:
4943 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
4944 return true;
4945 break;
4946 }
4947 break;
4948 case 2: /* clts */
4949 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
4950 (vmcs12->cr0_read_shadow & X86_CR0_TS))
4951 return true;
4952 break;
4953 case 1: /* mov from cr */
4954 switch (cr) {
4955 case 3:
4956 if (vmcs12->cpu_based_vm_exec_control &
4957 CPU_BASED_CR3_STORE_EXITING)
4958 return true;
4959 break;
4960 case 8:
4961 if (vmcs12->cpu_based_vm_exec_control &
4962 CPU_BASED_CR8_STORE_EXITING)
4963 return true;
4964 break;
4965 }
4966 break;
4967 case 3: /* lmsw */
4968 /*
4969 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
4970 * cr0. Other attempted changes are ignored, with no exit.
4971 */
4972 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4973 if (vmcs12->cr0_guest_host_mask & 0xe &
4974 (val ^ vmcs12->cr0_read_shadow))
4975 return true;
4976 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
4977 !(vmcs12->cr0_read_shadow & 0x1) &&
4978 (val & 0x1))
4979 return true;
4980 break;
4981 }
4982 return false;
4983}
4984
4985static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
4986 struct vmcs12 *vmcs12, gpa_t bitmap)
4987{
4988 u32 vmx_instruction_info;
4989 unsigned long field;
4990 u8 b;
4991
4992 if (!nested_cpu_has_shadow_vmcs(vmcs12))
4993 return true;
4994
4995 /* Decode instruction info and find the field to access */
4996 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4997 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4998
4999 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5000 if (field >> 15)
5001 return true;
5002
5003 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5004 return true;
5005
5006 return 1 & (b >> (field & 7));
5007}
5008
5009/*
5010 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5011 * should handle it ourselves in L0 (and then continue L2). Only call this
5012 * when in is_guest_mode (L2).
5013 */
5014bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5015{
5016 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5017 struct vcpu_vmx *vmx = to_vmx(vcpu);
5018 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5019
5020 if (vmx->nested.nested_run_pending)
5021 return false;
5022
5023 if (unlikely(vmx->fail)) {
5024 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
5025 vmcs_read32(VM_INSTRUCTION_ERROR));
5026 return true;
5027 }
5028
5029 /*
5030 * The host physical addresses of some pages of guest memory
5031 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5032 * Page). The CPU may write to these pages via their host
5033 * physical address while L2 is running, bypassing any
5034 * address-translation-based dirty tracking (e.g. EPT write
5035 * protection).
5036 *
5037 * Mark them dirty on every exit from L2 to prevent them from
5038 * getting out of sync with dirty tracking.
5039 */
5040 nested_mark_vmcs12_pages_dirty(vcpu);
5041
5042 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5043 vmcs_readl(EXIT_QUALIFICATION),
5044 vmx->idt_vectoring_info,
5045 intr_info,
5046 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5047 KVM_ISA_VMX);
5048
5049 switch (exit_reason) {
5050 case EXIT_REASON_EXCEPTION_NMI:
5051 if (is_nmi(intr_info))
5052 return false;
5053 else if (is_page_fault(intr_info))
5054 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5055 else if (is_debug(intr_info) &&
5056 vcpu->guest_debug &
5057 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5058 return false;
5059 else if (is_breakpoint(intr_info) &&
5060 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5061 return false;
5062 return vmcs12->exception_bitmap &
5063 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5064 case EXIT_REASON_EXTERNAL_INTERRUPT:
5065 return false;
5066 case EXIT_REASON_TRIPLE_FAULT:
5067 return true;
5068 case EXIT_REASON_PENDING_INTERRUPT:
5069 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5070 case EXIT_REASON_NMI_WINDOW:
5071 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5072 case EXIT_REASON_TASK_SWITCH:
5073 return true;
5074 case EXIT_REASON_CPUID:
5075 return true;
5076 case EXIT_REASON_HLT:
5077 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5078 case EXIT_REASON_INVD:
5079 return true;
5080 case EXIT_REASON_INVLPG:
5081 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5082 case EXIT_REASON_RDPMC:
5083 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5084 case EXIT_REASON_RDRAND:
5085 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5086 case EXIT_REASON_RDSEED:
5087 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5088 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5089 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5090 case EXIT_REASON_VMREAD:
5091 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5092 vmcs12->vmread_bitmap);
5093 case EXIT_REASON_VMWRITE:
5094 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5095 vmcs12->vmwrite_bitmap);
5096 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5097 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5098 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5099 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5100 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5101 /*
5102 * VMX instructions trap unconditionally. This allows L1 to
5103 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5104 */
5105 return true;
5106 case EXIT_REASON_CR_ACCESS:
5107 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5108 case EXIT_REASON_DR_ACCESS:
5109 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5110 case EXIT_REASON_IO_INSTRUCTION:
5111 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5112 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5113 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5114 case EXIT_REASON_MSR_READ:
5115 case EXIT_REASON_MSR_WRITE:
5116 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5117 case EXIT_REASON_INVALID_STATE:
5118 return true;
5119 case EXIT_REASON_MWAIT_INSTRUCTION:
5120 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5121 case EXIT_REASON_MONITOR_TRAP_FLAG:
5122 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5123 case EXIT_REASON_MONITOR_INSTRUCTION:
5124 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5125 case EXIT_REASON_PAUSE_INSTRUCTION:
5126 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5127 nested_cpu_has2(vmcs12,
5128 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5129 case EXIT_REASON_MCE_DURING_VMENTRY:
5130 return false;
5131 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5132 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5133 case EXIT_REASON_APIC_ACCESS:
5134 case EXIT_REASON_APIC_WRITE:
5135 case EXIT_REASON_EOI_INDUCED:
5136 /*
5137 * The controls for "virtualize APIC accesses," "APIC-
5138 * register virtualization," and "virtual-interrupt
5139 * delivery" only come from vmcs12.
5140 */
5141 return true;
5142 case EXIT_REASON_EPT_VIOLATION:
5143 /*
5144 * L0 always deals with the EPT violation. If nested EPT is
5145 * used, and the nested mmu code discovers that the address is
5146 * missing in the guest EPT table (EPT12), the EPT violation
5147 * will be injected with nested_ept_inject_page_fault()
5148 */
5149 return false;
5150 case EXIT_REASON_EPT_MISCONFIG:
5151 /*
5152 * L2 never uses directly L1's EPT, but rather L0's own EPT
5153 * table (shadow on EPT) or a merged EPT table that L0 built
5154 * (EPT on EPT). So any problems with the structure of the
5155 * table is L0's fault.
5156 */
5157 return false;
5158 case EXIT_REASON_INVPCID:
5159 return
5160 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5161 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5162 case EXIT_REASON_WBINVD:
5163 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5164 case EXIT_REASON_XSETBV:
5165 return true;
5166 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5167 /*
5168 * This should never happen, since it is not possible to
5169 * set XSS to a non-zero value---neither in L1 nor in L2.
5170 * If if it were, XSS would have to be checked against
5171 * the XSS exit bitmap in vmcs12.
5172 */
5173 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5174 case EXIT_REASON_PREEMPTION_TIMER:
5175 return false;
5176 case EXIT_REASON_PML_FULL:
5177 /* We emulate PML support to L1. */
5178 return false;
5179 case EXIT_REASON_VMFUNC:
5180 /* VM functions are emulated through L2->L0 vmexits. */
5181 return false;
5182 case EXIT_REASON_ENCLS:
5183 /* SGX is never exposed to L1 */
5184 return false;
5185 default:
5186 return true;
5187 }
5188}
5189
5190
5191static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5192 struct kvm_nested_state __user *user_kvm_nested_state,
5193 u32 user_data_size)
5194{
5195 struct vcpu_vmx *vmx;
5196 struct vmcs12 *vmcs12;
5197 struct kvm_nested_state kvm_state = {
5198 .flags = 0,
5199 .format = 0,
5200 .size = sizeof(kvm_state),
5201 .vmx.vmxon_pa = -1ull,
5202 .vmx.vmcs_pa = -1ull,
5203 };
5204
5205 if (!vcpu)
5206 return kvm_state.size + 2 * VMCS12_SIZE;
5207
5208 vmx = to_vmx(vcpu);
5209 vmcs12 = get_vmcs12(vcpu);
5210
5211 if (nested_vmx_allowed(vcpu) && vmx->nested.enlightened_vmcs_enabled)
5212 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5213
5214 if (nested_vmx_allowed(vcpu) &&
5215 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
5216 kvm_state.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5217 kvm_state.vmx.vmcs_pa = vmx->nested.current_vmptr;
5218
5219 if (vmx_has_valid_vmcs12(vcpu)) {
5220 kvm_state.size += VMCS12_SIZE;
5221
5222 if (is_guest_mode(vcpu) &&
5223 nested_cpu_has_shadow_vmcs(vmcs12) &&
5224 vmcs12->vmcs_link_pointer != -1ull)
5225 kvm_state.size += VMCS12_SIZE;
5226 }
5227
5228 if (vmx->nested.smm.vmxon)
5229 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
5230
5231 if (vmx->nested.smm.guest_mode)
5232 kvm_state.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
5233
5234 if (is_guest_mode(vcpu)) {
5235 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5236
5237 if (vmx->nested.nested_run_pending)
5238 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5239 }
5240 }
5241
5242 if (user_data_size < kvm_state.size)
5243 goto out;
5244
5245 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5246 return -EFAULT;
5247
5248 if (!vmx_has_valid_vmcs12(vcpu))
5249 goto out;
5250
5251 /*
5252 * When running L2, the authoritative vmcs12 state is in the
5253 * vmcs02. When running L1, the authoritative vmcs12 state is
5254 * in the shadow or enlightened vmcs linked to vmcs01, unless
5255 * need_vmcs12_sync is set, in which case, the authoritative
5256 * vmcs12 state is in the vmcs12 already.
5257 */
5258 if (is_guest_mode(vcpu)) {
5259 sync_vmcs12(vcpu, vmcs12);
5260 } else if (!vmx->nested.need_vmcs12_sync) {
5261 if (vmx->nested.hv_evmcs)
5262 copy_enlightened_to_vmcs12(vmx);
5263 else if (enable_shadow_vmcs)
5264 copy_shadow_to_vmcs12(vmx);
5265 }
5266
3a33d030
TR
5267 /*
5268 * Copy over the full allocated size of vmcs12 rather than just the size
5269 * of the struct.
5270 */
5271 if (copy_to_user(user_kvm_nested_state->data, vmcs12, VMCS12_SIZE))
55d2375e
SC
5272 return -EFAULT;
5273
5274 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5275 vmcs12->vmcs_link_pointer != -1ull) {
5276 if (copy_to_user(user_kvm_nested_state->data + VMCS12_SIZE,
3a33d030 5277 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
55d2375e
SC
5278 return -EFAULT;
5279 }
5280
5281out:
5282 return kvm_state.size;
5283}
5284
5285/*
5286 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5287 */
5288void vmx_leave_nested(struct kvm_vcpu *vcpu)
5289{
5290 if (is_guest_mode(vcpu)) {
5291 to_vmx(vcpu)->nested.nested_run_pending = 0;
5292 nested_vmx_vmexit(vcpu, -1, 0, 0);
5293 }
5294 free_nested(vcpu);
5295}
5296
5297static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5298 struct kvm_nested_state __user *user_kvm_nested_state,
5299 struct kvm_nested_state *kvm_state)
5300{
5301 struct vcpu_vmx *vmx = to_vmx(vcpu);
5302 struct vmcs12 *vmcs12;
5303 u32 exit_qual;
5304 int ret;
5305
5306 if (kvm_state->format != 0)
5307 return -EINVAL;
5308
5309 if (kvm_state->flags & KVM_STATE_NESTED_EVMCS)
5310 nested_enable_evmcs(vcpu, NULL);
5311
5312 if (!nested_vmx_allowed(vcpu))
5313 return kvm_state->vmx.vmxon_pa == -1ull ? 0 : -EINVAL;
5314
5315 if (kvm_state->vmx.vmxon_pa == -1ull) {
5316 if (kvm_state->vmx.smm.flags)
5317 return -EINVAL;
5318
5319 if (kvm_state->vmx.vmcs_pa != -1ull)
5320 return -EINVAL;
5321
5322 vmx_leave_nested(vcpu);
5323 return 0;
5324 }
5325
5326 if (!page_address_valid(vcpu, kvm_state->vmx.vmxon_pa))
5327 return -EINVAL;
5328
5329 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5330 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5331 return -EINVAL;
5332
5333 if (kvm_state->vmx.smm.flags &
5334 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5335 return -EINVAL;
5336
5337 /*
5338 * SMM temporarily disables VMX, so we cannot be in guest mode,
5339 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
5340 * must be zero.
5341 */
5342 if (is_smm(vcpu) ? kvm_state->flags : kvm_state->vmx.smm.flags)
5343 return -EINVAL;
5344
5345 if ((kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5346 !(kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
5347 return -EINVAL;
5348
5349 vmx_leave_nested(vcpu);
5350 if (kvm_state->vmx.vmxon_pa == -1ull)
5351 return 0;
5352
5353 vmx->nested.vmxon_ptr = kvm_state->vmx.vmxon_pa;
5354 ret = enter_vmx_operation(vcpu);
5355 if (ret)
5356 return ret;
5357
5358 /* Empty 'VMXON' state is permitted */
5359 if (kvm_state->size < sizeof(kvm_state) + sizeof(*vmcs12))
5360 return 0;
5361
5362 if (kvm_state->vmx.vmcs_pa != -1ull) {
5363 if (kvm_state->vmx.vmcs_pa == kvm_state->vmx.vmxon_pa ||
5364 !page_address_valid(vcpu, kvm_state->vmx.vmcs_pa))
5365 return -EINVAL;
5366
5367 set_current_vmptr(vmx, kvm_state->vmx.vmcs_pa);
5368 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5369 /*
5370 * Sync eVMCS upon entry as we may not have
5371 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5372 */
5373 vmx->nested.need_vmcs12_sync = true;
5374 } else {
5375 return -EINVAL;
5376 }
5377
5378 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
5379 vmx->nested.smm.vmxon = true;
5380 vmx->nested.vmxon = false;
5381
5382 if (kvm_state->vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
5383 vmx->nested.smm.guest_mode = true;
5384 }
5385
5386 vmcs12 = get_vmcs12(vcpu);
5387 if (copy_from_user(vmcs12, user_kvm_nested_state->data, sizeof(*vmcs12)))
5388 return -EFAULT;
5389
5390 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5391 return -EINVAL;
5392
5393 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5394 return 0;
5395
5396 vmx->nested.nested_run_pending =
5397 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5398
5399 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5400 vmcs12->vmcs_link_pointer != -1ull) {
5401 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5402
5403 if (kvm_state->size < sizeof(kvm_state) + 2 * sizeof(*vmcs12))
5404 return -EINVAL;
5405
5406 if (copy_from_user(shadow_vmcs12,
5407 user_kvm_nested_state->data + VMCS12_SIZE,
5408 sizeof(*vmcs12)))
5409 return -EFAULT;
5410
5411 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5412 !shadow_vmcs12->hdr.shadow_vmcs)
5413 return -EINVAL;
5414 }
5415
16322a3b
KS
5416 if (nested_vmx_check_vmentry_prereqs(vcpu, vmcs12) ||
5417 nested_vmx_check_vmentry_postreqs(vcpu, vmcs12, &exit_qual))
55d2375e
SC
5418 return -EINVAL;
5419
5420 vmx->nested.dirty_vmcs12 = true;
5421 ret = nested_vmx_enter_non_root_mode(vcpu, false);
5422 if (ret)
5423 return -EINVAL;
5424
5425 return 0;
5426}
5427
5428void nested_vmx_vcpu_setup(void)
5429{
5430 if (enable_shadow_vmcs) {
5431 /*
5432 * At vCPU creation, "VMWRITE to any supported field
5433 * in the VMCS" is supported, so use the more
5434 * permissive vmx_vmread_bitmap to specify both read
5435 * and write permissions for the shadow VMCS.
5436 */
5437 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
5438 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmread_bitmap));
5439 }
5440}
5441
5442/*
5443 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5444 * returned for the various VMX controls MSRs when nested VMX is enabled.
5445 * The same values should also be used to verify that vmcs12 control fields are
5446 * valid during nested entry from L1 to L2.
5447 * Each of these control msrs has a low and high 32-bit half: A low bit is on
5448 * if the corresponding bit in the (32-bit) control field *must* be on, and a
5449 * bit in the high half is on if the corresponding bit in the control field
5450 * may be on. See also vmx_control_verify().
5451 */
5452void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5453 bool apicv)
5454{
5455 /*
5456 * Note that as a general rule, the high half of the MSRs (bits in
5457 * the control fields which may be 1) should be initialized by the
5458 * intersection of the underlying hardware's MSR (i.e., features which
5459 * can be supported) and the list of features we want to expose -
5460 * because they are known to be properly supported in our code.
5461 * Also, usually, the low half of the MSRs (bits which must be 1) can
5462 * be set to 0, meaning that L1 may turn off any of these bits. The
5463 * reason is that if one of these bits is necessary, it will appear
5464 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5465 * fields of vmcs01 and vmcs02, will turn these bits off - and
5466 * nested_vmx_exit_reflected() will not pass related exits to L1.
5467 * These rules have exceptions below.
5468 */
5469
5470 /* pin-based controls */
5471 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5472 msrs->pinbased_ctls_low,
5473 msrs->pinbased_ctls_high);
5474 msrs->pinbased_ctls_low |=
5475 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5476 msrs->pinbased_ctls_high &=
5477 PIN_BASED_EXT_INTR_MASK |
5478 PIN_BASED_NMI_EXITING |
5479 PIN_BASED_VIRTUAL_NMIS |
5480 (apicv ? PIN_BASED_POSTED_INTR : 0);
5481 msrs->pinbased_ctls_high |=
5482 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5483 PIN_BASED_VMX_PREEMPTION_TIMER;
5484
5485 /* exit controls */
5486 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5487 msrs->exit_ctls_low,
5488 msrs->exit_ctls_high);
5489 msrs->exit_ctls_low =
5490 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5491
5492 msrs->exit_ctls_high &=
5493#ifdef CONFIG_X86_64
5494 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5495#endif
5496 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5497 msrs->exit_ctls_high |=
5498 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5499 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5500 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5501
5502 /* We support free control of debug control saving. */
5503 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5504
5505 /* entry controls */
5506 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5507 msrs->entry_ctls_low,
5508 msrs->entry_ctls_high);
5509 msrs->entry_ctls_low =
5510 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5511 msrs->entry_ctls_high &=
5512#ifdef CONFIG_X86_64
5513 VM_ENTRY_IA32E_MODE |
5514#endif
5515 VM_ENTRY_LOAD_IA32_PAT;
5516 msrs->entry_ctls_high |=
5517 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5518
5519 /* We support free control of debug control loading. */
5520 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5521
5522 /* cpu-based controls */
5523 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5524 msrs->procbased_ctls_low,
5525 msrs->procbased_ctls_high);
5526 msrs->procbased_ctls_low =
5527 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5528 msrs->procbased_ctls_high &=
5529 CPU_BASED_VIRTUAL_INTR_PENDING |
5530 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5531 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5532 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5533 CPU_BASED_CR3_STORE_EXITING |
5534#ifdef CONFIG_X86_64
5535 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5536#endif
5537 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5538 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5539 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5540 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5541 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5542 /*
5543 * We can allow some features even when not supported by the
5544 * hardware. For example, L1 can specify an MSR bitmap - and we
5545 * can use it to avoid exits to L1 - even when L0 runs L2
5546 * without MSR bitmaps.
5547 */
5548 msrs->procbased_ctls_high |=
5549 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5550 CPU_BASED_USE_MSR_BITMAPS;
5551
5552 /* We support free control of CR3 access interception. */
5553 msrs->procbased_ctls_low &=
5554 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5555
5556 /*
5557 * secondary cpu-based controls. Do not include those that
5558 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5559 */
5560 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5561 msrs->secondary_ctls_low,
5562 msrs->secondary_ctls_high);
5563 msrs->secondary_ctls_low = 0;
5564 msrs->secondary_ctls_high &=
5565 SECONDARY_EXEC_DESC |
5566 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5567 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5568 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
5569 SECONDARY_EXEC_WBINVD_EXITING;
5570
5571 /*
5572 * We can emulate "VMCS shadowing," even if the hardware
5573 * doesn't support it.
5574 */
5575 msrs->secondary_ctls_high |=
5576 SECONDARY_EXEC_SHADOW_VMCS;
5577
5578 if (enable_ept) {
5579 /* nested EPT: emulate EPT also to L1 */
5580 msrs->secondary_ctls_high |=
5581 SECONDARY_EXEC_ENABLE_EPT;
5582 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5583 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5584 if (cpu_has_vmx_ept_execute_only())
5585 msrs->ept_caps |=
5586 VMX_EPT_EXECUTE_ONLY_BIT;
5587 msrs->ept_caps &= ept_caps;
5588 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5589 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5590 VMX_EPT_1GB_PAGE_BIT;
5591 if (enable_ept_ad_bits) {
5592 msrs->secondary_ctls_high |=
5593 SECONDARY_EXEC_ENABLE_PML;
5594 msrs->ept_caps |= VMX_EPT_AD_BIT;
5595 }
5596 }
5597
5598 if (cpu_has_vmx_vmfunc()) {
5599 msrs->secondary_ctls_high |=
5600 SECONDARY_EXEC_ENABLE_VMFUNC;
5601 /*
5602 * Advertise EPTP switching unconditionally
5603 * since we emulate it
5604 */
5605 if (enable_ept)
5606 msrs->vmfunc_controls =
5607 VMX_VMFUNC_EPTP_SWITCHING;
5608 }
5609
5610 /*
5611 * Old versions of KVM use the single-context version without
5612 * checking for support, so declare that it is supported even
5613 * though it is treated as global context. The alternative is
5614 * not failing the single-context invvpid, and it is worse.
5615 */
5616 if (enable_vpid) {
5617 msrs->secondary_ctls_high |=
5618 SECONDARY_EXEC_ENABLE_VPID;
5619 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5620 VMX_VPID_EXTENT_SUPPORTED_MASK;
5621 }
5622
5623 if (enable_unrestricted_guest)
5624 msrs->secondary_ctls_high |=
5625 SECONDARY_EXEC_UNRESTRICTED_GUEST;
5626
5627 if (flexpriority_enabled)
5628 msrs->secondary_ctls_high |=
5629 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5630
5631 /* miscellaneous data */
5632 rdmsr(MSR_IA32_VMX_MISC,
5633 msrs->misc_low,
5634 msrs->misc_high);
5635 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5636 msrs->misc_low |=
5637 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5638 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5639 VMX_MISC_ACTIVITY_HLT;
5640 msrs->misc_high = 0;
5641
5642 /*
5643 * This MSR reports some information about VMX support. We
5644 * should return information about the VMX we emulate for the
5645 * guest, and the VMCS structure we give it - not about the
5646 * VMX support of the underlying hardware.
5647 */
5648 msrs->basic =
5649 VMCS12_REVISION |
5650 VMX_BASIC_TRUE_CTLS |
5651 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5652 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5653
5654 if (cpu_has_vmx_basic_inout())
5655 msrs->basic |= VMX_BASIC_INOUT;
5656
5657 /*
5658 * These MSRs specify bits which the guest must keep fixed on
5659 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5660 * We picked the standard core2 setting.
5661 */
5662#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5663#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
5664 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5665 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
5666
5667 /* These MSRs specify bits which the guest must keep fixed off. */
5668 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
5669 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
5670
5671 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
5672 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
5673}
5674
5675void nested_vmx_hardware_unsetup(void)
5676{
5677 int i;
5678
5679 if (enable_shadow_vmcs) {
5680 for (i = 0; i < VMX_BITMAP_NR; i++)
5681 free_page((unsigned long)vmx_bitmap[i]);
5682 }
5683}
5684
5685__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
5686{
5687 int i;
5688
5689 if (!cpu_has_vmx_shadow_vmcs())
5690 enable_shadow_vmcs = 0;
5691 if (enable_shadow_vmcs) {
5692 for (i = 0; i < VMX_BITMAP_NR; i++) {
5693 vmx_bitmap[i] = (unsigned long *)
5694 __get_free_page(GFP_KERNEL);
5695 if (!vmx_bitmap[i]) {
5696 nested_vmx_hardware_unsetup();
5697 return -ENOMEM;
5698 }
5699 }
5700
5701 init_vmcs_shadow_fields();
5702 }
5703
5704 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
5705 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
5706 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
5707 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
5708 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
5709 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
5710 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
5711 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
5712 exit_handlers[EXIT_REASON_VMON] = handle_vmon,
5713 exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
5714 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
5715 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
5716
5717 kvm_x86_ops->check_nested_events = vmx_check_nested_events;
5718 kvm_x86_ops->get_nested_state = vmx_get_nested_state;
5719 kvm_x86_ops->set_nested_state = vmx_set_nested_state;
5720 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
5721 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
e2e871ab 5722 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
55d2375e
SC
5723
5724 return 0;
5725}