KVM: nVMX: Fix consistency check on injected exception error code
[linux-2.6-block.git] / arch / x86 / kvm / vmx / nested.c
CommitLineData
55d2375e
SC
1// SPDX-License-Identifier: GPL-2.0
2
3#include <linux/frame.h>
4#include <linux/percpu.h>
5
6#include <asm/debugreg.h>
7#include <asm/mmu_context.h>
8
9#include "cpuid.h"
10#include "hyperv.h"
11#include "mmu.h"
12#include "nested.h"
13#include "trace.h"
14#include "x86.h"
15
16static bool __read_mostly enable_shadow_vmcs = 1;
17module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
18
19static bool __read_mostly nested_early_check = 0;
20module_param(nested_early_check, bool, S_IRUGO);
21
5497b955
SC
22#define CC(consistency_check) \
23({ \
24 bool failed = (consistency_check); \
25 if (failed) \
380e0055 26 trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
5497b955
SC
27 failed; \
28})
29
55d2375e
SC
30/*
31 * Hyper-V requires all of these, so mark them as supported even though
32 * they are just treated the same as all-context.
33 */
34#define VMX_VPID_EXTENT_SUPPORTED_MASK \
35 (VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
36 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
37 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
38 VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
39
40#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
41
42enum {
43 VMX_VMREAD_BITMAP,
44 VMX_VMWRITE_BITMAP,
45 VMX_BITMAP_NR
46};
47static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
48
49#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
50#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
51
1c6f0b47
SC
52struct shadow_vmcs_field {
53 u16 encoding;
54 u16 offset;
55};
56static struct shadow_vmcs_field shadow_read_only_fields[] = {
57#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
55d2375e
SC
58#include "vmcs_shadow_fields.h"
59};
60static int max_shadow_read_only_fields =
61 ARRAY_SIZE(shadow_read_only_fields);
62
1c6f0b47
SC
63static struct shadow_vmcs_field shadow_read_write_fields[] = {
64#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
55d2375e
SC
65#include "vmcs_shadow_fields.h"
66};
67static int max_shadow_read_write_fields =
68 ARRAY_SIZE(shadow_read_write_fields);
69
8997f657 70static void init_vmcs_shadow_fields(void)
55d2375e
SC
71{
72 int i, j;
73
74 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
75 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
76
77 for (i = j = 0; i < max_shadow_read_only_fields; i++) {
1c6f0b47
SC
78 struct shadow_vmcs_field entry = shadow_read_only_fields[i];
79 u16 field = entry.encoding;
55d2375e
SC
80
81 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
82 (i + 1 == max_shadow_read_only_fields ||
1c6f0b47 83 shadow_read_only_fields[i + 1].encoding != field + 1))
55d2375e
SC
84 pr_err("Missing field from shadow_read_only_field %x\n",
85 field + 1);
86
87 clear_bit(field, vmx_vmread_bitmap);
55d2375e 88 if (field & 1)
1c6f0b47 89#ifdef CONFIG_X86_64
55d2375e 90 continue;
1c6f0b47
SC
91#else
92 entry.offset += sizeof(u32);
55d2375e 93#endif
1c6f0b47 94 shadow_read_only_fields[j++] = entry;
55d2375e
SC
95 }
96 max_shadow_read_only_fields = j;
97
98 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
1c6f0b47
SC
99 struct shadow_vmcs_field entry = shadow_read_write_fields[i];
100 u16 field = entry.encoding;
55d2375e
SC
101
102 if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
103 (i + 1 == max_shadow_read_write_fields ||
1c6f0b47 104 shadow_read_write_fields[i + 1].encoding != field + 1))
55d2375e
SC
105 pr_err("Missing field from shadow_read_write_field %x\n",
106 field + 1);
107
b6437805
SC
108 WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
109 field <= GUEST_TR_AR_BYTES,
1c6f0b47 110 "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
b6437805 111
55d2375e
SC
112 /*
113 * PML and the preemption timer can be emulated, but the
114 * processor cannot vmwrite to fields that don't exist
115 * on bare metal.
116 */
117 switch (field) {
118 case GUEST_PML_INDEX:
119 if (!cpu_has_vmx_pml())
120 continue;
121 break;
122 case VMX_PREEMPTION_TIMER_VALUE:
123 if (!cpu_has_vmx_preemption_timer())
124 continue;
125 break;
126 case GUEST_INTR_STATUS:
127 if (!cpu_has_vmx_apicv())
128 continue;
129 break;
130 default:
131 break;
132 }
133
134 clear_bit(field, vmx_vmwrite_bitmap);
135 clear_bit(field, vmx_vmread_bitmap);
55d2375e 136 if (field & 1)
1c6f0b47 137#ifdef CONFIG_X86_64
55d2375e 138 continue;
1c6f0b47
SC
139#else
140 entry.offset += sizeof(u32);
55d2375e 141#endif
1c6f0b47 142 shadow_read_write_fields[j++] = entry;
55d2375e
SC
143 }
144 max_shadow_read_write_fields = j;
145}
146
147/*
148 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
149 * set the success or error code of an emulated VMX instruction (as specified
150 * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
151 * instruction.
152 */
153static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
154{
155 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
156 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
157 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
158 return kvm_skip_emulated_instruction(vcpu);
159}
160
161static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
162{
163 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
164 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
165 X86_EFLAGS_SF | X86_EFLAGS_OF))
166 | X86_EFLAGS_CF);
167 return kvm_skip_emulated_instruction(vcpu);
168}
169
170static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
171 u32 vm_instruction_error)
172{
173 struct vcpu_vmx *vmx = to_vmx(vcpu);
174
175 /*
176 * failValid writes the error number to the current VMCS, which
177 * can't be done if there isn't a current VMCS.
178 */
179 if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
180 return nested_vmx_failInvalid(vcpu);
181
182 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
183 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
184 X86_EFLAGS_SF | X86_EFLAGS_OF))
185 | X86_EFLAGS_ZF);
186 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
187 /*
188 * We don't need to force a shadow sync because
189 * VM_INSTRUCTION_ERROR is not shadowed
190 */
191 return kvm_skip_emulated_instruction(vcpu);
192}
193
194static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
195{
196 /* TODO: not to reset guest simply here. */
197 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
198 pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
199}
200
f0b5105a
MO
201static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
202{
203 return fixed_bits_valid(control, low, high);
204}
205
206static inline u64 vmx_control_msr(u32 low, u32 high)
207{
208 return low | ((u64)high << 32);
209}
210
55d2375e
SC
211static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
212{
fe7f895d 213 secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
55d2375e 214 vmcs_write64(VMCS_LINK_POINTER, -1ull);
88dddc11 215 vmx->nested.need_vmcs12_to_shadow_sync = false;
55d2375e
SC
216}
217
218static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
219{
220 struct vcpu_vmx *vmx = to_vmx(vcpu);
221
222 if (!vmx->nested.hv_evmcs)
223 return;
224
dee9c049 225 kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
55d2375e 226 vmx->nested.hv_evmcs_vmptr = -1ull;
55d2375e
SC
227 vmx->nested.hv_evmcs = NULL;
228}
229
230/*
231 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
232 * just stops using VMX.
233 */
234static void free_nested(struct kvm_vcpu *vcpu)
235{
236 struct vcpu_vmx *vmx = to_vmx(vcpu);
237
238 if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
239 return;
240
cf64527b
JK
241 kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
242
55d2375e
SC
243 vmx->nested.vmxon = false;
244 vmx->nested.smm.vmxon = false;
245 free_vpid(vmx->nested.vpid02);
246 vmx->nested.posted_intr_nv = -1;
247 vmx->nested.current_vmptr = -1ull;
248 if (enable_shadow_vmcs) {
249 vmx_disable_shadow_vmcs(vmx);
250 vmcs_clear(vmx->vmcs01.shadow_vmcs);
251 free_vmcs(vmx->vmcs01.shadow_vmcs);
252 vmx->vmcs01.shadow_vmcs = NULL;
253 }
254 kfree(vmx->nested.cached_vmcs12);
c6bf2ae9 255 vmx->nested.cached_vmcs12 = NULL;
55d2375e 256 kfree(vmx->nested.cached_shadow_vmcs12);
c6bf2ae9 257 vmx->nested.cached_shadow_vmcs12 = NULL;
55d2375e
SC
258 /* Unpin physical memory we referred to in the vmcs02 */
259 if (vmx->nested.apic_access_page) {
260 kvm_release_page_dirty(vmx->nested.apic_access_page);
261 vmx->nested.apic_access_page = NULL;
262 }
96c66e87 263 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
3278e049
KA
264 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
265 vmx->nested.pi_desc = NULL;
55d2375e
SC
266
267 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
268
269 nested_release_evmcs(vcpu);
270
271 free_loaded_vmcs(&vmx->nested.vmcs02);
272}
273
13b964a2
SC
274static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
275 struct loaded_vmcs *prev)
276{
277 struct vmcs_host_state *dest, *src;
278
279 if (unlikely(!vmx->guest_state_loaded))
280 return;
281
282 src = &prev->host_state;
283 dest = &vmx->loaded_vmcs->host_state;
284
285 vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
286 dest->ldt_sel = src->ldt_sel;
287#ifdef CONFIG_X86_64
288 dest->ds_sel = src->ds_sel;
289 dest->es_sel = src->es_sel;
290#endif
291}
292
55d2375e
SC
293static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
294{
295 struct vcpu_vmx *vmx = to_vmx(vcpu);
13b964a2 296 struct loaded_vmcs *prev;
55d2375e
SC
297 int cpu;
298
299 if (vmx->loaded_vmcs == vmcs)
300 return;
301
302 cpu = get_cpu();
13b964a2 303 prev = vmx->loaded_vmcs;
55d2375e 304 vmx->loaded_vmcs = vmcs;
8ef863e6 305 vmx_vcpu_load_vmcs(vcpu, cpu);
13b964a2 306 vmx_sync_vmcs_host_state(vmx, prev);
55d2375e
SC
307 put_cpu();
308
55d2375e
SC
309 vmx_segment_cache_clear(vmx);
310}
311
312/*
313 * Ensure that the current vmcs of the logical processor is the
314 * vmcs01 of the vcpu before calling free_nested().
315 */
316void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
317{
318 vcpu_load(vcpu);
b4b65b56 319 vmx_leave_nested(vcpu);
55d2375e
SC
320 vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
321 free_nested(vcpu);
322 vcpu_put(vcpu);
323}
324
325static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
326 struct x86_exception *fault)
327{
328 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
329 struct vcpu_vmx *vmx = to_vmx(vcpu);
330 u32 exit_reason;
331 unsigned long exit_qualification = vcpu->arch.exit_qualification;
332
333 if (vmx->nested.pml_full) {
334 exit_reason = EXIT_REASON_PML_FULL;
335 vmx->nested.pml_full = false;
336 exit_qualification &= INTR_INFO_UNBLOCK_NMI;
337 } else if (fault->error_code & PFERR_RSVD_MASK)
338 exit_reason = EXIT_REASON_EPT_MISCONFIG;
339 else
340 exit_reason = EXIT_REASON_EPT_VIOLATION;
341
342 nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
343 vmcs12->guest_physical_address = fault->address;
344}
345
346static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
347{
348 WARN_ON(mmu_is_nested(vcpu));
349
350 vcpu->arch.mmu = &vcpu->arch.guest_mmu;
351 kvm_init_shadow_ept_mmu(vcpu,
352 to_vmx(vcpu)->nested.msrs.ept_caps &
353 VMX_EPT_EXECUTE_ONLY_BIT,
354 nested_ept_ad_enabled(vcpu),
355 nested_ept_get_cr3(vcpu));
356 vcpu->arch.mmu->set_cr3 = vmx_set_cr3;
357 vcpu->arch.mmu->get_cr3 = nested_ept_get_cr3;
358 vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
359 vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
360
361 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
362}
363
364static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
365{
366 vcpu->arch.mmu = &vcpu->arch.root_mmu;
367 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
368}
369
370static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
371 u16 error_code)
372{
373 bool inequality, bit;
374
375 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
376 inequality =
377 (error_code & vmcs12->page_fault_error_code_mask) !=
378 vmcs12->page_fault_error_code_match;
379 return inequality ^ bit;
380}
381
382
383/*
384 * KVM wants to inject page-faults which it got to the guest. This function
385 * checks whether in a nested guest, we need to inject them to L1 or L2.
386 */
387static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
388{
389 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
390 unsigned int nr = vcpu->arch.exception.nr;
391 bool has_payload = vcpu->arch.exception.has_payload;
392 unsigned long payload = vcpu->arch.exception.payload;
393
394 if (nr == PF_VECTOR) {
395 if (vcpu->arch.exception.nested_apf) {
396 *exit_qual = vcpu->arch.apf.nested_apf_token;
397 return 1;
398 }
399 if (nested_vmx_is_page_fault_vmexit(vmcs12,
400 vcpu->arch.exception.error_code)) {
401 *exit_qual = has_payload ? payload : vcpu->arch.cr2;
402 return 1;
403 }
404 } else if (vmcs12->exception_bitmap & (1u << nr)) {
405 if (nr == DB_VECTOR) {
406 if (!has_payload) {
407 payload = vcpu->arch.dr6;
408 payload &= ~(DR6_FIXED_1 | DR6_BT);
409 payload ^= DR6_RTM;
410 }
411 *exit_qual = payload;
412 } else
413 *exit_qual = 0;
414 return 1;
415 }
416
417 return 0;
418}
419
420
421static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
422 struct x86_exception *fault)
423{
424 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
425
426 WARN_ON(!is_guest_mode(vcpu));
427
428 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
429 !to_vmx(vcpu)->nested.nested_run_pending) {
430 vmcs12->vm_exit_intr_error_code = fault->error_code;
431 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
432 PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
433 INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
434 fault->address);
435 } else {
436 kvm_inject_page_fault(vcpu, fault);
437 }
438}
439
440static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
441{
442 return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
443}
444
445static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
446 struct vmcs12 *vmcs12)
447{
448 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
449 return 0;
450
5497b955
SC
451 if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
452 CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
55d2375e
SC
453 return -EINVAL;
454
455 return 0;
456}
457
458static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
459 struct vmcs12 *vmcs12)
460{
461 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
462 return 0;
463
5497b955 464 if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
55d2375e
SC
465 return -EINVAL;
466
467 return 0;
468}
469
470static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
471 struct vmcs12 *vmcs12)
472{
473 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
474 return 0;
475
5497b955 476 if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
55d2375e
SC
477 return -EINVAL;
478
479 return 0;
480}
481
482/*
483 * Check if MSR is intercepted for L01 MSR bitmap.
484 */
485static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
486{
487 unsigned long *msr_bitmap;
488 int f = sizeof(unsigned long);
489
490 if (!cpu_has_vmx_msr_bitmap())
491 return true;
492
493 msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
494
495 if (msr <= 0x1fff) {
496 return !!test_bit(msr, msr_bitmap + 0x800 / f);
497 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
498 msr &= 0x1fff;
499 return !!test_bit(msr, msr_bitmap + 0xc00 / f);
500 }
501
502 return true;
503}
504
505/*
506 * If a msr is allowed by L0, we should check whether it is allowed by L1.
507 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
508 */
509static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
510 unsigned long *msr_bitmap_nested,
511 u32 msr, int type)
512{
513 int f = sizeof(unsigned long);
514
515 /*
516 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
517 * have the write-low and read-high bitmap offsets the wrong way round.
518 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
519 */
520 if (msr <= 0x1fff) {
521 if (type & MSR_TYPE_R &&
522 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
523 /* read-low */
524 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
525
526 if (type & MSR_TYPE_W &&
527 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
528 /* write-low */
529 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
530
531 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
532 msr &= 0x1fff;
533 if (type & MSR_TYPE_R &&
534 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
535 /* read-high */
536 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
537
538 if (type & MSR_TYPE_W &&
539 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
540 /* write-high */
541 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
542
543 }
544}
545
acff7847
MO
546static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap) {
547 int msr;
548
549 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
550 unsigned word = msr / BITS_PER_LONG;
551
552 msr_bitmap[word] = ~0;
553 msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
554 }
555}
556
55d2375e
SC
557/*
558 * Merge L0's and L1's MSR bitmap, return false to indicate that
559 * we do not use the hardware.
560 */
561static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
562 struct vmcs12 *vmcs12)
563{
564 int msr;
55d2375e
SC
565 unsigned long *msr_bitmap_l1;
566 unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
31f0b6c4 567 struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
55d2375e
SC
568
569 /* Nothing to do if the MSR bitmap is not in use. */
570 if (!cpu_has_vmx_msr_bitmap() ||
571 !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
572 return false;
573
31f0b6c4 574 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
55d2375e
SC
575 return false;
576
31f0b6c4 577 msr_bitmap_l1 = (unsigned long *)map->hva;
55d2375e 578
acff7847
MO
579 /*
580 * To keep the control flow simple, pay eight 8-byte writes (sixteen
581 * 4-byte writes on 32-bit systems) up front to enable intercepts for
582 * the x2APIC MSR range and selectively disable them below.
583 */
584 enable_x2apic_msr_intercepts(msr_bitmap_l0);
585
586 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
587 if (nested_cpu_has_apic_reg_virt(vmcs12)) {
588 /*
589 * L0 need not intercept reads for MSRs between 0x800
590 * and 0x8ff, it just lets the processor take the value
591 * from the virtual-APIC page; take those 256 bits
592 * directly from the L1 bitmap.
593 */
594 for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
595 unsigned word = msr / BITS_PER_LONG;
596
597 msr_bitmap_l0[word] = msr_bitmap_l1[word];
598 }
599 }
55d2375e 600
55d2375e
SC
601 nested_vmx_disable_intercept_for_msr(
602 msr_bitmap_l1, msr_bitmap_l0,
acff7847 603 X2APIC_MSR(APIC_TASKPRI),
c73f4c99 604 MSR_TYPE_R | MSR_TYPE_W);
acff7847
MO
605
606 if (nested_cpu_has_vid(vmcs12)) {
607 nested_vmx_disable_intercept_for_msr(
608 msr_bitmap_l1, msr_bitmap_l0,
609 X2APIC_MSR(APIC_EOI),
610 MSR_TYPE_W);
611 nested_vmx_disable_intercept_for_msr(
612 msr_bitmap_l1, msr_bitmap_l0,
613 X2APIC_MSR(APIC_SELF_IPI),
614 MSR_TYPE_W);
615 }
55d2375e
SC
616 }
617
d69129b4
SC
618 /* KVM unconditionally exposes the FS/GS base MSRs to L1. */
619 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
620 MSR_FS_BASE, MSR_TYPE_RW);
621
622 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
623 MSR_GS_BASE, MSR_TYPE_RW);
624
625 nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
626 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
627
628 /*
629 * Checking the L0->L1 bitmap is trying to verify two things:
630 *
631 * 1. L0 gave a permission to L1 to actually passthrough the MSR. This
632 * ensures that we do not accidentally generate an L02 MSR bitmap
633 * from the L12 MSR bitmap that is too permissive.
634 * 2. That L1 or L2s have actually used the MSR. This avoids
635 * unnecessarily merging of the bitmap if the MSR is unused. This
636 * works properly because we only update the L01 MSR bitmap lazily.
637 * So even if L0 should pass L1 these MSRs, the L01 bitmap is only
638 * updated to reflect this when L1 (or its L2s) actually write to
639 * the MSR.
640 */
641 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
55d2375e
SC
642 nested_vmx_disable_intercept_for_msr(
643 msr_bitmap_l1, msr_bitmap_l0,
644 MSR_IA32_SPEC_CTRL,
645 MSR_TYPE_R | MSR_TYPE_W);
646
d69129b4 647 if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
55d2375e
SC
648 nested_vmx_disable_intercept_for_msr(
649 msr_bitmap_l1, msr_bitmap_l0,
650 MSR_IA32_PRED_CMD,
651 MSR_TYPE_W);
652
31f0b6c4 653 kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
55d2375e
SC
654
655 return true;
656}
657
658static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
659 struct vmcs12 *vmcs12)
660{
88925305 661 struct kvm_host_map map;
55d2375e 662 struct vmcs12 *shadow;
55d2375e
SC
663
664 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
665 vmcs12->vmcs_link_pointer == -1ull)
666 return;
667
668 shadow = get_shadow_vmcs12(vcpu);
55d2375e 669
88925305
KA
670 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
671 return;
55d2375e 672
88925305
KA
673 memcpy(shadow, map.hva, VMCS12_SIZE);
674 kvm_vcpu_unmap(vcpu, &map, false);
55d2375e
SC
675}
676
677static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
678 struct vmcs12 *vmcs12)
679{
680 struct vcpu_vmx *vmx = to_vmx(vcpu);
681
682 if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
683 vmcs12->vmcs_link_pointer == -1ull)
684 return;
685
686 kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
687 get_shadow_vmcs12(vcpu), VMCS12_SIZE);
688}
689
690/*
691 * In nested virtualization, check if L1 has set
692 * VM_EXIT_ACK_INTR_ON_EXIT
693 */
694static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
695{
696 return get_vmcs12(vcpu)->vm_exit_controls &
697 VM_EXIT_ACK_INTR_ON_EXIT;
698}
699
700static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
701{
702 return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
703}
704
705static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
706 struct vmcs12 *vmcs12)
707{
708 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
5497b955 709 CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
55d2375e
SC
710 return -EINVAL;
711 else
712 return 0;
713}
714
715static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
716 struct vmcs12 *vmcs12)
717{
718 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
719 !nested_cpu_has_apic_reg_virt(vmcs12) &&
720 !nested_cpu_has_vid(vmcs12) &&
721 !nested_cpu_has_posted_intr(vmcs12))
722 return 0;
723
724 /*
725 * If virtualize x2apic mode is enabled,
726 * virtualize apic access must be disabled.
727 */
5497b955
SC
728 if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
729 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
55d2375e
SC
730 return -EINVAL;
731
732 /*
733 * If virtual interrupt delivery is enabled,
734 * we must exit on external interrupts.
735 */
5497b955 736 if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
55d2375e
SC
737 return -EINVAL;
738
739 /*
740 * bits 15:8 should be zero in posted_intr_nv,
741 * the descriptor address has been already checked
742 * in nested_get_vmcs12_pages.
743 *
744 * bits 5:0 of posted_intr_desc_addr should be zero.
745 */
746 if (nested_cpu_has_posted_intr(vmcs12) &&
5497b955
SC
747 (CC(!nested_cpu_has_vid(vmcs12)) ||
748 CC(!nested_exit_intr_ack_set(vcpu)) ||
749 CC((vmcs12->posted_intr_nv & 0xff00)) ||
750 CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
751 CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
55d2375e
SC
752 return -EINVAL;
753
754 /* tpr shadow is needed by all apicv features. */
5497b955 755 if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
55d2375e
SC
756 return -EINVAL;
757
758 return 0;
759}
760
761static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
f9b245e1 762 u32 count, u64 addr)
55d2375e 763{
55d2375e 764 int maxphyaddr;
55d2375e 765
55d2375e
SC
766 if (count == 0)
767 return 0;
768 maxphyaddr = cpuid_maxphyaddr(vcpu);
769 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
f9b245e1 770 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
55d2375e 771 return -EINVAL;
f9b245e1 772
55d2375e
SC
773 return 0;
774}
775
61446ba7
KS
776static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
777 struct vmcs12 *vmcs12)
55d2375e 778{
5497b955
SC
779 if (CC(nested_vmx_check_msr_switch(vcpu,
780 vmcs12->vm_exit_msr_load_count,
781 vmcs12->vm_exit_msr_load_addr)) ||
782 CC(nested_vmx_check_msr_switch(vcpu,
783 vmcs12->vm_exit_msr_store_count,
784 vmcs12->vm_exit_msr_store_addr)))
55d2375e 785 return -EINVAL;
f9b245e1 786
55d2375e
SC
787 return 0;
788}
789
5fbf9634
KS
790static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
791 struct vmcs12 *vmcs12)
61446ba7 792{
5497b955
SC
793 if (CC(nested_vmx_check_msr_switch(vcpu,
794 vmcs12->vm_entry_msr_load_count,
795 vmcs12->vm_entry_msr_load_addr)))
61446ba7
KS
796 return -EINVAL;
797
798 return 0;
799}
800
55d2375e
SC
801static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
802 struct vmcs12 *vmcs12)
803{
804 if (!nested_cpu_has_pml(vmcs12))
805 return 0;
806
5497b955
SC
807 if (CC(!nested_cpu_has_ept(vmcs12)) ||
808 CC(!page_address_valid(vcpu, vmcs12->pml_address)))
55d2375e
SC
809 return -EINVAL;
810
811 return 0;
812}
813
814static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
815 struct vmcs12 *vmcs12)
816{
5497b955
SC
817 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
818 !nested_cpu_has_ept(vmcs12)))
55d2375e
SC
819 return -EINVAL;
820 return 0;
821}
822
823static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
824 struct vmcs12 *vmcs12)
825{
5497b955
SC
826 if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
827 !nested_cpu_has_ept(vmcs12)))
55d2375e
SC
828 return -EINVAL;
829 return 0;
830}
831
832static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
833 struct vmcs12 *vmcs12)
834{
835 if (!nested_cpu_has_shadow_vmcs(vmcs12))
836 return 0;
837
5497b955
SC
838 if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
839 CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
55d2375e
SC
840 return -EINVAL;
841
842 return 0;
843}
844
845static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
846 struct vmx_msr_entry *e)
847{
848 /* x2APIC MSR accesses are not allowed */
5497b955 849 if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
55d2375e 850 return -EINVAL;
5497b955
SC
851 if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
852 CC(e->index == MSR_IA32_UCODE_REV))
55d2375e 853 return -EINVAL;
5497b955 854 if (CC(e->reserved != 0))
55d2375e
SC
855 return -EINVAL;
856 return 0;
857}
858
859static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
860 struct vmx_msr_entry *e)
861{
5497b955
SC
862 if (CC(e->index == MSR_FS_BASE) ||
863 CC(e->index == MSR_GS_BASE) ||
864 CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
55d2375e
SC
865 nested_vmx_msr_check_common(vcpu, e))
866 return -EINVAL;
867 return 0;
868}
869
870static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
871 struct vmx_msr_entry *e)
872{
5497b955 873 if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
55d2375e
SC
874 nested_vmx_msr_check_common(vcpu, e))
875 return -EINVAL;
876 return 0;
877}
878
f0b5105a
MO
879static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
880{
881 struct vcpu_vmx *vmx = to_vmx(vcpu);
882 u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
883 vmx->nested.msrs.misc_high);
884
885 return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
886}
887
55d2375e
SC
888/*
889 * Load guest's/host's msr at nested entry/exit.
890 * return 0 for success, entry index for failure.
f0b5105a
MO
891 *
892 * One of the failure modes for MSR load/store is when a list exceeds the
893 * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
894 * as possible, process all valid entries before failing rather than precheck
895 * for a capacity violation.
55d2375e
SC
896 */
897static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
898{
899 u32 i;
900 struct vmx_msr_entry e;
f0b5105a 901 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
55d2375e 902
55d2375e 903 for (i = 0; i < count; i++) {
f0b5105a
MO
904 if (unlikely(i >= max_msr_list_size))
905 goto fail;
906
55d2375e
SC
907 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
908 &e, sizeof(e))) {
909 pr_debug_ratelimited(
910 "%s cannot read MSR entry (%u, 0x%08llx)\n",
911 __func__, i, gpa + i * sizeof(e));
912 goto fail;
913 }
914 if (nested_vmx_load_msr_check(vcpu, &e)) {
915 pr_debug_ratelimited(
916 "%s check failed (%u, 0x%x, 0x%x)\n",
917 __func__, i, e.index, e.reserved);
918 goto fail;
919 }
f20935d8 920 if (kvm_set_msr(vcpu, e.index, e.value)) {
55d2375e
SC
921 pr_debug_ratelimited(
922 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
923 __func__, i, e.index, e.value);
924 goto fail;
925 }
926 }
927 return 0;
928fail:
929 return i + 1;
930}
931
932static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
933{
f20935d8 934 u64 data;
55d2375e
SC
935 u32 i;
936 struct vmx_msr_entry e;
f0b5105a 937 u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
55d2375e
SC
938
939 for (i = 0; i < count; i++) {
f0b5105a
MO
940 if (unlikely(i >= max_msr_list_size))
941 return -EINVAL;
942
55d2375e
SC
943 if (kvm_vcpu_read_guest(vcpu,
944 gpa + i * sizeof(e),
945 &e, 2 * sizeof(u32))) {
946 pr_debug_ratelimited(
947 "%s cannot read MSR entry (%u, 0x%08llx)\n",
948 __func__, i, gpa + i * sizeof(e));
949 return -EINVAL;
950 }
951 if (nested_vmx_store_msr_check(vcpu, &e)) {
952 pr_debug_ratelimited(
953 "%s check failed (%u, 0x%x, 0x%x)\n",
954 __func__, i, e.index, e.reserved);
955 return -EINVAL;
956 }
f20935d8 957 if (kvm_get_msr(vcpu, e.index, &data)) {
55d2375e
SC
958 pr_debug_ratelimited(
959 "%s cannot read MSR (%u, 0x%x)\n",
960 __func__, i, e.index);
961 return -EINVAL;
962 }
963 if (kvm_vcpu_write_guest(vcpu,
964 gpa + i * sizeof(e) +
965 offsetof(struct vmx_msr_entry, value),
f20935d8 966 &data, sizeof(data))) {
55d2375e
SC
967 pr_debug_ratelimited(
968 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
f20935d8 969 __func__, i, e.index, data);
55d2375e
SC
970 return -EINVAL;
971 }
972 }
973 return 0;
974}
975
976static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
977{
978 unsigned long invalid_mask;
979
980 invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
981 return (val & invalid_mask) == 0;
982}
983
984/*
985 * Load guest's/host's cr3 at nested entry/exit. nested_ept is true if we are
986 * emulating VM entry into a guest with EPT enabled.
987 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
988 * is assigned to entry_failure_code on failure.
989 */
990static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
991 u32 *entry_failure_code)
992{
993 if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
5497b955 994 if (CC(!nested_cr3_valid(vcpu, cr3))) {
55d2375e 995 *entry_failure_code = ENTRY_FAIL_DEFAULT;
c80add0f 996 return -EINVAL;
55d2375e
SC
997 }
998
999 /*
1000 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1001 * must not be dereferenced.
1002 */
bf03d4f9 1003 if (is_pae_paging(vcpu) && !nested_ept) {
5497b955 1004 if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
55d2375e 1005 *entry_failure_code = ENTRY_FAIL_PDPTE;
c80add0f 1006 return -EINVAL;
55d2375e
SC
1007 }
1008 }
1009 }
1010
1011 if (!nested_ept)
1012 kvm_mmu_new_cr3(vcpu, cr3, false);
1013
1014 vcpu->arch.cr3 = cr3;
1015 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
1016
1017 kvm_init_mmu(vcpu, false);
1018
1019 return 0;
1020}
1021
1022/*
1023 * Returns if KVM is able to config CPU to tag TLB entries
1024 * populated by L2 differently than TLB entries populated
1025 * by L1.
1026 *
1027 * If L1 uses EPT, then TLB entries are tagged with different EPTP.
1028 *
1029 * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1030 * with different VPID (L1 entries are tagged with vmx->vpid
1031 * while L2 entries are tagged with vmx->nested.vpid02).
1032 */
1033static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1034{
1035 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1036
1037 return nested_cpu_has_ept(vmcs12) ||
1038 (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1039}
1040
1041static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
1042{
1043 struct vcpu_vmx *vmx = to_vmx(vcpu);
1044
1045 return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
1046}
1047
55d2375e
SC
1048static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1049{
1050 superset &= mask;
1051 subset &= mask;
1052
1053 return (superset | subset) == superset;
1054}
1055
1056static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1057{
1058 const u64 feature_and_reserved =
1059 /* feature (except bit 48; see below) */
1060 BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1061 /* reserved */
1062 BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1063 u64 vmx_basic = vmx->nested.msrs.basic;
1064
1065 if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1066 return -EINVAL;
1067
1068 /*
1069 * KVM does not emulate a version of VMX that constrains physical
1070 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1071 */
1072 if (data & BIT_ULL(48))
1073 return -EINVAL;
1074
1075 if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1076 vmx_basic_vmcs_revision_id(data))
1077 return -EINVAL;
1078
1079 if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1080 return -EINVAL;
1081
1082 vmx->nested.msrs.basic = data;
1083 return 0;
1084}
1085
1086static int
1087vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1088{
1089 u64 supported;
1090 u32 *lowp, *highp;
1091
1092 switch (msr_index) {
1093 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1094 lowp = &vmx->nested.msrs.pinbased_ctls_low;
1095 highp = &vmx->nested.msrs.pinbased_ctls_high;
1096 break;
1097 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1098 lowp = &vmx->nested.msrs.procbased_ctls_low;
1099 highp = &vmx->nested.msrs.procbased_ctls_high;
1100 break;
1101 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1102 lowp = &vmx->nested.msrs.exit_ctls_low;
1103 highp = &vmx->nested.msrs.exit_ctls_high;
1104 break;
1105 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1106 lowp = &vmx->nested.msrs.entry_ctls_low;
1107 highp = &vmx->nested.msrs.entry_ctls_high;
1108 break;
1109 case MSR_IA32_VMX_PROCBASED_CTLS2:
1110 lowp = &vmx->nested.msrs.secondary_ctls_low;
1111 highp = &vmx->nested.msrs.secondary_ctls_high;
1112 break;
1113 default:
1114 BUG();
1115 }
1116
1117 supported = vmx_control_msr(*lowp, *highp);
1118
1119 /* Check must-be-1 bits are still 1. */
1120 if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1121 return -EINVAL;
1122
1123 /* Check must-be-0 bits are still 0. */
1124 if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1125 return -EINVAL;
1126
1127 *lowp = data;
1128 *highp = data >> 32;
1129 return 0;
1130}
1131
1132static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1133{
1134 const u64 feature_and_reserved_bits =
1135 /* feature */
1136 BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1137 BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1138 /* reserved */
1139 GENMASK_ULL(13, 9) | BIT_ULL(31);
1140 u64 vmx_misc;
1141
1142 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
1143 vmx->nested.msrs.misc_high);
1144
1145 if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1146 return -EINVAL;
1147
1148 if ((vmx->nested.msrs.pinbased_ctls_high &
1149 PIN_BASED_VMX_PREEMPTION_TIMER) &&
1150 vmx_misc_preemption_timer_rate(data) !=
1151 vmx_misc_preemption_timer_rate(vmx_misc))
1152 return -EINVAL;
1153
1154 if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1155 return -EINVAL;
1156
1157 if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1158 return -EINVAL;
1159
1160 if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1161 return -EINVAL;
1162
1163 vmx->nested.msrs.misc_low = data;
1164 vmx->nested.msrs.misc_high = data >> 32;
1165
55d2375e
SC
1166 return 0;
1167}
1168
1169static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1170{
1171 u64 vmx_ept_vpid_cap;
1172
1173 vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
1174 vmx->nested.msrs.vpid_caps);
1175
1176 /* Every bit is either reserved or a feature bit. */
1177 if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1178 return -EINVAL;
1179
1180 vmx->nested.msrs.ept_caps = data;
1181 vmx->nested.msrs.vpid_caps = data >> 32;
1182 return 0;
1183}
1184
1185static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1186{
1187 u64 *msr;
1188
1189 switch (msr_index) {
1190 case MSR_IA32_VMX_CR0_FIXED0:
1191 msr = &vmx->nested.msrs.cr0_fixed0;
1192 break;
1193 case MSR_IA32_VMX_CR4_FIXED0:
1194 msr = &vmx->nested.msrs.cr4_fixed0;
1195 break;
1196 default:
1197 BUG();
1198 }
1199
1200 /*
1201 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1202 * must be 1 in the restored value.
1203 */
1204 if (!is_bitwise_subset(data, *msr, -1ULL))
1205 return -EINVAL;
1206
1207 *msr = data;
1208 return 0;
1209}
1210
1211/*
1212 * Called when userspace is restoring VMX MSRs.
1213 *
1214 * Returns 0 on success, non-0 otherwise.
1215 */
1216int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1217{
1218 struct vcpu_vmx *vmx = to_vmx(vcpu);
1219
1220 /*
1221 * Don't allow changes to the VMX capability MSRs while the vCPU
1222 * is in VMX operation.
1223 */
1224 if (vmx->nested.vmxon)
1225 return -EBUSY;
1226
1227 switch (msr_index) {
1228 case MSR_IA32_VMX_BASIC:
1229 return vmx_restore_vmx_basic(vmx, data);
1230 case MSR_IA32_VMX_PINBASED_CTLS:
1231 case MSR_IA32_VMX_PROCBASED_CTLS:
1232 case MSR_IA32_VMX_EXIT_CTLS:
1233 case MSR_IA32_VMX_ENTRY_CTLS:
1234 /*
1235 * The "non-true" VMX capability MSRs are generated from the
1236 * "true" MSRs, so we do not support restoring them directly.
1237 *
1238 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1239 * should restore the "true" MSRs with the must-be-1 bits
1240 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1241 * DEFAULT SETTINGS".
1242 */
1243 return -EINVAL;
1244 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1245 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1246 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1247 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1248 case MSR_IA32_VMX_PROCBASED_CTLS2:
1249 return vmx_restore_control_msr(vmx, msr_index, data);
1250 case MSR_IA32_VMX_MISC:
1251 return vmx_restore_vmx_misc(vmx, data);
1252 case MSR_IA32_VMX_CR0_FIXED0:
1253 case MSR_IA32_VMX_CR4_FIXED0:
1254 return vmx_restore_fixed0_msr(vmx, msr_index, data);
1255 case MSR_IA32_VMX_CR0_FIXED1:
1256 case MSR_IA32_VMX_CR4_FIXED1:
1257 /*
1258 * These MSRs are generated based on the vCPU's CPUID, so we
1259 * do not support restoring them directly.
1260 */
1261 return -EINVAL;
1262 case MSR_IA32_VMX_EPT_VPID_CAP:
1263 return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1264 case MSR_IA32_VMX_VMCS_ENUM:
1265 vmx->nested.msrs.vmcs_enum = data;
1266 return 0;
e8a70bd4
PB
1267 case MSR_IA32_VMX_VMFUNC:
1268 if (data & ~vmx->nested.msrs.vmfunc_controls)
1269 return -EINVAL;
1270 vmx->nested.msrs.vmfunc_controls = data;
1271 return 0;
55d2375e
SC
1272 default:
1273 /*
1274 * The rest of the VMX capability MSRs do not support restore.
1275 */
1276 return -EINVAL;
1277 }
1278}
1279
1280/* Returns 0 on success, non-0 otherwise. */
1281int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1282{
1283 switch (msr_index) {
1284 case MSR_IA32_VMX_BASIC:
1285 *pdata = msrs->basic;
1286 break;
1287 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1288 case MSR_IA32_VMX_PINBASED_CTLS:
1289 *pdata = vmx_control_msr(
1290 msrs->pinbased_ctls_low,
1291 msrs->pinbased_ctls_high);
1292 if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1293 *pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1294 break;
1295 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1296 case MSR_IA32_VMX_PROCBASED_CTLS:
1297 *pdata = vmx_control_msr(
1298 msrs->procbased_ctls_low,
1299 msrs->procbased_ctls_high);
1300 if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1301 *pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1302 break;
1303 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1304 case MSR_IA32_VMX_EXIT_CTLS:
1305 *pdata = vmx_control_msr(
1306 msrs->exit_ctls_low,
1307 msrs->exit_ctls_high);
1308 if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1309 *pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1310 break;
1311 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1312 case MSR_IA32_VMX_ENTRY_CTLS:
1313 *pdata = vmx_control_msr(
1314 msrs->entry_ctls_low,
1315 msrs->entry_ctls_high);
1316 if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1317 *pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1318 break;
1319 case MSR_IA32_VMX_MISC:
1320 *pdata = vmx_control_msr(
1321 msrs->misc_low,
1322 msrs->misc_high);
1323 break;
1324 case MSR_IA32_VMX_CR0_FIXED0:
1325 *pdata = msrs->cr0_fixed0;
1326 break;
1327 case MSR_IA32_VMX_CR0_FIXED1:
1328 *pdata = msrs->cr0_fixed1;
1329 break;
1330 case MSR_IA32_VMX_CR4_FIXED0:
1331 *pdata = msrs->cr4_fixed0;
1332 break;
1333 case MSR_IA32_VMX_CR4_FIXED1:
1334 *pdata = msrs->cr4_fixed1;
1335 break;
1336 case MSR_IA32_VMX_VMCS_ENUM:
1337 *pdata = msrs->vmcs_enum;
1338 break;
1339 case MSR_IA32_VMX_PROCBASED_CTLS2:
1340 *pdata = vmx_control_msr(
1341 msrs->secondary_ctls_low,
1342 msrs->secondary_ctls_high);
1343 break;
1344 case MSR_IA32_VMX_EPT_VPID_CAP:
1345 *pdata = msrs->ept_caps |
1346 ((u64)msrs->vpid_caps << 32);
1347 break;
1348 case MSR_IA32_VMX_VMFUNC:
1349 *pdata = msrs->vmfunc_controls;
1350 break;
1351 default:
1352 return 1;
1353 }
1354
1355 return 0;
1356}
1357
1358/*
fadcead0
SC
1359 * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1360 * been modified by the L1 guest. Note, "writable" in this context means
1361 * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1362 * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1363 * VM-exit information fields (which are actually writable if the vCPU is
1364 * configured to support "VMWRITE to any supported field in the VMCS").
55d2375e
SC
1365 */
1366static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1367{
55d2375e 1368 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
fadcead0 1369 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1c6f0b47
SC
1370 struct shadow_vmcs_field field;
1371 unsigned long val;
fadcead0 1372 int i;
55d2375e 1373
88dddc11
PB
1374 if (WARN_ON(!shadow_vmcs))
1375 return;
1376
55d2375e
SC
1377 preempt_disable();
1378
1379 vmcs_load(shadow_vmcs);
1380
fadcead0
SC
1381 for (i = 0; i < max_shadow_read_write_fields; i++) {
1382 field = shadow_read_write_fields[i];
1c6f0b47
SC
1383 val = __vmcs_readl(field.encoding);
1384 vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
55d2375e
SC
1385 }
1386
1387 vmcs_clear(shadow_vmcs);
1388 vmcs_load(vmx->loaded_vmcs->vmcs);
1389
1390 preempt_enable();
1391}
1392
1393static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1394{
1c6f0b47 1395 const struct shadow_vmcs_field *fields[] = {
55d2375e
SC
1396 shadow_read_write_fields,
1397 shadow_read_only_fields
1398 };
1399 const int max_fields[] = {
1400 max_shadow_read_write_fields,
1401 max_shadow_read_only_fields
1402 };
55d2375e 1403 struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1c6f0b47
SC
1404 struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1405 struct shadow_vmcs_field field;
1406 unsigned long val;
1407 int i, q;
55d2375e 1408
88dddc11
PB
1409 if (WARN_ON(!shadow_vmcs))
1410 return;
1411
55d2375e
SC
1412 vmcs_load(shadow_vmcs);
1413
1414 for (q = 0; q < ARRAY_SIZE(fields); q++) {
1415 for (i = 0; i < max_fields[q]; i++) {
1416 field = fields[q][i];
1c6f0b47
SC
1417 val = vmcs12_read_any(vmcs12, field.encoding,
1418 field.offset);
1419 __vmcs_writel(field.encoding, val);
55d2375e
SC
1420 }
1421 }
1422
1423 vmcs_clear(shadow_vmcs);
1424 vmcs_load(vmx->loaded_vmcs->vmcs);
1425}
1426
1427static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
1428{
1429 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1430 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1431
1432 /* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1433 vmcs12->tpr_threshold = evmcs->tpr_threshold;
1434 vmcs12->guest_rip = evmcs->guest_rip;
1435
1436 if (unlikely(!(evmcs->hv_clean_fields &
1437 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1438 vmcs12->guest_rsp = evmcs->guest_rsp;
1439 vmcs12->guest_rflags = evmcs->guest_rflags;
1440 vmcs12->guest_interruptibility_info =
1441 evmcs->guest_interruptibility_info;
1442 }
1443
1444 if (unlikely(!(evmcs->hv_clean_fields &
1445 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1446 vmcs12->cpu_based_vm_exec_control =
1447 evmcs->cpu_based_vm_exec_control;
1448 }
1449
1450 if (unlikely(!(evmcs->hv_clean_fields &
f9bc5227 1451 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
55d2375e
SC
1452 vmcs12->exception_bitmap = evmcs->exception_bitmap;
1453 }
1454
1455 if (unlikely(!(evmcs->hv_clean_fields &
1456 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1457 vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1458 }
1459
1460 if (unlikely(!(evmcs->hv_clean_fields &
1461 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1462 vmcs12->vm_entry_intr_info_field =
1463 evmcs->vm_entry_intr_info_field;
1464 vmcs12->vm_entry_exception_error_code =
1465 evmcs->vm_entry_exception_error_code;
1466 vmcs12->vm_entry_instruction_len =
1467 evmcs->vm_entry_instruction_len;
1468 }
1469
1470 if (unlikely(!(evmcs->hv_clean_fields &
1471 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1472 vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1473 vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1474 vmcs12->host_cr0 = evmcs->host_cr0;
1475 vmcs12->host_cr3 = evmcs->host_cr3;
1476 vmcs12->host_cr4 = evmcs->host_cr4;
1477 vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1478 vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1479 vmcs12->host_rip = evmcs->host_rip;
1480 vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1481 vmcs12->host_es_selector = evmcs->host_es_selector;
1482 vmcs12->host_cs_selector = evmcs->host_cs_selector;
1483 vmcs12->host_ss_selector = evmcs->host_ss_selector;
1484 vmcs12->host_ds_selector = evmcs->host_ds_selector;
1485 vmcs12->host_fs_selector = evmcs->host_fs_selector;
1486 vmcs12->host_gs_selector = evmcs->host_gs_selector;
1487 vmcs12->host_tr_selector = evmcs->host_tr_selector;
1488 }
1489
1490 if (unlikely(!(evmcs->hv_clean_fields &
f9bc5227 1491 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
55d2375e
SC
1492 vmcs12->pin_based_vm_exec_control =
1493 evmcs->pin_based_vm_exec_control;
1494 vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1495 vmcs12->secondary_vm_exec_control =
1496 evmcs->secondary_vm_exec_control;
1497 }
1498
1499 if (unlikely(!(evmcs->hv_clean_fields &
1500 HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1501 vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1502 vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1503 }
1504
1505 if (unlikely(!(evmcs->hv_clean_fields &
1506 HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1507 vmcs12->msr_bitmap = evmcs->msr_bitmap;
1508 }
1509
1510 if (unlikely(!(evmcs->hv_clean_fields &
1511 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1512 vmcs12->guest_es_base = evmcs->guest_es_base;
1513 vmcs12->guest_cs_base = evmcs->guest_cs_base;
1514 vmcs12->guest_ss_base = evmcs->guest_ss_base;
1515 vmcs12->guest_ds_base = evmcs->guest_ds_base;
1516 vmcs12->guest_fs_base = evmcs->guest_fs_base;
1517 vmcs12->guest_gs_base = evmcs->guest_gs_base;
1518 vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1519 vmcs12->guest_tr_base = evmcs->guest_tr_base;
1520 vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1521 vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1522 vmcs12->guest_es_limit = evmcs->guest_es_limit;
1523 vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1524 vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1525 vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1526 vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1527 vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1528 vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1529 vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1530 vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1531 vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1532 vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1533 vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1534 vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1535 vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1536 vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1537 vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1538 vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1539 vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1540 vmcs12->guest_es_selector = evmcs->guest_es_selector;
1541 vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1542 vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1543 vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1544 vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1545 vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1546 vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1547 vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1548 }
1549
1550 if (unlikely(!(evmcs->hv_clean_fields &
1551 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1552 vmcs12->tsc_offset = evmcs->tsc_offset;
1553 vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1554 vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1555 }
1556
1557 if (unlikely(!(evmcs->hv_clean_fields &
1558 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1559 vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1560 vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1561 vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1562 vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1563 vmcs12->guest_cr0 = evmcs->guest_cr0;
1564 vmcs12->guest_cr3 = evmcs->guest_cr3;
1565 vmcs12->guest_cr4 = evmcs->guest_cr4;
1566 vmcs12->guest_dr7 = evmcs->guest_dr7;
1567 }
1568
1569 if (unlikely(!(evmcs->hv_clean_fields &
1570 HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1571 vmcs12->host_fs_base = evmcs->host_fs_base;
1572 vmcs12->host_gs_base = evmcs->host_gs_base;
1573 vmcs12->host_tr_base = evmcs->host_tr_base;
1574 vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1575 vmcs12->host_idtr_base = evmcs->host_idtr_base;
1576 vmcs12->host_rsp = evmcs->host_rsp;
1577 }
1578
1579 if (unlikely(!(evmcs->hv_clean_fields &
1580 HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1581 vmcs12->ept_pointer = evmcs->ept_pointer;
1582 vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1583 }
1584
1585 if (unlikely(!(evmcs->hv_clean_fields &
1586 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1587 vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1588 vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1589 vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1590 vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1591 vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1592 vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1593 vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1594 vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1595 vmcs12->guest_pending_dbg_exceptions =
1596 evmcs->guest_pending_dbg_exceptions;
1597 vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1598 vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1599 vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1600 vmcs12->guest_activity_state = evmcs->guest_activity_state;
1601 vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1602 }
1603
1604 /*
1605 * Not used?
1606 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1607 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1608 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1609 * vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
1610 * vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
1611 * vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
1612 * vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
1613 * vmcs12->page_fault_error_code_mask =
1614 * evmcs->page_fault_error_code_mask;
1615 * vmcs12->page_fault_error_code_match =
1616 * evmcs->page_fault_error_code_match;
1617 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1618 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1619 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1620 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1621 */
1622
1623 /*
1624 * Read only fields:
1625 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1626 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1627 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1628 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1629 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1630 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1631 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1632 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1633 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1634 * vmcs12->exit_qualification = evmcs->exit_qualification;
1635 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1636 *
1637 * Not present in struct vmcs12:
1638 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1639 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1640 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1641 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1642 */
1643
1644 return 0;
1645}
1646
1647static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1648{
1649 struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1650 struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1651
1652 /*
1653 * Should not be changed by KVM:
1654 *
1655 * evmcs->host_es_selector = vmcs12->host_es_selector;
1656 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1657 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1658 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1659 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1660 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1661 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1662 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1663 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1664 * evmcs->host_cr0 = vmcs12->host_cr0;
1665 * evmcs->host_cr3 = vmcs12->host_cr3;
1666 * evmcs->host_cr4 = vmcs12->host_cr4;
1667 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1668 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1669 * evmcs->host_rip = vmcs12->host_rip;
1670 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1671 * evmcs->host_fs_base = vmcs12->host_fs_base;
1672 * evmcs->host_gs_base = vmcs12->host_gs_base;
1673 * evmcs->host_tr_base = vmcs12->host_tr_base;
1674 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1675 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1676 * evmcs->host_rsp = vmcs12->host_rsp;
3731905e 1677 * sync_vmcs02_to_vmcs12() doesn't read these:
55d2375e
SC
1678 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1679 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1680 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1681 * evmcs->ept_pointer = vmcs12->ept_pointer;
1682 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1683 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1684 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1685 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1686 * evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
1687 * evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
1688 * evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
1689 * evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
1690 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1691 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1692 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1693 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1694 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1695 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1696 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1697 * evmcs->page_fault_error_code_mask =
1698 * vmcs12->page_fault_error_code_mask;
1699 * evmcs->page_fault_error_code_match =
1700 * vmcs12->page_fault_error_code_match;
1701 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1702 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1703 * evmcs->tsc_offset = vmcs12->tsc_offset;
1704 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1705 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1706 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1707 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1708 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1709 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1710 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1711 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1712 *
1713 * Not present in struct vmcs12:
1714 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1715 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1716 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1717 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1718 */
1719
1720 evmcs->guest_es_selector = vmcs12->guest_es_selector;
1721 evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1722 evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1723 evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1724 evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1725 evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1726 evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1727 evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1728
1729 evmcs->guest_es_limit = vmcs12->guest_es_limit;
1730 evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1731 evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1732 evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1733 evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1734 evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1735 evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1736 evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1737 evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1738 evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1739
1740 evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1741 evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1742 evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1743 evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1744 evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1745 evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1746 evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1747 evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1748
1749 evmcs->guest_es_base = vmcs12->guest_es_base;
1750 evmcs->guest_cs_base = vmcs12->guest_cs_base;
1751 evmcs->guest_ss_base = vmcs12->guest_ss_base;
1752 evmcs->guest_ds_base = vmcs12->guest_ds_base;
1753 evmcs->guest_fs_base = vmcs12->guest_fs_base;
1754 evmcs->guest_gs_base = vmcs12->guest_gs_base;
1755 evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1756 evmcs->guest_tr_base = vmcs12->guest_tr_base;
1757 evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1758 evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1759
1760 evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1761 evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1762
1763 evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1764 evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1765 evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1766 evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1767
1768 evmcs->guest_pending_dbg_exceptions =
1769 vmcs12->guest_pending_dbg_exceptions;
1770 evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1771 evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1772
1773 evmcs->guest_activity_state = vmcs12->guest_activity_state;
1774 evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1775
1776 evmcs->guest_cr0 = vmcs12->guest_cr0;
1777 evmcs->guest_cr3 = vmcs12->guest_cr3;
1778 evmcs->guest_cr4 = vmcs12->guest_cr4;
1779 evmcs->guest_dr7 = vmcs12->guest_dr7;
1780
1781 evmcs->guest_physical_address = vmcs12->guest_physical_address;
1782
1783 evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1784 evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1785 evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1786 evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1787 evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1788 evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1789 evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1790 evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1791
1792 evmcs->exit_qualification = vmcs12->exit_qualification;
1793
1794 evmcs->guest_linear_address = vmcs12->guest_linear_address;
1795 evmcs->guest_rsp = vmcs12->guest_rsp;
1796 evmcs->guest_rflags = vmcs12->guest_rflags;
1797
1798 evmcs->guest_interruptibility_info =
1799 vmcs12->guest_interruptibility_info;
1800 evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1801 evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1802 evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1803 evmcs->vm_entry_exception_error_code =
1804 vmcs12->vm_entry_exception_error_code;
1805 evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1806
1807 evmcs->guest_rip = vmcs12->guest_rip;
1808
1809 evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1810
1811 return 0;
1812}
1813
1814/*
1815 * This is an equivalent of the nested hypervisor executing the vmptrld
1816 * instruction.
1817 */
1818static int nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu *vcpu,
1819 bool from_launch)
1820{
1821 struct vcpu_vmx *vmx = to_vmx(vcpu);
a21a39c2 1822 bool evmcs_gpa_changed = false;
11e34914 1823 u64 evmcs_gpa;
55d2375e
SC
1824
1825 if (likely(!vmx->nested.enlightened_vmcs_enabled))
1826 return 1;
1827
11e34914 1828 if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
55d2375e
SC
1829 return 1;
1830
11e34914 1831 if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
55d2375e
SC
1832 if (!vmx->nested.hv_evmcs)
1833 vmx->nested.current_vmptr = -1ull;
1834
1835 nested_release_evmcs(vcpu);
1836
11e34914 1837 if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
dee9c049 1838 &vmx->nested.hv_evmcs_map))
55d2375e
SC
1839 return 0;
1840
dee9c049 1841 vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
55d2375e
SC
1842
1843 /*
1844 * Currently, KVM only supports eVMCS version 1
1845 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
1846 * value to first u32 field of eVMCS which should specify eVMCS
1847 * VersionNumber.
1848 *
1849 * Guest should be aware of supported eVMCS versions by host by
1850 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
1851 * expected to set this CPUID leaf according to the value
1852 * returned in vmcs_version from nested_enable_evmcs().
1853 *
1854 * However, it turns out that Microsoft Hyper-V fails to comply
1855 * to their own invented interface: When Hyper-V use eVMCS, it
1856 * just sets first u32 field of eVMCS to revision_id specified
1857 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
1858 * which is one of the supported versions specified in
1859 * CPUID.0x4000000A.EAX[0:15].
1860 *
1861 * To overcome Hyper-V bug, we accept here either a supported
1862 * eVMCS version or VMCS12 revision_id as valid values for first
1863 * u32 field of eVMCS.
1864 */
1865 if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
1866 (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
1867 nested_release_evmcs(vcpu);
1868 return 0;
1869 }
1870
1871 vmx->nested.dirty_vmcs12 = true;
11e34914 1872 vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
55d2375e 1873
a21a39c2 1874 evmcs_gpa_changed = true;
55d2375e
SC
1875 /*
1876 * Unlike normal vmcs12, enlightened vmcs12 is not fully
1877 * reloaded from guest's memory (read only fields, fields not
1878 * present in struct hv_enlightened_vmcs, ...). Make sure there
1879 * are no leftovers.
1880 */
1881 if (from_launch) {
1882 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1883 memset(vmcs12, 0, sizeof(*vmcs12));
1884 vmcs12->hdr.revision_id = VMCS12_REVISION;
1885 }
1886
1887 }
a21a39c2
VK
1888
1889 /*
1890 * Clean fields data can't de used on VMLAUNCH and when we switch
1891 * between different L2 guests as KVM keeps a single VMCS12 per L1.
1892 */
1893 if (from_launch || evmcs_gpa_changed)
1894 vmx->nested.hv_evmcs->hv_clean_fields &=
1895 ~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1896
55d2375e
SC
1897 return 1;
1898}
1899
3731905e 1900void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
55d2375e
SC
1901{
1902 struct vcpu_vmx *vmx = to_vmx(vcpu);
1903
1904 /*
1905 * hv_evmcs may end up being not mapped after migration (when
1906 * L2 was running), map it here to make sure vmcs12 changes are
1907 * properly reflected.
1908 */
1909 if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs)
1910 nested_vmx_handle_enlightened_vmptrld(vcpu, false);
1911
1912 if (vmx->nested.hv_evmcs) {
1913 copy_vmcs12_to_enlightened(vmx);
1914 /* All fields are clean */
1915 vmx->nested.hv_evmcs->hv_clean_fields |=
1916 HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
1917 } else {
1918 copy_vmcs12_to_shadow(vmx);
1919 }
1920
3731905e 1921 vmx->nested.need_vmcs12_to_shadow_sync = false;
55d2375e
SC
1922}
1923
1924static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
1925{
1926 struct vcpu_vmx *vmx =
1927 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
1928
1929 vmx->nested.preemption_timer_expired = true;
1930 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
1931 kvm_vcpu_kick(&vmx->vcpu);
1932
1933 return HRTIMER_NORESTART;
1934}
1935
1936static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
1937{
1938 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
1939 struct vcpu_vmx *vmx = to_vmx(vcpu);
1940
1941 /*
1942 * A timer value of zero is architecturally guaranteed to cause
1943 * a VMExit prior to executing any instructions in the guest.
1944 */
1945 if (preemption_timeout == 0) {
1946 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
1947 return;
1948 }
1949
1950 if (vcpu->arch.virtual_tsc_khz == 0)
1951 return;
1952
1953 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
1954 preemption_timeout *= 1000000;
1955 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
1956 hrtimer_start(&vmx->nested.preemption_timer,
1957 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
1958}
1959
1960static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
1961{
1962 if (vmx->nested.nested_run_pending &&
1963 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
1964 return vmcs12->guest_ia32_efer;
1965 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
1966 return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
1967 else
1968 return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
1969}
1970
1971static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
1972{
1973 /*
1974 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
1975 * according to L0's settings (vmcs12 is irrelevant here). Host
1976 * fields that come from L0 and are not constant, e.g. HOST_CR3,
1977 * will be set as needed prior to VMLAUNCH/VMRESUME.
1978 */
1979 if (vmx->nested.vmcs02_initialized)
1980 return;
1981 vmx->nested.vmcs02_initialized = true;
1982
1983 /*
1984 * We don't care what the EPTP value is we just need to guarantee
1985 * it's valid so we don't get a false positive when doing early
1986 * consistency checks.
1987 */
1988 if (enable_ept && nested_early_check)
1989 vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
1990
1991 /* All VMFUNCs are currently emulated through L0 vmexits. */
1992 if (cpu_has_vmx_vmfunc())
1993 vmcs_write64(VM_FUNCTION_CONTROL, 0);
1994
1995 if (cpu_has_vmx_posted_intr())
1996 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
1997
1998 if (cpu_has_vmx_msr_bitmap())
1999 vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2000
4d6c9892
SC
2001 /*
2002 * The PML address never changes, so it is constant in vmcs02.
2003 * Conceptually we want to copy the PML index from vmcs01 here,
2004 * and then back to vmcs01 on nested vmexit. But since we flush
2005 * the log and reset GUEST_PML_INDEX on each vmexit, the PML
2006 * index is also effectively constant in vmcs02.
2007 */
2008 if (enable_pml) {
55d2375e 2009 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
4d6c9892
SC
2010 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
2011 }
55d2375e 2012
c538d57f
SC
2013 if (cpu_has_vmx_encls_vmexit())
2014 vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
55d2375e
SC
2015
2016 /*
2017 * Set the MSR load/store lists to match L0's settings. Only the
2018 * addresses are constant (for vmcs02), the counts can change based
2019 * on L2's behavior, e.g. switching to/from long mode.
2020 */
2021 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
2022 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2023 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2024
2025 vmx_set_constant_host_state(vmx);
2026}
2027
b1346ab2 2028static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
55d2375e
SC
2029 struct vmcs12 *vmcs12)
2030{
2031 prepare_vmcs02_constant_state(vmx);
2032
2033 vmcs_write64(VMCS_LINK_POINTER, -1ull);
2034
2035 if (enable_vpid) {
2036 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2037 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2038 else
2039 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2040 }
2041}
2042
2043static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2044{
2045 u32 exec_control, vmcs12_exec_ctrl;
2046 u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2047
2048 if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
b1346ab2 2049 prepare_vmcs02_early_rare(vmx, vmcs12);
55d2375e 2050
55d2375e
SC
2051 /*
2052 * PIN CONTROLS
2053 */
c075c3e4 2054 exec_control = vmx_pin_based_exec_ctrl(vmx);
804939ea
SC
2055 exec_control |= (vmcs12->pin_based_vm_exec_control &
2056 ~PIN_BASED_VMX_PREEMPTION_TIMER);
55d2375e
SC
2057
2058 /* Posted interrupts setting is only taken from vmcs12. */
2059 if (nested_cpu_has_posted_intr(vmcs12)) {
2060 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2061 vmx->nested.pi_pending = false;
2062 } else {
2063 exec_control &= ~PIN_BASED_POSTED_INTR;
2064 }
3af80fec 2065 pin_controls_set(vmx, exec_control);
55d2375e
SC
2066
2067 /*
2068 * EXEC CONTROLS
2069 */
2070 exec_control = vmx_exec_control(vmx); /* L0's desires */
2071 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
2072 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
2073 exec_control &= ~CPU_BASED_TPR_SHADOW;
2074 exec_control |= vmcs12->cpu_based_vm_exec_control;
2075
ca2f5466 2076 if (exec_control & CPU_BASED_TPR_SHADOW)
55d2375e 2077 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
55d2375e 2078#ifdef CONFIG_X86_64
ca2f5466 2079 else
55d2375e
SC
2080 exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2081 CPU_BASED_CR8_STORE_EXITING;
2082#endif
55d2375e
SC
2083
2084 /*
2085 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2086 * for I/O port accesses.
2087 */
55d2375e 2088 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
de0286b7
SC
2089 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2090
2091 /*
2092 * This bit will be computed in nested_get_vmcs12_pages, because
2093 * we do not have access to L1's MSR bitmap yet. For now, keep
2094 * the same bit as before, hoping to avoid multiple VMWRITEs that
2095 * only set/clear this bit.
2096 */
2097 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2098 exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2099
3af80fec 2100 exec_controls_set(vmx, exec_control);
55d2375e
SC
2101
2102 /*
2103 * SECONDARY EXEC CONTROLS
2104 */
2105 if (cpu_has_secondary_exec_ctrls()) {
2106 exec_control = vmx->secondary_exec_control;
2107
2108 /* Take the following fields only from vmcs12 */
2109 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2110 SECONDARY_EXEC_ENABLE_INVPCID |
2111 SECONDARY_EXEC_RDTSCP |
2112 SECONDARY_EXEC_XSAVES |
e69e72fa 2113 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
55d2375e
SC
2114 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2115 SECONDARY_EXEC_APIC_REGISTER_VIRT |
2116 SECONDARY_EXEC_ENABLE_VMFUNC);
2117 if (nested_cpu_has(vmcs12,
2118 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
2119 vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
2120 ~SECONDARY_EXEC_ENABLE_PML;
2121 exec_control |= vmcs12_exec_ctrl;
2122 }
2123
2124 /* VMCS shadowing for L2 is emulated for now */
2125 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2126
55d2375e 2127 /*
469debdb
SC
2128 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2129 * will not have to rewrite the controls just for this bit.
55d2375e 2130 */
469debdb
SC
2131 if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2132 (vmcs12->guest_cr4 & X86_CR4_UMIP))
2133 exec_control |= SECONDARY_EXEC_DESC;
55d2375e 2134
55d2375e
SC
2135 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2136 vmcs_write16(GUEST_INTR_STATUS,
2137 vmcs12->guest_intr_status);
55d2375e 2138
3af80fec 2139 secondary_exec_controls_set(vmx, exec_control);
55d2375e
SC
2140 }
2141
2142 /*
2143 * ENTRY CONTROLS
2144 *
2145 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2146 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2147 * on the related bits (if supported by the CPU) in the hope that
2148 * we can avoid VMWrites during vmx_set_efer().
2149 */
2150 exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
2151 ~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
2152 if (cpu_has_load_ia32_efer()) {
2153 if (guest_efer & EFER_LMA)
2154 exec_control |= VM_ENTRY_IA32E_MODE;
2155 if (guest_efer != host_efer)
2156 exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2157 }
3af80fec 2158 vm_entry_controls_set(vmx, exec_control);
55d2375e
SC
2159
2160 /*
2161 * EXIT CONTROLS
2162 *
2163 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2164 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2165 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2166 */
2167 exec_control = vmx_vmexit_ctrl();
2168 if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2169 exec_control |= VM_EXIT_LOAD_IA32_EFER;
3af80fec 2170 vm_exit_controls_set(vmx, exec_control);
55d2375e
SC
2171
2172 /*
2173 * Interrupt/Exception Fields
2174 */
2175 if (vmx->nested.nested_run_pending) {
2176 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2177 vmcs12->vm_entry_intr_info_field);
2178 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2179 vmcs12->vm_entry_exception_error_code);
2180 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2181 vmcs12->vm_entry_instruction_len);
2182 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2183 vmcs12->guest_interruptibility_info);
2184 vmx->loaded_vmcs->nmi_known_unmasked =
2185 !(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2186 } else {
2187 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2188 }
2189}
2190
b1346ab2 2191static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
55d2375e
SC
2192{
2193 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2194
2195 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2196 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2197 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2198 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2199 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2200 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2201 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2202 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2203 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2204 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2205 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2206 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2207 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2208 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2209 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2210 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2211 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2212 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2213 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2214 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
1c6f0b47
SC
2215 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2216 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
55d2375e
SC
2217 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2218 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2219 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2220 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2221 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2222 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2223 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2224 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2225 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2226 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2227 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2228 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2229 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2230 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2231 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2232 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2233 }
2234
2235 if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2236 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2237 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2238 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2239 vmcs12->guest_pending_dbg_exceptions);
2240 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2241 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2242
2243 /*
2244 * L1 may access the L2's PDPTR, so save them to construct
2245 * vmcs12
2246 */
2247 if (enable_ept) {
2248 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2249 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2250 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2251 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2252 }
c27e5b0d
SC
2253
2254 if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2255 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2256 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
55d2375e
SC
2257 }
2258
2259 if (nested_cpu_has_xsaves(vmcs12))
2260 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2261
2262 /*
2263 * Whether page-faults are trapped is determined by a combination of
2264 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
2265 * If enable_ept, L0 doesn't care about page faults and we should
2266 * set all of these to L1's desires. However, if !enable_ept, L0 does
2267 * care about (at least some) page faults, and because it is not easy
2268 * (if at all possible?) to merge L0 and L1's desires, we simply ask
2269 * to exit on each and every L2 page fault. This is done by setting
2270 * MASK=MATCH=0 and (see below) EB.PF=1.
2271 * Note that below we don't need special code to set EB.PF beyond the
2272 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2273 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2274 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2275 */
2276 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
2277 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
2278 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
2279 enable_ept ? vmcs12->page_fault_error_code_match : 0);
2280
2281 if (cpu_has_vmx_apicv()) {
2282 vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2283 vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2284 vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2285 vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2286 }
2287
2288 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2289 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2290
2291 set_cr4_guest_host_mask(vmx);
55d2375e
SC
2292}
2293
2294/*
2295 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2296 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2297 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2298 * guest in a way that will both be appropriate to L1's requests, and our
2299 * needs. In addition to modifying the active vmcs (which is vmcs02), this
2300 * function also has additional necessary side-effects, like setting various
2301 * vcpu->arch fields.
2302 * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2303 * is assigned to entry_failure_code on failure.
2304 */
2305static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2306 u32 *entry_failure_code)
2307{
2308 struct vcpu_vmx *vmx = to_vmx(vcpu);
2309 struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
c7554efc 2310 bool load_guest_pdptrs_vmcs12 = false;
55d2375e 2311
c7554efc 2312 if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
b1346ab2 2313 prepare_vmcs02_rare(vmx, vmcs12);
55d2375e 2314 vmx->nested.dirty_vmcs12 = false;
55d2375e 2315
c7554efc
SC
2316 load_guest_pdptrs_vmcs12 = !hv_evmcs ||
2317 !(hv_evmcs->hv_clean_fields &
2318 HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
55d2375e
SC
2319 }
2320
2321 if (vmx->nested.nested_run_pending &&
2322 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2323 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2324 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2325 } else {
2326 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2327 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2328 }
3b013a29
SC
2329 if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2330 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2331 vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
55d2375e
SC
2332 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2333
55d2375e
SC
2334 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2335 * bitwise-or of what L1 wants to trap for L2, and what we want to
2336 * trap. Note that CR0.TS also needs updating - we do this later.
2337 */
2338 update_exception_bitmap(vcpu);
2339 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2340 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2341
2342 if (vmx->nested.nested_run_pending &&
2343 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2344 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2345 vcpu->arch.pat = vmcs12->guest_ia32_pat;
2346 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2347 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2348 }
2349
2350 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2351
2352 if (kvm_has_tsc_control)
2353 decache_tsc_multiplier(vmx);
2354
2355 if (enable_vpid) {
2356 /*
2357 * There is no direct mapping between vpid02 and vpid12, the
2358 * vpid02 is per-vCPU for L0 and reused while the value of
2359 * vpid12 is changed w/ one invvpid during nested vmentry.
2360 * The vpid12 is allocated by L1 for L2, so it will not
2361 * influence global bitmap(for vpid01 and vpid02 allocation)
2362 * even if spawn a lot of nested vCPUs.
2363 */
2364 if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
2365 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
2366 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
2367 __vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
2368 }
2369 } else {
2370 /*
2371 * If L1 use EPT, then L0 needs to execute INVEPT on
2372 * EPTP02 instead of EPTP01. Therefore, delay TLB
2373 * flush until vmcs02->eptp is fully updated by
2374 * KVM_REQ_LOAD_CR3. Note that this assumes
2375 * KVM_REQ_TLB_FLUSH is evaluated after
2376 * KVM_REQ_LOAD_CR3 in vcpu_enter_guest().
2377 */
2378 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2379 }
2380 }
2381
2382 if (nested_cpu_has_ept(vmcs12))
2383 nested_ept_init_mmu_context(vcpu);
2384 else if (nested_cpu_has2(vmcs12,
2385 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2386 vmx_flush_tlb(vcpu, true);
2387
2388 /*
2389 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2390 * bits which we consider mandatory enabled.
2391 * The CR0_READ_SHADOW is what L2 should have expected to read given
2392 * the specifications by L1; It's not enough to take
2393 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2394 * have more bits than L1 expected.
2395 */
2396 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2397 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2398
2399 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2400 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2401
2402 vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2403 /* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2404 vmx_set_efer(vcpu, vcpu->arch.efer);
2405
2406 /*
2407 * Guest state is invalid and unrestricted guest is disabled,
2408 * which means L1 attempted VMEntry to L2 with invalid state.
2409 * Fail the VMEntry.
2410 */
2411 if (vmx->emulation_required) {
2412 *entry_failure_code = ENTRY_FAIL_DEFAULT;
c80add0f 2413 return -EINVAL;
55d2375e
SC
2414 }
2415
2416 /* Shadow page tables on either EPT or shadow page tables. */
2417 if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2418 entry_failure_code))
c80add0f 2419 return -EINVAL;
55d2375e 2420
c7554efc
SC
2421 /* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2422 if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2423 is_pae_paging(vcpu)) {
2424 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2425 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2426 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2427 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2428 }
2429
55d2375e
SC
2430 if (!enable_ept)
2431 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
2432
e9c16c78
PB
2433 kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2434 kvm_rip_write(vcpu, vmcs12->guest_rip);
55d2375e
SC
2435 return 0;
2436}
2437
2438static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2439{
5497b955
SC
2440 if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2441 nested_cpu_has_virtual_nmis(vmcs12)))
55d2375e
SC
2442 return -EINVAL;
2443
5497b955
SC
2444 if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2445 nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING)))
55d2375e
SC
2446 return -EINVAL;
2447
2448 return 0;
2449}
2450
2451static bool valid_ept_address(struct kvm_vcpu *vcpu, u64 address)
2452{
2453 struct vcpu_vmx *vmx = to_vmx(vcpu);
2454 int maxphyaddr = cpuid_maxphyaddr(vcpu);
2455
2456 /* Check for memory type validity */
2457 switch (address & VMX_EPTP_MT_MASK) {
2458 case VMX_EPTP_MT_UC:
5497b955 2459 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
55d2375e
SC
2460 return false;
2461 break;
2462 case VMX_EPTP_MT_WB:
5497b955 2463 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
55d2375e
SC
2464 return false;
2465 break;
2466 default:
2467 return false;
2468 }
2469
2470 /* only 4 levels page-walk length are valid */
5497b955 2471 if (CC((address & VMX_EPTP_PWL_MASK) != VMX_EPTP_PWL_4))
55d2375e
SC
2472 return false;
2473
2474 /* Reserved bits should not be set */
5497b955 2475 if (CC(address >> maxphyaddr || ((address >> 7) & 0x1f)))
55d2375e
SC
2476 return false;
2477
2478 /* AD, if set, should be supported */
2479 if (address & VMX_EPTP_AD_ENABLE_BIT) {
5497b955 2480 if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
55d2375e
SC
2481 return false;
2482 }
2483
2484 return true;
2485}
2486
461b4ba4
KS
2487/*
2488 * Checks related to VM-Execution Control Fields
2489 */
2490static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2491 struct vmcs12 *vmcs12)
55d2375e
SC
2492{
2493 struct vcpu_vmx *vmx = to_vmx(vcpu);
55d2375e 2494
5497b955
SC
2495 if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2496 vmx->nested.msrs.pinbased_ctls_low,
2497 vmx->nested.msrs.pinbased_ctls_high)) ||
2498 CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2499 vmx->nested.msrs.procbased_ctls_low,
2500 vmx->nested.msrs.procbased_ctls_high)))
461b4ba4 2501 return -EINVAL;
55d2375e 2502
461b4ba4 2503 if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
5497b955
SC
2504 CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2505 vmx->nested.msrs.secondary_ctls_low,
2506 vmx->nested.msrs.secondary_ctls_high)))
461b4ba4
KS
2507 return -EINVAL;
2508
5497b955 2509 if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
461b4ba4
KS
2510 nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2511 nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2512 nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2513 nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2514 nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2515 nested_vmx_check_nmi_controls(vmcs12) ||
2516 nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2517 nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2518 nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2519 nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
5497b955 2520 CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
461b4ba4
KS
2521 return -EINVAL;
2522
bc441211
SC
2523 if (!nested_cpu_has_preemption_timer(vmcs12) &&
2524 nested_cpu_has_save_preemption_timer(vmcs12))
2525 return -EINVAL;
2526
461b4ba4 2527 if (nested_cpu_has_ept(vmcs12) &&
5497b955 2528 CC(!valid_ept_address(vcpu, vmcs12->ept_pointer)))
461b4ba4 2529 return -EINVAL;
55d2375e
SC
2530
2531 if (nested_cpu_has_vmfunc(vmcs12)) {
5497b955
SC
2532 if (CC(vmcs12->vm_function_control &
2533 ~vmx->nested.msrs.vmfunc_controls))
461b4ba4 2534 return -EINVAL;
55d2375e
SC
2535
2536 if (nested_cpu_has_eptp_switching(vmcs12)) {
5497b955
SC
2537 if (CC(!nested_cpu_has_ept(vmcs12)) ||
2538 CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
461b4ba4 2539 return -EINVAL;
55d2375e
SC
2540 }
2541 }
2542
461b4ba4
KS
2543 return 0;
2544}
2545
61446ba7
KS
2546/*
2547 * Checks related to VM-Exit Control Fields
2548 */
2549static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2550 struct vmcs12 *vmcs12)
2551{
2552 struct vcpu_vmx *vmx = to_vmx(vcpu);
2553
5497b955
SC
2554 if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2555 vmx->nested.msrs.exit_ctls_low,
2556 vmx->nested.msrs.exit_ctls_high)) ||
2557 CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
61446ba7
KS
2558 return -EINVAL;
2559
2560 return 0;
2561}
2562
5fbf9634
KS
2563/*
2564 * Checks related to VM-Entry Control Fields
2565 */
2566static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2567 struct vmcs12 *vmcs12)
461b4ba4
KS
2568{
2569 struct vcpu_vmx *vmx = to_vmx(vcpu);
55d2375e 2570
5497b955
SC
2571 if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2572 vmx->nested.msrs.entry_ctls_low,
2573 vmx->nested.msrs.entry_ctls_high)))
5fbf9634 2574 return -EINVAL;
55d2375e
SC
2575
2576 /*
2577 * From the Intel SDM, volume 3:
2578 * Fields relevant to VM-entry event injection must be set properly.
2579 * These fields are the VM-entry interruption-information field, the
2580 * VM-entry exception error code, and the VM-entry instruction length.
2581 */
2582 if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2583 u32 intr_info = vmcs12->vm_entry_intr_info_field;
2584 u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2585 u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2586 bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2587 bool should_have_error_code;
2588 bool urg = nested_cpu_has2(vmcs12,
2589 SECONDARY_EXEC_UNRESTRICTED_GUEST);
2590 bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2591
2592 /* VM-entry interruption-info field: interruption type */
5497b955
SC
2593 if (CC(intr_type == INTR_TYPE_RESERVED) ||
2594 CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2595 !nested_cpu_supports_monitor_trap_flag(vcpu)))
5fbf9634 2596 return -EINVAL;
55d2375e
SC
2597
2598 /* VM-entry interruption-info field: vector */
5497b955
SC
2599 if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2600 CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2601 CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
5fbf9634 2602 return -EINVAL;
55d2375e
SC
2603
2604 /* VM-entry interruption-info field: deliver error code */
2605 should_have_error_code =
2606 intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2607 x86_exception_has_error_code(vector);
5497b955 2608 if (CC(has_error_code != should_have_error_code))
5fbf9634 2609 return -EINVAL;
55d2375e
SC
2610
2611 /* VM-entry exception error code */
5497b955 2612 if (CC(has_error_code &&
567926cc 2613 vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
5fbf9634 2614 return -EINVAL;
55d2375e
SC
2615
2616 /* VM-entry interruption-info field: reserved bits */
5497b955 2617 if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
5fbf9634 2618 return -EINVAL;
55d2375e
SC
2619
2620 /* VM-entry instruction length */
2621 switch (intr_type) {
2622 case INTR_TYPE_SOFT_EXCEPTION:
2623 case INTR_TYPE_SOFT_INTR:
2624 case INTR_TYPE_PRIV_SW_EXCEPTION:
5497b955
SC
2625 if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2626 CC(vmcs12->vm_entry_instruction_len == 0 &&
2627 CC(!nested_cpu_has_zero_length_injection(vcpu))))
5fbf9634 2628 return -EINVAL;
55d2375e
SC
2629 }
2630 }
2631
5fbf9634
KS
2632 if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2633 return -EINVAL;
2634
2635 return 0;
2636}
2637
5478ba34
SC
2638static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2639 struct vmcs12 *vmcs12)
2640{
2641 if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2642 nested_check_vm_exit_controls(vcpu, vmcs12) ||
2643 nested_check_vm_entry_controls(vcpu, vmcs12))
98d9e858 2644 return -EINVAL;
5478ba34
SC
2645
2646 return 0;
2647}
2648
98d9e858
PB
2649static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2650 struct vmcs12 *vmcs12)
5fbf9634
KS
2651{
2652 bool ia32e;
2653
5497b955
SC
2654 if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2655 CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2656 CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
254b2f3b 2657 return -EINVAL;
711eff3a 2658
5497b955
SC
2659 if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2660 CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
711eff3a
KS
2661 return -EINVAL;
2662
f6b0db1f 2663 if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
5497b955 2664 CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
f6b0db1f
KS
2665 return -EINVAL;
2666
fd3edd4a
PB
2667#ifdef CONFIG_X86_64
2668 ia32e = !!(vcpu->arch.efer & EFER_LMA);
2669#else
2670 ia32e = false;
2671#endif
2672
2673 if (ia32e) {
2674 if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
2675 CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2676 return -EINVAL;
2677 } else {
2678 if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
2679 CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2680 CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2681 CC((vmcs12->host_rip) >> 32))
2682 return -EINVAL;
2683 }
1ef23e1f 2684
5497b955
SC
2685 if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2686 CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2687 CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2688 CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2689 CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2690 CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2691 CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2692 CC(vmcs12->host_cs_selector == 0) ||
2693 CC(vmcs12->host_tr_selector == 0) ||
2694 CC(vmcs12->host_ss_selector == 0 && !ia32e))
1ef23e1f
KS
2695 return -EINVAL;
2696
2697#ifdef CONFIG_X86_64
5497b955
SC
2698 if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2699 CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2700 CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2701 CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
fd3edd4a
PB
2702 CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2703 CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
5845038c 2704 return -EINVAL;
1ef23e1f
KS
2705#endif
2706
5fbf9634
KS
2707 /*
2708 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2709 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2710 * the values of the LMA and LME bits in the field must each be that of
2711 * the host address-space size VM-exit control.
2712 */
2713 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
5497b955
SC
2714 if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2715 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2716 CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
254b2f3b 2717 return -EINVAL;
5fbf9634
KS
2718 }
2719
55d2375e
SC
2720 return 0;
2721}
2722
2723static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2724 struct vmcs12 *vmcs12)
2725{
88925305 2726 int r = 0;
55d2375e 2727 struct vmcs12 *shadow;
88925305 2728 struct kvm_host_map map;
55d2375e
SC
2729
2730 if (vmcs12->vmcs_link_pointer == -1ull)
2731 return 0;
2732
5497b955 2733 if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
55d2375e
SC
2734 return -EINVAL;
2735
5497b955 2736 if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
55d2375e
SC
2737 return -EINVAL;
2738
88925305
KA
2739 shadow = map.hva;
2740
5497b955
SC
2741 if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
2742 CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
55d2375e 2743 r = -EINVAL;
88925305
KA
2744
2745 kvm_vcpu_unmap(vcpu, &map, false);
55d2375e
SC
2746 return r;
2747}
2748
9c3e922b
SC
2749/*
2750 * Checks related to Guest Non-register State
2751 */
2752static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2753{
5497b955
SC
2754 if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2755 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
9c3e922b
SC
2756 return -EINVAL;
2757
2758 return 0;
2759}
2760
5478ba34
SC
2761static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2762 struct vmcs12 *vmcs12,
2763 u32 *exit_qual)
55d2375e
SC
2764{
2765 bool ia32e;
2766
2767 *exit_qual = ENTRY_FAIL_DEFAULT;
2768
5497b955
SC
2769 if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
2770 CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
c80add0f 2771 return -EINVAL;
55d2375e 2772
de2bc2bf 2773 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
5497b955 2774 CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
c80add0f 2775 return -EINVAL;
55d2375e
SC
2776
2777 if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
2778 *exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
c80add0f 2779 return -EINVAL;
55d2375e
SC
2780 }
2781
2782 /*
2783 * If the load IA32_EFER VM-entry control is 1, the following checks
2784 * are performed on the field for the IA32_EFER MSR:
2785 * - Bits reserved in the IA32_EFER MSR must be 0.
2786 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
2787 * the IA-32e mode guest VM-exit control. It must also be identical
2788 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
2789 * CR0.PG) is 1.
2790 */
2791 if (to_vmx(vcpu)->nested.nested_run_pending &&
2792 (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
2793 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
5497b955
SC
2794 if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
2795 CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
2796 CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
2797 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
c80add0f 2798 return -EINVAL;
55d2375e
SC
2799 }
2800
2801 if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
5497b955
SC
2802 (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
2803 CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
c80add0f 2804 return -EINVAL;
55d2375e 2805
9c3e922b 2806 if (nested_check_guest_non_reg_state(vmcs12))
c80add0f 2807 return -EINVAL;
55d2375e
SC
2808
2809 return 0;
2810}
2811
453eafbe 2812static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
55d2375e
SC
2813{
2814 struct vcpu_vmx *vmx = to_vmx(vcpu);
2815 unsigned long cr3, cr4;
f1727b49 2816 bool vm_fail;
55d2375e
SC
2817
2818 if (!nested_early_check)
2819 return 0;
2820
2821 if (vmx->msr_autoload.host.nr)
2822 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
2823 if (vmx->msr_autoload.guest.nr)
2824 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
2825
2826 preempt_disable();
2827
2828 vmx_prepare_switch_to_guest(vcpu);
2829
2830 /*
2831 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
2832 * which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
2833 * be written (by preparve_vmcs02()) before the "real" VMEnter, i.e.
2834 * there is no need to preserve other bits or save/restore the field.
2835 */
2836 vmcs_writel(GUEST_RFLAGS, 0);
2837
55d2375e
SC
2838 cr3 = __get_current_cr3_fast();
2839 if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
2840 vmcs_writel(HOST_CR3, cr3);
2841 vmx->loaded_vmcs->host_state.cr3 = cr3;
2842 }
2843
2844 cr4 = cr4_read_shadow();
2845 if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
2846 vmcs_writel(HOST_CR4, cr4);
2847 vmx->loaded_vmcs->host_state.cr4 = cr4;
2848 }
2849
55d2375e 2850 asm(
453eafbe 2851 "sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
5a878160
SC
2852 "cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2853 "je 1f \n\t"
fbda0fd3 2854 __ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
5a878160
SC
2855 "mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
2856 "1: \n\t"
453eafbe 2857 "add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
55d2375e
SC
2858
2859 /* Check if vmlaunch or vmresume is needed */
74dfa278 2860 "cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
453eafbe 2861
f1727b49
SC
2862 /*
2863 * VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
2864 * RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
2865 * Valid. vmx_vmenter() directly "returns" RFLAGS, and so the
bbc0b823 2866 * results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
f1727b49 2867 */
453eafbe
SC
2868 "call vmx_vmenter\n\t"
2869
bbc0b823
SC
2870 CC_SET(be)
2871 : ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
5a878160 2872 : [HOST_RSP]"r"((unsigned long)HOST_RSP),
74dfa278
SC
2873 [loaded_vmcs]"r"(vmx->loaded_vmcs),
2874 [launched]"i"(offsetof(struct loaded_vmcs, launched)),
5a878160 2875 [host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
453eafbe 2876 [wordsize]"i"(sizeof(ulong))
5a253552 2877 : "memory"
55d2375e
SC
2878 );
2879
55d2375e
SC
2880 if (vmx->msr_autoload.host.nr)
2881 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2882 if (vmx->msr_autoload.guest.nr)
2883 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2884
f1727b49 2885 if (vm_fail) {
380e0055
SC
2886 u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
2887
541e886f 2888 preempt_enable();
380e0055
SC
2889
2890 trace_kvm_nested_vmenter_failed(
2891 "early hardware check VM-instruction error: ", error);
2892 WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
55d2375e
SC
2893 return 1;
2894 }
2895
2896 /*
2897 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
2898 */
2899 local_irq_enable();
2900 if (hw_breakpoint_active())
2901 set_debugreg(__this_cpu_read(cpu_dr7), 7);
541e886f 2902 preempt_enable();
55d2375e
SC
2903
2904 /*
2905 * A non-failing VMEntry means we somehow entered guest mode with
2906 * an illegal RIP, and that's just the tip of the iceberg. There
2907 * is no telling what memory has been modified or what state has
2908 * been exposed to unknown code. Hitting this all but guarantees
2909 * a (very critical) hardware issue.
2910 */
2911 WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
2912 VMX_EXIT_REASONS_FAILED_VMENTRY));
2913
2914 return 0;
2915}
55d2375e
SC
2916
2917static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
2918 struct vmcs12 *vmcs12);
2919
2920static void nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
2921{
2922 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2923 struct vcpu_vmx *vmx = to_vmx(vcpu);
96c66e87 2924 struct kvm_host_map *map;
55d2375e
SC
2925 struct page *page;
2926 u64 hpa;
2927
2928 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2929 /*
2930 * Translate L1 physical address to host physical
2931 * address for vmcs02. Keep the page pinned, so this
2932 * physical address remains valid. We keep a reference
2933 * to it so we can release it later.
2934 */
2935 if (vmx->nested.apic_access_page) { /* shouldn't happen */
2936 kvm_release_page_dirty(vmx->nested.apic_access_page);
2937 vmx->nested.apic_access_page = NULL;
2938 }
2939 page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
2940 /*
2941 * If translation failed, no matter: This feature asks
2942 * to exit when accessing the given address, and if it
2943 * can never be accessed, this feature won't do
2944 * anything anyway.
2945 */
2946 if (!is_error_page(page)) {
2947 vmx->nested.apic_access_page = page;
2948 hpa = page_to_phys(vmx->nested.apic_access_page);
2949 vmcs_write64(APIC_ACCESS_ADDR, hpa);
2950 } else {
fe7f895d
SC
2951 secondary_exec_controls_clearbit(vmx,
2952 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
55d2375e
SC
2953 }
2954 }
2955
2956 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
96c66e87 2957 map = &vmx->nested.virtual_apic_map;
55d2375e 2958
96c66e87
KA
2959 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
2960 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
69090810
PB
2961 } else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
2962 nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
2963 !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
2964 /*
2965 * The processor will never use the TPR shadow, simply
2966 * clear the bit from the execution control. Such a
2967 * configuration is useless, but it happens in tests.
2968 * For any other configuration, failing the vm entry is
2969 * _not_ what the processor does but it's basically the
2970 * only possibility we have.
2971 */
2183f564 2972 exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
69090810 2973 } else {
ca2f5466
SC
2974 /*
2975 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
2976 * force VM-Entry to fail.
2977 */
2978 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
55d2375e
SC
2979 }
2980 }
2981
2982 if (nested_cpu_has_posted_intr(vmcs12)) {
3278e049
KA
2983 map = &vmx->nested.pi_desc_map;
2984
2985 if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
2986 vmx->nested.pi_desc =
2987 (struct pi_desc *)(((void *)map->hva) +
2988 offset_in_page(vmcs12->posted_intr_desc_addr));
2989 vmcs_write64(POSTED_INTR_DESC_ADDR,
2990 pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
55d2375e 2991 }
55d2375e
SC
2992 }
2993 if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
2183f564 2994 exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
55d2375e 2995 else
2183f564 2996 exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
55d2375e
SC
2997}
2998
2999/*
3000 * Intel's VMX Instruction Reference specifies a common set of prerequisites
3001 * for running VMX instructions (except VMXON, whose prerequisites are
3002 * slightly different). It also specifies what exception to inject otherwise.
3003 * Note that many of these exceptions have priority over VM exits, so they
3004 * don't have to be checked again here.
3005 */
3006static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3007{
3008 if (!to_vmx(vcpu)->nested.vmxon) {
3009 kvm_queue_exception(vcpu, UD_VECTOR);
3010 return 0;
3011 }
3012
3013 if (vmx_get_cpl(vcpu)) {
3014 kvm_inject_gp(vcpu, 0);
3015 return 0;
3016 }
3017
3018 return 1;
3019}
3020
3021static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3022{
3023 u8 rvi = vmx_get_rvi();
3024 u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3025
3026 return ((rvi & 0xf0) > (vppr & 0xf0));
3027}
3028
3029static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3030 struct vmcs12 *vmcs12);
3031
3032/*
3033 * If from_vmentry is false, this is being called from state restore (either RSM
3034 * or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
3035+ *
3036+ * Returns:
3037+ * 0 - success, i.e. proceed with actual VMEnter
3038+ * 1 - consistency check VMExit
3039+ * -1 - consistency check VMFail
3040 */
3041int nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu, bool from_vmentry)
3042{
3043 struct vcpu_vmx *vmx = to_vmx(vcpu);
3044 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3045 bool evaluate_pending_interrupts;
3046 u32 exit_reason = EXIT_REASON_INVALID_STATE;
3047 u32 exit_qual;
3048
2183f564 3049 evaluate_pending_interrupts = exec_controls_get(vmx) &
55d2375e
SC
3050 (CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_VIRTUAL_NMI_PENDING);
3051 if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3052 evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3053
3054 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3055 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3056 if (kvm_mpx_supported() &&
3057 !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
3058 vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3059
f087a029
SC
3060 /*
3061 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3062 * nested early checks are disabled. In the event of a "late" VM-Fail,
3063 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3064 * software model to the pre-VMEntry host state. When EPT is disabled,
3065 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3066 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
3067 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3068 * the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
3069 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3070 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3071 * L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3072 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3073 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3074 * path would need to manually save/restore vmcs01.GUEST_CR3.
3075 */
3076 if (!enable_ept && !nested_early_check)
3077 vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3078
55d2375e
SC
3079 vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3080
3081 prepare_vmcs02_early(vmx, vmcs12);
3082
3083 if (from_vmentry) {
3084 nested_get_vmcs12_pages(vcpu);
3085
3086 if (nested_vmx_check_vmentry_hw(vcpu)) {
3087 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3088 return -1;
3089 }
3090
5478ba34 3091 if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
55d2375e
SC
3092 goto vmentry_fail_vmexit;
3093 }
3094
3095 enter_guest_mode(vcpu);
3096 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3097 vcpu->arch.tsc_offset += vmcs12->tsc_offset;
3098
3099 if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
3100 goto vmentry_fail_vmexit_guest_mode;
3101
3102 if (from_vmentry) {
3103 exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
3104 exit_qual = nested_vmx_load_msr(vcpu,
3105 vmcs12->vm_entry_msr_load_addr,
3106 vmcs12->vm_entry_msr_load_count);
3107 if (exit_qual)
3108 goto vmentry_fail_vmexit_guest_mode;
3109 } else {
3110 /*
3111 * The MMU is not initialized to point at the right entities yet and
3112 * "get pages" would need to read data from the guest (i.e. we will
3113 * need to perform gpa to hpa translation). Request a call
3114 * to nested_get_vmcs12_pages before the next VM-entry. The MSRs
3115 * have already been set at vmentry time and should not be reset.
3116 */
3117 kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
3118 }
3119
3120 /*
3121 * If L1 had a pending IRQ/NMI until it executed
3122 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3123 * disallowed (e.g. interrupts disabled), L0 needs to
3124 * evaluate if this pending event should cause an exit from L2
3125 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3126 * intercept EXTERNAL_INTERRUPT).
3127 *
3128 * Usually this would be handled by the processor noticing an
3129 * IRQ/NMI window request, or checking RVI during evaluation of
3130 * pending virtual interrupts. However, this setting was done
3131 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3132 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3133 */
3134 if (unlikely(evaluate_pending_interrupts))
3135 kvm_make_request(KVM_REQ_EVENT, vcpu);
3136
359a6c3d
PB
3137 /*
3138 * Do not start the preemption timer hrtimer until after we know
3139 * we are successful, so that only nested_vmx_vmexit needs to cancel
3140 * the timer.
3141 */
3142 vmx->nested.preemption_timer_expired = false;
3143 if (nested_cpu_has_preemption_timer(vmcs12))
3144 vmx_start_preemption_timer(vcpu);
3145
55d2375e
SC
3146 /*
3147 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3148 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3149 * returned as far as L1 is concerned. It will only return (and set
3150 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3151 */
3152 return 0;
3153
3154 /*
3155 * A failed consistency check that leads to a VMExit during L1's
3156 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3157 * 26.7 "VM-entry failures during or after loading guest state".
3158 */
3159vmentry_fail_vmexit_guest_mode:
3160 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
3161 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3162 leave_guest_mode(vcpu);
3163
3164vmentry_fail_vmexit:
3165 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3166
3167 if (!from_vmentry)
3168 return 1;
3169
3170 load_vmcs12_host_state(vcpu, vmcs12);
3171 vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
3172 vmcs12->exit_qualification = exit_qual;
3173 if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
3731905e 3174 vmx->nested.need_vmcs12_to_shadow_sync = true;
55d2375e
SC
3175 return 1;
3176}
3177
3178/*
3179 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3180 * for running an L2 nested guest.
3181 */
3182static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3183{
3184 struct vmcs12 *vmcs12;
3185 struct vcpu_vmx *vmx = to_vmx(vcpu);
3186 u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3187 int ret;
3188
3189 if (!nested_vmx_check_permission(vcpu))
3190 return 1;
3191
a21a39c2 3192 if (!nested_vmx_handle_enlightened_vmptrld(vcpu, launch))
55d2375e
SC
3193 return 1;
3194
3195 if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
3196 return nested_vmx_failInvalid(vcpu);
3197
3198 vmcs12 = get_vmcs12(vcpu);
3199
3200 /*
3201 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3202 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3203 * rather than RFLAGS.ZF, and no error number is stored to the
3204 * VM-instruction error field.
3205 */
3206 if (vmcs12->hdr.shadow_vmcs)
3207 return nested_vmx_failInvalid(vcpu);
3208
3209 if (vmx->nested.hv_evmcs) {
3210 copy_enlightened_to_vmcs12(vmx);
3211 /* Enlightened VMCS doesn't have launch state */
3212 vmcs12->launch_state = !launch;
3213 } else if (enable_shadow_vmcs) {
3214 copy_shadow_to_vmcs12(vmx);
3215 }
3216
3217 /*
3218 * The nested entry process starts with enforcing various prerequisites
3219 * on vmcs12 as required by the Intel SDM, and act appropriately when
3220 * they fail: As the SDM explains, some conditions should cause the
3221 * instruction to fail, while others will cause the instruction to seem
3222 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3223 * To speed up the normal (success) code path, we should avoid checking
3224 * for misconfigurations which will anyway be caught by the processor
3225 * when using the merged vmcs02.
3226 */
3227 if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
3228 return nested_vmx_failValid(vcpu,
3229 VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3230
3231 if (vmcs12->launch_state == launch)
3232 return nested_vmx_failValid(vcpu,
3233 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3234 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3235
98d9e858
PB
3236 if (nested_vmx_check_controls(vcpu, vmcs12))
3237 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
5478ba34 3238
98d9e858
PB
3239 if (nested_vmx_check_host_state(vcpu, vmcs12))
3240 return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
55d2375e
SC
3241
3242 /*
3243 * We're finally done with prerequisite checking, and can start with
3244 * the nested entry.
3245 */
3246 vmx->nested.nested_run_pending = 1;
3247 ret = nested_vmx_enter_non_root_mode(vcpu, true);
3248 vmx->nested.nested_run_pending = !ret;
3249 if (ret > 0)
3250 return 1;
3251 else if (ret)
3252 return nested_vmx_failValid(vcpu,
3253 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3254
3255 /* Hide L1D cache contents from the nested guest. */
3256 vmx->vcpu.arch.l1tf_flush_l1d = true;
3257
3258 /*
3259 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3260 * also be used as part of restoring nVMX state for
3261 * snapshot restore (migration).
3262 *
3263 * In this flow, it is assumed that vmcs12 cache was
3264 * trasferred as part of captured nVMX state and should
3265 * therefore not be read from guest memory (which may not
3266 * exist on destination host yet).
3267 */
3268 nested_cache_shadow_vmcs12(vcpu, vmcs12);
3269
3270 /*
9ebdfe52
JM
3271 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3272 * awakened by event injection or by an NMI-window VM-exit or
3273 * by an interrupt-window VM-exit, halt the vcpu.
55d2375e
SC
3274 */
3275 if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
9ebdfe52
JM
3276 !(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3277 !(vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_NMI_PENDING) &&
3278 !((vmcs12->cpu_based_vm_exec_control & CPU_BASED_VIRTUAL_INTR_PENDING) &&
3279 (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
55d2375e
SC
3280 vmx->nested.nested_run_pending = 0;
3281 return kvm_vcpu_halt(vcpu);
3282 }
3283 return 1;
3284}
3285
3286/*
3287 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3288 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
3289 * This function returns the new value we should put in vmcs12.guest_cr0.
3290 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3291 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3292 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3293 * didn't trap the bit, because if L1 did, so would L0).
3294 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3295 * been modified by L2, and L1 knows it. So just leave the old value of
3296 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3297 * isn't relevant, because if L0 traps this bit it can set it to anything.
3298 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3299 * changed these bits, and therefore they need to be updated, but L0
3300 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3301 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3302 */
3303static inline unsigned long
3304vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3305{
3306 return
3307 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3308 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3309 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3310 vcpu->arch.cr0_guest_owned_bits));
3311}
3312
3313static inline unsigned long
3314vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3315{
3316 return
3317 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3318 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3319 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3320 vcpu->arch.cr4_guest_owned_bits));
3321}
3322
3323static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3324 struct vmcs12 *vmcs12)
3325{
3326 u32 idt_vectoring;
3327 unsigned int nr;
3328
3329 if (vcpu->arch.exception.injected) {
3330 nr = vcpu->arch.exception.nr;
3331 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3332
3333 if (kvm_exception_is_soft(nr)) {
3334 vmcs12->vm_exit_instruction_len =
3335 vcpu->arch.event_exit_inst_len;
3336 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3337 } else
3338 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3339
3340 if (vcpu->arch.exception.has_error_code) {
3341 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3342 vmcs12->idt_vectoring_error_code =
3343 vcpu->arch.exception.error_code;
3344 }
3345
3346 vmcs12->idt_vectoring_info_field = idt_vectoring;
3347 } else if (vcpu->arch.nmi_injected) {
3348 vmcs12->idt_vectoring_info_field =
3349 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3350 } else if (vcpu->arch.interrupt.injected) {
3351 nr = vcpu->arch.interrupt.nr;
3352 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3353
3354 if (vcpu->arch.interrupt.soft) {
3355 idt_vectoring |= INTR_TYPE_SOFT_INTR;
3356 vmcs12->vm_entry_instruction_len =
3357 vcpu->arch.event_exit_inst_len;
3358 } else
3359 idt_vectoring |= INTR_TYPE_EXT_INTR;
3360
3361 vmcs12->idt_vectoring_info_field = idt_vectoring;
3362 }
3363}
3364
3365
3366static void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3367{
3368 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3369 gfn_t gfn;
3370
3371 /*
3372 * Don't need to mark the APIC access page dirty; it is never
3373 * written to by the CPU during APIC virtualization.
3374 */
3375
3376 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3377 gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3378 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3379 }
3380
3381 if (nested_cpu_has_posted_intr(vmcs12)) {
3382 gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3383 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3384 }
3385}
3386
3387static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3388{
3389 struct vcpu_vmx *vmx = to_vmx(vcpu);
3390 int max_irr;
3391 void *vapic_page;
3392 u16 status;
3393
3394 if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
3395 return;
3396
3397 vmx->nested.pi_pending = false;
3398 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3399 return;
3400
3401 max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3402 if (max_irr != 256) {
96c66e87
KA
3403 vapic_page = vmx->nested.virtual_apic_map.hva;
3404 if (!vapic_page)
3405 return;
3406
55d2375e
SC
3407 __kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3408 vapic_page, &max_irr);
55d2375e
SC
3409 status = vmcs_read16(GUEST_INTR_STATUS);
3410 if ((u8)max_irr > ((u8)status & 0xff)) {
3411 status &= ~0xff;
3412 status |= (u8)max_irr;
3413 vmcs_write16(GUEST_INTR_STATUS, status);
3414 }
3415 }
3416
3417 nested_mark_vmcs12_pages_dirty(vcpu);
3418}
3419
3420static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3421 unsigned long exit_qual)
3422{
3423 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3424 unsigned int nr = vcpu->arch.exception.nr;
3425 u32 intr_info = nr | INTR_INFO_VALID_MASK;
3426
3427 if (vcpu->arch.exception.has_error_code) {
3428 vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3429 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3430 }
3431
3432 if (kvm_exception_is_soft(nr))
3433 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3434 else
3435 intr_info |= INTR_TYPE_HARD_EXCEPTION;
3436
3437 if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3438 vmx_get_nmi_mask(vcpu))
3439 intr_info |= INTR_INFO_UNBLOCK_NMI;
3440
3441 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3442}
3443
3444static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
3445{
3446 struct vcpu_vmx *vmx = to_vmx(vcpu);
3447 unsigned long exit_qual;
3448 bool block_nested_events =
3449 vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
4b9852f4
LA
3450 struct kvm_lapic *apic = vcpu->arch.apic;
3451
3452 if (lapic_in_kernel(vcpu) &&
3453 test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3454 if (block_nested_events)
3455 return -EBUSY;
3456 nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3457 return 0;
3458 }
55d2375e
SC
3459
3460 if (vcpu->arch.exception.pending &&
3461 nested_vmx_check_exception(vcpu, &exit_qual)) {
3462 if (block_nested_events)
3463 return -EBUSY;
3464 nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3465 return 0;
3466 }
3467
3468 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3469 vmx->nested.preemption_timer_expired) {
3470 if (block_nested_events)
3471 return -EBUSY;
3472 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3473 return 0;
3474 }
3475
3476 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
3477 if (block_nested_events)
3478 return -EBUSY;
3479 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3480 NMI_VECTOR | INTR_TYPE_NMI_INTR |
3481 INTR_INFO_VALID_MASK, 0);
3482 /*
3483 * The NMI-triggered VM exit counts as injection:
3484 * clear this one and block further NMIs.
3485 */
3486 vcpu->arch.nmi_pending = 0;
3487 vmx_set_nmi_mask(vcpu, true);
3488 return 0;
3489 }
3490
3491 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
3492 nested_exit_on_intr(vcpu)) {
3493 if (block_nested_events)
3494 return -EBUSY;
3495 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3496 return 0;
3497 }
3498
3499 vmx_complete_nested_posted_interrupt(vcpu);
3500 return 0;
3501}
3502
3503static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
3504{
3505 ktime_t remaining =
3506 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
3507 u64 value;
3508
3509 if (ktime_to_ns(remaining) <= 0)
3510 return 0;
3511
3512 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
3513 do_div(value, 1000000);
3514 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
3515}
3516
7952d769 3517static bool is_vmcs12_ext_field(unsigned long field)
55d2375e 3518{
7952d769
SC
3519 switch (field) {
3520 case GUEST_ES_SELECTOR:
3521 case GUEST_CS_SELECTOR:
3522 case GUEST_SS_SELECTOR:
3523 case GUEST_DS_SELECTOR:
3524 case GUEST_FS_SELECTOR:
3525 case GUEST_GS_SELECTOR:
3526 case GUEST_LDTR_SELECTOR:
3527 case GUEST_TR_SELECTOR:
3528 case GUEST_ES_LIMIT:
3529 case GUEST_CS_LIMIT:
3530 case GUEST_SS_LIMIT:
3531 case GUEST_DS_LIMIT:
3532 case GUEST_FS_LIMIT:
3533 case GUEST_GS_LIMIT:
3534 case GUEST_LDTR_LIMIT:
3535 case GUEST_TR_LIMIT:
3536 case GUEST_GDTR_LIMIT:
3537 case GUEST_IDTR_LIMIT:
3538 case GUEST_ES_AR_BYTES:
3539 case GUEST_DS_AR_BYTES:
3540 case GUEST_FS_AR_BYTES:
3541 case GUEST_GS_AR_BYTES:
3542 case GUEST_LDTR_AR_BYTES:
3543 case GUEST_TR_AR_BYTES:
3544 case GUEST_ES_BASE:
3545 case GUEST_CS_BASE:
3546 case GUEST_SS_BASE:
3547 case GUEST_DS_BASE:
3548 case GUEST_FS_BASE:
3549 case GUEST_GS_BASE:
3550 case GUEST_LDTR_BASE:
3551 case GUEST_TR_BASE:
3552 case GUEST_GDTR_BASE:
3553 case GUEST_IDTR_BASE:
3554 case GUEST_PENDING_DBG_EXCEPTIONS:
3555 case GUEST_BNDCFGS:
3556 return true;
3557 default:
3558 break;
3559 }
55d2375e 3560
7952d769
SC
3561 return false;
3562}
3563
3564static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3565 struct vmcs12 *vmcs12)
3566{
3567 struct vcpu_vmx *vmx = to_vmx(vcpu);
55d2375e
SC
3568
3569 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
3570 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
3571 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
3572 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
3573 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
3574 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
3575 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
3576 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
3577 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
3578 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
3579 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
3580 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
3581 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
3582 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
3583 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
3584 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
3585 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
3586 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
3587 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
55d2375e
SC
3588 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
3589 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
3590 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
3591 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
3592 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
3593 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
3594 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
3595 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
3596 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
3597 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
3598 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
3599 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
3600 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
3601 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
3602 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7952d769
SC
3603 vmcs12->guest_pending_dbg_exceptions =
3604 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3605 if (kvm_mpx_supported())
3606 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3607
3608 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
3609}
3610
3611static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
3612 struct vmcs12 *vmcs12)
3613{
3614 struct vcpu_vmx *vmx = to_vmx(vcpu);
3615 int cpu;
3616
3617 if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
3618 return;
3619
3620
3621 WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
3622
3623 cpu = get_cpu();
3624 vmx->loaded_vmcs = &vmx->nested.vmcs02;
3625 vmx_vcpu_load(&vmx->vcpu, cpu);
3626
3627 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3628
3629 vmx->loaded_vmcs = &vmx->vmcs01;
3630 vmx_vcpu_load(&vmx->vcpu, cpu);
3631 put_cpu();
3632}
3633
3634/*
3635 * Update the guest state fields of vmcs12 to reflect changes that
3636 * occurred while L2 was running. (The "IA-32e mode guest" bit of the
3637 * VM-entry controls is also updated, since this is really a guest
3638 * state bit.)
3639 */
3640static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3641{
3642 struct vcpu_vmx *vmx = to_vmx(vcpu);
3643
3644 if (vmx->nested.hv_evmcs)
3645 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3646
3647 vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
3648
3649 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
3650 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
3651
3652 vmcs12->guest_rsp = kvm_rsp_read(vcpu);
3653 vmcs12->guest_rip = kvm_rip_read(vcpu);
3654 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
3655
3656 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
3657 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
55d2375e 3658
de70d279
SC
3659 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
3660 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
3661 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
55d2375e
SC
3662
3663 vmcs12->guest_interruptibility_info =
3664 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7952d769 3665
55d2375e
SC
3666 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
3667 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
3668 else
3669 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
3670
b4b65b56
PB
3671 if (nested_cpu_has_preemption_timer(vmcs12) &&
3672 vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
55d2375e
SC
3673 vmcs12->vmx_preemption_timer_value =
3674 vmx_get_preemption_timer_value(vcpu);
55d2375e
SC
3675
3676 /*
3677 * In some cases (usually, nested EPT), L2 is allowed to change its
3678 * own CR3 without exiting. If it has changed it, we must keep it.
3679 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
3680 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
3681 *
3682 * Additionally, restore L2's PDPTR to vmcs12.
3683 */
3684 if (enable_ept) {
3685 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
c7554efc
SC
3686 if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3687 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
3688 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
3689 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
3690 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
3691 }
55d2375e
SC
3692 }
3693
3694 vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
3695
3696 if (nested_cpu_has_vid(vmcs12))
3697 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
3698
3699 vmcs12->vm_entry_controls =
3700 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
3701 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
3702
699a1ac2 3703 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
55d2375e 3704 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
55d2375e 3705
55d2375e
SC
3706 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
3707 vmcs12->guest_ia32_efer = vcpu->arch.efer;
55d2375e
SC
3708}
3709
3710/*
3711 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
3712 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
3713 * and this function updates it to reflect the changes to the guest state while
3714 * L2 was running (and perhaps made some exits which were handled directly by L0
3715 * without going back to L1), and to reflect the exit reason.
3716 * Note that we do not have to copy here all VMCS fields, just those that
3717 * could have changed by the L2 guest or the exit - i.e., the guest-state and
3718 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
3719 * which already writes to vmcs12 directly.
3720 */
3721static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
3722 u32 exit_reason, u32 exit_intr_info,
3723 unsigned long exit_qualification)
3724{
55d2375e 3725 /* update exit information fields: */
55d2375e
SC
3726 vmcs12->vm_exit_reason = exit_reason;
3727 vmcs12->exit_qualification = exit_qualification;
3728 vmcs12->vm_exit_intr_info = exit_intr_info;
3729
3730 vmcs12->idt_vectoring_info_field = 0;
3731 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
3732 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
3733
3734 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
3735 vmcs12->launch_state = 1;
3736
3737 /* vm_entry_intr_info_field is cleared on exit. Emulate this
3738 * instead of reading the real value. */
3739 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
3740
3741 /*
3742 * Transfer the event that L0 or L1 may wanted to inject into
3743 * L2 to IDT_VECTORING_INFO_FIELD.
3744 */
3745 vmcs12_save_pending_event(vcpu, vmcs12);
a0d4f803
KS
3746
3747 /*
3748 * According to spec, there's no need to store the guest's
3749 * MSRs if the exit is due to a VM-entry failure that occurs
3750 * during or after loading the guest state. Since this exit
3751 * does not fall in that category, we need to save the MSRs.
3752 */
3753 if (nested_vmx_store_msr(vcpu,
3754 vmcs12->vm_exit_msr_store_addr,
3755 vmcs12->vm_exit_msr_store_count))
3756 nested_vmx_abort(vcpu,
3757 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
55d2375e
SC
3758 }
3759
3760 /*
3761 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
3762 * preserved above and would only end up incorrectly in L1.
3763 */
3764 vcpu->arch.nmi_injected = false;
3765 kvm_clear_exception_queue(vcpu);
3766 kvm_clear_interrupt_queue(vcpu);
3767}
3768
3769/*
3770 * A part of what we need to when the nested L2 guest exits and we want to
3771 * run its L1 parent, is to reset L1's guest state to the host state specified
3772 * in vmcs12.
3773 * This function is to be called not only on normal nested exit, but also on
3774 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
3775 * Failures During or After Loading Guest State").
3776 * This function should be called when the active VMCS is L1's (vmcs01).
3777 */
3778static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3779 struct vmcs12 *vmcs12)
3780{
3781 struct kvm_segment seg;
3782 u32 entry_failure_code;
3783
3784 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
3785 vcpu->arch.efer = vmcs12->host_ia32_efer;
3786 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3787 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
3788 else
3789 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
3790 vmx_set_efer(vcpu, vcpu->arch.efer);
3791
e9c16c78
PB
3792 kvm_rsp_write(vcpu, vmcs12->host_rsp);
3793 kvm_rip_write(vcpu, vmcs12->host_rip);
55d2375e
SC
3794 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
3795 vmx_set_interrupt_shadow(vcpu, 0);
3796
3797 /*
3798 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
3799 * actually changed, because vmx_set_cr0 refers to efer set above.
3800 *
3801 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
3802 * (KVM doesn't change it);
3803 */
3804 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3805 vmx_set_cr0(vcpu, vmcs12->host_cr0);
3806
3807 /* Same as above - no reason to call set_cr4_guest_host_mask(). */
3808 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3809 vmx_set_cr4(vcpu, vmcs12->host_cr4);
3810
3811 nested_ept_uninit_mmu_context(vcpu);
3812
3813 /*
3814 * Only PDPTE load can fail as the value of cr3 was checked on entry and
3815 * couldn't have changed.
3816 */
3817 if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
3818 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
3819
3820 if (!enable_ept)
3821 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
3822
3823 /*
3824 * If vmcs01 doesn't use VPID, CPU flushes TLB on every
3825 * VMEntry/VMExit. Thus, no need to flush TLB.
3826 *
3827 * If vmcs12 doesn't use VPID, L1 expects TLB to be
3828 * flushed on every VMEntry/VMExit.
3829 *
3830 * Otherwise, we can preserve TLB entries as long as we are
3831 * able to tag L1 TLB entries differently than L2 TLB entries.
3832 *
3833 * If vmcs12 uses EPT, we need to execute this flush on EPTP01
3834 * and therefore we request the TLB flush to happen only after VMCS EPTP
3835 * has been set by KVM_REQ_LOAD_CR3.
3836 */
3837 if (enable_vpid &&
3838 (!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
3839 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3840 }
3841
3842 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
3843 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
3844 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
3845 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
3846 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
3847 vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
3848 vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
3849
3850 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
3851 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
3852 vmcs_write64(GUEST_BNDCFGS, 0);
3853
3854 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
3855 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
3856 vcpu->arch.pat = vmcs12->host_ia32_pat;
3857 }
3858 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
3859 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
3860 vmcs12->host_ia32_perf_global_ctrl);
3861
3862 /* Set L1 segment info according to Intel SDM
3863 27.5.2 Loading Host Segment and Descriptor-Table Registers */
3864 seg = (struct kvm_segment) {
3865 .base = 0,
3866 .limit = 0xFFFFFFFF,
3867 .selector = vmcs12->host_cs_selector,
3868 .type = 11,
3869 .present = 1,
3870 .s = 1,
3871 .g = 1
3872 };
3873 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
3874 seg.l = 1;
3875 else
3876 seg.db = 1;
3877 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
3878 seg = (struct kvm_segment) {
3879 .base = 0,
3880 .limit = 0xFFFFFFFF,
3881 .type = 3,
3882 .present = 1,
3883 .s = 1,
3884 .db = 1,
3885 .g = 1
3886 };
3887 seg.selector = vmcs12->host_ds_selector;
3888 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
3889 seg.selector = vmcs12->host_es_selector;
3890 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
3891 seg.selector = vmcs12->host_ss_selector;
3892 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
3893 seg.selector = vmcs12->host_fs_selector;
3894 seg.base = vmcs12->host_fs_base;
3895 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
3896 seg.selector = vmcs12->host_gs_selector;
3897 seg.base = vmcs12->host_gs_base;
3898 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
3899 seg = (struct kvm_segment) {
3900 .base = vmcs12->host_tr_base,
3901 .limit = 0x67,
3902 .selector = vmcs12->host_tr_selector,
3903 .type = 11,
3904 .present = 1
3905 };
3906 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
3907
3908 kvm_set_dr(vcpu, 7, 0x400);
3909 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
3910
3911 if (cpu_has_vmx_msr_bitmap())
3912 vmx_update_msr_bitmap(vcpu);
3913
3914 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
3915 vmcs12->vm_exit_msr_load_count))
3916 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
3917}
3918
3919static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
3920{
3921 struct shared_msr_entry *efer_msr;
3922 unsigned int i;
3923
3924 if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
3925 return vmcs_read64(GUEST_IA32_EFER);
3926
3927 if (cpu_has_load_ia32_efer())
3928 return host_efer;
3929
3930 for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
3931 if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
3932 return vmx->msr_autoload.guest.val[i].value;
3933 }
3934
3935 efer_msr = find_msr_entry(vmx, MSR_EFER);
3936 if (efer_msr)
3937 return efer_msr->data;
3938
3939 return host_efer;
3940}
3941
3942static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
3943{
3944 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3945 struct vcpu_vmx *vmx = to_vmx(vcpu);
3946 struct vmx_msr_entry g, h;
55d2375e
SC
3947 gpa_t gpa;
3948 u32 i, j;
3949
3950 vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
3951
3952 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
3953 /*
3954 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
3955 * as vmcs01.GUEST_DR7 contains a userspace defined value
3956 * and vcpu->arch.dr7 is not squirreled away before the
3957 * nested VMENTER (not worth adding a variable in nested_vmx).
3958 */
3959 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
3960 kvm_set_dr(vcpu, 7, DR7_FIXED_1);
3961 else
3962 WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
3963 }
3964
3965 /*
3966 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
3967 * handle a variety of side effects to KVM's software model.
3968 */
3969 vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
3970
3971 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
3972 vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
3973
3974 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
3975 vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
3976
3977 nested_ept_uninit_mmu_context(vcpu);
f087a029
SC
3978 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3979 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
55d2375e
SC
3980
3981 /*
3982 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
3983 * from vmcs01 (if necessary). The PDPTRs are not loaded on
3984 * VMFail, like everything else we just need to ensure our
3985 * software model is up-to-date.
3986 */
f087a029
SC
3987 if (enable_ept)
3988 ept_save_pdptrs(vcpu);
55d2375e
SC
3989
3990 kvm_mmu_reset_context(vcpu);
3991
3992 if (cpu_has_vmx_msr_bitmap())
3993 vmx_update_msr_bitmap(vcpu);
3994
3995 /*
3996 * This nasty bit of open coding is a compromise between blindly
3997 * loading L1's MSRs using the exit load lists (incorrect emulation
3998 * of VMFail), leaving the nested VM's MSRs in the software model
3999 * (incorrect behavior) and snapshotting the modified MSRs (too
4000 * expensive since the lists are unbound by hardware). For each
4001 * MSR that was (prematurely) loaded from the nested VMEntry load
4002 * list, reload it from the exit load list if it exists and differs
4003 * from the guest value. The intent is to stuff host state as
4004 * silently as possible, not to fully process the exit load list.
4005 */
55d2375e
SC
4006 for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4007 gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4008 if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4009 pr_debug_ratelimited(
4010 "%s read MSR index failed (%u, 0x%08llx)\n",
4011 __func__, i, gpa);
4012 goto vmabort;
4013 }
4014
4015 for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4016 gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4017 if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4018 pr_debug_ratelimited(
4019 "%s read MSR failed (%u, 0x%08llx)\n",
4020 __func__, j, gpa);
4021 goto vmabort;
4022 }
4023 if (h.index != g.index)
4024 continue;
4025 if (h.value == g.value)
4026 break;
4027
4028 if (nested_vmx_load_msr_check(vcpu, &h)) {
4029 pr_debug_ratelimited(
4030 "%s check failed (%u, 0x%x, 0x%x)\n",
4031 __func__, j, h.index, h.reserved);
4032 goto vmabort;
4033 }
4034
f20935d8 4035 if (kvm_set_msr(vcpu, h.index, h.value)) {
55d2375e
SC
4036 pr_debug_ratelimited(
4037 "%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4038 __func__, j, h.index, h.value);
4039 goto vmabort;
4040 }
4041 }
4042 }
4043
4044 return;
4045
4046vmabort:
4047 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4048}
4049
4050/*
4051 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4052 * and modify vmcs12 to make it see what it would expect to see there if
4053 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4054 */
4055void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
4056 u32 exit_intr_info, unsigned long exit_qualification)
4057{
4058 struct vcpu_vmx *vmx = to_vmx(vcpu);
4059 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4060
4061 /* trying to cancel vmlaunch/vmresume is a bug */
4062 WARN_ON_ONCE(vmx->nested.nested_run_pending);
4063
4064 leave_guest_mode(vcpu);
4065
b4b65b56
PB
4066 if (nested_cpu_has_preemption_timer(vmcs12))
4067 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4068
55d2375e
SC
4069 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
4070 vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
4071
4072 if (likely(!vmx->fail)) {
3731905e 4073 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
f4f8316d
SC
4074
4075 if (exit_reason != -1)
55d2375e
SC
4076 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
4077 exit_qualification);
4078
4079 /*
3731905e 4080 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
55d2375e
SC
4081 * also be used to capture vmcs12 cache as part of
4082 * capturing nVMX state for snapshot (migration).
4083 *
4084 * Otherwise, this flush will dirty guest memory at a
4085 * point it is already assumed by user-space to be
4086 * immutable.
4087 */
4088 nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
55d2375e
SC
4089 } else {
4090 /*
4091 * The only expected VM-instruction error is "VM entry with
4092 * invalid control field(s)." Anything else indicates a
4093 * problem with L0. And we should never get here with a
4094 * VMFail of any type if early consistency checks are enabled.
4095 */
4096 WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4097 VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4098 WARN_ON_ONCE(nested_early_check);
4099 }
4100
4101 vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4102
4103 /* Update any VMCS fields that might have changed while L2 ran */
4104 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4105 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4106 vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4107
4108 if (kvm_has_tsc_control)
4109 decache_tsc_multiplier(vmx);
4110
4111 if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4112 vmx->nested.change_vmcs01_virtual_apic_mode = false;
4113 vmx_set_virtual_apic_mode(vcpu);
4114 } else if (!nested_cpu_has_ept(vmcs12) &&
4115 nested_cpu_has2(vmcs12,
4116 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
4117 vmx_flush_tlb(vcpu, true);
4118 }
4119
55d2375e
SC
4120 /* Unpin physical memory we referred to in vmcs02 */
4121 if (vmx->nested.apic_access_page) {
4122 kvm_release_page_dirty(vmx->nested.apic_access_page);
4123 vmx->nested.apic_access_page = NULL;
4124 }
96c66e87 4125 kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
3278e049
KA
4126 kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4127 vmx->nested.pi_desc = NULL;
55d2375e
SC
4128
4129 /*
4130 * We are now running in L2, mmu_notifier will force to reload the
4131 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
4132 */
4133 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4134
4135 if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
3731905e 4136 vmx->nested.need_vmcs12_to_shadow_sync = true;
55d2375e
SC
4137
4138 /* in case we halted in L2 */
4139 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4140
4141 if (likely(!vmx->fail)) {
4142 /*
4143 * TODO: SDM says that with acknowledge interrupt on
4144 * exit, bit 31 of the VM-exit interrupt information
4145 * (valid interrupt) is always set to 1 on
4146 * EXIT_REASON_EXTERNAL_INTERRUPT, so we shouldn't
4147 * need kvm_cpu_has_interrupt(). See the commit
4148 * message for details.
4149 */
4150 if (nested_exit_intr_ack_set(vcpu) &&
4151 exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4152 kvm_cpu_has_interrupt(vcpu)) {
4153 int irq = kvm_cpu_get_interrupt(vcpu);
4154 WARN_ON(irq < 0);
4155 vmcs12->vm_exit_intr_info = irq |
4156 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4157 }
4158
4159 if (exit_reason != -1)
4160 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4161 vmcs12->exit_qualification,
4162 vmcs12->idt_vectoring_info_field,
4163 vmcs12->vm_exit_intr_info,
4164 vmcs12->vm_exit_intr_error_code,
4165 KVM_ISA_VMX);
4166
4167 load_vmcs12_host_state(vcpu, vmcs12);
4168
4169 return;
4170 }
4171
4172 /*
4173 * After an early L2 VM-entry failure, we're now back
4174 * in L1 which thinks it just finished a VMLAUNCH or
4175 * VMRESUME instruction, so we need to set the failure
4176 * flag and the VM-instruction error field of the VMCS
4177 * accordingly, and skip the emulated instruction.
4178 */
4179 (void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4180
4181 /*
4182 * Restore L1's host state to KVM's software model. We're here
4183 * because a consistency check was caught by hardware, which
4184 * means some amount of guest state has been propagated to KVM's
4185 * model and needs to be unwound to the host's state.
4186 */
4187 nested_vmx_restore_host_state(vcpu);
4188
4189 vmx->fail = 0;
4190}
4191
4192/*
4193 * Decode the memory-address operand of a vmx instruction, as recorded on an
4194 * exit caused by such an instruction (run by a guest hypervisor).
4195 * On success, returns 0. When the operand is invalid, returns 1 and throws
4196 * #UD or #GP.
4197 */
4198int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
fdb28619 4199 u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
55d2375e
SC
4200{
4201 gva_t off;
4202 bool exn;
4203 struct kvm_segment s;
4204
4205 /*
4206 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4207 * Execution", on an exit, vmx_instruction_info holds most of the
4208 * addressing components of the operand. Only the displacement part
4209 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4210 * For how an actual address is calculated from all these components,
4211 * refer to Vol. 1, "Operand Addressing".
4212 */
4213 int scaling = vmx_instruction_info & 3;
4214 int addr_size = (vmx_instruction_info >> 7) & 7;
4215 bool is_reg = vmx_instruction_info & (1u << 10);
4216 int seg_reg = (vmx_instruction_info >> 15) & 7;
4217 int index_reg = (vmx_instruction_info >> 18) & 0xf;
4218 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4219 int base_reg = (vmx_instruction_info >> 23) & 0xf;
4220 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
4221
4222 if (is_reg) {
4223 kvm_queue_exception(vcpu, UD_VECTOR);
4224 return 1;
4225 }
4226
4227 /* Addr = segment_base + offset */
4228 /* offset = base + [index * scale] + displacement */
4229 off = exit_qualification; /* holds the displacement */
946c522b
SC
4230 if (addr_size == 1)
4231 off = (gva_t)sign_extend64(off, 31);
4232 else if (addr_size == 0)
4233 off = (gva_t)sign_extend64(off, 15);
55d2375e
SC
4234 if (base_is_valid)
4235 off += kvm_register_read(vcpu, base_reg);
4236 if (index_is_valid)
4237 off += kvm_register_read(vcpu, index_reg)<<scaling;
4238 vmx_get_segment(vcpu, &s, seg_reg);
55d2375e 4239
8570f9e8
SC
4240 /*
4241 * The effective address, i.e. @off, of a memory operand is truncated
4242 * based on the address size of the instruction. Note that this is
4243 * the *effective address*, i.e. the address prior to accounting for
4244 * the segment's base.
4245 */
55d2375e 4246 if (addr_size == 1) /* 32 bit */
8570f9e8
SC
4247 off &= 0xffffffff;
4248 else if (addr_size == 0) /* 16 bit */
4249 off &= 0xffff;
55d2375e
SC
4250
4251 /* Checks for #GP/#SS exceptions. */
4252 exn = false;
4253 if (is_long_mode(vcpu)) {
8570f9e8
SC
4254 /*
4255 * The virtual/linear address is never truncated in 64-bit
4256 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4257 * address when using FS/GS with a non-zero base.
4258 */
6694e480
LA
4259 if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4260 *ret = s.base + off;
4261 else
4262 *ret = off;
8570f9e8 4263
55d2375e
SC
4264 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
4265 * non-canonical form. This is the only check on the memory
4266 * destination for long mode!
4267 */
4268 exn = is_noncanonical_address(*ret, vcpu);
e0dfacbf 4269 } else {
8570f9e8
SC
4270 /*
4271 * When not in long mode, the virtual/linear address is
4272 * unconditionally truncated to 32 bits regardless of the
4273 * address size.
4274 */
4275 *ret = (s.base + off) & 0xffffffff;
4276
55d2375e
SC
4277 /* Protected mode: apply checks for segment validity in the
4278 * following order:
4279 * - segment type check (#GP(0) may be thrown)
4280 * - usability check (#GP(0)/#SS(0))
4281 * - limit check (#GP(0)/#SS(0))
4282 */
4283 if (wr)
4284 /* #GP(0) if the destination operand is located in a
4285 * read-only data segment or any code segment.
4286 */
4287 exn = ((s.type & 0xa) == 0 || (s.type & 8));
4288 else
4289 /* #GP(0) if the source operand is located in an
4290 * execute-only code segment
4291 */
4292 exn = ((s.type & 0xa) == 8);
4293 if (exn) {
4294 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4295 return 1;
4296 }
4297 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4298 */
4299 exn = (s.unusable != 0);
34333cc6
SC
4300
4301 /*
4302 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4303 * outside the segment limit. All CPUs that support VMX ignore
4304 * limit checks for flat segments, i.e. segments with base==0,
4305 * limit==0xffffffff and of type expand-up data or code.
55d2375e 4306 */
34333cc6
SC
4307 if (!(s.base == 0 && s.limit == 0xffffffff &&
4308 ((s.type & 8) || !(s.type & 4))))
fdb28619 4309 exn = exn || ((u64)off + len - 1 > s.limit);
55d2375e
SC
4310 }
4311 if (exn) {
4312 kvm_queue_exception_e(vcpu,
4313 seg_reg == VCPU_SREG_SS ?
4314 SS_VECTOR : GP_VECTOR,
4315 0);
4316 return 1;
4317 }
4318
4319 return 0;
4320}
4321
4322static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
4323{
4324 gva_t gva;
4325 struct x86_exception e;
4326
4327 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
fdb28619
EK
4328 vmcs_read32(VMX_INSTRUCTION_INFO), false,
4329 sizeof(*vmpointer), &gva))
55d2375e
SC
4330 return 1;
4331
4332 if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
4333 kvm_inject_page_fault(vcpu, &e);
4334 return 1;
4335 }
4336
4337 return 0;
4338}
4339
4340/*
4341 * Allocate a shadow VMCS and associate it with the currently loaded
4342 * VMCS, unless such a shadow VMCS already exists. The newly allocated
4343 * VMCS is also VMCLEARed, so that it is ready for use.
4344 */
4345static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4346{
4347 struct vcpu_vmx *vmx = to_vmx(vcpu);
4348 struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4349
4350 /*
4351 * We should allocate a shadow vmcs for vmcs01 only when L1
4352 * executes VMXON and free it when L1 executes VMXOFF.
4353 * As it is invalid to execute VMXON twice, we shouldn't reach
4354 * here when vmcs01 already have an allocated shadow vmcs.
4355 */
4356 WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
4357
4358 if (!loaded_vmcs->shadow_vmcs) {
4359 loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4360 if (loaded_vmcs->shadow_vmcs)
4361 vmcs_clear(loaded_vmcs->shadow_vmcs);
4362 }
4363 return loaded_vmcs->shadow_vmcs;
4364}
4365
4366static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4367{
4368 struct vcpu_vmx *vmx = to_vmx(vcpu);
4369 int r;
4370
4371 r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4372 if (r < 0)
4373 goto out_vmcs02;
4374
41836839 4375 vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
55d2375e
SC
4376 if (!vmx->nested.cached_vmcs12)
4377 goto out_cached_vmcs12;
4378
41836839 4379 vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
55d2375e
SC
4380 if (!vmx->nested.cached_shadow_vmcs12)
4381 goto out_cached_shadow_vmcs12;
4382
4383 if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4384 goto out_shadow_vmcs;
4385
4386 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4387 HRTIMER_MODE_REL_PINNED);
4388 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4389
4390 vmx->nested.vpid02 = allocate_vpid();
4391
4392 vmx->nested.vmcs02_initialized = false;
4393 vmx->nested.vmxon = true;
ee85dec2
LK
4394
4395 if (pt_mode == PT_MODE_HOST_GUEST) {
4396 vmx->pt_desc.guest.ctl = 0;
4397 pt_update_intercept_for_msr(vmx);
4398 }
4399
55d2375e
SC
4400 return 0;
4401
4402out_shadow_vmcs:
4403 kfree(vmx->nested.cached_shadow_vmcs12);
4404
4405out_cached_shadow_vmcs12:
4406 kfree(vmx->nested.cached_vmcs12);
4407
4408out_cached_vmcs12:
4409 free_loaded_vmcs(&vmx->nested.vmcs02);
4410
4411out_vmcs02:
4412 return -ENOMEM;
4413}
4414
4415/*
4416 * Emulate the VMXON instruction.
4417 * Currently, we just remember that VMX is active, and do not save or even
4418 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
4419 * do not currently need to store anything in that guest-allocated memory
4420 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
4421 * argument is different from the VMXON pointer (which the spec says they do).
4422 */
4423static int handle_vmon(struct kvm_vcpu *vcpu)
4424{
4425 int ret;
4426 gpa_t vmptr;
2e408936 4427 uint32_t revision;
55d2375e
SC
4428 struct vcpu_vmx *vmx = to_vmx(vcpu);
4429 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
4430 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
4431
4432 /*
4433 * The Intel VMX Instruction Reference lists a bunch of bits that are
4434 * prerequisite to running VMXON, most notably cr4.VMXE must be set to
4435 * 1 (see vmx_set_cr4() for when we allow the guest to set this).
4436 * Otherwise, we should fail with #UD. But most faulting conditions
4437 * have already been checked by hardware, prior to the VM-exit for
4438 * VMXON. We do test guest cr4.VMXE because processor CR4 always has
4439 * that bit set to 1 in non-root mode.
4440 */
4441 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
4442 kvm_queue_exception(vcpu, UD_VECTOR);
4443 return 1;
4444 }
4445
4446 /* CPL=0 must be checked manually. */
4447 if (vmx_get_cpl(vcpu)) {
4448 kvm_inject_gp(vcpu, 0);
4449 return 1;
4450 }
4451
4452 if (vmx->nested.vmxon)
4453 return nested_vmx_failValid(vcpu,
4454 VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4455
4456 if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
4457 != VMXON_NEEDED_FEATURES) {
4458 kvm_inject_gp(vcpu, 0);
4459 return 1;
4460 }
4461
4462 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4463 return 1;
4464
4465 /*
4466 * SDM 3: 24.11.5
4467 * The first 4 bytes of VMXON region contain the supported
4468 * VMCS revision identifier
4469 *
4470 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
4471 * which replaces physical address width with 32
4472 */
e0bf2665 4473 if (!page_address_valid(vcpu, vmptr))
55d2375e
SC
4474 return nested_vmx_failInvalid(vcpu);
4475
2e408936
KA
4476 if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
4477 revision != VMCS12_REVISION)
55d2375e 4478 return nested_vmx_failInvalid(vcpu);
55d2375e
SC
4479
4480 vmx->nested.vmxon_ptr = vmptr;
4481 ret = enter_vmx_operation(vcpu);
4482 if (ret)
4483 return ret;
4484
4485 return nested_vmx_succeed(vcpu);
4486}
4487
4488static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
4489{
4490 struct vcpu_vmx *vmx = to_vmx(vcpu);
4491
4492 if (vmx->nested.current_vmptr == -1ull)
4493 return;
4494
7952d769
SC
4495 copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
4496
55d2375e
SC
4497 if (enable_shadow_vmcs) {
4498 /* copy to memory all shadowed fields in case
4499 they were modified */
4500 copy_shadow_to_vmcs12(vmx);
55d2375e
SC
4501 vmx_disable_shadow_vmcs(vmx);
4502 }
4503 vmx->nested.posted_intr_nv = -1;
4504
4505 /* Flush VMCS12 to guest memory */
4506 kvm_vcpu_write_guest_page(vcpu,
4507 vmx->nested.current_vmptr >> PAGE_SHIFT,
4508 vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
4509
4510 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
4511
4512 vmx->nested.current_vmptr = -1ull;
4513}
4514
4515/* Emulate the VMXOFF instruction */
4516static int handle_vmoff(struct kvm_vcpu *vcpu)
4517{
4518 if (!nested_vmx_check_permission(vcpu))
4519 return 1;
4b9852f4 4520
55d2375e 4521 free_nested(vcpu);
4b9852f4
LA
4522
4523 /* Process a latched INIT during time CPU was in VMX operation */
4524 kvm_make_request(KVM_REQ_EVENT, vcpu);
4525
55d2375e
SC
4526 return nested_vmx_succeed(vcpu);
4527}
4528
4529/* Emulate the VMCLEAR instruction */
4530static int handle_vmclear(struct kvm_vcpu *vcpu)
4531{
4532 struct vcpu_vmx *vmx = to_vmx(vcpu);
4533 u32 zero = 0;
4534 gpa_t vmptr;
11e34914 4535 u64 evmcs_gpa;
55d2375e
SC
4536
4537 if (!nested_vmx_check_permission(vcpu))
4538 return 1;
4539
4540 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4541 return 1;
4542
e0bf2665 4543 if (!page_address_valid(vcpu, vmptr))
55d2375e
SC
4544 return nested_vmx_failValid(vcpu,
4545 VMXERR_VMCLEAR_INVALID_ADDRESS);
4546
4547 if (vmptr == vmx->nested.vmxon_ptr)
4548 return nested_vmx_failValid(vcpu,
4549 VMXERR_VMCLEAR_VMXON_POINTER);
4550
11e34914
VK
4551 /*
4552 * When Enlightened VMEntry is enabled on the calling CPU we treat
4553 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
4554 * way to distinguish it from VMCS12) and we must not corrupt it by
4555 * writing to the non-existent 'launch_state' field. The area doesn't
4556 * have to be the currently active EVMCS on the calling CPU and there's
4557 * nothing KVM has to do to transition it from 'active' to 'non-active'
4558 * state. It is possible that the area will stay mapped as
4559 * vmx->nested.hv_evmcs but this shouldn't be a problem.
4560 */
4561 if (likely(!vmx->nested.enlightened_vmcs_enabled ||
4562 !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
55d2375e
SC
4563 if (vmptr == vmx->nested.current_vmptr)
4564 nested_release_vmcs12(vcpu);
4565
4566 kvm_vcpu_write_guest(vcpu,
4567 vmptr + offsetof(struct vmcs12,
4568 launch_state),
4569 &zero, sizeof(zero));
4570 }
4571
4572 return nested_vmx_succeed(vcpu);
4573}
4574
4575static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
4576
4577/* Emulate the VMLAUNCH instruction */
4578static int handle_vmlaunch(struct kvm_vcpu *vcpu)
4579{
4580 return nested_vmx_run(vcpu, true);
4581}
4582
4583/* Emulate the VMRESUME instruction */
4584static int handle_vmresume(struct kvm_vcpu *vcpu)
4585{
4586
4587 return nested_vmx_run(vcpu, false);
4588}
4589
4590static int handle_vmread(struct kvm_vcpu *vcpu)
4591{
4592 unsigned long field;
4593 u64 field_value;
4594 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4595 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
fdb28619 4596 int len;
55d2375e
SC
4597 gva_t gva = 0;
4598 struct vmcs12 *vmcs12;
f7eea636 4599 struct x86_exception e;
1c6f0b47 4600 short offset;
55d2375e
SC
4601
4602 if (!nested_vmx_check_permission(vcpu))
4603 return 1;
4604
4605 if (to_vmx(vcpu)->nested.current_vmptr == -1ull)
4606 return nested_vmx_failInvalid(vcpu);
4607
4608 if (!is_guest_mode(vcpu))
4609 vmcs12 = get_vmcs12(vcpu);
4610 else {
4611 /*
4612 * When vmcs->vmcs_link_pointer is -1ull, any VMREAD
4613 * to shadowed-field sets the ALU flags for VMfailInvalid.
4614 */
4615 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4616 return nested_vmx_failInvalid(vcpu);
4617 vmcs12 = get_shadow_vmcs12(vcpu);
4618 }
4619
4620 /* Decode instruction info and find the field to read */
4621 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
1c6f0b47
SC
4622
4623 offset = vmcs_field_to_offset(field);
4624 if (offset < 0)
55d2375e
SC
4625 return nested_vmx_failValid(vcpu,
4626 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4627
7952d769
SC
4628 if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
4629 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4630
1c6f0b47
SC
4631 /* Read the field, zero-extended to a u64 field_value */
4632 field_value = vmcs12_read_any(vmcs12, field, offset);
4633
55d2375e
SC
4634 /*
4635 * Now copy part of this value to register or memory, as requested.
4636 * Note that the number of bits actually copied is 32 or 64 depending
4637 * on the guest's mode (32 or 64 bit), not on the given field's length.
4638 */
4639 if (vmx_instruction_info & (1u << 10)) {
4640 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
4641 field_value);
4642 } else {
fdb28619 4643 len = is_64_bit_mode(vcpu) ? 8 : 4;
55d2375e 4644 if (get_vmx_mem_address(vcpu, exit_qualification,
fdb28619 4645 vmx_instruction_info, true, len, &gva))
55d2375e
SC
4646 return 1;
4647 /* _system ok, nested_vmx_check_permission has verified cpl=0 */
f7eea636
PB
4648 if (kvm_write_guest_virt_system(vcpu, gva, &field_value, len, &e))
4649 kvm_inject_page_fault(vcpu, &e);
55d2375e
SC
4650 }
4651
4652 return nested_vmx_succeed(vcpu);
4653}
4654
e2174295
SC
4655static bool is_shadow_field_rw(unsigned long field)
4656{
4657 switch (field) {
4658#define SHADOW_FIELD_RW(x, y) case x:
4659#include "vmcs_shadow_fields.h"
4660 return true;
4661 default:
4662 break;
4663 }
4664 return false;
4665}
4666
4667static bool is_shadow_field_ro(unsigned long field)
4668{
4669 switch (field) {
4670#define SHADOW_FIELD_RO(x, y) case x:
4671#include "vmcs_shadow_fields.h"
4672 return true;
4673 default:
4674 break;
4675 }
4676 return false;
4677}
55d2375e
SC
4678
4679static int handle_vmwrite(struct kvm_vcpu *vcpu)
4680{
4681 unsigned long field;
fdb28619 4682 int len;
55d2375e
SC
4683 gva_t gva;
4684 struct vcpu_vmx *vmx = to_vmx(vcpu);
4685 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4686 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4687
4688 /* The value to write might be 32 or 64 bits, depending on L1's long
4689 * mode, and eventually we need to write that into a field of several
4690 * possible lengths. The code below first zero-extends the value to 64
4691 * bit (field_value), and then copies only the appropriate number of
4692 * bits into the vmcs12 field.
4693 */
4694 u64 field_value = 0;
4695 struct x86_exception e;
4696 struct vmcs12 *vmcs12;
1c6f0b47 4697 short offset;
55d2375e
SC
4698
4699 if (!nested_vmx_check_permission(vcpu))
4700 return 1;
4701
4702 if (vmx->nested.current_vmptr == -1ull)
4703 return nested_vmx_failInvalid(vcpu);
4704
4705 if (vmx_instruction_info & (1u << 10))
4706 field_value = kvm_register_readl(vcpu,
4707 (((vmx_instruction_info) >> 3) & 0xf));
4708 else {
fdb28619 4709 len = is_64_bit_mode(vcpu) ? 8 : 4;
55d2375e 4710 if (get_vmx_mem_address(vcpu, exit_qualification,
fdb28619 4711 vmx_instruction_info, false, len, &gva))
55d2375e 4712 return 1;
fdb28619 4713 if (kvm_read_guest_virt(vcpu, gva, &field_value, len, &e)) {
55d2375e
SC
4714 kvm_inject_page_fault(vcpu, &e);
4715 return 1;
4716 }
4717 }
4718
4719
4720 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
4721 /*
4722 * If the vCPU supports "VMWRITE to any supported field in the
4723 * VMCS," then the "read-only" fields are actually read/write.
4724 */
4725 if (vmcs_field_readonly(field) &&
4726 !nested_cpu_has_vmwrite_any_field(vcpu))
4727 return nested_vmx_failValid(vcpu,
4728 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
4729
7952d769 4730 if (!is_guest_mode(vcpu)) {
55d2375e 4731 vmcs12 = get_vmcs12(vcpu);
7952d769
SC
4732
4733 /*
4734 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
4735 * vmcs12, else we may crush a field or consume a stale value.
4736 */
4737 if (!is_shadow_field_rw(field))
4738 copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4739 } else {
55d2375e
SC
4740 /*
4741 * When vmcs->vmcs_link_pointer is -1ull, any VMWRITE
4742 * to shadowed-field sets the ALU flags for VMfailInvalid.
4743 */
4744 if (get_vmcs12(vcpu)->vmcs_link_pointer == -1ull)
4745 return nested_vmx_failInvalid(vcpu);
4746 vmcs12 = get_shadow_vmcs12(vcpu);
4747 }
4748
1c6f0b47
SC
4749 offset = vmcs_field_to_offset(field);
4750 if (offset < 0)
55d2375e
SC
4751 return nested_vmx_failValid(vcpu,
4752 VMXERR_UNSUPPORTED_VMCS_COMPONENT);
4753
4754 /*
b6437805
SC
4755 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
4756 * fields on VMWRITE. Emulate this behavior to ensure consistent KVM
4757 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
4758 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
4759 * from L1 will return a different value than VMREAD from L2 (L1 sees
4760 * the stripped down value, L2 sees the full value as stored by KVM).
55d2375e 4761 */
b6437805
SC
4762 if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
4763 field_value &= 0x1f0ff;
4764
1c6f0b47 4765 vmcs12_write_any(vmcs12, field, offset, field_value);
55d2375e
SC
4766
4767 /*
e2174295
SC
4768 * Do not track vmcs12 dirty-state if in guest-mode as we actually
4769 * dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
4770 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
4771 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
55d2375e 4772 */
e2174295
SC
4773 if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
4774 /*
4775 * L1 can read these fields without exiting, ensure the
4776 * shadow VMCS is up-to-date.
4777 */
4778 if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
4779 preempt_disable();
4780 vmcs_load(vmx->vmcs01.shadow_vmcs);
fadcead0 4781
e2174295 4782 __vmcs_writel(field, field_value);
fadcead0 4783
e2174295
SC
4784 vmcs_clear(vmx->vmcs01.shadow_vmcs);
4785 vmcs_load(vmx->loaded_vmcs->vmcs);
4786 preempt_enable();
55d2375e 4787 }
e2174295 4788 vmx->nested.dirty_vmcs12 = true;
55d2375e
SC
4789 }
4790
4791 return nested_vmx_succeed(vcpu);
4792}
4793
4794static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
4795{
4796 vmx->nested.current_vmptr = vmptr;
4797 if (enable_shadow_vmcs) {
fe7f895d 4798 secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
55d2375e
SC
4799 vmcs_write64(VMCS_LINK_POINTER,
4800 __pa(vmx->vmcs01.shadow_vmcs));
3731905e 4801 vmx->nested.need_vmcs12_to_shadow_sync = true;
55d2375e
SC
4802 }
4803 vmx->nested.dirty_vmcs12 = true;
4804}
4805
4806/* Emulate the VMPTRLD instruction */
4807static int handle_vmptrld(struct kvm_vcpu *vcpu)
4808{
4809 struct vcpu_vmx *vmx = to_vmx(vcpu);
4810 gpa_t vmptr;
4811
4812 if (!nested_vmx_check_permission(vcpu))
4813 return 1;
4814
4815 if (nested_vmx_get_vmptr(vcpu, &vmptr))
4816 return 1;
4817
e0bf2665 4818 if (!page_address_valid(vcpu, vmptr))
55d2375e
SC
4819 return nested_vmx_failValid(vcpu,
4820 VMXERR_VMPTRLD_INVALID_ADDRESS);
4821
4822 if (vmptr == vmx->nested.vmxon_ptr)
4823 return nested_vmx_failValid(vcpu,
4824 VMXERR_VMPTRLD_VMXON_POINTER);
4825
4826 /* Forbid normal VMPTRLD if Enlightened version was used */
4827 if (vmx->nested.hv_evmcs)
4828 return 1;
4829
4830 if (vmx->nested.current_vmptr != vmptr) {
b146b839 4831 struct kvm_host_map map;
55d2375e 4832 struct vmcs12 *new_vmcs12;
55d2375e 4833
b146b839 4834 if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
55d2375e
SC
4835 /*
4836 * Reads from an unbacked page return all 1s,
4837 * which means that the 32 bits located at the
4838 * given physical address won't match the required
4839 * VMCS12_REVISION identifier.
4840 */
826c1362 4841 return nested_vmx_failValid(vcpu,
55d2375e 4842 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
55d2375e 4843 }
b146b839
KA
4844
4845 new_vmcs12 = map.hva;
4846
55d2375e
SC
4847 if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
4848 (new_vmcs12->hdr.shadow_vmcs &&
4849 !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
b146b839 4850 kvm_vcpu_unmap(vcpu, &map, false);
55d2375e
SC
4851 return nested_vmx_failValid(vcpu,
4852 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
4853 }
4854
4855 nested_release_vmcs12(vcpu);
4856
4857 /*
4858 * Load VMCS12 from guest memory since it is not already
4859 * cached.
4860 */
4861 memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
b146b839 4862 kvm_vcpu_unmap(vcpu, &map, false);
55d2375e
SC
4863
4864 set_current_vmptr(vmx, vmptr);
4865 }
4866
4867 return nested_vmx_succeed(vcpu);
4868}
4869
4870/* Emulate the VMPTRST instruction */
4871static int handle_vmptrst(struct kvm_vcpu *vcpu)
4872{
4873 unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
4874 u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4875 gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
4876 struct x86_exception e;
4877 gva_t gva;
4878
4879 if (!nested_vmx_check_permission(vcpu))
4880 return 1;
4881
4882 if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
4883 return 1;
4884
fdb28619
EK
4885 if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
4886 true, sizeof(gpa_t), &gva))
55d2375e
SC
4887 return 1;
4888 /* *_system ok, nested_vmx_check_permission has verified cpl=0 */
4889 if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
4890 sizeof(gpa_t), &e)) {
4891 kvm_inject_page_fault(vcpu, &e);
4892 return 1;
4893 }
4894 return nested_vmx_succeed(vcpu);
4895}
4896
4897/* Emulate the INVEPT instruction */
4898static int handle_invept(struct kvm_vcpu *vcpu)
4899{
4900 struct vcpu_vmx *vmx = to_vmx(vcpu);
4901 u32 vmx_instruction_info, types;
4902 unsigned long type;
4903 gva_t gva;
4904 struct x86_exception e;
4905 struct {
4906 u64 eptp, gpa;
4907 } operand;
4908
4909 if (!(vmx->nested.msrs.secondary_ctls_high &
4910 SECONDARY_EXEC_ENABLE_EPT) ||
4911 !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
4912 kvm_queue_exception(vcpu, UD_VECTOR);
4913 return 1;
4914 }
4915
4916 if (!nested_vmx_check_permission(vcpu))
4917 return 1;
4918
4919 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4920 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4921
4922 types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
4923
4924 if (type >= 32 || !(types & (1 << type)))
4925 return nested_vmx_failValid(vcpu,
4926 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4927
4928 /* According to the Intel VMX instruction reference, the memory
4929 * operand is read even if it isn't needed (e.g., for type==global)
4930 */
4931 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
fdb28619 4932 vmx_instruction_info, false, sizeof(operand), &gva))
55d2375e
SC
4933 return 1;
4934 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4935 kvm_inject_page_fault(vcpu, &e);
4936 return 1;
4937 }
4938
4939 switch (type) {
4940 case VMX_EPT_EXTENT_GLOBAL:
b1190198 4941 case VMX_EPT_EXTENT_CONTEXT:
55d2375e 4942 /*
b1190198
JM
4943 * TODO: Sync the necessary shadow EPT roots here, rather than
4944 * at the next emulated VM-entry.
55d2375e 4945 */
55d2375e
SC
4946 break;
4947 default:
4948 BUG_ON(1);
4949 break;
4950 }
4951
4952 return nested_vmx_succeed(vcpu);
4953}
4954
4955static int handle_invvpid(struct kvm_vcpu *vcpu)
4956{
4957 struct vcpu_vmx *vmx = to_vmx(vcpu);
4958 u32 vmx_instruction_info;
4959 unsigned long type, types;
4960 gva_t gva;
4961 struct x86_exception e;
4962 struct {
4963 u64 vpid;
4964 u64 gla;
4965 } operand;
4966 u16 vpid02;
4967
4968 if (!(vmx->nested.msrs.secondary_ctls_high &
4969 SECONDARY_EXEC_ENABLE_VPID) ||
4970 !(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
4971 kvm_queue_exception(vcpu, UD_VECTOR);
4972 return 1;
4973 }
4974
4975 if (!nested_vmx_check_permission(vcpu))
4976 return 1;
4977
4978 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4979 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
4980
4981 types = (vmx->nested.msrs.vpid_caps &
4982 VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
4983
4984 if (type >= 32 || !(types & (1 << type)))
4985 return nested_vmx_failValid(vcpu,
4986 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
4987
4988 /* according to the intel vmx instruction reference, the memory
4989 * operand is read even if it isn't needed (e.g., for type==global)
4990 */
4991 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
fdb28619 4992 vmx_instruction_info, false, sizeof(operand), &gva))
55d2375e
SC
4993 return 1;
4994 if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
4995 kvm_inject_page_fault(vcpu, &e);
4996 return 1;
4997 }
4998 if (operand.vpid >> 16)
4999 return nested_vmx_failValid(vcpu,
5000 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5001
5002 vpid02 = nested_get_vpid02(vcpu);
5003 switch (type) {
5004 case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5005 if (!operand.vpid ||
5006 is_noncanonical_address(operand.gla, vcpu))
5007 return nested_vmx_failValid(vcpu,
5008 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5009 if (cpu_has_vmx_invvpid_individual_addr()) {
5010 __invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
5011 vpid02, operand.gla);
5012 } else
5013 __vmx_flush_tlb(vcpu, vpid02, false);
5014 break;
5015 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5016 case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5017 if (!operand.vpid)
5018 return nested_vmx_failValid(vcpu,
5019 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5020 __vmx_flush_tlb(vcpu, vpid02, false);
5021 break;
5022 case VMX_VPID_EXTENT_ALL_CONTEXT:
5023 __vmx_flush_tlb(vcpu, vpid02, false);
5024 break;
5025 default:
5026 WARN_ON_ONCE(1);
5027 return kvm_skip_emulated_instruction(vcpu);
5028 }
5029
5030 return nested_vmx_succeed(vcpu);
5031}
5032
5033static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5034 struct vmcs12 *vmcs12)
5035{
2b3eaf81 5036 u32 index = kvm_rcx_read(vcpu);
55d2375e
SC
5037 u64 address;
5038 bool accessed_dirty;
5039 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
5040
5041 if (!nested_cpu_has_eptp_switching(vmcs12) ||
5042 !nested_cpu_has_ept(vmcs12))
5043 return 1;
5044
5045 if (index >= VMFUNC_EPTP_ENTRIES)
5046 return 1;
5047
5048
5049 if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5050 &address, index * 8, 8))
5051 return 1;
5052
5053 accessed_dirty = !!(address & VMX_EPTP_AD_ENABLE_BIT);
5054
5055 /*
5056 * If the (L2) guest does a vmfunc to the currently
5057 * active ept pointer, we don't have to do anything else
5058 */
5059 if (vmcs12->ept_pointer != address) {
5060 if (!valid_ept_address(vcpu, address))
5061 return 1;
5062
5063 kvm_mmu_unload(vcpu);
5064 mmu->ept_ad = accessed_dirty;
5065 mmu->mmu_role.base.ad_disabled = !accessed_dirty;
5066 vmcs12->ept_pointer = address;
5067 /*
5068 * TODO: Check what's the correct approach in case
5069 * mmu reload fails. Currently, we just let the next
5070 * reload potentially fail
5071 */
5072 kvm_mmu_reload(vcpu);
5073 }
5074
5075 return 0;
5076}
5077
5078static int handle_vmfunc(struct kvm_vcpu *vcpu)
5079{
5080 struct vcpu_vmx *vmx = to_vmx(vcpu);
5081 struct vmcs12 *vmcs12;
2b3eaf81 5082 u32 function = kvm_rax_read(vcpu);
55d2375e
SC
5083
5084 /*
5085 * VMFUNC is only supported for nested guests, but we always enable the
5086 * secondary control for simplicity; for non-nested mode, fake that we
5087 * didn't by injecting #UD.
5088 */
5089 if (!is_guest_mode(vcpu)) {
5090 kvm_queue_exception(vcpu, UD_VECTOR);
5091 return 1;
5092 }
5093
5094 vmcs12 = get_vmcs12(vcpu);
5095 if ((vmcs12->vm_function_control & (1 << function)) == 0)
5096 goto fail;
5097
5098 switch (function) {
5099 case 0:
5100 if (nested_vmx_eptp_switching(vcpu, vmcs12))
5101 goto fail;
5102 break;
5103 default:
5104 goto fail;
5105 }
5106 return kvm_skip_emulated_instruction(vcpu);
5107
5108fail:
5109 nested_vmx_vmexit(vcpu, vmx->exit_reason,
5110 vmcs_read32(VM_EXIT_INTR_INFO),
5111 vmcs_readl(EXIT_QUALIFICATION));
5112 return 1;
5113}
5114
5115
5116static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5117 struct vmcs12 *vmcs12)
5118{
5119 unsigned long exit_qualification;
5120 gpa_t bitmap, last_bitmap;
5121 unsigned int port;
5122 int size;
5123 u8 b;
5124
5125 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5126 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5127
5128 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5129
5130 port = exit_qualification >> 16;
5131 size = (exit_qualification & 7) + 1;
5132
5133 last_bitmap = (gpa_t)-1;
5134 b = -1;
5135
5136 while (size > 0) {
5137 if (port < 0x8000)
5138 bitmap = vmcs12->io_bitmap_a;
5139 else if (port < 0x10000)
5140 bitmap = vmcs12->io_bitmap_b;
5141 else
5142 return true;
5143 bitmap += (port & 0x7fff) / 8;
5144
5145 if (last_bitmap != bitmap)
5146 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5147 return true;
5148 if (b & (1 << (port & 7)))
5149 return true;
5150
5151 port++;
5152 size--;
5153 last_bitmap = bitmap;
5154 }
5155
5156 return false;
5157}
5158
5159/*
5160 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
5161 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5162 * disinterest in the current event (read or write a specific MSR) by using an
5163 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5164 */
5165static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5166 struct vmcs12 *vmcs12, u32 exit_reason)
5167{
2b3eaf81 5168 u32 msr_index = kvm_rcx_read(vcpu);
55d2375e
SC
5169 gpa_t bitmap;
5170
5171 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5172 return true;
5173
5174 /*
5175 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5176 * for the four combinations of read/write and low/high MSR numbers.
5177 * First we need to figure out which of the four to use:
5178 */
5179 bitmap = vmcs12->msr_bitmap;
5180 if (exit_reason == EXIT_REASON_MSR_WRITE)
5181 bitmap += 2048;
5182 if (msr_index >= 0xc0000000) {
5183 msr_index -= 0xc0000000;
5184 bitmap += 1024;
5185 }
5186
5187 /* Then read the msr_index'th bit from this bitmap: */
5188 if (msr_index < 1024*8) {
5189 unsigned char b;
5190 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5191 return true;
5192 return 1 & (b >> (msr_index & 7));
5193 } else
5194 return true; /* let L1 handle the wrong parameter */
5195}
5196
5197/*
5198 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5199 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5200 * intercept (via guest_host_mask etc.) the current event.
5201 */
5202static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5203 struct vmcs12 *vmcs12)
5204{
5205 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5206 int cr = exit_qualification & 15;
5207 int reg;
5208 unsigned long val;
5209
5210 switch ((exit_qualification >> 4) & 3) {
5211 case 0: /* mov to cr */
5212 reg = (exit_qualification >> 8) & 15;
5213 val = kvm_register_readl(vcpu, reg);
5214 switch (cr) {
5215 case 0:
5216 if (vmcs12->cr0_guest_host_mask &
5217 (val ^ vmcs12->cr0_read_shadow))
5218 return true;
5219 break;
5220 case 3:
5221 if ((vmcs12->cr3_target_count >= 1 &&
5222 vmcs12->cr3_target_value0 == val) ||
5223 (vmcs12->cr3_target_count >= 2 &&
5224 vmcs12->cr3_target_value1 == val) ||
5225 (vmcs12->cr3_target_count >= 3 &&
5226 vmcs12->cr3_target_value2 == val) ||
5227 (vmcs12->cr3_target_count >= 4 &&
5228 vmcs12->cr3_target_value3 == val))
5229 return false;
5230 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5231 return true;
5232 break;
5233 case 4:
5234 if (vmcs12->cr4_guest_host_mask &
5235 (vmcs12->cr4_read_shadow ^ val))
5236 return true;
5237 break;
5238 case 8:
5239 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5240 return true;
5241 break;
5242 }
5243 break;
5244 case 2: /* clts */
5245 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5246 (vmcs12->cr0_read_shadow & X86_CR0_TS))
5247 return true;
5248 break;
5249 case 1: /* mov from cr */
5250 switch (cr) {
5251 case 3:
5252 if (vmcs12->cpu_based_vm_exec_control &
5253 CPU_BASED_CR3_STORE_EXITING)
5254 return true;
5255 break;
5256 case 8:
5257 if (vmcs12->cpu_based_vm_exec_control &
5258 CPU_BASED_CR8_STORE_EXITING)
5259 return true;
5260 break;
5261 }
5262 break;
5263 case 3: /* lmsw */
5264 /*
5265 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5266 * cr0. Other attempted changes are ignored, with no exit.
5267 */
5268 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5269 if (vmcs12->cr0_guest_host_mask & 0xe &
5270 (val ^ vmcs12->cr0_read_shadow))
5271 return true;
5272 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5273 !(vmcs12->cr0_read_shadow & 0x1) &&
5274 (val & 0x1))
5275 return true;
5276 break;
5277 }
5278 return false;
5279}
5280
5281static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5282 struct vmcs12 *vmcs12, gpa_t bitmap)
5283{
5284 u32 vmx_instruction_info;
5285 unsigned long field;
5286 u8 b;
5287
5288 if (!nested_cpu_has_shadow_vmcs(vmcs12))
5289 return true;
5290
5291 /* Decode instruction info and find the field to access */
5292 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5293 field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5294
5295 /* Out-of-range fields always cause a VM exit from L2 to L1 */
5296 if (field >> 15)
5297 return true;
5298
5299 if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5300 return true;
5301
5302 return 1 & (b >> (field & 7));
5303}
5304
5305/*
5306 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
5307 * should handle it ourselves in L0 (and then continue L2). Only call this
5308 * when in is_guest_mode (L2).
5309 */
5310bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
5311{
5312 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
5313 struct vcpu_vmx *vmx = to_vmx(vcpu);
5314 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5315
5316 if (vmx->nested.nested_run_pending)
5317 return false;
5318
5319 if (unlikely(vmx->fail)) {
380e0055
SC
5320 trace_kvm_nested_vmenter_failed(
5321 "hardware VM-instruction error: ",
5322 vmcs_read32(VM_INSTRUCTION_ERROR));
55d2375e
SC
5323 return true;
5324 }
5325
5326 /*
5327 * The host physical addresses of some pages of guest memory
5328 * are loaded into the vmcs02 (e.g. vmcs12's Virtual APIC
5329 * Page). The CPU may write to these pages via their host
5330 * physical address while L2 is running, bypassing any
5331 * address-translation-based dirty tracking (e.g. EPT write
5332 * protection).
5333 *
5334 * Mark them dirty on every exit from L2 to prevent them from
5335 * getting out of sync with dirty tracking.
5336 */
5337 nested_mark_vmcs12_pages_dirty(vcpu);
5338
5339 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
5340 vmcs_readl(EXIT_QUALIFICATION),
5341 vmx->idt_vectoring_info,
5342 intr_info,
5343 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
5344 KVM_ISA_VMX);
5345
5346 switch (exit_reason) {
5347 case EXIT_REASON_EXCEPTION_NMI:
5348 if (is_nmi(intr_info))
5349 return false;
5350 else if (is_page_fault(intr_info))
5351 return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
5352 else if (is_debug(intr_info) &&
5353 vcpu->guest_debug &
5354 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5355 return false;
5356 else if (is_breakpoint(intr_info) &&
5357 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5358 return false;
5359 return vmcs12->exception_bitmap &
5360 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
5361 case EXIT_REASON_EXTERNAL_INTERRUPT:
5362 return false;
5363 case EXIT_REASON_TRIPLE_FAULT:
5364 return true;
5365 case EXIT_REASON_PENDING_INTERRUPT:
5366 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
5367 case EXIT_REASON_NMI_WINDOW:
5368 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
5369 case EXIT_REASON_TASK_SWITCH:
5370 return true;
5371 case EXIT_REASON_CPUID:
5372 return true;
5373 case EXIT_REASON_HLT:
5374 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
5375 case EXIT_REASON_INVD:
5376 return true;
5377 case EXIT_REASON_INVLPG:
5378 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5379 case EXIT_REASON_RDPMC:
5380 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
5381 case EXIT_REASON_RDRAND:
5382 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
5383 case EXIT_REASON_RDSEED:
5384 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
5385 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
5386 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
5387 case EXIT_REASON_VMREAD:
5388 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5389 vmcs12->vmread_bitmap);
5390 case EXIT_REASON_VMWRITE:
5391 return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
5392 vmcs12->vmwrite_bitmap);
5393 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
5394 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
5395 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
5396 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
5397 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
5398 /*
5399 * VMX instructions trap unconditionally. This allows L1 to
5400 * emulate them for its L2 guest, i.e., allows 3-level nesting!
5401 */
5402 return true;
5403 case EXIT_REASON_CR_ACCESS:
5404 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
5405 case EXIT_REASON_DR_ACCESS:
5406 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
5407 case EXIT_REASON_IO_INSTRUCTION:
5408 return nested_vmx_exit_handled_io(vcpu, vmcs12);
5409 case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
5410 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
5411 case EXIT_REASON_MSR_READ:
5412 case EXIT_REASON_MSR_WRITE:
5413 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
5414 case EXIT_REASON_INVALID_STATE:
5415 return true;
5416 case EXIT_REASON_MWAIT_INSTRUCTION:
5417 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5418 case EXIT_REASON_MONITOR_TRAP_FLAG:
5419 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
5420 case EXIT_REASON_MONITOR_INSTRUCTION:
5421 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
5422 case EXIT_REASON_PAUSE_INSTRUCTION:
5423 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
5424 nested_cpu_has2(vmcs12,
5425 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
5426 case EXIT_REASON_MCE_DURING_VMENTRY:
5427 return false;
5428 case EXIT_REASON_TPR_BELOW_THRESHOLD:
5429 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
5430 case EXIT_REASON_APIC_ACCESS:
5431 case EXIT_REASON_APIC_WRITE:
5432 case EXIT_REASON_EOI_INDUCED:
5433 /*
5434 * The controls for "virtualize APIC accesses," "APIC-
5435 * register virtualization," and "virtual-interrupt
5436 * delivery" only come from vmcs12.
5437 */
5438 return true;
5439 case EXIT_REASON_EPT_VIOLATION:
5440 /*
5441 * L0 always deals with the EPT violation. If nested EPT is
5442 * used, and the nested mmu code discovers that the address is
5443 * missing in the guest EPT table (EPT12), the EPT violation
5444 * will be injected with nested_ept_inject_page_fault()
5445 */
5446 return false;
5447 case EXIT_REASON_EPT_MISCONFIG:
5448 /*
5449 * L2 never uses directly L1's EPT, but rather L0's own EPT
5450 * table (shadow on EPT) or a merged EPT table that L0 built
5451 * (EPT on EPT). So any problems with the structure of the
5452 * table is L0's fault.
5453 */
5454 return false;
5455 case EXIT_REASON_INVPCID:
5456 return
5457 nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
5458 nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
5459 case EXIT_REASON_WBINVD:
5460 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
5461 case EXIT_REASON_XSETBV:
5462 return true;
5463 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
5464 /*
5465 * This should never happen, since it is not possible to
5466 * set XSS to a non-zero value---neither in L1 nor in L2.
5467 * If if it were, XSS would have to be checked against
5468 * the XSS exit bitmap in vmcs12.
5469 */
5470 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
5471 case EXIT_REASON_PREEMPTION_TIMER:
5472 return false;
5473 case EXIT_REASON_PML_FULL:
5474 /* We emulate PML support to L1. */
5475 return false;
5476 case EXIT_REASON_VMFUNC:
5477 /* VM functions are emulated through L2->L0 vmexits. */
5478 return false;
5479 case EXIT_REASON_ENCLS:
5480 /* SGX is never exposed to L1 */
5481 return false;
bf653b78
TX
5482 case EXIT_REASON_UMWAIT:
5483 case EXIT_REASON_TPAUSE:
5484 return nested_cpu_has2(vmcs12,
5485 SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
55d2375e
SC
5486 default:
5487 return true;
5488 }
5489}
5490
5491
5492static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
5493 struct kvm_nested_state __user *user_kvm_nested_state,
5494 u32 user_data_size)
5495{
5496 struct vcpu_vmx *vmx;
5497 struct vmcs12 *vmcs12;
5498 struct kvm_nested_state kvm_state = {
5499 .flags = 0,
6ca00dfa 5500 .format = KVM_STATE_NESTED_FORMAT_VMX,
55d2375e 5501 .size = sizeof(kvm_state),
6ca00dfa
LA
5502 .hdr.vmx.vmxon_pa = -1ull,
5503 .hdr.vmx.vmcs12_pa = -1ull,
55d2375e 5504 };
6ca00dfa
LA
5505 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5506 &user_kvm_nested_state->data.vmx[0];
55d2375e
SC
5507
5508 if (!vcpu)
6ca00dfa 5509 return kvm_state.size + sizeof(*user_vmx_nested_state);
55d2375e
SC
5510
5511 vmx = to_vmx(vcpu);
5512 vmcs12 = get_vmcs12(vcpu);
5513
55d2375e
SC
5514 if (nested_vmx_allowed(vcpu) &&
5515 (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6ca00dfa
LA
5516 kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
5517 kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
55d2375e
SC
5518
5519 if (vmx_has_valid_vmcs12(vcpu)) {
6ca00dfa 5520 kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
55d2375e 5521
323d73a8
LA
5522 if (vmx->nested.hv_evmcs)
5523 kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
5524
55d2375e
SC
5525 if (is_guest_mode(vcpu) &&
5526 nested_cpu_has_shadow_vmcs(vmcs12) &&
5527 vmcs12->vmcs_link_pointer != -1ull)
6ca00dfa 5528 kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
55d2375e
SC
5529 }
5530
5531 if (vmx->nested.smm.vmxon)
6ca00dfa 5532 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
55d2375e
SC
5533
5534 if (vmx->nested.smm.guest_mode)
6ca00dfa 5535 kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
55d2375e
SC
5536
5537 if (is_guest_mode(vcpu)) {
5538 kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
5539
5540 if (vmx->nested.nested_run_pending)
5541 kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
5542 }
5543 }
5544
5545 if (user_data_size < kvm_state.size)
5546 goto out;
5547
5548 if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
5549 return -EFAULT;
5550
5551 if (!vmx_has_valid_vmcs12(vcpu))
5552 goto out;
5553
5554 /*
5555 * When running L2, the authoritative vmcs12 state is in the
5556 * vmcs02. When running L1, the authoritative vmcs12 state is
5557 * in the shadow or enlightened vmcs linked to vmcs01, unless
3731905e 5558 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
55d2375e
SC
5559 * vmcs12 state is in the vmcs12 already.
5560 */
5561 if (is_guest_mode(vcpu)) {
3731905e 5562 sync_vmcs02_to_vmcs12(vcpu, vmcs12);
7952d769 5563 sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
3731905e 5564 } else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
55d2375e
SC
5565 if (vmx->nested.hv_evmcs)
5566 copy_enlightened_to_vmcs12(vmx);
5567 else if (enable_shadow_vmcs)
5568 copy_shadow_to_vmcs12(vmx);
5569 }
5570
6ca00dfa
LA
5571 BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
5572 BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
5573
3a33d030
TR
5574 /*
5575 * Copy over the full allocated size of vmcs12 rather than just the size
5576 * of the struct.
5577 */
6ca00dfa 5578 if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
55d2375e
SC
5579 return -EFAULT;
5580
5581 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5582 vmcs12->vmcs_link_pointer != -1ull) {
6ca00dfa 5583 if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
3a33d030 5584 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
55d2375e
SC
5585 return -EFAULT;
5586 }
5587
5588out:
5589 return kvm_state.size;
5590}
5591
5592/*
5593 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
5594 */
5595void vmx_leave_nested(struct kvm_vcpu *vcpu)
5596{
5597 if (is_guest_mode(vcpu)) {
5598 to_vmx(vcpu)->nested.nested_run_pending = 0;
5599 nested_vmx_vmexit(vcpu, -1, 0, 0);
5600 }
5601 free_nested(vcpu);
5602}
5603
5604static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
5605 struct kvm_nested_state __user *user_kvm_nested_state,
5606 struct kvm_nested_state *kvm_state)
5607{
5608 struct vcpu_vmx *vmx = to_vmx(vcpu);
5609 struct vmcs12 *vmcs12;
5610 u32 exit_qual;
6ca00dfa
LA
5611 struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
5612 &user_kvm_nested_state->data.vmx[0];
55d2375e
SC
5613 int ret;
5614
6ca00dfa 5615 if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
55d2375e
SC
5616 return -EINVAL;
5617
6ca00dfa
LA
5618 if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
5619 if (kvm_state->hdr.vmx.smm.flags)
55d2375e
SC
5620 return -EINVAL;
5621
6ca00dfa 5622 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
55d2375e
SC
5623 return -EINVAL;
5624
323d73a8
LA
5625 /*
5626 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
5627 * enable eVMCS capability on vCPU. However, since then
5628 * code was changed such that flag signals vmcs12 should
5629 * be copied into eVMCS in guest memory.
5630 *
5631 * To preserve backwards compatability, allow user
5632 * to set this flag even when there is no VMXON region.
5633 */
9fd58877
PB
5634 if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
5635 return -EINVAL;
5636 } else {
5637 if (!nested_vmx_allowed(vcpu))
5638 return -EINVAL;
55d2375e 5639
9fd58877
PB
5640 if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
5641 return -EINVAL;
323d73a8 5642 }
55d2375e 5643
6ca00dfa 5644 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
55d2375e
SC
5645 (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5646 return -EINVAL;
5647
6ca00dfa 5648 if (kvm_state->hdr.vmx.smm.flags &
55d2375e
SC
5649 ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
5650 return -EINVAL;
5651
5652 /*
5653 * SMM temporarily disables VMX, so we cannot be in guest mode,
5654 * nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
5655 * must be zero.
5656 */
65b712f1
LA
5657 if (is_smm(vcpu) ?
5658 (kvm_state->flags &
5659 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
5660 : kvm_state->hdr.vmx.smm.flags)
55d2375e
SC
5661 return -EINVAL;
5662
6ca00dfa
LA
5663 if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
5664 !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
55d2375e
SC
5665 return -EINVAL;
5666
323d73a8
LA
5667 if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
5668 (!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
9fd58877 5669 return -EINVAL;
55d2375e 5670
323d73a8 5671 vmx_leave_nested(vcpu);
9fd58877
PB
5672
5673 if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
5674 return 0;
332d0797 5675
6ca00dfa 5676 vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
55d2375e
SC
5677 ret = enter_vmx_operation(vcpu);
5678 if (ret)
5679 return ret;
5680
5681 /* Empty 'VMXON' state is permitted */
e8ab8d24 5682 if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
55d2375e
SC
5683 return 0;
5684
6ca00dfa
LA
5685 if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
5686 if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
5687 !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
55d2375e
SC
5688 return -EINVAL;
5689
6ca00dfa 5690 set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
55d2375e
SC
5691 } else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
5692 /*
5693 * Sync eVMCS upon entry as we may not have
5694 * HV_X64_MSR_VP_ASSIST_PAGE set up yet.
5695 */
3731905e 5696 vmx->nested.need_vmcs12_to_shadow_sync = true;
55d2375e
SC
5697 } else {
5698 return -EINVAL;
5699 }
5700
6ca00dfa 5701 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
55d2375e
SC
5702 vmx->nested.smm.vmxon = true;
5703 vmx->nested.vmxon = false;
5704
6ca00dfa 5705 if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
55d2375e
SC
5706 vmx->nested.smm.guest_mode = true;
5707 }
5708
5709 vmcs12 = get_vmcs12(vcpu);
6ca00dfa 5710 if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
55d2375e
SC
5711 return -EFAULT;
5712
5713 if (vmcs12->hdr.revision_id != VMCS12_REVISION)
5714 return -EINVAL;
5715
5716 if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
5717 return 0;
5718
21be4ca1
SC
5719 vmx->nested.nested_run_pending =
5720 !!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
5721
5722 ret = -EINVAL;
55d2375e
SC
5723 if (nested_cpu_has_shadow_vmcs(vmcs12) &&
5724 vmcs12->vmcs_link_pointer != -1ull) {
5725 struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
5726
6ca00dfa
LA
5727 if (kvm_state->size <
5728 sizeof(*kvm_state) +
5729 sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
21be4ca1 5730 goto error_guest_mode;
55d2375e
SC
5731
5732 if (copy_from_user(shadow_vmcs12,
6ca00dfa
LA
5733 user_vmx_nested_state->shadow_vmcs12,
5734 sizeof(*shadow_vmcs12))) {
21be4ca1
SC
5735 ret = -EFAULT;
5736 goto error_guest_mode;
5737 }
55d2375e
SC
5738
5739 if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
5740 !shadow_vmcs12->hdr.shadow_vmcs)
21be4ca1 5741 goto error_guest_mode;
55d2375e
SC
5742 }
5743
5478ba34
SC
5744 if (nested_vmx_check_controls(vcpu, vmcs12) ||
5745 nested_vmx_check_host_state(vcpu, vmcs12) ||
5746 nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
21be4ca1 5747 goto error_guest_mode;
55d2375e
SC
5748
5749 vmx->nested.dirty_vmcs12 = true;
5750 ret = nested_vmx_enter_non_root_mode(vcpu, false);
21be4ca1
SC
5751 if (ret)
5752 goto error_guest_mode;
55d2375e
SC
5753
5754 return 0;
21be4ca1
SC
5755
5756error_guest_mode:
5757 vmx->nested.nested_run_pending = 0;
5758 return ret;
55d2375e
SC
5759}
5760
5761void nested_vmx_vcpu_setup(void)
5762{
5763 if (enable_shadow_vmcs) {
55d2375e 5764 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
fadcead0 5765 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
55d2375e
SC
5766 }
5767}
5768
5769/*
5770 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
5771 * returned for the various VMX controls MSRs when nested VMX is enabled.
5772 * The same values should also be used to verify that vmcs12 control fields are
5773 * valid during nested entry from L1 to L2.
5774 * Each of these control msrs has a low and high 32-bit half: A low bit is on
5775 * if the corresponding bit in the (32-bit) control field *must* be on, and a
5776 * bit in the high half is on if the corresponding bit in the control field
5777 * may be on. See also vmx_control_verify().
5778 */
5779void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps,
5780 bool apicv)
5781{
5782 /*
5783 * Note that as a general rule, the high half of the MSRs (bits in
5784 * the control fields which may be 1) should be initialized by the
5785 * intersection of the underlying hardware's MSR (i.e., features which
5786 * can be supported) and the list of features we want to expose -
5787 * because they are known to be properly supported in our code.
5788 * Also, usually, the low half of the MSRs (bits which must be 1) can
5789 * be set to 0, meaning that L1 may turn off any of these bits. The
5790 * reason is that if one of these bits is necessary, it will appear
5791 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
5792 * fields of vmcs01 and vmcs02, will turn these bits off - and
5793 * nested_vmx_exit_reflected() will not pass related exits to L1.
5794 * These rules have exceptions below.
5795 */
5796
5797 /* pin-based controls */
5798 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
5799 msrs->pinbased_ctls_low,
5800 msrs->pinbased_ctls_high);
5801 msrs->pinbased_ctls_low |=
5802 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5803 msrs->pinbased_ctls_high &=
5804 PIN_BASED_EXT_INTR_MASK |
5805 PIN_BASED_NMI_EXITING |
5806 PIN_BASED_VIRTUAL_NMIS |
5807 (apicv ? PIN_BASED_POSTED_INTR : 0);
5808 msrs->pinbased_ctls_high |=
5809 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5810 PIN_BASED_VMX_PREEMPTION_TIMER;
5811
5812 /* exit controls */
5813 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
5814 msrs->exit_ctls_low,
5815 msrs->exit_ctls_high);
5816 msrs->exit_ctls_low =
5817 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
5818
5819 msrs->exit_ctls_high &=
5820#ifdef CONFIG_X86_64
5821 VM_EXIT_HOST_ADDR_SPACE_SIZE |
5822#endif
5823 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
5824 msrs->exit_ctls_high |=
5825 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
5826 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
5827 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
5828
5829 /* We support free control of debug control saving. */
5830 msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
5831
5832 /* entry controls */
5833 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
5834 msrs->entry_ctls_low,
5835 msrs->entry_ctls_high);
5836 msrs->entry_ctls_low =
5837 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
5838 msrs->entry_ctls_high &=
5839#ifdef CONFIG_X86_64
5840 VM_ENTRY_IA32E_MODE |
5841#endif
5842 VM_ENTRY_LOAD_IA32_PAT;
5843 msrs->entry_ctls_high |=
5844 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
5845
5846 /* We support free control of debug control loading. */
5847 msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
5848
5849 /* cpu-based controls */
5850 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
5851 msrs->procbased_ctls_low,
5852 msrs->procbased_ctls_high);
5853 msrs->procbased_ctls_low =
5854 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
5855 msrs->procbased_ctls_high &=
5856 CPU_BASED_VIRTUAL_INTR_PENDING |
5857 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
5858 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
5859 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
5860 CPU_BASED_CR3_STORE_EXITING |
5861#ifdef CONFIG_X86_64
5862 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
5863#endif
5864 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5865 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
5866 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
5867 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
5868 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
5869 /*
5870 * We can allow some features even when not supported by the
5871 * hardware. For example, L1 can specify an MSR bitmap - and we
5872 * can use it to avoid exits to L1 - even when L0 runs L2
5873 * without MSR bitmaps.
5874 */
5875 msrs->procbased_ctls_high |=
5876 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
5877 CPU_BASED_USE_MSR_BITMAPS;
5878
5879 /* We support free control of CR3 access interception. */
5880 msrs->procbased_ctls_low &=
5881 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
5882
5883 /*
5884 * secondary cpu-based controls. Do not include those that
5885 * depend on CPUID bits, they are added later by vmx_cpuid_update.
5886 */
6b1971c6
VK
5887 if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
5888 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
5889 msrs->secondary_ctls_low,
5890 msrs->secondary_ctls_high);
5891
55d2375e
SC
5892 msrs->secondary_ctls_low = 0;
5893 msrs->secondary_ctls_high &=
5894 SECONDARY_EXEC_DESC |
6defc591 5895 SECONDARY_EXEC_RDTSCP |
55d2375e 5896 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6defc591 5897 SECONDARY_EXEC_WBINVD_EXITING |
55d2375e
SC
5898 SECONDARY_EXEC_APIC_REGISTER_VIRT |
5899 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6defc591
PB
5900 SECONDARY_EXEC_RDRAND_EXITING |
5901 SECONDARY_EXEC_ENABLE_INVPCID |
5902 SECONDARY_EXEC_RDSEED_EXITING |
5903 SECONDARY_EXEC_XSAVES;
55d2375e
SC
5904
5905 /*
5906 * We can emulate "VMCS shadowing," even if the hardware
5907 * doesn't support it.
5908 */
5909 msrs->secondary_ctls_high |=
5910 SECONDARY_EXEC_SHADOW_VMCS;
5911
5912 if (enable_ept) {
5913 /* nested EPT: emulate EPT also to L1 */
5914 msrs->secondary_ctls_high |=
5915 SECONDARY_EXEC_ENABLE_EPT;
5916 msrs->ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
5917 VMX_EPTP_WB_BIT | VMX_EPT_INVEPT_BIT;
5918 if (cpu_has_vmx_ept_execute_only())
5919 msrs->ept_caps |=
5920 VMX_EPT_EXECUTE_ONLY_BIT;
5921 msrs->ept_caps &= ept_caps;
5922 msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
5923 VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
5924 VMX_EPT_1GB_PAGE_BIT;
5925 if (enable_ept_ad_bits) {
5926 msrs->secondary_ctls_high |=
5927 SECONDARY_EXEC_ENABLE_PML;
5928 msrs->ept_caps |= VMX_EPT_AD_BIT;
5929 }
5930 }
5931
5932 if (cpu_has_vmx_vmfunc()) {
5933 msrs->secondary_ctls_high |=
5934 SECONDARY_EXEC_ENABLE_VMFUNC;
5935 /*
5936 * Advertise EPTP switching unconditionally
5937 * since we emulate it
5938 */
5939 if (enable_ept)
5940 msrs->vmfunc_controls =
5941 VMX_VMFUNC_EPTP_SWITCHING;
5942 }
5943
5944 /*
5945 * Old versions of KVM use the single-context version without
5946 * checking for support, so declare that it is supported even
5947 * though it is treated as global context. The alternative is
5948 * not failing the single-context invvpid, and it is worse.
5949 */
5950 if (enable_vpid) {
5951 msrs->secondary_ctls_high |=
5952 SECONDARY_EXEC_ENABLE_VPID;
5953 msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
5954 VMX_VPID_EXTENT_SUPPORTED_MASK;
5955 }
5956
5957 if (enable_unrestricted_guest)
5958 msrs->secondary_ctls_high |=
5959 SECONDARY_EXEC_UNRESTRICTED_GUEST;
5960
5961 if (flexpriority_enabled)
5962 msrs->secondary_ctls_high |=
5963 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
5964
5965 /* miscellaneous data */
5966 rdmsr(MSR_IA32_VMX_MISC,
5967 msrs->misc_low,
5968 msrs->misc_high);
5969 msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
5970 msrs->misc_low |=
5971 MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
5972 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
5973 VMX_MISC_ACTIVITY_HLT;
5974 msrs->misc_high = 0;
5975
5976 /*
5977 * This MSR reports some information about VMX support. We
5978 * should return information about the VMX we emulate for the
5979 * guest, and the VMCS structure we give it - not about the
5980 * VMX support of the underlying hardware.
5981 */
5982 msrs->basic =
5983 VMCS12_REVISION |
5984 VMX_BASIC_TRUE_CTLS |
5985 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
5986 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
5987
5988 if (cpu_has_vmx_basic_inout())
5989 msrs->basic |= VMX_BASIC_INOUT;
5990
5991 /*
5992 * These MSRs specify bits which the guest must keep fixed on
5993 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
5994 * We picked the standard core2 setting.
5995 */
5996#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
5997#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
5998 msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
5999 msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6000
6001 /* These MSRs specify bits which the guest must keep fixed off. */
6002 rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6003 rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6004
6005 /* highest index: VMX_PREEMPTION_TIMER_VALUE */
6006 msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
6007}
6008
6009void nested_vmx_hardware_unsetup(void)
6010{
6011 int i;
6012
6013 if (enable_shadow_vmcs) {
6014 for (i = 0; i < VMX_BITMAP_NR; i++)
6015 free_page((unsigned long)vmx_bitmap[i]);
6016 }
6017}
6018
6019__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6020{
6021 int i;
6022
6023 if (!cpu_has_vmx_shadow_vmcs())
6024 enable_shadow_vmcs = 0;
6025 if (enable_shadow_vmcs) {
6026 for (i = 0; i < VMX_BITMAP_NR; i++) {
41836839
BG
6027 /*
6028 * The vmx_bitmap is not tied to a VM and so should
6029 * not be charged to a memcg.
6030 */
55d2375e
SC
6031 vmx_bitmap[i] = (unsigned long *)
6032 __get_free_page(GFP_KERNEL);
6033 if (!vmx_bitmap[i]) {
6034 nested_vmx_hardware_unsetup();
6035 return -ENOMEM;
6036 }
6037 }
6038
6039 init_vmcs_shadow_fields();
6040 }
6041
6042 exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear,
6043 exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
6044 exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld,
6045 exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst,
6046 exit_handlers[EXIT_REASON_VMREAD] = handle_vmread,
6047 exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume,
6048 exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite,
6049 exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff,
6050 exit_handlers[EXIT_REASON_VMON] = handle_vmon,
6051 exit_handlers[EXIT_REASON_INVEPT] = handle_invept,
6052 exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid,
6053 exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc,
6054
6055 kvm_x86_ops->check_nested_events = vmx_check_nested_events;
6056 kvm_x86_ops->get_nested_state = vmx_get_nested_state;
6057 kvm_x86_ops->set_nested_state = vmx_set_nested_state;
6058 kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages,
6059 kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
e2e871ab 6060 kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
55d2375e
SC
6061
6062 return 0;
6063}