Merge tag 'x86-asm-2024-03-11' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[linux-2.6-block.git] / arch / x86 / kvm / svm / sev.c
CommitLineData
eaf78265
JR
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM-SEV support
6 *
7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
8 */
8d20bd63 9#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
eaf78265
JR
10
11#include <linux/kvm_types.h>
12#include <linux/kvm_host.h>
13#include <linux/kernel.h>
14#include <linux/highmem.h>
ae7d45fb 15#include <linux/psp.h>
eaf78265 16#include <linux/psp-sev.h>
b2bce0a5 17#include <linux/pagemap.h>
eaf78265 18#include <linux/swap.h>
7aef27f0 19#include <linux/misc_cgroup.h>
add5e2f0 20#include <linux/processor.h>
d523ab6b 21#include <linux/trace_events.h>
eaf78265 22
784a4661 23#include <asm/pkru.h>
8640ca58 24#include <asm/trapnr.h>
d9d005f3 25#include <asm/fpu/xcr.h>
d1f85fbe 26#include <asm/debugreg.h>
8640ca58 27
0c29397a 28#include "mmu.h"
eaf78265
JR
29#include "x86.h"
30#include "svm.h"
35a78319 31#include "svm_ops.h"
291bd20d 32#include "cpuid.h"
d523ab6b 33#include "trace.h"
eaf78265 34
7aef27f0
VS
35#ifndef CONFIG_KVM_AMD_SEV
36/*
37 * When this config is not defined, SEV feature is not supported and APIs in
38 * this file are not used but this file still gets compiled into the KVM AMD
39 * module.
40 *
41 * We will not have MISC_CG_RES_SEV and MISC_CG_RES_SEV_ES entries in the enum
42 * misc_res_type {} defined in linux/misc_cgroup.h.
43 *
44 * Below macros allow compilation to succeed.
45 */
46#define MISC_CG_RES_SEV MISC_CG_RES_TYPES
47#define MISC_CG_RES_SEV_ES MISC_CG_RES_TYPES
48#endif
49
a479c334 50#ifdef CONFIG_KVM_AMD_SEV
e8126bda 51/* enable/disable SEV support */
6c2c7bf5 52static bool sev_enabled = true;
8d364a07 53module_param_named(sev, sev_enabled, bool, 0444);
e8126bda
SC
54
55/* enable/disable SEV-ES support */
6c2c7bf5 56static bool sev_es_enabled = true;
8d364a07 57module_param_named(sev_es, sev_es_enabled, bool, 0444);
d1f85fbe
AK
58
59/* enable/disable SEV-ES DebugSwap support */
5abf6dce 60static bool sev_es_debug_swap_enabled = false;
d1f85fbe 61module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
a479c334
SC
62#else
63#define sev_enabled false
64#define sev_es_enabled false
d1f85fbe 65#define sev_es_debug_swap_enabled false
a479c334 66#endif /* CONFIG_KVM_AMD_SEV */
e8126bda 67
1edc1459 68static u8 sev_enc_bit;
eaf78265
JR
69static DECLARE_RWSEM(sev_deactivate_lock);
70static DEFINE_MUTEX(sev_bitmap_lock);
71unsigned int max_sev_asid;
72static unsigned int min_sev_asid;
d3d1af85 73static unsigned long sev_me_mask;
bb2baeb2 74static unsigned int nr_asids;
eaf78265
JR
75static unsigned long *sev_asid_bitmap;
76static unsigned long *sev_reclaim_asid_bitmap;
eaf78265
JR
77
78struct enc_region {
79 struct list_head list;
80 unsigned long npages;
81 struct page **pages;
82 unsigned long uaddr;
83 unsigned long size;
84};
85
469bb32b
SC
86/* Called with the sev_bitmap_lock held, or on shutdown */
87static int sev_flush_asids(int min_asid, int max_asid)
eaf78265 88{
bb2baeb2 89 int ret, asid, error = 0;
469bb32b
SC
90
91 /* Check if there are any ASIDs to reclaim before performing a flush */
bb2baeb2
MZ
92 asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
93 if (asid > max_asid)
469bb32b 94 return -EBUSY;
eaf78265
JR
95
96 /*
97 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
98 * so it must be guarded.
99 */
100 down_write(&sev_deactivate_lock);
101
102 wbinvd_on_all_cpus();
103 ret = sev_guest_df_flush(&error);
104
105 up_write(&sev_deactivate_lock);
106
107 if (ret)
108 pr_err("SEV: DF_FLUSH failed, ret=%d, error=%#x\n", ret, error);
109
110 return ret;
111}
112
54526d1f
NT
113static inline bool is_mirroring_enc_context(struct kvm *kvm)
114{
115 return !!to_kvm_svm(kvm)->sev_info.enc_context_owner;
116}
117
eaf78265 118/* Must be called with the sev_bitmap_lock held */
80675b3a 119static bool __sev_recycle_asids(int min_asid, int max_asid)
eaf78265 120{
469bb32b 121 if (sev_flush_asids(min_asid, max_asid))
eaf78265
JR
122 return false;
123
80675b3a 124 /* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
eaf78265 125 bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
bb2baeb2
MZ
126 nr_asids);
127 bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);
eaf78265
JR
128
129 return true;
130}
131
91b692a0
PB
132static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
133{
134 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
135 return misc_cg_try_charge(type, sev->misc_cg, 1);
136}
137
138static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
139{
140 enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
141 misc_cg_uncharge(type, sev->misc_cg, 1);
142}
143
80675b3a 144static int sev_asid_new(struct kvm_sev_info *sev)
eaf78265 145{
bb2baeb2 146 int asid, min_asid, max_asid, ret;
eaf78265 147 bool retry = true;
7aef27f0 148
7aef27f0
VS
149 WARN_ON(sev->misc_cg);
150 sev->misc_cg = get_current_misc_cg();
91b692a0 151 ret = sev_misc_cg_try_charge(sev);
7aef27f0
VS
152 if (ret) {
153 put_misc_cg(sev->misc_cg);
154 sev->misc_cg = NULL;
155 return ret;
156 }
eaf78265
JR
157
158 mutex_lock(&sev_bitmap_lock);
159
160 /*
80675b3a
TL
161 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
162 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
eaf78265 163 */
bb2baeb2 164 min_asid = sev->es_active ? 1 : min_sev_asid;
80675b3a 165 max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
eaf78265 166again:
bb2baeb2
MZ
167 asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
168 if (asid > max_asid) {
80675b3a 169 if (retry && __sev_recycle_asids(min_asid, max_asid)) {
eaf78265
JR
170 retry = false;
171 goto again;
172 }
173 mutex_unlock(&sev_bitmap_lock);
7aef27f0
VS
174 ret = -EBUSY;
175 goto e_uncharge;
eaf78265
JR
176 }
177
bb2baeb2 178 __set_bit(asid, sev_asid_bitmap);
eaf78265
JR
179
180 mutex_unlock(&sev_bitmap_lock);
181
bb2baeb2 182 return asid;
7aef27f0 183e_uncharge:
91b692a0 184 sev_misc_cg_uncharge(sev);
7aef27f0
VS
185 put_misc_cg(sev->misc_cg);
186 sev->misc_cg = NULL;
187 return ret;
eaf78265
JR
188}
189
190static int sev_get_asid(struct kvm *kvm)
191{
192 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
193
194 return sev->asid;
195}
196
7aef27f0 197static void sev_asid_free(struct kvm_sev_info *sev)
eaf78265
JR
198{
199 struct svm_cpu_data *sd;
bb2baeb2 200 int cpu;
eaf78265
JR
201
202 mutex_lock(&sev_bitmap_lock);
203
bb2baeb2 204 __set_bit(sev->asid, sev_reclaim_asid_bitmap);
eaf78265
JR
205
206 for_each_possible_cpu(cpu) {
73412dfe 207 sd = per_cpu_ptr(&svm_data, cpu);
179c6c27 208 sd->sev_vmcbs[sev->asid] = NULL;
eaf78265
JR
209 }
210
211 mutex_unlock(&sev_bitmap_lock);
7aef27f0 212
91b692a0 213 sev_misc_cg_uncharge(sev);
7aef27f0
VS
214 put_misc_cg(sev->misc_cg);
215 sev->misc_cg = NULL;
eaf78265
JR
216}
217
934002cd 218static void sev_decommission(unsigned int handle)
eaf78265 219{
238eca82 220 struct sev_data_decommission decommission;
934002cd
AG
221
222 if (!handle)
223 return;
224
225 decommission.handle = handle;
226 sev_guest_decommission(&decommission, NULL);
227}
228
229static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
230{
238eca82 231 struct sev_data_deactivate deactivate;
eaf78265
JR
232
233 if (!handle)
234 return;
235
238eca82 236 deactivate.handle = handle;
eaf78265
JR
237
238 /* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
239 down_read(&sev_deactivate_lock);
238eca82 240 sev_guest_deactivate(&deactivate, NULL);
eaf78265
JR
241 up_read(&sev_deactivate_lock);
242
934002cd 243 sev_decommission(handle);
eaf78265
JR
244}
245
246static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
247{
248 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1ca5614b 249 struct sev_platform_init_args init_args = {0};
eaf78265
JR
250 int asid, ret;
251
8727906f
SC
252 if (kvm->created_vcpus)
253 return -EINVAL;
254
eaf78265
JR
255 ret = -EBUSY;
256 if (unlikely(sev->active))
257 return ret;
258
a41fb26e
SC
259 sev->active = true;
260 sev->es_active = argp->id == KVM_SEV_ES_INIT;
80675b3a 261 asid = sev_asid_new(sev);
eaf78265 262 if (asid < 0)
fd49e8ee 263 goto e_no_asid;
7aef27f0 264 sev->asid = asid;
eaf78265 265
1ca5614b
BS
266 init_args.probe = false;
267 ret = sev_platform_init(&init_args);
eaf78265
JR
268 if (ret)
269 goto e_free;
270
eaf78265 271 INIT_LIST_HEAD(&sev->regions_list);
b2125513 272 INIT_LIST_HEAD(&sev->mirror_vms);
eaf78265 273
c538dc79
SS
274 kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);
275
eaf78265
JR
276 return 0;
277
278e_free:
1ca5614b 279 argp->error = init_args.error;
7aef27f0
VS
280 sev_asid_free(sev);
281 sev->asid = 0;
fd49e8ee
PB
282e_no_asid:
283 sev->es_active = false;
a41fb26e 284 sev->active = false;
eaf78265
JR
285 return ret;
286}
287
288static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
289{
238eca82 290 struct sev_data_activate activate;
eaf78265
JR
291 int asid = sev_get_asid(kvm);
292 int ret;
293
eaf78265 294 /* activate ASID on the given handle */
238eca82
SC
295 activate.handle = handle;
296 activate.asid = asid;
297 ret = sev_guest_activate(&activate, error);
eaf78265
JR
298
299 return ret;
300}
301
302static int __sev_issue_cmd(int fd, int id, void *data, int *error)
303{
304 struct fd f;
305 int ret;
306
307 f = fdget(fd);
308 if (!f.file)
309 return -EBADF;
310
311 ret = sev_issue_cmd_external_user(f.file, id, data, error);
312
313 fdput(f);
314 return ret;
315}
316
317static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
318{
319 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
320
321 return __sev_issue_cmd(sev->fd, id, data, error);
322}
323
324static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
325{
326 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 327 struct sev_data_launch_start start;
eaf78265
JR
328 struct kvm_sev_launch_start params;
329 void *dh_blob, *session_blob;
330 int *error = &argp->error;
331 int ret;
332
333 if (!sev_guest(kvm))
334 return -ENOTTY;
335
336 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
337 return -EFAULT;
338
238eca82 339 memset(&start, 0, sizeof(start));
eaf78265
JR
340
341 dh_blob = NULL;
342 if (params.dh_uaddr) {
343 dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
238eca82
SC
344 if (IS_ERR(dh_blob))
345 return PTR_ERR(dh_blob);
eaf78265 346
238eca82
SC
347 start.dh_cert_address = __sme_set(__pa(dh_blob));
348 start.dh_cert_len = params.dh_len;
eaf78265
JR
349 }
350
351 session_blob = NULL;
352 if (params.session_uaddr) {
353 session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
354 if (IS_ERR(session_blob)) {
355 ret = PTR_ERR(session_blob);
356 goto e_free_dh;
357 }
358
238eca82
SC
359 start.session_address = __sme_set(__pa(session_blob));
360 start.session_len = params.session_len;
eaf78265
JR
361 }
362
238eca82
SC
363 start.handle = params.handle;
364 start.policy = params.policy;
eaf78265
JR
365
366 /* create memory encryption context */
238eca82 367 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
eaf78265
JR
368 if (ret)
369 goto e_free_session;
370
371 /* Bind ASID to this guest */
238eca82 372 ret = sev_bind_asid(kvm, start.handle, error);
934002cd
AG
373 if (ret) {
374 sev_decommission(start.handle);
eaf78265 375 goto e_free_session;
934002cd 376 }
eaf78265
JR
377
378 /* return handle to userspace */
238eca82 379 params.handle = start.handle;
eaf78265 380 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params))) {
238eca82 381 sev_unbind_asid(kvm, start.handle);
eaf78265
JR
382 ret = -EFAULT;
383 goto e_free_session;
384 }
385
238eca82 386 sev->handle = start.handle;
eaf78265
JR
387 sev->fd = argp->sev_fd;
388
389e_free_session:
390 kfree(session_blob);
391e_free_dh:
392 kfree(dh_blob);
eaf78265
JR
393 return ret;
394}
395
396static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
397 unsigned long ulen, unsigned long *n,
398 int write)
399{
400 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
78824fab
JH
401 unsigned long npages, size;
402 int npinned;
eaf78265
JR
403 unsigned long locked, lock_limit;
404 struct page **pages;
405 unsigned long first, last;
ff2bd9ff 406 int ret;
eaf78265 407
19a23da5
PG
408 lockdep_assert_held(&kvm->lock);
409
eaf78265 410 if (ulen == 0 || uaddr + ulen < uaddr)
a8d908b5 411 return ERR_PTR(-EINVAL);
eaf78265
JR
412
413 /* Calculate number of pages. */
414 first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
415 last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
416 npages = (last - first + 1);
417
418 locked = sev->pages_locked + npages;
419 lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
420 if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
421 pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
a8d908b5 422 return ERR_PTR(-ENOMEM);
eaf78265
JR
423 }
424
78824fab 425 if (WARN_ON_ONCE(npages > INT_MAX))
a8d908b5 426 return ERR_PTR(-EINVAL);
78824fab 427
eaf78265
JR
428 /* Avoid using vmalloc for smaller buffers. */
429 size = npages * sizeof(struct page *);
430 if (size > PAGE_SIZE)
88dca4ca 431 pages = __vmalloc(size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
eaf78265
JR
432 else
433 pages = kmalloc(size, GFP_KERNEL_ACCOUNT);
434
435 if (!pages)
a8d908b5 436 return ERR_PTR(-ENOMEM);
eaf78265
JR
437
438 /* Pin the user virtual address. */
dc42c8ae 439 npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
eaf78265
JR
440 if (npinned != npages) {
441 pr_err("SEV: Failure locking %lu pages.\n", npages);
ff2bd9ff 442 ret = -ENOMEM;
eaf78265
JR
443 goto err;
444 }
445
446 *n = npages;
447 sev->pages_locked = locked;
448
449 return pages;
450
451err:
ff2bd9ff 452 if (npinned > 0)
dc42c8ae 453 unpin_user_pages(pages, npinned);
eaf78265
JR
454
455 kvfree(pages);
ff2bd9ff 456 return ERR_PTR(ret);
eaf78265
JR
457}
458
459static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
460 unsigned long npages)
461{
462 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
463
dc42c8ae 464 unpin_user_pages(pages, npages);
eaf78265
JR
465 kvfree(pages);
466 sev->pages_locked -= npages;
467}
468
469static void sev_clflush_pages(struct page *pages[], unsigned long npages)
470{
471 uint8_t *page_virtual;
472 unsigned long i;
473
e1ebb2b4
KS
474 if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
475 pages == NULL)
eaf78265
JR
476 return;
477
478 for (i = 0; i < npages; i++) {
a8a12c00 479 page_virtual = kmap_local_page(pages[i]);
eaf78265 480 clflush_cache_range(page_virtual, PAGE_SIZE);
a8a12c00 481 kunmap_local(page_virtual);
00c22013 482 cond_resched();
eaf78265
JR
483 }
484}
485
486static unsigned long get_num_contig_pages(unsigned long idx,
487 struct page **inpages, unsigned long npages)
488{
489 unsigned long paddr, next_paddr;
490 unsigned long i = idx + 1, pages = 1;
491
492 /* find the number of contiguous pages starting from idx */
493 paddr = __sme_page_pa(inpages[idx]);
494 while (i < npages) {
495 next_paddr = __sme_page_pa(inpages[i++]);
496 if ((paddr + PAGE_SIZE) == next_paddr) {
497 pages++;
498 paddr = next_paddr;
499 continue;
500 }
501 break;
502 }
503
504 return pages;
505}
506
507static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
508{
509 unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
510 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
511 struct kvm_sev_launch_update_data params;
238eca82 512 struct sev_data_launch_update_data data;
eaf78265
JR
513 struct page **inpages;
514 int ret;
515
516 if (!sev_guest(kvm))
517 return -ENOTTY;
518
519 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
520 return -EFAULT;
521
eaf78265
JR
522 vaddr = params.uaddr;
523 size = params.len;
524 vaddr_end = vaddr + size;
525
526 /* Lock the user memory. */
527 inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
238eca82
SC
528 if (IS_ERR(inpages))
529 return PTR_ERR(inpages);
eaf78265
JR
530
531 /*
14e3dd8d
PB
532 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
533 * place; the cache may contain the data that was written unencrypted.
eaf78265
JR
534 */
535 sev_clflush_pages(inpages, npages);
536
238eca82
SC
537 data.reserved = 0;
538 data.handle = sev->handle;
539
eaf78265
JR
540 for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
541 int offset, len;
542
543 /*
544 * If the user buffer is not page-aligned, calculate the offset
545 * within the page.
546 */
547 offset = vaddr & (PAGE_SIZE - 1);
548
549 /* Calculate the number of pages that can be encrypted in one go. */
550 pages = get_num_contig_pages(i, inpages, npages);
551
552 len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);
553
238eca82
SC
554 data.len = len;
555 data.address = __sme_page_pa(inpages[i]) + offset;
556 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
eaf78265
JR
557 if (ret)
558 goto e_unpin;
559
560 size -= len;
561 next_vaddr = vaddr + len;
562 }
563
564e_unpin:
565 /* content of memory is updated, mark pages dirty */
566 for (i = 0; i < npages; i++) {
567 set_page_dirty_lock(inpages[i]);
568 mark_page_accessed(inpages[i]);
569 }
570 /* unlock the user pages */
571 sev_unpin_memory(kvm, inpages, npages);
eaf78265
JR
572 return ret;
573}
574
ad73109a
TL
575static int sev_es_sync_vmsa(struct vcpu_svm *svm)
576{
3dd2775b 577 struct sev_es_save_area *save = svm->sev_es.vmsa;
ad73109a
TL
578
579 /* Check some debug related fields before encrypting the VMSA */
3dd2775b 580 if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
ad73109a
TL
581 return -EINVAL;
582
3dd2775b
TL
583 /*
584 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
585 * the traditional VMSA that is part of the VMCB. Copy the
586 * traditional VMSA as it has been built so far (in prep
587 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
588 */
589 memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));
590
ad73109a
TL
591 /* Sync registgers */
592 save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
593 save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
594 save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
595 save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
596 save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
597 save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
598 save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
599 save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
d45f89f7 600#ifdef CONFIG_X86_64
ad73109a
TL
601 save->r8 = svm->vcpu.arch.regs[VCPU_REGS_R8];
602 save->r9 = svm->vcpu.arch.regs[VCPU_REGS_R9];
603 save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
604 save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
605 save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
606 save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
607 save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
608 save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
d45f89f7 609#endif
ad73109a
TL
610 save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];
611
612 /* Sync some non-GPR registers before encrypting */
613 save->xcr0 = svm->vcpu.arch.xcr0;
614 save->pkru = svm->vcpu.arch.pkru;
615 save->xss = svm->vcpu.arch.ia32_xss;
d0f9f826 616 save->dr6 = svm->vcpu.arch.dr6;
ad73109a 617
5abf6dce 618 if (sev_es_debug_swap_enabled) {
d1f85fbe 619 save->sev_features |= SVM_SEV_FEAT_DEBUG_SWAP;
5abf6dce
PB
620 pr_warn_once("Enabling DebugSwap with KVM_SEV_ES_INIT. "
621 "This will not work starting with Linux 6.10\n");
622 }
d1f85fbe 623
6fac42f1 624 pr_debug("Virtual Machine Save Area (VMSA):\n");
0bd8bd2f 625 print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);
6fac42f1 626
ad73109a
TL
627 return 0;
628}
629
bb18a677
PG
630static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
631 int *error)
ad73109a 632{
238eca82 633 struct sev_data_launch_update_vmsa vmsa;
bb18a677
PG
634 struct vcpu_svm *svm = to_svm(vcpu);
635 int ret;
636
2837dd00
AK
637 if (vcpu->guest_debug) {
638 pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
639 return -EINVAL;
640 }
641
bb18a677
PG
642 /* Perform some pre-encryption checks against the VMSA */
643 ret = sev_es_sync_vmsa(svm);
644 if (ret)
645 return ret;
646
647 /*
648 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
649 * the VMSA memory content (i.e it will write the same memory region
650 * with the guest's key), so invalidate it first.
651 */
b67a4cc3 652 clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);
bb18a677
PG
653
654 vmsa.reserved = 0;
655 vmsa.handle = to_kvm_svm(kvm)->sev_info.handle;
b67a4cc3 656 vmsa.address = __sme_pa(svm->sev_es.vmsa);
bb18a677 657 vmsa.len = PAGE_SIZE;
baa1e5ca
PG
658 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
659 if (ret)
660 return ret;
661
662 vcpu->arch.guest_state_protected = true;
663 return 0;
bb18a677
PG
664}
665
666static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
667{
c36b16d2 668 struct kvm_vcpu *vcpu;
46808a4c
MZ
669 unsigned long i;
670 int ret;
ad73109a
TL
671
672 if (!sev_es_guest(kvm))
673 return -ENOTTY;
674
c36b16d2 675 kvm_for_each_vcpu(i, vcpu, kvm) {
bb18a677 676 ret = mutex_lock_killable(&vcpu->mutex);
ad73109a 677 if (ret)
238eca82 678 return ret;
ad73109a 679
bb18a677 680 ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);
ad73109a 681
bb18a677 682 mutex_unlock(&vcpu->mutex);
ad73109a 683 if (ret)
238eca82 684 return ret;
ad73109a
TL
685 }
686
238eca82 687 return 0;
ad73109a
TL
688}
689
eaf78265
JR
690static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
691{
692 void __user *measure = (void __user *)(uintptr_t)argp->data;
693 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 694 struct sev_data_launch_measure data;
eaf78265
JR
695 struct kvm_sev_launch_measure params;
696 void __user *p = NULL;
697 void *blob = NULL;
698 int ret;
699
700 if (!sev_guest(kvm))
701 return -ENOTTY;
702
703 if (copy_from_user(&params, measure, sizeof(params)))
704 return -EFAULT;
705
238eca82 706 memset(&data, 0, sizeof(data));
eaf78265
JR
707
708 /* User wants to query the blob length */
709 if (!params.len)
710 goto cmd;
711
712 p = (void __user *)(uintptr_t)params.uaddr;
713 if (p) {
238eca82
SC
714 if (params.len > SEV_FW_BLOB_MAX_SIZE)
715 return -EINVAL;
eaf78265 716
d22d2474 717 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
eaf78265 718 if (!blob)
238eca82 719 return -ENOMEM;
eaf78265 720
238eca82
SC
721 data.address = __psp_pa(blob);
722 data.len = params.len;
eaf78265
JR
723 }
724
725cmd:
238eca82
SC
726 data.handle = sev->handle;
727 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);
eaf78265
JR
728
729 /*
730 * If we query the session length, FW responded with expected data.
731 */
732 if (!params.len)
733 goto done;
734
735 if (ret)
736 goto e_free_blob;
737
738 if (blob) {
739 if (copy_to_user(p, blob, params.len))
740 ret = -EFAULT;
741 }
742
743done:
238eca82 744 params.len = data.len;
eaf78265
JR
745 if (copy_to_user(measure, &params, sizeof(params)))
746 ret = -EFAULT;
747e_free_blob:
748 kfree(blob);
eaf78265
JR
749 return ret;
750}
751
752static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
753{
754 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 755 struct sev_data_launch_finish data;
eaf78265
JR
756
757 if (!sev_guest(kvm))
758 return -ENOTTY;
759
238eca82
SC
760 data.handle = sev->handle;
761 return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
eaf78265
JR
762}
763
764static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
765{
766 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
767 struct kvm_sev_guest_status params;
238eca82 768 struct sev_data_guest_status data;
eaf78265
JR
769 int ret;
770
771 if (!sev_guest(kvm))
772 return -ENOTTY;
773
238eca82 774 memset(&data, 0, sizeof(data));
eaf78265 775
238eca82
SC
776 data.handle = sev->handle;
777 ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
eaf78265 778 if (ret)
238eca82 779 return ret;
eaf78265 780
238eca82
SC
781 params.policy = data.policy;
782 params.state = data.state;
783 params.handle = data.handle;
eaf78265
JR
784
785 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params, sizeof(params)))
786 ret = -EFAULT;
238eca82 787
eaf78265
JR
788 return ret;
789}
790
791static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
792 unsigned long dst, int size,
793 int *error, bool enc)
794{
795 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 796 struct sev_data_dbg data;
eaf78265 797
238eca82
SC
798 data.reserved = 0;
799 data.handle = sev->handle;
800 data.dst_addr = dst;
801 data.src_addr = src;
802 data.len = size;
eaf78265 803
238eca82
SC
804 return sev_issue_cmd(kvm,
805 enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
806 &data, error);
eaf78265
JR
807}
808
809static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
810 unsigned long dst_paddr, int sz, int *err)
811{
812 int offset;
813
814 /*
815 * Its safe to read more than we are asked, caller should ensure that
816 * destination has enough space.
817 */
eaf78265 818 offset = src_paddr & 15;
854c57f0 819 src_paddr = round_down(src_paddr, 16);
eaf78265
JR
820 sz = round_up(sz + offset, 16);
821
822 return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
823}
824
825static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
368340a3 826 void __user *dst_uaddr,
eaf78265
JR
827 unsigned long dst_paddr,
828 int size, int *err)
829{
830 struct page *tpage = NULL;
831 int ret, offset;
832
833 /* if inputs are not 16-byte then use intermediate buffer */
834 if (!IS_ALIGNED(dst_paddr, 16) ||
835 !IS_ALIGNED(paddr, 16) ||
836 !IS_ALIGNED(size, 16)) {
a31b531c 837 tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
eaf78265
JR
838 if (!tpage)
839 return -ENOMEM;
840
841 dst_paddr = __sme_page_pa(tpage);
842 }
843
844 ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
845 if (ret)
846 goto e_free;
847
848 if (tpage) {
849 offset = paddr & 15;
368340a3 850 if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
eaf78265
JR
851 ret = -EFAULT;
852 }
853
854e_free:
855 if (tpage)
856 __free_page(tpage);
857
858 return ret;
859}
860
861static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
368340a3 862 void __user *vaddr,
eaf78265 863 unsigned long dst_paddr,
368340a3 864 void __user *dst_vaddr,
eaf78265
JR
865 int size, int *error)
866{
867 struct page *src_tpage = NULL;
868 struct page *dst_tpage = NULL;
869 int ret, len = size;
870
871 /* If source buffer is not aligned then use an intermediate buffer */
368340a3 872 if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
ebdec859 873 src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
eaf78265
JR
874 if (!src_tpage)
875 return -ENOMEM;
876
368340a3 877 if (copy_from_user(page_address(src_tpage), vaddr, size)) {
eaf78265
JR
878 __free_page(src_tpage);
879 return -EFAULT;
880 }
881
882 paddr = __sme_page_pa(src_tpage);
883 }
884
885 /*
886 * If destination buffer or length is not aligned then do read-modify-write:
887 * - decrypt destination in an intermediate buffer
888 * - copy the source buffer in an intermediate buffer
889 * - use the intermediate buffer as source buffer
890 */
368340a3 891 if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
eaf78265
JR
892 int dst_offset;
893
ebdec859 894 dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
eaf78265
JR
895 if (!dst_tpage) {
896 ret = -ENOMEM;
897 goto e_free;
898 }
899
900 ret = __sev_dbg_decrypt(kvm, dst_paddr,
901 __sme_page_pa(dst_tpage), size, error);
902 if (ret)
903 goto e_free;
904
905 /*
906 * If source is kernel buffer then use memcpy() otherwise
907 * copy_from_user().
908 */
909 dst_offset = dst_paddr & 15;
910
911 if (src_tpage)
912 memcpy(page_address(dst_tpage) + dst_offset,
913 page_address(src_tpage), size);
914 else {
915 if (copy_from_user(page_address(dst_tpage) + dst_offset,
368340a3 916 vaddr, size)) {
eaf78265
JR
917 ret = -EFAULT;
918 goto e_free;
919 }
920 }
921
922 paddr = __sme_page_pa(dst_tpage);
923 dst_paddr = round_down(dst_paddr, 16);
924 len = round_up(size, 16);
925 }
926
927 ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);
928
929e_free:
930 if (src_tpage)
931 __free_page(src_tpage);
932 if (dst_tpage)
933 __free_page(dst_tpage);
934 return ret;
935}
936
937static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
938{
939 unsigned long vaddr, vaddr_end, next_vaddr;
940 unsigned long dst_vaddr;
941 struct page **src_p, **dst_p;
942 struct kvm_sev_dbg debug;
943 unsigned long n;
944 unsigned int size;
945 int ret;
946
947 if (!sev_guest(kvm))
948 return -ENOTTY;
949
950 if (copy_from_user(&debug, (void __user *)(uintptr_t)argp->data, sizeof(debug)))
951 return -EFAULT;
952
953 if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
954 return -EINVAL;
955 if (!debug.dst_uaddr)
956 return -EINVAL;
957
958 vaddr = debug.src_uaddr;
959 size = debug.len;
960 vaddr_end = vaddr + size;
961 dst_vaddr = debug.dst_uaddr;
962
963 for (; vaddr < vaddr_end; vaddr = next_vaddr) {
964 int len, s_off, d_off;
965
966 /* lock userspace source and destination page */
967 src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
ff2bd9ff
DC
968 if (IS_ERR(src_p))
969 return PTR_ERR(src_p);
eaf78265
JR
970
971 dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
ff2bd9ff 972 if (IS_ERR(dst_p)) {
eaf78265 973 sev_unpin_memory(kvm, src_p, n);
ff2bd9ff 974 return PTR_ERR(dst_p);
eaf78265
JR
975 }
976
977 /*
14e3dd8d
PB
978 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
979 * the pages; flush the destination too so that future accesses do not
980 * see stale data.
eaf78265
JR
981 */
982 sev_clflush_pages(src_p, 1);
983 sev_clflush_pages(dst_p, 1);
984
985 /*
986 * Since user buffer may not be page aligned, calculate the
987 * offset within the page.
988 */
989 s_off = vaddr & ~PAGE_MASK;
990 d_off = dst_vaddr & ~PAGE_MASK;
991 len = min_t(size_t, (PAGE_SIZE - s_off), size);
992
993 if (dec)
994 ret = __sev_dbg_decrypt_user(kvm,
995 __sme_page_pa(src_p[0]) + s_off,
368340a3 996 (void __user *)dst_vaddr,
eaf78265
JR
997 __sme_page_pa(dst_p[0]) + d_off,
998 len, &argp->error);
999 else
1000 ret = __sev_dbg_encrypt_user(kvm,
1001 __sme_page_pa(src_p[0]) + s_off,
368340a3 1002 (void __user *)vaddr,
eaf78265 1003 __sme_page_pa(dst_p[0]) + d_off,
368340a3 1004 (void __user *)dst_vaddr,
eaf78265
JR
1005 len, &argp->error);
1006
1007 sev_unpin_memory(kvm, src_p, n);
1008 sev_unpin_memory(kvm, dst_p, n);
1009
1010 if (ret)
1011 goto err;
1012
1013 next_vaddr = vaddr + len;
1014 dst_vaddr = dst_vaddr + len;
1015 size -= len;
1016 }
1017err:
1018 return ret;
1019}
1020
1021static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
1022{
1023 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1024 struct sev_data_launch_secret data;
eaf78265
JR
1025 struct kvm_sev_launch_secret params;
1026 struct page **pages;
1027 void *blob, *hdr;
50085bee 1028 unsigned long n, i;
eaf78265
JR
1029 int ret, offset;
1030
1031 if (!sev_guest(kvm))
1032 return -ENOTTY;
1033
1034 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1035 return -EFAULT;
1036
1037 pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
a8d908b5
PB
1038 if (IS_ERR(pages))
1039 return PTR_ERR(pages);
eaf78265 1040
50085bee 1041 /*
14e3dd8d
PB
1042 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
1043 * place; the cache may contain the data that was written unencrypted.
50085bee
CC
1044 */
1045 sev_clflush_pages(pages, n);
1046
eaf78265
JR
1047 /*
1048 * The secret must be copied into contiguous memory region, lets verify
1049 * that userspace memory pages are contiguous before we issue command.
1050 */
1051 if (get_num_contig_pages(0, pages, n) != n) {
1052 ret = -EINVAL;
1053 goto e_unpin_memory;
1054 }
1055
238eca82 1056 memset(&data, 0, sizeof(data));
eaf78265
JR
1057
1058 offset = params.guest_uaddr & (PAGE_SIZE - 1);
238eca82
SC
1059 data.guest_address = __sme_page_pa(pages[0]) + offset;
1060 data.guest_len = params.guest_len;
eaf78265
JR
1061
1062 blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1063 if (IS_ERR(blob)) {
1064 ret = PTR_ERR(blob);
238eca82 1065 goto e_unpin_memory;
eaf78265
JR
1066 }
1067
238eca82
SC
1068 data.trans_address = __psp_pa(blob);
1069 data.trans_len = params.trans_len;
eaf78265
JR
1070
1071 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1072 if (IS_ERR(hdr)) {
1073 ret = PTR_ERR(hdr);
1074 goto e_free_blob;
1075 }
238eca82
SC
1076 data.hdr_address = __psp_pa(hdr);
1077 data.hdr_len = params.hdr_len;
eaf78265 1078
238eca82
SC
1079 data.handle = sev->handle;
1080 ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);
eaf78265
JR
1081
1082 kfree(hdr);
1083
1084e_free_blob:
1085 kfree(blob);
eaf78265 1086e_unpin_memory:
50085bee
CC
1087 /* content of memory is updated, mark pages dirty */
1088 for (i = 0; i < n; i++) {
1089 set_page_dirty_lock(pages[i]);
1090 mark_page_accessed(pages[i]);
1091 }
eaf78265
JR
1092 sev_unpin_memory(kvm, pages, n);
1093 return ret;
1094}
1095
2c07ded0
BS
1096static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
1097{
1098 void __user *report = (void __user *)(uintptr_t)argp->data;
1099 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1100 struct sev_data_attestation_report data;
2c07ded0
BS
1101 struct kvm_sev_attestation_report params;
1102 void __user *p;
1103 void *blob = NULL;
1104 int ret;
1105
1106 if (!sev_guest(kvm))
1107 return -ENOTTY;
1108
1109 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data, sizeof(params)))
1110 return -EFAULT;
1111
238eca82 1112 memset(&data, 0, sizeof(data));
2c07ded0
BS
1113
1114 /* User wants to query the blob length */
1115 if (!params.len)
1116 goto cmd;
1117
1118 p = (void __user *)(uintptr_t)params.uaddr;
1119 if (p) {
238eca82
SC
1120 if (params.len > SEV_FW_BLOB_MAX_SIZE)
1121 return -EINVAL;
2c07ded0 1122
d22d2474 1123 blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
2c07ded0 1124 if (!blob)
238eca82 1125 return -ENOMEM;
2c07ded0 1126
238eca82
SC
1127 data.address = __psp_pa(blob);
1128 data.len = params.len;
1129 memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
2c07ded0
BS
1130 }
1131cmd:
238eca82
SC
1132 data.handle = sev->handle;
1133 ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
2c07ded0
BS
1134 /*
1135 * If we query the session length, FW responded with expected data.
1136 */
1137 if (!params.len)
1138 goto done;
1139
1140 if (ret)
1141 goto e_free_blob;
1142
1143 if (blob) {
1144 if (copy_to_user(p, blob, params.len))
1145 ret = -EFAULT;
1146 }
1147
1148done:
238eca82 1149 params.len = data.len;
2c07ded0
BS
1150 if (copy_to_user(report, &params, sizeof(params)))
1151 ret = -EFAULT;
1152e_free_blob:
1153 kfree(blob);
2c07ded0
BS
1154 return ret;
1155}
1156
4cfdd47d
BS
1157/* Userspace wants to query session length. */
1158static int
1159__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
1160 struct kvm_sev_send_start *params)
1161{
1162 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1163 struct sev_data_send_start data;
4cfdd47d
BS
1164 int ret;
1165
4f13d471 1166 memset(&data, 0, sizeof(data));
238eca82
SC
1167 data.handle = sev->handle;
1168 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
4cfdd47d 1169
238eca82 1170 params->session_len = data.session_len;
4cfdd47d
BS
1171 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1172 sizeof(struct kvm_sev_send_start)))
1173 ret = -EFAULT;
1174
4cfdd47d
BS
1175 return ret;
1176}
1177
1178static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1179{
1180 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1181 struct sev_data_send_start data;
4cfdd47d
BS
1182 struct kvm_sev_send_start params;
1183 void *amd_certs, *session_data;
1184 void *pdh_cert, *plat_certs;
1185 int ret;
1186
1187 if (!sev_guest(kvm))
1188 return -ENOTTY;
1189
1190 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1191 sizeof(struct kvm_sev_send_start)))
1192 return -EFAULT;
1193
1194 /* if session_len is zero, userspace wants to query the session length */
1195 if (!params.session_len)
1196 return __sev_send_start_query_session_length(kvm, argp,
1197 &params);
1198
1199 /* some sanity checks */
1200 if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
1201 !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
1202 return -EINVAL;
1203
1204 /* allocate the memory to hold the session data blob */
d22d2474 1205 session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
4cfdd47d
BS
1206 if (!session_data)
1207 return -ENOMEM;
1208
1209 /* copy the certificate blobs from userspace */
1210 pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
1211 params.pdh_cert_len);
1212 if (IS_ERR(pdh_cert)) {
1213 ret = PTR_ERR(pdh_cert);
1214 goto e_free_session;
1215 }
1216
1217 plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
1218 params.plat_certs_len);
1219 if (IS_ERR(plat_certs)) {
1220 ret = PTR_ERR(plat_certs);
1221 goto e_free_pdh;
1222 }
1223
1224 amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
1225 params.amd_certs_len);
1226 if (IS_ERR(amd_certs)) {
1227 ret = PTR_ERR(amd_certs);
1228 goto e_free_plat_cert;
1229 }
1230
4cfdd47d 1231 /* populate the FW SEND_START field with system physical address */
238eca82
SC
1232 memset(&data, 0, sizeof(data));
1233 data.pdh_cert_address = __psp_pa(pdh_cert);
1234 data.pdh_cert_len = params.pdh_cert_len;
1235 data.plat_certs_address = __psp_pa(plat_certs);
1236 data.plat_certs_len = params.plat_certs_len;
1237 data.amd_certs_address = __psp_pa(amd_certs);
1238 data.amd_certs_len = params.amd_certs_len;
1239 data.session_address = __psp_pa(session_data);
1240 data.session_len = params.session_len;
1241 data.handle = sev->handle;
1242
1243 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);
4cfdd47d
BS
1244
1245 if (!ret && copy_to_user((void __user *)(uintptr_t)params.session_uaddr,
1246 session_data, params.session_len)) {
1247 ret = -EFAULT;
238eca82 1248 goto e_free_amd_cert;
4cfdd47d
BS
1249 }
1250
238eca82
SC
1251 params.policy = data.policy;
1252 params.session_len = data.session_len;
4cfdd47d
BS
1253 if (copy_to_user((void __user *)(uintptr_t)argp->data, &params,
1254 sizeof(struct kvm_sev_send_start)))
1255 ret = -EFAULT;
1256
4cfdd47d
BS
1257e_free_amd_cert:
1258 kfree(amd_certs);
1259e_free_plat_cert:
1260 kfree(plat_certs);
1261e_free_pdh:
1262 kfree(pdh_cert);
1263e_free_session:
1264 kfree(session_data);
1265 return ret;
1266}
1267
d3d1af85
BS
1268/* Userspace wants to query either header or trans length. */
1269static int
1270__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
1271 struct kvm_sev_send_update_data *params)
1272{
1273 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1274 struct sev_data_send_update_data data;
d3d1af85
BS
1275 int ret;
1276
4f13d471 1277 memset(&data, 0, sizeof(data));
238eca82
SC
1278 data.handle = sev->handle;
1279 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
d3d1af85 1280
238eca82
SC
1281 params->hdr_len = data.hdr_len;
1282 params->trans_len = data.trans_len;
d3d1af85
BS
1283
1284 if (copy_to_user((void __user *)(uintptr_t)argp->data, params,
1285 sizeof(struct kvm_sev_send_update_data)))
1286 ret = -EFAULT;
1287
d3d1af85
BS
1288 return ret;
1289}
1290
1291static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1292{
1293 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1294 struct sev_data_send_update_data data;
d3d1af85
BS
1295 struct kvm_sev_send_update_data params;
1296 void *hdr, *trans_data;
1297 struct page **guest_page;
1298 unsigned long n;
1299 int ret, offset;
1300
1301 if (!sev_guest(kvm))
1302 return -ENOTTY;
1303
1304 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1305 sizeof(struct kvm_sev_send_update_data)))
1306 return -EFAULT;
1307
1308 /* userspace wants to query either header or trans length */
1309 if (!params.trans_len || !params.hdr_len)
1310 return __sev_send_update_data_query_lengths(kvm, argp, &params);
1311
1312 if (!params.trans_uaddr || !params.guest_uaddr ||
1313 !params.guest_len || !params.hdr_uaddr)
1314 return -EINVAL;
1315
1316 /* Check if we are crossing the page boundary */
1317 offset = params.guest_uaddr & (PAGE_SIZE - 1);
f94f053a 1318 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
d3d1af85
BS
1319 return -EINVAL;
1320
1321 /* Pin guest memory */
1322 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
1323 PAGE_SIZE, &n, 0);
c7a1b2b6
SC
1324 if (IS_ERR(guest_page))
1325 return PTR_ERR(guest_page);
d3d1af85
BS
1326
1327 /* allocate memory for header and transport buffer */
1328 ret = -ENOMEM;
d22d2474 1329 hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
d3d1af85
BS
1330 if (!hdr)
1331 goto e_unpin;
1332
d22d2474 1333 trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
d3d1af85
BS
1334 if (!trans_data)
1335 goto e_free_hdr;
1336
238eca82
SC
1337 memset(&data, 0, sizeof(data));
1338 data.hdr_address = __psp_pa(hdr);
1339 data.hdr_len = params.hdr_len;
1340 data.trans_address = __psp_pa(trans_data);
1341 data.trans_len = params.trans_len;
d3d1af85
BS
1342
1343 /* The SEND_UPDATE_DATA command requires C-bit to be always set. */
238eca82
SC
1344 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1345 data.guest_address |= sev_me_mask;
1346 data.guest_len = params.guest_len;
1347 data.handle = sev->handle;
d3d1af85 1348
238eca82 1349 ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);
d3d1af85
BS
1350
1351 if (ret)
238eca82 1352 goto e_free_trans_data;
d3d1af85
BS
1353
1354 /* copy transport buffer to user space */
1355 if (copy_to_user((void __user *)(uintptr_t)params.trans_uaddr,
1356 trans_data, params.trans_len)) {
1357 ret = -EFAULT;
238eca82 1358 goto e_free_trans_data;
d3d1af85
BS
1359 }
1360
1361 /* Copy packet header to userspace. */
b4a69392
SC
1362 if (copy_to_user((void __user *)(uintptr_t)params.hdr_uaddr, hdr,
1363 params.hdr_len))
1364 ret = -EFAULT;
d3d1af85 1365
d3d1af85
BS
1366e_free_trans_data:
1367 kfree(trans_data);
1368e_free_hdr:
1369 kfree(hdr);
1370e_unpin:
1371 sev_unpin_memory(kvm, guest_page, n);
1372
1373 return ret;
1374}
1375
fddecf6a
BS
1376static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1377{
1378 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1379 struct sev_data_send_finish data;
fddecf6a
BS
1380
1381 if (!sev_guest(kvm))
1382 return -ENOTTY;
1383
238eca82
SC
1384 data.handle = sev->handle;
1385 return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
fddecf6a
BS
1386}
1387
5569e2e7
SR
1388static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
1389{
1390 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1391 struct sev_data_send_cancel data;
5569e2e7
SR
1392
1393 if (!sev_guest(kvm))
1394 return -ENOTTY;
1395
238eca82
SC
1396 data.handle = sev->handle;
1397 return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
5569e2e7
SR
1398}
1399
af43cbbf
BS
1400static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
1401{
1402 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1403 struct sev_data_receive_start start;
af43cbbf
BS
1404 struct kvm_sev_receive_start params;
1405 int *error = &argp->error;
1406 void *session_data;
1407 void *pdh_data;
1408 int ret;
1409
1410 if (!sev_guest(kvm))
1411 return -ENOTTY;
1412
1413 /* Get parameter from the userspace */
1414 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1415 sizeof(struct kvm_sev_receive_start)))
1416 return -EFAULT;
1417
1418 /* some sanity checks */
1419 if (!params.pdh_uaddr || !params.pdh_len ||
1420 !params.session_uaddr || !params.session_len)
1421 return -EINVAL;
1422
1423 pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
1424 if (IS_ERR(pdh_data))
1425 return PTR_ERR(pdh_data);
1426
1427 session_data = psp_copy_user_blob(params.session_uaddr,
1428 params.session_len);
1429 if (IS_ERR(session_data)) {
1430 ret = PTR_ERR(session_data);
1431 goto e_free_pdh;
1432 }
1433
238eca82
SC
1434 memset(&start, 0, sizeof(start));
1435 start.handle = params.handle;
1436 start.policy = params.policy;
1437 start.pdh_cert_address = __psp_pa(pdh_data);
1438 start.pdh_cert_len = params.pdh_len;
1439 start.session_address = __psp_pa(session_data);
1440 start.session_len = params.session_len;
af43cbbf
BS
1441
1442 /* create memory encryption context */
238eca82 1443 ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
af43cbbf
BS
1444 error);
1445 if (ret)
238eca82 1446 goto e_free_session;
af43cbbf
BS
1447
1448 /* Bind ASID to this guest */
238eca82 1449 ret = sev_bind_asid(kvm, start.handle, error);
f1815e0a
MZ
1450 if (ret) {
1451 sev_decommission(start.handle);
238eca82 1452 goto e_free_session;
f1815e0a 1453 }
af43cbbf 1454
238eca82 1455 params.handle = start.handle;
af43cbbf
BS
1456 if (copy_to_user((void __user *)(uintptr_t)argp->data,
1457 &params, sizeof(struct kvm_sev_receive_start))) {
1458 ret = -EFAULT;
238eca82
SC
1459 sev_unbind_asid(kvm, start.handle);
1460 goto e_free_session;
af43cbbf
BS
1461 }
1462
238eca82 1463 sev->handle = start.handle;
af43cbbf
BS
1464 sev->fd = argp->sev_fd;
1465
af43cbbf
BS
1466e_free_session:
1467 kfree(session_data);
1468e_free_pdh:
1469 kfree(pdh_data);
1470
1471 return ret;
1472}
1473
15fb7de1
BS
1474static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
1475{
1476 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1477 struct kvm_sev_receive_update_data params;
238eca82 1478 struct sev_data_receive_update_data data;
15fb7de1
BS
1479 void *hdr = NULL, *trans = NULL;
1480 struct page **guest_page;
1481 unsigned long n;
1482 int ret, offset;
1483
1484 if (!sev_guest(kvm))
1485 return -EINVAL;
1486
1487 if (copy_from_user(&params, (void __user *)(uintptr_t)argp->data,
1488 sizeof(struct kvm_sev_receive_update_data)))
1489 return -EFAULT;
1490
1491 if (!params.hdr_uaddr || !params.hdr_len ||
1492 !params.guest_uaddr || !params.guest_len ||
1493 !params.trans_uaddr || !params.trans_len)
1494 return -EINVAL;
1495
1496 /* Check if we are crossing the page boundary */
1497 offset = params.guest_uaddr & (PAGE_SIZE - 1);
f94f053a 1498 if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
15fb7de1
BS
1499 return -EINVAL;
1500
1501 hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
1502 if (IS_ERR(hdr))
1503 return PTR_ERR(hdr);
1504
1505 trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
1506 if (IS_ERR(trans)) {
1507 ret = PTR_ERR(trans);
1508 goto e_free_hdr;
1509 }
1510
238eca82
SC
1511 memset(&data, 0, sizeof(data));
1512 data.hdr_address = __psp_pa(hdr);
1513 data.hdr_len = params.hdr_len;
1514 data.trans_address = __psp_pa(trans);
1515 data.trans_len = params.trans_len;
15fb7de1
BS
1516
1517 /* Pin guest memory */
15fb7de1 1518 guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
50c03801 1519 PAGE_SIZE, &n, 1);
c7a1b2b6
SC
1520 if (IS_ERR(guest_page)) {
1521 ret = PTR_ERR(guest_page);
238eca82 1522 goto e_free_trans;
c7a1b2b6 1523 }
15fb7de1 1524
c8c340a9
MK
1525 /*
1526 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
1527 * encrypts the written data with the guest's key, and the cache may
1528 * contain dirty, unencrypted data.
1529 */
1530 sev_clflush_pages(guest_page, n);
1531
15fb7de1 1532 /* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
238eca82
SC
1533 data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
1534 data.guest_address |= sev_me_mask;
1535 data.guest_len = params.guest_len;
1536 data.handle = sev->handle;
15fb7de1 1537
238eca82 1538 ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
15fb7de1
BS
1539 &argp->error);
1540
1541 sev_unpin_memory(kvm, guest_page, n);
1542
15fb7de1
BS
1543e_free_trans:
1544 kfree(trans);
1545e_free_hdr:
1546 kfree(hdr);
1547
1548 return ret;
1549}
1550
6a443def
BS
1551static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
1552{
1553 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
238eca82 1554 struct sev_data_receive_finish data;
6a443def
BS
1555
1556 if (!sev_guest(kvm))
1557 return -ENOTTY;
1558
238eca82
SC
1559 data.handle = sev->handle;
1560 return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
6a443def
BS
1561}
1562
8e38e96a 1563static bool is_cmd_allowed_from_mirror(u32 cmd_id)
5b92b6ca
PG
1564{
1565 /*
1566 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
1567 * active mirror VMs. Also allow the debugging and status commands.
1568 */
1569 if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
1570 cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
1571 cmd_id == KVM_SEV_DBG_ENCRYPT)
1572 return true;
1573
1574 return false;
1575}
1576
501b580c 1577static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
b5663931 1578{
501b580c
PB
1579 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1580 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
c9d61dcb 1581 int r = -EBUSY;
501b580c
PB
1582
1583 if (dst_kvm == src_kvm)
1584 return -EINVAL;
b5663931
PG
1585
1586 /*
501b580c
PB
1587 * Bail if these VMs are already involved in a migration to avoid
1588 * deadlock between two VMs trying to migrate to/from each other.
b5663931 1589 */
501b580c 1590 if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
b5663931
PG
1591 return -EBUSY;
1592
c9d61dcb
PB
1593 if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
1594 goto release_dst;
b5663931 1595
c9d61dcb
PB
1596 r = -EINTR;
1597 if (mutex_lock_killable(&dst_kvm->lock))
1598 goto release_src;
597cb796 1599 if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
c9d61dcb 1600 goto unlock_dst;
b5663931 1601 return 0;
c9d61dcb
PB
1602
1603unlock_dst:
1604 mutex_unlock(&dst_kvm->lock);
1605release_src:
1606 atomic_set_release(&src_sev->migration_in_progress, 0);
1607release_dst:
1608 atomic_set_release(&dst_sev->migration_in_progress, 0);
1609 return r;
b5663931
PG
1610}
1611
501b580c 1612static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
b5663931 1613{
501b580c
PB
1614 struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
1615 struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
b5663931 1616
501b580c
PB
1617 mutex_unlock(&dst_kvm->lock);
1618 mutex_unlock(&src_kvm->lock);
1619 atomic_set_release(&dst_sev->migration_in_progress, 0);
1620 atomic_set_release(&src_sev->migration_in_progress, 0);
b5663931
PG
1621}
1622
0c2c7c06
PG
1623/* vCPU mutex subclasses. */
1624enum sev_migration_role {
1625 SEV_MIGRATION_SOURCE = 0,
1626 SEV_MIGRATION_TARGET,
1627 SEV_NR_MIGRATION_ROLES,
1628};
b5663931 1629
0c2c7c06
PG
1630static int sev_lock_vcpus_for_migration(struct kvm *kvm,
1631 enum sev_migration_role role)
b5663931
PG
1632{
1633 struct kvm_vcpu *vcpu;
46808a4c 1634 unsigned long i, j;
b5663931
PG
1635
1636 kvm_for_each_vcpu(i, vcpu, kvm) {
0c2c7c06 1637 if (mutex_lock_killable_nested(&vcpu->mutex, role))
b5663931 1638 goto out_unlock;
0c2c7c06 1639
e5380f6d
SC
1640#ifdef CONFIG_PROVE_LOCKING
1641 if (!i)
0c2c7c06
PG
1642 /*
1643 * Reset the role to one that avoids colliding with
1644 * the role used for the first vcpu mutex.
1645 */
1646 role = SEV_NR_MIGRATION_ROLES;
e5380f6d 1647 else
0c2c7c06 1648 mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
e5380f6d 1649#endif
b5663931
PG
1650 }
1651
1652 return 0;
1653
1654out_unlock:
0c2c7c06 1655
b5663931
PG
1656 kvm_for_each_vcpu(j, vcpu, kvm) {
1657 if (i == j)
1658 break;
1659
e5380f6d
SC
1660#ifdef CONFIG_PROVE_LOCKING
1661 if (j)
0c2c7c06 1662 mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
e5380f6d 1663#endif
0c2c7c06 1664
b5663931
PG
1665 mutex_unlock(&vcpu->mutex);
1666 }
1667 return -EINTR;
1668}
1669
1670static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
1671{
1672 struct kvm_vcpu *vcpu;
46808a4c 1673 unsigned long i;
0c2c7c06 1674 bool first = true;
b5663931
PG
1675
1676 kvm_for_each_vcpu(i, vcpu, kvm) {
0c2c7c06
PG
1677 if (first)
1678 first = false;
1679 else
1680 mutex_acquire(&vcpu->mutex.dep_map,
1681 SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);
1682
b5663931
PG
1683 mutex_unlock(&vcpu->mutex);
1684 }
1685}
1686
b2125513 1687static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
b5663931 1688{
b2125513
PG
1689 struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
1690 struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
6defa24d
PG
1691 struct kvm_vcpu *dst_vcpu, *src_vcpu;
1692 struct vcpu_svm *dst_svm, *src_svm;
b2125513 1693 struct kvm_sev_info *mirror;
6defa24d 1694 unsigned long i;
b2125513 1695
b5663931
PG
1696 dst->active = true;
1697 dst->asid = src->asid;
1698 dst->handle = src->handle;
1699 dst->pages_locked = src->pages_locked;
642525e3 1700 dst->enc_context_owner = src->enc_context_owner;
6defa24d 1701 dst->es_active = src->es_active;
b5663931
PG
1702
1703 src->asid = 0;
1704 src->active = false;
1705 src->handle = 0;
1706 src->pages_locked = 0;
642525e3 1707 src->enc_context_owner = NULL;
6defa24d 1708 src->es_active = false;
b5663931 1709
4674164f 1710 list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);
b2125513
PG
1711
1712 /*
1713 * If this VM has mirrors, "transfer" each mirror's refcount of the
1714 * source to the destination (this KVM). The caller holds a reference
1715 * to the source, so there's no danger of use-after-free.
1716 */
1717 list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
1718 list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
1719 kvm_get_kvm(dst_kvm);
1720 kvm_put_kvm(src_kvm);
1721 mirror->enc_context_owner = dst_kvm;
1722 }
1723
1724 /*
1725 * If this VM is a mirror, remove the old mirror from the owners list
1726 * and add the new mirror to the list.
1727 */
1728 if (is_mirroring_enc_context(dst_kvm)) {
1729 struct kvm_sev_info *owner_sev_info =
1730 &to_kvm_svm(dst->enc_context_owner)->sev_info;
1731
1732 list_del(&src->mirror_entry);
1733 list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
1734 }
b5663931 1735
6defa24d
PG
1736 kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
1737 dst_svm = to_svm(dst_vcpu);
0b020f5a 1738
6defa24d 1739 sev_init_vmcb(dst_svm);
0b020f5a 1740
6defa24d
PG
1741 if (!dst->es_active)
1742 continue;
0b020f5a 1743
6defa24d
PG
1744 /*
1745 * Note, the source is not required to have the same number of
1746 * vCPUs as the destination when migrating a vanilla SEV VM.
1747 */
f1187ef2 1748 src_vcpu = kvm_get_vcpu(src_kvm, i);
0b020f5a 1749 src_svm = to_svm(src_vcpu);
0b020f5a
PG
1750
1751 /*
1752 * Transfer VMSA and GHCB state to the destination. Nullify and
1753 * clear source fields as appropriate, the state now belongs to
1754 * the destination.
1755 */
1756 memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
1757 dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
1758 dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
1759 dst_vcpu->arch.guest_state_protected = true;
1760
1761 memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
1762 src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
1763 src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
1764 src_vcpu->arch.guest_state_protected = false;
1765 }
6defa24d
PG
1766}
1767
1768static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
1769{
1770 struct kvm_vcpu *src_vcpu;
1771 unsigned long i;
1772
1773 if (!sev_es_guest(src))
1774 return 0;
1775
1776 if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
1777 return -EINVAL;
1778
1779 kvm_for_each_vcpu(i, src_vcpu, src) {
1780 if (!src_vcpu->arch.guest_state_protected)
1781 return -EINVAL;
1782 }
0b020f5a
PG
1783
1784 return 0;
1785}
1786
559c7c75 1787int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
b5663931
PG
1788{
1789 struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
501cfe06 1790 struct kvm_sev_info *src_sev, *cg_cleanup_sev;
d2084fd8 1791 struct fd f = fdget(source_fd);
b5663931 1792 struct kvm *source_kvm;
501cfe06 1793 bool charged = false;
b5663931
PG
1794 int ret;
1795
d2084fd8
AV
1796 if (!f.file)
1797 return -EBADF;
1798
1799 if (!file_is_kvm(f.file)) {
b5663931
PG
1800 ret = -EBADF;
1801 goto out_fput;
1802 }
1803
d2084fd8 1804 source_kvm = f.file->private_data;
501b580c 1805 ret = sev_lock_two_vms(kvm, source_kvm);
b5663931
PG
1806 if (ret)
1807 goto out_fput;
1808
501b580c 1809 if (sev_guest(kvm) || !sev_guest(source_kvm)) {
b5663931 1810 ret = -EINVAL;
501b580c 1811 goto out_unlock;
b5663931
PG
1812 }
1813
1814 src_sev = &to_kvm_svm(source_kvm)->sev_info;
17d44a96 1815
b5663931 1816 dst_sev->misc_cg = get_current_misc_cg();
501cfe06 1817 cg_cleanup_sev = dst_sev;
b5663931
PG
1818 if (dst_sev->misc_cg != src_sev->misc_cg) {
1819 ret = sev_misc_cg_try_charge(dst_sev);
1820 if (ret)
501cfe06
PB
1821 goto out_dst_cgroup;
1822 charged = true;
b5663931
PG
1823 }
1824
0c2c7c06 1825 ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
b5663931
PG
1826 if (ret)
1827 goto out_dst_cgroup;
0c2c7c06 1828 ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
b5663931
PG
1829 if (ret)
1830 goto out_dst_vcpu;
1831
6defa24d
PG
1832 ret = sev_check_source_vcpus(kvm, source_kvm);
1833 if (ret)
1834 goto out_source_vcpu;
b2125513
PG
1835
1836 sev_migrate_from(kvm, source_kvm);
b5663931 1837 kvm_vm_dead(source_kvm);
501cfe06 1838 cg_cleanup_sev = src_sev;
b5663931
PG
1839 ret = 0;
1840
0b020f5a 1841out_source_vcpu:
b5663931
PG
1842 sev_unlock_vcpus_for_migration(source_kvm);
1843out_dst_vcpu:
1844 sev_unlock_vcpus_for_migration(kvm);
1845out_dst_cgroup:
501cfe06
PB
1846 /* Operates on the source on success, on the destination on failure. */
1847 if (charged)
1848 sev_misc_cg_uncharge(cg_cleanup_sev);
1849 put_misc_cg(cg_cleanup_sev->misc_cg);
1850 cg_cleanup_sev->misc_cg = NULL;
501b580c
PB
1851out_unlock:
1852 sev_unlock_two_vms(kvm, source_kvm);
b5663931 1853out_fput:
d2084fd8 1854 fdput(f);
b5663931
PG
1855 return ret;
1856}
1857
559c7c75 1858int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
eaf78265
JR
1859{
1860 struct kvm_sev_cmd sev_cmd;
1861 int r;
1862
a5c1c5aa 1863 if (!sev_enabled)
eaf78265
JR
1864 return -ENOTTY;
1865
1866 if (!argp)
1867 return 0;
1868
1869 if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
1870 return -EFAULT;
1871
1872 mutex_lock(&kvm->lock);
1873
5b92b6ca
PG
1874 /* Only the enc_context_owner handles some memory enc operations. */
1875 if (is_mirroring_enc_context(kvm) &&
8e38e96a 1876 !is_cmd_allowed_from_mirror(sev_cmd.id)) {
54526d1f
NT
1877 r = -EINVAL;
1878 goto out;
1879 }
1880
eaf78265 1881 switch (sev_cmd.id) {
9fa1521d 1882 case KVM_SEV_ES_INIT:
8d364a07 1883 if (!sev_es_enabled) {
9fa1521d
SC
1884 r = -ENOTTY;
1885 goto out;
1886 }
1887 fallthrough;
eaf78265
JR
1888 case KVM_SEV_INIT:
1889 r = sev_guest_init(kvm, &sev_cmd);
1890 break;
1891 case KVM_SEV_LAUNCH_START:
1892 r = sev_launch_start(kvm, &sev_cmd);
1893 break;
1894 case KVM_SEV_LAUNCH_UPDATE_DATA:
1895 r = sev_launch_update_data(kvm, &sev_cmd);
1896 break;
ad73109a
TL
1897 case KVM_SEV_LAUNCH_UPDATE_VMSA:
1898 r = sev_launch_update_vmsa(kvm, &sev_cmd);
1899 break;
eaf78265
JR
1900 case KVM_SEV_LAUNCH_MEASURE:
1901 r = sev_launch_measure(kvm, &sev_cmd);
1902 break;
1903 case KVM_SEV_LAUNCH_FINISH:
1904 r = sev_launch_finish(kvm, &sev_cmd);
1905 break;
1906 case KVM_SEV_GUEST_STATUS:
1907 r = sev_guest_status(kvm, &sev_cmd);
1908 break;
1909 case KVM_SEV_DBG_DECRYPT:
1910 r = sev_dbg_crypt(kvm, &sev_cmd, true);
1911 break;
1912 case KVM_SEV_DBG_ENCRYPT:
1913 r = sev_dbg_crypt(kvm, &sev_cmd, false);
1914 break;
1915 case KVM_SEV_LAUNCH_SECRET:
1916 r = sev_launch_secret(kvm, &sev_cmd);
1917 break;
2c07ded0
BS
1918 case KVM_SEV_GET_ATTESTATION_REPORT:
1919 r = sev_get_attestation_report(kvm, &sev_cmd);
1920 break;
4cfdd47d
BS
1921 case KVM_SEV_SEND_START:
1922 r = sev_send_start(kvm, &sev_cmd);
1923 break;
d3d1af85
BS
1924 case KVM_SEV_SEND_UPDATE_DATA:
1925 r = sev_send_update_data(kvm, &sev_cmd);
1926 break;
fddecf6a
BS
1927 case KVM_SEV_SEND_FINISH:
1928 r = sev_send_finish(kvm, &sev_cmd);
1929 break;
5569e2e7
SR
1930 case KVM_SEV_SEND_CANCEL:
1931 r = sev_send_cancel(kvm, &sev_cmd);
1932 break;
af43cbbf
BS
1933 case KVM_SEV_RECEIVE_START:
1934 r = sev_receive_start(kvm, &sev_cmd);
1935 break;
15fb7de1
BS
1936 case KVM_SEV_RECEIVE_UPDATE_DATA:
1937 r = sev_receive_update_data(kvm, &sev_cmd);
1938 break;
6a443def
BS
1939 case KVM_SEV_RECEIVE_FINISH:
1940 r = sev_receive_finish(kvm, &sev_cmd);
1941 break;
eaf78265
JR
1942 default:
1943 r = -EINVAL;
1944 goto out;
1945 }
1946
1947 if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
1948 r = -EFAULT;
1949
1950out:
1951 mutex_unlock(&kvm->lock);
1952 return r;
1953}
1954
559c7c75
SC
1955int sev_mem_enc_register_region(struct kvm *kvm,
1956 struct kvm_enc_region *range)
eaf78265
JR
1957{
1958 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
1959 struct enc_region *region;
1960 int ret = 0;
1961
1962 if (!sev_guest(kvm))
1963 return -ENOTTY;
1964
54526d1f
NT
1965 /* If kvm is mirroring encryption context it isn't responsible for it */
1966 if (is_mirroring_enc_context(kvm))
1967 return -EINVAL;
1968
eaf78265
JR
1969 if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
1970 return -EINVAL;
1971
1972 region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
1973 if (!region)
1974 return -ENOMEM;
1975
19a23da5 1976 mutex_lock(&kvm->lock);
eaf78265 1977 region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
a8d908b5
PB
1978 if (IS_ERR(region->pages)) {
1979 ret = PTR_ERR(region->pages);
19a23da5 1980 mutex_unlock(&kvm->lock);
eaf78265
JR
1981 goto e_free;
1982 }
1983
1984 /*
1985 * The guest may change the memory encryption attribute from C=0 -> C=1
1986 * or vice versa for this memory range. Lets make sure caches are
1987 * flushed to ensure that guest data gets written into memory with
5ef1d8c1
SC
1988 * correct C-bit. Note, this must be done before dropping kvm->lock,
1989 * as region and its array of pages can be freed by a different task
1990 * once kvm->lock is released.
eaf78265
JR
1991 */
1992 sev_clflush_pages(region->pages, region->npages);
1993
5ef1d8c1
SC
1994 region->uaddr = range->addr;
1995 region->size = range->size;
1996
1997 list_add_tail(&region->list, &sev->regions_list);
1998 mutex_unlock(&kvm->lock);
1999
eaf78265
JR
2000 return ret;
2001
2002e_free:
2003 kfree(region);
2004 return ret;
2005}
2006
2007static struct enc_region *
2008find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
2009{
2010 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2011 struct list_head *head = &sev->regions_list;
2012 struct enc_region *i;
2013
2014 list_for_each_entry(i, head, list) {
2015 if (i->uaddr == range->addr &&
2016 i->size == range->size)
2017 return i;
2018 }
2019
2020 return NULL;
2021}
2022
2023static void __unregister_enc_region_locked(struct kvm *kvm,
2024 struct enc_region *region)
2025{
2026 sev_unpin_memory(kvm, region->pages, region->npages);
2027 list_del(&region->list);
2028 kfree(region);
2029}
2030
559c7c75
SC
2031int sev_mem_enc_unregister_region(struct kvm *kvm,
2032 struct kvm_enc_region *range)
eaf78265
JR
2033{
2034 struct enc_region *region;
2035 int ret;
2036
54526d1f
NT
2037 /* If kvm is mirroring encryption context it isn't responsible for it */
2038 if (is_mirroring_enc_context(kvm))
2039 return -EINVAL;
2040
eaf78265
JR
2041 mutex_lock(&kvm->lock);
2042
2043 if (!sev_guest(kvm)) {
2044 ret = -ENOTTY;
2045 goto failed;
2046 }
2047
2048 region = find_enc_region(kvm, range);
2049 if (!region) {
2050 ret = -EINVAL;
2051 goto failed;
2052 }
2053
2054 /*
2055 * Ensure that all guest tagged cache entries are flushed before
2056 * releasing the pages back to the system for use. CLFLUSH will
2057 * not do this, so issue a WBINVD.
2058 */
2059 wbinvd_on_all_cpus();
2060
2061 __unregister_enc_region_locked(kvm, region);
2062
2063 mutex_unlock(&kvm->lock);
2064 return 0;
2065
2066failed:
2067 mutex_unlock(&kvm->lock);
2068 return ret;
2069}
2070
559c7c75 2071int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
54526d1f 2072{
d2084fd8 2073 struct fd f = fdget(source_fd);
54526d1f 2074 struct kvm *source_kvm;
bf42b02b 2075 struct kvm_sev_info *source_sev, *mirror_sev;
54526d1f
NT
2076 int ret;
2077
d2084fd8
AV
2078 if (!f.file)
2079 return -EBADF;
2080
2081 if (!file_is_kvm(f.file)) {
54526d1f 2082 ret = -EBADF;
bf42b02b 2083 goto e_source_fput;
54526d1f
NT
2084 }
2085
d2084fd8 2086 source_kvm = f.file->private_data;
bf42b02b
PB
2087 ret = sev_lock_two_vms(kvm, source_kvm);
2088 if (ret)
2089 goto e_source_fput;
54526d1f 2090
bf42b02b
PB
2091 /*
2092 * Mirrors of mirrors should work, but let's not get silly. Also
2093 * disallow out-of-band SEV/SEV-ES init if the target is already an
2094 * SEV guest, or if vCPUs have been created. KVM relies on vCPUs being
2095 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
2096 */
2097 if (sev_guest(kvm) || !sev_guest(source_kvm) ||
2098 is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
54526d1f 2099 ret = -EINVAL;
bf42b02b 2100 goto e_unlock;
54526d1f
NT
2101 }
2102
54526d1f
NT
2103 /*
2104 * The mirror kvm holds an enc_context_owner ref so its asid can't
2105 * disappear until we're done with it
2106 */
bf42b02b 2107 source_sev = &to_kvm_svm(source_kvm)->sev_info;
54526d1f 2108 kvm_get_kvm(source_kvm);
b2125513
PG
2109 mirror_sev = &to_kvm_svm(kvm)->sev_info;
2110 list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);
54526d1f 2111
54526d1f 2112 /* Set enc_context_owner and copy its encryption context over */
54526d1f 2113 mirror_sev->enc_context_owner = source_kvm;
54526d1f 2114 mirror_sev->active = true;
bf42b02b
PB
2115 mirror_sev->asid = source_sev->asid;
2116 mirror_sev->fd = source_sev->fd;
2117 mirror_sev->es_active = source_sev->es_active;
2118 mirror_sev->handle = source_sev->handle;
2b347a38 2119 INIT_LIST_HEAD(&mirror_sev->regions_list);
b2125513 2120 INIT_LIST_HEAD(&mirror_sev->mirror_vms);
bf42b02b
PB
2121 ret = 0;
2122
f43c887c
PG
2123 /*
2124 * Do not copy ap_jump_table. Since the mirror does not share the same
2125 * KVM contexts as the original, and they may have different
2126 * memory-views.
2127 */
54526d1f 2128
bf42b02b
PB
2129e_unlock:
2130 sev_unlock_two_vms(kvm, source_kvm);
2131e_source_fput:
d2084fd8 2132 fdput(f);
54526d1f
NT
2133 return ret;
2134}
2135
eaf78265
JR
2136void sev_vm_destroy(struct kvm *kvm)
2137{
2138 struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
2139 struct list_head *head = &sev->regions_list;
2140 struct list_head *pos, *q;
2141
2142 if (!sev_guest(kvm))
2143 return;
2144
b2125513
PG
2145 WARN_ON(!list_empty(&sev->mirror_vms));
2146
54526d1f
NT
2147 /* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
2148 if (is_mirroring_enc_context(kvm)) {
17d44a96 2149 struct kvm *owner_kvm = sev->enc_context_owner;
17d44a96
PB
2150
2151 mutex_lock(&owner_kvm->lock);
b2125513 2152 list_del(&sev->mirror_entry);
17d44a96
PB
2153 mutex_unlock(&owner_kvm->lock);
2154 kvm_put_kvm(owner_kvm);
54526d1f
NT
2155 return;
2156 }
2157
eaf78265
JR
2158 /*
2159 * Ensure that all guest tagged cache entries are flushed before
2160 * releasing the pages back to the system for use. CLFLUSH will
2161 * not do this, so issue a WBINVD.
2162 */
2163 wbinvd_on_all_cpus();
2164
2165 /*
2166 * if userspace was terminated before unregistering the memory regions
2167 * then lets unpin all the registered memory.
2168 */
2169 if (!list_empty(head)) {
2170 list_for_each_safe(pos, q, head) {
2171 __unregister_enc_region_locked(kvm,
2172 list_entry(pos, struct enc_region, list));
7be74942 2173 cond_resched();
eaf78265
JR
2174 }
2175 }
2176
eaf78265 2177 sev_unbind_asid(kvm, sev->handle);
7aef27f0 2178 sev_asid_free(sev);
eaf78265
JR
2179}
2180
d9db0fd6
PB
2181void __init sev_set_cpu_caps(void)
2182{
8d364a07 2183 if (!sev_enabled)
d9db0fd6 2184 kvm_cpu_cap_clear(X86_FEATURE_SEV);
8d364a07 2185 if (!sev_es_enabled)
d9db0fd6
PB
2186 kvm_cpu_cap_clear(X86_FEATURE_SEV_ES);
2187}
2188
916391a2 2189void __init sev_hardware_setup(void)
eaf78265 2190{
a479c334 2191#ifdef CONFIG_KVM_AMD_SEV
7aef27f0 2192 unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
916391a2
TL
2193 bool sev_es_supported = false;
2194 bool sev_supported = false;
2195
80d0f521 2196 if (!sev_enabled || !npt_enabled || !nrips)
e8126bda
SC
2197 goto out;
2198
c532f290
SC
2199 /*
2200 * SEV must obviously be supported in hardware. Sanity check that the
2201 * CPU supports decode assists, which is mandatory for SEV guests to
770d6aa2
SC
2202 * support instruction emulation. Ditto for flushing by ASID, as SEV
2203 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
2204 * ASID to effect a TLB flush.
c532f290
SC
2205 */
2206 if (!boot_cpu_has(X86_FEATURE_SEV) ||
770d6aa2
SC
2207 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
2208 WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
916391a2
TL
2209 goto out;
2210
2211 /* Retrieve SEV CPUID information */
2212 cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);
2213
1edc1459
TL
2214 /* Set encryption bit location for SEV-ES guests */
2215 sev_enc_bit = ebx & 0x3f;
2216
eaf78265 2217 /* Maximum number of encrypted guests supported simultaneously */
916391a2 2218 max_sev_asid = ecx;
8cb756b7 2219 if (!max_sev_asid)
916391a2 2220 goto out;
eaf78265
JR
2221
2222 /* Minimum ASID value that should be used for SEV guest */
916391a2 2223 min_sev_asid = edx;
d3d1af85 2224 sev_me_mask = 1UL << (ebx & 0x3f);
eaf78265 2225
bb2baeb2
MZ
2226 /*
2227 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
2228 * even though it's never used, so that the bitmap is indexed by the
2229 * actual ASID.
2230 */
2231 nr_asids = max_sev_asid + 1;
2232 sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
eaf78265 2233 if (!sev_asid_bitmap)
916391a2 2234 goto out;
eaf78265 2235
bb2baeb2 2236 sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
f31b88b3
SC
2237 if (!sev_reclaim_asid_bitmap) {
2238 bitmap_free(sev_asid_bitmap);
2239 sev_asid_bitmap = NULL;
916391a2 2240 goto out;
f31b88b3 2241 }
eaf78265 2242
7aef27f0 2243 sev_asid_count = max_sev_asid - min_sev_asid + 1;
106ed2ca 2244 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
916391a2 2245 sev_supported = true;
eaf78265 2246
916391a2 2247 /* SEV-ES support requested? */
8d364a07 2248 if (!sev_es_enabled)
916391a2
TL
2249 goto out;
2250
0c29397a
SC
2251 /*
2252 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
2253 * instruction stream, i.e. can't emulate in response to a #NPF and
2254 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
2255 * (the guest can then do a #VMGEXIT to request MMIO emulation).
2256 */
2257 if (!enable_mmio_caching)
2258 goto out;
2259
916391a2
TL
2260 /* Does the CPU support SEV-ES? */
2261 if (!boot_cpu_has(X86_FEATURE_SEV_ES))
2262 goto out;
2263
2264 /* Has the system been allocated ASIDs for SEV-ES? */
2265 if (min_sev_asid == 1)
2266 goto out;
2267
7aef27f0 2268 sev_es_asid_count = min_sev_asid - 1;
106ed2ca 2269 WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
916391a2
TL
2270 sev_es_supported = true;
2271
2272out:
6d1bc975
AM
2273 if (boot_cpu_has(X86_FEATURE_SEV))
2274 pr_info("SEV %s (ASIDs %u - %u)\n",
2275 sev_supported ? "enabled" : "disabled",
2276 min_sev_asid, max_sev_asid);
2277 if (boot_cpu_has(X86_FEATURE_SEV_ES))
2278 pr_info("SEV-ES %s (ASIDs %u - %u)\n",
2279 sev_es_supported ? "enabled" : "disabled",
2280 min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
2281
8d364a07
SC
2282 sev_enabled = sev_supported;
2283 sev_es_enabled = sev_es_supported;
d1f85fbe
AK
2284 if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
2285 !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
2286 sev_es_debug_swap_enabled = false;
a479c334 2287#endif
eaf78265
JR
2288}
2289
23e5092b 2290void sev_hardware_unsetup(void)
eaf78265 2291{
a5c1c5aa 2292 if (!sev_enabled)
9ef1530c
PB
2293 return;
2294
469bb32b 2295 /* No need to take sev_bitmap_lock, all VMs have been destroyed. */
bb2baeb2 2296 sev_flush_asids(1, max_sev_asid);
469bb32b 2297
eaf78265
JR
2298 bitmap_free(sev_asid_bitmap);
2299 bitmap_free(sev_reclaim_asid_bitmap);
469bb32b 2300
7aef27f0
VS
2301 misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
2302 misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
eaf78265 2303}
eaf78265 2304
b95c221c
SC
2305int sev_cpu_init(struct svm_cpu_data *sd)
2306{
a5c1c5aa 2307 if (!sev_enabled)
b95c221c
SC
2308 return 0;
2309
bb2baeb2 2310 sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
b95c221c
SC
2311 if (!sd->sev_vmcbs)
2312 return -ENOMEM;
2313
2314 return 0;
eaf78265
JR
2315}
2316
add5e2f0
TL
2317/*
2318 * Pages used by hardware to hold guest encrypted state must be flushed before
2319 * returning them to the system.
2320 */
4bbef7e8 2321static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
add5e2f0 2322{
4bbef7e8
SC
2323 int asid = to_kvm_svm(vcpu->kvm)->sev_info.asid;
2324
2325 /*
2326 * Note! The address must be a kernel address, as regular page walk
2327 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
2328 * address is non-deterministic and unsafe. This function deliberately
2329 * takes a pointer to deter passing in a user address.
2330 */
2331 unsigned long addr = (unsigned long)va;
2332
add5e2f0 2333 /*
d45829b3
MZ
2334 * If CPU enforced cache coherency for encrypted mappings of the
2335 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
2336 * flush is still needed in order to work properly with DMA devices.
add5e2f0 2337 */
d45829b3
MZ
2338 if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
2339 clflush_cache_range(va, PAGE_SIZE);
add5e2f0 2340 return;
d45829b3 2341 }
add5e2f0
TL
2342
2343 /*
4bbef7e8
SC
2344 * VM Page Flush takes a host virtual address and a guest ASID. Fall
2345 * back to WBINVD if this faults so as not to make any problems worse
2346 * by leaving stale encrypted data in the cache.
add5e2f0 2347 */
4bbef7e8
SC
2348 if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
2349 goto do_wbinvd;
add5e2f0 2350
4bbef7e8 2351 return;
add5e2f0 2352
4bbef7e8 2353do_wbinvd:
add5e2f0
TL
2354 wbinvd_on_all_cpus();
2355}
2356
683412cc
MZ
2357void sev_guest_memory_reclaimed(struct kvm *kvm)
2358{
2359 if (!sev_guest(kvm))
2360 return;
2361
2362 wbinvd_on_all_cpus();
2363}
2364
add5e2f0
TL
2365void sev_free_vcpu(struct kvm_vcpu *vcpu)
2366{
2367 struct vcpu_svm *svm;
2368
2369 if (!sev_es_guest(vcpu->kvm))
2370 return;
2371
2372 svm = to_svm(vcpu);
2373
2374 if (vcpu->arch.guest_state_protected)
4bbef7e8
SC
2375 sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);
2376
b67a4cc3 2377 __free_page(virt_to_page(svm->sev_es.vmsa));
8f423a80 2378
b67a4cc3 2379 if (svm->sev_es.ghcb_sa_free)
a655276a 2380 kvfree(svm->sev_es.ghcb_sa);
add5e2f0
TL
2381}
2382
291bd20d
TL
2383static void dump_ghcb(struct vcpu_svm *svm)
2384{
b67a4cc3 2385 struct ghcb *ghcb = svm->sev_es.ghcb;
291bd20d
TL
2386 unsigned int nbits;
2387
2388 /* Re-use the dump_invalid_vmcb module parameter */
2389 if (!dump_invalid_vmcb) {
2390 pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
2391 return;
2392 }
2393
2394 nbits = sizeof(ghcb->save.valid_bitmap) * 8;
2395
2396 pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
2397 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
2398 ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
2399 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
2400 ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
2401 pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
2402 ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
2403 pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
2404 ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
2405 pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
2406}
2407
2408static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
2409{
2410 struct kvm_vcpu *vcpu = &svm->vcpu;
b67a4cc3 2411 struct ghcb *ghcb = svm->sev_es.ghcb;
291bd20d
TL
2412
2413 /*
2414 * The GHCB protocol so far allows for the following data
2415 * to be returned:
2416 * GPRs RAX, RBX, RCX, RDX
2417 *
25009140
SC
2418 * Copy their values, even if they may not have been written during the
2419 * VM-Exit. It's the guest's responsibility to not consume random data.
291bd20d 2420 */
25009140
SC
2421 ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
2422 ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
2423 ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
2424 ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
291bd20d
TL
2425}
2426
2427static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
2428{
2429 struct vmcb_control_area *control = &svm->vmcb->control;
2430 struct kvm_vcpu *vcpu = &svm->vcpu;
b67a4cc3 2431 struct ghcb *ghcb = svm->sev_es.ghcb;
291bd20d
TL
2432 u64 exit_code;
2433
2434 /*
2435 * The GHCB protocol so far allows for the following data
2436 * to be supplied:
2437 * GPRs RAX, RBX, RCX, RDX
2438 * XCR0
2439 * CPL
2440 *
2441 * VMMCALL allows the guest to provide extra registers. KVM also
2442 * expects RSI for hypercalls, so include that, too.
2443 *
2444 * Copy their values to the appropriate location if supplied.
2445 */
2446 memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));
2447
4e15a0dd
PB
2448 BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
2449 memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));
291bd20d 2450
4e15a0dd
PB
2451 vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
2452 vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
2453 vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
2454 vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
2455 vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);
291bd20d 2456
4e15a0dd
PB
2457 svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);
2458
2459 if (kvm_ghcb_xcr0_is_valid(svm)) {
291bd20d
TL
2460 vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
2461 kvm_update_cpuid_runtime(vcpu);
2462 }
2463
2464 /* Copy the GHCB exit information into the VMCB fields */
2465 exit_code = ghcb_get_sw_exit_code(ghcb);
2466 control->exit_code = lower_32_bits(exit_code);
2467 control->exit_code_hi = upper_32_bits(exit_code);
2468 control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
2469 control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
4e15a0dd 2470 svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);
291bd20d
TL
2471
2472 /* Clear the valid entries fields */
2473 memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
2474}
2475
7588dbce
PB
2476static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
2477{
2478 return (((u64)control->exit_code_hi) << 32) | control->exit_code;
2479}
2480
aa9f5841 2481static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
291bd20d 2482{
7588dbce
PB
2483 struct vmcb_control_area *control = &svm->vmcb->control;
2484 struct kvm_vcpu *vcpu = &svm->vcpu;
ad5b3532
TL
2485 u64 exit_code;
2486 u64 reason;
291bd20d 2487
291bd20d 2488 /*
ad5b3532 2489 * Retrieve the exit code now even though it may not be marked valid
291bd20d
TL
2490 * as it could help with debugging.
2491 */
7588dbce 2492 exit_code = kvm_ghcb_get_sw_exit_code(control);
291bd20d 2493
ad5b3532 2494 /* Only GHCB Usage code 0 is supported */
63dbc67c 2495 if (svm->sev_es.ghcb->ghcb_usage) {
ad5b3532
TL
2496 reason = GHCB_ERR_INVALID_USAGE;
2497 goto vmgexit_err;
2498 }
2499
2500 reason = GHCB_ERR_MISSING_INPUT;
2501
4e15a0dd
PB
2502 if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
2503 !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
2504 !kvm_ghcb_sw_exit_info_2_is_valid(svm))
291bd20d
TL
2505 goto vmgexit_err;
2506
7588dbce 2507 switch (exit_code) {
291bd20d
TL
2508 case SVM_EXIT_READ_DR7:
2509 break;
2510 case SVM_EXIT_WRITE_DR7:
4e15a0dd 2511 if (!kvm_ghcb_rax_is_valid(svm))
291bd20d
TL
2512 goto vmgexit_err;
2513 break;
2514 case SVM_EXIT_RDTSC:
2515 break;
2516 case SVM_EXIT_RDPMC:
4e15a0dd 2517 if (!kvm_ghcb_rcx_is_valid(svm))
291bd20d
TL
2518 goto vmgexit_err;
2519 break;
2520 case SVM_EXIT_CPUID:
4e15a0dd
PB
2521 if (!kvm_ghcb_rax_is_valid(svm) ||
2522 !kvm_ghcb_rcx_is_valid(svm))
291bd20d 2523 goto vmgexit_err;
7588dbce 2524 if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
4e15a0dd 2525 if (!kvm_ghcb_xcr0_is_valid(svm))
291bd20d
TL
2526 goto vmgexit_err;
2527 break;
2528 case SVM_EXIT_INVD:
2529 break;
2530 case SVM_EXIT_IOIO:
7588dbce 2531 if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
4e15a0dd 2532 if (!kvm_ghcb_sw_scratch_is_valid(svm))
291bd20d 2533 goto vmgexit_err;
7ed9abfe 2534 } else {
7588dbce 2535 if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
4e15a0dd 2536 if (!kvm_ghcb_rax_is_valid(svm))
7ed9abfe
TL
2537 goto vmgexit_err;
2538 }
291bd20d
TL
2539 break;
2540 case SVM_EXIT_MSR:
4e15a0dd 2541 if (!kvm_ghcb_rcx_is_valid(svm))
291bd20d 2542 goto vmgexit_err;
7588dbce 2543 if (control->exit_info_1) {
4e15a0dd
PB
2544 if (!kvm_ghcb_rax_is_valid(svm) ||
2545 !kvm_ghcb_rdx_is_valid(svm))
291bd20d
TL
2546 goto vmgexit_err;
2547 }
2548 break;
2549 case SVM_EXIT_VMMCALL:
4e15a0dd
PB
2550 if (!kvm_ghcb_rax_is_valid(svm) ||
2551 !kvm_ghcb_cpl_is_valid(svm))
291bd20d
TL
2552 goto vmgexit_err;
2553 break;
2554 case SVM_EXIT_RDTSCP:
2555 break;
2556 case SVM_EXIT_WBINVD:
2557 break;
2558 case SVM_EXIT_MONITOR:
4e15a0dd
PB
2559 if (!kvm_ghcb_rax_is_valid(svm) ||
2560 !kvm_ghcb_rcx_is_valid(svm) ||
2561 !kvm_ghcb_rdx_is_valid(svm))
291bd20d
TL
2562 goto vmgexit_err;
2563 break;
2564 case SVM_EXIT_MWAIT:
4e15a0dd
PB
2565 if (!kvm_ghcb_rax_is_valid(svm) ||
2566 !kvm_ghcb_rcx_is_valid(svm))
291bd20d
TL
2567 goto vmgexit_err;
2568 break;
8f423a80
TL
2569 case SVM_VMGEXIT_MMIO_READ:
2570 case SVM_VMGEXIT_MMIO_WRITE:
4e15a0dd 2571 if (!kvm_ghcb_sw_scratch_is_valid(svm))
8f423a80
TL
2572 goto vmgexit_err;
2573 break;
4444dfe4 2574 case SVM_VMGEXIT_NMI_COMPLETE:
647daca2 2575 case SVM_VMGEXIT_AP_HLT_LOOP:
8640ca58 2576 case SVM_VMGEXIT_AP_JUMP_TABLE:
291bd20d
TL
2577 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
2578 break;
2579 default:
ad5b3532 2580 reason = GHCB_ERR_INVALID_EVENT;
291bd20d
TL
2581 goto vmgexit_err;
2582 }
2583
aa9f5841 2584 return 0;
291bd20d
TL
2585
2586vmgexit_err:
ad5b3532 2587 if (reason == GHCB_ERR_INVALID_USAGE) {
291bd20d 2588 vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
63dbc67c 2589 svm->sev_es.ghcb->ghcb_usage);
ad5b3532
TL
2590 } else if (reason == GHCB_ERR_INVALID_EVENT) {
2591 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
2592 exit_code);
291bd20d 2593 } else {
ad5b3532 2594 vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
291bd20d
TL
2595 exit_code);
2596 dump_ghcb(svm);
2597 }
2598
63dbc67c
PB
2599 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2600 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);
291bd20d 2601
aa9f5841
SC
2602 /* Resume the guest to "return" the error code. */
2603 return 1;
291bd20d
TL
2604}
2605
ce7ea0cf 2606void sev_es_unmap_ghcb(struct vcpu_svm *svm)
291bd20d 2607{
b67a4cc3 2608 if (!svm->sev_es.ghcb)
291bd20d
TL
2609 return;
2610
b67a4cc3 2611 if (svm->sev_es.ghcb_sa_free) {
8f423a80
TL
2612 /*
2613 * The scratch area lives outside the GHCB, so there is a
2614 * buffer that, depending on the operation performed, may
2615 * need to be synced, then freed.
2616 */
b67a4cc3 2617 if (svm->sev_es.ghcb_sa_sync) {
8f423a80 2618 kvm_write_guest(svm->vcpu.kvm,
4e15a0dd 2619 svm->sev_es.sw_scratch,
b67a4cc3
PG
2620 svm->sev_es.ghcb_sa,
2621 svm->sev_es.ghcb_sa_len);
2622 svm->sev_es.ghcb_sa_sync = false;
8f423a80
TL
2623 }
2624
a655276a 2625 kvfree(svm->sev_es.ghcb_sa);
b67a4cc3
PG
2626 svm->sev_es.ghcb_sa = NULL;
2627 svm->sev_es.ghcb_sa_free = false;
8f423a80
TL
2628 }
2629
b67a4cc3 2630 trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);
d523ab6b 2631
291bd20d
TL
2632 sev_es_sync_to_ghcb(svm);
2633
b67a4cc3
PG
2634 kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
2635 svm->sev_es.ghcb = NULL;
291bd20d
TL
2636}
2637
eaf78265
JR
2638void pre_sev_run(struct vcpu_svm *svm, int cpu)
2639{
73412dfe 2640 struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
eaf78265
JR
2641 int asid = sev_get_asid(svm->vcpu.kvm);
2642
2643 /* Assign the asid allocated with this SEV guest */
dee734a7 2644 svm->asid = asid;
eaf78265
JR
2645
2646 /*
2647 * Flush guest TLB:
2648 *
2649 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
2650 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
2651 */
2652 if (sd->sev_vmcbs[asid] == svm->vmcb &&
8a14fe4f 2653 svm->vcpu.arch.last_vmentry_cpu == cpu)
eaf78265
JR
2654 return;
2655
eaf78265
JR
2656 sd->sev_vmcbs[asid] = svm->vmcb;
2657 svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
06e7852c 2658 vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
eaf78265 2659}
291bd20d 2660
8f423a80 2661#define GHCB_SCRATCH_AREA_LIMIT (16ULL * PAGE_SIZE)
aa9f5841 2662static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
8f423a80
TL
2663{
2664 struct vmcb_control_area *control = &svm->vmcb->control;
8f423a80
TL
2665 u64 ghcb_scratch_beg, ghcb_scratch_end;
2666 u64 scratch_gpa_beg, scratch_gpa_end;
2667 void *scratch_va;
2668
4e15a0dd 2669 scratch_gpa_beg = svm->sev_es.sw_scratch;
8f423a80
TL
2670 if (!scratch_gpa_beg) {
2671 pr_err("vmgexit: scratch gpa not provided\n");
ad5b3532 2672 goto e_scratch;
8f423a80
TL
2673 }
2674
2675 scratch_gpa_end = scratch_gpa_beg + len;
2676 if (scratch_gpa_end < scratch_gpa_beg) {
2677 pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
2678 len, scratch_gpa_beg);
ad5b3532 2679 goto e_scratch;
8f423a80
TL
2680 }
2681
2682 if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
2683 /* Scratch area begins within GHCB */
2684 ghcb_scratch_beg = control->ghcb_gpa +
2685 offsetof(struct ghcb, shared_buffer);
2686 ghcb_scratch_end = control->ghcb_gpa +
d08b4858 2687 offsetof(struct ghcb, reserved_0xff0);
8f423a80
TL
2688
2689 /*
2690 * If the scratch area begins within the GHCB, it must be
2691 * completely contained in the GHCB shared buffer area.
2692 */
2693 if (scratch_gpa_beg < ghcb_scratch_beg ||
2694 scratch_gpa_end > ghcb_scratch_end) {
2695 pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
2696 scratch_gpa_beg, scratch_gpa_end);
ad5b3532 2697 goto e_scratch;
8f423a80
TL
2698 }
2699
b67a4cc3 2700 scratch_va = (void *)svm->sev_es.ghcb;
8f423a80
TL
2701 scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
2702 } else {
2703 /*
2704 * The guest memory must be read into a kernel buffer, so
2705 * limit the size
2706 */
2707 if (len > GHCB_SCRATCH_AREA_LIMIT) {
2708 pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
2709 len, GHCB_SCRATCH_AREA_LIMIT);
ad5b3532 2710 goto e_scratch;
8f423a80 2711 }
a655276a 2712 scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
8f423a80 2713 if (!scratch_va)
aa9f5841 2714 return -ENOMEM;
8f423a80
TL
2715
2716 if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
2717 /* Unable to copy scratch area from guest */
2718 pr_err("vmgexit: kvm_read_guest for scratch area failed\n");
2719
a655276a 2720 kvfree(scratch_va);
aa9f5841 2721 return -EFAULT;
8f423a80
TL
2722 }
2723
2724 /*
2725 * The scratch area is outside the GHCB. The operation will
2726 * dictate whether the buffer needs to be synced before running
2727 * the vCPU next time (i.e. a read was requested so the data
2728 * must be written back to the guest memory).
2729 */
b67a4cc3
PG
2730 svm->sev_es.ghcb_sa_sync = sync;
2731 svm->sev_es.ghcb_sa_free = true;
8f423a80
TL
2732 }
2733
b67a4cc3
PG
2734 svm->sev_es.ghcb_sa = scratch_va;
2735 svm->sev_es.ghcb_sa_len = len;
8f423a80 2736
aa9f5841 2737 return 0;
ad5b3532
TL
2738
2739e_scratch:
63dbc67c
PB
2740 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2741 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);
ad5b3532 2742
aa9f5841 2743 return 1;
8f423a80
TL
2744}
2745
d3694667
TL
2746static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
2747 unsigned int pos)
2748{
2749 svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
2750 svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
2751}
2752
2753static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
2754{
2755 return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
2756}
2757
1edc1459
TL
2758static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
2759{
2760 svm->vmcb->control.ghcb_gpa = value;
2761}
2762
291bd20d
TL
2763static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
2764{
1edc1459 2765 struct vmcb_control_area *control = &svm->vmcb->control;
d3694667 2766 struct kvm_vcpu *vcpu = &svm->vcpu;
1edc1459 2767 u64 ghcb_info;
d3694667 2768 int ret = 1;
1edc1459
TL
2769
2770 ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;
2771
59e38b58
TL
2772 trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
2773 control->ghcb_gpa);
2774
1edc1459
TL
2775 switch (ghcb_info) {
2776 case GHCB_MSR_SEV_INFO_REQ:
2777 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
2778 GHCB_VERSION_MIN,
2779 sev_enc_bit));
2780 break;
d3694667
TL
2781 case GHCB_MSR_CPUID_REQ: {
2782 u64 cpuid_fn, cpuid_reg, cpuid_value;
2783
2784 cpuid_fn = get_ghcb_msr_bits(svm,
2785 GHCB_MSR_CPUID_FUNC_MASK,
2786 GHCB_MSR_CPUID_FUNC_POS);
2787
2788 /* Initialize the registers needed by the CPUID intercept */
2789 vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
2790 vcpu->arch.regs[VCPU_REGS_RCX] = 0;
2791
63129754 2792 ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
d3694667 2793 if (!ret) {
ad5b3532 2794 /* Error, keep GHCB MSR value as-is */
d3694667
TL
2795 break;
2796 }
2797
2798 cpuid_reg = get_ghcb_msr_bits(svm,
2799 GHCB_MSR_CPUID_REG_MASK,
2800 GHCB_MSR_CPUID_REG_POS);
2801 if (cpuid_reg == 0)
2802 cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
2803 else if (cpuid_reg == 1)
2804 cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
2805 else if (cpuid_reg == 2)
2806 cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
2807 else
2808 cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];
2809
2810 set_ghcb_msr_bits(svm, cpuid_value,
2811 GHCB_MSR_CPUID_VALUE_MASK,
2812 GHCB_MSR_CPUID_VALUE_POS);
2813
2814 set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
2815 GHCB_MSR_INFO_MASK,
2816 GHCB_MSR_INFO_POS);
2817 break;
2818 }
e1d71116
TL
2819 case GHCB_MSR_TERM_REQ: {
2820 u64 reason_set, reason_code;
2821
2822 reason_set = get_ghcb_msr_bits(svm,
2823 GHCB_MSR_TERM_REASON_SET_MASK,
2824 GHCB_MSR_TERM_REASON_SET_POS);
2825 reason_code = get_ghcb_msr_bits(svm,
2826 GHCB_MSR_TERM_REASON_MASK,
2827 GHCB_MSR_TERM_REASON_POS);
2828 pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
2829 reason_set, reason_code);
ad5b3532 2830
c24a950e 2831 vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
71d7c575 2832 vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
c24a950e 2833 vcpu->run->system_event.ndata = 1;
71d7c575 2834 vcpu->run->system_event.data[0] = control->ghcb_gpa;
c24a950e
PG
2835
2836 return 0;
e1d71116 2837 }
1edc1459 2838 default:
ad5b3532
TL
2839 /* Error, keep GHCB MSR value as-is */
2840 break;
1edc1459
TL
2841 }
2842
59e38b58
TL
2843 trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
2844 control->ghcb_gpa, ret);
2845
d3694667 2846 return ret;
291bd20d
TL
2847}
2848
63129754 2849int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
291bd20d 2850{
63129754 2851 struct vcpu_svm *svm = to_svm(vcpu);
291bd20d
TL
2852 struct vmcb_control_area *control = &svm->vmcb->control;
2853 u64 ghcb_gpa, exit_code;
291bd20d
TL
2854 int ret;
2855
2856 /* Validate the GHCB */
2857 ghcb_gpa = control->ghcb_gpa;
2858 if (ghcb_gpa & GHCB_MSR_INFO_MASK)
2859 return sev_handle_vmgexit_msr_protocol(svm);
2860
2861 if (!ghcb_gpa) {
63129754 2862 vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");
ad5b3532
TL
2863
2864 /* Without a GHCB, just return right back to the guest */
2865 return 1;
291bd20d
TL
2866 }
2867
b67a4cc3 2868 if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
291bd20d 2869 /* Unable to map GHCB from guest */
63129754 2870 vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
291bd20d 2871 ghcb_gpa);
ad5b3532
TL
2872
2873 /* Without a GHCB, just return right back to the guest */
2874 return 1;
291bd20d
TL
2875 }
2876
b67a4cc3 2877 svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;
291bd20d 2878
63dbc67c 2879 trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);
d523ab6b 2880
4e15a0dd 2881 sev_es_sync_from_ghcb(svm);
aa9f5841
SC
2882 ret = sev_es_validate_vmgexit(svm);
2883 if (ret)
2884 return ret;
291bd20d 2885
63dbc67c
PB
2886 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
2887 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);
291bd20d 2888
7588dbce 2889 exit_code = kvm_ghcb_get_sw_exit_code(control);
291bd20d 2890 switch (exit_code) {
8f423a80 2891 case SVM_VMGEXIT_MMIO_READ:
aa9f5841
SC
2892 ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
2893 if (ret)
8f423a80
TL
2894 break;
2895
63129754 2896 ret = kvm_sev_es_mmio_read(vcpu,
8f423a80
TL
2897 control->exit_info_1,
2898 control->exit_info_2,
b67a4cc3 2899 svm->sev_es.ghcb_sa);
8f423a80
TL
2900 break;
2901 case SVM_VMGEXIT_MMIO_WRITE:
aa9f5841
SC
2902 ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
2903 if (ret)
8f423a80
TL
2904 break;
2905
63129754 2906 ret = kvm_sev_es_mmio_write(vcpu,
8f423a80
TL
2907 control->exit_info_1,
2908 control->exit_info_2,
b67a4cc3 2909 svm->sev_es.ghcb_sa);
8f423a80 2910 break;
4444dfe4 2911 case SVM_VMGEXIT_NMI_COMPLETE:
389fbbec
SC
2912 ++vcpu->stat.nmi_window_exits;
2913 svm->nmi_masked = false;
2914 kvm_make_request(KVM_REQ_EVENT, vcpu);
2915 ret = 1;
4444dfe4 2916 break;
647daca2 2917 case SVM_VMGEXIT_AP_HLT_LOOP:
63129754 2918 ret = kvm_emulate_ap_reset_hold(vcpu);
647daca2 2919 break;
8640ca58 2920 case SVM_VMGEXIT_AP_JUMP_TABLE: {
63129754 2921 struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
8640ca58
TL
2922
2923 switch (control->exit_info_1) {
2924 case 0:
2925 /* Set AP jump table address */
2926 sev->ap_jump_table = control->exit_info_2;
2927 break;
2928 case 1:
2929 /* Get AP jump table address */
63dbc67c 2930 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
8640ca58
TL
2931 break;
2932 default:
2933 pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
2934 control->exit_info_1);
63dbc67c
PB
2935 ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
2936 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
8640ca58
TL
2937 }
2938
aa9f5841 2939 ret = 1;
8640ca58
TL
2940 break;
2941 }
291bd20d 2942 case SVM_VMGEXIT_UNSUPPORTED_EVENT:
63129754 2943 vcpu_unimpl(vcpu,
291bd20d
TL
2944 "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
2945 control->exit_info_1, control->exit_info_2);
75236f5f 2946 ret = -EINVAL;
291bd20d
TL
2947 break;
2948 default:
63129754 2949 ret = svm_invoke_exit_handler(vcpu, exit_code);
291bd20d
TL
2950 }
2951
2952 return ret;
2953}
7ed9abfe
TL
2954
2955int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
2956{
9b0971ca
PB
2957 int count;
2958 int bytes;
aa9f5841 2959 int r;
9b0971ca
PB
2960
2961 if (svm->vmcb->control.exit_info_2 > INT_MAX)
2962 return -EINVAL;
2963
2964 count = svm->vmcb->control.exit_info_2;
2965 if (unlikely(check_mul_overflow(count, size, &bytes)))
2966 return -EINVAL;
2967
aa9f5841
SC
2968 r = setup_vmgexit_scratch(svm, in, bytes);
2969 if (r)
2970 return r;
7ed9abfe 2971
b67a4cc3 2972 return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
1f058331 2973 count, in);
7ed9abfe 2974}
376c6d28 2975
e0096d01
TL
2976static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
2977{
2978 struct kvm_vcpu *vcpu = &svm->vcpu;
2979
2980 if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
2981 bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
2982 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);
2983
2984 set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
2985 }
a26b7cd2
MR
2986
2987 /*
2988 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
2989 * the host/guest supports its use.
2990 *
2991 * guest_can_use() checks a number of requirements on the host/guest to
2992 * ensure that MSR_IA32_XSS is available, but it might report true even
2993 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
2994 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
2995 * to further check that the guest CPUID actually supports
2996 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
2997 * guests will still get intercepted and caught in the normal
2998 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
2999 */
3000 if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
3001 guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
3002 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
3003 else
3004 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
e0096d01
TL
3005}
3006
3007void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
3008{
3009 struct kvm_vcpu *vcpu = &svm->vcpu;
3010 struct kvm_cpuid_entry2 *best;
3011
3012 /* For sev guests, the memory encryption bit is not reserved in CR3. */
3013 best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
3014 if (best)
3015 vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));
3016
3017 if (sev_es_guest(svm->vcpu.kvm))
3018 sev_es_vcpu_after_set_cpuid(svm);
3019}
3020
6defa24d 3021static void sev_es_init_vmcb(struct vcpu_svm *svm)
376c6d28 3022{
c2690b5f 3023 struct vmcb *vmcb = svm->vmcb01.ptr;
376c6d28
TL
3024 struct kvm_vcpu *vcpu = &svm->vcpu;
3025
3026 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;
3027 svm->vmcb->control.virt_ext |= LBR_CTL_ENABLE_MASK;
3028
3029 /*
3030 * An SEV-ES guest requires a VMSA area that is a separate from the
3031 * VMCB page. Do not include the encryption mask on the VMSA physical
1952e74d
SC
3032 * address since hardware will access it using the guest key. Note,
3033 * the VMSA will be NULL if this vCPU is the destination for intrahost
3034 * migration, and will be copied later.
376c6d28 3035 */
1952e74d
SC
3036 if (svm->sev_es.vmsa)
3037 svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);
376c6d28
TL
3038
3039 /* Can't intercept CR register access, HV can't modify CR registers */
3040 svm_clr_intercept(svm, INTERCEPT_CR0_READ);
3041 svm_clr_intercept(svm, INTERCEPT_CR4_READ);
3042 svm_clr_intercept(svm, INTERCEPT_CR8_READ);
3043 svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
3044 svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
3045 svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);
3046
3047 svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);
3048
3049 /* Track EFER/CR register changes */
3050 svm_set_intercept(svm, TRAP_EFER_WRITE);
3051 svm_set_intercept(svm, TRAP_CR0_WRITE);
3052 svm_set_intercept(svm, TRAP_CR4_WRITE);
3053 svm_set_intercept(svm, TRAP_CR8_WRITE);
3054
c2690b5f 3055 vmcb->control.intercepts[INTERCEPT_DR] = 0;
d1f85fbe
AK
3056 if (!sev_es_debug_swap_enabled) {
3057 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
3058 vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
3059 recalc_intercepts(svm);
90cbf6d9
AK
3060 } else {
3061 /*
3062 * Disable #DB intercept iff DebugSwap is enabled. KVM doesn't
3063 * allow debugging SEV-ES guests, and enables DebugSwap iff
3064 * NO_NESTED_DATA_BP is supported, so there's no reason to
3065 * intercept #DB when DebugSwap is enabled. For simplicity
3066 * with respect to guest debug, intercept #DB for other VMs
3067 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
3068 * guest can't DoS the CPU with infinite #DB vectoring.
3069 */
3070 clr_exception_intercept(svm, DB_VECTOR);
d1f85fbe 3071 }
376c6d28
TL
3072
3073 /* Can't intercept XSETBV, HV can't modify XCR0 directly */
3074 svm_clr_intercept(svm, INTERCEPT_XSETBV);
3075
3076 /* Clear intercepts on selected MSRs */
3077 set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
3078 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
3079 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
3080 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
3081 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
3082 set_msr_interception(vcpu, svm->msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
3083}
3084
6defa24d
PG
3085void sev_init_vmcb(struct vcpu_svm *svm)
3086{
3087 svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
3088 clr_exception_intercept(svm, UD_VECTOR);
3089
29de732c
AK
3090 /*
3091 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
3092 * KVM can't decrypt guest memory to decode the faulting instruction.
3093 */
3094 clr_exception_intercept(svm, GP_VECTOR);
3095
6defa24d
PG
3096 if (sev_es_guest(svm->vcpu.kvm))
3097 sev_es_init_vmcb(svm);
3098}
3099
9ebe530b 3100void sev_es_vcpu_reset(struct vcpu_svm *svm)
376c6d28
TL
3101{
3102 /*
9ebe530b
SC
3103 * Set the GHCB MSR value as per the GHCB specification when emulating
3104 * vCPU RESET for an SEV-ES guest.
376c6d28
TL
3105 */
3106 set_ghcb_msr(svm, GHCB_MSR_SEV_INFO(GHCB_VERSION_MAX,
3107 GHCB_VERSION_MIN,
3108 sev_enc_bit));
3109}
86137773 3110
3dd2775b 3111void sev_es_prepare_switch_to_guest(struct sev_es_save_area *hostsa)
86137773 3112{
86137773 3113 /*
f8d808ed
SC
3114 * All host state for SEV-ES guests is categorized into three swap types
3115 * based on how it is handled by hardware during a world switch:
3116 *
3117 * A: VMRUN: Host state saved in host save area
3118 * VMEXIT: Host state loaded from host save area
3119 *
3120 * B: VMRUN: Host state _NOT_ saved in host save area
3121 * VMEXIT: Host state loaded from host save area
3122 *
3123 * C: VMRUN: Host state _NOT_ saved in host save area
3124 * VMEXIT: Host state initialized to default(reset) values
3125 *
3126 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
3127 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
3128 * by common SVM code).
86137773 3129 */
86137773 3130 hostsa->xcr0 = xgetbv(XCR_XFEATURE_ENABLED_MASK);
86137773 3131 hostsa->pkru = read_pkru();
86137773 3132 hostsa->xss = host_xss;
d1f85fbe
AK
3133
3134 /*
3135 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
3136 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
3137 * saves and loads debug registers (Type-A).
3138 */
3139 if (sev_es_debug_swap_enabled) {
3140 hostsa->dr0 = native_get_debugreg(0);
3141 hostsa->dr1 = native_get_debugreg(1);
3142 hostsa->dr2 = native_get_debugreg(2);
3143 hostsa->dr3 = native_get_debugreg(3);
3144 hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
3145 hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
3146 hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
3147 hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
3148 }
86137773
TL
3149}
3150
647daca2
TL
3151void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
3152{
3153 struct vcpu_svm *svm = to_svm(vcpu);
3154
3155 /* First SIPI: Use the values as initially set by the VMM */
b67a4cc3
PG
3156 if (!svm->sev_es.received_first_sipi) {
3157 svm->sev_es.received_first_sipi = true;
647daca2
TL
3158 return;
3159 }
3160
3161 /*
3162 * Subsequent SIPI: Return from an AP Reset Hold VMGEXIT, where
3163 * the guest will set the CS and RIP. Set SW_EXIT_INFO_2 to a
3164 * non-zero value.
3165 */
b67a4cc3 3166 if (!svm->sev_es.ghcb)
a3ba26ec
TL
3167 return;
3168
b67a4cc3 3169 ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
647daca2 3170}
75253db4
BS
3171
3172struct page *snp_safe_alloc_page(struct kvm_vcpu *vcpu)
3173{
3174 unsigned long pfn;
3175 struct page *p;
3176
3177 if (!cpu_feature_enabled(X86_FEATURE_SEV_SNP))
3178 return alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
3179
3180 /*
3181 * Allocate an SNP-safe page to workaround the SNP erratum where
3182 * the CPU will incorrectly signal an RMP violation #PF if a
3183 * hugepage (2MB or 1GB) collides with the RMP entry of a
3184 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
3185 *
3186 * Allocate one extra page, choose a page which is not
3187 * 2MB-aligned, and free the other.
3188 */
3189 p = alloc_pages(GFP_KERNEL_ACCOUNT | __GFP_ZERO, 1);
3190 if (!p)
3191 return NULL;
3192
3193 split_page(p, 1);
3194
3195 pfn = page_to_pfn(p);
3196 if (IS_ALIGNED(pfn, PTRS_PER_PMD))
3197 __free_page(p++);
3198 else
3199 __free_page(p + 1);
3200
3201 return p;
3202}