Merge tag 'vfs-6.7.misc' of gitolite.kernel.org:pub/scm/linux/kernel/git/vfs/vfs
[linux-block.git] / arch / x86 / kvm / svm / avic.c
CommitLineData
ef0f6496
JR
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * AMD SVM support
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
9 *
10 * Authors:
11 * Yaniv Kamay <yaniv@qumranet.com>
12 * Avi Kivity <avi@qumranet.com>
13 */
14
8d20bd63 15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
ef0f6496
JR
16
17#include <linux/kvm_types.h>
18#include <linux/hashtable.h>
19#include <linux/amd-iommu.h>
20#include <linux/kvm_host.h>
21
22#include <asm/irq_remapping.h>
23
24#include "trace.h"
25#include "lapic.h"
26#include "x86.h"
27#include "irq.h"
28#include "svm.h"
29
59997159
SS
30/*
31 * Encode the arbitrary VM ID and the vCPU's default APIC ID, i.e the vCPU ID,
32 * into the GATag so that KVM can retrieve the correct vCPU from a GALog entry
33 * if an interrupt can't be delivered, e.g. because the vCPU isn't running.
34 *
35 * For the vCPU ID, use however many bits are currently allowed for the max
36 * guest physical APIC ID (limited by the size of the physical ID table), and
37 * use whatever bits remain to assign arbitrary AVIC IDs to VMs. Note, the
38 * size of the GATag is defined by hardware (32 bits), but is an opaque value
39 * as far as hardware is concerned.
40 */
41#define AVIC_VCPU_ID_MASK AVIC_PHYSICAL_MAX_INDEX_MASK
ef0f6496 42
59997159
SS
43#define AVIC_VM_ID_SHIFT HWEIGHT32(AVIC_PHYSICAL_MAX_INDEX_MASK)
44#define AVIC_VM_ID_MASK (GENMASK(31, AVIC_VM_ID_SHIFT) >> AVIC_VM_ID_SHIFT)
ef0f6496 45
59997159 46#define AVIC_GATAG_TO_VMID(x) ((x >> AVIC_VM_ID_SHIFT) & AVIC_VM_ID_MASK)
ef0f6496
JR
47#define AVIC_GATAG_TO_VCPUID(x) (x & AVIC_VCPU_ID_MASK)
48
c281794e
SC
49#define __AVIC_GATAG(vm_id, vcpu_id) ((((vm_id) & AVIC_VM_ID_MASK) << AVIC_VM_ID_SHIFT) | \
50 ((vcpu_id) & AVIC_VCPU_ID_MASK))
51#define AVIC_GATAG(vm_id, vcpu_id) \
52({ \
53 u32 ga_tag = __AVIC_GATAG(vm_id, vcpu_id); \
54 \
55 WARN_ON_ONCE(AVIC_GATAG_TO_VCPUID(ga_tag) != (vcpu_id)); \
56 WARN_ON_ONCE(AVIC_GATAG_TO_VMID(ga_tag) != (vm_id)); \
57 ga_tag; \
58})
59
60static_assert(__AVIC_GATAG(AVIC_VM_ID_MASK, AVIC_VCPU_ID_MASK) == -1u);
59997159 61
4bdec12a
SS
62static bool force_avic;
63module_param_unsafe(force_avic, bool, 0444);
64
ef0f6496
JR
65/* Note:
66 * This hash table is used to map VM_ID to a struct kvm_svm,
67 * when handling AMD IOMMU GALOG notification to schedule in
68 * a particular vCPU.
69 */
70#define SVM_VM_DATA_HASH_BITS 8
71static DEFINE_HASHTABLE(svm_vm_data_hash, SVM_VM_DATA_HASH_BITS);
72static u32 next_vm_id = 0;
73static bool next_vm_id_wrapped = 0;
74static DEFINE_SPINLOCK(svm_vm_data_hash_lock);
f628a34a 75bool x2avic_enabled;
ef0f6496
JR
76
77/*
78 * This is a wrapper of struct amd_iommu_ir_data.
79 */
80struct amd_svm_iommu_ir {
81 struct list_head node; /* Used by SVM for per-vcpu ir_list */
82 void *data; /* Storing pointer to struct amd_ir_data */
83};
84
4d1d7942
SS
85static void avic_activate_vmcb(struct vcpu_svm *svm)
86{
87 struct vmcb *vmcb = svm->vmcb01.ptr;
88
89 vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
90 vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
91
92 vmcb->control.int_ctl |= AVIC_ENABLE_MASK;
0e311d33 93
2008fab3
SC
94 /*
95 * Note: KVM supports hybrid-AVIC mode, where KVM emulates x2APIC MSR
96 * accesses, while interrupt injection to a running vCPU can be
97 * achieved using AVIC doorbell. KVM disables the APIC access page
98 * (deletes the memslot) if any vCPU has x2APIC enabled, thus enabling
99 * AVIC in hybrid mode activates only the doorbell mechanism.
0e311d33 100 */
f628a34a 101 if (x2avic_enabled && apic_x2apic_mode(svm->vcpu.arch.apic)) {
4d1d7942
SS
102 vmcb->control.int_ctl |= X2APIC_MODE_MASK;
103 vmcb->control.avic_physical_id |= X2AVIC_MAX_PHYSICAL_ID;
104 /* Disabling MSR intercept for x2APIC registers */
105 svm_set_x2apic_msr_interception(svm, false);
106 } else {
0ccf3e7c
SC
107 /*
108 * Flush the TLB, the guest may have inserted a non-APIC
109 * mapping into the TLB while AVIC was disabled.
110 */
111 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, &svm->vcpu);
112
0e311d33 113 /* For xAVIC and hybrid-xAVIC modes */
4d1d7942
SS
114 vmcb->control.avic_physical_id |= AVIC_MAX_PHYSICAL_ID;
115 /* Enabling MSR intercept for x2APIC registers */
116 svm_set_x2apic_msr_interception(svm, true);
117 }
118}
119
120static void avic_deactivate_vmcb(struct vcpu_svm *svm)
121{
122 struct vmcb *vmcb = svm->vmcb01.ptr;
123
124 vmcb->control.int_ctl &= ~(AVIC_ENABLE_MASK | X2APIC_MODE_MASK);
125 vmcb->control.avic_physical_id &= ~AVIC_PHYSICAL_MAX_INDEX_MASK;
126
091abbf5
ML
127 /*
128 * If running nested and the guest uses its own MSR bitmap, there
129 * is no need to update L0's msr bitmap
130 */
131 if (is_guest_mode(&svm->vcpu) &&
132 vmcb12_is_intercept(&svm->nested.ctl, INTERCEPT_MSR_PROT))
133 return;
134
4d1d7942
SS
135 /* Enabling MSR intercept for x2APIC registers */
136 svm_set_x2apic_msr_interception(svm, true);
137}
ef0f6496
JR
138
139/* Note:
140 * This function is called from IOMMU driver to notify
141 * SVM to schedule in a particular vCPU of a particular VM.
142 */
143int avic_ga_log_notifier(u32 ga_tag)
144{
145 unsigned long flags;
146 struct kvm_svm *kvm_svm;
147 struct kvm_vcpu *vcpu = NULL;
148 u32 vm_id = AVIC_GATAG_TO_VMID(ga_tag);
149 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(ga_tag);
150
151 pr_debug("SVM: %s: vm_id=%#x, vcpu_id=%#x\n", __func__, vm_id, vcpu_id);
152 trace_kvm_avic_ga_log(vm_id, vcpu_id);
153
154 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
155 hash_for_each_possible(svm_vm_data_hash, kvm_svm, hnode, vm_id) {
156 if (kvm_svm->avic_vm_id != vm_id)
157 continue;
158 vcpu = kvm_get_vcpu_by_id(&kvm_svm->kvm, vcpu_id);
159 break;
160 }
161 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
162
163 /* Note:
164 * At this point, the IOMMU should have already set the pending
165 * bit in the vAPIC backing page. So, we just need to schedule
166 * in the vcpu.
167 */
168 if (vcpu)
169 kvm_vcpu_wake_up(vcpu);
170
171 return 0;
172}
173
174void avic_vm_destroy(struct kvm *kvm)
175{
176 unsigned long flags;
177 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
178
fdf513e3 179 if (!enable_apicv)
ef0f6496
JR
180 return;
181
182 if (kvm_svm->avic_logical_id_table_page)
183 __free_page(kvm_svm->avic_logical_id_table_page);
184 if (kvm_svm->avic_physical_id_table_page)
185 __free_page(kvm_svm->avic_physical_id_table_page);
186
187 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
188 hash_del(&kvm_svm->hnode);
189 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
190}
191
192int avic_vm_init(struct kvm *kvm)
193{
194 unsigned long flags;
195 int err = -ENOMEM;
196 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
197 struct kvm_svm *k2;
198 struct page *p_page;
199 struct page *l_page;
200 u32 vm_id;
201
fdf513e3 202 if (!enable_apicv)
ef0f6496
JR
203 return 0;
204
205 /* Allocating physical APIC ID table (4KB) */
ae5a2a39 206 p_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
ef0f6496
JR
207 if (!p_page)
208 goto free_avic;
209
210 kvm_svm->avic_physical_id_table_page = p_page;
ef0f6496
JR
211
212 /* Allocating logical APIC ID table (4KB) */
ae5a2a39 213 l_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
ef0f6496
JR
214 if (!l_page)
215 goto free_avic;
216
217 kvm_svm->avic_logical_id_table_page = l_page;
ef0f6496
JR
218
219 spin_lock_irqsave(&svm_vm_data_hash_lock, flags);
220 again:
221 vm_id = next_vm_id = (next_vm_id + 1) & AVIC_VM_ID_MASK;
222 if (vm_id == 0) { /* id is 1-based, zero is not okay */
223 next_vm_id_wrapped = 1;
224 goto again;
225 }
226 /* Is it still in use? Only possible if wrapped at least once */
227 if (next_vm_id_wrapped) {
228 hash_for_each_possible(svm_vm_data_hash, k2, hnode, vm_id) {
229 if (k2->avic_vm_id == vm_id)
230 goto again;
231 }
232 }
233 kvm_svm->avic_vm_id = vm_id;
234 hash_add(svm_vm_data_hash, &kvm_svm->hnode, kvm_svm->avic_vm_id);
235 spin_unlock_irqrestore(&svm_vm_data_hash_lock, flags);
236
237 return 0;
238
239free_avic:
240 avic_vm_destroy(kvm);
241 return err;
242}
243
1ee73a33 244void avic_init_vmcb(struct vcpu_svm *svm, struct vmcb *vmcb)
ef0f6496 245{
ef0f6496
JR
246 struct kvm_svm *kvm_svm = to_kvm_svm(svm->vcpu.kvm);
247 phys_addr_t bpa = __sme_set(page_to_phys(svm->avic_backing_page));
248 phys_addr_t lpa = __sme_set(page_to_phys(kvm_svm->avic_logical_id_table_page));
249 phys_addr_t ppa = __sme_set(page_to_phys(kvm_svm->avic_physical_id_table_page));
250
251 vmcb->control.avic_backing_page = bpa & AVIC_HPA_MASK;
252 vmcb->control.avic_logical_id = lpa & AVIC_HPA_MASK;
253 vmcb->control.avic_physical_id = ppa & AVIC_HPA_MASK;
73143035
ML
254 vmcb->control.avic_vapic_bar = APIC_DEFAULT_PHYS_BASE & VMCB_AVIC_APIC_BAR_MASK;
255
ef0f6496 256 if (kvm_apicv_activated(svm->vcpu.kvm))
4d1d7942 257 avic_activate_vmcb(svm);
ef0f6496 258 else
4d1d7942 259 avic_deactivate_vmcb(svm);
ef0f6496
JR
260}
261
262static u64 *avic_get_physical_id_entry(struct kvm_vcpu *vcpu,
263 unsigned int index)
264{
265 u64 *avic_physical_id_table;
266 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
267
f628a34a
SC
268 if ((!x2avic_enabled && index > AVIC_MAX_PHYSICAL_ID) ||
269 (index > X2AVIC_MAX_PHYSICAL_ID))
ef0f6496
JR
270 return NULL;
271
272 avic_physical_id_table = page_address(kvm_svm->avic_physical_id_table_page);
273
274 return &avic_physical_id_table[index];
275}
276
ef0f6496
JR
277static int avic_init_backing_page(struct kvm_vcpu *vcpu)
278{
279 u64 *entry, new_entry;
280 int id = vcpu->vcpu_id;
281 struct vcpu_svm *svm = to_svm(vcpu);
282
f628a34a
SC
283 if ((!x2avic_enabled && id > AVIC_MAX_PHYSICAL_ID) ||
284 (id > X2AVIC_MAX_PHYSICAL_ID))
ef0f6496
JR
285 return -EINVAL;
286
63129754 287 if (!vcpu->arch.apic->regs)
ef0f6496
JR
288 return -EINVAL;
289
290 if (kvm_apicv_activated(vcpu->kvm)) {
291 int ret;
292
c482f2ce
SC
293 /*
294 * Note, AVIC hardware walks the nested page table to check
295 * permissions, but does not use the SPA address specified in
296 * the leaf SPTE since it uses address in the AVIC_BACKING_PAGE
297 * pointer field of the VMCB.
298 */
299 ret = kvm_alloc_apic_access_page(vcpu->kvm);
ef0f6496
JR
300 if (ret)
301 return ret;
302 }
303
63129754 304 svm->avic_backing_page = virt_to_page(vcpu->arch.apic->regs);
ef0f6496
JR
305
306 /* Setting AVIC backing page address in the phy APIC ID table */
307 entry = avic_get_physical_id_entry(vcpu, id);
308 if (!entry)
309 return -EINVAL;
310
311 new_entry = __sme_set((page_to_phys(svm->avic_backing_page) &
312 AVIC_PHYSICAL_ID_ENTRY_BACKING_PAGE_MASK) |
313 AVIC_PHYSICAL_ID_ENTRY_VALID_MASK);
314 WRITE_ONCE(*entry, new_entry);
315
316 svm->avic_physical_id_cache = entry;
317
318 return 0;
319}
320
66fa226c 321void avic_ring_doorbell(struct kvm_vcpu *vcpu)
0a5f7842
ML
322{
323 /*
324 * Note, the vCPU could get migrated to a different pCPU at any point,
325 * which could result in signalling the wrong/previous pCPU. But if
326 * that happens the vCPU is guaranteed to do a VMRUN (after being
327 * migrated) and thus will process pending interrupts, i.e. a doorbell
328 * is not needed (and the spurious one is harmless).
329 */
330 int cpu = READ_ONCE(vcpu->cpu);
331
39b6b8c3 332 if (cpu != get_cpu()) {
0a5f7842 333 wrmsrl(MSR_AMD64_SVM_AVIC_DOORBELL, kvm_cpu_get_apicid(cpu));
39b6b8c3
SS
334 trace_kvm_avic_doorbell(vcpu->vcpu_id, kvm_cpu_get_apicid(cpu));
335 }
0a5f7842
ML
336 put_cpu();
337}
338
1d22a597
SC
339
340static void avic_kick_vcpu(struct kvm_vcpu *vcpu, u32 icrl)
341{
342 vcpu->arch.apic->irr_pending = true;
343 svm_complete_interrupt_delivery(vcpu,
344 icrl & APIC_MODE_MASK,
345 icrl & APIC_INT_LEVELTRIG,
346 icrl & APIC_VECTOR_MASK);
347}
348
bbfc7aa6
SC
349static void avic_kick_vcpu_by_physical_id(struct kvm *kvm, u32 physical_id,
350 u32 icrl)
351{
352 /*
353 * KVM inhibits AVIC if any vCPU ID diverges from the vCPUs APIC ID,
354 * i.e. APIC ID == vCPU ID.
355 */
356 struct kvm_vcpu *target_vcpu = kvm_get_vcpu_by_id(kvm, physical_id);
357
358 /* Once again, nothing to do if the target vCPU doesn't exist. */
359 if (unlikely(!target_vcpu))
360 return;
361
362 avic_kick_vcpu(target_vcpu, icrl);
363}
364
365static void avic_kick_vcpu_by_logical_id(struct kvm *kvm, u32 *avic_logical_id_table,
366 u32 logid_index, u32 icrl)
367{
368 u32 physical_id;
369
370 if (avic_logical_id_table) {
371 u32 logid_entry = avic_logical_id_table[logid_index];
372
373 /* Nothing to do if the logical destination is invalid. */
374 if (unlikely(!(logid_entry & AVIC_LOGICAL_ID_ENTRY_VALID_MASK)))
375 return;
376
377 physical_id = logid_entry &
378 AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
379 } else {
380 /*
381 * For x2APIC, the logical APIC ID is a read-only value that is
382 * derived from the x2APIC ID, thus the x2APIC ID can be found
383 * by reversing the calculation (stored in logid_index). Note,
384 * bits 31:20 of the x2APIC ID aren't propagated to the logical
385 * ID, but KVM limits the x2APIC ID limited to KVM_MAX_VCPU_IDS.
386 */
387 physical_id = logid_index;
388 }
389
390 avic_kick_vcpu_by_physical_id(kvm, physical_id, icrl);
391}
392
7223fd2d
SS
393/*
394 * A fast-path version of avic_kick_target_vcpus(), which attempts to match
395 * destination APIC ID to vCPU without looping through all vCPUs.
396 */
397static int avic_kick_target_vcpus_fast(struct kvm *kvm, struct kvm_lapic *source,
398 u32 icrl, u32 icrh, u32 index)
e6c804a8 399{
7223fd2d
SS
400 int dest_mode = icrl & APIC_DEST_MASK;
401 int shorthand = icrl & APIC_SHORT_MASK;
402 struct kvm_svm *kvm_svm = to_kvm_svm(kvm);
bbfc7aa6 403 u32 dest;
7223fd2d
SS
404
405 if (shorthand != APIC_DEST_NOSHORT)
406 return -EINVAL;
407
603ccef4
ML
408 if (apic_x2apic_mode(source))
409 dest = icrh;
410 else
bf348f66 411 dest = GET_XAPIC_DEST_FIELD(icrh);
603ccef4 412
7223fd2d 413 if (dest_mode == APIC_DEST_PHYSICAL) {
603ccef4
ML
414 /* broadcast destination, use slow path */
415 if (apic_x2apic_mode(source) && dest == X2APIC_BROADCAST)
416 return -EINVAL;
417 if (!apic_x2apic_mode(source) && dest == APIC_BROADCAST)
418 return -EINVAL;
419
bbfc7aa6 420 if (WARN_ON_ONCE(dest != index))
603ccef4
ML
421 return -EINVAL;
422
bbfc7aa6 423 avic_kick_vcpu_by_physical_id(kvm, dest, icrl);
7223fd2d 424 } else {
bbfc7aa6
SC
425 u32 *avic_logical_id_table;
426 unsigned long bitmap, i;
427 u32 cluster;
603ccef4
ML
428
429 if (apic_x2apic_mode(source)) {
430 /* 16 bit dest mask, 16 bit cluster id */
da3fb46d 431 bitmap = dest & 0xFFFF;
603ccef4
ML
432 cluster = (dest >> 16) << 4;
433 } else if (kvm_lapic_get_reg(source, APIC_DFR) == APIC_DFR_FLAT) {
434 /* 8 bit dest mask*/
435 bitmap = dest;
436 cluster = 0;
7223fd2d 437 } else {
603ccef4
ML
438 /* 4 bit desk mask, 4 bit cluster id */
439 bitmap = dest & 0xF;
440 cluster = (dest >> 4) << 2;
7223fd2d 441 }
7223fd2d 442
8578e451 443 /* Nothing to do if there are no destinations in the cluster. */
603ccef4 444 if (unlikely(!bitmap))
603ccef4 445 return 0;
7223fd2d 446
bbfc7aa6
SC
447 if (apic_x2apic_mode(source))
448 avic_logical_id_table = NULL;
449 else
450 avic_logical_id_table = page_address(kvm_svm->avic_logical_id_table_page);
8c9e639d 451
bbfc7aa6
SC
452 /*
453 * AVIC is inhibited if vCPUs aren't mapped 1:1 with logical
454 * IDs, thus each bit in the destination is guaranteed to map
455 * to at most one vCPU.
456 */
457 for_each_set_bit(i, &bitmap, 16)
458 avic_kick_vcpu_by_logical_id(kvm, avic_logical_id_table,
459 cluster + i, icrl);
7223fd2d
SS
460 }
461
603ccef4 462 return 0;
7223fd2d
SS
463}
464
465static void avic_kick_target_vcpus(struct kvm *kvm, struct kvm_lapic *source,
466 u32 icrl, u32 icrh, u32 index)
467{
a879a88e 468 u32 dest = apic_x2apic_mode(source) ? icrh : GET_XAPIC_DEST_FIELD(icrh);
46808a4c 469 unsigned long i;
7223fd2d
SS
470 struct kvm_vcpu *vcpu;
471
472 if (!avic_kick_target_vcpus_fast(kvm, source, icrl, icrh, index))
473 return;
e6c804a8 474
9f084f7c
SS
475 trace_kvm_avic_kick_vcpu_slowpath(icrh, icrl, index);
476
202470d5
SC
477 /*
478 * Wake any target vCPUs that are blocking, i.e. waiting for a wake
479 * event. There's no need to signal doorbells, as hardware has handled
480 * vCPUs that were in guest at the time of the IPI, and vCPUs that have
481 * since entered the guest will have processed pending IRQs at VMRUN.
482 */
e6c804a8 483 kvm_for_each_vcpu(i, vcpu, kvm) {
202470d5 484 if (kvm_apic_match_dest(vcpu, source, icrl & APIC_SHORT_MASK,
1d22a597
SC
485 dest, icrl & APIC_DEST_MASK))
486 avic_kick_vcpu(vcpu, icrl);
e6c804a8
SC
487 }
488}
489
63129754 490int avic_incomplete_ipi_interception(struct kvm_vcpu *vcpu)
ef0f6496 491{
63129754 492 struct vcpu_svm *svm = to_svm(vcpu);
ef0f6496
JR
493 u32 icrh = svm->vmcb->control.exit_info_1 >> 32;
494 u32 icrl = svm->vmcb->control.exit_info_1;
495 u32 id = svm->vmcb->control.exit_info_2 >> 32;
7223fd2d 496 u32 index = svm->vmcb->control.exit_info_2 & 0x1FF;
63129754 497 struct kvm_lapic *apic = vcpu->arch.apic;
ef0f6496 498
63129754 499 trace_kvm_avic_incomplete_ipi(vcpu->vcpu_id, icrh, icrl, id, index);
ef0f6496
JR
500
501 switch (id) {
5aede752 502 case AVIC_IPI_FAILURE_INVALID_TARGET:
ef0f6496
JR
503 case AVIC_IPI_FAILURE_INVALID_INT_TYPE:
504 /*
b51818af 505 * Emulate IPIs that are not handled by AVIC hardware, which
5aede752
SC
506 * only virtualizes Fixed, Edge-Triggered INTRs, and falls over
507 * if _any_ targets are invalid, e.g. if the logical mode mask
508 * is a superset of running vCPUs.
509 *
510 * The exit is a trap, e.g. ICR holds the correct value and RIP
511 * has been advanced, KVM is responsible only for emulating the
512 * IPI. Sadly, hardware may sometimes leave the BUSY flag set,
513 * in which case KVM needs to emulate the ICR write as well in
b51818af 514 * order to clear the BUSY flag.
ef0f6496 515 */
b51818af
SC
516 if (icrl & APIC_ICR_BUSY)
517 kvm_apic_write_nodecode(vcpu, APIC_ICR);
518 else
519 kvm_apic_send_ipi(apic, icrl, icrh);
ef0f6496 520 break;
e6c804a8 521 case AVIC_IPI_FAILURE_TARGET_NOT_RUNNING:
ef0f6496
JR
522 /*
523 * At this point, we expect that the AVIC HW has already
524 * set the appropriate IRR bits on the valid target
525 * vcpus. So, we just need to kick the appropriate vcpu.
526 */
7223fd2d 527 avic_kick_target_vcpus(vcpu->kvm, apic, icrl, icrh, index);
ef0f6496 528 break;
ef0f6496
JR
529 case AVIC_IPI_FAILURE_INVALID_BACKING_PAGE:
530 WARN_ONCE(1, "Invalid backing page\n");
531 break;
2dcf37ab
ML
532 case AVIC_IPI_FAILURE_INVALID_IPI_VECTOR:
533 /* Invalid IPI with vector < 16 */
534 break;
ef0f6496 535 default:
2dcf37ab 536 vcpu_unimpl(vcpu, "Unknown avic incomplete IPI interception\n");
ef0f6496
JR
537 }
538
539 return 1;
540}
541
f44509f8
ML
542unsigned long avic_vcpu_get_apicv_inhibit_reasons(struct kvm_vcpu *vcpu)
543{
544 if (is_guest_mode(vcpu))
545 return APICV_INHIBIT_REASON_NESTED;
546 return 0;
547}
548
ef0f6496
JR
549static u32 *avic_get_logical_id_entry(struct kvm_vcpu *vcpu, u32 ldr, bool flat)
550{
551 struct kvm_svm *kvm_svm = to_kvm_svm(vcpu->kvm);
ef0f6496 552 u32 *logical_apic_id_table;
1808c950 553 u32 cluster, index;
ef0f6496 554
1808c950 555 ldr = GET_APIC_LOGICAL_ID(ldr);
ef0f6496 556
1808c950
SC
557 if (flat) {
558 cluster = 0;
559 } else {
560 cluster = (ldr >> 4);
561 if (cluster >= 0xf)
ef0f6496 562 return NULL;
1808c950 563 ldr &= 0xf;
ef0f6496 564 }
1808c950
SC
565 if (!ldr || !is_power_of_2(ldr))
566 return NULL;
567
568 index = __ffs(ldr);
569 if (WARN_ON_ONCE(index > 7))
570 return NULL;
571 index += (cluster << 2);
ef0f6496
JR
572
573 logical_apic_id_table = (u32 *) page_address(kvm_svm->avic_logical_id_table_page);
574
575 return &logical_apic_id_table[index];
576}
577
4f160b7b 578static void avic_ldr_write(struct kvm_vcpu *vcpu, u8 g_physical_id, u32 ldr)
ef0f6496
JR
579{
580 bool flat;
581 u32 *entry, new_entry;
582
583 flat = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR) == APIC_DFR_FLAT;
584 entry = avic_get_logical_id_entry(vcpu, ldr, flat);
585 if (!entry)
4f160b7b 586 return;
ef0f6496
JR
587
588 new_entry = READ_ONCE(*entry);
589 new_entry &= ~AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK;
590 new_entry |= (g_physical_id & AVIC_LOGICAL_ID_ENTRY_GUEST_PHYSICAL_ID_MASK);
591 new_entry |= AVIC_LOGICAL_ID_ENTRY_VALID_MASK;
592 WRITE_ONCE(*entry, new_entry);
ef0f6496
JR
593}
594
595static void avic_invalidate_logical_id_entry(struct kvm_vcpu *vcpu)
596{
597 struct vcpu_svm *svm = to_svm(vcpu);
598 bool flat = svm->dfr_reg == APIC_DFR_FLAT;
ab1b1dc1 599 u32 *entry;
ef0f6496 600
ab1b1dc1
SS
601 /* Note: x2AVIC does not use logical APIC ID table */
602 if (apic_x2apic_mode(vcpu->arch.apic))
603 return;
604
605 entry = avic_get_logical_id_entry(vcpu, svm->ldr_reg, flat);
ef0f6496
JR
606 if (entry)
607 clear_bit(AVIC_LOGICAL_ID_ENTRY_VALID_BIT, (unsigned long *)entry);
608}
609
1ba59a44 610static void avic_handle_ldr_update(struct kvm_vcpu *vcpu)
ef0f6496 611{
ef0f6496
JR
612 struct vcpu_svm *svm = to_svm(vcpu);
613 u32 ldr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_LDR);
614 u32 id = kvm_xapic_id(vcpu->arch.apic);
615
ab1b1dc1
SS
616 /* AVIC does not support LDR update for x2APIC */
617 if (apic_x2apic_mode(vcpu->arch.apic))
1ba59a44 618 return;
ab1b1dc1 619
ef0f6496 620 if (ldr == svm->ldr_reg)
1ba59a44 621 return;
ef0f6496
JR
622
623 avic_invalidate_logical_id_entry(vcpu);
624
4f160b7b
SC
625 svm->ldr_reg = ldr;
626 avic_ldr_write(vcpu, id, ldr);
ef0f6496
JR
627}
628
ef0f6496
JR
629static void avic_handle_dfr_update(struct kvm_vcpu *vcpu)
630{
631 struct vcpu_svm *svm = to_svm(vcpu);
632 u32 dfr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_DFR);
633
634 if (svm->dfr_reg == dfr)
635 return;
636
637 avic_invalidate_logical_id_entry(vcpu);
638 svm->dfr_reg = dfr;
639}
640
ed60920e 641static int avic_unaccel_trap_write(struct kvm_vcpu *vcpu)
ef0f6496 642{
ed60920e 643 u32 offset = to_svm(vcpu)->vmcb->control.exit_info_1 &
ef0f6496
JR
644 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
645
646 switch (offset) {
ef0f6496 647 case APIC_LDR:
1ba59a44 648 avic_handle_ldr_update(vcpu);
ef0f6496
JR
649 break;
650 case APIC_DFR:
ed60920e 651 avic_handle_dfr_update(vcpu);
ef0f6496 652 break;
a790e338
SC
653 case APIC_RRR:
654 /* Ignore writes to Read Remote Data, it's read-only. */
655 return 1;
ef0f6496
JR
656 default:
657 break;
658 }
659
ed60920e 660 kvm_apic_write_nodecode(vcpu, offset);
ef0f6496
JR
661 return 1;
662}
663
664static bool is_avic_unaccelerated_access_trap(u32 offset)
665{
666 bool ret = false;
667
668 switch (offset) {
669 case APIC_ID:
670 case APIC_EOI:
671 case APIC_RRR:
672 case APIC_LDR:
673 case APIC_DFR:
674 case APIC_SPIV:
675 case APIC_ESR:
676 case APIC_ICR:
677 case APIC_LVTT:
678 case APIC_LVTTHMR:
679 case APIC_LVTPC:
680 case APIC_LVT0:
681 case APIC_LVT1:
682 case APIC_LVTERR:
683 case APIC_TMICT:
684 case APIC_TDCR:
685 ret = true;
686 break;
687 default:
688 break;
689 }
690 return ret;
691}
692
63129754 693int avic_unaccelerated_access_interception(struct kvm_vcpu *vcpu)
ef0f6496 694{
63129754 695 struct vcpu_svm *svm = to_svm(vcpu);
ef0f6496
JR
696 int ret = 0;
697 u32 offset = svm->vmcb->control.exit_info_1 &
698 AVIC_UNACCEL_ACCESS_OFFSET_MASK;
699 u32 vector = svm->vmcb->control.exit_info_2 &
700 AVIC_UNACCEL_ACCESS_VECTOR_MASK;
701 bool write = (svm->vmcb->control.exit_info_1 >> 32) &
702 AVIC_UNACCEL_ACCESS_WRITE_MASK;
703 bool trap = is_avic_unaccelerated_access_trap(offset);
704
63129754 705 trace_kvm_avic_unaccelerated_access(vcpu->vcpu_id, offset,
ef0f6496
JR
706 trap, write, vector);
707 if (trap) {
708 /* Handling Trap */
709 WARN_ONCE(!write, "svm: Handling trap read.\n");
ed60920e 710 ret = avic_unaccel_trap_write(vcpu);
ef0f6496
JR
711 } else {
712 /* Handling Fault */
63129754 713 ret = kvm_emulate_instruction(vcpu, 0);
ef0f6496
JR
714 }
715
716 return ret;
717}
718
719int avic_init_vcpu(struct vcpu_svm *svm)
720{
721 int ret;
722 struct kvm_vcpu *vcpu = &svm->vcpu;
723
fdf513e3 724 if (!enable_apicv || !irqchip_in_kernel(vcpu->kvm))
ef0f6496
JR
725 return 0;
726
63129754 727 ret = avic_init_backing_page(vcpu);
ef0f6496
JR
728 if (ret)
729 return ret;
730
731 INIT_LIST_HEAD(&svm->ir_list);
732 spin_lock_init(&svm->ir_list_lock);
733 svm->dfr_reg = APIC_DFR_FLAT;
734
735 return ret;
736}
737
db6e7adf 738void avic_apicv_post_state_restore(struct kvm_vcpu *vcpu)
ef0f6496 739{
ef0f6496
JR
740 avic_handle_dfr_update(vcpu);
741 avic_handle_ldr_update(vcpu);
742}
743
db6e7adf 744static int avic_set_pi_irte_mode(struct kvm_vcpu *vcpu, bool activate)
ef0f6496
JR
745{
746 int ret = 0;
747 unsigned long flags;
748 struct amd_svm_iommu_ir *ir;
749 struct vcpu_svm *svm = to_svm(vcpu);
750
751 if (!kvm_arch_has_assigned_device(vcpu->kvm))
752 return 0;
753
754 /*
755 * Here, we go through the per-vcpu ir_list to update all existing
756 * interrupt remapping table entry targeting this vcpu.
757 */
758 spin_lock_irqsave(&svm->ir_list_lock, flags);
759
760 if (list_empty(&svm->ir_list))
761 goto out;
762
763 list_for_each_entry(ir, &svm->ir_list, node) {
764 if (activate)
765 ret = amd_iommu_activate_guest_mode(ir->data);
766 else
767 ret = amd_iommu_deactivate_guest_mode(ir->data);
768 if (ret)
769 break;
770 }
771out:
772 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
773 return ret;
774}
775
ef0f6496
JR
776static void svm_ir_list_del(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
777{
778 unsigned long flags;
779 struct amd_svm_iommu_ir *cur;
780
781 spin_lock_irqsave(&svm->ir_list_lock, flags);
782 list_for_each_entry(cur, &svm->ir_list, node) {
783 if (cur->data != pi->ir_data)
784 continue;
785 list_del(&cur->node);
786 kfree(cur);
787 break;
788 }
789 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
790}
791
792static int svm_ir_list_add(struct vcpu_svm *svm, struct amd_iommu_pi_data *pi)
793{
794 int ret = 0;
795 unsigned long flags;
796 struct amd_svm_iommu_ir *ir;
f3cebc75 797 u64 entry;
ef0f6496
JR
798
799 /**
163b0991 800 * In some cases, the existing irte is updated and re-set,
ef0f6496
JR
801 * so we need to check here if it's already been * added
802 * to the ir_list.
803 */
804 if (pi->ir_data && (pi->prev_ga_tag != 0)) {
805 struct kvm *kvm = svm->vcpu.kvm;
806 u32 vcpu_id = AVIC_GATAG_TO_VCPUID(pi->prev_ga_tag);
807 struct kvm_vcpu *prev_vcpu = kvm_get_vcpu_by_id(kvm, vcpu_id);
808 struct vcpu_svm *prev_svm;
809
810 if (!prev_vcpu) {
811 ret = -EINVAL;
812 goto out;
813 }
814
815 prev_svm = to_svm(prev_vcpu);
816 svm_ir_list_del(prev_svm, pi);
817 }
818
819 /**
820 * Allocating new amd_iommu_pi_data, which will get
821 * add to the per-vcpu ir_list.
822 */
823 ir = kzalloc(sizeof(struct amd_svm_iommu_ir), GFP_KERNEL_ACCOUNT);
824 if (!ir) {
825 ret = -ENOMEM;
826 goto out;
827 }
828 ir->data = pi->ir_data;
829
830 spin_lock_irqsave(&svm->ir_list_lock, flags);
f3cebc75
SC
831
832 /*
833 * Update the target pCPU for IOMMU doorbells if the vCPU is running.
834 * If the vCPU is NOT running, i.e. is blocking or scheduled out, KVM
835 * will update the pCPU info when the vCPU awkened and/or scheduled in.
836 * See also avic_vcpu_load().
837 */
838 entry = READ_ONCE(*(svm->avic_physical_id_cache));
839 if (entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK)
840 amd_iommu_update_ga(entry & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK,
841 true, pi->ir_data);
842
ef0f6496
JR
843 list_add(&ir->node, &svm->ir_list);
844 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
845out:
846 return ret;
847}
848
02ffbe63 849/*
ef0f6496
JR
850 * Note:
851 * The HW cannot support posting multicast/broadcast
852 * interrupts to a vCPU. So, we still use legacy interrupt
853 * remapping for these kind of interrupts.
854 *
855 * For lowest-priority interrupts, we only support
856 * those with single CPU as the destination, e.g. user
857 * configures the interrupts via /proc/irq or uses
858 * irqbalance to make the interrupts single-CPU.
859 */
860static int
861get_pi_vcpu_info(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
862 struct vcpu_data *vcpu_info, struct vcpu_svm **svm)
863{
864 struct kvm_lapic_irq irq;
865 struct kvm_vcpu *vcpu = NULL;
866
867 kvm_set_msi_irq(kvm, e, &irq);
868
869 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu) ||
870 !kvm_irq_is_postable(&irq)) {
871 pr_debug("SVM: %s: use legacy intr remap mode for irq %u\n",
872 __func__, irq.vector);
873 return -1;
874 }
875
876 pr_debug("SVM: %s: use GA mode for irq %u\n", __func__,
877 irq.vector);
878 *svm = to_svm(vcpu);
879 vcpu_info->pi_desc_addr = __sme_set(page_to_phys((*svm)->avic_backing_page));
880 vcpu_info->vector = irq.vector;
881
882 return 0;
883}
884
885/*
db6e7adf 886 * avic_pi_update_irte - set IRTE for Posted-Interrupts
ef0f6496
JR
887 *
888 * @kvm: kvm
889 * @host_irq: host irq of the interrupt
890 * @guest_irq: gsi of the interrupt
891 * @set: set or unset PI
892 * returns 0 on success, < 0 on failure
893 */
db6e7adf
SC
894int avic_pi_update_irte(struct kvm *kvm, unsigned int host_irq,
895 uint32_t guest_irq, bool set)
ef0f6496
JR
896{
897 struct kvm_kernel_irq_routing_entry *e;
898 struct kvm_irq_routing_table *irq_rt;
a80ced6e 899 int idx, ret = 0;
ef0f6496
JR
900
901 if (!kvm_arch_has_assigned_device(kvm) ||
902 !irq_remapping_cap(IRQ_POSTING_CAP))
903 return 0;
904
905 pr_debug("SVM: %s: host_irq=%#x, guest_irq=%#x, set=%#x\n",
906 __func__, host_irq, guest_irq, set);
907
908 idx = srcu_read_lock(&kvm->irq_srcu);
909 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
a80ced6e
YW
910
911 if (guest_irq >= irq_rt->nr_rt_entries ||
912 hlist_empty(&irq_rt->map[guest_irq])) {
913 pr_warn_once("no route for guest_irq %u/%u (broken user space?)\n",
914 guest_irq, irq_rt->nr_rt_entries);
915 goto out;
916 }
ef0f6496
JR
917
918 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
919 struct vcpu_data vcpu_info;
920 struct vcpu_svm *svm = NULL;
921
922 if (e->type != KVM_IRQ_ROUTING_MSI)
923 continue;
924
925 /**
926 * Here, we setup with legacy mode in the following cases:
927 * 1. When cannot target interrupt to a specific vcpu.
928 * 2. Unsetting posted interrupt.
d9f6e12f 929 * 3. APIC virtualization is disabled for the vcpu.
ef0f6496
JR
930 * 4. IRQ has incompatible delivery mode (SMI, INIT, etc)
931 */
932 if (!get_pi_vcpu_info(kvm, e, &vcpu_info, &svm) && set &&
933 kvm_vcpu_apicv_active(&svm->vcpu)) {
934 struct amd_iommu_pi_data pi;
935
936 /* Try to enable guest_mode in IRTE */
937 pi.base = __sme_set(page_to_phys(svm->avic_backing_page) &
938 AVIC_HPA_MASK);
939 pi.ga_tag = AVIC_GATAG(to_kvm_svm(kvm)->avic_vm_id,
940 svm->vcpu.vcpu_id);
941 pi.is_guest_mode = true;
942 pi.vcpu_data = &vcpu_info;
943 ret = irq_set_vcpu_affinity(host_irq, &pi);
944
945 /**
946 * Here, we successfully setting up vcpu affinity in
947 * IOMMU guest mode. Now, we need to store the posted
948 * interrupt information in a per-vcpu ir_list so that
949 * we can reference to them directly when we update vcpu
950 * scheduling information in IOMMU irte.
951 */
952 if (!ret && pi.is_guest_mode)
953 svm_ir_list_add(svm, &pi);
954 } else {
955 /* Use legacy mode in IRTE */
956 struct amd_iommu_pi_data pi;
957
958 /**
959 * Here, pi is used to:
960 * - Tell IOMMU to use legacy mode for this interrupt.
961 * - Retrieve ga_tag of prior interrupt remapping data.
962 */
f6426ab9 963 pi.prev_ga_tag = 0;
ef0f6496
JR
964 pi.is_guest_mode = false;
965 ret = irq_set_vcpu_affinity(host_irq, &pi);
966
967 /**
968 * Check if the posted interrupt was previously
969 * setup with the guest_mode by checking if the ga_tag
970 * was cached. If so, we need to clean up the per-vcpu
971 * ir_list.
972 */
973 if (!ret && pi.prev_ga_tag) {
974 int id = AVIC_GATAG_TO_VCPUID(pi.prev_ga_tag);
975 struct kvm_vcpu *vcpu;
976
977 vcpu = kvm_get_vcpu_by_id(kvm, id);
978 if (vcpu)
979 svm_ir_list_del(to_svm(vcpu), &pi);
980 }
981 }
982
983 if (!ret && svm) {
984 trace_kvm_pi_irte_update(host_irq, svm->vcpu.vcpu_id,
985 e->gsi, vcpu_info.vector,
986 vcpu_info.pi_desc_addr, set);
987 }
988
989 if (ret < 0) {
990 pr_err("%s: failed to update PI IRTE\n", __func__);
991 goto out;
992 }
993 }
994
995 ret = 0;
996out:
997 srcu_read_unlock(&kvm->irq_srcu, idx);
998 return ret;
999}
1000
ef0f6496
JR
1001static inline int
1002avic_update_iommu_vcpu_affinity(struct kvm_vcpu *vcpu, int cpu, bool r)
1003{
1004 int ret = 0;
ef0f6496
JR
1005 struct amd_svm_iommu_ir *ir;
1006 struct vcpu_svm *svm = to_svm(vcpu);
1007
4c08e737
SC
1008 lockdep_assert_held(&svm->ir_list_lock);
1009
ef0f6496
JR
1010 if (!kvm_arch_has_assigned_device(vcpu->kvm))
1011 return 0;
1012
1013 /*
1014 * Here, we go through the per-vcpu ir_list to update all existing
1015 * interrupt remapping table entry targeting this vcpu.
1016 */
ef0f6496 1017 if (list_empty(&svm->ir_list))
4c08e737 1018 return 0;
ef0f6496
JR
1019
1020 list_for_each_entry(ir, &svm->ir_list, node) {
1021 ret = amd_iommu_update_ga(cpu, r, ir->data);
1022 if (ret)
4c08e737 1023 return ret;
ef0f6496 1024 }
4c08e737 1025 return 0;
ef0f6496
JR
1026}
1027
ba8ec273 1028void avic_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
ef0f6496
JR
1029{
1030 u64 entry;
ef0f6496
JR
1031 int h_physical_id = kvm_cpu_get_apicid(cpu);
1032 struct vcpu_svm *svm = to_svm(vcpu);
4c08e737 1033 unsigned long flags;
ef0f6496 1034
935a7333
SC
1035 lockdep_assert_preemption_disabled();
1036
4a204f78 1037 if (WARN_ON(h_physical_id & ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK))
ef0f6496
JR
1038 return;
1039
782f6455
SC
1040 /*
1041 * No need to update anything if the vCPU is blocking, i.e. if the vCPU
1042 * is being scheduled in after being preempted. The CPU entries in the
1043 * Physical APIC table and IRTE are consumed iff IsRun{ning} is '1'.
1044 * If the vCPU was migrated, its new CPU value will be stuffed when the
1045 * vCPU unblocks.
1046 */
1047 if (kvm_vcpu_is_blocking(vcpu))
1048 return;
1049
f3cebc75
SC
1050 /*
1051 * Grab the per-vCPU interrupt remapping lock even if the VM doesn't
1052 * _currently_ have assigned devices, as that can change. Holding
1053 * ir_list_lock ensures that either svm_ir_list_add() will consume
1054 * up-to-date entry information, or that this task will wait until
1055 * svm_ir_list_add() completes to set the new target pCPU.
1056 */
4c08e737
SC
1057 spin_lock_irqsave(&svm->ir_list_lock, flags);
1058
ef0f6496 1059 entry = READ_ONCE(*(svm->avic_physical_id_cache));
e2ed3e64 1060 WARN_ON_ONCE(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK);
ef0f6496
JR
1061
1062 entry &= ~AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK;
1063 entry |= (h_physical_id & AVIC_PHYSICAL_ID_ENTRY_HOST_PHYSICAL_ID_MASK);
782f6455 1064 entry |= AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
ef0f6496
JR
1065
1066 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
782f6455 1067 avic_update_iommu_vcpu_affinity(vcpu, h_physical_id, true);
4c08e737
SC
1068
1069 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
ef0f6496
JR
1070}
1071
ba8ec273 1072void avic_vcpu_put(struct kvm_vcpu *vcpu)
ef0f6496
JR
1073{
1074 u64 entry;
1075 struct vcpu_svm *svm = to_svm(vcpu);
4c08e737 1076 unsigned long flags;
ef0f6496 1077
935a7333
SC
1078 lockdep_assert_preemption_disabled();
1079
4c08e737
SC
1080 /*
1081 * Note, reading the Physical ID entry outside of ir_list_lock is safe
1082 * as only the pCPU that has loaded (or is loading) the vCPU is allowed
1083 * to modify the entry, and preemption is disabled. I.e. the vCPU
1084 * can't be scheduled out and thus avic_vcpu_{put,load}() can't run
1085 * recursively.
1086 */
ef0f6496 1087 entry = READ_ONCE(*(svm->avic_physical_id_cache));
782f6455
SC
1088
1089 /* Nothing to do if IsRunning == '0' due to vCPU blocking. */
1090 if (!(entry & AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK))
1091 return;
1092
f3cebc75
SC
1093 /*
1094 * Take and hold the per-vCPU interrupt remapping lock while updating
1095 * the Physical ID entry even though the lock doesn't protect against
1096 * multiple writers (see above). Holding ir_list_lock ensures that
1097 * either svm_ir_list_add() will consume up-to-date entry information,
1098 * or that this task will wait until svm_ir_list_add() completes to
1099 * mark the vCPU as not running.
1100 */
4c08e737
SC
1101 spin_lock_irqsave(&svm->ir_list_lock, flags);
1102
782f6455 1103 avic_update_iommu_vcpu_affinity(vcpu, -1, 0);
ef0f6496
JR
1104
1105 entry &= ~AVIC_PHYSICAL_ID_ENTRY_IS_RUNNING_MASK;
1106 WRITE_ONCE(*(svm->avic_physical_id_cache), entry);
4c08e737
SC
1107
1108 spin_unlock_irqrestore(&svm->ir_list_lock, flags);
1109
ef0f6496
JR
1110}
1111
e0bead97 1112void avic_refresh_virtual_apic_mode(struct kvm_vcpu *vcpu)
b652de1e
SC
1113{
1114 struct vcpu_svm *svm = to_svm(vcpu);
1115 struct vmcb *vmcb = svm->vmcb01.ptr;
b652de1e 1116
f628a34a 1117 if (!lapic_in_kernel(vcpu) || !enable_apicv)
b652de1e
SC
1118 return;
1119
e0bead97 1120 if (kvm_vcpu_apicv_active(vcpu)) {
b652de1e
SC
1121 /**
1122 * During AVIC temporary deactivation, guest could update
1123 * APIC ID, DFR and LDR registers, which would not be trapped
1124 * by avic_unaccelerated_access_interception(). In this case,
1125 * we need to check and update the AVIC logical APIC ID table
1126 * accordingly before re-activating.
1127 */
1128 avic_apicv_post_state_restore(vcpu);
4d1d7942 1129 avic_activate_vmcb(svm);
b652de1e 1130 } else {
4d1d7942 1131 avic_deactivate_vmcb(svm);
b652de1e
SC
1132 }
1133 vmcb_mark_dirty(vmcb, VMCB_AVIC);
e0bead97
SC
1134}
1135
1136void avic_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
1137{
1138 bool activated = kvm_vcpu_apicv_active(vcpu);
1139
1140 if (!enable_apicv)
1141 return;
1142
1143 avic_refresh_virtual_apic_mode(vcpu);
b652de1e
SC
1144
1145 if (activated)
ba8ec273 1146 avic_vcpu_load(vcpu, vcpu->cpu);
b652de1e
SC
1147 else
1148 avic_vcpu_put(vcpu);
1149
1150 avic_set_pi_irte_mode(vcpu, activated);
1151}
1152
a3c19d5b 1153void avic_vcpu_blocking(struct kvm_vcpu *vcpu)
ef0f6496 1154{
935a7333
SC
1155 if (!kvm_vcpu_apicv_active(vcpu))
1156 return;
1157
935a7333
SC
1158 /*
1159 * Unload the AVIC when the vCPU is about to block, _before_
1160 * the vCPU actually blocks.
1161 *
1162 * Any IRQs that arrive before IsRunning=0 will not cause an
1163 * incomplete IPI vmexit on the source, therefore vIRR will also
1164 * be checked by kvm_vcpu_check_block() before blocking. The
1165 * memory barrier implicit in set_current_state orders writing
1166 * IsRunning=0 before reading the vIRR. The processor needs a
1167 * matching memory barrier on interrupt delivery between writing
1168 * IRR and reading IsRunning; the lack of this barrier might be
1169 * the cause of errata #1235).
1170 */
1171 avic_vcpu_put(vcpu);
ef0f6496
JR
1172}
1173
a3c19d5b 1174void avic_vcpu_unblocking(struct kvm_vcpu *vcpu)
ef0f6496 1175{
935a7333
SC
1176 if (!kvm_vcpu_apicv_active(vcpu))
1177 return;
1178
ba8ec273 1179 avic_vcpu_load(vcpu, vcpu->cpu);
ef0f6496 1180}
4bdec12a
SS
1181
1182/*
1183 * Note:
1184 * - The module param avic enable both xAPIC and x2APIC mode.
1185 * - Hypervisor can support both xAVIC and x2AVIC in the same guest.
1186 * - The mode can be switched at run-time.
1187 */
36b02567 1188bool avic_hardware_setup(void)
4bdec12a
SS
1189{
1190 if (!npt_enabled)
1191 return false;
1192
f628a34a
SC
1193 /* AVIC is a prerequisite for x2AVIC. */
1194 if (!boot_cpu_has(X86_FEATURE_AVIC) && !force_avic) {
1195 if (boot_cpu_has(X86_FEATURE_X2AVIC)) {
1196 pr_warn(FW_BUG "Cannot support x2AVIC due to AVIC is disabled");
1197 pr_warn(FW_BUG "Try enable AVIC using force_avic option");
1198 }
1199 return false;
1200 }
1201
4bdec12a 1202 if (boot_cpu_has(X86_FEATURE_AVIC)) {
4bdec12a
SS
1203 pr_info("AVIC enabled\n");
1204 } else if (force_avic) {
1205 /*
1206 * Some older systems does not advertise AVIC support.
1207 * See Revision Guide for specific AMD processor for more detail.
1208 */
4bdec12a
SS
1209 pr_warn("AVIC is not supported in CPUID but force enabled");
1210 pr_warn("Your system might crash and burn");
1211 }
1212
1213 /* AVIC is a prerequisite for x2AVIC. */
f628a34a
SC
1214 x2avic_enabled = boot_cpu_has(X86_FEATURE_X2AVIC);
1215 if (x2avic_enabled)
1216 pr_info("x2AVIC enabled\n");
4bdec12a 1217
f628a34a 1218 amd_iommu_register_ga_log_notifier(&avic_ga_log_notifier);
4bdec12a 1219
f628a34a 1220 return true;
4bdec12a 1221}