KVM: MTRR: introduce var_mtrr_range
[linux-2.6-block.git] / arch / x86 / kvm / mtrr.c
CommitLineData
ff53604b
XG
1/*
2 * vMTRR implementation
3 *
4 * Copyright (C) 2006 Qumranet, Inc.
5 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6 * Copyright(C) 2015 Intel Corporation.
7 *
8 * Authors:
9 * Yaniv Kamay <yaniv@qumranet.com>
10 * Avi Kivity <avi@qumranet.com>
11 * Marcelo Tosatti <mtosatti@redhat.com>
12 * Paolo Bonzini <pbonzini@redhat.com>
13 * Xiao Guangrong <guangrong.xiao@linux.intel.com>
14 *
15 * This work is licensed under the terms of the GNU GPL, version 2. See
16 * the COPYING file in the top-level directory.
17 */
18
19#include <linux/kvm_host.h>
20#include <asm/mtrr.h>
21
22#include "cpuid.h"
23#include "mmu.h"
24
10fac2dc
XG
25#define IA32_MTRR_DEF_TYPE_E (1ULL << 11)
26#define IA32_MTRR_DEF_TYPE_FE (1ULL << 10)
27#define IA32_MTRR_DEF_TYPE_TYPE_MASK (0xff)
28
ff53604b
XG
29static bool msr_mtrr_valid(unsigned msr)
30{
31 switch (msr) {
32 case 0x200 ... 0x200 + 2 * KVM_NR_VAR_MTRR - 1:
33 case MSR_MTRRfix64K_00000:
34 case MSR_MTRRfix16K_80000:
35 case MSR_MTRRfix16K_A0000:
36 case MSR_MTRRfix4K_C0000:
37 case MSR_MTRRfix4K_C8000:
38 case MSR_MTRRfix4K_D0000:
39 case MSR_MTRRfix4K_D8000:
40 case MSR_MTRRfix4K_E0000:
41 case MSR_MTRRfix4K_E8000:
42 case MSR_MTRRfix4K_F0000:
43 case MSR_MTRRfix4K_F8000:
44 case MSR_MTRRdefType:
45 case MSR_IA32_CR_PAT:
46 return true;
47 case 0x2f8:
48 return true;
49 }
50 return false;
51}
52
53static bool valid_pat_type(unsigned t)
54{
55 return t < 8 && (1 << t) & 0xf3; /* 0, 1, 4, 5, 6, 7 */
56}
57
58static bool valid_mtrr_type(unsigned t)
59{
60 return t < 8 && (1 << t) & 0x73; /* 0, 1, 4, 5, 6 */
61}
62
63bool kvm_mtrr_valid(struct kvm_vcpu *vcpu, u32 msr, u64 data)
64{
65 int i;
66 u64 mask;
67
68 if (!msr_mtrr_valid(msr))
69 return false;
70
71 if (msr == MSR_IA32_CR_PAT) {
72 for (i = 0; i < 8; i++)
73 if (!valid_pat_type((data >> (i * 8)) & 0xff))
74 return false;
75 return true;
76 } else if (msr == MSR_MTRRdefType) {
77 if (data & ~0xcff)
78 return false;
79 return valid_mtrr_type(data & 0xff);
80 } else if (msr >= MSR_MTRRfix64K_00000 && msr <= MSR_MTRRfix4K_F8000) {
81 for (i = 0; i < 8 ; i++)
82 if (!valid_mtrr_type((data >> (i * 8)) & 0xff))
83 return false;
84 return true;
85 }
86
87 /* variable MTRRs */
88 WARN_ON(!(msr >= 0x200 && msr < 0x200 + 2 * KVM_NR_VAR_MTRR));
89
90 mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
91 if ((msr & 1) == 0) {
92 /* MTRR base */
93 if (!valid_mtrr_type(data & 0xff))
94 return false;
95 mask |= 0xf00;
96 } else
97 /* MTRR mask */
98 mask |= 0x7ff;
99 if (data & mask) {
100 kvm_inject_gp(vcpu, 0);
101 return false;
102 }
103
104 return true;
105}
106EXPORT_SYMBOL_GPL(kvm_mtrr_valid);
107
10fac2dc
XG
108static bool mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
109{
110 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_E);
111}
112
113static bool fixed_mtrr_is_enabled(struct kvm_mtrr *mtrr_state)
114{
115 return !!(mtrr_state->deftype & IA32_MTRR_DEF_TYPE_FE);
116}
117
118static u8 mtrr_default_type(struct kvm_mtrr *mtrr_state)
119{
120 return mtrr_state->deftype & IA32_MTRR_DEF_TYPE_TYPE_MASK;
121}
122
de9aef5e
XG
123/*
124* Three terms are used in the following code:
125* - segment, it indicates the address segments covered by fixed MTRRs.
126* - unit, it corresponds to the MSR entry in the segment.
127* - range, a range is covered in one memory cache type.
128*/
129struct fixed_mtrr_segment {
130 u64 start;
131 u64 end;
132
133 int range_shift;
134
135 /* the start position in kvm_mtrr.fixed_ranges[]. */
136 int range_start;
137};
138
139static struct fixed_mtrr_segment fixed_seg_table[] = {
140 /* MSR_MTRRfix64K_00000, 1 unit. 64K fixed mtrr. */
141 {
142 .start = 0x0,
143 .end = 0x80000,
144 .range_shift = 16, /* 64K */
145 .range_start = 0,
146 },
147
148 /*
149 * MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000, 2 units,
150 * 16K fixed mtrr.
151 */
152 {
153 .start = 0x80000,
154 .end = 0xc0000,
155 .range_shift = 14, /* 16K */
156 .range_start = 8,
157 },
158
159 /*
160 * MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000, 8 units,
161 * 4K fixed mtrr.
162 */
163 {
164 .start = 0xc0000,
165 .end = 0x100000,
166 .range_shift = 12, /* 12K */
167 .range_start = 24,
168 }
169};
170
171/*
172 * The size of unit is covered in one MSR, one MSR entry contains
173 * 8 ranges so that unit size is always 8 * 2^range_shift.
174 */
175static u64 fixed_mtrr_seg_unit_size(int seg)
176{
177 return 8 << fixed_seg_table[seg].range_shift;
178}
179
180static bool fixed_msr_to_seg_unit(u32 msr, int *seg, int *unit)
181{
182 switch (msr) {
183 case MSR_MTRRfix64K_00000:
184 *seg = 0;
185 *unit = 0;
186 break;
187 case MSR_MTRRfix16K_80000 ... MSR_MTRRfix16K_A0000:
188 *seg = 1;
189 *unit = msr - MSR_MTRRfix16K_80000;
190 break;
191 case MSR_MTRRfix4K_C0000 ... MSR_MTRRfix4K_F8000:
192 *seg = 2;
193 *unit = msr - MSR_MTRRfix4K_C0000;
194 break;
195 default:
196 return false;
197 }
198
199 return true;
200}
201
202static void fixed_mtrr_seg_unit_range(int seg, int unit, u64 *start, u64 *end)
203{
204 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
205 u64 unit_size = fixed_mtrr_seg_unit_size(seg);
206
207 *start = mtrr_seg->start + unit * unit_size;
208 *end = *start + unit_size;
209 WARN_ON(*end > mtrr_seg->end);
210}
211
212static int fixed_mtrr_seg_unit_range_index(int seg, int unit)
213{
214 struct fixed_mtrr_segment *mtrr_seg = &fixed_seg_table[seg];
215
216 WARN_ON(mtrr_seg->start + unit * fixed_mtrr_seg_unit_size(seg)
217 > mtrr_seg->end);
218
219 /* each unit has 8 ranges. */
220 return mtrr_seg->range_start + 8 * unit;
221}
222
223static bool fixed_msr_to_range(u32 msr, u64 *start, u64 *end)
224{
225 int seg, unit;
226
227 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
228 return false;
229
230 fixed_mtrr_seg_unit_range(seg, unit, start, end);
231 return true;
232}
233
234static int fixed_msr_to_range_index(u32 msr)
235{
236 int seg, unit;
237
238 if (!fixed_msr_to_seg_unit(msr, &seg, &unit))
239 return -1;
240
241 return fixed_mtrr_seg_unit_range_index(seg, unit);
242}
243
a13842dc
XG
244static void var_mtrr_range(struct kvm_mtrr_range *range, u64 *start, u64 *end)
245{
246 u64 mask;
247
248 *start = range->base & PAGE_MASK;
249
250 mask = range->mask & PAGE_MASK;
251 mask |= ~0ULL << boot_cpu_data.x86_phys_bits;
252
253 /* This cannot overflow because writing to the reserved bits of
254 * variable MTRRs causes a #GP.
255 */
256 *end = (*start | ~mask) + 1;
257}
258
ff53604b
XG
259static void update_mtrr(struct kvm_vcpu *vcpu, u32 msr)
260{
70109e7d 261 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
a13842dc 262 gfn_t start, end;
ff53604b 263 int index;
ff53604b
XG
264
265 if (msr == MSR_IA32_CR_PAT || !tdp_enabled ||
266 !kvm_arch_has_noncoherent_dma(vcpu->kvm))
267 return;
268
10fac2dc 269 if (!mtrr_is_enabled(mtrr_state) && msr != MSR_MTRRdefType)
ff53604b
XG
270 return;
271
de9aef5e
XG
272 /* fixed MTRRs. */
273 if (fixed_msr_to_range(msr, &start, &end)) {
274 if (!fixed_mtrr_is_enabled(mtrr_state))
275 return;
276 } else if (msr == MSR_MTRRdefType) {
ff53604b
XG
277 start = 0x0;
278 end = ~0ULL;
de9aef5e 279 } else {
ff53604b 280 /* variable range MTRRs. */
ff53604b 281 index = (msr - 0x200) / 2;
a13842dc 282 var_mtrr_range(&mtrr_state->var_ranges[index], &start, &end);
ff53604b
XG
283 }
284
ff53604b
XG
285 kvm_zap_gfn_range(vcpu->kvm, gpa_to_gfn(start), gpa_to_gfn(end));
286}
287
288int kvm_mtrr_set_msr(struct kvm_vcpu *vcpu, u32 msr, u64 data)
289{
de9aef5e 290 int index;
ff53604b
XG
291
292 if (!kvm_mtrr_valid(vcpu, msr, data))
293 return 1;
294
de9aef5e
XG
295 index = fixed_msr_to_range_index(msr);
296 if (index >= 0)
297 *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index] = data;
298 else if (msr == MSR_MTRRdefType)
10fac2dc 299 vcpu->arch.mtrr_state.deftype = data;
ff53604b
XG
300 else if (msr == MSR_IA32_CR_PAT)
301 vcpu->arch.pat = data;
302 else { /* Variable MTRRs */
de9aef5e 303 int is_mtrr_mask;
ff53604b 304
de9aef5e
XG
305 index = (msr - 0x200) / 2;
306 is_mtrr_mask = msr - 0x200 - 2 * index;
ff53604b 307 if (!is_mtrr_mask)
de9aef5e 308 vcpu->arch.mtrr_state.var_ranges[index].base = data;
ff53604b 309 else
de9aef5e 310 vcpu->arch.mtrr_state.var_ranges[index].mask = data;
ff53604b
XG
311 }
312
313 update_mtrr(vcpu, msr);
314 return 0;
315}
316
317int kvm_mtrr_get_msr(struct kvm_vcpu *vcpu, u32 msr, u64 *pdata)
318{
de9aef5e 319 int index;
ff53604b 320
eb839917
XG
321 /* MSR_MTRRcap is a readonly MSR. */
322 if (msr == MSR_MTRRcap) {
323 /*
324 * SMRR = 0
325 * WC = 1
326 * FIX = 1
327 * VCNT = KVM_NR_VAR_MTRR
328 */
329 *pdata = 0x500 | KVM_NR_VAR_MTRR;
330 return 0;
331 }
332
ff53604b
XG
333 if (!msr_mtrr_valid(msr))
334 return 1;
335
de9aef5e
XG
336 index = fixed_msr_to_range_index(msr);
337 if (index >= 0)
338 *pdata = *(u64 *)&vcpu->arch.mtrr_state.fixed_ranges[index];
339 else if (msr == MSR_MTRRdefType)
10fac2dc 340 *pdata = vcpu->arch.mtrr_state.deftype;
ff53604b
XG
341 else if (msr == MSR_IA32_CR_PAT)
342 *pdata = vcpu->arch.pat;
343 else { /* Variable MTRRs */
de9aef5e 344 int is_mtrr_mask;
ff53604b 345
de9aef5e
XG
346 index = (msr - 0x200) / 2;
347 is_mtrr_mask = msr - 0x200 - 2 * index;
ff53604b 348 if (!is_mtrr_mask)
de9aef5e 349 *pdata = vcpu->arch.mtrr_state.var_ranges[index].base;
ff53604b 350 else
de9aef5e 351 *pdata = vcpu->arch.mtrr_state.var_ranges[index].mask;
ff53604b
XG
352 }
353
354 return 0;
355}
356
3f3f78b6 357u8 kvm_mtrr_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
ff53604b 358{
3f3f78b6
XG
359 struct kvm_mtrr *mtrr_state = &vcpu->arch.mtrr_state;
360 u64 base, mask, start;
361 int i, num_var_ranges, type;
362 const int wt_wb_mask = (1 << MTRR_TYPE_WRBACK)
363 | (1 << MTRR_TYPE_WRTHROUGH);
364
365 start = gfn_to_gpa(gfn);
366 num_var_ranges = KVM_NR_VAR_MTRR;
367 type = -1;
ff53604b
XG
368
369 /* MTRR is completely disabled, use UC for all of physical memory. */
10fac2dc 370 if (!mtrr_is_enabled(mtrr_state))
ff53604b
XG
371 return MTRR_TYPE_UNCACHABLE;
372
ff53604b 373 /* Look in fixed ranges. Just return the type as per start */
10fac2dc 374 if (fixed_mtrr_is_enabled(mtrr_state) && (start < 0x100000)) {
ff53604b
XG
375 int idx;
376
377 if (start < 0x80000) {
378 idx = 0;
379 idx += (start >> 16);
380 return mtrr_state->fixed_ranges[idx];
381 } else if (start < 0xC0000) {
382 idx = 1 * 8;
383 idx += ((start - 0x80000) >> 14);
384 return mtrr_state->fixed_ranges[idx];
385 } else if (start < 0x1000000) {
386 idx = 3 * 8;
387 idx += ((start - 0xC0000) >> 12);
388 return mtrr_state->fixed_ranges[idx];
389 }
390 }
391
392 /*
393 * Look in variable ranges
394 * Look of multiple ranges matching this address and pick type
395 * as per MTRR precedence
396 */
ff53604b 397 for (i = 0; i < num_var_ranges; ++i) {
3f3f78b6 398 int curr_type;
ff53604b 399
86fd5270 400 if (!(mtrr_state->var_ranges[i].mask & (1 << 11)))
ff53604b
XG
401 continue;
402
86fd5270
XG
403 base = mtrr_state->var_ranges[i].base & PAGE_MASK;
404 mask = mtrr_state->var_ranges[i].mask & PAGE_MASK;
ff53604b 405
ff53604b
XG
406 if ((start & mask) != (base & mask))
407 continue;
408
3f3f78b6
XG
409 /*
410 * Please refer to Intel SDM Volume 3: 11.11.4.1 MTRR
411 * Precedences.
412 */
413
414 curr_type = mtrr_state->var_ranges[i].base & 0xff;
415 if (type == -1) {
416 type = curr_type;
ff53604b
XG
417 continue;
418 }
419
3f3f78b6
XG
420 /*
421 * If two or more variable memory ranges match and the
422 * memory types are identical, then that memory type is
423 * used.
424 */
425 if (type == curr_type)
426 continue;
427
428 /*
429 * If two or more variable memory ranges match and one of
430 * the memory types is UC, the UC memory type used.
431 */
432 if (curr_type == MTRR_TYPE_UNCACHABLE)
ff53604b
XG
433 return MTRR_TYPE_UNCACHABLE;
434
3f3f78b6
XG
435 /*
436 * If two or more variable memory ranges match and the
437 * memory types are WT and WB, the WT memory type is used.
438 */
439 if (((1 << type) & wt_wb_mask) &&
440 ((1 << curr_type) & wt_wb_mask)) {
441 type = MTRR_TYPE_WRTHROUGH;
442 continue;
ff53604b
XG
443 }
444
3f3f78b6
XG
445 /*
446 * For overlaps not defined by the above rules, processor
447 * behavior is undefined.
448 */
449
450 /* We use WB for this undefined behavior. :( */
451 return MTRR_TYPE_WRBACK;
ff53604b
XG
452 }
453
3f3f78b6
XG
454 if (type != -1)
455 return type;
ff53604b 456
10fac2dc 457 return mtrr_default_type(mtrr_state);
ff53604b 458}
ff53604b 459EXPORT_SYMBOL_GPL(kvm_mtrr_get_guest_memory_type);