License cleanup: add SPDX GPL-2.0 license identifier to files with no license
[linux-block.git] / arch / x86 / kvm / mmu.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1d737c8a
ZX
2#ifndef __KVM_X86_MMU_H
3#define __KVM_X86_MMU_H
4
edf88417 5#include <linux/kvm_host.h>
fc78f519 6#include "kvm_cache_regs.h"
1d737c8a 7
8c6d6adc
SY
8#define PT64_PT_BITS 9
9#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
10#define PT32_PT_BITS 10
11#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12
13#define PT_WRITABLE_SHIFT 1
be94f6b7 14#define PT_USER_SHIFT 2
8c6d6adc
SY
15
16#define PT_PRESENT_MASK (1ULL << 0)
17#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
be94f6b7 18#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
8c6d6adc
SY
19#define PT_PWT_MASK (1ULL << 3)
20#define PT_PCD_MASK (1ULL << 4)
1b7fcd32
AK
21#define PT_ACCESSED_SHIFT 5
22#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
8ea667f2
AK
23#define PT_DIRTY_SHIFT 6
24#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
6fd01b71
AK
25#define PT_PAGE_SIZE_SHIFT 7
26#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
8c6d6adc
SY
27#define PT_PAT_MASK (1ULL << 7)
28#define PT_GLOBAL_MASK (1ULL << 8)
29#define PT64_NX_SHIFT 63
30#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
31
32#define PT_PAT_SHIFT 7
33#define PT_DIR_PAT_SHIFT 12
34#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
35
36#define PT32_DIR_PSE36_SIZE 4
37#define PT32_DIR_PSE36_SHIFT 13
38#define PT32_DIR_PSE36_MASK \
39 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
40
855feb67 41#define PT64_ROOT_5LEVEL 5
2a7266a8 42#define PT64_ROOT_4LEVEL 4
8c6d6adc
SY
43#define PT32_ROOT_LEVEL 2
44#define PT32E_ROOT_LEVEL 3
45
c9c54174
SY
46#define PT_PDPE_LEVEL 3
47#define PT_DIRECTORY_LEVEL 2
48#define PT_PAGE_TABLE_LEVEL 1
8a3d08f1 49#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
c9c54174 50
d1431483
TC
51static inline u64 rsvd_bits(int s, int e)
52{
d1cd3ce9
YZ
53 if (e < s)
54 return 0;
55
d1431483
TC
56 return ((1ULL << (e - s + 1)) - 1) << s;
57}
58
dcdca5fe 59void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value);
b37fbea6 60
c258b62b
XG
61void
62reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
63
ad896af0 64void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
ae1e2d10
PB
65void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
66 bool accessed_dirty);
9bc1f09f 67bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
1261bfa3
WL
68int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
69 u64 fault_address, char *insn, int insn_len,
70 bool need_unprotect);
94d8b056 71
e0df7b9f
DH
72static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
73{
5d218814
MT
74 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
75 return kvm->arch.n_max_mmu_pages -
76 kvm->arch.n_used_mmu_pages;
77
78 return 0;
e0df7b9f
DH
79}
80
1d737c8a
ZX
81static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
82{
83 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
84 return 0;
85
86 return kvm_mmu_load(vcpu);
87}
88
198c74f4
XG
89/*
90 * Currently, we have two sorts of write-protection, a) the first one
91 * write-protects guest page to sync the guest modification, b) another one is
92 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
93 * between these two sorts are:
94 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
95 * 2) the first case requires flushing tlb immediately avoiding corrupting
96 * shadow page table between all vcpus so it should be in the protection of
97 * mmu-lock. And the another case does not need to flush tlb until returning
98 * the dirty bitmap to userspace since it only write-protects the page
99 * logged in the bitmap, that means the page in the dirty bitmap is not
100 * missed, so it can flush tlb out of mmu-lock.
101 *
102 * So, there is the problem: the first case can meet the corrupted tlb caused
103 * by another case which write-protects pages but without flush tlb
104 * immediately. In order to making the first case be aware this problem we let
105 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
106 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
107 *
108 * Anyway, whenever a spte is updated (only permission and status bits are
109 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
110 * readonly, if that happens, we need to flush tlb. Fortunately,
111 * mmu_spte_update() has already handled it perfectly.
112 *
113 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
114 * - if we want to see if it has writable tlb entry or if the spte can be
115 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
116 * case, otherwise
117 * - if we fix page fault on the spte or do write-protection by dirty logging,
118 * check PT_WRITABLE_MASK.
119 *
120 * TODO: introduce APIs to split these two cases.
121 */
bebb106a
XG
122static inline int is_writable_pte(unsigned long pte)
123{
124 return pte & PT_WRITABLE_MASK;
125}
126
127static inline bool is_write_protection(struct kvm_vcpu *vcpu)
128{
129 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
130}
131
97d64b78 132/*
f13577e8
PB
133 * Check if a given access (described through the I/D, W/R and U/S bits of a
134 * page fault error code pfec) causes a permission fault with the given PTE
135 * access rights (in ACC_* format).
136 *
137 * Return zero if the access does not fault; return the page fault error code
138 * if the access faults.
97d64b78 139 */
f13577e8 140static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
be94f6b7
HH
141 unsigned pte_access, unsigned pte_pkey,
142 unsigned pfec)
bebb106a 143{
97ec8c06
FW
144 int cpl = kvm_x86_ops->get_cpl(vcpu);
145 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
146
147 /*
148 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
149 *
150 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
151 * (these are implicit supervisor accesses) regardless of the value
152 * of EFLAGS.AC.
153 *
154 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
155 * the result in X86_EFLAGS_AC. We then insert it in place of
156 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
157 * but it will be one in index if SMAP checks are being overridden.
158 * It is important to keep this branchless.
159 */
160 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
161 int index = (pfec >> 1) +
162 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
be94f6b7 163 bool fault = (mmu->permissions[index] >> pte_access) & 1;
7a98205d 164 u32 errcode = PFERR_PRESENT_MASK;
97ec8c06 165
be94f6b7 166 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
be94f6b7
HH
167 if (unlikely(mmu->pkru_mask)) {
168 u32 pkru_bits, offset;
169
170 /*
171 * PKRU defines 32 bits, there are 16 domains and 2
172 * attribute bits per domain in pkru. pte_pkey is the
173 * index of the protection domain, so pte_pkey * 2 is
174 * is the index of the first bit for the domain.
175 */
b9dd21e1 176 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
be94f6b7
HH
177
178 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
7a98205d 179 offset = (pfec & ~1) +
be94f6b7
HH
180 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
181
182 pkru_bits &= mmu->pkru_mask >> offset;
7a98205d 183 errcode |= -pkru_bits & PFERR_PK_MASK;
be94f6b7
HH
184 fault |= (pkru_bits != 0);
185 }
186
7a98205d 187 return -(u32)fault & errcode;
bebb106a 188}
97d64b78 189
5304b8d3 190void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
efdfe536 191void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
547ffaed
XG
192
193void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
194void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
aeecee2e
XG
195bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
196 struct kvm_memory_slot *slot, u64 gfn);
bab4165e 197int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
1d737c8a 198#endif