Merge tag 'amd-drm-fixes-5.6-2020-02-19' of git://people.freedesktop.org/~agd5f/linux...
[linux-block.git] / arch / x86 / kvm / mmu.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1d737c8a
ZX
2#ifndef __KVM_X86_MMU_H
3#define __KVM_X86_MMU_H
4
edf88417 5#include <linux/kvm_host.h>
fc78f519 6#include "kvm_cache_regs.h"
1d737c8a 7
8c6d6adc
SY
8#define PT64_PT_BITS 9
9#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
10#define PT32_PT_BITS 10
11#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
12
13#define PT_WRITABLE_SHIFT 1
be94f6b7 14#define PT_USER_SHIFT 2
8c6d6adc
SY
15
16#define PT_PRESENT_MASK (1ULL << 0)
17#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
be94f6b7 18#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
8c6d6adc
SY
19#define PT_PWT_MASK (1ULL << 3)
20#define PT_PCD_MASK (1ULL << 4)
1b7fcd32
AK
21#define PT_ACCESSED_SHIFT 5
22#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
8ea667f2
AK
23#define PT_DIRTY_SHIFT 6
24#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
6fd01b71
AK
25#define PT_PAGE_SIZE_SHIFT 7
26#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
8c6d6adc
SY
27#define PT_PAT_MASK (1ULL << 7)
28#define PT_GLOBAL_MASK (1ULL << 8)
29#define PT64_NX_SHIFT 63
30#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
31
32#define PT_PAT_SHIFT 7
33#define PT_DIR_PAT_SHIFT 12
34#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
35
36#define PT32_DIR_PSE36_SIZE 4
37#define PT32_DIR_PSE36_SHIFT 13
38#define PT32_DIR_PSE36_MASK \
39 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
40
855feb67 41#define PT64_ROOT_5LEVEL 5
2a7266a8 42#define PT64_ROOT_4LEVEL 4
8c6d6adc
SY
43#define PT32_ROOT_LEVEL 2
44#define PT32E_ROOT_LEVEL 3
45
d1431483
TC
46static inline u64 rsvd_bits(int s, int e)
47{
d1cd3ce9
YZ
48 if (e < s)
49 return 0;
50
d1431483
TC
51 return ((1ULL << (e - s + 1)) - 1) << s;
52}
53
4af77151 54void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask);
b37fbea6 55
c258b62b
XG
56void
57reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
58
1c53da3f 59void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
ad896af0 60void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
ae1e2d10 61void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 62 bool accessed_dirty, gpa_t new_eptp);
9bc1f09f 63bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
1261bfa3 64int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 65 u64 fault_address, char *insn, int insn_len);
94d8b056 66
bc8a3d89 67static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
e0df7b9f 68{
5d218814
MT
69 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
70 return kvm->arch.n_max_mmu_pages -
71 kvm->arch.n_used_mmu_pages;
72
73 return 0;
e0df7b9f
DH
74}
75
1d737c8a
ZX
76static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
77{
44dd3ffa 78 if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
1d737c8a
ZX
79 return 0;
80
81 return kvm_mmu_load(vcpu);
82}
83
c9470a2e
JS
84static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
85{
86 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
87
88 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
89 ? cr3 & X86_CR3_PCID_MASK
90 : 0;
91}
92
93static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
94{
95 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
96}
97
6e42782f
JS
98static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
99{
44dd3ffa
VK
100 if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
101 vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
102 kvm_get_active_pcid(vcpu));
6e42782f
JS
103}
104
7a02674d
SC
105int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
106 bool prefault);
107
108static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
109 u32 err, bool prefault)
110{
111#ifdef CONFIG_RETPOLINE
112 if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
113 return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
114#endif
115 return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
116}
117
198c74f4
XG
118/*
119 * Currently, we have two sorts of write-protection, a) the first one
120 * write-protects guest page to sync the guest modification, b) another one is
121 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
122 * between these two sorts are:
123 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
124 * 2) the first case requires flushing tlb immediately avoiding corrupting
125 * shadow page table between all vcpus so it should be in the protection of
126 * mmu-lock. And the another case does not need to flush tlb until returning
127 * the dirty bitmap to userspace since it only write-protects the page
128 * logged in the bitmap, that means the page in the dirty bitmap is not
129 * missed, so it can flush tlb out of mmu-lock.
130 *
131 * So, there is the problem: the first case can meet the corrupted tlb caused
132 * by another case which write-protects pages but without flush tlb
133 * immediately. In order to making the first case be aware this problem we let
134 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
135 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
136 *
137 * Anyway, whenever a spte is updated (only permission and status bits are
138 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
139 * readonly, if that happens, we need to flush tlb. Fortunately,
140 * mmu_spte_update() has already handled it perfectly.
141 *
142 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
143 * - if we want to see if it has writable tlb entry or if the spte can be
144 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
145 * case, otherwise
146 * - if we fix page fault on the spte or do write-protection by dirty logging,
147 * check PT_WRITABLE_MASK.
148 *
149 * TODO: introduce APIs to split these two cases.
150 */
bebb106a
XG
151static inline int is_writable_pte(unsigned long pte)
152{
153 return pte & PT_WRITABLE_MASK;
154}
155
156static inline bool is_write_protection(struct kvm_vcpu *vcpu)
157{
158 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
159}
160
97d64b78 161/*
f13577e8
PB
162 * Check if a given access (described through the I/D, W/R and U/S bits of a
163 * page fault error code pfec) causes a permission fault with the given PTE
164 * access rights (in ACC_* format).
165 *
166 * Return zero if the access does not fault; return the page fault error code
167 * if the access faults.
97d64b78 168 */
f13577e8 169static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
be94f6b7
HH
170 unsigned pte_access, unsigned pte_pkey,
171 unsigned pfec)
bebb106a 172{
97ec8c06
FW
173 int cpl = kvm_x86_ops->get_cpl(vcpu);
174 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
175
176 /*
177 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
178 *
179 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
180 * (these are implicit supervisor accesses) regardless of the value
181 * of EFLAGS.AC.
182 *
183 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
184 * the result in X86_EFLAGS_AC. We then insert it in place of
185 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
186 * but it will be one in index if SMAP checks are being overridden.
187 * It is important to keep this branchless.
188 */
189 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
190 int index = (pfec >> 1) +
191 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
be94f6b7 192 bool fault = (mmu->permissions[index] >> pte_access) & 1;
7a98205d 193 u32 errcode = PFERR_PRESENT_MASK;
97ec8c06 194
be94f6b7 195 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
be94f6b7
HH
196 if (unlikely(mmu->pkru_mask)) {
197 u32 pkru_bits, offset;
198
199 /*
200 * PKRU defines 32 bits, there are 16 domains and 2
201 * attribute bits per domain in pkru. pte_pkey is the
202 * index of the protection domain, so pte_pkey * 2 is
203 * is the index of the first bit for the domain.
204 */
b9dd21e1 205 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
be94f6b7
HH
206
207 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
7a98205d 208 offset = (pfec & ~1) +
be94f6b7
HH
209 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
210
211 pkru_bits &= mmu->pkru_mask >> offset;
7a98205d 212 errcode |= -pkru_bits & PFERR_PK_MASK;
be94f6b7
HH
213 fault |= (pkru_bits != 0);
214 }
215
7a98205d 216 return -(u32)fault & errcode;
bebb106a 217}
97d64b78 218
efdfe536 219void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
547ffaed
XG
220
221void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
222void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
aeecee2e
XG
223bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
224 struct kvm_memory_slot *slot, u64 gfn);
bab4165e 225int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
1aa9b957
JS
226
227int kvm_mmu_post_init_vm(struct kvm *kvm);
228void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
229
1d737c8a 230#endif