KVM, pkeys: introduce pkru_mask to cache conditions
[linux-block.git] / arch / x86 / kvm / mmu.h
CommitLineData
1d737c8a
ZX
1#ifndef __KVM_X86_MMU_H
2#define __KVM_X86_MMU_H
3
edf88417 4#include <linux/kvm_host.h>
fc78f519 5#include "kvm_cache_regs.h"
1d737c8a 6
8c6d6adc
SY
7#define PT64_PT_BITS 9
8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
9#define PT32_PT_BITS 10
10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
11
12#define PT_WRITABLE_SHIFT 1
13
14#define PT_PRESENT_MASK (1ULL << 0)
15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
16#define PT_USER_MASK (1ULL << 2)
17#define PT_PWT_MASK (1ULL << 3)
18#define PT_PCD_MASK (1ULL << 4)
1b7fcd32
AK
19#define PT_ACCESSED_SHIFT 5
20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
8ea667f2
AK
21#define PT_DIRTY_SHIFT 6
22#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
6fd01b71
AK
23#define PT_PAGE_SIZE_SHIFT 7
24#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
8c6d6adc
SY
25#define PT_PAT_MASK (1ULL << 7)
26#define PT_GLOBAL_MASK (1ULL << 8)
27#define PT64_NX_SHIFT 63
28#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
29
30#define PT_PAT_SHIFT 7
31#define PT_DIR_PAT_SHIFT 12
32#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
33
34#define PT32_DIR_PSE36_SIZE 4
35#define PT32_DIR_PSE36_SHIFT 13
36#define PT32_DIR_PSE36_MASK \
37 (((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
38
39#define PT64_ROOT_LEVEL 4
40#define PT32_ROOT_LEVEL 2
41#define PT32E_ROOT_LEVEL 3
42
c9c54174
SY
43#define PT_PDPE_LEVEL 3
44#define PT_DIRECTORY_LEVEL 2
45#define PT_PAGE_TABLE_LEVEL 1
8a3d08f1 46#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
c9c54174 47
d1431483
TC
48static inline u64 rsvd_bits(int s, int e)
49{
50 return ((1ULL << (e - s + 1)) - 1) << s;
51}
52
ce88decf 53void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
b37fbea6 54
c258b62b
XG
55void
56reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
57
b37fbea6 58/*
450869d6 59 * Return values of handle_mmio_page_fault:
b37fbea6 60 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
f8f55942
XG
61 * directly.
62 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
63 * fault path update the mmio spte.
b37fbea6 64 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
450869d6 65 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
b37fbea6
XG
66 */
67enum {
68 RET_MMIO_PF_EMULATE = 1,
f8f55942 69 RET_MMIO_PF_INVALID = 2,
b37fbea6
XG
70 RET_MMIO_PF_RETRY = 0,
71 RET_MMIO_PF_BUG = -1
72};
73
450869d6 74int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
ad896af0
PB
75void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
76void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
94d8b056 77
e0df7b9f
DH
78static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
79{
5d218814
MT
80 if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
81 return kvm->arch.n_max_mmu_pages -
82 kvm->arch.n_used_mmu_pages;
83
84 return 0;
e0df7b9f
DH
85}
86
1d737c8a
ZX
87static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
88{
89 if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
90 return 0;
91
92 return kvm_mmu_load(vcpu);
93}
94
43a3795a 95static inline int is_present_gpte(unsigned long pte)
20c466b5
DE
96{
97 return pte & PT_PRESENT_MASK;
98}
99
198c74f4
XG
100/*
101 * Currently, we have two sorts of write-protection, a) the first one
102 * write-protects guest page to sync the guest modification, b) another one is
103 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
104 * between these two sorts are:
105 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
106 * 2) the first case requires flushing tlb immediately avoiding corrupting
107 * shadow page table between all vcpus so it should be in the protection of
108 * mmu-lock. And the another case does not need to flush tlb until returning
109 * the dirty bitmap to userspace since it only write-protects the page
110 * logged in the bitmap, that means the page in the dirty bitmap is not
111 * missed, so it can flush tlb out of mmu-lock.
112 *
113 * So, there is the problem: the first case can meet the corrupted tlb caused
114 * by another case which write-protects pages but without flush tlb
115 * immediately. In order to making the first case be aware this problem we let
116 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
117 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
118 *
119 * Anyway, whenever a spte is updated (only permission and status bits are
120 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
121 * readonly, if that happens, we need to flush tlb. Fortunately,
122 * mmu_spte_update() has already handled it perfectly.
123 *
124 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
125 * - if we want to see if it has writable tlb entry or if the spte can be
126 * writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
127 * case, otherwise
128 * - if we fix page fault on the spte or do write-protection by dirty logging,
129 * check PT_WRITABLE_MASK.
130 *
131 * TODO: introduce APIs to split these two cases.
132 */
bebb106a
XG
133static inline int is_writable_pte(unsigned long pte)
134{
135 return pte & PT_WRITABLE_MASK;
136}
137
138static inline bool is_write_protection(struct kvm_vcpu *vcpu)
139{
140 return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
141}
142
97d64b78 143/*
f13577e8
PB
144 * Check if a given access (described through the I/D, W/R and U/S bits of a
145 * page fault error code pfec) causes a permission fault with the given PTE
146 * access rights (in ACC_* format).
147 *
148 * Return zero if the access does not fault; return the page fault error code
149 * if the access faults.
97d64b78 150 */
f13577e8
PB
151static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
152 unsigned pte_access, unsigned pfec)
bebb106a 153{
97ec8c06
FW
154 int cpl = kvm_x86_ops->get_cpl(vcpu);
155 unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
156
157 /*
158 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
159 *
160 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
161 * (these are implicit supervisor accesses) regardless of the value
162 * of EFLAGS.AC.
163 *
164 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
165 * the result in X86_EFLAGS_AC. We then insert it in place of
166 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
167 * but it will be one in index if SMAP checks are being overridden.
168 * It is important to keep this branchless.
169 */
170 unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
171 int index = (pfec >> 1) +
172 (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
173
ceee7df7
XG
174 WARN_ON(pfec & PFERR_RSVD_MASK);
175
f13577e8
PB
176 pfec |= PFERR_PRESENT_MASK;
177 return -((mmu->permissions[index] >> pte_access) & 1) & pfec;
bebb106a 178}
97d64b78 179
5304b8d3 180void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
efdfe536 181void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
547ffaed
XG
182
183void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
184void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
aeecee2e
XG
185bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
186 struct kvm_memory_slot *slot, u64 gfn);
1d737c8a 187#endif