KVM: x86/mmu: Use separate namespaces for guest PTEs and shadow PTEs
[linux-block.git] / arch / x86 / kvm / mmu.h
CommitLineData
b2441318 1/* SPDX-License-Identifier: GPL-2.0 */
1d737c8a
ZX
2#ifndef __KVM_X86_MMU_H
3#define __KVM_X86_MMU_H
4
edf88417 5#include <linux/kvm_host.h>
fc78f519 6#include "kvm_cache_regs.h"
89786147 7#include "cpuid.h"
1d737c8a 8
8c6d6adc 9#define PT_WRITABLE_SHIFT 1
be94f6b7 10#define PT_USER_SHIFT 2
8c6d6adc
SY
11
12#define PT_PRESENT_MASK (1ULL << 0)
13#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
be94f6b7 14#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
8c6d6adc
SY
15#define PT_PWT_MASK (1ULL << 3)
16#define PT_PCD_MASK (1ULL << 4)
1b7fcd32
AK
17#define PT_ACCESSED_SHIFT 5
18#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
8ea667f2
AK
19#define PT_DIRTY_SHIFT 6
20#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
6fd01b71
AK
21#define PT_PAGE_SIZE_SHIFT 7
22#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
8c6d6adc
SY
23#define PT_PAT_MASK (1ULL << 7)
24#define PT_GLOBAL_MASK (1ULL << 8)
25#define PT64_NX_SHIFT 63
26#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
27
28#define PT_PAT_SHIFT 7
29#define PT_DIR_PAT_SHIFT 12
30#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
31
855feb67 32#define PT64_ROOT_5LEVEL 5
2a7266a8 33#define PT64_ROOT_4LEVEL 4
8c6d6adc
SY
34#define PT32_ROOT_LEVEL 2
35#define PT32E_ROOT_LEVEL 3
36
a91a7c70
LJ
37#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
38 X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
20f632bd
SC
39
40#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
d6174299 41#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
20f632bd 42
eb79cd00 43static __always_inline u64 rsvd_bits(int s, int e)
d1431483 44{
eb79cd00
SC
45 BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
46
47 if (__builtin_constant_p(e))
48 BUILD_BUG_ON(e > 63);
49 else
50 e &= 63;
51
d1cd3ce9
YZ
52 if (e < s)
53 return 0;
54
2f80d502 55 return ((2ULL << (e - s)) - 1) << s;
d1431483
TC
56}
57
86931ff7
SC
58/*
59 * The number of non-reserved physical address bits irrespective of features
60 * that repurpose legal bits, e.g. MKTME.
61 */
62extern u8 __read_mostly shadow_phys_bits;
63
64static inline gfn_t kvm_mmu_max_gfn(void)
65{
66 /*
67 * Note that this uses the host MAXPHYADDR, not the guest's.
68 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
69 * assuming KVM is running on bare metal, guest accesses beyond
70 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
71 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
72 * install a SPTE for such addresses. If KVM is running as a VM
73 * itself, on the other hand, it might see a MAXPHYADDR that is less
74 * than hardware's real MAXPHYADDR. Using the host MAXPHYADDR
75 * disallows such SPTEs entirely and simplifies the TDP MMU.
76 */
77 int max_gpa_bits = likely(tdp_enabled) ? shadow_phys_bits : 52;
78
79 return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
80}
81
3c5c3245
KH
82static inline u8 kvm_get_shadow_phys_bits(void)
83{
84 /*
85 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
86 * in CPU detection code, but the processor treats those reduced bits as
87 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
88 * the physical address bits reported by CPUID.
89 */
90 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
91 return cpuid_eax(0x80000008) & 0xff;
92
93 /*
94 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
95 * custom CPUID. Proceed with whatever the kernel found since these features
96 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
97 */
98 return boot_cpu_data.x86_phys_bits;
99}
100
8120337a 101void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
e54f1ff2 102void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
e7b7bdea 103void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
b37fbea6 104
c9060662 105void kvm_init_mmu(struct kvm_vcpu *vcpu);
dbc4739b
SC
106void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
107 unsigned long cr4, u64 efer, gpa_t nested_cr3);
ae1e2d10 108void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
cc022ae1
LJ
109 int huge_page_level, bool accessed_dirty,
110 gpa_t new_eptp);
9bc1f09f 111bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
1261bfa3 112int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 113 u64 fault_address, char *insn, int insn_len);
94d8b056 114
61a1773e
SC
115int kvm_mmu_load(struct kvm_vcpu *vcpu);
116void kvm_mmu_unload(struct kvm_vcpu *vcpu);
527d5cd7 117void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
61a1773e 118void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
61b05a9f 119void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
61a1773e 120
1d737c8a
ZX
121static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
122{
b9e5603c 123 if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
1d737c8a
ZX
124 return 0;
125
126 return kvm_mmu_load(vcpu);
127}
128
c9470a2e
JS
129static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
130{
131 BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
132
133 return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
134 ? cr3 & X86_CR3_PCID_MASK
135 : 0;
136}
137
138static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
139{
140 return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
141}
142
689f3bf2 143static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
6e42782f 144{
b9e5603c 145 u64 root_hpa = vcpu->arch.mmu->root.hpa;
2a40b900
SC
146
147 if (!VALID_PAGE(root_hpa))
148 return;
149
e83bc09c 150 static_call(kvm_x86_load_mmu_pgd)(vcpu, root_hpa,
a972e29c 151 vcpu->arch.mmu->root_role.level);
7a02674d
SC
152}
153
97d64b78 154/*
f13577e8
PB
155 * Check if a given access (described through the I/D, W/R and U/S bits of a
156 * page fault error code pfec) causes a permission fault with the given PTE
157 * access rights (in ACC_* format).
158 *
159 * Return zero if the access does not fault; return the page fault error code
160 * if the access faults.
97d64b78 161 */
f13577e8 162static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
be94f6b7 163 unsigned pte_access, unsigned pte_pkey,
5b22bbe7 164 u64 access)
bebb106a 165{
5b22bbe7
LJ
166 /* strip nested paging fault error codes */
167 unsigned int pfec = access;
b3646477 168 unsigned long rflags = static_call(kvm_x86_get_rflags)(vcpu);
97ec8c06
FW
169
170 /*
4f4aa80e
LJ
171 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
172 * For implicit supervisor accesses, SMAP cannot be overridden.
97ec8c06 173 *
4f4aa80e
LJ
174 * SMAP works on supervisor accesses only, and not_smap can
175 * be set or not set when user access with neither has any bearing
176 * on the result.
97ec8c06 177 *
4f4aa80e
LJ
178 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
179 * this bit will always be zero in pfec, but it will be one in index
180 * if SMAP checks are being disabled.
97ec8c06 181 */
4f4aa80e
LJ
182 u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
183 bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
184 int index = (pfec + (not_smap << PFERR_RSVD_BIT)) >> 1;
be94f6b7 185 bool fault = (mmu->permissions[index] >> pte_access) & 1;
7a98205d 186 u32 errcode = PFERR_PRESENT_MASK;
97ec8c06 187
be94f6b7 188 WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
be94f6b7
HH
189 if (unlikely(mmu->pkru_mask)) {
190 u32 pkru_bits, offset;
191
192 /*
193 * PKRU defines 32 bits, there are 16 domains and 2
194 * attribute bits per domain in pkru. pte_pkey is the
195 * index of the protection domain, so pte_pkey * 2 is
196 * is the index of the first bit for the domain.
197 */
b9dd21e1 198 pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
be94f6b7
HH
199
200 /* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
7a98205d 201 offset = (pfec & ~1) +
be94f6b7
HH
202 ((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
203
204 pkru_bits &= mmu->pkru_mask >> offset;
7a98205d 205 errcode |= -pkru_bits & PFERR_PK_MASK;
be94f6b7
HH
206 fault |= (pkru_bits != 0);
207 }
208
7a98205d 209 return -(u32)fault & errcode;
bebb106a 210}
97d64b78 211
efdfe536 212void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
547ffaed 213
6ca9a6f3 214int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
1aa9b957
JS
215
216int kvm_mmu_post_init_vm(struct kvm *kvm);
217void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
218
1e76a3ce 219static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
e2209710 220{
d501f747 221 /*
1e76a3ce
DS
222 * Read shadow_root_allocated before related pointers. Hence, threads
223 * reading shadow_root_allocated in any lock context are guaranteed to
224 * see the pointers. Pairs with smp_store_release in
225 * mmu_first_shadow_root_alloc.
d501f747 226 */
1e76a3ce
DS
227 return smp_load_acquire(&kvm->arch.shadow_root_allocated);
228}
229
230#ifdef CONFIG_X86_64
231static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return kvm->arch.tdp_mmu_enabled; }
232#else
233static inline bool is_tdp_mmu_enabled(struct kvm *kvm) { return false; }
234#endif
235
236static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
237{
238 return !is_tdp_mmu_enabled(kvm) || kvm_shadow_root_allocated(kvm);
e2209710
BG
239}
240
4139b197
PX
241static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
242{
243 /* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
244 return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
245 (base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
246}
247
248static inline unsigned long
249__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
250 int level)
251{
252 return gfn_to_index(slot->base_gfn + npages - 1,
253 slot->base_gfn, level) + 1;
254}
255
256static inline unsigned long
257kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
258{
259 return __kvm_mmu_slot_lpages(slot, slot->npages, level);
260}
261
71f51d2c
MZ
262static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
263{
264 atomic64_add(count, &kvm->stat.pages[level - 1]);
265}
c59a0f57 266
5b22bbe7 267gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
c59a0f57
LJ
268 struct x86_exception *exception);
269
270static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
271 struct kvm_mmu *mmu,
5b22bbe7 272 gpa_t gpa, u64 access,
c59a0f57
LJ
273 struct x86_exception *exception)
274{
275 if (mmu != &vcpu->arch.nested_mmu)
276 return gpa;
277 return translate_nested_gpa(vcpu, gpa, access, exception);
278}
1d737c8a 279#endif