Merge branches 'clk-typo', 'clk-json-schema', 'clk-mtk-2712-eco' and 'clk-rockchip...
[linux-2.6-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
1767e931
PG
32#include <linux/moduleparam.h>
33#include <linux/export.h>
448353ca 34#include <linux/swap.h>
05da4558 35#include <linux/hugetlb.h>
2f333bcb 36#include <linux/compiler.h>
bc6678a3 37#include <linux/srcu.h>
5a0e3ad6 38#include <linux/slab.h>
3f07c014 39#include <linux/sched/signal.h>
bf998156 40#include <linux/uaccess.h>
114df303 41#include <linux/hash.h>
f160c7b7 42#include <linux/kern_levels.h>
6aa8b732 43
e495606d 44#include <asm/page.h>
aa2e063a 45#include <asm/pat.h>
e495606d 46#include <asm/cmpxchg.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
18552672
JR
52/*
53 * When setting this variable to true it enables Two-Dimensional-Paging
54 * where the hardware walks 2 page tables:
55 * 1. the guest-virtual to guest-physical
56 * 2. while doing 1. it walks guest-physical to host-physical
57 * If the hardware supports that we don't need to do shadow paging.
58 */
2f333bcb 59bool tdp_enabled = false;
18552672 60
8b1fe17c
XG
61enum {
62 AUDIT_PRE_PAGE_FAULT,
63 AUDIT_POST_PAGE_FAULT,
64 AUDIT_PRE_PTE_WRITE,
6903074c
XG
65 AUDIT_POST_PTE_WRITE,
66 AUDIT_PRE_SYNC,
67 AUDIT_POST_SYNC
8b1fe17c 68};
37a7d8b0 69
8b1fe17c 70#undef MMU_DEBUG
37a7d8b0
AK
71
72#ifdef MMU_DEBUG
fa4a2c08
PB
73static bool dbg = 0;
74module_param(dbg, bool, 0644);
37a7d8b0
AK
75
76#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
77#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 78#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 79#else
37a7d8b0
AK
80#define pgprintk(x...) do { } while (0)
81#define rmap_printk(x...) do { } while (0)
fa4a2c08 82#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 83#endif
6aa8b732 84
957ed9ef
XG
85#define PTE_PREFETCH_NUM 8
86
00763e41 87#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
88#define PT64_SECOND_AVAIL_BITS_SHIFT 52
89
6aa8b732
AK
90#define PT64_LEVEL_BITS 9
91
92#define PT64_LEVEL_SHIFT(level) \
d77c26fc 93 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 94
6aa8b732
AK
95#define PT64_INDEX(address, level)\
96 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
97
98
99#define PT32_LEVEL_BITS 10
100
101#define PT32_LEVEL_SHIFT(level) \
d77c26fc 102 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 103
e04da980
JR
104#define PT32_LVL_OFFSET_MASK(level) \
105 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
106 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
107
108#define PT32_INDEX(address, level)\
109 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
110
111
d0ec49d4 112#define PT64_BASE_ADDR_MASK __sme_clr((((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1)))
6aa8b732
AK
113#define PT64_DIR_BASE_ADDR_MASK \
114 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
115#define PT64_LVL_ADDR_MASK(level) \
116 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
117 * PT64_LEVEL_BITS))) - 1))
118#define PT64_LVL_OFFSET_MASK(level) \
119 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
121
122#define PT32_BASE_ADDR_MASK PAGE_MASK
123#define PT32_DIR_BASE_ADDR_MASK \
124 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
125#define PT32_LVL_ADDR_MASK(level) \
126 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT32_LEVEL_BITS))) - 1))
6aa8b732 128
53166229 129#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 130 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 131
fe135d2c
AK
132#define ACC_EXEC_MASK 1
133#define ACC_WRITE_MASK PT_WRITABLE_MASK
134#define ACC_USER_MASK PT_USER_MASK
135#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
136
f160c7b7
JS
137/* The mask for the R/X bits in EPT PTEs */
138#define PT64_EPT_READABLE_MASK 0x1ull
139#define PT64_EPT_EXECUTABLE_MASK 0x4ull
140
90bb6fc5
AK
141#include <trace/events/kvm.h>
142
07420171
AK
143#define CREATE_TRACE_POINTS
144#include "mmutrace.h"
145
49fde340
XG
146#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
147#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 148
135f8c2b
AK
149#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
150
220f773a
TY
151/* make pte_list_desc fit well in cache line */
152#define PTE_LIST_EXT 3
153
9b8ebbdb
PB
154/*
155 * Return values of handle_mmio_page_fault and mmu.page_fault:
156 * RET_PF_RETRY: let CPU fault again on the address.
157 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
158 *
159 * For handle_mmio_page_fault only:
160 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
161 */
162enum {
163 RET_PF_RETRY = 0,
164 RET_PF_EMULATE = 1,
165 RET_PF_INVALID = 2,
166};
167
53c07b18
XG
168struct pte_list_desc {
169 u64 *sptes[PTE_LIST_EXT];
170 struct pte_list_desc *more;
cd4a4e53
AK
171};
172
2d11123a
AK
173struct kvm_shadow_walk_iterator {
174 u64 addr;
175 hpa_t shadow_addr;
2d11123a 176 u64 *sptep;
dd3bfd59 177 int level;
2d11123a
AK
178 unsigned index;
179};
180
9fa72119
JS
181static const union kvm_mmu_page_role mmu_base_role_mask = {
182 .cr0_wp = 1,
183 .cr4_pae = 1,
184 .nxe = 1,
185 .smep_andnot_wp = 1,
186 .smap_andnot_wp = 1,
187 .smm = 1,
188 .guest_mode = 1,
189 .ad_disabled = 1,
190};
191
7eb77e9f
JS
192#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
193 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
194 (_root), (_addr)); \
195 shadow_walk_okay(&(_walker)); \
196 shadow_walk_next(&(_walker)))
197
198#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
199 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
200 shadow_walk_okay(&(_walker)); \
201 shadow_walk_next(&(_walker)))
202
c2a2ac2b
XG
203#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
204 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
205 shadow_walk_okay(&(_walker)) && \
206 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
207 __shadow_walk_next(&(_walker), spte))
208
53c07b18 209static struct kmem_cache *pte_list_desc_cache;
d3d25b04 210static struct kmem_cache *mmu_page_header_cache;
45221ab6 211static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 212
7b52345e
SY
213static u64 __read_mostly shadow_nx_mask;
214static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
215static u64 __read_mostly shadow_user_mask;
216static u64 __read_mostly shadow_accessed_mask;
217static u64 __read_mostly shadow_dirty_mask;
ce88decf 218static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 219static u64 __read_mostly shadow_mmio_value;
ffb128c8 220static u64 __read_mostly shadow_present_mask;
d0ec49d4 221static u64 __read_mostly shadow_me_mask;
ce88decf 222
f160c7b7 223/*
ac8d57e5
PF
224 * SPTEs used by MMUs without A/D bits are marked with shadow_acc_track_value.
225 * Non-present SPTEs with shadow_acc_track_value set are in place for access
226 * tracking.
f160c7b7
JS
227 */
228static u64 __read_mostly shadow_acc_track_mask;
229static const u64 shadow_acc_track_value = SPTE_SPECIAL_MASK;
230
231/*
232 * The mask/shift to use for saving the original R/X bits when marking the PTE
233 * as not-present for access tracking purposes. We do not save the W bit as the
234 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
235 * restored only when a write is attempted to the page.
236 */
237static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
238 PT64_EPT_EXECUTABLE_MASK;
239static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
240
28a1f3ac
JS
241/*
242 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
243 * to guard against L1TF attacks.
244 */
245static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
246
247/*
248 * The number of high-order 1 bits to use in the mask above.
249 */
250static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
251
daa07cbc
SC
252/*
253 * In some cases, we need to preserve the GFN of a non-present or reserved
254 * SPTE when we usurp the upper five bits of the physical address space to
255 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
256 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
257 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
258 * high and low parts. This mask covers the lower bits of the GFN.
259 */
260static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
261
262
ce88decf 263static void mmu_spte_set(u64 *sptep, u64 spte);
9fa72119
JS
264static union kvm_mmu_page_role
265kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 266
40ef75a7
LT
267
268static inline bool kvm_available_flush_tlb_with_range(void)
269{
270 return kvm_x86_ops->tlb_remote_flush_with_range;
271}
272
273static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
274 struct kvm_tlb_range *range)
275{
276 int ret = -ENOTSUPP;
277
278 if (range && kvm_x86_ops->tlb_remote_flush_with_range)
279 ret = kvm_x86_ops->tlb_remote_flush_with_range(kvm, range);
280
281 if (ret)
282 kvm_flush_remote_tlbs(kvm);
283}
284
285static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
286 u64 start_gfn, u64 pages)
287{
288 struct kvm_tlb_range range;
289
290 range.start_gfn = start_gfn;
291 range.pages = pages;
292
293 kvm_flush_remote_tlbs_with_range(kvm, &range);
294}
295
dcdca5fe 296void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value)
ce88decf 297{
dcdca5fe
PF
298 BUG_ON((mmio_mask & mmio_value) != mmio_value);
299 shadow_mmio_value = mmio_value | SPTE_SPECIAL_MASK;
312b616b 300 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
ce88decf
XG
301}
302EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
303
ac8d57e5
PF
304static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
305{
306 return sp->role.ad_disabled;
307}
308
309static inline bool spte_ad_enabled(u64 spte)
310{
311 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
312 return !(spte & shadow_acc_track_value);
313}
314
315static inline u64 spte_shadow_accessed_mask(u64 spte)
316{
317 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
318 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
319}
320
321static inline u64 spte_shadow_dirty_mask(u64 spte)
322{
323 MMU_WARN_ON((spte & shadow_mmio_mask) == shadow_mmio_value);
324 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
325}
326
f160c7b7
JS
327static inline bool is_access_track_spte(u64 spte)
328{
ac8d57e5 329 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
330}
331
f2fd125d 332/*
ee3d1570
DM
333 * the low bit of the generation number is always presumed to be zero.
334 * This disables mmio caching during memslot updates. The concept is
335 * similar to a seqcount but instead of retrying the access we just punt
336 * and ignore the cache.
337 *
338 * spte bits 3-11 are used as bits 1-9 of the generation number,
339 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 340 */
ee3d1570 341#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
342#define MMIO_SPTE_GEN_HIGH_SHIFT 52
343
ee3d1570
DM
344#define MMIO_GEN_SHIFT 20
345#define MMIO_GEN_LOW_SHIFT 10
346#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 347#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
348
349static u64 generation_mmio_spte_mask(unsigned int gen)
350{
351 u64 mask;
352
842bb26a 353 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
354
355 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
356 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
357 return mask;
358}
359
360static unsigned int get_mmio_spte_generation(u64 spte)
361{
362 unsigned int gen;
363
364 spte &= ~shadow_mmio_mask;
365
366 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
367 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
368 return gen;
369}
370
54bf36aa 371static unsigned int kvm_current_mmio_generation(struct kvm_vcpu *vcpu)
f8f55942 372{
54bf36aa 373 return kvm_vcpu_memslots(vcpu)->generation & MMIO_GEN_MASK;
f8f55942
XG
374}
375
54bf36aa 376static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
f2fd125d 377 unsigned access)
ce88decf 378{
54bf36aa 379 unsigned int gen = kvm_current_mmio_generation(vcpu);
f8f55942 380 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 381 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 382
ce88decf 383 access &= ACC_WRITE_MASK | ACC_USER_MASK;
28a1f3ac
JS
384 mask |= shadow_mmio_value | access;
385 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
386 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
387 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 388
f8f55942 389 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 390 mmu_spte_set(sptep, mask);
ce88decf
XG
391}
392
393static bool is_mmio_spte(u64 spte)
394{
dcdca5fe 395 return (spte & shadow_mmio_mask) == shadow_mmio_value;
ce88decf
XG
396}
397
398static gfn_t get_mmio_spte_gfn(u64 spte)
399{
daa07cbc 400 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
401
402 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
403 & shadow_nonpresent_or_rsvd_mask;
404
405 return gpa >> PAGE_SHIFT;
ce88decf
XG
406}
407
408static unsigned get_mmio_spte_access(u64 spte)
409{
842bb26a 410 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 411 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
412}
413
54bf36aa 414static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
ba049e93 415 kvm_pfn_t pfn, unsigned access)
ce88decf
XG
416{
417 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 418 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
419 return true;
420 }
421
422 return false;
423}
c7addb90 424
54bf36aa 425static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 426{
089504c0
XG
427 unsigned int kvm_gen, spte_gen;
428
54bf36aa 429 kvm_gen = kvm_current_mmio_generation(vcpu);
089504c0
XG
430 spte_gen = get_mmio_spte_generation(spte);
431
432 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
433 return likely(kvm_gen == spte_gen);
f8f55942
XG
434}
435
ce00053b
PF
436/*
437 * Sets the shadow PTE masks used by the MMU.
438 *
439 * Assumptions:
440 * - Setting either @accessed_mask or @dirty_mask requires setting both
441 * - At least one of @accessed_mask or @acc_track_mask must be set
442 */
7b52345e 443void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 444 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 445 u64 acc_track_mask, u64 me_mask)
7b52345e 446{
ce00053b
PF
447 BUG_ON(!dirty_mask != !accessed_mask);
448 BUG_ON(!accessed_mask && !acc_track_mask);
ac8d57e5 449 BUG_ON(acc_track_mask & shadow_acc_track_value);
312b616b 450
7b52345e
SY
451 shadow_user_mask = user_mask;
452 shadow_accessed_mask = accessed_mask;
453 shadow_dirty_mask = dirty_mask;
454 shadow_nx_mask = nx_mask;
455 shadow_x_mask = x_mask;
ffb128c8 456 shadow_present_mask = p_mask;
f160c7b7 457 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 458 shadow_me_mask = me_mask;
7b52345e
SY
459}
460EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
461
28a1f3ac 462static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 463{
daa07cbc
SC
464 u8 low_phys_bits;
465
f160c7b7
JS
466 shadow_user_mask = 0;
467 shadow_accessed_mask = 0;
468 shadow_dirty_mask = 0;
469 shadow_nx_mask = 0;
470 shadow_x_mask = 0;
471 shadow_mmio_mask = 0;
472 shadow_present_mask = 0;
473 shadow_acc_track_mask = 0;
28a1f3ac
JS
474
475 /*
476 * If the CPU has 46 or less physical address bits, then set an
477 * appropriate mask to guard against L1TF attacks. Otherwise, it is
478 * assumed that the CPU is not vulnerable to L1TF.
479 */
daa07cbc 480 low_phys_bits = boot_cpu_data.x86_phys_bits;
28a1f3ac 481 if (boot_cpu_data.x86_phys_bits <
daa07cbc 482 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac
JS
483 shadow_nonpresent_or_rsvd_mask =
484 rsvd_bits(boot_cpu_data.x86_phys_bits -
485 shadow_nonpresent_or_rsvd_mask_len,
486 boot_cpu_data.x86_phys_bits - 1);
daa07cbc
SC
487 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
488 }
489 shadow_nonpresent_or_rsvd_lower_gfn_mask =
490 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
491}
492
6aa8b732
AK
493static int is_cpuid_PSE36(void)
494{
495 return 1;
496}
497
73b1087e
AK
498static int is_nx(struct kvm_vcpu *vcpu)
499{
f6801dff 500 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
501}
502
c7addb90
AK
503static int is_shadow_present_pte(u64 pte)
504{
f160c7b7 505 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
506}
507
05da4558
MT
508static int is_large_pte(u64 pte)
509{
510 return pte & PT_PAGE_SIZE_MASK;
511}
512
776e6633
MT
513static int is_last_spte(u64 pte, int level)
514{
515 if (level == PT_PAGE_TABLE_LEVEL)
516 return 1;
852e3c19 517 if (is_large_pte(pte))
776e6633
MT
518 return 1;
519 return 0;
520}
521
d3e328f2
JS
522static bool is_executable_pte(u64 spte)
523{
524 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
525}
526
ba049e93 527static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 528{
35149e21 529 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
530}
531
da928521
AK
532static gfn_t pse36_gfn_delta(u32 gpte)
533{
534 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
535
536 return (gpte & PT32_DIR_PSE36_MASK) << shift;
537}
538
603e0651 539#ifdef CONFIG_X86_64
d555c333 540static void __set_spte(u64 *sptep, u64 spte)
e663ee64 541{
b19ee2ff 542 WRITE_ONCE(*sptep, spte);
e663ee64
AK
543}
544
603e0651 545static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 546{
b19ee2ff 547 WRITE_ONCE(*sptep, spte);
603e0651
XG
548}
549
550static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
551{
552 return xchg(sptep, spte);
553}
c2a2ac2b
XG
554
555static u64 __get_spte_lockless(u64 *sptep)
556{
6aa7de05 557 return READ_ONCE(*sptep);
c2a2ac2b 558}
a9221dd5 559#else
603e0651
XG
560union split_spte {
561 struct {
562 u32 spte_low;
563 u32 spte_high;
564 };
565 u64 spte;
566};
a9221dd5 567
c2a2ac2b
XG
568static void count_spte_clear(u64 *sptep, u64 spte)
569{
570 struct kvm_mmu_page *sp = page_header(__pa(sptep));
571
572 if (is_shadow_present_pte(spte))
573 return;
574
575 /* Ensure the spte is completely set before we increase the count */
576 smp_wmb();
577 sp->clear_spte_count++;
578}
579
603e0651
XG
580static void __set_spte(u64 *sptep, u64 spte)
581{
582 union split_spte *ssptep, sspte;
a9221dd5 583
603e0651
XG
584 ssptep = (union split_spte *)sptep;
585 sspte = (union split_spte)spte;
586
587 ssptep->spte_high = sspte.spte_high;
588
589 /*
590 * If we map the spte from nonpresent to present, We should store
591 * the high bits firstly, then set present bit, so cpu can not
592 * fetch this spte while we are setting the spte.
593 */
594 smp_wmb();
595
b19ee2ff 596 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
597}
598
603e0651
XG
599static void __update_clear_spte_fast(u64 *sptep, u64 spte)
600{
601 union split_spte *ssptep, sspte;
602
603 ssptep = (union split_spte *)sptep;
604 sspte = (union split_spte)spte;
605
b19ee2ff 606 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
607
608 /*
609 * If we map the spte from present to nonpresent, we should clear
610 * present bit firstly to avoid vcpu fetch the old high bits.
611 */
612 smp_wmb();
613
614 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 615 count_spte_clear(sptep, spte);
603e0651
XG
616}
617
618static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
619{
620 union split_spte *ssptep, sspte, orig;
621
622 ssptep = (union split_spte *)sptep;
623 sspte = (union split_spte)spte;
624
625 /* xchg acts as a barrier before the setting of the high bits */
626 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
627 orig.spte_high = ssptep->spte_high;
628 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 629 count_spte_clear(sptep, spte);
603e0651
XG
630
631 return orig.spte;
632}
c2a2ac2b
XG
633
634/*
635 * The idea using the light way get the spte on x86_32 guest is from
636 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
637 *
638 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
639 * coalesces them and we are running out of the MMU lock. Therefore
640 * we need to protect against in-progress updates of the spte.
641 *
642 * Reading the spte while an update is in progress may get the old value
643 * for the high part of the spte. The race is fine for a present->non-present
644 * change (because the high part of the spte is ignored for non-present spte),
645 * but for a present->present change we must reread the spte.
646 *
647 * All such changes are done in two steps (present->non-present and
648 * non-present->present), hence it is enough to count the number of
649 * present->non-present updates: if it changed while reading the spte,
650 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
651 */
652static u64 __get_spte_lockless(u64 *sptep)
653{
654 struct kvm_mmu_page *sp = page_header(__pa(sptep));
655 union split_spte spte, *orig = (union split_spte *)sptep;
656 int count;
657
658retry:
659 count = sp->clear_spte_count;
660 smp_rmb();
661
662 spte.spte_low = orig->spte_low;
663 smp_rmb();
664
665 spte.spte_high = orig->spte_high;
666 smp_rmb();
667
668 if (unlikely(spte.spte_low != orig->spte_low ||
669 count != sp->clear_spte_count))
670 goto retry;
671
672 return spte.spte;
673}
603e0651
XG
674#endif
675
ea4114bc 676static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 677{
feb3eb70
GN
678 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
679 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
680}
681
8672b721
XG
682static bool spte_has_volatile_bits(u64 spte)
683{
f160c7b7
JS
684 if (!is_shadow_present_pte(spte))
685 return false;
686
c7ba5b48 687 /*
6a6256f9 688 * Always atomically update spte if it can be updated
c7ba5b48
XG
689 * out of mmu-lock, it can ensure dirty bit is not lost,
690 * also, it can help us to get a stable is_writable_pte()
691 * to ensure tlb flush is not missed.
692 */
f160c7b7
JS
693 if (spte_can_locklessly_be_made_writable(spte) ||
694 is_access_track_spte(spte))
c7ba5b48
XG
695 return true;
696
ac8d57e5 697 if (spte_ad_enabled(spte)) {
f160c7b7
JS
698 if ((spte & shadow_accessed_mask) == 0 ||
699 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
700 return true;
701 }
8672b721 702
f160c7b7 703 return false;
8672b721
XG
704}
705
83ef6c81 706static bool is_accessed_spte(u64 spte)
4132779b 707{
ac8d57e5
PF
708 u64 accessed_mask = spte_shadow_accessed_mask(spte);
709
710 return accessed_mask ? spte & accessed_mask
711 : !is_access_track_spte(spte);
4132779b
XG
712}
713
83ef6c81 714static bool is_dirty_spte(u64 spte)
7e71a59b 715{
ac8d57e5
PF
716 u64 dirty_mask = spte_shadow_dirty_mask(spte);
717
718 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
719}
720
1df9f2dc
XG
721/* Rules for using mmu_spte_set:
722 * Set the sptep from nonpresent to present.
723 * Note: the sptep being assigned *must* be either not present
724 * or in a state where the hardware will not attempt to update
725 * the spte.
726 */
727static void mmu_spte_set(u64 *sptep, u64 new_spte)
728{
729 WARN_ON(is_shadow_present_pte(*sptep));
730 __set_spte(sptep, new_spte);
731}
732
f39a058d
JS
733/*
734 * Update the SPTE (excluding the PFN), but do not track changes in its
735 * accessed/dirty status.
1df9f2dc 736 */
f39a058d 737static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 738{
c7ba5b48 739 u64 old_spte = *sptep;
4132779b 740
afd28fe1 741 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 742
6e7d0354
XG
743 if (!is_shadow_present_pte(old_spte)) {
744 mmu_spte_set(sptep, new_spte);
f39a058d 745 return old_spte;
6e7d0354 746 }
4132779b 747
c7ba5b48 748 if (!spte_has_volatile_bits(old_spte))
603e0651 749 __update_clear_spte_fast(sptep, new_spte);
4132779b 750 else
603e0651 751 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 752
83ef6c81
JS
753 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
754
f39a058d
JS
755 return old_spte;
756}
757
758/* Rules for using mmu_spte_update:
759 * Update the state bits, it means the mapped pfn is not changed.
760 *
761 * Whenever we overwrite a writable spte with a read-only one we
762 * should flush remote TLBs. Otherwise rmap_write_protect
763 * will find a read-only spte, even though the writable spte
764 * might be cached on a CPU's TLB, the return value indicates this
765 * case.
766 *
767 * Returns true if the TLB needs to be flushed
768 */
769static bool mmu_spte_update(u64 *sptep, u64 new_spte)
770{
771 bool flush = false;
772 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
773
774 if (!is_shadow_present_pte(old_spte))
775 return false;
776
c7ba5b48
XG
777 /*
778 * For the spte updated out of mmu-lock is safe, since
6a6256f9 779 * we always atomically update it, see the comments in
c7ba5b48
XG
780 * spte_has_volatile_bits().
781 */
ea4114bc 782 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 783 !is_writable_pte(new_spte))
83ef6c81 784 flush = true;
4132779b 785
7e71a59b 786 /*
83ef6c81 787 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
788 * to guarantee consistency between TLB and page tables.
789 */
7e71a59b 790
83ef6c81
JS
791 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
792 flush = true;
4132779b 793 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
794 }
795
796 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
797 flush = true;
4132779b 798 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 799 }
6e7d0354 800
83ef6c81 801 return flush;
b79b93f9
AK
802}
803
1df9f2dc
XG
804/*
805 * Rules for using mmu_spte_clear_track_bits:
806 * It sets the sptep from present to nonpresent, and track the
807 * state bits, it is used to clear the last level sptep.
83ef6c81 808 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
809 */
810static int mmu_spte_clear_track_bits(u64 *sptep)
811{
ba049e93 812 kvm_pfn_t pfn;
1df9f2dc
XG
813 u64 old_spte = *sptep;
814
815 if (!spte_has_volatile_bits(old_spte))
603e0651 816 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 817 else
603e0651 818 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 819
afd28fe1 820 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
821 return 0;
822
823 pfn = spte_to_pfn(old_spte);
86fde74c
XG
824
825 /*
826 * KVM does not hold the refcount of the page used by
827 * kvm mmu, before reclaiming the page, we should
828 * unmap it from mmu first.
829 */
bf4bea8e 830 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 831
83ef6c81 832 if (is_accessed_spte(old_spte))
1df9f2dc 833 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
834
835 if (is_dirty_spte(old_spte))
1df9f2dc 836 kvm_set_pfn_dirty(pfn);
83ef6c81 837
1df9f2dc
XG
838 return 1;
839}
840
841/*
842 * Rules for using mmu_spte_clear_no_track:
843 * Directly clear spte without caring the state bits of sptep,
844 * it is used to set the upper level spte.
845 */
846static void mmu_spte_clear_no_track(u64 *sptep)
847{
603e0651 848 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
849}
850
c2a2ac2b
XG
851static u64 mmu_spte_get_lockless(u64 *sptep)
852{
853 return __get_spte_lockless(sptep);
854}
855
f160c7b7
JS
856static u64 mark_spte_for_access_track(u64 spte)
857{
ac8d57e5 858 if (spte_ad_enabled(spte))
f160c7b7
JS
859 return spte & ~shadow_accessed_mask;
860
ac8d57e5 861 if (is_access_track_spte(spte))
f160c7b7
JS
862 return spte;
863
864 /*
20d65236
JS
865 * Making an Access Tracking PTE will result in removal of write access
866 * from the PTE. So, verify that we will be able to restore the write
867 * access in the fast page fault path later on.
f160c7b7
JS
868 */
869 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
870 !spte_can_locklessly_be_made_writable(spte),
871 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
872
873 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
874 shadow_acc_track_saved_bits_shift),
875 "kvm: Access Tracking saved bit locations are not zero\n");
876
877 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
878 shadow_acc_track_saved_bits_shift;
879 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
880
881 return spte;
882}
883
d3e328f2
JS
884/* Restore an acc-track PTE back to a regular PTE */
885static u64 restore_acc_track_spte(u64 spte)
886{
887 u64 new_spte = spte;
888 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
889 & shadow_acc_track_saved_bits_mask;
890
ac8d57e5 891 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
892 WARN_ON_ONCE(!is_access_track_spte(spte));
893
894 new_spte &= ~shadow_acc_track_mask;
895 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
896 shadow_acc_track_saved_bits_shift);
897 new_spte |= saved_bits;
898
899 return new_spte;
900}
901
f160c7b7
JS
902/* Returns the Accessed status of the PTE and resets it at the same time. */
903static bool mmu_spte_age(u64 *sptep)
904{
905 u64 spte = mmu_spte_get_lockless(sptep);
906
907 if (!is_accessed_spte(spte))
908 return false;
909
ac8d57e5 910 if (spte_ad_enabled(spte)) {
f160c7b7
JS
911 clear_bit((ffs(shadow_accessed_mask) - 1),
912 (unsigned long *)sptep);
913 } else {
914 /*
915 * Capture the dirty status of the page, so that it doesn't get
916 * lost when the SPTE is marked for access tracking.
917 */
918 if (is_writable_pte(spte))
919 kvm_set_pfn_dirty(spte_to_pfn(spte));
920
921 spte = mark_spte_for_access_track(spte);
922 mmu_spte_update_no_track(sptep, spte);
923 }
924
925 return true;
926}
927
c2a2ac2b
XG
928static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
929{
c142786c
AK
930 /*
931 * Prevent page table teardown by making any free-er wait during
932 * kvm_flush_remote_tlbs() IPI to all active vcpus.
933 */
934 local_irq_disable();
36ca7e0a 935
c142786c
AK
936 /*
937 * Make sure a following spte read is not reordered ahead of the write
938 * to vcpu->mode.
939 */
36ca7e0a 940 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
941}
942
943static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
944{
c142786c
AK
945 /*
946 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 947 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
948 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
949 */
36ca7e0a 950 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 951 local_irq_enable();
c2a2ac2b
XG
952}
953
e2dec939 954static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 955 struct kmem_cache *base_cache, int min)
714b93da
AK
956{
957 void *obj;
958
959 if (cache->nobjs >= min)
e2dec939 960 return 0;
714b93da 961 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 962 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 963 if (!obj)
daefb794 964 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
965 cache->objects[cache->nobjs++] = obj;
966 }
e2dec939 967 return 0;
714b93da
AK
968}
969
f759e2b4
XG
970static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
971{
972 return cache->nobjs;
973}
974
e8ad9a70
XG
975static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
976 struct kmem_cache *cache)
714b93da
AK
977{
978 while (mc->nobjs)
e8ad9a70 979 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
980}
981
c1158e63 982static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 983 int min)
c1158e63 984{
842f22ed 985 void *page;
c1158e63
AK
986
987 if (cache->nobjs >= min)
988 return 0;
989 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 990 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 991 if (!page)
daefb794 992 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 993 cache->objects[cache->nobjs++] = page;
c1158e63
AK
994 }
995 return 0;
996}
997
998static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
999{
1000 while (mc->nobjs)
c4d198d5 1001 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1002}
1003
2e3e5882 1004static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1005{
e2dec939
AK
1006 int r;
1007
53c07b18 1008 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1009 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1010 if (r)
1011 goto out;
ad312c7c 1012 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1013 if (r)
1014 goto out;
ad312c7c 1015 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1016 mmu_page_header_cache, 4);
e2dec939
AK
1017out:
1018 return r;
714b93da
AK
1019}
1020
1021static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1022{
53c07b18
XG
1023 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1024 pte_list_desc_cache);
ad312c7c 1025 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1026 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1027 mmu_page_header_cache);
714b93da
AK
1028}
1029
80feb89a 1030static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1031{
1032 void *p;
1033
1034 BUG_ON(!mc->nobjs);
1035 p = mc->objects[--mc->nobjs];
714b93da
AK
1036 return p;
1037}
1038
53c07b18 1039static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1040{
80feb89a 1041 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1042}
1043
53c07b18 1044static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1045{
53c07b18 1046 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1047}
1048
2032a93d
LJ
1049static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1050{
1051 if (!sp->role.direct)
1052 return sp->gfns[index];
1053
1054 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1055}
1056
1057static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1058{
1059 if (sp->role.direct)
1060 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
1061 else
1062 sp->gfns[index] = gfn;
1063}
1064
05da4558 1065/*
d4dbf470
TY
1066 * Return the pointer to the large page information for a given gfn,
1067 * handling slots that are not large page aligned.
05da4558 1068 */
d4dbf470
TY
1069static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1070 struct kvm_memory_slot *slot,
1071 int level)
05da4558
MT
1072{
1073 unsigned long idx;
1074
fb03cb6f 1075 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1076 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1077}
1078
547ffaed
XG
1079static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1080 gfn_t gfn, int count)
1081{
1082 struct kvm_lpage_info *linfo;
1083 int i;
1084
1085 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1086 linfo = lpage_info_slot(gfn, slot, i);
1087 linfo->disallow_lpage += count;
1088 WARN_ON(linfo->disallow_lpage < 0);
1089 }
1090}
1091
1092void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1093{
1094 update_gfn_disallow_lpage_count(slot, gfn, 1);
1095}
1096
1097void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1098{
1099 update_gfn_disallow_lpage_count(slot, gfn, -1);
1100}
1101
3ed1a478 1102static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1103{
699023e2 1104 struct kvm_memslots *slots;
d25797b2 1105 struct kvm_memory_slot *slot;
3ed1a478 1106 gfn_t gfn;
05da4558 1107
56ca57f9 1108 kvm->arch.indirect_shadow_pages++;
3ed1a478 1109 gfn = sp->gfn;
699023e2
PB
1110 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1111 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1112
1113 /* the non-leaf shadow pages are keeping readonly. */
1114 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1115 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1116 KVM_PAGE_TRACK_WRITE);
1117
547ffaed 1118 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1119}
1120
3ed1a478 1121static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1122{
699023e2 1123 struct kvm_memslots *slots;
d25797b2 1124 struct kvm_memory_slot *slot;
3ed1a478 1125 gfn_t gfn;
05da4558 1126
56ca57f9 1127 kvm->arch.indirect_shadow_pages--;
3ed1a478 1128 gfn = sp->gfn;
699023e2
PB
1129 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1130 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1131 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1132 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1133 KVM_PAGE_TRACK_WRITE);
1134
547ffaed 1135 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1136}
1137
92f94f1e
XG
1138static bool __mmu_gfn_lpage_is_disallowed(gfn_t gfn, int level,
1139 struct kvm_memory_slot *slot)
05da4558 1140{
d4dbf470 1141 struct kvm_lpage_info *linfo;
05da4558
MT
1142
1143 if (slot) {
d4dbf470 1144 linfo = lpage_info_slot(gfn, slot, level);
92f94f1e 1145 return !!linfo->disallow_lpage;
05da4558
MT
1146 }
1147
92f94f1e 1148 return true;
05da4558
MT
1149}
1150
92f94f1e
XG
1151static bool mmu_gfn_lpage_is_disallowed(struct kvm_vcpu *vcpu, gfn_t gfn,
1152 int level)
5225fdf8
TY
1153{
1154 struct kvm_memory_slot *slot;
1155
1156 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
92f94f1e 1157 return __mmu_gfn_lpage_is_disallowed(gfn, level, slot);
5225fdf8
TY
1158}
1159
d25797b2 1160static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 1161{
8f0b1ab6 1162 unsigned long page_size;
d25797b2 1163 int i, ret = 0;
05da4558 1164
8f0b1ab6 1165 page_size = kvm_host_page_size(kvm, gfn);
05da4558 1166
8a3d08f1 1167 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
1168 if (page_size >= KVM_HPAGE_SIZE(i))
1169 ret = i;
1170 else
1171 break;
1172 }
1173
4c2155ce 1174 return ret;
05da4558
MT
1175}
1176
d8aacf5d
TY
1177static inline bool memslot_valid_for_gpte(struct kvm_memory_slot *slot,
1178 bool no_dirty_log)
1179{
1180 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1181 return false;
1182 if (no_dirty_log && slot->dirty_bitmap)
1183 return false;
1184
1185 return true;
1186}
1187
5d163b1c
XG
1188static struct kvm_memory_slot *
1189gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1190 bool no_dirty_log)
05da4558
MT
1191{
1192 struct kvm_memory_slot *slot;
5d163b1c 1193
54bf36aa 1194 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
d8aacf5d 1195 if (!memslot_valid_for_gpte(slot, no_dirty_log))
5d163b1c
XG
1196 slot = NULL;
1197
1198 return slot;
1199}
1200
fd136902
TY
1201static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn,
1202 bool *force_pt_level)
936a5fe6
AA
1203{
1204 int host_level, level, max_level;
d8aacf5d
TY
1205 struct kvm_memory_slot *slot;
1206
8c85ac1c
TY
1207 if (unlikely(*force_pt_level))
1208 return PT_PAGE_TABLE_LEVEL;
05da4558 1209
8c85ac1c
TY
1210 slot = kvm_vcpu_gfn_to_memslot(vcpu, large_gfn);
1211 *force_pt_level = !memslot_valid_for_gpte(slot, true);
fd136902
TY
1212 if (unlikely(*force_pt_level))
1213 return PT_PAGE_TABLE_LEVEL;
1214
d25797b2
JR
1215 host_level = host_mapping_level(vcpu->kvm, large_gfn);
1216
1217 if (host_level == PT_PAGE_TABLE_LEVEL)
1218 return host_level;
1219
55dd98c3 1220 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
1221
1222 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
92f94f1e 1223 if (__mmu_gfn_lpage_is_disallowed(large_gfn, level, slot))
d25797b2 1224 break;
d25797b2
JR
1225
1226 return level - 1;
05da4558
MT
1227}
1228
290fc38d 1229/*
018aabb5 1230 * About rmap_head encoding:
cd4a4e53 1231 *
018aabb5
TY
1232 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1233 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1234 * pte_list_desc containing more mappings.
018aabb5
TY
1235 */
1236
1237/*
1238 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1239 */
53c07b18 1240static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1241 struct kvm_rmap_head *rmap_head)
cd4a4e53 1242{
53c07b18 1243 struct pte_list_desc *desc;
53a27b39 1244 int i, count = 0;
cd4a4e53 1245
018aabb5 1246 if (!rmap_head->val) {
53c07b18 1247 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1248 rmap_head->val = (unsigned long)spte;
1249 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1250 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1251 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1252 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1253 desc->sptes[1] = spte;
018aabb5 1254 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1255 ++count;
cd4a4e53 1256 } else {
53c07b18 1257 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1258 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1259 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1260 desc = desc->more;
53c07b18 1261 count += PTE_LIST_EXT;
53a27b39 1262 }
53c07b18
XG
1263 if (desc->sptes[PTE_LIST_EXT-1]) {
1264 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1265 desc = desc->more;
1266 }
d555c333 1267 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1268 ++count;
d555c333 1269 desc->sptes[i] = spte;
cd4a4e53 1270 }
53a27b39 1271 return count;
cd4a4e53
AK
1272}
1273
53c07b18 1274static void
018aabb5
TY
1275pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1276 struct pte_list_desc *desc, int i,
1277 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1278{
1279 int j;
1280
53c07b18 1281 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1282 ;
d555c333
AK
1283 desc->sptes[i] = desc->sptes[j];
1284 desc->sptes[j] = NULL;
cd4a4e53
AK
1285 if (j != 0)
1286 return;
1287 if (!prev_desc && !desc->more)
018aabb5 1288 rmap_head->val = (unsigned long)desc->sptes[0];
cd4a4e53
AK
1289 else
1290 if (prev_desc)
1291 prev_desc->more = desc->more;
1292 else
018aabb5 1293 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1294 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1295}
1296
8daf3462 1297static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1298{
53c07b18
XG
1299 struct pte_list_desc *desc;
1300 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1301 int i;
1302
018aabb5 1303 if (!rmap_head->val) {
8daf3462 1304 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1305 BUG();
018aabb5 1306 } else if (!(rmap_head->val & 1)) {
8daf3462 1307 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1308 if ((u64 *)rmap_head->val != spte) {
8daf3462 1309 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1310 BUG();
1311 }
018aabb5 1312 rmap_head->val = 0;
cd4a4e53 1313 } else {
8daf3462 1314 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1315 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1316 prev_desc = NULL;
1317 while (desc) {
018aabb5 1318 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1319 if (desc->sptes[i] == spte) {
018aabb5
TY
1320 pte_list_desc_remove_entry(rmap_head,
1321 desc, i, prev_desc);
cd4a4e53
AK
1322 return;
1323 }
018aabb5 1324 }
cd4a4e53
AK
1325 prev_desc = desc;
1326 desc = desc->more;
1327 }
8daf3462 1328 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1329 BUG();
1330 }
1331}
1332
e7912386
WY
1333static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1334{
1335 mmu_spte_clear_track_bits(sptep);
1336 __pte_list_remove(sptep, rmap_head);
1337}
1338
018aabb5
TY
1339static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1340 struct kvm_memory_slot *slot)
53c07b18 1341{
77d11309 1342 unsigned long idx;
53c07b18 1343
77d11309 1344 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1345 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1346}
1347
018aabb5
TY
1348static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1349 struct kvm_mmu_page *sp)
9b9b1492 1350{
699023e2 1351 struct kvm_memslots *slots;
9b9b1492
TY
1352 struct kvm_memory_slot *slot;
1353
699023e2
PB
1354 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1355 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1356 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1357}
1358
f759e2b4
XG
1359static bool rmap_can_add(struct kvm_vcpu *vcpu)
1360{
1361 struct kvm_mmu_memory_cache *cache;
1362
1363 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1364 return mmu_memory_cache_free_objects(cache);
1365}
1366
53c07b18
XG
1367static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1368{
1369 struct kvm_mmu_page *sp;
018aabb5 1370 struct kvm_rmap_head *rmap_head;
53c07b18 1371
53c07b18
XG
1372 sp = page_header(__pa(spte));
1373 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1374 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1375 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1376}
1377
53c07b18
XG
1378static void rmap_remove(struct kvm *kvm, u64 *spte)
1379{
1380 struct kvm_mmu_page *sp;
1381 gfn_t gfn;
018aabb5 1382 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1383
1384 sp = page_header(__pa(spte));
1385 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1386 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1387 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1388}
1389
1e3f42f0
TY
1390/*
1391 * Used by the following functions to iterate through the sptes linked by a
1392 * rmap. All fields are private and not assumed to be used outside.
1393 */
1394struct rmap_iterator {
1395 /* private fields */
1396 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1397 int pos; /* index of the sptep */
1398};
1399
1400/*
1401 * Iteration must be started by this function. This should also be used after
1402 * removing/dropping sptes from the rmap link because in such cases the
1403 * information in the itererator may not be valid.
1404 *
1405 * Returns sptep if found, NULL otherwise.
1406 */
018aabb5
TY
1407static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1408 struct rmap_iterator *iter)
1e3f42f0 1409{
77fbbbd2
TY
1410 u64 *sptep;
1411
018aabb5 1412 if (!rmap_head->val)
1e3f42f0
TY
1413 return NULL;
1414
018aabb5 1415 if (!(rmap_head->val & 1)) {
1e3f42f0 1416 iter->desc = NULL;
77fbbbd2
TY
1417 sptep = (u64 *)rmap_head->val;
1418 goto out;
1e3f42f0
TY
1419 }
1420
018aabb5 1421 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1422 iter->pos = 0;
77fbbbd2
TY
1423 sptep = iter->desc->sptes[iter->pos];
1424out:
1425 BUG_ON(!is_shadow_present_pte(*sptep));
1426 return sptep;
1e3f42f0
TY
1427}
1428
1429/*
1430 * Must be used with a valid iterator: e.g. after rmap_get_first().
1431 *
1432 * Returns sptep if found, NULL otherwise.
1433 */
1434static u64 *rmap_get_next(struct rmap_iterator *iter)
1435{
77fbbbd2
TY
1436 u64 *sptep;
1437
1e3f42f0
TY
1438 if (iter->desc) {
1439 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1440 ++iter->pos;
1441 sptep = iter->desc->sptes[iter->pos];
1442 if (sptep)
77fbbbd2 1443 goto out;
1e3f42f0
TY
1444 }
1445
1446 iter->desc = iter->desc->more;
1447
1448 if (iter->desc) {
1449 iter->pos = 0;
1450 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1451 sptep = iter->desc->sptes[iter->pos];
1452 goto out;
1e3f42f0
TY
1453 }
1454 }
1455
1456 return NULL;
77fbbbd2
TY
1457out:
1458 BUG_ON(!is_shadow_present_pte(*sptep));
1459 return sptep;
1e3f42f0
TY
1460}
1461
018aabb5
TY
1462#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1463 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1464 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1465
c3707958 1466static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1467{
1df9f2dc 1468 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1469 rmap_remove(kvm, sptep);
be38d276
AK
1470}
1471
8e22f955
XG
1472
1473static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1474{
1475 if (is_large_pte(*sptep)) {
1476 WARN_ON(page_header(__pa(sptep))->role.level ==
1477 PT_PAGE_TABLE_LEVEL);
1478 drop_spte(kvm, sptep);
1479 --kvm->stat.lpages;
1480 return true;
1481 }
1482
1483 return false;
1484}
1485
1486static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1487{
c3134ce2
LT
1488 if (__drop_large_spte(vcpu->kvm, sptep)) {
1489 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1490
1491 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1492 KVM_PAGES_PER_HPAGE(sp->role.level));
1493 }
8e22f955
XG
1494}
1495
1496/*
49fde340 1497 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1498 * spte write-protection is caused by protecting shadow page table.
49fde340 1499 *
b4619660 1500 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1501 * protection:
1502 * - for dirty logging, the spte can be set to writable at anytime if
1503 * its dirty bitmap is properly set.
1504 * - for spte protection, the spte can be writable only after unsync-ing
1505 * shadow page.
8e22f955 1506 *
c126d94f 1507 * Return true if tlb need be flushed.
8e22f955 1508 */
c4f138b4 1509static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1510{
1511 u64 spte = *sptep;
1512
49fde340 1513 if (!is_writable_pte(spte) &&
ea4114bc 1514 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1515 return false;
1516
1517 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1518
49fde340
XG
1519 if (pt_protect)
1520 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1521 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1522
c126d94f 1523 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1524}
1525
018aabb5
TY
1526static bool __rmap_write_protect(struct kvm *kvm,
1527 struct kvm_rmap_head *rmap_head,
245c3912 1528 bool pt_protect)
98348e95 1529{
1e3f42f0
TY
1530 u64 *sptep;
1531 struct rmap_iterator iter;
d13bc5b5 1532 bool flush = false;
374cbac0 1533
018aabb5 1534 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1535 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1536
d13bc5b5 1537 return flush;
a0ed4607
TY
1538}
1539
c4f138b4 1540static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1541{
1542 u64 spte = *sptep;
1543
1544 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1545
1546 spte &= ~shadow_dirty_mask;
1547
1548 return mmu_spte_update(sptep, spte);
1549}
1550
ac8d57e5
PF
1551static bool wrprot_ad_disabled_spte(u64 *sptep)
1552{
1553 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1554 (unsigned long *)sptep);
1555 if (was_writable)
1556 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1557
1558 return was_writable;
1559}
1560
1561/*
1562 * Gets the GFN ready for another round of dirty logging by clearing the
1563 * - D bit on ad-enabled SPTEs, and
1564 * - W bit on ad-disabled SPTEs.
1565 * Returns true iff any D or W bits were cleared.
1566 */
018aabb5 1567static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1568{
1569 u64 *sptep;
1570 struct rmap_iterator iter;
1571 bool flush = false;
1572
018aabb5 1573 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1574 if (spte_ad_enabled(*sptep))
1575 flush |= spte_clear_dirty(sptep);
1576 else
1577 flush |= wrprot_ad_disabled_spte(sptep);
f4b4b180
KH
1578
1579 return flush;
1580}
1581
c4f138b4 1582static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1583{
1584 u64 spte = *sptep;
1585
1586 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1587
1588 spte |= shadow_dirty_mask;
1589
1590 return mmu_spte_update(sptep, spte);
1591}
1592
018aabb5 1593static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1594{
1595 u64 *sptep;
1596 struct rmap_iterator iter;
1597 bool flush = false;
1598
018aabb5 1599 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1600 if (spte_ad_enabled(*sptep))
1601 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1602
1603 return flush;
1604}
1605
5dc99b23 1606/**
3b0f1d01 1607 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1608 * @kvm: kvm instance
1609 * @slot: slot to protect
1610 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1611 * @mask: indicates which pages we should protect
1612 *
1613 * Used when we do not need to care about huge page mappings: e.g. during dirty
1614 * logging we do not have any such mappings.
1615 */
3b0f1d01 1616static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1617 struct kvm_memory_slot *slot,
1618 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1619{
018aabb5 1620 struct kvm_rmap_head *rmap_head;
a0ed4607 1621
5dc99b23 1622 while (mask) {
018aabb5
TY
1623 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1624 PT_PAGE_TABLE_LEVEL, slot);
1625 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1626
5dc99b23
TY
1627 /* clear the first set bit */
1628 mask &= mask - 1;
1629 }
374cbac0
AK
1630}
1631
f4b4b180 1632/**
ac8d57e5
PF
1633 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1634 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1635 * @kvm: kvm instance
1636 * @slot: slot to clear D-bit
1637 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1638 * @mask: indicates which pages we should clear D-bit
1639 *
1640 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1641 */
1642void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1643 struct kvm_memory_slot *slot,
1644 gfn_t gfn_offset, unsigned long mask)
1645{
018aabb5 1646 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1647
1648 while (mask) {
018aabb5
TY
1649 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1650 PT_PAGE_TABLE_LEVEL, slot);
1651 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1652
1653 /* clear the first set bit */
1654 mask &= mask - 1;
1655 }
1656}
1657EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1658
3b0f1d01
KH
1659/**
1660 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1661 * PT level pages.
1662 *
1663 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1664 * enable dirty logging for them.
1665 *
1666 * Used when we do not need to care about huge page mappings: e.g. during dirty
1667 * logging we do not have any such mappings.
1668 */
1669void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1670 struct kvm_memory_slot *slot,
1671 gfn_t gfn_offset, unsigned long mask)
1672{
88178fd4
KH
1673 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1674 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1675 mask);
1676 else
1677 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1678}
1679
bab4165e
BD
1680/**
1681 * kvm_arch_write_log_dirty - emulate dirty page logging
1682 * @vcpu: Guest mode vcpu
1683 *
1684 * Emulate arch specific page modification logging for the
1685 * nested hypervisor
1686 */
1687int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1688{
1689 if (kvm_x86_ops->write_log_dirty)
1690 return kvm_x86_ops->write_log_dirty(vcpu);
1691
1692 return 0;
1693}
1694
aeecee2e
XG
1695bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1696 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1697{
018aabb5 1698 struct kvm_rmap_head *rmap_head;
5dc99b23 1699 int i;
2f84569f 1700 bool write_protected = false;
95d4c16c 1701
8a3d08f1 1702 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1703 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1704 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1705 }
1706
1707 return write_protected;
95d4c16c
TY
1708}
1709
aeecee2e
XG
1710static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1711{
1712 struct kvm_memory_slot *slot;
1713
1714 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1715 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1716}
1717
018aabb5 1718static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1719{
1e3f42f0
TY
1720 u64 *sptep;
1721 struct rmap_iterator iter;
6a49f85c 1722 bool flush = false;
e930bffe 1723
018aabb5 1724 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1725 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1726
e7912386 1727 pte_list_remove(rmap_head, sptep);
6a49f85c 1728 flush = true;
e930bffe 1729 }
1e3f42f0 1730
6a49f85c
XG
1731 return flush;
1732}
1733
018aabb5 1734static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1735 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1736 unsigned long data)
1737{
018aabb5 1738 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1739}
1740
018aabb5 1741static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1742 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1743 unsigned long data)
3da0dd43 1744{
1e3f42f0
TY
1745 u64 *sptep;
1746 struct rmap_iterator iter;
3da0dd43 1747 int need_flush = 0;
1e3f42f0 1748 u64 new_spte;
3da0dd43 1749 pte_t *ptep = (pte_t *)data;
ba049e93 1750 kvm_pfn_t new_pfn;
3da0dd43
IE
1751
1752 WARN_ON(pte_huge(*ptep));
1753 new_pfn = pte_pfn(*ptep);
1e3f42f0 1754
0d536790 1755restart:
018aabb5 1756 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1757 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1758 sptep, *sptep, gfn, level);
1e3f42f0 1759
3da0dd43 1760 need_flush = 1;
1e3f42f0 1761
3da0dd43 1762 if (pte_write(*ptep)) {
e7912386 1763 pte_list_remove(rmap_head, sptep);
0d536790 1764 goto restart;
3da0dd43 1765 } else {
1e3f42f0 1766 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1767 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1768
1769 new_spte &= ~PT_WRITABLE_MASK;
1770 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1771
1772 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1773
1774 mmu_spte_clear_track_bits(sptep);
1775 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1776 }
1777 }
1e3f42f0 1778
3cc5ea94
LT
1779 if (need_flush && kvm_available_flush_tlb_with_range()) {
1780 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1781 return 0;
1782 }
1783
0cf853c5 1784 return need_flush;
3da0dd43
IE
1785}
1786
6ce1f4e2
XG
1787struct slot_rmap_walk_iterator {
1788 /* input fields. */
1789 struct kvm_memory_slot *slot;
1790 gfn_t start_gfn;
1791 gfn_t end_gfn;
1792 int start_level;
1793 int end_level;
1794
1795 /* output fields. */
1796 gfn_t gfn;
018aabb5 1797 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1798 int level;
1799
1800 /* private field. */
018aabb5 1801 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1802};
1803
1804static void
1805rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1806{
1807 iterator->level = level;
1808 iterator->gfn = iterator->start_gfn;
1809 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1810 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1811 iterator->slot);
1812}
1813
1814static void
1815slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1816 struct kvm_memory_slot *slot, int start_level,
1817 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1818{
1819 iterator->slot = slot;
1820 iterator->start_level = start_level;
1821 iterator->end_level = end_level;
1822 iterator->start_gfn = start_gfn;
1823 iterator->end_gfn = end_gfn;
1824
1825 rmap_walk_init_level(iterator, iterator->start_level);
1826}
1827
1828static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1829{
1830 return !!iterator->rmap;
1831}
1832
1833static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1834{
1835 if (++iterator->rmap <= iterator->end_rmap) {
1836 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1837 return;
1838 }
1839
1840 if (++iterator->level > iterator->end_level) {
1841 iterator->rmap = NULL;
1842 return;
1843 }
1844
1845 rmap_walk_init_level(iterator, iterator->level);
1846}
1847
1848#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1849 _start_gfn, _end_gfn, _iter_) \
1850 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1851 _end_level_, _start_gfn, _end_gfn); \
1852 slot_rmap_walk_okay(_iter_); \
1853 slot_rmap_walk_next(_iter_))
1854
84504ef3
TY
1855static int kvm_handle_hva_range(struct kvm *kvm,
1856 unsigned long start,
1857 unsigned long end,
1858 unsigned long data,
1859 int (*handler)(struct kvm *kvm,
018aabb5 1860 struct kvm_rmap_head *rmap_head,
048212d0 1861 struct kvm_memory_slot *slot,
8a9522d2
ALC
1862 gfn_t gfn,
1863 int level,
84504ef3 1864 unsigned long data))
e930bffe 1865{
bc6678a3 1866 struct kvm_memslots *slots;
be6ba0f0 1867 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1868 struct slot_rmap_walk_iterator iterator;
1869 int ret = 0;
9da0e4d5 1870 int i;
bc6678a3 1871
9da0e4d5
PB
1872 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1873 slots = __kvm_memslots(kvm, i);
1874 kvm_for_each_memslot(memslot, slots) {
1875 unsigned long hva_start, hva_end;
1876 gfn_t gfn_start, gfn_end;
e930bffe 1877
9da0e4d5
PB
1878 hva_start = max(start, memslot->userspace_addr);
1879 hva_end = min(end, memslot->userspace_addr +
1880 (memslot->npages << PAGE_SHIFT));
1881 if (hva_start >= hva_end)
1882 continue;
1883 /*
1884 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1885 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1886 */
1887 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1888 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1889
1890 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1891 PT_MAX_HUGEPAGE_LEVEL,
1892 gfn_start, gfn_end - 1,
1893 &iterator)
1894 ret |= handler(kvm, iterator.rmap, memslot,
1895 iterator.gfn, iterator.level, data);
1896 }
e930bffe
AA
1897 }
1898
f395302e 1899 return ret;
e930bffe
AA
1900}
1901
84504ef3
TY
1902static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1903 unsigned long data,
018aabb5
TY
1904 int (*handler)(struct kvm *kvm,
1905 struct kvm_rmap_head *rmap_head,
048212d0 1906 struct kvm_memory_slot *slot,
8a9522d2 1907 gfn_t gfn, int level,
84504ef3
TY
1908 unsigned long data))
1909{
1910 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1911}
1912
b3ae2096
TY
1913int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1914{
1915 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1916}
1917
748c0e31 1918int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1919{
0cf853c5 1920 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1921}
1922
018aabb5 1923static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1924 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1925 unsigned long data)
e930bffe 1926{
1e3f42f0 1927 u64 *sptep;
79f702a6 1928 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1929 int young = 0;
1930
f160c7b7
JS
1931 for_each_rmap_spte(rmap_head, &iter, sptep)
1932 young |= mmu_spte_age(sptep);
0d536790 1933
8a9522d2 1934 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1935 return young;
1936}
1937
018aabb5 1938static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1939 struct kvm_memory_slot *slot, gfn_t gfn,
1940 int level, unsigned long data)
8ee53820 1941{
1e3f42f0
TY
1942 u64 *sptep;
1943 struct rmap_iterator iter;
8ee53820 1944
83ef6c81
JS
1945 for_each_rmap_spte(rmap_head, &iter, sptep)
1946 if (is_accessed_spte(*sptep))
1947 return 1;
83ef6c81 1948 return 0;
8ee53820
AA
1949}
1950
53a27b39
MT
1951#define RMAP_RECYCLE_THRESHOLD 1000
1952
852e3c19 1953static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 1954{
018aabb5 1955 struct kvm_rmap_head *rmap_head;
852e3c19
JR
1956 struct kvm_mmu_page *sp;
1957
1958 sp = page_header(__pa(spte));
53a27b39 1959
018aabb5 1960 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 1961
018aabb5 1962 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
1963 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1964 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
1965}
1966
57128468 1967int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1968{
57128468 1969 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1970}
1971
8ee53820
AA
1972int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1973{
1974 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1975}
1976
d6c69ee9 1977#ifdef MMU_DEBUG
47ad8e68 1978static int is_empty_shadow_page(u64 *spt)
6aa8b732 1979{
139bdb2d
AK
1980 u64 *pos;
1981 u64 *end;
1982
47ad8e68 1983 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1984 if (is_shadow_present_pte(*pos)) {
b8688d51 1985 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1986 pos, *pos);
6aa8b732 1987 return 0;
139bdb2d 1988 }
6aa8b732
AK
1989 return 1;
1990}
d6c69ee9 1991#endif
6aa8b732 1992
45221ab6
DH
1993/*
1994 * This value is the sum of all of the kvm instances's
1995 * kvm->arch.n_used_mmu_pages values. We need a global,
1996 * aggregate version in order to make the slab shrinker
1997 * faster
1998 */
1999static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
2000{
2001 kvm->arch.n_used_mmu_pages += nr;
2002 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2003}
2004
834be0d8 2005static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2006{
fa4a2c08 2007 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2008 hlist_del(&sp->hash_link);
bd4c86ea
XG
2009 list_del(&sp->link);
2010 free_page((unsigned long)sp->spt);
834be0d8
GN
2011 if (!sp->role.direct)
2012 free_page((unsigned long)sp->gfns);
e8ad9a70 2013 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2014}
2015
cea0f0e7
AK
2016static unsigned kvm_page_table_hashfn(gfn_t gfn)
2017{
114df303 2018 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2019}
2020
714b93da 2021static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2022 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2023{
cea0f0e7
AK
2024 if (!parent_pte)
2025 return;
cea0f0e7 2026
67052b35 2027 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2028}
2029
4db35314 2030static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2031 u64 *parent_pte)
2032{
8daf3462 2033 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2034}
2035
bcdd9a93
XG
2036static void drop_parent_pte(struct kvm_mmu_page *sp,
2037 u64 *parent_pte)
2038{
2039 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2040 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2041}
2042
47005792 2043static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2044{
67052b35 2045 struct kvm_mmu_page *sp;
7ddca7e4 2046
80feb89a
TY
2047 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2048 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2049 if (!direct)
80feb89a 2050 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2051 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
2052
2053 /*
2054 * The active_mmu_pages list is the FIFO list, do not move the
2055 * page until it is zapped. kvm_zap_obsolete_pages depends on
2056 * this feature. See the comments in kvm_zap_obsolete_pages().
2057 */
67052b35 2058 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2059 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2060 return sp;
ad8cfbe3
MT
2061}
2062
67052b35 2063static void mark_unsync(u64 *spte);
1047df1f 2064static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2065{
74c4e63a
TY
2066 u64 *sptep;
2067 struct rmap_iterator iter;
2068
2069 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2070 mark_unsync(sptep);
2071 }
0074ff63
MT
2072}
2073
67052b35 2074static void mark_unsync(u64 *spte)
0074ff63 2075{
67052b35 2076 struct kvm_mmu_page *sp;
1047df1f 2077 unsigned int index;
0074ff63 2078
67052b35 2079 sp = page_header(__pa(spte));
1047df1f
XG
2080 index = spte - sp->spt;
2081 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2082 return;
1047df1f 2083 if (sp->unsync_children++)
0074ff63 2084 return;
1047df1f 2085 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2086}
2087
e8bc217a 2088static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2089 struct kvm_mmu_page *sp)
e8bc217a 2090{
1f50f1b3 2091 return 0;
e8bc217a
MT
2092}
2093
7eb77e9f 2094static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva, hpa_t root)
a7052897
MT
2095{
2096}
2097
0f53b5b1
XG
2098static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2099 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2100 const void *pte)
0f53b5b1
XG
2101{
2102 WARN_ON(1);
2103}
2104
60c8aec6
MT
2105#define KVM_PAGE_ARRAY_NR 16
2106
2107struct kvm_mmu_pages {
2108 struct mmu_page_and_offset {
2109 struct kvm_mmu_page *sp;
2110 unsigned int idx;
2111 } page[KVM_PAGE_ARRAY_NR];
2112 unsigned int nr;
2113};
2114
cded19f3
HE
2115static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2116 int idx)
4731d4c7 2117{
60c8aec6 2118 int i;
4731d4c7 2119
60c8aec6
MT
2120 if (sp->unsync)
2121 for (i=0; i < pvec->nr; i++)
2122 if (pvec->page[i].sp == sp)
2123 return 0;
2124
2125 pvec->page[pvec->nr].sp = sp;
2126 pvec->page[pvec->nr].idx = idx;
2127 pvec->nr++;
2128 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2129}
2130
fd951457
TY
2131static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2132{
2133 --sp->unsync_children;
2134 WARN_ON((int)sp->unsync_children < 0);
2135 __clear_bit(idx, sp->unsync_child_bitmap);
2136}
2137
60c8aec6
MT
2138static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2139 struct kvm_mmu_pages *pvec)
2140{
2141 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2142
37178b8b 2143 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2144 struct kvm_mmu_page *child;
4731d4c7
MT
2145 u64 ent = sp->spt[i];
2146
fd951457
TY
2147 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2148 clear_unsync_child_bit(sp, i);
2149 continue;
2150 }
7a8f1a74
XG
2151
2152 child = page_header(ent & PT64_BASE_ADDR_MASK);
2153
2154 if (child->unsync_children) {
2155 if (mmu_pages_add(pvec, child, i))
2156 return -ENOSPC;
2157
2158 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2159 if (!ret) {
2160 clear_unsync_child_bit(sp, i);
2161 continue;
2162 } else if (ret > 0) {
7a8f1a74 2163 nr_unsync_leaf += ret;
fd951457 2164 } else
7a8f1a74
XG
2165 return ret;
2166 } else if (child->unsync) {
2167 nr_unsync_leaf++;
2168 if (mmu_pages_add(pvec, child, i))
2169 return -ENOSPC;
2170 } else
fd951457 2171 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2172 }
2173
60c8aec6
MT
2174 return nr_unsync_leaf;
2175}
2176
e23d3fef
XG
2177#define INVALID_INDEX (-1)
2178
60c8aec6
MT
2179static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2180 struct kvm_mmu_pages *pvec)
2181{
0a47cd85 2182 pvec->nr = 0;
60c8aec6
MT
2183 if (!sp->unsync_children)
2184 return 0;
2185
e23d3fef 2186 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2187 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2188}
2189
4731d4c7
MT
2190static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2191{
2192 WARN_ON(!sp->unsync);
5e1b3ddb 2193 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2194 sp->unsync = 0;
2195 --kvm->stat.mmu_unsync;
2196}
2197
7775834a
XG
2198static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2199 struct list_head *invalid_list);
2200static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2201 struct list_head *invalid_list);
4731d4c7 2202
f34d251d
XG
2203/*
2204 * NOTE: we should pay more attention on the zapped-obsolete page
2205 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
2206 * since it has been deleted from active_mmu_pages but still can be found
2207 * at hast list.
2208 *
f3414bc7 2209 * for_each_valid_sp() has skipped that kind of pages.
f34d251d 2210 */
f3414bc7 2211#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2212 hlist_for_each_entry(_sp, \
2213 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
f3414bc7
DM
2214 if (is_obsolete_sp((_kvm), (_sp)) || (_sp)->role.invalid) { \
2215 } else
1044b030
TY
2216
2217#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2218 for_each_valid_sp(_kvm, _sp, _gfn) \
2219 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2220
f918b443 2221/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2222static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2223 struct list_head *invalid_list)
4731d4c7 2224{
450917b6 2225 if (sp->role.cr4_pae != !!is_pae(vcpu)
44dd3ffa 2226 || vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2227 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2228 return false;
4731d4c7
MT
2229 }
2230
1f50f1b3 2231 return true;
4731d4c7
MT
2232}
2233
35a70510
PB
2234static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2235 struct list_head *invalid_list,
2236 bool remote_flush, bool local_flush)
1d9dc7e0 2237{
35a70510
PB
2238 if (!list_empty(invalid_list)) {
2239 kvm_mmu_commit_zap_page(vcpu->kvm, invalid_list);
2240 return;
2241 }
d98ba053 2242
35a70510
PB
2243 if (remote_flush)
2244 kvm_flush_remote_tlbs(vcpu->kvm);
2245 else if (local_flush)
2246 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2247}
2248
e37fa785
XG
2249#ifdef CONFIG_KVM_MMU_AUDIT
2250#include "mmu_audit.c"
2251#else
2252static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2253static void mmu_audit_disable(void) { }
2254#endif
2255
46971a2f
XG
2256static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2257{
2258 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2259}
2260
1f50f1b3 2261static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2262 struct list_head *invalid_list)
1d9dc7e0 2263{
9a43c5d9
PB
2264 kvm_unlink_unsync_page(vcpu->kvm, sp);
2265 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2266}
2267
9f1a122f 2268/* @gfn should be write-protected at the call site */
2a74003a
PB
2269static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2270 struct list_head *invalid_list)
9f1a122f 2271{
9f1a122f 2272 struct kvm_mmu_page *s;
2a74003a 2273 bool ret = false;
9f1a122f 2274
b67bfe0d 2275 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2276 if (!s->unsync)
9f1a122f
XG
2277 continue;
2278
2279 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2280 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2281 }
2282
2a74003a 2283 return ret;
9f1a122f
XG
2284}
2285
60c8aec6 2286struct mmu_page_path {
2a7266a8
YZ
2287 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2288 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2289};
2290
60c8aec6 2291#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2292 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2293 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2294 i = mmu_pages_next(&pvec, &parents, i))
2295
cded19f3
HE
2296static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2297 struct mmu_page_path *parents,
2298 int i)
60c8aec6
MT
2299{
2300 int n;
2301
2302 for (n = i+1; n < pvec->nr; n++) {
2303 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2304 unsigned idx = pvec->page[n].idx;
2305 int level = sp->role.level;
60c8aec6 2306
0a47cd85
PB
2307 parents->idx[level-1] = idx;
2308 if (level == PT_PAGE_TABLE_LEVEL)
2309 break;
60c8aec6 2310
0a47cd85 2311 parents->parent[level-2] = sp;
60c8aec6
MT
2312 }
2313
2314 return n;
2315}
2316
0a47cd85
PB
2317static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2318 struct mmu_page_path *parents)
2319{
2320 struct kvm_mmu_page *sp;
2321 int level;
2322
2323 if (pvec->nr == 0)
2324 return 0;
2325
e23d3fef
XG
2326 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2327
0a47cd85
PB
2328 sp = pvec->page[0].sp;
2329 level = sp->role.level;
2330 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2331
2332 parents->parent[level-2] = sp;
2333
2334 /* Also set up a sentinel. Further entries in pvec are all
2335 * children of sp, so this element is never overwritten.
2336 */
2337 parents->parent[level-1] = NULL;
2338 return mmu_pages_next(pvec, parents, 0);
2339}
2340
cded19f3 2341static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2342{
60c8aec6
MT
2343 struct kvm_mmu_page *sp;
2344 unsigned int level = 0;
2345
2346 do {
2347 unsigned int idx = parents->idx[level];
60c8aec6
MT
2348 sp = parents->parent[level];
2349 if (!sp)
2350 return;
2351
e23d3fef 2352 WARN_ON(idx == INVALID_INDEX);
fd951457 2353 clear_unsync_child_bit(sp, idx);
60c8aec6 2354 level++;
0a47cd85 2355 } while (!sp->unsync_children);
60c8aec6 2356}
4731d4c7 2357
60c8aec6
MT
2358static void mmu_sync_children(struct kvm_vcpu *vcpu,
2359 struct kvm_mmu_page *parent)
2360{
2361 int i;
2362 struct kvm_mmu_page *sp;
2363 struct mmu_page_path parents;
2364 struct kvm_mmu_pages pages;
d98ba053 2365 LIST_HEAD(invalid_list);
50c9e6f3 2366 bool flush = false;
60c8aec6 2367
60c8aec6 2368 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2369 bool protected = false;
b1a36821
MT
2370
2371 for_each_sp(pages, sp, parents, i)
54bf36aa 2372 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2373
50c9e6f3 2374 if (protected) {
b1a36821 2375 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2376 flush = false;
2377 }
b1a36821 2378
60c8aec6 2379 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2380 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2381 mmu_pages_clear_parents(&parents);
2382 }
50c9e6f3
PB
2383 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2384 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2385 cond_resched_lock(&vcpu->kvm->mmu_lock);
2386 flush = false;
2387 }
60c8aec6 2388 }
50c9e6f3
PB
2389
2390 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2391}
2392
a30f47cb
XG
2393static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2394{
e5691a81 2395 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2396}
2397
2398static void clear_sp_write_flooding_count(u64 *spte)
2399{
2400 struct kvm_mmu_page *sp = page_header(__pa(spte));
2401
2402 __clear_sp_write_flooding_count(sp);
2403}
2404
cea0f0e7
AK
2405static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2406 gfn_t gfn,
2407 gva_t gaddr,
2408 unsigned level,
f6e2c02b 2409 int direct,
bb11c6c9 2410 unsigned access)
cea0f0e7
AK
2411{
2412 union kvm_mmu_page_role role;
cea0f0e7 2413 unsigned quadrant;
9f1a122f 2414 struct kvm_mmu_page *sp;
9f1a122f 2415 bool need_sync = false;
2a74003a 2416 bool flush = false;
f3414bc7 2417 int collisions = 0;
2a74003a 2418 LIST_HEAD(invalid_list);
cea0f0e7 2419
36d9594d 2420 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2421 role.level = level;
f6e2c02b 2422 role.direct = direct;
84b0c8c6 2423 if (role.direct)
5b7e0102 2424 role.cr4_pae = 0;
41074d07 2425 role.access = access;
44dd3ffa
VK
2426 if (!vcpu->arch.mmu->direct_map
2427 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2428 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2429 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2430 role.quadrant = quadrant;
2431 }
f3414bc7
DM
2432 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2433 if (sp->gfn != gfn) {
2434 collisions++;
2435 continue;
2436 }
2437
7ae680eb
XG
2438 if (!need_sync && sp->unsync)
2439 need_sync = true;
4731d4c7 2440
7ae680eb
XG
2441 if (sp->role.word != role.word)
2442 continue;
4731d4c7 2443
2a74003a
PB
2444 if (sp->unsync) {
2445 /* The page is good, but __kvm_sync_page might still end
2446 * up zapping it. If so, break in order to rebuild it.
2447 */
2448 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2449 break;
2450
2451 WARN_ON(!list_empty(&invalid_list));
2452 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2453 }
e02aa901 2454
98bba238 2455 if (sp->unsync_children)
a8eeb04a 2456 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2457
a30f47cb 2458 __clear_sp_write_flooding_count(sp);
7ae680eb 2459 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2460 goto out;
7ae680eb 2461 }
47005792 2462
dfc5aa00 2463 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2464
2465 sp = kvm_mmu_alloc_page(vcpu, direct);
2466
4db35314
AK
2467 sp->gfn = gfn;
2468 sp->role = role;
7ae680eb
XG
2469 hlist_add_head(&sp->hash_link,
2470 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2471 if (!direct) {
56ca57f9
XG
2472 /*
2473 * we should do write protection before syncing pages
2474 * otherwise the content of the synced shadow page may
2475 * be inconsistent with guest page table.
2476 */
2477 account_shadowed(vcpu->kvm, sp);
2478 if (level == PT_PAGE_TABLE_LEVEL &&
2479 rmap_write_protect(vcpu, gfn))
c3134ce2 2480 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2481
9f1a122f 2482 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2483 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2484 }
5304b8d3 2485 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
77492664 2486 clear_page(sp->spt);
f691fe1d 2487 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2488
2489 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2490out:
2491 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2492 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2493 return sp;
cea0f0e7
AK
2494}
2495
7eb77e9f
JS
2496static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2497 struct kvm_vcpu *vcpu, hpa_t root,
2498 u64 addr)
2d11123a
AK
2499{
2500 iterator->addr = addr;
7eb77e9f 2501 iterator->shadow_addr = root;
44dd3ffa 2502 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2503
2a7266a8 2504 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2505 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2506 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2507 --iterator->level;
2508
2d11123a 2509 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2510 /*
2511 * prev_root is currently only used for 64-bit hosts. So only
2512 * the active root_hpa is valid here.
2513 */
44dd3ffa 2514 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2515
2d11123a 2516 iterator->shadow_addr
44dd3ffa 2517 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2518 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2519 --iterator->level;
2520 if (!iterator->shadow_addr)
2521 iterator->level = 0;
2522 }
2523}
2524
7eb77e9f
JS
2525static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2526 struct kvm_vcpu *vcpu, u64 addr)
2527{
44dd3ffa 2528 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2529 addr);
2530}
2531
2d11123a
AK
2532static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2533{
2534 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2535 return false;
4d88954d 2536
2d11123a
AK
2537 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2538 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2539 return true;
2540}
2541
c2a2ac2b
XG
2542static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2543 u64 spte)
2d11123a 2544{
c2a2ac2b 2545 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2546 iterator->level = 0;
2547 return;
2548 }
2549
c2a2ac2b 2550 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2551 --iterator->level;
2552}
2553
c2a2ac2b
XG
2554static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2555{
bb606a9b 2556 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2557}
2558
98bba238
TY
2559static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2560 struct kvm_mmu_page *sp)
32ef26a3
AK
2561{
2562 u64 spte;
2563
ffb128c8 2564 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2565
ffb128c8 2566 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2567 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2568
2569 if (sp_ad_disabled(sp))
2570 spte |= shadow_acc_track_value;
2571 else
2572 spte |= shadow_accessed_mask;
24db2734 2573
1df9f2dc 2574 mmu_spte_set(sptep, spte);
98bba238
TY
2575
2576 mmu_page_add_parent_pte(vcpu, sp, sptep);
2577
2578 if (sp->unsync_children || sp->unsync)
2579 mark_unsync(sptep);
32ef26a3
AK
2580}
2581
a357bd22
AK
2582static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2583 unsigned direct_access)
2584{
2585 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2586 struct kvm_mmu_page *child;
2587
2588 /*
2589 * For the direct sp, if the guest pte's dirty bit
2590 * changed form clean to dirty, it will corrupt the
2591 * sp's access: allow writable in the read-only sp,
2592 * so we should update the spte at this point to get
2593 * a new sp with the correct access.
2594 */
2595 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2596 if (child->role.access == direct_access)
2597 return;
2598
bcdd9a93 2599 drop_parent_pte(child, sptep);
c3134ce2 2600 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2601 }
2602}
2603
505aef8f 2604static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2605 u64 *spte)
2606{
2607 u64 pte;
2608 struct kvm_mmu_page *child;
2609
2610 pte = *spte;
2611 if (is_shadow_present_pte(pte)) {
505aef8f 2612 if (is_last_spte(pte, sp->role.level)) {
c3707958 2613 drop_spte(kvm, spte);
505aef8f
XG
2614 if (is_large_pte(pte))
2615 --kvm->stat.lpages;
2616 } else {
38e3b2b2 2617 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2618 drop_parent_pte(child, spte);
38e3b2b2 2619 }
505aef8f
XG
2620 return true;
2621 }
2622
2623 if (is_mmio_spte(pte))
ce88decf 2624 mmu_spte_clear_no_track(spte);
c3707958 2625
505aef8f 2626 return false;
38e3b2b2
XG
2627}
2628
90cb0529 2629static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2630 struct kvm_mmu_page *sp)
a436036b 2631{
697fe2e2 2632 unsigned i;
697fe2e2 2633
38e3b2b2
XG
2634 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2635 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2636}
2637
31aa2b44 2638static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2639{
1e3f42f0
TY
2640 u64 *sptep;
2641 struct rmap_iterator iter;
a436036b 2642
018aabb5 2643 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2644 drop_parent_pte(sp, sptep);
31aa2b44
AK
2645}
2646
60c8aec6 2647static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2648 struct kvm_mmu_page *parent,
2649 struct list_head *invalid_list)
4731d4c7 2650{
60c8aec6
MT
2651 int i, zapped = 0;
2652 struct mmu_page_path parents;
2653 struct kvm_mmu_pages pages;
4731d4c7 2654
60c8aec6 2655 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2656 return 0;
60c8aec6 2657
60c8aec6
MT
2658 while (mmu_unsync_walk(parent, &pages)) {
2659 struct kvm_mmu_page *sp;
2660
2661 for_each_sp(pages, sp, parents, i) {
7775834a 2662 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2663 mmu_pages_clear_parents(&parents);
77662e00 2664 zapped++;
60c8aec6 2665 }
60c8aec6
MT
2666 }
2667
2668 return zapped;
4731d4c7
MT
2669}
2670
7775834a
XG
2671static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2672 struct list_head *invalid_list)
31aa2b44 2673{
4731d4c7 2674 int ret;
f691fe1d 2675
7775834a 2676 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2677 ++kvm->stat.mmu_shadow_zapped;
7775834a 2678 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2679 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2680 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2681
f6e2c02b 2682 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2683 unaccount_shadowed(kvm, sp);
5304b8d3 2684
4731d4c7
MT
2685 if (sp->unsync)
2686 kvm_unlink_unsync_page(kvm, sp);
4db35314 2687 if (!sp->root_count) {
54a4f023
GJ
2688 /* Count self */
2689 ret++;
7775834a 2690 list_move(&sp->link, invalid_list);
aa6bd187 2691 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2692 } else {
5b5c6a5a 2693 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2694
2695 /*
2696 * The obsolete pages can not be used on any vcpus.
2697 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2698 */
2699 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2700 kvm_reload_remote_mmus(kvm);
2e53d63a 2701 }
7775834a
XG
2702
2703 sp->role.invalid = 1;
4731d4c7 2704 return ret;
a436036b
AK
2705}
2706
7775834a
XG
2707static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2708 struct list_head *invalid_list)
2709{
945315b9 2710 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2711
2712 if (list_empty(invalid_list))
2713 return;
2714
c142786c 2715 /*
9753f529
LT
2716 * We need to make sure everyone sees our modifications to
2717 * the page tables and see changes to vcpu->mode here. The barrier
2718 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2719 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2720 *
2721 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2722 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2723 */
2724 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2725
945315b9 2726 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2727 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2728 kvm_mmu_free_page(sp);
945315b9 2729 }
7775834a
XG
2730}
2731
5da59607
TY
2732static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2733 struct list_head *invalid_list)
2734{
2735 struct kvm_mmu_page *sp;
2736
2737 if (list_empty(&kvm->arch.active_mmu_pages))
2738 return false;
2739
d74c0e6b
GT
2740 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2741 struct kvm_mmu_page, link);
42bcbebf 2742 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2743}
2744
82ce2c96
IE
2745/*
2746 * Changing the number of mmu pages allocated to the vm
49d5ca26 2747 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2748 */
49d5ca26 2749void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2750{
d98ba053 2751 LIST_HEAD(invalid_list);
82ce2c96 2752
b34cb590
TY
2753 spin_lock(&kvm->mmu_lock);
2754
49d5ca26 2755 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2756 /* Need to free some mmu pages to achieve the goal. */
2757 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2758 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2759 break;
82ce2c96 2760
aa6bd187 2761 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2762 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2763 }
82ce2c96 2764
49d5ca26 2765 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2766
2767 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2768}
2769
1cb3f3ae 2770int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2771{
4db35314 2772 struct kvm_mmu_page *sp;
d98ba053 2773 LIST_HEAD(invalid_list);
a436036b
AK
2774 int r;
2775
9ad17b10 2776 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2777 r = 0;
1cb3f3ae 2778 spin_lock(&kvm->mmu_lock);
b67bfe0d 2779 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2780 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2781 sp->role.word);
2782 r = 1;
f41d335a 2783 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2784 }
d98ba053 2785 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2786 spin_unlock(&kvm->mmu_lock);
2787
a436036b 2788 return r;
cea0f0e7 2789}
1cb3f3ae 2790EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2791
5c520e90 2792static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2793{
2794 trace_kvm_mmu_unsync_page(sp);
2795 ++vcpu->kvm->stat.mmu_unsync;
2796 sp->unsync = 1;
2797
2798 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2799}
2800
3d0c27ad
XG
2801static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2802 bool can_unsync)
4731d4c7 2803{
5c520e90 2804 struct kvm_mmu_page *sp;
4731d4c7 2805
3d0c27ad
XG
2806 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2807 return true;
9cf5cf5a 2808
5c520e90 2809 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2810 if (!can_unsync)
3d0c27ad 2811 return true;
36a2e677 2812
5c520e90
XG
2813 if (sp->unsync)
2814 continue;
9cf5cf5a 2815
5c520e90
XG
2816 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2817 kvm_unsync_page(vcpu, sp);
4731d4c7 2818 }
3d0c27ad 2819
578e1c4d
JS
2820 /*
2821 * We need to ensure that the marking of unsync pages is visible
2822 * before the SPTE is updated to allow writes because
2823 * kvm_mmu_sync_roots() checks the unsync flags without holding
2824 * the MMU lock and so can race with this. If the SPTE was updated
2825 * before the page had been marked as unsync-ed, something like the
2826 * following could happen:
2827 *
2828 * CPU 1 CPU 2
2829 * ---------------------------------------------------------------------
2830 * 1.2 Host updates SPTE
2831 * to be writable
2832 * 2.1 Guest writes a GPTE for GVA X.
2833 * (GPTE being in the guest page table shadowed
2834 * by the SP from CPU 1.)
2835 * This reads SPTE during the page table walk.
2836 * Since SPTE.W is read as 1, there is no
2837 * fault.
2838 *
2839 * 2.2 Guest issues TLB flush.
2840 * That causes a VM Exit.
2841 *
2842 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2843 * Since it is false, so it just returns.
2844 *
2845 * 2.4 Guest accesses GVA X.
2846 * Since the mapping in the SP was not updated,
2847 * so the old mapping for GVA X incorrectly
2848 * gets used.
2849 * 1.1 Host marks SP
2850 * as unsync
2851 * (sp->unsync = true)
2852 *
2853 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2854 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2855 * pairs with this write barrier.
2856 */
2857 smp_wmb();
2858
3d0c27ad 2859 return false;
4731d4c7
MT
2860}
2861
ba049e93 2862static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2863{
2864 if (pfn_valid(pfn))
aa2e063a
HZ
2865 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2866 /*
2867 * Some reserved pages, such as those from NVDIMM
2868 * DAX devices, are not for MMIO, and can be mapped
2869 * with cached memory type for better performance.
2870 * However, the above check misconceives those pages
2871 * as MMIO, and results in KVM mapping them with UC
2872 * memory type, which would hurt the performance.
2873 * Therefore, we check the host memory type in addition
2874 * and only treat UC/UC-/WC pages as MMIO.
2875 */
2876 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219
PB
2877
2878 return true;
2879}
2880
5ce4786f
JS
2881/* Bits which may be returned by set_spte() */
2882#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2883#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2884
d555c333 2885static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2886 unsigned pte_access, int level,
ba049e93 2887 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2888 bool can_unsync, bool host_writable)
1c4f1fd6 2889{
ffb128c8 2890 u64 spte = 0;
1e73f9dd 2891 int ret = 0;
ac8d57e5 2892 struct kvm_mmu_page *sp;
64d4d521 2893
54bf36aa 2894 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
2895 return 0;
2896
ac8d57e5
PF
2897 sp = page_header(__pa(sptep));
2898 if (sp_ad_disabled(sp))
2899 spte |= shadow_acc_track_value;
2900
d95c5568
BD
2901 /*
2902 * For the EPT case, shadow_present_mask is 0 if hardware
2903 * supports exec-only page table entries. In that case,
2904 * ACC_USER_MASK and shadow_user_mask are used to represent
2905 * read access. See FNAME(gpte_access) in paging_tmpl.h.
2906 */
ffb128c8 2907 spte |= shadow_present_mask;
947da538 2908 if (!speculative)
ac8d57e5 2909 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 2910
7b52345e
SY
2911 if (pte_access & ACC_EXEC_MASK)
2912 spte |= shadow_x_mask;
2913 else
2914 spte |= shadow_nx_mask;
49fde340 2915
1c4f1fd6 2916 if (pte_access & ACC_USER_MASK)
7b52345e 2917 spte |= shadow_user_mask;
49fde340 2918
852e3c19 2919 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2920 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2921 if (tdp_enabled)
4b12f0de 2922 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
d1fe9219 2923 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2924
9bdbba13 2925 if (host_writable)
1403283a 2926 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2927 else
2928 pte_access &= ~ACC_WRITE_MASK;
1403283a 2929
daaf216c
TL
2930 if (!kvm_is_mmio_pfn(pfn))
2931 spte |= shadow_me_mask;
2932
35149e21 2933 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2934
c2288505 2935 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2936
c2193463 2937 /*
7751babd
XG
2938 * Other vcpu creates new sp in the window between
2939 * mapping_level() and acquiring mmu-lock. We can
2940 * allow guest to retry the access, the mapping can
2941 * be fixed if guest refault.
c2193463 2942 */
852e3c19 2943 if (level > PT_PAGE_TABLE_LEVEL &&
92f94f1e 2944 mmu_gfn_lpage_is_disallowed(vcpu, gfn, level))
be38d276 2945 goto done;
38187c83 2946
49fde340 2947 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2948
ecc5589f
MT
2949 /*
2950 * Optimization: for pte sync, if spte was writable the hash
2951 * lookup is unnecessary (and expensive). Write protection
2952 * is responsibility of mmu_get_page / kvm_sync_page.
2953 * Same reasoning can be applied to dirty page accounting.
2954 */
8dae4445 2955 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2956 goto set_pte;
2957
4731d4c7 2958 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2959 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2960 __func__, gfn);
5ce4786f 2961 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 2962 pte_access &= ~ACC_WRITE_MASK;
49fde340 2963 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2964 }
2965 }
2966
9b51a630 2967 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 2968 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 2969 spte |= spte_shadow_dirty_mask(spte);
9b51a630 2970 }
1c4f1fd6 2971
f160c7b7
JS
2972 if (speculative)
2973 spte = mark_spte_for_access_track(spte);
2974
38187c83 2975set_pte:
6e7d0354 2976 if (mmu_spte_update(sptep, spte))
5ce4786f 2977 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
be38d276 2978done:
1e73f9dd
MT
2979 return ret;
2980}
2981
9b8ebbdb
PB
2982static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep, unsigned pte_access,
2983 int write_fault, int level, gfn_t gfn, kvm_pfn_t pfn,
2984 bool speculative, bool host_writable)
1e73f9dd
MT
2985{
2986 int was_rmapped = 0;
53a27b39 2987 int rmap_count;
5ce4786f 2988 int set_spte_ret;
9b8ebbdb 2989 int ret = RET_PF_RETRY;
c2a4eadf 2990 bool flush = false;
1e73f9dd 2991
f7616203
XG
2992 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2993 *sptep, write_fault, gfn);
1e73f9dd 2994
afd28fe1 2995 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
2996 /*
2997 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2998 * the parent of the now unreachable PTE.
2999 */
852e3c19
JR
3000 if (level > PT_PAGE_TABLE_LEVEL &&
3001 !is_large_pte(*sptep)) {
1e73f9dd 3002 struct kvm_mmu_page *child;
d555c333 3003 u64 pte = *sptep;
1e73f9dd
MT
3004
3005 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3006 drop_parent_pte(child, sptep);
c2a4eadf 3007 flush = true;
d555c333 3008 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3009 pgprintk("hfn old %llx new %llx\n",
d555c333 3010 spte_to_pfn(*sptep), pfn);
c3707958 3011 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3012 flush = true;
6bed6b9e
JR
3013 } else
3014 was_rmapped = 1;
1e73f9dd 3015 }
852e3c19 3016
5ce4786f
JS
3017 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3018 speculative, true, host_writable);
3019 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3020 if (write_fault)
9b8ebbdb 3021 ret = RET_PF_EMULATE;
77c3913b 3022 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3023 }
c3134ce2 3024
c2a4eadf 3025 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3026 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3027 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3028
029499b4 3029 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3030 ret = RET_PF_EMULATE;
ce88decf 3031
d555c333 3032 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 3033 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 3034 is_large_pte(*sptep)? "2MB" : "4kB",
f160c7b7 3035 *sptep & PT_WRITABLE_MASK ? "RW" : "R", gfn,
a205bc19 3036 *sptep, sptep);
d555c333 3037 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3038 ++vcpu->kvm->stat.lpages;
3039
ffb61bb3 3040 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3041 if (!was_rmapped) {
3042 rmap_count = rmap_add(vcpu, sptep, gfn);
3043 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3044 rmap_recycle(vcpu, sptep, gfn);
3045 }
1c4f1fd6 3046 }
cb9aaa30 3047
f3ac1a4b 3048 kvm_release_pfn_clean(pfn);
029499b4 3049
9b8ebbdb 3050 return ret;
1c4f1fd6
AK
3051}
3052
ba049e93 3053static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3054 bool no_dirty_log)
3055{
3056 struct kvm_memory_slot *slot;
957ed9ef 3057
5d163b1c 3058 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3059 if (!slot)
6c8ee57b 3060 return KVM_PFN_ERR_FAULT;
957ed9ef 3061
037d92dc 3062 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3063}
3064
3065static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3066 struct kvm_mmu_page *sp,
3067 u64 *start, u64 *end)
3068{
3069 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3070 struct kvm_memory_slot *slot;
957ed9ef
XG
3071 unsigned access = sp->role.access;
3072 int i, ret;
3073 gfn_t gfn;
3074
3075 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3076 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3077 if (!slot)
957ed9ef
XG
3078 return -1;
3079
d9ef13c2 3080 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3081 if (ret <= 0)
3082 return -1;
3083
3084 for (i = 0; i < ret; i++, gfn++, start++)
029499b4
TY
3085 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3086 page_to_pfn(pages[i]), true, true);
957ed9ef
XG
3087
3088 return 0;
3089}
3090
3091static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3092 struct kvm_mmu_page *sp, u64 *sptep)
3093{
3094 u64 *spte, *start = NULL;
3095 int i;
3096
3097 WARN_ON(!sp->role.direct);
3098
3099 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3100 spte = sp->spt + i;
3101
3102 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3103 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3104 if (!start)
3105 continue;
3106 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3107 break;
3108 start = NULL;
3109 } else if (!start)
3110 start = spte;
3111 }
3112}
3113
3114static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3115{
3116 struct kvm_mmu_page *sp;
3117
ac8d57e5
PF
3118 sp = page_header(__pa(sptep));
3119
957ed9ef 3120 /*
ac8d57e5
PF
3121 * Without accessed bits, there's no way to distinguish between
3122 * actually accessed translations and prefetched, so disable pte
3123 * prefetch if accessed bits aren't available.
957ed9ef 3124 */
ac8d57e5 3125 if (sp_ad_disabled(sp))
957ed9ef
XG
3126 return;
3127
957ed9ef
XG
3128 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3129 return;
3130
3131 __direct_pte_prefetch(vcpu, sp, sptep);
3132}
3133
7ee0e5b2 3134static int __direct_map(struct kvm_vcpu *vcpu, int write, int map_writable,
ba049e93 3135 int level, gfn_t gfn, kvm_pfn_t pfn, bool prefault)
140754bc 3136{
9f652d21 3137 struct kvm_shadow_walk_iterator iterator;
140754bc 3138 struct kvm_mmu_page *sp;
b90a0e6c 3139 int emulate = 0;
140754bc 3140 gfn_t pseudo_gfn;
6aa8b732 3141
44dd3ffa 3142 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
989c6b34
MT
3143 return 0;
3144
9f652d21 3145 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 3146 if (iterator.level == level) {
029499b4
TY
3147 emulate = mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
3148 write, level, gfn, pfn, prefault,
3149 map_writable);
957ed9ef 3150 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
3151 ++vcpu->stat.pf_fixed;
3152 break;
6aa8b732
AK
3153 }
3154
404381c5 3155 drop_large_spte(vcpu, iterator.sptep);
c3707958 3156 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
3157 u64 base_addr = iterator.addr;
3158
3159 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
3160 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21 3161 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
bb11c6c9 3162 iterator.level - 1, 1, ACC_ALL);
140754bc 3163
98bba238 3164 link_shadow_page(vcpu, iterator.sptep, sp);
9f652d21
AK
3165 }
3166 }
b90a0e6c 3167 return emulate;
6aa8b732
AK
3168}
3169
77db5cbd 3170static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3171{
585a8b9b 3172 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3173}
3174
ba049e93 3175static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3176{
4d8b81ab
XG
3177 /*
3178 * Do not cache the mmio info caused by writing the readonly gfn
3179 * into the spte otherwise read access on readonly gfn also can
3180 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3181 */
3182 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3183 return RET_PF_EMULATE;
4d8b81ab 3184
e6c1502b 3185 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3186 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3187 return RET_PF_RETRY;
d7c55201 3188 }
edba23e5 3189
2c151b25 3190 return -EFAULT;
bf998156
HY
3191}
3192
936a5fe6 3193static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
ba049e93
DW
3194 gfn_t *gfnp, kvm_pfn_t *pfnp,
3195 int *levelp)
936a5fe6 3196{
ba049e93 3197 kvm_pfn_t pfn = *pfnp;
936a5fe6
AA
3198 gfn_t gfn = *gfnp;
3199 int level = *levelp;
3200
3201 /*
3202 * Check if it's a transparent hugepage. If this would be an
3203 * hugetlbfs page, level wouldn't be set to
3204 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
3205 * here.
3206 */
bf4bea8e 3207 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6 3208 level == PT_PAGE_TABLE_LEVEL &&
127393fb 3209 PageTransCompoundMap(pfn_to_page(pfn)) &&
92f94f1e 3210 !mmu_gfn_lpage_is_disallowed(vcpu, gfn, PT_DIRECTORY_LEVEL)) {
936a5fe6
AA
3211 unsigned long mask;
3212 /*
3213 * mmu_notifier_retry was successful and we hold the
3214 * mmu_lock here, so the pmd can't become splitting
3215 * from under us, and in turn
3216 * __split_huge_page_refcount() can't run from under
3217 * us and we can safely transfer the refcount from
3218 * PG_tail to PG_head as we switch the pfn to tail to
3219 * head.
3220 */
3221 *levelp = level = PT_DIRECTORY_LEVEL;
3222 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3223 VM_BUG_ON((gfn & mask) != (pfn & mask));
3224 if (pfn & mask) {
3225 gfn &= ~mask;
3226 *gfnp = gfn;
3227 kvm_release_pfn_clean(pfn);
3228 pfn &= ~mask;
c3586667 3229 kvm_get_pfn(pfn);
936a5fe6
AA
3230 *pfnp = pfn;
3231 }
3232 }
3233}
3234
d7c55201 3235static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
ba049e93 3236 kvm_pfn_t pfn, unsigned access, int *ret_val)
d7c55201 3237{
d7c55201 3238 /* The pfn is invalid, report the error! */
81c52c56 3239 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3240 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3241 return true;
d7c55201
XG
3242 }
3243
ce88decf 3244 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 3245 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201 3246
798e88b3 3247 return false;
d7c55201
XG
3248}
3249
e5552fd2 3250static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3251{
1c118b82
XG
3252 /*
3253 * Do not fix the mmio spte with invalid generation number which
3254 * need to be updated by slow page fault path.
3255 */
3256 if (unlikely(error_code & PFERR_RSVD_MASK))
3257 return false;
3258
f160c7b7
JS
3259 /* See if the page fault is due to an NX violation */
3260 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3261 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3262 return false;
3263
c7ba5b48 3264 /*
f160c7b7
JS
3265 * #PF can be fast if:
3266 * 1. The shadow page table entry is not present, which could mean that
3267 * the fault is potentially caused by access tracking (if enabled).
3268 * 2. The shadow page table entry is present and the fault
3269 * is caused by write-protect, that means we just need change the W
3270 * bit of the spte which can be done out of mmu-lock.
3271 *
3272 * However, if access tracking is disabled we know that a non-present
3273 * page must be a genuine page fault where we have to create a new SPTE.
3274 * So, if access tracking is disabled, we return true only for write
3275 * accesses to a present page.
c7ba5b48 3276 */
c7ba5b48 3277
f160c7b7
JS
3278 return shadow_acc_track_mask != 0 ||
3279 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3280 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3281}
3282
97dceba2
JS
3283/*
3284 * Returns true if the SPTE was fixed successfully. Otherwise,
3285 * someone else modified the SPTE from its original value.
3286 */
c7ba5b48 3287static bool
92a476cb 3288fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3289 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3290{
c7ba5b48
XG
3291 gfn_t gfn;
3292
3293 WARN_ON(!sp->role.direct);
3294
9b51a630
KH
3295 /*
3296 * Theoretically we could also set dirty bit (and flush TLB) here in
3297 * order to eliminate unnecessary PML logging. See comments in
3298 * set_spte. But fast_page_fault is very unlikely to happen with PML
3299 * enabled, so we do not do this. This might result in the same GPA
3300 * to be logged in PML buffer again when the write really happens, and
3301 * eventually to be called by mark_page_dirty twice. But it's also no
3302 * harm. This also avoids the TLB flush needed after setting dirty bit
3303 * so non-PML cases won't be impacted.
3304 *
3305 * Compare with set_spte where instead shadow_dirty_mask is set.
3306 */
f160c7b7 3307 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3308 return false;
3309
d3e328f2 3310 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3311 /*
3312 * The gfn of direct spte is stable since it is
3313 * calculated by sp->gfn.
3314 */
3315 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3316 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3317 }
c7ba5b48
XG
3318
3319 return true;
3320}
3321
d3e328f2
JS
3322static bool is_access_allowed(u32 fault_err_code, u64 spte)
3323{
3324 if (fault_err_code & PFERR_FETCH_MASK)
3325 return is_executable_pte(spte);
3326
3327 if (fault_err_code & PFERR_WRITE_MASK)
3328 return is_writable_pte(spte);
3329
3330 /* Fault was on Read access */
3331 return spte & PT_PRESENT_MASK;
3332}
3333
c7ba5b48
XG
3334/*
3335 * Return value:
3336 * - true: let the vcpu to access on the same address again.
3337 * - false: let the real page fault path to fix it.
3338 */
3339static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
3340 u32 error_code)
3341{
3342 struct kvm_shadow_walk_iterator iterator;
92a476cb 3343 struct kvm_mmu_page *sp;
97dceba2 3344 bool fault_handled = false;
c7ba5b48 3345 u64 spte = 0ull;
97dceba2 3346 uint retry_count = 0;
c7ba5b48 3347
44dd3ffa 3348 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
37f6a4e2
MT
3349 return false;
3350
e5552fd2 3351 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3352 return false;
3353
3354 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3355
97dceba2 3356 do {
d3e328f2 3357 u64 new_spte;
c7ba5b48 3358
d162f30a
JS
3359 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
3360 if (!is_shadow_present_pte(spte) ||
3361 iterator.level < level)
3362 break;
3363
97dceba2
JS
3364 sp = page_header(__pa(iterator.sptep));
3365 if (!is_last_spte(spte, sp->role.level))
3366 break;
c7ba5b48 3367
97dceba2 3368 /*
f160c7b7
JS
3369 * Check whether the memory access that caused the fault would
3370 * still cause it if it were to be performed right now. If not,
3371 * then this is a spurious fault caused by TLB lazily flushed,
3372 * or some other CPU has already fixed the PTE after the
3373 * current CPU took the fault.
97dceba2
JS
3374 *
3375 * Need not check the access of upper level table entries since
3376 * they are always ACC_ALL.
3377 */
d3e328f2
JS
3378 if (is_access_allowed(error_code, spte)) {
3379 fault_handled = true;
3380 break;
3381 }
f160c7b7 3382
d3e328f2
JS
3383 new_spte = spte;
3384
3385 if (is_access_track_spte(spte))
3386 new_spte = restore_acc_track_spte(new_spte);
3387
3388 /*
3389 * Currently, to simplify the code, write-protection can
3390 * be removed in the fast path only if the SPTE was
3391 * write-protected for dirty-logging or access tracking.
3392 */
3393 if ((error_code & PFERR_WRITE_MASK) &&
3394 spte_can_locklessly_be_made_writable(spte))
3395 {
3396 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3397
3398 /*
d3e328f2
JS
3399 * Do not fix write-permission on the large spte. Since
3400 * we only dirty the first page into the dirty-bitmap in
3401 * fast_pf_fix_direct_spte(), other pages are missed
3402 * if its slot has dirty logging enabled.
3403 *
3404 * Instead, we let the slow page fault path create a
3405 * normal spte to fix the access.
3406 *
3407 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3408 */
d3e328f2 3409 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3410 break;
97dceba2 3411 }
c7ba5b48 3412
f160c7b7 3413 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3414 if (new_spte == spte ||
3415 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3416 break;
3417
3418 /*
3419 * Currently, fast page fault only works for direct mapping
3420 * since the gfn is not stable for indirect shadow page. See
3421 * Documentation/virtual/kvm/locking.txt to get more detail.
3422 */
3423 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3424 iterator.sptep, spte,
d3e328f2 3425 new_spte);
97dceba2
JS
3426 if (fault_handled)
3427 break;
3428
3429 if (++retry_count > 4) {
3430 printk_once(KERN_WARNING
3431 "kvm: Fast #PF retrying more than 4 times.\n");
3432 break;
3433 }
3434
97dceba2 3435 } while (true);
c126d94f 3436
a72faf25 3437 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
97dceba2 3438 spte, fault_handled);
c7ba5b48
XG
3439 walk_shadow_page_lockless_end(vcpu);
3440
97dceba2 3441 return fault_handled;
c7ba5b48
XG
3442}
3443
78b2c54a 3444static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 3445 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable);
26eeb53c 3446static int make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3447
c7ba5b48
XG
3448static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3449 gfn_t gfn, bool prefault)
10589a46
MT
3450{
3451 int r;
852e3c19 3452 int level;
fd136902 3453 bool force_pt_level = false;
ba049e93 3454 kvm_pfn_t pfn;
e930bffe 3455 unsigned long mmu_seq;
c7ba5b48 3456 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3457
fd136902 3458 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 3459 if (likely(!force_pt_level)) {
936a5fe6
AA
3460 /*
3461 * This path builds a PAE pagetable - so we can map
3462 * 2mb pages at maximum. Therefore check if the level
3463 * is larger than that.
3464 */
3465 if (level > PT_DIRECTORY_LEVEL)
3466 level = PT_DIRECTORY_LEVEL;
852e3c19 3467
936a5fe6 3468 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 3469 }
05da4558 3470
c7ba5b48 3471 if (fast_page_fault(vcpu, v, level, error_code))
9b8ebbdb 3472 return RET_PF_RETRY;
c7ba5b48 3473
e930bffe 3474 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3475 smp_rmb();
060c2abe 3476
78b2c54a 3477 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
9b8ebbdb 3478 return RET_PF_RETRY;
aaee2c94 3479
d7c55201
XG
3480 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3481 return r;
d196e343 3482
aaee2c94 3483 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3484 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3485 goto out_unlock;
26eeb53c
WL
3486 if (make_mmu_pages_available(vcpu) < 0)
3487 goto out_unlock;
936a5fe6
AA
3488 if (likely(!force_pt_level))
3489 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 3490 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
aaee2c94
MT
3491 spin_unlock(&vcpu->kvm->mmu_lock);
3492
10589a46 3493 return r;
e930bffe
AA
3494
3495out_unlock:
3496 spin_unlock(&vcpu->kvm->mmu_lock);
3497 kvm_release_pfn_clean(pfn);
9b8ebbdb 3498 return RET_PF_RETRY;
10589a46
MT
3499}
3500
74b566e6
JS
3501static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3502 struct list_head *invalid_list)
17ac10ad 3503{
4db35314 3504 struct kvm_mmu_page *sp;
17ac10ad 3505
74b566e6 3506 if (!VALID_PAGE(*root_hpa))
7b53aa56 3507 return;
35af577a 3508
74b566e6
JS
3509 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3510 --sp->root_count;
3511 if (!sp->root_count && sp->role.invalid)
3512 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3513
74b566e6
JS
3514 *root_hpa = INVALID_PAGE;
3515}
3516
08fb59d8 3517/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3518void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3519 ulong roots_to_free)
74b566e6
JS
3520{
3521 int i;
3522 LIST_HEAD(invalid_list);
08fb59d8 3523 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3524
b94742c9 3525 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3526
08fb59d8 3527 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3528 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3529 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3530 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3531 VALID_PAGE(mmu->prev_roots[i].hpa))
3532 break;
3533
3534 if (i == KVM_MMU_NUM_PREV_ROOTS)
3535 return;
3536 }
35af577a
GN
3537
3538 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3539
b94742c9
JS
3540 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3541 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3542 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3543 &invalid_list);
7c390d35 3544
08fb59d8
JS
3545 if (free_active_root) {
3546 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3547 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3548 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3549 &invalid_list);
3550 } else {
3551 for (i = 0; i < 4; ++i)
3552 if (mmu->pae_root[i] != 0)
3553 mmu_free_root_page(vcpu->kvm,
3554 &mmu->pae_root[i],
3555 &invalid_list);
3556 mmu->root_hpa = INVALID_PAGE;
3557 }
ad7dc69a 3558 mmu->root_cr3 = 0;
17ac10ad 3559 }
74b566e6 3560
d98ba053 3561 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3562 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3563}
74b566e6 3564EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3565
8986ecc0
MT
3566static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3567{
3568 int ret = 0;
3569
3570 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3571 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3572 ret = 1;
3573 }
3574
3575 return ret;
3576}
3577
651dd37a
JR
3578static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3579{
3580 struct kvm_mmu_page *sp;
7ebaf15e 3581 unsigned i;
651dd37a 3582
44dd3ffa 3583 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3584 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3585 if(make_mmu_pages_available(vcpu) < 0) {
3586 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3587 return -ENOSPC;
26eeb53c 3588 }
855feb67 3589 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3590 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3591 ++sp->root_count;
3592 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3593 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3594 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3595 for (i = 0; i < 4; ++i) {
44dd3ffa 3596 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3597
fa4a2c08 3598 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3599 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3600 if (make_mmu_pages_available(vcpu) < 0) {
3601 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3602 return -ENOSPC;
26eeb53c 3603 }
649497d1 3604 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3605 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3606 root = __pa(sp->spt);
3607 ++sp->root_count;
3608 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3609 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3610 }
44dd3ffa 3611 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3612 } else
3613 BUG();
ad7dc69a 3614 vcpu->arch.mmu->root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
651dd37a
JR
3615
3616 return 0;
3617}
3618
3619static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3620{
4db35314 3621 struct kvm_mmu_page *sp;
81407ca5 3622 u64 pdptr, pm_mask;
ad7dc69a 3623 gfn_t root_gfn, root_cr3;
81407ca5 3624 int i;
3bb65a22 3625
ad7dc69a
VK
3626 root_cr3 = vcpu->arch.mmu->get_cr3(vcpu);
3627 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3628
651dd37a
JR
3629 if (mmu_check_root(vcpu, root_gfn))
3630 return 1;
3631
3632 /*
3633 * Do we shadow a long mode page table? If so we need to
3634 * write-protect the guests page table root.
3635 */
44dd3ffa
VK
3636 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3637 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3638
fa4a2c08 3639 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3640
8facbbff 3641 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3642 if (make_mmu_pages_available(vcpu) < 0) {
3643 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3644 return -ENOSPC;
26eeb53c 3645 }
855feb67 3646 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3647 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3648 root = __pa(sp->spt);
3649 ++sp->root_count;
8facbbff 3650 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3651 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3652 goto set_root_cr3;
17ac10ad 3653 }
f87f9288 3654
651dd37a
JR
3655 /*
3656 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3657 * or a PAE 3-level page table. In either case we need to be aware that
3658 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3659 */
81407ca5 3660 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3661 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3662 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3663
17ac10ad 3664 for (i = 0; i < 4; ++i) {
44dd3ffa 3665 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3666
fa4a2c08 3667 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3668 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3669 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3670 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3671 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3672 continue;
3673 }
6de4f3ad 3674 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3675 if (mmu_check_root(vcpu, root_gfn))
3676 return 1;
5a7388c2 3677 }
8facbbff 3678 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3679 if (make_mmu_pages_available(vcpu) < 0) {
3680 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3681 return -ENOSPC;
26eeb53c 3682 }
bb11c6c9
TY
3683 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3684 0, ACC_ALL);
4db35314
AK
3685 root = __pa(sp->spt);
3686 ++sp->root_count;
8facbbff
AK
3687 spin_unlock(&vcpu->kvm->mmu_lock);
3688
44dd3ffa 3689 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3690 }
44dd3ffa 3691 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3692
3693 /*
3694 * If we shadow a 32 bit page table with a long mode page
3695 * table we enter this path.
3696 */
44dd3ffa
VK
3697 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3698 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3699 /*
3700 * The additional page necessary for this is only
3701 * allocated on demand.
3702 */
3703
3704 u64 *lm_root;
3705
3706 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3707 if (lm_root == NULL)
3708 return 1;
3709
44dd3ffa 3710 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3711
44dd3ffa 3712 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3713 }
3714
44dd3ffa 3715 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3716 }
3717
ad7dc69a
VK
3718set_root_cr3:
3719 vcpu->arch.mmu->root_cr3 = root_cr3;
3720
8986ecc0 3721 return 0;
17ac10ad
AK
3722}
3723
651dd37a
JR
3724static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3725{
44dd3ffa 3726 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3727 return mmu_alloc_direct_roots(vcpu);
3728 else
3729 return mmu_alloc_shadow_roots(vcpu);
3730}
3731
578e1c4d 3732void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3733{
3734 int i;
3735 struct kvm_mmu_page *sp;
3736
44dd3ffa 3737 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3738 return;
3739
44dd3ffa 3740 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3741 return;
6903074c 3742
56f17dd3 3743 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3744
44dd3ffa
VK
3745 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3747 sp = page_header(root);
578e1c4d
JS
3748
3749 /*
3750 * Even if another CPU was marking the SP as unsync-ed
3751 * simultaneously, any guest page table changes are not
3752 * guaranteed to be visible anyway until this VCPU issues a TLB
3753 * flush strictly after those changes are made. We only need to
3754 * ensure that the other CPU sets these flags before any actual
3755 * changes to the page tables are made. The comments in
3756 * mmu_need_write_protect() describe what could go wrong if this
3757 * requirement isn't satisfied.
3758 */
3759 if (!smp_load_acquire(&sp->unsync) &&
3760 !smp_load_acquire(&sp->unsync_children))
3761 return;
3762
3763 spin_lock(&vcpu->kvm->mmu_lock);
3764 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3765
0ba73cda 3766 mmu_sync_children(vcpu, sp);
578e1c4d 3767
0375f7fa 3768 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3769 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3770 return;
3771 }
578e1c4d
JS
3772
3773 spin_lock(&vcpu->kvm->mmu_lock);
3774 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3775
0ba73cda 3776 for (i = 0; i < 4; ++i) {
44dd3ffa 3777 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3778
8986ecc0 3779 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3780 root &= PT64_BASE_ADDR_MASK;
3781 sp = page_header(root);
3782 mmu_sync_children(vcpu, sp);
3783 }
3784 }
0ba73cda 3785
578e1c4d 3786 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3787 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3788}
bfd0a56b 3789EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3790
1871c602 3791static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3792 u32 access, struct x86_exception *exception)
6aa8b732 3793{
ab9ae313
AK
3794 if (exception)
3795 exception->error_code = 0;
6aa8b732
AK
3796 return vaddr;
3797}
3798
6539e738 3799static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3800 u32 access,
3801 struct x86_exception *exception)
6539e738 3802{
ab9ae313
AK
3803 if (exception)
3804 exception->error_code = 0;
54987b7a 3805 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3806}
3807
d625b155
XG
3808static bool
3809__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3810{
3811 int bit7 = (pte >> 7) & 1, low6 = pte & 0x3f;
3812
3813 return (pte & rsvd_check->rsvd_bits_mask[bit7][level-1]) |
3814 ((rsvd_check->bad_mt_xwr & (1ull << low6)) != 0);
3815}
3816
3817static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
3818{
3819 return __is_rsvd_bits_set(&mmu->guest_rsvd_check, gpte, level);
3820}
3821
3822static bool is_shadow_zero_bits_set(struct kvm_mmu *mmu, u64 spte, int level)
3823{
3824 return __is_rsvd_bits_set(&mmu->shadow_zero_check, spte, level);
3825}
3826
ded58749 3827static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3828{
9034e6e8
PB
3829 /*
3830 * A nested guest cannot use the MMIO cache if it is using nested
3831 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3832 */
3833 if (mmu_is_nested(vcpu))
3834 return false;
3835
ce88decf
XG
3836 if (direct)
3837 return vcpu_match_mmio_gpa(vcpu, addr);
3838
3839 return vcpu_match_mmio_gva(vcpu, addr);
3840}
3841
47ab8751
XG
3842/* return true if reserved bit is detected on spte. */
3843static bool
3844walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3845{
3846 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3847 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
47ab8751
XG
3848 int root, leaf;
3849 bool reserved = false;
ce88decf 3850
44dd3ffa 3851 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
47ab8751 3852 goto exit;
37f6a4e2 3853
ce88decf 3854 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3855
29ecd660
PB
3856 for (shadow_walk_init(&iterator, vcpu, addr),
3857 leaf = root = iterator.level;
47ab8751
XG
3858 shadow_walk_okay(&iterator);
3859 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3860 spte = mmu_spte_get_lockless(iterator.sptep);
3861
3862 sptes[leaf - 1] = spte;
29ecd660 3863 leaf--;
47ab8751 3864
ce88decf
XG
3865 if (!is_shadow_present_pte(spte))
3866 break;
47ab8751 3867
44dd3ffa 3868 reserved |= is_shadow_zero_bits_set(vcpu->arch.mmu, spte,
58c95070 3869 iterator.level);
47ab8751
XG
3870 }
3871
ce88decf
XG
3872 walk_shadow_page_lockless_end(vcpu);
3873
47ab8751
XG
3874 if (reserved) {
3875 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3876 __func__, addr);
29ecd660 3877 while (root > leaf) {
47ab8751
XG
3878 pr_err("------ spte 0x%llx level %d.\n",
3879 sptes[root - 1], root);
3880 root--;
3881 }
3882 }
3883exit:
3884 *sptep = spte;
3885 return reserved;
ce88decf
XG
3886}
3887
e08d26f0 3888static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3889{
3890 u64 spte;
47ab8751 3891 bool reserved;
ce88decf 3892
ded58749 3893 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 3894 return RET_PF_EMULATE;
ce88decf 3895
47ab8751 3896 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 3897 if (WARN_ON(reserved))
9b8ebbdb 3898 return -EINVAL;
ce88decf
XG
3899
3900 if (is_mmio_spte(spte)) {
3901 gfn_t gfn = get_mmio_spte_gfn(spte);
3902 unsigned access = get_mmio_spte_access(spte);
3903
54bf36aa 3904 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 3905 return RET_PF_INVALID;
f8f55942 3906
ce88decf
XG
3907 if (direct)
3908 addr = 0;
4f022648
XG
3909
3910 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3911 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 3912 return RET_PF_EMULATE;
ce88decf
XG
3913 }
3914
ce88decf
XG
3915 /*
3916 * If the page table is zapped by other cpus, let CPU fault again on
3917 * the address.
3918 */
9b8ebbdb 3919 return RET_PF_RETRY;
ce88decf 3920}
ce88decf 3921
3d0c27ad
XG
3922static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
3923 u32 error_code, gfn_t gfn)
3924{
3925 if (unlikely(error_code & PFERR_RSVD_MASK))
3926 return false;
3927
3928 if (!(error_code & PFERR_PRESENT_MASK) ||
3929 !(error_code & PFERR_WRITE_MASK))
3930 return false;
3931
3932 /*
3933 * guest is writing the page which is write tracked which can
3934 * not be fixed by page fault handler.
3935 */
3936 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
3937 return true;
3938
3939 return false;
3940}
3941
e5691a81
XG
3942static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
3943{
3944 struct kvm_shadow_walk_iterator iterator;
3945 u64 spte;
3946
44dd3ffa 3947 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
e5691a81
XG
3948 return;
3949
3950 walk_shadow_page_lockless_begin(vcpu);
3951 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
3952 clear_sp_write_flooding_count(iterator.sptep);
3953 if (!is_shadow_present_pte(spte))
3954 break;
3955 }
3956 walk_shadow_page_lockless_end(vcpu);
3957}
3958
6aa8b732 3959static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3960 u32 error_code, bool prefault)
6aa8b732 3961{
3d0c27ad 3962 gfn_t gfn = gva >> PAGE_SHIFT;
e2dec939 3963 int r;
6aa8b732 3964
b8688d51 3965 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3966
3d0c27ad 3967 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 3968 return RET_PF_EMULATE;
ce88decf 3969
e2dec939
AK
3970 r = mmu_topup_memory_caches(vcpu);
3971 if (r)
3972 return r;
714b93da 3973
44dd3ffa 3974 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
6aa8b732 3975
6aa8b732 3976
e833240f 3977 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3978 error_code, gfn, prefault);
6aa8b732
AK
3979}
3980
7e1fbeac 3981static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3982{
3983 struct kvm_arch_async_pf arch;
fb67e14f 3984
7c90705b 3985 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3986 arch.gfn = gfn;
44dd3ffa
VK
3987 arch.direct_map = vcpu->arch.mmu->direct_map;
3988 arch.cr3 = vcpu->arch.mmu->get_cr3(vcpu);
af585b92 3989
54bf36aa 3990 return kvm_setup_async_pf(vcpu, gva, kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
3991}
3992
9bc1f09f 3993bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu)
af585b92 3994{
35754c98 3995 if (unlikely(!lapic_in_kernel(vcpu) ||
2a266f23
HZ
3996 kvm_event_needs_reinjection(vcpu) ||
3997 vcpu->arch.exception.pending))
af585b92
GN
3998 return false;
3999
52a5c155 4000 if (!vcpu->arch.apf.delivery_as_pf_vmexit && is_guest_mode(vcpu))
9bc1f09f
WL
4001 return false;
4002
af585b92
GN
4003 return kvm_x86_ops->interrupt_allowed(vcpu);
4004}
4005
78b2c54a 4006static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
ba049e93 4007 gva_t gva, kvm_pfn_t *pfn, bool write, bool *writable)
af585b92 4008{
3520469d 4009 struct kvm_memory_slot *slot;
af585b92
GN
4010 bool async;
4011
3a2936de
JM
4012 /*
4013 * Don't expose private memslots to L2.
4014 */
4015 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4016 *pfn = KVM_PFN_NOSLOT;
4017 return false;
4018 }
4019
54bf36aa 4020 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4021 async = false;
4022 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4023 if (!async)
4024 return false; /* *pfn has correct page already */
4025
9bc1f09f 4026 if (!prefault && kvm_can_do_async_pf(vcpu)) {
c9b263d2 4027 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
4028 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
4029 trace_kvm_async_pf_doublefault(gva, gfn);
4030 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4031 return true;
4032 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
4033 return true;
4034 }
4035
3520469d 4036 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4037 return false;
4038}
4039
1261bfa3 4040int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4041 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4042{
4043 int r = 1;
4044
c595ceee 4045 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4046 switch (vcpu->arch.apf.host_apf_reason) {
4047 default:
4048 trace_kvm_page_fault(fault_address, error_code);
4049
d0006530 4050 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4051 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4052 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4053 insn_len);
4054 break;
4055 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4056 vcpu->arch.apf.host_apf_reason = 0;
4057 local_irq_disable();
a2b7861b 4058 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4059 local_irq_enable();
4060 break;
4061 case KVM_PV_REASON_PAGE_READY:
4062 vcpu->arch.apf.host_apf_reason = 0;
4063 local_irq_disable();
4064 kvm_async_pf_task_wake(fault_address);
4065 local_irq_enable();
4066 break;
4067 }
4068 return r;
4069}
4070EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4071
6a39bbc5
XG
4072static bool
4073check_hugepage_cache_consistency(struct kvm_vcpu *vcpu, gfn_t gfn, int level)
4074{
4075 int page_num = KVM_PAGES_PER_HPAGE(level);
4076
4077 gfn &= ~(page_num - 1);
4078
4079 return kvm_mtrr_check_gfn_range_consistency(vcpu, gfn, page_num);
4080}
4081
56028d08 4082static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 4083 bool prefault)
fb72d167 4084{
ba049e93 4085 kvm_pfn_t pfn;
fb72d167 4086 int r;
852e3c19 4087 int level;
cd1872f0 4088 bool force_pt_level;
05da4558 4089 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 4090 unsigned long mmu_seq;
612819c3
MT
4091 int write = error_code & PFERR_WRITE_MASK;
4092 bool map_writable;
fb72d167 4093
44dd3ffa 4094 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa));
fb72d167 4095
3d0c27ad 4096 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4097 return RET_PF_EMULATE;
ce88decf 4098
fb72d167
JR
4099 r = mmu_topup_memory_caches(vcpu);
4100 if (r)
4101 return r;
4102
fd136902
TY
4103 force_pt_level = !check_hugepage_cache_consistency(vcpu, gfn,
4104 PT_DIRECTORY_LEVEL);
4105 level = mapping_level(vcpu, gfn, &force_pt_level);
936a5fe6 4106 if (likely(!force_pt_level)) {
6a39bbc5
XG
4107 if (level > PT_DIRECTORY_LEVEL &&
4108 !check_hugepage_cache_consistency(vcpu, gfn, level))
4109 level = PT_DIRECTORY_LEVEL;
936a5fe6 4110 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
fd136902 4111 }
852e3c19 4112
c7ba5b48 4113 if (fast_page_fault(vcpu, gpa, level, error_code))
9b8ebbdb 4114 return RET_PF_RETRY;
c7ba5b48 4115
e930bffe 4116 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 4117 smp_rmb();
af585b92 4118
78b2c54a 4119 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
9b8ebbdb 4120 return RET_PF_RETRY;
af585b92 4121
d7c55201
XG
4122 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
4123 return r;
4124
fb72d167 4125 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 4126 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 4127 goto out_unlock;
26eeb53c
WL
4128 if (make_mmu_pages_available(vcpu) < 0)
4129 goto out_unlock;
936a5fe6
AA
4130 if (likely(!force_pt_level))
4131 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
7ee0e5b2 4132 r = __direct_map(vcpu, write, map_writable, level, gfn, pfn, prefault);
fb72d167 4133 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
4134
4135 return r;
e930bffe
AA
4136
4137out_unlock:
4138 spin_unlock(&vcpu->kvm->mmu_lock);
4139 kvm_release_pfn_clean(pfn);
9b8ebbdb 4140 return RET_PF_RETRY;
fb72d167
JR
4141}
4142
8a3c1a33
PB
4143static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4144 struct kvm_mmu *context)
6aa8b732 4145{
6aa8b732 4146 context->page_fault = nonpaging_page_fault;
6aa8b732 4147 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4148 context->sync_page = nonpaging_sync_page;
a7052897 4149 context->invlpg = nonpaging_invlpg;
0f53b5b1 4150 context->update_pte = nonpaging_update_pte;
cea0f0e7 4151 context->root_level = 0;
6aa8b732 4152 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4153 context->direct_map = true;
2d48a985 4154 context->nx = false;
6aa8b732
AK
4155}
4156
b94742c9
JS
4157/*
4158 * Find out if a previously cached root matching the new CR3/role is available.
4159 * The current root is also inserted into the cache.
4160 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4161 * returned.
4162 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4163 * false is returned. This root should now be freed by the caller.
4164 */
4165static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4166 union kvm_mmu_page_role new_role)
4167{
4168 uint i;
4169 struct kvm_mmu_root_info root;
44dd3ffa 4170 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4171
ad7dc69a 4172 root.cr3 = mmu->root_cr3;
b94742c9
JS
4173 root.hpa = mmu->root_hpa;
4174
4175 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4176 swap(root, mmu->prev_roots[i]);
4177
4178 if (new_cr3 == root.cr3 && VALID_PAGE(root.hpa) &&
4179 page_header(root.hpa) != NULL &&
4180 new_role.word == page_header(root.hpa)->role.word)
4181 break;
4182 }
4183
4184 mmu->root_hpa = root.hpa;
ad7dc69a 4185 mmu->root_cr3 = root.cr3;
b94742c9
JS
4186
4187 return i < KVM_MMU_NUM_PREV_ROOTS;
4188}
4189
0aab33e4 4190static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4191 union kvm_mmu_page_role new_role,
4192 bool skip_tlb_flush)
6aa8b732 4193{
44dd3ffa 4194 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4195
4196 /*
4197 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4198 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4199 * later if necessary.
4200 */
4201 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4202 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4203 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4204 return false;
4205
b94742c9 4206 if (cached_root_available(vcpu, new_cr3, new_role)) {
7c390d35
JS
4207 /*
4208 * It is possible that the cached previous root page is
4209 * obsolete because of a change in the MMU
4210 * generation number. However, that is accompanied by
4211 * KVM_REQ_MMU_RELOAD, which will free the root that we
4212 * have set here and allocate a new one.
4213 */
4214
0aab33e4 4215 kvm_make_request(KVM_REQ_LOAD_CR3, vcpu);
956bf353
JS
4216 if (!skip_tlb_flush) {
4217 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
ade61e28 4218 kvm_x86_ops->tlb_flush(vcpu, true);
956bf353
JS
4219 }
4220
4221 /*
4222 * The last MMIO access's GVA and GPA are cached in the
4223 * VCPU. When switching to a new CR3, that GVA->GPA
4224 * mapping may no longer be valid. So clear any cached
4225 * MMIO info even when we don't need to sync the shadow
4226 * page tables.
4227 */
4228 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4229
7c390d35
JS
4230 __clear_sp_write_flooding_count(
4231 page_header(mmu->root_hpa));
4232
7c390d35
JS
4233 return true;
4234 }
4235 }
4236
4237 return false;
6aa8b732
AK
4238}
4239
0aab33e4 4240static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4241 union kvm_mmu_page_role new_role,
4242 bool skip_tlb_flush)
6aa8b732 4243{
ade61e28 4244 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4245 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4246 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4247}
4248
ade61e28 4249void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4250{
ade61e28
JS
4251 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4252 skip_tlb_flush);
0aab33e4 4253}
50c28f21 4254EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4255
5777ed34
JR
4256static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4257{
9f8fe504 4258 return kvm_read_cr3(vcpu);
5777ed34
JR
4259}
4260
6389ee94
AK
4261static void inject_page_fault(struct kvm_vcpu *vcpu,
4262 struct x86_exception *fault)
6aa8b732 4263{
44dd3ffa 4264 vcpu->arch.mmu->inject_page_fault(vcpu, fault);
6aa8b732
AK
4265}
4266
54bf36aa 4267static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
f2fd125d 4268 unsigned access, int *nr_present)
ce88decf
XG
4269{
4270 if (unlikely(is_mmio_spte(*sptep))) {
4271 if (gfn != get_mmio_spte_gfn(*sptep)) {
4272 mmu_spte_clear_no_track(sptep);
4273 return true;
4274 }
4275
4276 (*nr_present)++;
54bf36aa 4277 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4278 return true;
4279 }
4280
4281 return false;
4282}
4283
6bb69c9b
PB
4284static inline bool is_last_gpte(struct kvm_mmu *mmu,
4285 unsigned level, unsigned gpte)
6fd01b71 4286{
6bb69c9b
PB
4287 /*
4288 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4289 * If it is clear, there are no large pages at this level, so clear
4290 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4291 */
4292 gpte &= level - mmu->last_nonleaf_level;
4293
829ee279
LP
4294 /*
4295 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4296 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4297 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4298 */
4299 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4300
6bb69c9b 4301 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4302}
4303
37406aaa
NHE
4304#define PTTYPE_EPT 18 /* arbitrary */
4305#define PTTYPE PTTYPE_EPT
4306#include "paging_tmpl.h"
4307#undef PTTYPE
4308
6aa8b732
AK
4309#define PTTYPE 64
4310#include "paging_tmpl.h"
4311#undef PTTYPE
4312
4313#define PTTYPE 32
4314#include "paging_tmpl.h"
4315#undef PTTYPE
4316
6dc98b86
XG
4317static void
4318__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4319 struct rsvd_bits_validate *rsvd_check,
4320 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4321 bool pse, bool amd)
82725b20 4322{
82725b20 4323 u64 exb_bit_rsvd = 0;
5f7dde7b 4324 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4325 u64 nonleaf_bit8_rsvd = 0;
82725b20 4326
a0a64f50 4327 rsvd_check->bad_mt_xwr = 0;
25d92081 4328
6dc98b86 4329 if (!nx)
82725b20 4330 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4331 if (!gbpages)
5f7dde7b 4332 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4333
4334 /*
4335 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4336 * leaf entries) on AMD CPUs only.
4337 */
6fec2144 4338 if (amd)
a0c0feb5
PB
4339 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4340
6dc98b86 4341 switch (level) {
82725b20
DE
4342 case PT32_ROOT_LEVEL:
4343 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4344 rsvd_check->rsvd_bits_mask[0][1] = 0;
4345 rsvd_check->rsvd_bits_mask[0][0] = 0;
4346 rsvd_check->rsvd_bits_mask[1][0] =
4347 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4348
6dc98b86 4349 if (!pse) {
a0a64f50 4350 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4351 break;
4352 }
4353
82725b20
DE
4354 if (is_cpuid_PSE36())
4355 /* 36bits PSE 4MB page */
a0a64f50 4356 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4357 else
4358 /* 32 bits PSE 4MB page */
a0a64f50 4359 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4360 break;
4361 case PT32E_ROOT_LEVEL:
a0a64f50 4362 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4363 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4364 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4365 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4366 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4367 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4368 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4369 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4370 rsvd_bits(maxphyaddr, 62) |
4371 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4372 rsvd_check->rsvd_bits_mask[1][0] =
4373 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4374 break;
855feb67
YZ
4375 case PT64_ROOT_5LEVEL:
4376 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4377 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4378 rsvd_bits(maxphyaddr, 51);
4379 rsvd_check->rsvd_bits_mask[1][4] =
4380 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4381 /* fall through */
2a7266a8 4382 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4383 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4384 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4385 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4386 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4387 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4388 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4389 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4390 rsvd_bits(maxphyaddr, 51);
4391 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4392 rsvd_bits(maxphyaddr, 51);
4393 rsvd_check->rsvd_bits_mask[1][3] =
4394 rsvd_check->rsvd_bits_mask[0][3];
4395 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4396 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4397 rsvd_bits(13, 29);
a0a64f50 4398 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4399 rsvd_bits(maxphyaddr, 51) |
4400 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4401 rsvd_check->rsvd_bits_mask[1][0] =
4402 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4403 break;
4404 }
4405}
4406
6dc98b86
XG
4407static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4408 struct kvm_mmu *context)
4409{
4410 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4411 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4412 context->nx,
4413 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
6fec2144 4414 is_pse(vcpu), guest_cpuid_is_amd(vcpu));
6dc98b86
XG
4415}
4416
81b8eebb
XG
4417static void
4418__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4419 int maxphyaddr, bool execonly)
25d92081 4420{
951f9fd7 4421 u64 bad_mt_xwr;
25d92081 4422
855feb67
YZ
4423 rsvd_check->rsvd_bits_mask[0][4] =
4424 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4425 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4426 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4427 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4428 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4429 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4430 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4431 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4432
4433 /* large page */
855feb67 4434 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4435 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4436 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4437 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4438 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4439 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4440 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4441
951f9fd7
PB
4442 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4443 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4444 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4445 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4446 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4447 if (!execonly) {
4448 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4449 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4450 }
951f9fd7 4451 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4452}
4453
81b8eebb
XG
4454static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4455 struct kvm_mmu *context, bool execonly)
4456{
4457 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4458 cpuid_maxphyaddr(vcpu), execonly);
4459}
4460
c258b62b
XG
4461/*
4462 * the page table on host is the shadow page table for the page
4463 * table in guest or amd nested guest, its mmu features completely
4464 * follow the features in guest.
4465 */
4466void
4467reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4468{
36d9594d
VK
4469 bool uses_nx = context->nx ||
4470 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4471 struct rsvd_bits_validate *shadow_zero_check;
4472 int i;
5f0b8199 4473
6fec2144
PB
4474 /*
4475 * Passing "true" to the last argument is okay; it adds a check
4476 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4477 */
ea2800dd
BS
4478 shadow_zero_check = &context->shadow_zero_check;
4479 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b 4480 boot_cpu_data.x86_phys_bits,
5f0b8199 4481 context->shadow_root_level, uses_nx,
d6321d49
RK
4482 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4483 is_pse(vcpu), true);
ea2800dd
BS
4484
4485 if (!shadow_me_mask)
4486 return;
4487
4488 for (i = context->shadow_root_level; --i >= 0;) {
4489 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4490 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4491 }
4492
c258b62b
XG
4493}
4494EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4495
6fec2144
PB
4496static inline bool boot_cpu_is_amd(void)
4497{
4498 WARN_ON_ONCE(!tdp_enabled);
4499 return shadow_x_mask == 0;
4500}
4501
c258b62b
XG
4502/*
4503 * the direct page table on host, use as much mmu features as
4504 * possible, however, kvm currently does not do execution-protection.
4505 */
4506static void
4507reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4508 struct kvm_mmu *context)
4509{
ea2800dd
BS
4510 struct rsvd_bits_validate *shadow_zero_check;
4511 int i;
4512
4513 shadow_zero_check = &context->shadow_zero_check;
4514
6fec2144 4515 if (boot_cpu_is_amd())
ea2800dd 4516 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
c258b62b
XG
4517 boot_cpu_data.x86_phys_bits,
4518 context->shadow_root_level, false,
b8291adc
BP
4519 boot_cpu_has(X86_FEATURE_GBPAGES),
4520 true, true);
c258b62b 4521 else
ea2800dd 4522 __reset_rsvds_bits_mask_ept(shadow_zero_check,
c258b62b
XG
4523 boot_cpu_data.x86_phys_bits,
4524 false);
4525
ea2800dd
BS
4526 if (!shadow_me_mask)
4527 return;
4528
4529 for (i = context->shadow_root_level; --i >= 0;) {
4530 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4531 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4532 }
c258b62b
XG
4533}
4534
4535/*
4536 * as the comments in reset_shadow_zero_bits_mask() except it
4537 * is the shadow page table for intel nested guest.
4538 */
4539static void
4540reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4541 struct kvm_mmu *context, bool execonly)
4542{
4543 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
4544 boot_cpu_data.x86_phys_bits, execonly);
4545}
4546
09f037aa
PB
4547#define BYTE_MASK(access) \
4548 ((1 & (access) ? 2 : 0) | \
4549 (2 & (access) ? 4 : 0) | \
4550 (3 & (access) ? 8 : 0) | \
4551 (4 & (access) ? 16 : 0) | \
4552 (5 & (access) ? 32 : 0) | \
4553 (6 & (access) ? 64 : 0) | \
4554 (7 & (access) ? 128 : 0))
4555
4556
edc90b7d
XG
4557static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4558 struct kvm_mmu *mmu, bool ept)
97d64b78 4559{
09f037aa
PB
4560 unsigned byte;
4561
4562 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4563 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4564 const u8 u = BYTE_MASK(ACC_USER_MASK);
4565
4566 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4567 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4568 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4569
97d64b78 4570 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4571 unsigned pfec = byte << 1;
4572
97ec8c06 4573 /*
09f037aa
PB
4574 * Each "*f" variable has a 1 bit for each UWX value
4575 * that causes a fault with the given PFEC.
97ec8c06 4576 */
97d64b78 4577
09f037aa
PB
4578 /* Faults from writes to non-writable pages */
4579 u8 wf = (pfec & PFERR_WRITE_MASK) ? ~w : 0;
4580 /* Faults from user mode accesses to supervisor pages */
4581 u8 uf = (pfec & PFERR_USER_MASK) ? ~u : 0;
4582 /* Faults from fetches of non-executable pages*/
4583 u8 ff = (pfec & PFERR_FETCH_MASK) ? ~x : 0;
4584 /* Faults from kernel mode fetches of user pages */
4585 u8 smepf = 0;
4586 /* Faults from kernel mode accesses of user pages */
4587 u8 smapf = 0;
4588
4589 if (!ept) {
4590 /* Faults from kernel mode accesses to user pages */
4591 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4592
4593 /* Not really needed: !nx will cause pte.nx to fault */
4594 if (!mmu->nx)
4595 ff = 0;
4596
4597 /* Allow supervisor writes if !cr0.wp */
4598 if (!cr0_wp)
4599 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4600
4601 /* Disallow supervisor fetches of user code if cr4.smep */
4602 if (cr4_smep)
4603 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4604
4605 /*
4606 * SMAP:kernel-mode data accesses from user-mode
4607 * mappings should fault. A fault is considered
4608 * as a SMAP violation if all of the following
39337ad1 4609 * conditions are true:
09f037aa
PB
4610 * - X86_CR4_SMAP is set in CR4
4611 * - A user page is accessed
4612 * - The access is not a fetch
4613 * - Page fault in kernel mode
4614 * - if CPL = 3 or X86_EFLAGS_AC is clear
4615 *
4616 * Here, we cover the first three conditions.
4617 * The fourth is computed dynamically in permission_fault();
4618 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4619 * *not* subject to SMAP restrictions.
4620 */
4621 if (cr4_smap)
4622 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4623 }
09f037aa
PB
4624
4625 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4626 }
4627}
4628
2d344105
HH
4629/*
4630* PKU is an additional mechanism by which the paging controls access to
4631* user-mode addresses based on the value in the PKRU register. Protection
4632* key violations are reported through a bit in the page fault error code.
4633* Unlike other bits of the error code, the PK bit is not known at the
4634* call site of e.g. gva_to_gpa; it must be computed directly in
4635* permission_fault based on two bits of PKRU, on some machine state (CR4,
4636* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4637*
4638* In particular the following conditions come from the error code, the
4639* page tables and the machine state:
4640* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4641* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4642* - PK is always zero if U=0 in the page tables
4643* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4644*
4645* The PKRU bitmask caches the result of these four conditions. The error
4646* code (minus the P bit) and the page table's U bit form an index into the
4647* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4648* with the two bits of the PKRU register corresponding to the protection key.
4649* For the first three conditions above the bits will be 00, thus masking
4650* away both AD and WD. For all reads or if the last condition holds, WD
4651* only will be masked away.
4652*/
4653static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4654 bool ept)
4655{
4656 unsigned bit;
4657 bool wp;
4658
4659 if (ept) {
4660 mmu->pkru_mask = 0;
4661 return;
4662 }
4663
4664 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4665 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4666 mmu->pkru_mask = 0;
4667 return;
4668 }
4669
4670 wp = is_write_protection(vcpu);
4671
4672 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4673 unsigned pfec, pkey_bits;
4674 bool check_pkey, check_write, ff, uf, wf, pte_user;
4675
4676 pfec = bit << 1;
4677 ff = pfec & PFERR_FETCH_MASK;
4678 uf = pfec & PFERR_USER_MASK;
4679 wf = pfec & PFERR_WRITE_MASK;
4680
4681 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4682 pte_user = pfec & PFERR_RSVD_MASK;
4683
4684 /*
4685 * Only need to check the access which is not an
4686 * instruction fetch and is to a user page.
4687 */
4688 check_pkey = (!ff && pte_user);
4689 /*
4690 * write access is controlled by PKRU if it is a
4691 * user access or CR0.WP = 1.
4692 */
4693 check_write = check_pkey && wf && (uf || wp);
4694
4695 /* PKRU.AD stops both read and write access. */
4696 pkey_bits = !!check_pkey;
4697 /* PKRU.WD stops write access. */
4698 pkey_bits |= (!!check_write) << 1;
4699
4700 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4701 }
4702}
4703
6bb69c9b 4704static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4705{
6bb69c9b
PB
4706 unsigned root_level = mmu->root_level;
4707
4708 mmu->last_nonleaf_level = root_level;
4709 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4710 mmu->last_nonleaf_level++;
6fd01b71
AK
4711}
4712
8a3c1a33
PB
4713static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4714 struct kvm_mmu *context,
4715 int level)
6aa8b732 4716{
2d48a985 4717 context->nx = is_nx(vcpu);
4d6931c3 4718 context->root_level = level;
2d48a985 4719
4d6931c3 4720 reset_rsvds_bits_mask(vcpu, context);
25d92081 4721 update_permission_bitmask(vcpu, context, false);
2d344105 4722 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4723 update_last_nonleaf_level(vcpu, context);
6aa8b732 4724
fa4a2c08 4725 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4726 context->page_fault = paging64_page_fault;
6aa8b732 4727 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4728 context->sync_page = paging64_sync_page;
a7052897 4729 context->invlpg = paging64_invlpg;
0f53b5b1 4730 context->update_pte = paging64_update_pte;
17ac10ad 4731 context->shadow_root_level = level;
c5a78f2b 4732 context->direct_map = false;
6aa8b732
AK
4733}
4734
8a3c1a33
PB
4735static void paging64_init_context(struct kvm_vcpu *vcpu,
4736 struct kvm_mmu *context)
17ac10ad 4737{
855feb67
YZ
4738 int root_level = is_la57_mode(vcpu) ?
4739 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4740
4741 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4742}
4743
8a3c1a33
PB
4744static void paging32_init_context(struct kvm_vcpu *vcpu,
4745 struct kvm_mmu *context)
6aa8b732 4746{
2d48a985 4747 context->nx = false;
4d6931c3 4748 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4749
4d6931c3 4750 reset_rsvds_bits_mask(vcpu, context);
25d92081 4751 update_permission_bitmask(vcpu, context, false);
2d344105 4752 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4753 update_last_nonleaf_level(vcpu, context);
6aa8b732 4754
6aa8b732 4755 context->page_fault = paging32_page_fault;
6aa8b732 4756 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4757 context->sync_page = paging32_sync_page;
a7052897 4758 context->invlpg = paging32_invlpg;
0f53b5b1 4759 context->update_pte = paging32_update_pte;
6aa8b732 4760 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4761 context->direct_map = false;
6aa8b732
AK
4762}
4763
8a3c1a33
PB
4764static void paging32E_init_context(struct kvm_vcpu *vcpu,
4765 struct kvm_mmu *context)
6aa8b732 4766{
8a3c1a33 4767 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4768}
4769
a336282d
VK
4770static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4771{
4772 union kvm_mmu_extended_role ext = {0};
4773
7dcd5755 4774 ext.cr0_pg = !!is_paging(vcpu);
a336282d
VK
4775 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4776 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4777 ext.cr4_pse = !!is_pse(vcpu);
4778 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
7dcd5755 4779 ext.cr4_la57 = !!kvm_read_cr4_bits(vcpu, X86_CR4_LA57);
de3ccd26 4780 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4781
4782 ext.valid = 1;
4783
4784 return ext;
4785}
4786
7dcd5755
VK
4787static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4788 bool base_only)
4789{
4790 union kvm_mmu_role role = {0};
4791
4792 role.base.access = ACC_ALL;
4793 role.base.nxe = !!is_nx(vcpu);
4794 role.base.cr4_pae = !!is_pae(vcpu);
4795 role.base.cr0_wp = is_write_protection(vcpu);
4796 role.base.smm = is_smm(vcpu);
4797 role.base.guest_mode = is_guest_mode(vcpu);
4798
4799 if (base_only)
4800 return role;
4801
4802 role.ext = kvm_calc_mmu_role_ext(vcpu);
4803
4804 return role;
4805}
4806
4807static union kvm_mmu_role
4808kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4809{
7dcd5755 4810 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4811
7dcd5755
VK
4812 role.base.ad_disabled = (shadow_accessed_mask == 0);
4813 role.base.level = kvm_x86_ops->get_tdp_level(vcpu);
4814 role.base.direct = true;
9fa72119
JS
4815
4816 return role;
4817}
4818
8a3c1a33 4819static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4820{
44dd3ffa 4821 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4822 union kvm_mmu_role new_role =
4823 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4824
7dcd5755
VK
4825 new_role.base.word &= mmu_base_role_mask.word;
4826 if (new_role.as_u64 == context->mmu_role.as_u64)
4827 return;
4828
4829 context->mmu_role.as_u64 = new_role.as_u64;
fb72d167 4830 context->page_fault = tdp_page_fault;
e8bc217a 4831 context->sync_page = nonpaging_sync_page;
a7052897 4832 context->invlpg = nonpaging_invlpg;
0f53b5b1 4833 context->update_pte = nonpaging_update_pte;
855feb67 4834 context->shadow_root_level = kvm_x86_ops->get_tdp_level(vcpu);
c5a78f2b 4835 context->direct_map = true;
1c97f0a0 4836 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 4837 context->get_cr3 = get_cr3;
e4e517b4 4838 context->get_pdptr = kvm_pdptr_read;
cb659db8 4839 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4840
4841 if (!is_paging(vcpu)) {
2d48a985 4842 context->nx = false;
fb72d167
JR
4843 context->gva_to_gpa = nonpaging_gva_to_gpa;
4844 context->root_level = 0;
4845 } else if (is_long_mode(vcpu)) {
2d48a985 4846 context->nx = is_nx(vcpu);
855feb67
YZ
4847 context->root_level = is_la57_mode(vcpu) ?
4848 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4849 reset_rsvds_bits_mask(vcpu, context);
4850 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4851 } else if (is_pae(vcpu)) {
2d48a985 4852 context->nx = is_nx(vcpu);
fb72d167 4853 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4854 reset_rsvds_bits_mask(vcpu, context);
4855 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4856 } else {
2d48a985 4857 context->nx = false;
fb72d167 4858 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4859 reset_rsvds_bits_mask(vcpu, context);
4860 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4861 }
4862
25d92081 4863 update_permission_bitmask(vcpu, context, false);
2d344105 4864 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4865 update_last_nonleaf_level(vcpu, context);
c258b62b 4866 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4867}
4868
7dcd5755
VK
4869static union kvm_mmu_role
4870kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4871{
4872 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4873
4874 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4875 !is_write_protection(vcpu);
4876 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4877 !is_write_protection(vcpu);
4878 role.base.direct = !is_paging(vcpu);
9fa72119
JS
4879
4880 if (!is_long_mode(vcpu))
7dcd5755 4881 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4882 else if (is_la57_mode(vcpu))
7dcd5755 4883 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4884 else
7dcd5755 4885 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4886
4887 return role;
4888}
4889
4890void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4891{
44dd3ffa 4892 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4893 union kvm_mmu_role new_role =
4894 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4895
4896 new_role.base.word &= mmu_base_role_mask.word;
4897 if (new_role.as_u64 == context->mmu_role.as_u64)
4898 return;
6aa8b732
AK
4899
4900 if (!is_paging(vcpu))
8a3c1a33 4901 nonpaging_init_context(vcpu, context);
a9058ecd 4902 else if (is_long_mode(vcpu))
8a3c1a33 4903 paging64_init_context(vcpu, context);
6aa8b732 4904 else if (is_pae(vcpu))
8a3c1a33 4905 paging32E_init_context(vcpu, context);
6aa8b732 4906 else
8a3c1a33 4907 paging32_init_context(vcpu, context);
a770f6f2 4908
7dcd5755 4909 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4910 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4911}
4912EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
4913
a336282d
VK
4914static union kvm_mmu_role
4915kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
4916 bool execonly)
9fa72119 4917{
a336282d 4918 union kvm_mmu_role role;
14c07ad8 4919
a336282d
VK
4920 /* Base role is inherited from root_mmu */
4921 role.base.word = vcpu->arch.root_mmu.mmu_role.base.word;
4922 role.ext = kvm_calc_mmu_role_ext(vcpu);
9fa72119 4923
a336282d
VK
4924 role.base.level = PT64_ROOT_4LEVEL;
4925 role.base.direct = false;
4926 role.base.ad_disabled = !accessed_dirty;
4927 role.base.guest_mode = true;
4928 role.base.access = ACC_ALL;
9fa72119 4929
a336282d 4930 role.ext.execonly = execonly;
9fa72119
JS
4931
4932 return role;
4933}
4934
ae1e2d10 4935void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 4936 bool accessed_dirty, gpa_t new_eptp)
155a97a3 4937{
44dd3ffa 4938 struct kvm_mmu *context = vcpu->arch.mmu;
a336282d
VK
4939 union kvm_mmu_role new_role =
4940 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
4941 execonly);
4942
4943 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
4944
4945 new_role.base.word &= mmu_base_role_mask.word;
4946 if (new_role.as_u64 == context->mmu_role.as_u64)
4947 return;
ad896af0 4948
855feb67 4949 context->shadow_root_level = PT64_ROOT_4LEVEL;
155a97a3
NHE
4950
4951 context->nx = true;
ae1e2d10 4952 context->ept_ad = accessed_dirty;
155a97a3
NHE
4953 context->page_fault = ept_page_fault;
4954 context->gva_to_gpa = ept_gva_to_gpa;
4955 context->sync_page = ept_sync_page;
4956 context->invlpg = ept_invlpg;
4957 context->update_pte = ept_update_pte;
855feb67 4958 context->root_level = PT64_ROOT_4LEVEL;
155a97a3 4959 context->direct_map = false;
a336282d 4960 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 4961
155a97a3 4962 update_permission_bitmask(vcpu, context, true);
2d344105 4963 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 4964 update_last_nonleaf_level(vcpu, context);
155a97a3 4965 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 4966 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
4967}
4968EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4969
8a3c1a33 4970static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4971{
44dd3ffa 4972 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
4973
4974 kvm_init_shadow_mmu(vcpu);
4975 context->set_cr3 = kvm_x86_ops->set_cr3;
4976 context->get_cr3 = get_cr3;
4977 context->get_pdptr = kvm_pdptr_read;
4978 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4979}
4980
8a3c1a33 4981static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 4982{
bf627a92 4983 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
4984 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4985
bf627a92
VK
4986 new_role.base.word &= mmu_base_role_mask.word;
4987 if (new_role.as_u64 == g_context->mmu_role.as_u64)
4988 return;
4989
4990 g_context->mmu_role.as_u64 = new_role.as_u64;
02f59dc9 4991 g_context->get_cr3 = get_cr3;
e4e517b4 4992 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4993 g_context->inject_page_fault = kvm_inject_page_fault;
4994
4995 /*
44dd3ffa 4996 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
4997 * L1's nested page tables (e.g. EPT12). The nested translation
4998 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
4999 * L2's page tables as the first level of translation and L1's
5000 * nested page tables as the second level of translation. Basically
5001 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5002 */
5003 if (!is_paging(vcpu)) {
2d48a985 5004 g_context->nx = false;
02f59dc9
JR
5005 g_context->root_level = 0;
5006 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5007 } else if (is_long_mode(vcpu)) {
2d48a985 5008 g_context->nx = is_nx(vcpu);
855feb67
YZ
5009 g_context->root_level = is_la57_mode(vcpu) ?
5010 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5011 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5012 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5013 } else if (is_pae(vcpu)) {
2d48a985 5014 g_context->nx = is_nx(vcpu);
02f59dc9 5015 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5016 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5017 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5018 } else {
2d48a985 5019 g_context->nx = false;
02f59dc9 5020 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5021 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5022 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5023 }
5024
25d92081 5025 update_permission_bitmask(vcpu, g_context, false);
2d344105 5026 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5027 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5028}
5029
1c53da3f 5030void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5031{
1c53da3f 5032 if (reset_roots) {
b94742c9
JS
5033 uint i;
5034
44dd3ffa 5035 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5036
5037 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5038 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5039 }
5040
02f59dc9 5041 if (mmu_is_nested(vcpu))
e0c6db3e 5042 init_kvm_nested_mmu(vcpu);
02f59dc9 5043 else if (tdp_enabled)
e0c6db3e 5044 init_kvm_tdp_mmu(vcpu);
fb72d167 5045 else
e0c6db3e 5046 init_kvm_softmmu(vcpu);
fb72d167 5047}
1c53da3f 5048EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5049
9fa72119
JS
5050static union kvm_mmu_page_role
5051kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5052{
7dcd5755
VK
5053 union kvm_mmu_role role;
5054
9fa72119 5055 if (tdp_enabled)
7dcd5755 5056 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5057 else
7dcd5755
VK
5058 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5059
5060 return role.base;
9fa72119 5061}
fb72d167 5062
8a3c1a33 5063void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5064{
95f93af4 5065 kvm_mmu_unload(vcpu);
1c53da3f 5066 kvm_init_mmu(vcpu, true);
17c3ba9d 5067}
8668a3c4 5068EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5069
5070int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5071{
714b93da
AK
5072 int r;
5073
e2dec939 5074 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5075 if (r)
5076 goto out;
8986ecc0 5077 r = mmu_alloc_roots(vcpu);
e2858b4a 5078 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5079 if (r)
5080 goto out;
6e42782f 5081 kvm_mmu_load_cr3(vcpu);
afe828d1 5082 kvm_x86_ops->tlb_flush(vcpu, true);
714b93da
AK
5083out:
5084 return r;
6aa8b732 5085}
17c3ba9d
AK
5086EXPORT_SYMBOL_GPL(kvm_mmu_load);
5087
5088void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5089{
14c07ad8
VK
5090 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5091 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5092 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5093 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5094}
4b16184c 5095EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5096
0028425f 5097static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5098 struct kvm_mmu_page *sp, u64 *spte,
5099 const void *new)
0028425f 5100{
30945387 5101 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5102 ++vcpu->kvm->stat.mmu_pde_zapped;
5103 return;
30945387 5104 }
0028425f 5105
4cee5764 5106 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5107 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5108}
5109
79539cec
AK
5110static bool need_remote_flush(u64 old, u64 new)
5111{
5112 if (!is_shadow_present_pte(old))
5113 return false;
5114 if (!is_shadow_present_pte(new))
5115 return true;
5116 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5117 return true;
53166229
GN
5118 old ^= shadow_nx_mask;
5119 new ^= shadow_nx_mask;
79539cec
AK
5120 return (old & ~new & PT64_PERM_MASK) != 0;
5121}
5122
889e5cbc 5123static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5124 int *bytes)
da4a00f0 5125{
0e0fee5c 5126 u64 gentry = 0;
889e5cbc 5127 int r;
72016f3a 5128
72016f3a
AK
5129 /*
5130 * Assume that the pte write on a page table of the same type
49b26e26
XG
5131 * as the current vcpu paging mode since we update the sptes only
5132 * when they have the same mode.
72016f3a 5133 */
889e5cbc 5134 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5135 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5136 *gpa &= ~(gpa_t)7;
5137 *bytes = 8;
08e850c6
AK
5138 }
5139
0e0fee5c
JS
5140 if (*bytes == 4 || *bytes == 8) {
5141 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5142 if (r)
5143 gentry = 0;
72016f3a
AK
5144 }
5145
889e5cbc
XG
5146 return gentry;
5147}
5148
5149/*
5150 * If we're seeing too many writes to a page, it may no longer be a page table,
5151 * or we may be forking, in which case it is better to unmap the page.
5152 */
a138fe75 5153static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5154{
a30f47cb
XG
5155 /*
5156 * Skip write-flooding detected for the sp whose level is 1, because
5157 * it can become unsync, then the guest page is not write-protected.
5158 */
f71fa31f 5159 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5160 return false;
3246af0e 5161
e5691a81
XG
5162 atomic_inc(&sp->write_flooding_count);
5163 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5164}
5165
5166/*
5167 * Misaligned accesses are too much trouble to fix up; also, they usually
5168 * indicate a page is not used as a page table.
5169 */
5170static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5171 int bytes)
5172{
5173 unsigned offset, pte_size, misaligned;
5174
5175 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5176 gpa, bytes, sp->role.word);
5177
5178 offset = offset_in_page(gpa);
5179 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
5180
5181 /*
5182 * Sometimes, the OS only writes the last one bytes to update status
5183 * bits, for example, in linux, andb instruction is used in clear_bit().
5184 */
5185 if (!(offset & (pte_size - 1)) && bytes == 1)
5186 return false;
5187
889e5cbc
XG
5188 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5189 misaligned |= bytes < 4;
5190
5191 return misaligned;
5192}
5193
5194static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5195{
5196 unsigned page_offset, quadrant;
5197 u64 *spte;
5198 int level;
5199
5200 page_offset = offset_in_page(gpa);
5201 level = sp->role.level;
5202 *nspte = 1;
5203 if (!sp->role.cr4_pae) {
5204 page_offset <<= 1; /* 32->64 */
5205 /*
5206 * A 32-bit pde maps 4MB while the shadow pdes map
5207 * only 2MB. So we need to double the offset again
5208 * and zap two pdes instead of one.
5209 */
5210 if (level == PT32_ROOT_LEVEL) {
5211 page_offset &= ~7; /* kill rounding error */
5212 page_offset <<= 1;
5213 *nspte = 2;
5214 }
5215 quadrant = page_offset >> PAGE_SHIFT;
5216 page_offset &= ~PAGE_MASK;
5217 if (quadrant != sp->role.quadrant)
5218 return NULL;
5219 }
5220
5221 spte = &sp->spt[page_offset / sizeof(*spte)];
5222 return spte;
5223}
5224
13d268ca 5225static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5226 const u8 *new, int bytes,
5227 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5228{
5229 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5230 struct kvm_mmu_page *sp;
889e5cbc
XG
5231 LIST_HEAD(invalid_list);
5232 u64 entry, gentry, *spte;
5233 int npte;
b8c67b7a 5234 bool remote_flush, local_flush;
889e5cbc
XG
5235
5236 /*
5237 * If we don't have indirect shadow pages, it means no page is
5238 * write-protected, so we can exit simply.
5239 */
6aa7de05 5240 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5241 return;
5242
b8c67b7a 5243 remote_flush = local_flush = false;
889e5cbc
XG
5244
5245 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5246
889e5cbc
XG
5247 /*
5248 * No need to care whether allocation memory is successful
5249 * or not since pte prefetch is skiped if it does not have
5250 * enough objects in the cache.
5251 */
5252 mmu_topup_memory_caches(vcpu);
5253
5254 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5255
5256 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5257
889e5cbc 5258 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5259 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5260
b67bfe0d 5261 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5262 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5263 detect_write_flooding(sp)) {
b8c67b7a 5264 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5265 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5266 continue;
5267 }
889e5cbc
XG
5268
5269 spte = get_written_sptes(sp, gpa, &npte);
5270 if (!spte)
5271 continue;
5272
0671a8e7 5273 local_flush = true;
ac1b714e 5274 while (npte--) {
36d9594d
VK
5275 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5276
79539cec 5277 entry = *spte;
38e3b2b2 5278 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5279 if (gentry &&
36d9594d 5280 !((sp->role.word ^ base_role)
9fa72119 5281 & mmu_base_role_mask.word) && rmap_can_add(vcpu))
7c562522 5282 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5283 if (need_remote_flush(entry, *spte))
0671a8e7 5284 remote_flush = true;
ac1b714e 5285 ++spte;
9b7a0325 5286 }
9b7a0325 5287 }
b8c67b7a 5288 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5289 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5290 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5291}
5292
a436036b
AK
5293int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5294{
10589a46
MT
5295 gpa_t gpa;
5296 int r;
a436036b 5297
44dd3ffa 5298 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5299 return 0;
5300
1871c602 5301 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5302
10589a46 5303 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5304
10589a46 5305 return r;
a436036b 5306}
577bdc49 5307EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5308
26eeb53c 5309static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 5310{
d98ba053 5311 LIST_HEAD(invalid_list);
103ad25a 5312
81f4f76b 5313 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
26eeb53c 5314 return 0;
81f4f76b 5315
5da59607
TY
5316 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
5317 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
5318 break;
ebeace86 5319
4cee5764 5320 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 5321 }
aa6bd187 5322 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
26eeb53c
WL
5323
5324 if (!kvm_mmu_available_pages(vcpu->kvm))
5325 return -ENOSPC;
5326 return 0;
ebeace86 5327}
ebeace86 5328
14727754 5329int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u64 error_code,
dc25e89e 5330 void *insn, int insn_len)
3067714c 5331{
472faffa 5332 int r, emulation_type = 0;
3067714c 5333 enum emulation_result er;
44dd3ffa 5334 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5335
618232e2 5336 /* With shadow page tables, fault_address contains a GVA or nGPA. */
44dd3ffa 5337 if (vcpu->arch.mmu->direct_map) {
618232e2
BS
5338 vcpu->arch.gpa_available = true;
5339 vcpu->arch.gpa_val = cr2;
5340 }
3067714c 5341
9b8ebbdb 5342 r = RET_PF_INVALID;
e9ee956e
TY
5343 if (unlikely(error_code & PFERR_RSVD_MASK)) {
5344 r = handle_mmio_page_fault(vcpu, cr2, direct);
472faffa 5345 if (r == RET_PF_EMULATE)
e9ee956e 5346 goto emulate;
e9ee956e 5347 }
3067714c 5348
9b8ebbdb 5349 if (r == RET_PF_INVALID) {
44dd3ffa
VK
5350 r = vcpu->arch.mmu->page_fault(vcpu, cr2,
5351 lower_32_bits(error_code),
5352 false);
9b8ebbdb
PB
5353 WARN_ON(r == RET_PF_INVALID);
5354 }
5355
5356 if (r == RET_PF_RETRY)
5357 return 1;
3067714c 5358 if (r < 0)
e9ee956e 5359 return r;
3067714c 5360
14727754
TL
5361 /*
5362 * Before emulating the instruction, check if the error code
5363 * was due to a RO violation while translating the guest page.
5364 * This can occur when using nested virtualization with nested
5365 * paging in both guests. If true, we simply unprotect the page
5366 * and resume the guest.
14727754 5367 */
44dd3ffa 5368 if (vcpu->arch.mmu->direct_map &&
eebed243 5369 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
14727754
TL
5370 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2));
5371 return 1;
5372 }
5373
472faffa
SC
5374 /*
5375 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5376 * optimistically try to just unprotect the page and let the processor
5377 * re-execute the instruction that caused the page fault. Do not allow
5378 * retrying MMIO emulation, as it's not only pointless but could also
5379 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5380 * faulting on the non-existent MMIO address. Retrying an instruction
5381 * from a nested guest is also pointless and dangerous as we are only
5382 * explicitly shadowing L1's page tables, i.e. unprotecting something
5383 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5384 */
6c3dfeb6 5385 if (!mmio_info_in_cache(vcpu, cr2, direct) && !is_guest_mode(vcpu))
472faffa 5386 emulation_type = EMULTYPE_ALLOW_RETRY;
e9ee956e 5387emulate:
00b10fe1
BS
5388 /*
5389 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5390 * This can happen if a guest gets a page-fault on data access but the HW
5391 * table walker is not able to read the instruction page (e.g instruction
5392 * page is not present in memory). In those cases we simply restart the
5393 * guest.
5394 */
5395 if (unlikely(insn && !insn_len))
5396 return 1;
5397
1cb3f3ae 5398 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
5399
5400 switch (er) {
5401 case EMULATE_DONE:
5402 return 1;
ac0a48c3 5403 case EMULATE_USER_EXIT:
3067714c 5404 ++vcpu->stat.mmio_exits;
6d77dbfc 5405 /* fall through */
3067714c 5406 case EMULATE_FAIL:
3f5d18a9 5407 return 0;
3067714c
AK
5408 default:
5409 BUG();
5410 }
3067714c
AK
5411}
5412EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5413
a7052897
MT
5414void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5415{
44dd3ffa 5416 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 5417 int i;
7eb77e9f 5418
faff8758
JS
5419 /* INVLPG on a * non-canonical address is a NOP according to the SDM. */
5420 if (is_noncanonical_address(gva, vcpu))
5421 return;
5422
7eb77e9f 5423 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353
JS
5424
5425 /*
5426 * INVLPG is required to invalidate any global mappings for the VA,
5427 * irrespective of PCID. Since it would take us roughly similar amount
b94742c9
JS
5428 * of work to determine whether any of the prev_root mappings of the VA
5429 * is marked global, or to just sync it blindly, so we might as well
5430 * just always sync it.
956bf353 5431 *
b94742c9
JS
5432 * Mappings not reachable via the current cr3 or the prev_roots will be
5433 * synced when switching to that cr3, so nothing needs to be done here
5434 * for them.
956bf353 5435 */
b94742c9
JS
5436 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5437 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5438 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
956bf353 5439
faff8758 5440 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
a7052897
MT
5441 ++vcpu->stat.invlpg;
5442}
5443EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5444
eb4b248e
JS
5445void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5446{
44dd3ffa 5447 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5448 bool tlb_flush = false;
b94742c9 5449 uint i;
eb4b248e
JS
5450
5451 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5452 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5453 tlb_flush = true;
eb4b248e
JS
5454 }
5455
b94742c9
JS
5456 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5457 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5458 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5459 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5460 tlb_flush = true;
5461 }
956bf353 5462 }
ade61e28 5463
faff8758
JS
5464 if (tlb_flush)
5465 kvm_x86_ops->tlb_flush_gva(vcpu, gva);
5466
eb4b248e
JS
5467 ++vcpu->stat.invlpg;
5468
5469 /*
b94742c9
JS
5470 * Mappings not reachable via the current cr3 or the prev_roots will be
5471 * synced when switching to that cr3, so nothing needs to be done here
5472 * for them.
eb4b248e
JS
5473 */
5474}
5475EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5476
18552672
JR
5477void kvm_enable_tdp(void)
5478{
5479 tdp_enabled = true;
5480}
5481EXPORT_SYMBOL_GPL(kvm_enable_tdp);
5482
5f4cb662
JR
5483void kvm_disable_tdp(void)
5484{
5485 tdp_enabled = false;
5486}
5487EXPORT_SYMBOL_GPL(kvm_disable_tdp);
5488
6aa8b732
AK
5489static void free_mmu_pages(struct kvm_vcpu *vcpu)
5490{
44dd3ffa
VK
5491 free_page((unsigned long)vcpu->arch.mmu->pae_root);
5492 free_page((unsigned long)vcpu->arch.mmu->lm_root);
6aa8b732
AK
5493}
5494
5495static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
5496{
17ac10ad 5497 struct page *page;
6aa8b732
AK
5498 int i;
5499
ee6268ba
LC
5500 if (tdp_enabled)
5501 return 0;
5502
17ac10ad
AK
5503 /*
5504 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
5505 * Therefore we need to allocate shadow page tables in the first
5506 * 4GB of memory, which happens to fit the DMA32 zone.
5507 */
5508 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
5509 if (!page)
d7fa6ab2
WY
5510 return -ENOMEM;
5511
44dd3ffa 5512 vcpu->arch.mmu->pae_root = page_address(page);
17ac10ad 5513 for (i = 0; i < 4; ++i)
44dd3ffa 5514 vcpu->arch.mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5515
6aa8b732 5516 return 0;
6aa8b732
AK
5517}
5518
8018c27b 5519int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5520{
b94742c9
JS
5521 uint i;
5522
44dd3ffa
VK
5523 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5524 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5525
44dd3ffa 5526 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5527 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5528 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5529 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5530 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5531
14c07ad8 5532 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5533 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5534 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5535 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5536 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5537
14c07ad8 5538 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
8018c27b 5539 return alloc_mmu_pages(vcpu);
6aa8b732
AK
5540}
5541
b5f5fdca 5542static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5543 struct kvm_memory_slot *slot,
5544 struct kvm_page_track_notifier_node *node)
b5f5fdca
XC
5545{
5546 kvm_mmu_invalidate_zap_all_pages(kvm);
5547}
5548
13d268ca
XG
5549void kvm_mmu_init_vm(struct kvm *kvm)
5550{
5551 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5552
5553 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5554 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca
XG
5555 kvm_page_track_register_notifier(kvm, node);
5556}
5557
5558void kvm_mmu_uninit_vm(struct kvm *kvm)
5559{
5560 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
5561
5562 kvm_page_track_unregister_notifier(kvm, node);
5563}
5564
1bad2b2a 5565/* The return value indicates if tlb flush on all vcpus is needed. */
018aabb5 5566typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
1bad2b2a
XG
5567
5568/* The caller should hold mmu-lock before calling this function. */
928a4c39 5569static __always_inline bool
1bad2b2a
XG
5570slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5571 slot_level_handler fn, int start_level, int end_level,
5572 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5573{
5574 struct slot_rmap_walk_iterator iterator;
5575 bool flush = false;
5576
5577 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5578 end_gfn, &iterator) {
5579 if (iterator.rmap)
5580 flush |= fn(kvm, iterator.rmap);
5581
5582 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5583 if (flush && lock_flush_tlb) {
5584 kvm_flush_remote_tlbs(kvm);
5585 flush = false;
5586 }
5587 cond_resched_lock(&kvm->mmu_lock);
5588 }
5589 }
5590
5591 if (flush && lock_flush_tlb) {
5592 kvm_flush_remote_tlbs(kvm);
5593 flush = false;
5594 }
5595
5596 return flush;
5597}
5598
928a4c39 5599static __always_inline bool
1bad2b2a
XG
5600slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5601 slot_level_handler fn, int start_level, int end_level,
5602 bool lock_flush_tlb)
5603{
5604 return slot_handle_level_range(kvm, memslot, fn, start_level,
5605 end_level, memslot->base_gfn,
5606 memslot->base_gfn + memslot->npages - 1,
5607 lock_flush_tlb);
5608}
5609
928a4c39 5610static __always_inline bool
1bad2b2a
XG
5611slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5612 slot_level_handler fn, bool lock_flush_tlb)
5613{
5614 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5615 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5616}
5617
928a4c39 5618static __always_inline bool
1bad2b2a
XG
5619slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5620 slot_level_handler fn, bool lock_flush_tlb)
5621{
5622 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5623 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5624}
5625
928a4c39 5626static __always_inline bool
1bad2b2a
XG
5627slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5628 slot_level_handler fn, bool lock_flush_tlb)
5629{
5630 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5631 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5632}
5633
efdfe536
XG
5634void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5635{
5636 struct kvm_memslots *slots;
5637 struct kvm_memory_slot *memslot;
71883a62
LT
5638 bool flush_tlb = true;
5639 bool flush = false;
9da0e4d5 5640 int i;
efdfe536 5641
71883a62
LT
5642 if (kvm_available_flush_tlb_with_range())
5643 flush_tlb = false;
5644
efdfe536 5645 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5646 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5647 slots = __kvm_memslots(kvm, i);
5648 kvm_for_each_memslot(memslot, slots) {
5649 gfn_t start, end;
5650
5651 start = max(gfn_start, memslot->base_gfn);
5652 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5653 if (start >= end)
5654 continue;
efdfe536 5655
71883a62
LT
5656 flush |= slot_handle_level_range(kvm, memslot,
5657 kvm_zap_rmapp, PT_PAGE_TABLE_LEVEL,
5658 PT_MAX_HUGEPAGE_LEVEL, start,
5659 end - 1, flush_tlb);
9da0e4d5 5660 }
efdfe536
XG
5661 }
5662
71883a62
LT
5663 if (flush)
5664 kvm_flush_remote_tlbs_with_address(kvm, gfn_start,
5665 gfn_end - gfn_start + 1);
5666
efdfe536
XG
5667 spin_unlock(&kvm->mmu_lock);
5668}
5669
018aabb5
TY
5670static bool slot_rmap_write_protect(struct kvm *kvm,
5671 struct kvm_rmap_head *rmap_head)
d77aa73c 5672{
018aabb5 5673 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5674}
5675
1c91cad4
KH
5676void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
5677 struct kvm_memory_slot *memslot)
6aa8b732 5678{
d77aa73c 5679 bool flush;
6aa8b732 5680
9d1beefb 5681 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5682 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
5683 false);
9d1beefb 5684 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
5685
5686 /*
5687 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
5688 * which do tlb flush out of mmu-lock should be serialized by
5689 * kvm->slots_lock otherwise tlb flush would be missed.
5690 */
5691 lockdep_assert_held(&kvm->slots_lock);
5692
5693 /*
5694 * We can flush all the TLBs out of the mmu lock without TLB
5695 * corruption since we just change the spte from writable to
5696 * readonly so that we only need to care the case of changing
5697 * spte from present to present (changing the spte from present
5698 * to nonpresent will flush all the TLBs immediately), in other
5699 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5700 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5701 * instead of PT_WRITABLE_MASK, that means it does not depend
5702 * on PT_WRITABLE_MASK anymore.
5703 */
d91ffee9 5704 if (flush)
c3134ce2
LT
5705 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5706 memslot->npages);
6aa8b732 5707}
37a7d8b0 5708
3ea3b7fa 5709static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5710 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5711{
5712 u64 *sptep;
5713 struct rmap_iterator iter;
5714 int need_tlb_flush = 0;
ba049e93 5715 kvm_pfn_t pfn;
3ea3b7fa
WL
5716 struct kvm_mmu_page *sp;
5717
0d536790 5718restart:
018aabb5 5719 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5720 sp = page_header(__pa(sptep));
5721 pfn = spte_to_pfn(*sptep);
5722
5723 /*
decf6333
XG
5724 * We cannot do huge page mapping for indirect shadow pages,
5725 * which are found on the last rmap (level = 1) when not using
5726 * tdp; such shadow pages are synced with the page table in
5727 * the guest, and the guest page table is using 4K page size
5728 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
5729 */
5730 if (sp->role.direct &&
5731 !kvm_is_reserved_pfn(pfn) &&
127393fb 5732 PageTransCompoundMap(pfn_to_page(pfn))) {
e7912386 5733 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5734
5735 if (kvm_available_flush_tlb_with_range())
5736 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5737 KVM_PAGES_PER_HPAGE(sp->role.level));
5738 else
5739 need_tlb_flush = 1;
5740
0d536790
XG
5741 goto restart;
5742 }
3ea3b7fa
WL
5743 }
5744
5745 return need_tlb_flush;
5746}
5747
5748void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5749 const struct kvm_memory_slot *memslot)
3ea3b7fa 5750{
f36f3f28 5751 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5752 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5753 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5754 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5755 spin_unlock(&kvm->mmu_lock);
5756}
5757
f4b4b180
KH
5758void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5759 struct kvm_memory_slot *memslot)
5760{
d77aa73c 5761 bool flush;
f4b4b180
KH
5762
5763 spin_lock(&kvm->mmu_lock);
d77aa73c 5764 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5765 spin_unlock(&kvm->mmu_lock);
5766
5767 lockdep_assert_held(&kvm->slots_lock);
5768
5769 /*
5770 * It's also safe to flush TLBs out of mmu lock here as currently this
5771 * function is only used for dirty logging, in which case flushing TLB
5772 * out of mmu lock also guarantees no dirty pages will be lost in
5773 * dirty_bitmap.
5774 */
5775 if (flush)
c3134ce2
LT
5776 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5777 memslot->npages);
f4b4b180
KH
5778}
5779EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5780
5781void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
5782 struct kvm_memory_slot *memslot)
5783{
d77aa73c 5784 bool flush;
f4b4b180
KH
5785
5786 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
5787 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
5788 false);
f4b4b180
KH
5789 spin_unlock(&kvm->mmu_lock);
5790
5791 /* see kvm_mmu_slot_remove_write_access */
5792 lockdep_assert_held(&kvm->slots_lock);
5793
5794 if (flush)
c3134ce2
LT
5795 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5796 memslot->npages);
f4b4b180
KH
5797}
5798EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
5799
5800void kvm_mmu_slot_set_dirty(struct kvm *kvm,
5801 struct kvm_memory_slot *memslot)
5802{
d77aa73c 5803 bool flush;
f4b4b180
KH
5804
5805 spin_lock(&kvm->mmu_lock);
d77aa73c 5806 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
5807 spin_unlock(&kvm->mmu_lock);
5808
5809 lockdep_assert_held(&kvm->slots_lock);
5810
5811 /* see kvm_mmu_slot_leaf_clear_dirty */
5812 if (flush)
c3134ce2
LT
5813 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5814 memslot->npages);
f4b4b180
KH
5815}
5816EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
5817
e7d11c7a 5818#define BATCH_ZAP_PAGES 10
5304b8d3
XG
5819static void kvm_zap_obsolete_pages(struct kvm *kvm)
5820{
5821 struct kvm_mmu_page *sp, *node;
e7d11c7a 5822 int batch = 0;
5304b8d3
XG
5823
5824restart:
5825 list_for_each_entry_safe_reverse(sp, node,
5826 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
5827 int ret;
5828
5304b8d3
XG
5829 /*
5830 * No obsolete page exists before new created page since
5831 * active_mmu_pages is the FIFO list.
5832 */
5833 if (!is_obsolete_sp(kvm, sp))
5834 break;
5835
5836 /*
5304b8d3
XG
5837 * Since we are reversely walking the list and the invalid
5838 * list will be moved to the head, skip the invalid page
5839 * can help us to avoid the infinity list walking.
5840 */
5841 if (sp->role.invalid)
5842 continue;
5843
f34d251d
XG
5844 /*
5845 * Need not flush tlb since we only zap the sp with invalid
5846 * generation number.
5847 */
e7d11c7a 5848 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 5849 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 5850 batch = 0;
5304b8d3
XG
5851 goto restart;
5852 }
5853
365c8868
XG
5854 ret = kvm_mmu_prepare_zap_page(kvm, sp,
5855 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
5856 batch += ret;
5857
5858 if (ret)
5304b8d3
XG
5859 goto restart;
5860 }
5861
f34d251d
XG
5862 /*
5863 * Should flush tlb before free page tables since lockless-walking
5864 * may use the pages.
5865 */
365c8868 5866 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
5867}
5868
5869/*
5870 * Fast invalidate all shadow pages and use lock-break technique
5871 * to zap obsolete pages.
5872 *
5873 * It's required when memslot is being deleted or VM is being
5874 * destroyed, in these cases, we should ensure that KVM MMU does
5875 * not use any resource of the being-deleted slot or all slots
5876 * after calling the function.
5877 */
5878void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
5879{
5880 spin_lock(&kvm->mmu_lock);
35006126 5881 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
5882 kvm->arch.mmu_valid_gen++;
5883
f34d251d
XG
5884 /*
5885 * Notify all vcpus to reload its shadow page table
5886 * and flush TLB. Then all vcpus will switch to new
5887 * shadow page table with the new mmu_valid_gen.
5888 *
5889 * Note: we should do this under the protection of
5890 * mmu-lock, otherwise, vcpu would purge shadow page
5891 * but miss tlb flush.
5892 */
5893 kvm_reload_remote_mmus(kvm);
5894
5304b8d3
XG
5895 kvm_zap_obsolete_pages(kvm);
5896 spin_unlock(&kvm->mmu_lock);
5897}
5898
365c8868
XG
5899static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5900{
5901 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5902}
5903
54bf36aa 5904void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, struct kvm_memslots *slots)
f8f55942
XG
5905{
5906 /*
5907 * The very rare case: if the generation-number is round,
5908 * zap all shadow pages.
f8f55942 5909 */
54bf36aa 5910 if (unlikely((slots->generation & MMIO_GEN_MASK) == 0)) {
ae0f5499 5911 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 5912 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 5913 }
f8f55942
XG
5914}
5915
70534a73
DC
5916static unsigned long
5917mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
5918{
5919 struct kvm *kvm;
1495f230 5920 int nr_to_scan = sc->nr_to_scan;
70534a73 5921 unsigned long freed = 0;
3ee16c81 5922
2f303b74 5923 spin_lock(&kvm_lock);
3ee16c81
IE
5924
5925 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 5926 int idx;
d98ba053 5927 LIST_HEAD(invalid_list);
3ee16c81 5928
35f2d16b
TY
5929 /*
5930 * Never scan more than sc->nr_to_scan VM instances.
5931 * Will not hit this condition practically since we do not try
5932 * to shrink more than one VM and it is very unlikely to see
5933 * !n_used_mmu_pages so many times.
5934 */
5935 if (!nr_to_scan--)
5936 break;
19526396
GN
5937 /*
5938 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
5939 * here. We may skip a VM instance errorneosly, but we do not
5940 * want to shrink a VM that only started to populate its MMU
5941 * anyway.
5942 */
365c8868
XG
5943 if (!kvm->arch.n_used_mmu_pages &&
5944 !kvm_has_zapped_obsolete_pages(kvm))
19526396 5945 continue;
19526396 5946
f656ce01 5947 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 5948 spin_lock(&kvm->mmu_lock);
3ee16c81 5949
365c8868
XG
5950 if (kvm_has_zapped_obsolete_pages(kvm)) {
5951 kvm_mmu_commit_zap_page(kvm,
5952 &kvm->arch.zapped_obsolete_pages);
5953 goto unlock;
5954 }
5955
70534a73
DC
5956 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
5957 freed++;
d98ba053 5958 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 5959
365c8868 5960unlock:
3ee16c81 5961 spin_unlock(&kvm->mmu_lock);
f656ce01 5962 srcu_read_unlock(&kvm->srcu, idx);
19526396 5963
70534a73
DC
5964 /*
5965 * unfair on small ones
5966 * per-vm shrinkers cry out
5967 * sadness comes quickly
5968 */
19526396
GN
5969 list_move_tail(&kvm->vm_list, &vm_list);
5970 break;
3ee16c81 5971 }
3ee16c81 5972
2f303b74 5973 spin_unlock(&kvm_lock);
70534a73 5974 return freed;
70534a73
DC
5975}
5976
5977static unsigned long
5978mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
5979{
45221ab6 5980 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
5981}
5982
5983static struct shrinker mmu_shrinker = {
70534a73
DC
5984 .count_objects = mmu_shrink_count,
5985 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
5986 .seeks = DEFAULT_SEEKS * 10,
5987};
5988
2ddfd20e 5989static void mmu_destroy_caches(void)
b5a33a75 5990{
c1bd743e
TH
5991 kmem_cache_destroy(pte_list_desc_cache);
5992 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
5993}
5994
5995int kvm_mmu_module_init(void)
5996{
ab271bd4
AB
5997 int ret = -ENOMEM;
5998
36d9594d
VK
5999 /*
6000 * MMU roles use union aliasing which is, generally speaking, an
6001 * undefined behavior. However, we supposedly know how compilers behave
6002 * and the current status quo is unlikely to change. Guardians below are
6003 * supposed to let us know if the assumption becomes false.
6004 */
6005 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6006 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6007 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6008
28a1f3ac 6009 kvm_mmu_reset_all_pte_masks();
f160c7b7 6010
53c07b18
XG
6011 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6012 sizeof(struct pte_list_desc),
46bea48a 6013 0, SLAB_ACCOUNT, NULL);
53c07b18 6014 if (!pte_list_desc_cache)
ab271bd4 6015 goto out;
b5a33a75 6016
d3d25b04
AK
6017 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6018 sizeof(struct kvm_mmu_page),
46bea48a 6019 0, SLAB_ACCOUNT, NULL);
d3d25b04 6020 if (!mmu_page_header_cache)
ab271bd4 6021 goto out;
d3d25b04 6022
908c7f19 6023 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6024 goto out;
45bf21a8 6025
ab271bd4
AB
6026 ret = register_shrinker(&mmu_shrinker);
6027 if (ret)
6028 goto out;
3ee16c81 6029
b5a33a75
AK
6030 return 0;
6031
ab271bd4 6032out:
3ee16c81 6033 mmu_destroy_caches();
ab271bd4 6034 return ret;
b5a33a75
AK
6035}
6036
3ad82a7e 6037/*
39337ad1 6038 * Calculate mmu pages needed for kvm.
3ad82a7e
ZX
6039 */
6040unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
6041{
3ad82a7e
ZX
6042 unsigned int nr_mmu_pages;
6043 unsigned int nr_pages = 0;
bc6678a3 6044 struct kvm_memslots *slots;
be6ba0f0 6045 struct kvm_memory_slot *memslot;
9da0e4d5 6046 int i;
3ad82a7e 6047
9da0e4d5
PB
6048 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6049 slots = __kvm_memslots(kvm, i);
90d83dc3 6050
9da0e4d5
PB
6051 kvm_for_each_memslot(memslot, slots)
6052 nr_pages += memslot->npages;
6053 }
3ad82a7e
ZX
6054
6055 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
6056 nr_mmu_pages = max(nr_mmu_pages,
9da0e4d5 6057 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6058
6059 return nr_mmu_pages;
6060}
6061
c42fffe3
XG
6062void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6063{
95f93af4 6064 kvm_mmu_unload(vcpu);
c42fffe3
XG
6065 free_mmu_pages(vcpu);
6066 mmu_free_memory_caches(vcpu);
b034cf01
XG
6067}
6068
b034cf01
XG
6069void kvm_mmu_module_exit(void)
6070{
6071 mmu_destroy_caches();
6072 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6073 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6074 mmu_audit_disable();
6075}