KVM: MMU: store generation-number into mmio spte
[linux-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
f2fd125d
XG
200/*
201 * spte bits of bit 3 ~ bit 11 are used as low 9 bits of generation number,
202 * the bits of bits 52 ~ bit 61 are used as high 10 bits of generation
203 * number.
204 */
205#define MMIO_SPTE_GEN_LOW_SHIFT 3
206#define MMIO_SPTE_GEN_HIGH_SHIFT 52
207
208#define MMIO_GEN_LOW_SHIFT 9
209#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 1)
210#define MMIO_MAX_GEN ((1 << 19) - 1)
211
212static u64 generation_mmio_spte_mask(unsigned int gen)
213{
214 u64 mask;
215
216 WARN_ON(gen > MMIO_MAX_GEN);
217
218 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
219 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
220 return mask;
221}
222
223static unsigned int get_mmio_spte_generation(u64 spte)
224{
225 unsigned int gen;
226
227 spte &= ~shadow_mmio_mask;
228
229 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
230 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
231 return gen;
232}
233
234static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
235 unsigned access)
ce88decf 236{
95b0430d 237 struct kvm_mmu_page *sp = page_header(__pa(sptep));
f2fd125d 238 u64 mask = generation_mmio_spte_mask(0);
95b0430d 239
ce88decf 240 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 241 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
95b0430d 242 sp->mmio_cached = true;
f2fd125d
XG
243
244 trace_mark_mmio_spte(sptep, gfn, access, 0);
245 mmu_spte_set(sptep, mask);
ce88decf
XG
246}
247
248static bool is_mmio_spte(u64 spte)
249{
250 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
251}
252
253static gfn_t get_mmio_spte_gfn(u64 spte)
254{
f2fd125d
XG
255 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
256 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
257}
258
259static unsigned get_mmio_spte_access(u64 spte)
260{
f2fd125d
XG
261 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
262 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
263}
264
f2fd125d
XG
265static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
266 pfn_t pfn, unsigned access)
ce88decf
XG
267{
268 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 269 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
270 return true;
271 }
272
273 return false;
274}
c7addb90 275
82725b20
DE
276static inline u64 rsvd_bits(int s, int e)
277{
278 return ((1ULL << (e - s + 1)) - 1) << s;
279}
280
7b52345e 281void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 282 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
283{
284 shadow_user_mask = user_mask;
285 shadow_accessed_mask = accessed_mask;
286 shadow_dirty_mask = dirty_mask;
287 shadow_nx_mask = nx_mask;
288 shadow_x_mask = x_mask;
289}
290EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
291
6aa8b732
AK
292static int is_cpuid_PSE36(void)
293{
294 return 1;
295}
296
73b1087e
AK
297static int is_nx(struct kvm_vcpu *vcpu)
298{
f6801dff 299 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
300}
301
c7addb90
AK
302static int is_shadow_present_pte(u64 pte)
303{
ce88decf 304 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
305}
306
05da4558
MT
307static int is_large_pte(u64 pte)
308{
309 return pte & PT_PAGE_SIZE_MASK;
310}
311
43a3795a 312static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 313{
439e218a 314 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
315}
316
43a3795a 317static int is_rmap_spte(u64 pte)
cd4a4e53 318{
4b1a80fa 319 return is_shadow_present_pte(pte);
cd4a4e53
AK
320}
321
776e6633
MT
322static int is_last_spte(u64 pte, int level)
323{
324 if (level == PT_PAGE_TABLE_LEVEL)
325 return 1;
852e3c19 326 if (is_large_pte(pte))
776e6633
MT
327 return 1;
328 return 0;
329}
330
35149e21 331static pfn_t spte_to_pfn(u64 pte)
0b49ea86 332{
35149e21 333 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
334}
335
da928521
AK
336static gfn_t pse36_gfn_delta(u32 gpte)
337{
338 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
339
340 return (gpte & PT32_DIR_PSE36_MASK) << shift;
341}
342
603e0651 343#ifdef CONFIG_X86_64
d555c333 344static void __set_spte(u64 *sptep, u64 spte)
e663ee64 345{
603e0651 346 *sptep = spte;
e663ee64
AK
347}
348
603e0651 349static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 350{
603e0651
XG
351 *sptep = spte;
352}
353
354static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
355{
356 return xchg(sptep, spte);
357}
c2a2ac2b
XG
358
359static u64 __get_spte_lockless(u64 *sptep)
360{
361 return ACCESS_ONCE(*sptep);
362}
ce88decf
XG
363
364static bool __check_direct_spte_mmio_pf(u64 spte)
365{
366 /* It is valid if the spte is zapped. */
367 return spte == 0ull;
368}
a9221dd5 369#else
603e0651
XG
370union split_spte {
371 struct {
372 u32 spte_low;
373 u32 spte_high;
374 };
375 u64 spte;
376};
a9221dd5 377
c2a2ac2b
XG
378static void count_spte_clear(u64 *sptep, u64 spte)
379{
380 struct kvm_mmu_page *sp = page_header(__pa(sptep));
381
382 if (is_shadow_present_pte(spte))
383 return;
384
385 /* Ensure the spte is completely set before we increase the count */
386 smp_wmb();
387 sp->clear_spte_count++;
388}
389
603e0651
XG
390static void __set_spte(u64 *sptep, u64 spte)
391{
392 union split_spte *ssptep, sspte;
a9221dd5 393
603e0651
XG
394 ssptep = (union split_spte *)sptep;
395 sspte = (union split_spte)spte;
396
397 ssptep->spte_high = sspte.spte_high;
398
399 /*
400 * If we map the spte from nonpresent to present, We should store
401 * the high bits firstly, then set present bit, so cpu can not
402 * fetch this spte while we are setting the spte.
403 */
404 smp_wmb();
405
406 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
407}
408
603e0651
XG
409static void __update_clear_spte_fast(u64 *sptep, u64 spte)
410{
411 union split_spte *ssptep, sspte;
412
413 ssptep = (union split_spte *)sptep;
414 sspte = (union split_spte)spte;
415
416 ssptep->spte_low = sspte.spte_low;
417
418 /*
419 * If we map the spte from present to nonpresent, we should clear
420 * present bit firstly to avoid vcpu fetch the old high bits.
421 */
422 smp_wmb();
423
424 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 425 count_spte_clear(sptep, spte);
603e0651
XG
426}
427
428static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
429{
430 union split_spte *ssptep, sspte, orig;
431
432 ssptep = (union split_spte *)sptep;
433 sspte = (union split_spte)spte;
434
435 /* xchg acts as a barrier before the setting of the high bits */
436 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
437 orig.spte_high = ssptep->spte_high;
438 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 439 count_spte_clear(sptep, spte);
603e0651
XG
440
441 return orig.spte;
442}
c2a2ac2b
XG
443
444/*
445 * The idea using the light way get the spte on x86_32 guest is from
446 * gup_get_pte(arch/x86/mm/gup.c).
447 * The difference is we can not catch the spte tlb flush if we leave
448 * guest mode, so we emulate it by increase clear_spte_count when spte
449 * is cleared.
450 */
451static u64 __get_spte_lockless(u64 *sptep)
452{
453 struct kvm_mmu_page *sp = page_header(__pa(sptep));
454 union split_spte spte, *orig = (union split_spte *)sptep;
455 int count;
456
457retry:
458 count = sp->clear_spte_count;
459 smp_rmb();
460
461 spte.spte_low = orig->spte_low;
462 smp_rmb();
463
464 spte.spte_high = orig->spte_high;
465 smp_rmb();
466
467 if (unlikely(spte.spte_low != orig->spte_low ||
468 count != sp->clear_spte_count))
469 goto retry;
470
471 return spte.spte;
472}
ce88decf
XG
473
474static bool __check_direct_spte_mmio_pf(u64 spte)
475{
476 union split_spte sspte = (union split_spte)spte;
477 u32 high_mmio_mask = shadow_mmio_mask >> 32;
478
479 /* It is valid if the spte is zapped. */
480 if (spte == 0ull)
481 return true;
482
483 /* It is valid if the spte is being zapped. */
484 if (sspte.spte_low == 0ull &&
485 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
486 return true;
487
488 return false;
489}
603e0651
XG
490#endif
491
c7ba5b48
XG
492static bool spte_is_locklessly_modifiable(u64 spte)
493{
feb3eb70
GN
494 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
495 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
496}
497
8672b721
XG
498static bool spte_has_volatile_bits(u64 spte)
499{
c7ba5b48
XG
500 /*
501 * Always atomicly update spte if it can be updated
502 * out of mmu-lock, it can ensure dirty bit is not lost,
503 * also, it can help us to get a stable is_writable_pte()
504 * to ensure tlb flush is not missed.
505 */
506 if (spte_is_locklessly_modifiable(spte))
507 return true;
508
8672b721
XG
509 if (!shadow_accessed_mask)
510 return false;
511
512 if (!is_shadow_present_pte(spte))
513 return false;
514
4132779b
XG
515 if ((spte & shadow_accessed_mask) &&
516 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
517 return false;
518
519 return true;
520}
521
4132779b
XG
522static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
523{
524 return (old_spte & bit_mask) && !(new_spte & bit_mask);
525}
526
1df9f2dc
XG
527/* Rules for using mmu_spte_set:
528 * Set the sptep from nonpresent to present.
529 * Note: the sptep being assigned *must* be either not present
530 * or in a state where the hardware will not attempt to update
531 * the spte.
532 */
533static void mmu_spte_set(u64 *sptep, u64 new_spte)
534{
535 WARN_ON(is_shadow_present_pte(*sptep));
536 __set_spte(sptep, new_spte);
537}
538
539/* Rules for using mmu_spte_update:
540 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
541 *
542 * Whenever we overwrite a writable spte with a read-only one we
543 * should flush remote TLBs. Otherwise rmap_write_protect
544 * will find a read-only spte, even though the writable spte
545 * might be cached on a CPU's TLB, the return value indicates this
546 * case.
1df9f2dc 547 */
6e7d0354 548static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 549{
c7ba5b48 550 u64 old_spte = *sptep;
6e7d0354 551 bool ret = false;
4132779b
XG
552
553 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 554
6e7d0354
XG
555 if (!is_shadow_present_pte(old_spte)) {
556 mmu_spte_set(sptep, new_spte);
557 return ret;
558 }
4132779b 559
c7ba5b48 560 if (!spte_has_volatile_bits(old_spte))
603e0651 561 __update_clear_spte_fast(sptep, new_spte);
4132779b 562 else
603e0651 563 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 564
c7ba5b48
XG
565 /*
566 * For the spte updated out of mmu-lock is safe, since
567 * we always atomicly update it, see the comments in
568 * spte_has_volatile_bits().
569 */
6e7d0354
XG
570 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
571 ret = true;
572
4132779b 573 if (!shadow_accessed_mask)
6e7d0354 574 return ret;
4132779b
XG
575
576 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
577 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
578 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
579 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
580
581 return ret;
b79b93f9
AK
582}
583
1df9f2dc
XG
584/*
585 * Rules for using mmu_spte_clear_track_bits:
586 * It sets the sptep from present to nonpresent, and track the
587 * state bits, it is used to clear the last level sptep.
588 */
589static int mmu_spte_clear_track_bits(u64 *sptep)
590{
591 pfn_t pfn;
592 u64 old_spte = *sptep;
593
594 if (!spte_has_volatile_bits(old_spte))
603e0651 595 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 596 else
603e0651 597 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
598
599 if (!is_rmap_spte(old_spte))
600 return 0;
601
602 pfn = spte_to_pfn(old_spte);
86fde74c
XG
603
604 /*
605 * KVM does not hold the refcount of the page used by
606 * kvm mmu, before reclaiming the page, we should
607 * unmap it from mmu first.
608 */
609 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
610
1df9f2dc
XG
611 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
612 kvm_set_pfn_accessed(pfn);
613 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
614 kvm_set_pfn_dirty(pfn);
615 return 1;
616}
617
618/*
619 * Rules for using mmu_spte_clear_no_track:
620 * Directly clear spte without caring the state bits of sptep,
621 * it is used to set the upper level spte.
622 */
623static void mmu_spte_clear_no_track(u64 *sptep)
624{
603e0651 625 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
626}
627
c2a2ac2b
XG
628static u64 mmu_spte_get_lockless(u64 *sptep)
629{
630 return __get_spte_lockless(sptep);
631}
632
633static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
634{
c142786c
AK
635 /*
636 * Prevent page table teardown by making any free-er wait during
637 * kvm_flush_remote_tlbs() IPI to all active vcpus.
638 */
639 local_irq_disable();
640 vcpu->mode = READING_SHADOW_PAGE_TABLES;
641 /*
642 * Make sure a following spte read is not reordered ahead of the write
643 * to vcpu->mode.
644 */
645 smp_mb();
c2a2ac2b
XG
646}
647
648static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
649{
c142786c
AK
650 /*
651 * Make sure the write to vcpu->mode is not reordered in front of
652 * reads to sptes. If it does, kvm_commit_zap_page() can see us
653 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
654 */
655 smp_mb();
656 vcpu->mode = OUTSIDE_GUEST_MODE;
657 local_irq_enable();
c2a2ac2b
XG
658}
659
e2dec939 660static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 661 struct kmem_cache *base_cache, int min)
714b93da
AK
662{
663 void *obj;
664
665 if (cache->nobjs >= min)
e2dec939 666 return 0;
714b93da 667 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 668 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 669 if (!obj)
e2dec939 670 return -ENOMEM;
714b93da
AK
671 cache->objects[cache->nobjs++] = obj;
672 }
e2dec939 673 return 0;
714b93da
AK
674}
675
f759e2b4
XG
676static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
677{
678 return cache->nobjs;
679}
680
e8ad9a70
XG
681static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
682 struct kmem_cache *cache)
714b93da
AK
683{
684 while (mc->nobjs)
e8ad9a70 685 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
686}
687
c1158e63 688static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 689 int min)
c1158e63 690{
842f22ed 691 void *page;
c1158e63
AK
692
693 if (cache->nobjs >= min)
694 return 0;
695 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 696 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
697 if (!page)
698 return -ENOMEM;
842f22ed 699 cache->objects[cache->nobjs++] = page;
c1158e63
AK
700 }
701 return 0;
702}
703
704static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
705{
706 while (mc->nobjs)
c4d198d5 707 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
708}
709
2e3e5882 710static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 711{
e2dec939
AK
712 int r;
713
53c07b18 714 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 715 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
716 if (r)
717 goto out;
ad312c7c 718 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
719 if (r)
720 goto out;
ad312c7c 721 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 722 mmu_page_header_cache, 4);
e2dec939
AK
723out:
724 return r;
714b93da
AK
725}
726
727static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
728{
53c07b18
XG
729 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
730 pte_list_desc_cache);
ad312c7c 731 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
732 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
733 mmu_page_header_cache);
714b93da
AK
734}
735
80feb89a 736static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
737{
738 void *p;
739
740 BUG_ON(!mc->nobjs);
741 p = mc->objects[--mc->nobjs];
714b93da
AK
742 return p;
743}
744
53c07b18 745static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 746{
80feb89a 747 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
748}
749
53c07b18 750static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 751{
53c07b18 752 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
753}
754
2032a93d
LJ
755static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
756{
757 if (!sp->role.direct)
758 return sp->gfns[index];
759
760 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
761}
762
763static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
764{
765 if (sp->role.direct)
766 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
767 else
768 sp->gfns[index] = gfn;
769}
770
05da4558 771/*
d4dbf470
TY
772 * Return the pointer to the large page information for a given gfn,
773 * handling slots that are not large page aligned.
05da4558 774 */
d4dbf470
TY
775static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
776 struct kvm_memory_slot *slot,
777 int level)
05da4558
MT
778{
779 unsigned long idx;
780
fb03cb6f 781 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 782 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
783}
784
785static void account_shadowed(struct kvm *kvm, gfn_t gfn)
786{
d25797b2 787 struct kvm_memory_slot *slot;
d4dbf470 788 struct kvm_lpage_info *linfo;
d25797b2 789 int i;
05da4558 790
a1f4d395 791 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
792 for (i = PT_DIRECTORY_LEVEL;
793 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
794 linfo = lpage_info_slot(gfn, slot, i);
795 linfo->write_count += 1;
d25797b2 796 }
332b207d 797 kvm->arch.indirect_shadow_pages++;
05da4558
MT
798}
799
800static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
801{
d25797b2 802 struct kvm_memory_slot *slot;
d4dbf470 803 struct kvm_lpage_info *linfo;
d25797b2 804 int i;
05da4558 805
a1f4d395 806 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
807 for (i = PT_DIRECTORY_LEVEL;
808 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
809 linfo = lpage_info_slot(gfn, slot, i);
810 linfo->write_count -= 1;
811 WARN_ON(linfo->write_count < 0);
d25797b2 812 }
332b207d 813 kvm->arch.indirect_shadow_pages--;
05da4558
MT
814}
815
d25797b2
JR
816static int has_wrprotected_page(struct kvm *kvm,
817 gfn_t gfn,
818 int level)
05da4558 819{
2843099f 820 struct kvm_memory_slot *slot;
d4dbf470 821 struct kvm_lpage_info *linfo;
05da4558 822
a1f4d395 823 slot = gfn_to_memslot(kvm, gfn);
05da4558 824 if (slot) {
d4dbf470
TY
825 linfo = lpage_info_slot(gfn, slot, level);
826 return linfo->write_count;
05da4558
MT
827 }
828
829 return 1;
830}
831
d25797b2 832static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 833{
8f0b1ab6 834 unsigned long page_size;
d25797b2 835 int i, ret = 0;
05da4558 836
8f0b1ab6 837 page_size = kvm_host_page_size(kvm, gfn);
05da4558 838
d25797b2
JR
839 for (i = PT_PAGE_TABLE_LEVEL;
840 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
841 if (page_size >= KVM_HPAGE_SIZE(i))
842 ret = i;
843 else
844 break;
845 }
846
4c2155ce 847 return ret;
05da4558
MT
848}
849
5d163b1c
XG
850static struct kvm_memory_slot *
851gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
852 bool no_dirty_log)
05da4558
MT
853{
854 struct kvm_memory_slot *slot;
5d163b1c
XG
855
856 slot = gfn_to_memslot(vcpu->kvm, gfn);
857 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
858 (no_dirty_log && slot->dirty_bitmap))
859 slot = NULL;
860
861 return slot;
862}
863
864static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
865{
a0a8eaba 866 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
867}
868
869static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
870{
871 int host_level, level, max_level;
05da4558 872
d25797b2
JR
873 host_level = host_mapping_level(vcpu->kvm, large_gfn);
874
875 if (host_level == PT_PAGE_TABLE_LEVEL)
876 return host_level;
877
55dd98c3 878 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
879
880 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
881 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
882 break;
d25797b2
JR
883
884 return level - 1;
05da4558
MT
885}
886
290fc38d 887/*
53c07b18 888 * Pte mapping structures:
cd4a4e53 889 *
53c07b18 890 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 891 *
53c07b18
XG
892 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
893 * pte_list_desc containing more mappings.
53a27b39 894 *
53c07b18 895 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
896 * the spte was not added.
897 *
cd4a4e53 898 */
53c07b18
XG
899static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
900 unsigned long *pte_list)
cd4a4e53 901{
53c07b18 902 struct pte_list_desc *desc;
53a27b39 903 int i, count = 0;
cd4a4e53 904
53c07b18
XG
905 if (!*pte_list) {
906 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
907 *pte_list = (unsigned long)spte;
908 } else if (!(*pte_list & 1)) {
909 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
910 desc = mmu_alloc_pte_list_desc(vcpu);
911 desc->sptes[0] = (u64 *)*pte_list;
d555c333 912 desc->sptes[1] = spte;
53c07b18 913 *pte_list = (unsigned long)desc | 1;
cb16a7b3 914 ++count;
cd4a4e53 915 } else {
53c07b18
XG
916 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
917 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
918 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 919 desc = desc->more;
53c07b18 920 count += PTE_LIST_EXT;
53a27b39 921 }
53c07b18
XG
922 if (desc->sptes[PTE_LIST_EXT-1]) {
923 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
924 desc = desc->more;
925 }
d555c333 926 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 927 ++count;
d555c333 928 desc->sptes[i] = spte;
cd4a4e53 929 }
53a27b39 930 return count;
cd4a4e53
AK
931}
932
53c07b18
XG
933static void
934pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
935 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
936{
937 int j;
938
53c07b18 939 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 940 ;
d555c333
AK
941 desc->sptes[i] = desc->sptes[j];
942 desc->sptes[j] = NULL;
cd4a4e53
AK
943 if (j != 0)
944 return;
945 if (!prev_desc && !desc->more)
53c07b18 946 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
947 else
948 if (prev_desc)
949 prev_desc->more = desc->more;
950 else
53c07b18
XG
951 *pte_list = (unsigned long)desc->more | 1;
952 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
953}
954
53c07b18 955static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 956{
53c07b18
XG
957 struct pte_list_desc *desc;
958 struct pte_list_desc *prev_desc;
cd4a4e53
AK
959 int i;
960
53c07b18
XG
961 if (!*pte_list) {
962 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 963 BUG();
53c07b18
XG
964 } else if (!(*pte_list & 1)) {
965 rmap_printk("pte_list_remove: %p 1->0\n", spte);
966 if ((u64 *)*pte_list != spte) {
967 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
968 BUG();
969 }
53c07b18 970 *pte_list = 0;
cd4a4e53 971 } else {
53c07b18
XG
972 rmap_printk("pte_list_remove: %p many->many\n", spte);
973 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
974 prev_desc = NULL;
975 while (desc) {
53c07b18 976 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 977 if (desc->sptes[i] == spte) {
53c07b18 978 pte_list_desc_remove_entry(pte_list,
714b93da 979 desc, i,
cd4a4e53
AK
980 prev_desc);
981 return;
982 }
983 prev_desc = desc;
984 desc = desc->more;
985 }
53c07b18 986 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
987 BUG();
988 }
989}
990
67052b35
XG
991typedef void (*pte_list_walk_fn) (u64 *spte);
992static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
993{
994 struct pte_list_desc *desc;
995 int i;
996
997 if (!*pte_list)
998 return;
999
1000 if (!(*pte_list & 1))
1001 return fn((u64 *)*pte_list);
1002
1003 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1004 while (desc) {
1005 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1006 fn(desc->sptes[i]);
1007 desc = desc->more;
1008 }
1009}
1010
9373e2c0 1011static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1012 struct kvm_memory_slot *slot)
53c07b18 1013{
77d11309 1014 unsigned long idx;
53c07b18 1015
77d11309 1016 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1017 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1018}
1019
9b9b1492
TY
1020/*
1021 * Take gfn and return the reverse mapping to it.
1022 */
1023static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1024{
1025 struct kvm_memory_slot *slot;
1026
1027 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1028 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1029}
1030
f759e2b4
XG
1031static bool rmap_can_add(struct kvm_vcpu *vcpu)
1032{
1033 struct kvm_mmu_memory_cache *cache;
1034
1035 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1036 return mmu_memory_cache_free_objects(cache);
1037}
1038
53c07b18
XG
1039static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1040{
1041 struct kvm_mmu_page *sp;
1042 unsigned long *rmapp;
1043
53c07b18
XG
1044 sp = page_header(__pa(spte));
1045 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1046 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1047 return pte_list_add(vcpu, spte, rmapp);
1048}
1049
53c07b18
XG
1050static void rmap_remove(struct kvm *kvm, u64 *spte)
1051{
1052 struct kvm_mmu_page *sp;
1053 gfn_t gfn;
1054 unsigned long *rmapp;
1055
1056 sp = page_header(__pa(spte));
1057 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1058 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1059 pte_list_remove(spte, rmapp);
1060}
1061
1e3f42f0
TY
1062/*
1063 * Used by the following functions to iterate through the sptes linked by a
1064 * rmap. All fields are private and not assumed to be used outside.
1065 */
1066struct rmap_iterator {
1067 /* private fields */
1068 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1069 int pos; /* index of the sptep */
1070};
1071
1072/*
1073 * Iteration must be started by this function. This should also be used after
1074 * removing/dropping sptes from the rmap link because in such cases the
1075 * information in the itererator may not be valid.
1076 *
1077 * Returns sptep if found, NULL otherwise.
1078 */
1079static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1080{
1081 if (!rmap)
1082 return NULL;
1083
1084 if (!(rmap & 1)) {
1085 iter->desc = NULL;
1086 return (u64 *)rmap;
1087 }
1088
1089 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1090 iter->pos = 0;
1091 return iter->desc->sptes[iter->pos];
1092}
1093
1094/*
1095 * Must be used with a valid iterator: e.g. after rmap_get_first().
1096 *
1097 * Returns sptep if found, NULL otherwise.
1098 */
1099static u64 *rmap_get_next(struct rmap_iterator *iter)
1100{
1101 if (iter->desc) {
1102 if (iter->pos < PTE_LIST_EXT - 1) {
1103 u64 *sptep;
1104
1105 ++iter->pos;
1106 sptep = iter->desc->sptes[iter->pos];
1107 if (sptep)
1108 return sptep;
1109 }
1110
1111 iter->desc = iter->desc->more;
1112
1113 if (iter->desc) {
1114 iter->pos = 0;
1115 /* desc->sptes[0] cannot be NULL */
1116 return iter->desc->sptes[iter->pos];
1117 }
1118 }
1119
1120 return NULL;
1121}
1122
c3707958 1123static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1124{
1df9f2dc 1125 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1126 rmap_remove(kvm, sptep);
be38d276
AK
1127}
1128
8e22f955
XG
1129
1130static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1131{
1132 if (is_large_pte(*sptep)) {
1133 WARN_ON(page_header(__pa(sptep))->role.level ==
1134 PT_PAGE_TABLE_LEVEL);
1135 drop_spte(kvm, sptep);
1136 --kvm->stat.lpages;
1137 return true;
1138 }
1139
1140 return false;
1141}
1142
1143static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1144{
1145 if (__drop_large_spte(vcpu->kvm, sptep))
1146 kvm_flush_remote_tlbs(vcpu->kvm);
1147}
1148
1149/*
49fde340 1150 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1151 * spte writ-protection is caused by protecting shadow page table.
1152 * @flush indicates whether tlb need be flushed.
49fde340
XG
1153 *
1154 * Note: write protection is difference between drity logging and spte
1155 * protection:
1156 * - for dirty logging, the spte can be set to writable at anytime if
1157 * its dirty bitmap is properly set.
1158 * - for spte protection, the spte can be writable only after unsync-ing
1159 * shadow page.
8e22f955 1160 *
6b73a960 1161 * Return true if the spte is dropped.
8e22f955 1162 */
6b73a960
MT
1163static bool
1164spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1165{
1166 u64 spte = *sptep;
1167
49fde340
XG
1168 if (!is_writable_pte(spte) &&
1169 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1170 return false;
1171
1172 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1173
6b73a960
MT
1174 if (__drop_large_spte(kvm, sptep)) {
1175 *flush |= true;
1176 return true;
1177 }
1178
49fde340
XG
1179 if (pt_protect)
1180 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1181 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1182
6b73a960
MT
1183 *flush |= mmu_spte_update(sptep, spte);
1184 return false;
d13bc5b5
XG
1185}
1186
49fde340 1187static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1188 bool pt_protect)
98348e95 1189{
1e3f42f0
TY
1190 u64 *sptep;
1191 struct rmap_iterator iter;
d13bc5b5 1192 bool flush = false;
374cbac0 1193
1e3f42f0
TY
1194 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1195 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1196 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1197 sptep = rmap_get_first(*rmapp, &iter);
1198 continue;
1199 }
a0ed4607 1200
d13bc5b5 1201 sptep = rmap_get_next(&iter);
374cbac0 1202 }
855149aa 1203
d13bc5b5 1204 return flush;
a0ed4607
TY
1205}
1206
5dc99b23
TY
1207/**
1208 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1209 * @kvm: kvm instance
1210 * @slot: slot to protect
1211 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1212 * @mask: indicates which pages we should protect
1213 *
1214 * Used when we do not need to care about huge page mappings: e.g. during dirty
1215 * logging we do not have any such mappings.
1216 */
1217void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1218 struct kvm_memory_slot *slot,
1219 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1220{
1221 unsigned long *rmapp;
a0ed4607 1222
5dc99b23 1223 while (mask) {
65fbe37c
TY
1224 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1225 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1226 __rmap_write_protect(kvm, rmapp, false);
05da4558 1227
5dc99b23
TY
1228 /* clear the first set bit */
1229 mask &= mask - 1;
1230 }
374cbac0
AK
1231}
1232
2f84569f 1233static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1234{
1235 struct kvm_memory_slot *slot;
5dc99b23
TY
1236 unsigned long *rmapp;
1237 int i;
2f84569f 1238 bool write_protected = false;
95d4c16c
TY
1239
1240 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1241
1242 for (i = PT_PAGE_TABLE_LEVEL;
1243 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1244 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1245 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1246 }
1247
1248 return write_protected;
95d4c16c
TY
1249}
1250
8a8365c5 1251static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1252 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1253{
1e3f42f0
TY
1254 u64 *sptep;
1255 struct rmap_iterator iter;
e930bffe
AA
1256 int need_tlb_flush = 0;
1257
1e3f42f0
TY
1258 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1259 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1260 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1261
1262 drop_spte(kvm, sptep);
e930bffe
AA
1263 need_tlb_flush = 1;
1264 }
1e3f42f0 1265
e930bffe
AA
1266 return need_tlb_flush;
1267}
1268
8a8365c5 1269static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1270 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1271{
1e3f42f0
TY
1272 u64 *sptep;
1273 struct rmap_iterator iter;
3da0dd43 1274 int need_flush = 0;
1e3f42f0 1275 u64 new_spte;
3da0dd43
IE
1276 pte_t *ptep = (pte_t *)data;
1277 pfn_t new_pfn;
1278
1279 WARN_ON(pte_huge(*ptep));
1280 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1281
1282 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1283 BUG_ON(!is_shadow_present_pte(*sptep));
1284 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1285
3da0dd43 1286 need_flush = 1;
1e3f42f0 1287
3da0dd43 1288 if (pte_write(*ptep)) {
1e3f42f0
TY
1289 drop_spte(kvm, sptep);
1290 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1291 } else {
1e3f42f0 1292 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1293 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1294
1295 new_spte &= ~PT_WRITABLE_MASK;
1296 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1297 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1298
1299 mmu_spte_clear_track_bits(sptep);
1300 mmu_spte_set(sptep, new_spte);
1301 sptep = rmap_get_next(&iter);
3da0dd43
IE
1302 }
1303 }
1e3f42f0 1304
3da0dd43
IE
1305 if (need_flush)
1306 kvm_flush_remote_tlbs(kvm);
1307
1308 return 0;
1309}
1310
84504ef3
TY
1311static int kvm_handle_hva_range(struct kvm *kvm,
1312 unsigned long start,
1313 unsigned long end,
1314 unsigned long data,
1315 int (*handler)(struct kvm *kvm,
1316 unsigned long *rmapp,
048212d0 1317 struct kvm_memory_slot *slot,
84504ef3 1318 unsigned long data))
e930bffe 1319{
be6ba0f0 1320 int j;
f395302e 1321 int ret = 0;
bc6678a3 1322 struct kvm_memslots *slots;
be6ba0f0 1323 struct kvm_memory_slot *memslot;
bc6678a3 1324
90d83dc3 1325 slots = kvm_memslots(kvm);
e930bffe 1326
be6ba0f0 1327 kvm_for_each_memslot(memslot, slots) {
84504ef3 1328 unsigned long hva_start, hva_end;
bcd3ef58 1329 gfn_t gfn_start, gfn_end;
e930bffe 1330
84504ef3
TY
1331 hva_start = max(start, memslot->userspace_addr);
1332 hva_end = min(end, memslot->userspace_addr +
1333 (memslot->npages << PAGE_SHIFT));
1334 if (hva_start >= hva_end)
1335 continue;
1336 /*
1337 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1338 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1339 */
bcd3ef58 1340 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1341 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1342
bcd3ef58
TY
1343 for (j = PT_PAGE_TABLE_LEVEL;
1344 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1345 unsigned long idx, idx_end;
1346 unsigned long *rmapp;
d4dbf470 1347
bcd3ef58
TY
1348 /*
1349 * {idx(page_j) | page_j intersects with
1350 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1351 */
1352 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1353 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1354
bcd3ef58 1355 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1356
bcd3ef58
TY
1357 for (; idx <= idx_end; ++idx)
1358 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1359 }
1360 }
1361
f395302e 1362 return ret;
e930bffe
AA
1363}
1364
84504ef3
TY
1365static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1366 unsigned long data,
1367 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1368 struct kvm_memory_slot *slot,
84504ef3
TY
1369 unsigned long data))
1370{
1371 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1372}
1373
1374int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1375{
3da0dd43
IE
1376 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1377}
1378
b3ae2096
TY
1379int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1380{
1381 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1382}
1383
3da0dd43
IE
1384void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1385{
8a8365c5 1386 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1387}
1388
8a8365c5 1389static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1390 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1391{
1e3f42f0 1392 u64 *sptep;
79f702a6 1393 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1394 int young = 0;
1395
6316e1c8 1396 /*
3f6d8c8a
XH
1397 * In case of absence of EPT Access and Dirty Bits supports,
1398 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1399 * an EPT mapping, and clearing it if it does. On the next access,
1400 * a new EPT mapping will be established.
1401 * This has some overhead, but not as much as the cost of swapping
1402 * out actively used pages or breaking up actively used hugepages.
1403 */
f395302e
TY
1404 if (!shadow_accessed_mask) {
1405 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1406 goto out;
1407 }
534e38b4 1408
1e3f42f0
TY
1409 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1410 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1411 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1412
3f6d8c8a 1413 if (*sptep & shadow_accessed_mask) {
e930bffe 1414 young = 1;
3f6d8c8a
XH
1415 clear_bit((ffs(shadow_accessed_mask) - 1),
1416 (unsigned long *)sptep);
e930bffe 1417 }
e930bffe 1418 }
f395302e
TY
1419out:
1420 /* @data has hva passed to kvm_age_hva(). */
1421 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1422 return young;
1423}
1424
8ee53820 1425static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1426 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1427{
1e3f42f0
TY
1428 u64 *sptep;
1429 struct rmap_iterator iter;
8ee53820
AA
1430 int young = 0;
1431
1432 /*
1433 * If there's no access bit in the secondary pte set by the
1434 * hardware it's up to gup-fast/gup to set the access bit in
1435 * the primary pte or in the page structure.
1436 */
1437 if (!shadow_accessed_mask)
1438 goto out;
1439
1e3f42f0
TY
1440 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1441 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1442 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1443
3f6d8c8a 1444 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1445 young = 1;
1446 break;
1447 }
8ee53820
AA
1448 }
1449out:
1450 return young;
1451}
1452
53a27b39
MT
1453#define RMAP_RECYCLE_THRESHOLD 1000
1454
852e3c19 1455static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1456{
1457 unsigned long *rmapp;
852e3c19
JR
1458 struct kvm_mmu_page *sp;
1459
1460 sp = page_header(__pa(spte));
53a27b39 1461
852e3c19 1462 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1463
048212d0 1464 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1465 kvm_flush_remote_tlbs(vcpu->kvm);
1466}
1467
e930bffe
AA
1468int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1469{
f395302e 1470 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1471}
1472
8ee53820
AA
1473int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1474{
1475 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1476}
1477
d6c69ee9 1478#ifdef MMU_DEBUG
47ad8e68 1479static int is_empty_shadow_page(u64 *spt)
6aa8b732 1480{
139bdb2d
AK
1481 u64 *pos;
1482 u64 *end;
1483
47ad8e68 1484 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1485 if (is_shadow_present_pte(*pos)) {
b8688d51 1486 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1487 pos, *pos);
6aa8b732 1488 return 0;
139bdb2d 1489 }
6aa8b732
AK
1490 return 1;
1491}
d6c69ee9 1492#endif
6aa8b732 1493
45221ab6
DH
1494/*
1495 * This value is the sum of all of the kvm instances's
1496 * kvm->arch.n_used_mmu_pages values. We need a global,
1497 * aggregate version in order to make the slab shrinker
1498 * faster
1499 */
1500static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1501{
1502 kvm->arch.n_used_mmu_pages += nr;
1503 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1504}
1505
834be0d8 1506static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1507{
4db35314 1508 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1509 hlist_del(&sp->hash_link);
bd4c86ea
XG
1510 list_del(&sp->link);
1511 free_page((unsigned long)sp->spt);
834be0d8
GN
1512 if (!sp->role.direct)
1513 free_page((unsigned long)sp->gfns);
e8ad9a70 1514 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1515}
1516
cea0f0e7
AK
1517static unsigned kvm_page_table_hashfn(gfn_t gfn)
1518{
1ae0a13d 1519 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1520}
1521
714b93da 1522static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1523 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1524{
cea0f0e7
AK
1525 if (!parent_pte)
1526 return;
cea0f0e7 1527
67052b35 1528 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1529}
1530
4db35314 1531static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1532 u64 *parent_pte)
1533{
67052b35 1534 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1535}
1536
bcdd9a93
XG
1537static void drop_parent_pte(struct kvm_mmu_page *sp,
1538 u64 *parent_pte)
1539{
1540 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1541 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1542}
1543
67052b35
XG
1544static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1545 u64 *parent_pte, int direct)
ad8cfbe3 1546{
67052b35 1547 struct kvm_mmu_page *sp;
7ddca7e4 1548
80feb89a
TY
1549 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1550 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1551 if (!direct)
80feb89a 1552 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1553 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1554
1555 /*
1556 * The active_mmu_pages list is the FIFO list, do not move the
1557 * page until it is zapped. kvm_zap_obsolete_pages depends on
1558 * this feature. See the comments in kvm_zap_obsolete_pages().
1559 */
67052b35 1560 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1561 sp->parent_ptes = 0;
1562 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1563 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1564 return sp;
ad8cfbe3
MT
1565}
1566
67052b35 1567static void mark_unsync(u64 *spte);
1047df1f 1568static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1569{
67052b35 1570 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1571}
1572
67052b35 1573static void mark_unsync(u64 *spte)
0074ff63 1574{
67052b35 1575 struct kvm_mmu_page *sp;
1047df1f 1576 unsigned int index;
0074ff63 1577
67052b35 1578 sp = page_header(__pa(spte));
1047df1f
XG
1579 index = spte - sp->spt;
1580 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1581 return;
1047df1f 1582 if (sp->unsync_children++)
0074ff63 1583 return;
1047df1f 1584 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1585}
1586
e8bc217a 1587static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1588 struct kvm_mmu_page *sp)
e8bc217a
MT
1589{
1590 return 1;
1591}
1592
a7052897
MT
1593static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1594{
1595}
1596
0f53b5b1
XG
1597static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1598 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1599 const void *pte)
0f53b5b1
XG
1600{
1601 WARN_ON(1);
1602}
1603
60c8aec6
MT
1604#define KVM_PAGE_ARRAY_NR 16
1605
1606struct kvm_mmu_pages {
1607 struct mmu_page_and_offset {
1608 struct kvm_mmu_page *sp;
1609 unsigned int idx;
1610 } page[KVM_PAGE_ARRAY_NR];
1611 unsigned int nr;
1612};
1613
cded19f3
HE
1614static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1615 int idx)
4731d4c7 1616{
60c8aec6 1617 int i;
4731d4c7 1618
60c8aec6
MT
1619 if (sp->unsync)
1620 for (i=0; i < pvec->nr; i++)
1621 if (pvec->page[i].sp == sp)
1622 return 0;
1623
1624 pvec->page[pvec->nr].sp = sp;
1625 pvec->page[pvec->nr].idx = idx;
1626 pvec->nr++;
1627 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1628}
1629
1630static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1631 struct kvm_mmu_pages *pvec)
1632{
1633 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1634
37178b8b 1635 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1636 struct kvm_mmu_page *child;
4731d4c7
MT
1637 u64 ent = sp->spt[i];
1638
7a8f1a74
XG
1639 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1640 goto clear_child_bitmap;
1641
1642 child = page_header(ent & PT64_BASE_ADDR_MASK);
1643
1644 if (child->unsync_children) {
1645 if (mmu_pages_add(pvec, child, i))
1646 return -ENOSPC;
1647
1648 ret = __mmu_unsync_walk(child, pvec);
1649 if (!ret)
1650 goto clear_child_bitmap;
1651 else if (ret > 0)
1652 nr_unsync_leaf += ret;
1653 else
1654 return ret;
1655 } else if (child->unsync) {
1656 nr_unsync_leaf++;
1657 if (mmu_pages_add(pvec, child, i))
1658 return -ENOSPC;
1659 } else
1660 goto clear_child_bitmap;
1661
1662 continue;
1663
1664clear_child_bitmap:
1665 __clear_bit(i, sp->unsync_child_bitmap);
1666 sp->unsync_children--;
1667 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1668 }
1669
4731d4c7 1670
60c8aec6
MT
1671 return nr_unsync_leaf;
1672}
1673
1674static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1675 struct kvm_mmu_pages *pvec)
1676{
1677 if (!sp->unsync_children)
1678 return 0;
1679
1680 mmu_pages_add(pvec, sp, 0);
1681 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1682}
1683
4731d4c7
MT
1684static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1685{
1686 WARN_ON(!sp->unsync);
5e1b3ddb 1687 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1688 sp->unsync = 0;
1689 --kvm->stat.mmu_unsync;
1690}
1691
7775834a
XG
1692static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1693 struct list_head *invalid_list);
1694static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1695 struct list_head *invalid_list);
4731d4c7 1696
f34d251d
XG
1697/*
1698 * NOTE: we should pay more attention on the zapped-obsolete page
1699 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1700 * since it has been deleted from active_mmu_pages but still can be found
1701 * at hast list.
1702 *
1703 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1704 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1705 * all the obsolete pages.
1706 */
1044b030
TY
1707#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1708 hlist_for_each_entry(_sp, \
1709 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1710 if ((_sp)->gfn != (_gfn)) {} else
1711
1712#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1713 for_each_gfn_sp(_kvm, _sp, _gfn) \
1714 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1715
f918b443 1716/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1717static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1718 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1719{
5b7e0102 1720 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1721 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1722 return 1;
1723 }
1724
f918b443 1725 if (clear_unsync)
1d9dc7e0 1726 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1727
a4a8e6f7 1728 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1729 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1730 return 1;
1731 }
1732
1733 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1734 return 0;
1735}
1736
1d9dc7e0
XG
1737static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1738 struct kvm_mmu_page *sp)
1739{
d98ba053 1740 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1741 int ret;
1742
d98ba053 1743 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1744 if (ret)
d98ba053
XG
1745 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1746
1d9dc7e0
XG
1747 return ret;
1748}
1749
e37fa785
XG
1750#ifdef CONFIG_KVM_MMU_AUDIT
1751#include "mmu_audit.c"
1752#else
1753static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1754static void mmu_audit_disable(void) { }
1755#endif
1756
d98ba053
XG
1757static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1758 struct list_head *invalid_list)
1d9dc7e0 1759{
d98ba053 1760 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1761}
1762
9f1a122f
XG
1763/* @gfn should be write-protected at the call site */
1764static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1765{
9f1a122f 1766 struct kvm_mmu_page *s;
d98ba053 1767 LIST_HEAD(invalid_list);
9f1a122f
XG
1768 bool flush = false;
1769
b67bfe0d 1770 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1771 if (!s->unsync)
9f1a122f
XG
1772 continue;
1773
1774 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1775 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1776 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1777 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1778 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1779 continue;
1780 }
9f1a122f
XG
1781 flush = true;
1782 }
1783
d98ba053 1784 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1785 if (flush)
1786 kvm_mmu_flush_tlb(vcpu);
1787}
1788
60c8aec6
MT
1789struct mmu_page_path {
1790 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1791 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1792};
1793
60c8aec6
MT
1794#define for_each_sp(pvec, sp, parents, i) \
1795 for (i = mmu_pages_next(&pvec, &parents, -1), \
1796 sp = pvec.page[i].sp; \
1797 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1798 i = mmu_pages_next(&pvec, &parents, i))
1799
cded19f3
HE
1800static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1801 struct mmu_page_path *parents,
1802 int i)
60c8aec6
MT
1803{
1804 int n;
1805
1806 for (n = i+1; n < pvec->nr; n++) {
1807 struct kvm_mmu_page *sp = pvec->page[n].sp;
1808
1809 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1810 parents->idx[0] = pvec->page[n].idx;
1811 return n;
1812 }
1813
1814 parents->parent[sp->role.level-2] = sp;
1815 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1816 }
1817
1818 return n;
1819}
1820
cded19f3 1821static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1822{
60c8aec6
MT
1823 struct kvm_mmu_page *sp;
1824 unsigned int level = 0;
1825
1826 do {
1827 unsigned int idx = parents->idx[level];
4731d4c7 1828
60c8aec6
MT
1829 sp = parents->parent[level];
1830 if (!sp)
1831 return;
1832
1833 --sp->unsync_children;
1834 WARN_ON((int)sp->unsync_children < 0);
1835 __clear_bit(idx, sp->unsync_child_bitmap);
1836 level++;
1837 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1838}
1839
60c8aec6
MT
1840static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1841 struct mmu_page_path *parents,
1842 struct kvm_mmu_pages *pvec)
4731d4c7 1843{
60c8aec6
MT
1844 parents->parent[parent->role.level-1] = NULL;
1845 pvec->nr = 0;
1846}
4731d4c7 1847
60c8aec6
MT
1848static void mmu_sync_children(struct kvm_vcpu *vcpu,
1849 struct kvm_mmu_page *parent)
1850{
1851 int i;
1852 struct kvm_mmu_page *sp;
1853 struct mmu_page_path parents;
1854 struct kvm_mmu_pages pages;
d98ba053 1855 LIST_HEAD(invalid_list);
60c8aec6
MT
1856
1857 kvm_mmu_pages_init(parent, &parents, &pages);
1858 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1859 bool protected = false;
b1a36821
MT
1860
1861 for_each_sp(pages, sp, parents, i)
1862 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1863
1864 if (protected)
1865 kvm_flush_remote_tlbs(vcpu->kvm);
1866
60c8aec6 1867 for_each_sp(pages, sp, parents, i) {
d98ba053 1868 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1869 mmu_pages_clear_parents(&parents);
1870 }
d98ba053 1871 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1872 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1873 kvm_mmu_pages_init(parent, &parents, &pages);
1874 }
4731d4c7
MT
1875}
1876
c3707958
XG
1877static void init_shadow_page_table(struct kvm_mmu_page *sp)
1878{
1879 int i;
1880
1881 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1882 sp->spt[i] = 0ull;
1883}
1884
a30f47cb
XG
1885static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1886{
1887 sp->write_flooding_count = 0;
1888}
1889
1890static void clear_sp_write_flooding_count(u64 *spte)
1891{
1892 struct kvm_mmu_page *sp = page_header(__pa(spte));
1893
1894 __clear_sp_write_flooding_count(sp);
1895}
1896
5304b8d3
XG
1897static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1898{
1899 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1900}
1901
cea0f0e7
AK
1902static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1903 gfn_t gfn,
1904 gva_t gaddr,
1905 unsigned level,
f6e2c02b 1906 int direct,
41074d07 1907 unsigned access,
f7d9c7b7 1908 u64 *parent_pte)
cea0f0e7
AK
1909{
1910 union kvm_mmu_page_role role;
cea0f0e7 1911 unsigned quadrant;
9f1a122f 1912 struct kvm_mmu_page *sp;
9f1a122f 1913 bool need_sync = false;
cea0f0e7 1914
a770f6f2 1915 role = vcpu->arch.mmu.base_role;
cea0f0e7 1916 role.level = level;
f6e2c02b 1917 role.direct = direct;
84b0c8c6 1918 if (role.direct)
5b7e0102 1919 role.cr4_pae = 0;
41074d07 1920 role.access = access;
c5a78f2b
JR
1921 if (!vcpu->arch.mmu.direct_map
1922 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1923 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1924 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1925 role.quadrant = quadrant;
1926 }
b67bfe0d 1927 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1928 if (is_obsolete_sp(vcpu->kvm, sp))
1929 continue;
1930
7ae680eb
XG
1931 if (!need_sync && sp->unsync)
1932 need_sync = true;
4731d4c7 1933
7ae680eb
XG
1934 if (sp->role.word != role.word)
1935 continue;
4731d4c7 1936
7ae680eb
XG
1937 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1938 break;
e02aa901 1939
7ae680eb
XG
1940 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1941 if (sp->unsync_children) {
a8eeb04a 1942 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1943 kvm_mmu_mark_parents_unsync(sp);
1944 } else if (sp->unsync)
1945 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1946
a30f47cb 1947 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1948 trace_kvm_mmu_get_page(sp, false);
1949 return sp;
1950 }
dfc5aa00 1951 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1952 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1953 if (!sp)
1954 return sp;
4db35314
AK
1955 sp->gfn = gfn;
1956 sp->role = role;
7ae680eb
XG
1957 hlist_add_head(&sp->hash_link,
1958 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1959 if (!direct) {
b1a36821
MT
1960 if (rmap_write_protect(vcpu->kvm, gfn))
1961 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1962 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1963 kvm_sync_pages(vcpu, gfn);
1964
4731d4c7
MT
1965 account_shadowed(vcpu->kvm, gfn);
1966 }
5304b8d3 1967 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1968 init_shadow_page_table(sp);
f691fe1d 1969 trace_kvm_mmu_get_page(sp, true);
4db35314 1970 return sp;
cea0f0e7
AK
1971}
1972
2d11123a
AK
1973static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1974 struct kvm_vcpu *vcpu, u64 addr)
1975{
1976 iterator->addr = addr;
1977 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1978 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1979
1980 if (iterator->level == PT64_ROOT_LEVEL &&
1981 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1982 !vcpu->arch.mmu.direct_map)
1983 --iterator->level;
1984
2d11123a
AK
1985 if (iterator->level == PT32E_ROOT_LEVEL) {
1986 iterator->shadow_addr
1987 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1988 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1989 --iterator->level;
1990 if (!iterator->shadow_addr)
1991 iterator->level = 0;
1992 }
1993}
1994
1995static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1996{
1997 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1998 return false;
4d88954d 1999
2d11123a
AK
2000 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2001 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2002 return true;
2003}
2004
c2a2ac2b
XG
2005static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2006 u64 spte)
2d11123a 2007{
c2a2ac2b 2008 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2009 iterator->level = 0;
2010 return;
2011 }
2012
c2a2ac2b 2013 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2014 --iterator->level;
2015}
2016
c2a2ac2b
XG
2017static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2018{
2019 return __shadow_walk_next(iterator, *iterator->sptep);
2020}
2021
32ef26a3
AK
2022static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
2023{
2024 u64 spte;
2025
24db2734
XG
2026 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
2027 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
2028
1df9f2dc 2029 mmu_spte_set(sptep, spte);
32ef26a3
AK
2030}
2031
a357bd22
AK
2032static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2033 unsigned direct_access)
2034{
2035 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2036 struct kvm_mmu_page *child;
2037
2038 /*
2039 * For the direct sp, if the guest pte's dirty bit
2040 * changed form clean to dirty, it will corrupt the
2041 * sp's access: allow writable in the read-only sp,
2042 * so we should update the spte at this point to get
2043 * a new sp with the correct access.
2044 */
2045 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2046 if (child->role.access == direct_access)
2047 return;
2048
bcdd9a93 2049 drop_parent_pte(child, sptep);
a357bd22
AK
2050 kvm_flush_remote_tlbs(vcpu->kvm);
2051 }
2052}
2053
505aef8f 2054static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2055 u64 *spte)
2056{
2057 u64 pte;
2058 struct kvm_mmu_page *child;
2059
2060 pte = *spte;
2061 if (is_shadow_present_pte(pte)) {
505aef8f 2062 if (is_last_spte(pte, sp->role.level)) {
c3707958 2063 drop_spte(kvm, spte);
505aef8f
XG
2064 if (is_large_pte(pte))
2065 --kvm->stat.lpages;
2066 } else {
38e3b2b2 2067 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2068 drop_parent_pte(child, spte);
38e3b2b2 2069 }
505aef8f
XG
2070 return true;
2071 }
2072
2073 if (is_mmio_spte(pte))
ce88decf 2074 mmu_spte_clear_no_track(spte);
c3707958 2075
505aef8f 2076 return false;
38e3b2b2
XG
2077}
2078
90cb0529 2079static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2080 struct kvm_mmu_page *sp)
a436036b 2081{
697fe2e2 2082 unsigned i;
697fe2e2 2083
38e3b2b2
XG
2084 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2085 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2086}
2087
4db35314 2088static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2089{
4db35314 2090 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2091}
2092
31aa2b44 2093static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2094{
1e3f42f0
TY
2095 u64 *sptep;
2096 struct rmap_iterator iter;
a436036b 2097
1e3f42f0
TY
2098 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2099 drop_parent_pte(sp, sptep);
31aa2b44
AK
2100}
2101
60c8aec6 2102static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2103 struct kvm_mmu_page *parent,
2104 struct list_head *invalid_list)
4731d4c7 2105{
60c8aec6
MT
2106 int i, zapped = 0;
2107 struct mmu_page_path parents;
2108 struct kvm_mmu_pages pages;
4731d4c7 2109
60c8aec6 2110 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2111 return 0;
60c8aec6
MT
2112
2113 kvm_mmu_pages_init(parent, &parents, &pages);
2114 while (mmu_unsync_walk(parent, &pages)) {
2115 struct kvm_mmu_page *sp;
2116
2117 for_each_sp(pages, sp, parents, i) {
7775834a 2118 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2119 mmu_pages_clear_parents(&parents);
77662e00 2120 zapped++;
60c8aec6 2121 }
60c8aec6
MT
2122 kvm_mmu_pages_init(parent, &parents, &pages);
2123 }
2124
2125 return zapped;
4731d4c7
MT
2126}
2127
7775834a
XG
2128static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2129 struct list_head *invalid_list)
31aa2b44 2130{
4731d4c7 2131 int ret;
f691fe1d 2132
7775834a 2133 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2134 ++kvm->stat.mmu_shadow_zapped;
7775834a 2135 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2136 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2137 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2138
f6e2c02b 2139 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2140 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2141
4731d4c7
MT
2142 if (sp->unsync)
2143 kvm_unlink_unsync_page(kvm, sp);
4db35314 2144 if (!sp->root_count) {
54a4f023
GJ
2145 /* Count self */
2146 ret++;
7775834a 2147 list_move(&sp->link, invalid_list);
aa6bd187 2148 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2149 } else {
5b5c6a5a 2150 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2151
2152 /*
2153 * The obsolete pages can not be used on any vcpus.
2154 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2155 */
2156 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2157 kvm_reload_remote_mmus(kvm);
2e53d63a 2158 }
7775834a
XG
2159
2160 sp->role.invalid = 1;
4731d4c7 2161 return ret;
a436036b
AK
2162}
2163
7775834a
XG
2164static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2165 struct list_head *invalid_list)
2166{
945315b9 2167 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2168
2169 if (list_empty(invalid_list))
2170 return;
2171
c142786c
AK
2172 /*
2173 * wmb: make sure everyone sees our modifications to the page tables
2174 * rmb: make sure we see changes to vcpu->mode
2175 */
2176 smp_mb();
4f022648 2177
c142786c
AK
2178 /*
2179 * Wait for all vcpus to exit guest mode and/or lockless shadow
2180 * page table walks.
2181 */
2182 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2183
945315b9 2184 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2185 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2186 kvm_mmu_free_page(sp);
945315b9 2187 }
7775834a
XG
2188}
2189
5da59607
TY
2190static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2191 struct list_head *invalid_list)
2192{
2193 struct kvm_mmu_page *sp;
2194
2195 if (list_empty(&kvm->arch.active_mmu_pages))
2196 return false;
2197
2198 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2199 struct kvm_mmu_page, link);
2200 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2201
2202 return true;
2203}
2204
82ce2c96
IE
2205/*
2206 * Changing the number of mmu pages allocated to the vm
49d5ca26 2207 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2208 */
49d5ca26 2209void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2210{
d98ba053 2211 LIST_HEAD(invalid_list);
82ce2c96 2212
b34cb590
TY
2213 spin_lock(&kvm->mmu_lock);
2214
49d5ca26 2215 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2216 /* Need to free some mmu pages to achieve the goal. */
2217 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2218 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2219 break;
82ce2c96 2220
aa6bd187 2221 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2222 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2223 }
82ce2c96 2224
49d5ca26 2225 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2226
2227 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2228}
2229
1cb3f3ae 2230int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2231{
4db35314 2232 struct kvm_mmu_page *sp;
d98ba053 2233 LIST_HEAD(invalid_list);
a436036b
AK
2234 int r;
2235
9ad17b10 2236 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2237 r = 0;
1cb3f3ae 2238 spin_lock(&kvm->mmu_lock);
b67bfe0d 2239 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2240 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2241 sp->role.word);
2242 r = 1;
f41d335a 2243 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2244 }
d98ba053 2245 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2246 spin_unlock(&kvm->mmu_lock);
2247
a436036b 2248 return r;
cea0f0e7 2249}
1cb3f3ae 2250EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2251
74be52e3
SY
2252/*
2253 * The function is based on mtrr_type_lookup() in
2254 * arch/x86/kernel/cpu/mtrr/generic.c
2255 */
2256static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2257 u64 start, u64 end)
2258{
2259 int i;
2260 u64 base, mask;
2261 u8 prev_match, curr_match;
2262 int num_var_ranges = KVM_NR_VAR_MTRR;
2263
2264 if (!mtrr_state->enabled)
2265 return 0xFF;
2266
2267 /* Make end inclusive end, instead of exclusive */
2268 end--;
2269
2270 /* Look in fixed ranges. Just return the type as per start */
2271 if (mtrr_state->have_fixed && (start < 0x100000)) {
2272 int idx;
2273
2274 if (start < 0x80000) {
2275 idx = 0;
2276 idx += (start >> 16);
2277 return mtrr_state->fixed_ranges[idx];
2278 } else if (start < 0xC0000) {
2279 idx = 1 * 8;
2280 idx += ((start - 0x80000) >> 14);
2281 return mtrr_state->fixed_ranges[idx];
2282 } else if (start < 0x1000000) {
2283 idx = 3 * 8;
2284 idx += ((start - 0xC0000) >> 12);
2285 return mtrr_state->fixed_ranges[idx];
2286 }
2287 }
2288
2289 /*
2290 * Look in variable ranges
2291 * Look of multiple ranges matching this address and pick type
2292 * as per MTRR precedence
2293 */
2294 if (!(mtrr_state->enabled & 2))
2295 return mtrr_state->def_type;
2296
2297 prev_match = 0xFF;
2298 for (i = 0; i < num_var_ranges; ++i) {
2299 unsigned short start_state, end_state;
2300
2301 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2302 continue;
2303
2304 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2305 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2306 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2307 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2308
2309 start_state = ((start & mask) == (base & mask));
2310 end_state = ((end & mask) == (base & mask));
2311 if (start_state != end_state)
2312 return 0xFE;
2313
2314 if ((start & mask) != (base & mask))
2315 continue;
2316
2317 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2318 if (prev_match == 0xFF) {
2319 prev_match = curr_match;
2320 continue;
2321 }
2322
2323 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2324 curr_match == MTRR_TYPE_UNCACHABLE)
2325 return MTRR_TYPE_UNCACHABLE;
2326
2327 if ((prev_match == MTRR_TYPE_WRBACK &&
2328 curr_match == MTRR_TYPE_WRTHROUGH) ||
2329 (prev_match == MTRR_TYPE_WRTHROUGH &&
2330 curr_match == MTRR_TYPE_WRBACK)) {
2331 prev_match = MTRR_TYPE_WRTHROUGH;
2332 curr_match = MTRR_TYPE_WRTHROUGH;
2333 }
2334
2335 if (prev_match != curr_match)
2336 return MTRR_TYPE_UNCACHABLE;
2337 }
2338
2339 if (prev_match != 0xFF)
2340 return prev_match;
2341
2342 return mtrr_state->def_type;
2343}
2344
4b12f0de 2345u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2346{
2347 u8 mtrr;
2348
2349 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2350 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2351 if (mtrr == 0xfe || mtrr == 0xff)
2352 mtrr = MTRR_TYPE_WRBACK;
2353 return mtrr;
2354}
4b12f0de 2355EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2356
9cf5cf5a
XG
2357static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2358{
2359 trace_kvm_mmu_unsync_page(sp);
2360 ++vcpu->kvm->stat.mmu_unsync;
2361 sp->unsync = 1;
2362
2363 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2364}
2365
2366static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2367{
4731d4c7 2368 struct kvm_mmu_page *s;
9cf5cf5a 2369
b67bfe0d 2370 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2371 if (s->unsync)
4731d4c7 2372 continue;
9cf5cf5a
XG
2373 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2374 __kvm_unsync_page(vcpu, s);
4731d4c7 2375 }
4731d4c7
MT
2376}
2377
2378static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2379 bool can_unsync)
2380{
9cf5cf5a 2381 struct kvm_mmu_page *s;
9cf5cf5a
XG
2382 bool need_unsync = false;
2383
b67bfe0d 2384 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2385 if (!can_unsync)
2386 return 1;
2387
9cf5cf5a 2388 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2389 return 1;
9cf5cf5a 2390
9bb4f6b1 2391 if (!s->unsync)
9cf5cf5a 2392 need_unsync = true;
4731d4c7 2393 }
9cf5cf5a
XG
2394 if (need_unsync)
2395 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2396 return 0;
2397}
2398
d555c333 2399static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2400 unsigned pte_access, int level,
c2d0ee46 2401 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2402 bool can_unsync, bool host_writable)
1c4f1fd6 2403{
6e7d0354 2404 u64 spte;
1e73f9dd 2405 int ret = 0;
64d4d521 2406
f2fd125d 2407 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2408 return 0;
2409
982c2565 2410 spte = PT_PRESENT_MASK;
947da538 2411 if (!speculative)
3201b5d9 2412 spte |= shadow_accessed_mask;
640d9b0d 2413
7b52345e
SY
2414 if (pte_access & ACC_EXEC_MASK)
2415 spte |= shadow_x_mask;
2416 else
2417 spte |= shadow_nx_mask;
49fde340 2418
1c4f1fd6 2419 if (pte_access & ACC_USER_MASK)
7b52345e 2420 spte |= shadow_user_mask;
49fde340 2421
852e3c19 2422 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2423 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2424 if (tdp_enabled)
4b12f0de
SY
2425 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2426 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2427
9bdbba13 2428 if (host_writable)
1403283a 2429 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2430 else
2431 pte_access &= ~ACC_WRITE_MASK;
1403283a 2432
35149e21 2433 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2434
c2288505 2435 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2436
c2193463 2437 /*
7751babd
XG
2438 * Other vcpu creates new sp in the window between
2439 * mapping_level() and acquiring mmu-lock. We can
2440 * allow guest to retry the access, the mapping can
2441 * be fixed if guest refault.
c2193463 2442 */
852e3c19 2443 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2444 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2445 goto done;
38187c83 2446
49fde340 2447 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2448
ecc5589f
MT
2449 /*
2450 * Optimization: for pte sync, if spte was writable the hash
2451 * lookup is unnecessary (and expensive). Write protection
2452 * is responsibility of mmu_get_page / kvm_sync_page.
2453 * Same reasoning can be applied to dirty page accounting.
2454 */
8dae4445 2455 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2456 goto set_pte;
2457
4731d4c7 2458 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2459 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2460 __func__, gfn);
1e73f9dd 2461 ret = 1;
1c4f1fd6 2462 pte_access &= ~ACC_WRITE_MASK;
49fde340 2463 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2464 }
2465 }
2466
1c4f1fd6
AK
2467 if (pte_access & ACC_WRITE_MASK)
2468 mark_page_dirty(vcpu->kvm, gfn);
2469
38187c83 2470set_pte:
6e7d0354 2471 if (mmu_spte_update(sptep, spte))
b330aa0c 2472 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2473done:
1e73f9dd
MT
2474 return ret;
2475}
2476
d555c333 2477static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2478 unsigned pte_access, int write_fault, int *emulate,
2479 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2480 bool host_writable)
1e73f9dd
MT
2481{
2482 int was_rmapped = 0;
53a27b39 2483 int rmap_count;
1e73f9dd 2484
f7616203
XG
2485 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2486 *sptep, write_fault, gfn);
1e73f9dd 2487
d555c333 2488 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2489 /*
2490 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2491 * the parent of the now unreachable PTE.
2492 */
852e3c19
JR
2493 if (level > PT_PAGE_TABLE_LEVEL &&
2494 !is_large_pte(*sptep)) {
1e73f9dd 2495 struct kvm_mmu_page *child;
d555c333 2496 u64 pte = *sptep;
1e73f9dd
MT
2497
2498 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2499 drop_parent_pte(child, sptep);
3be2264b 2500 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2501 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2502 pgprintk("hfn old %llx new %llx\n",
d555c333 2503 spte_to_pfn(*sptep), pfn);
c3707958 2504 drop_spte(vcpu->kvm, sptep);
91546356 2505 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2506 } else
2507 was_rmapped = 1;
1e73f9dd 2508 }
852e3c19 2509
c2288505
XG
2510 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2511 true, host_writable)) {
1e73f9dd 2512 if (write_fault)
b90a0e6c 2513 *emulate = 1;
5304efde 2514 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2515 }
1e73f9dd 2516
ce88decf
XG
2517 if (unlikely(is_mmio_spte(*sptep) && emulate))
2518 *emulate = 1;
2519
d555c333 2520 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2521 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2522 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2523 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2524 *sptep, sptep);
d555c333 2525 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2526 ++vcpu->kvm->stat.lpages;
2527
ffb61bb3 2528 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2529 if (!was_rmapped) {
2530 rmap_count = rmap_add(vcpu, sptep, gfn);
2531 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2532 rmap_recycle(vcpu, sptep, gfn);
2533 }
1c4f1fd6 2534 }
cb9aaa30 2535
f3ac1a4b 2536 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2537}
2538
6aa8b732
AK
2539static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2540{
e676505a 2541 mmu_free_roots(vcpu);
6aa8b732
AK
2542}
2543
a052b42b
XG
2544static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2545{
2546 int bit7;
2547
2548 bit7 = (gpte >> 7) & 1;
2549 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2550}
2551
957ed9ef
XG
2552static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2553 bool no_dirty_log)
2554{
2555 struct kvm_memory_slot *slot;
957ed9ef 2556
5d163b1c 2557 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2558 if (!slot)
6c8ee57b 2559 return KVM_PFN_ERR_FAULT;
957ed9ef 2560
037d92dc 2561 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2562}
2563
a052b42b
XG
2564static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2565 struct kvm_mmu_page *sp, u64 *spte,
2566 u64 gpte)
2567{
2568 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2569 goto no_present;
2570
2571 if (!is_present_gpte(gpte))
2572 goto no_present;
2573
2574 if (!(gpte & PT_ACCESSED_MASK))
2575 goto no_present;
2576
2577 return false;
2578
2579no_present:
2580 drop_spte(vcpu->kvm, spte);
2581 return true;
2582}
2583
957ed9ef
XG
2584static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2585 struct kvm_mmu_page *sp,
2586 u64 *start, u64 *end)
2587{
2588 struct page *pages[PTE_PREFETCH_NUM];
2589 unsigned access = sp->role.access;
2590 int i, ret;
2591 gfn_t gfn;
2592
2593 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2594 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2595 return -1;
2596
2597 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2598 if (ret <= 0)
2599 return -1;
2600
2601 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2602 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2603 sp->role.level, gfn, page_to_pfn(pages[i]),
2604 true, true);
957ed9ef
XG
2605
2606 return 0;
2607}
2608
2609static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2610 struct kvm_mmu_page *sp, u64 *sptep)
2611{
2612 u64 *spte, *start = NULL;
2613 int i;
2614
2615 WARN_ON(!sp->role.direct);
2616
2617 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2618 spte = sp->spt + i;
2619
2620 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2621 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2622 if (!start)
2623 continue;
2624 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2625 break;
2626 start = NULL;
2627 } else if (!start)
2628 start = spte;
2629 }
2630}
2631
2632static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2633{
2634 struct kvm_mmu_page *sp;
2635
2636 /*
2637 * Since it's no accessed bit on EPT, it's no way to
2638 * distinguish between actually accessed translations
2639 * and prefetched, so disable pte prefetch if EPT is
2640 * enabled.
2641 */
2642 if (!shadow_accessed_mask)
2643 return;
2644
2645 sp = page_header(__pa(sptep));
2646 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2647 return;
2648
2649 __direct_pte_prefetch(vcpu, sp, sptep);
2650}
2651
9f652d21 2652static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2653 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2654 bool prefault)
140754bc 2655{
9f652d21 2656 struct kvm_shadow_walk_iterator iterator;
140754bc 2657 struct kvm_mmu_page *sp;
b90a0e6c 2658 int emulate = 0;
140754bc 2659 gfn_t pseudo_gfn;
6aa8b732 2660
9f652d21 2661 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2662 if (iterator.level == level) {
f7616203 2663 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2664 write, &emulate, level, gfn, pfn,
2665 prefault, map_writable);
957ed9ef 2666 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2667 ++vcpu->stat.pf_fixed;
2668 break;
6aa8b732
AK
2669 }
2670
c3707958 2671 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2672 u64 base_addr = iterator.addr;
2673
2674 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2675 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2676 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2677 iterator.level - 1,
2678 1, ACC_ALL, iterator.sptep);
140754bc 2679
24db2734 2680 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2681 }
2682 }
b90a0e6c 2683 return emulate;
6aa8b732
AK
2684}
2685
77db5cbd 2686static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2687{
77db5cbd
HY
2688 siginfo_t info;
2689
2690 info.si_signo = SIGBUS;
2691 info.si_errno = 0;
2692 info.si_code = BUS_MCEERR_AR;
2693 info.si_addr = (void __user *)address;
2694 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2695
77db5cbd 2696 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2697}
2698
d7c55201 2699static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2700{
4d8b81ab
XG
2701 /*
2702 * Do not cache the mmio info caused by writing the readonly gfn
2703 * into the spte otherwise read access on readonly gfn also can
2704 * caused mmio page fault and treat it as mmio access.
2705 * Return 1 to tell kvm to emulate it.
2706 */
2707 if (pfn == KVM_PFN_ERR_RO_FAULT)
2708 return 1;
2709
e6c1502b 2710 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2711 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2712 return 0;
d7c55201 2713 }
edba23e5 2714
d7c55201 2715 return -EFAULT;
bf998156
HY
2716}
2717
936a5fe6
AA
2718static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2719 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2720{
2721 pfn_t pfn = *pfnp;
2722 gfn_t gfn = *gfnp;
2723 int level = *levelp;
2724
2725 /*
2726 * Check if it's a transparent hugepage. If this would be an
2727 * hugetlbfs page, level wouldn't be set to
2728 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2729 * here.
2730 */
81c52c56 2731 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2732 level == PT_PAGE_TABLE_LEVEL &&
2733 PageTransCompound(pfn_to_page(pfn)) &&
2734 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2735 unsigned long mask;
2736 /*
2737 * mmu_notifier_retry was successful and we hold the
2738 * mmu_lock here, so the pmd can't become splitting
2739 * from under us, and in turn
2740 * __split_huge_page_refcount() can't run from under
2741 * us and we can safely transfer the refcount from
2742 * PG_tail to PG_head as we switch the pfn to tail to
2743 * head.
2744 */
2745 *levelp = level = PT_DIRECTORY_LEVEL;
2746 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2747 VM_BUG_ON((gfn & mask) != (pfn & mask));
2748 if (pfn & mask) {
2749 gfn &= ~mask;
2750 *gfnp = gfn;
2751 kvm_release_pfn_clean(pfn);
2752 pfn &= ~mask;
c3586667 2753 kvm_get_pfn(pfn);
936a5fe6
AA
2754 *pfnp = pfn;
2755 }
2756 }
2757}
2758
d7c55201
XG
2759static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2760 pfn_t pfn, unsigned access, int *ret_val)
2761{
2762 bool ret = true;
2763
2764 /* The pfn is invalid, report the error! */
81c52c56 2765 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2766 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2767 goto exit;
2768 }
2769
ce88decf 2770 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2771 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2772
2773 ret = false;
2774exit:
2775 return ret;
2776}
2777
c7ba5b48
XG
2778static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2779{
2780 /*
2781 * #PF can be fast only if the shadow page table is present and it
2782 * is caused by write-protect, that means we just need change the
2783 * W bit of the spte which can be done out of mmu-lock.
2784 */
2785 if (!(error_code & PFERR_PRESENT_MASK) ||
2786 !(error_code & PFERR_WRITE_MASK))
2787 return false;
2788
2789 return true;
2790}
2791
2792static bool
2793fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2794{
2795 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2796 gfn_t gfn;
2797
2798 WARN_ON(!sp->role.direct);
2799
2800 /*
2801 * The gfn of direct spte is stable since it is calculated
2802 * by sp->gfn.
2803 */
2804 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2805
2806 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2807 mark_page_dirty(vcpu->kvm, gfn);
2808
2809 return true;
2810}
2811
2812/*
2813 * Return value:
2814 * - true: let the vcpu to access on the same address again.
2815 * - false: let the real page fault path to fix it.
2816 */
2817static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2818 u32 error_code)
2819{
2820 struct kvm_shadow_walk_iterator iterator;
2821 bool ret = false;
2822 u64 spte = 0ull;
2823
2824 if (!page_fault_can_be_fast(vcpu, error_code))
2825 return false;
2826
2827 walk_shadow_page_lockless_begin(vcpu);
2828 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2829 if (!is_shadow_present_pte(spte) || iterator.level < level)
2830 break;
2831
2832 /*
2833 * If the mapping has been changed, let the vcpu fault on the
2834 * same address again.
2835 */
2836 if (!is_rmap_spte(spte)) {
2837 ret = true;
2838 goto exit;
2839 }
2840
2841 if (!is_last_spte(spte, level))
2842 goto exit;
2843
2844 /*
2845 * Check if it is a spurious fault caused by TLB lazily flushed.
2846 *
2847 * Need not check the access of upper level table entries since
2848 * they are always ACC_ALL.
2849 */
2850 if (is_writable_pte(spte)) {
2851 ret = true;
2852 goto exit;
2853 }
2854
2855 /*
2856 * Currently, to simplify the code, only the spte write-protected
2857 * by dirty-log can be fast fixed.
2858 */
2859 if (!spte_is_locklessly_modifiable(spte))
2860 goto exit;
2861
2862 /*
2863 * Currently, fast page fault only works for direct mapping since
2864 * the gfn is not stable for indirect shadow page.
2865 * See Documentation/virtual/kvm/locking.txt to get more detail.
2866 */
2867 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2868exit:
a72faf25
XG
2869 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2870 spte, ret);
c7ba5b48
XG
2871 walk_shadow_page_lockless_end(vcpu);
2872
2873 return ret;
2874}
2875
78b2c54a 2876static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2877 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2878static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2879
c7ba5b48
XG
2880static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2881 gfn_t gfn, bool prefault)
10589a46
MT
2882{
2883 int r;
852e3c19 2884 int level;
936a5fe6 2885 int force_pt_level;
35149e21 2886 pfn_t pfn;
e930bffe 2887 unsigned long mmu_seq;
c7ba5b48 2888 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2889
936a5fe6
AA
2890 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2891 if (likely(!force_pt_level)) {
2892 level = mapping_level(vcpu, gfn);
2893 /*
2894 * This path builds a PAE pagetable - so we can map
2895 * 2mb pages at maximum. Therefore check if the level
2896 * is larger than that.
2897 */
2898 if (level > PT_DIRECTORY_LEVEL)
2899 level = PT_DIRECTORY_LEVEL;
852e3c19 2900
936a5fe6
AA
2901 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2902 } else
2903 level = PT_PAGE_TABLE_LEVEL;
05da4558 2904
c7ba5b48
XG
2905 if (fast_page_fault(vcpu, v, level, error_code))
2906 return 0;
2907
e930bffe 2908 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2909 smp_rmb();
060c2abe 2910
78b2c54a 2911 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2912 return 0;
aaee2c94 2913
d7c55201
XG
2914 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2915 return r;
d196e343 2916
aaee2c94 2917 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2918 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2919 goto out_unlock;
450e0b41 2920 make_mmu_pages_available(vcpu);
936a5fe6
AA
2921 if (likely(!force_pt_level))
2922 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2923 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2924 prefault);
aaee2c94
MT
2925 spin_unlock(&vcpu->kvm->mmu_lock);
2926
aaee2c94 2927
10589a46 2928 return r;
e930bffe
AA
2929
2930out_unlock:
2931 spin_unlock(&vcpu->kvm->mmu_lock);
2932 kvm_release_pfn_clean(pfn);
2933 return 0;
10589a46
MT
2934}
2935
2936
17ac10ad
AK
2937static void mmu_free_roots(struct kvm_vcpu *vcpu)
2938{
2939 int i;
4db35314 2940 struct kvm_mmu_page *sp;
d98ba053 2941 LIST_HEAD(invalid_list);
17ac10ad 2942
ad312c7c 2943 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2944 return;
35af577a 2945
81407ca5
JR
2946 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2947 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2948 vcpu->arch.mmu.direct_map)) {
ad312c7c 2949 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2950
35af577a 2951 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2952 sp = page_header(root);
2953 --sp->root_count;
d98ba053
XG
2954 if (!sp->root_count && sp->role.invalid) {
2955 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2956 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2957 }
aaee2c94 2958 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2959 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2960 return;
2961 }
35af577a
GN
2962
2963 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2964 for (i = 0; i < 4; ++i) {
ad312c7c 2965 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2966
417726a3 2967 if (root) {
417726a3 2968 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2969 sp = page_header(root);
2970 --sp->root_count;
2e53d63a 2971 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2972 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2973 &invalid_list);
417726a3 2974 }
ad312c7c 2975 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2976 }
d98ba053 2977 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2978 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2979 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2980}
2981
8986ecc0
MT
2982static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2983{
2984 int ret = 0;
2985
2986 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2987 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2988 ret = 1;
2989 }
2990
2991 return ret;
2992}
2993
651dd37a
JR
2994static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2995{
2996 struct kvm_mmu_page *sp;
7ebaf15e 2997 unsigned i;
651dd37a
JR
2998
2999 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3000 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3001 make_mmu_pages_available(vcpu);
651dd37a
JR
3002 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3003 1, ACC_ALL, NULL);
3004 ++sp->root_count;
3005 spin_unlock(&vcpu->kvm->mmu_lock);
3006 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3007 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3008 for (i = 0; i < 4; ++i) {
3009 hpa_t root = vcpu->arch.mmu.pae_root[i];
3010
3011 ASSERT(!VALID_PAGE(root));
3012 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3013 make_mmu_pages_available(vcpu);
649497d1
AK
3014 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3015 i << 30,
651dd37a
JR
3016 PT32_ROOT_LEVEL, 1, ACC_ALL,
3017 NULL);
3018 root = __pa(sp->spt);
3019 ++sp->root_count;
3020 spin_unlock(&vcpu->kvm->mmu_lock);
3021 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3022 }
6292757f 3023 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3024 } else
3025 BUG();
3026
3027 return 0;
3028}
3029
3030static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3031{
4db35314 3032 struct kvm_mmu_page *sp;
81407ca5
JR
3033 u64 pdptr, pm_mask;
3034 gfn_t root_gfn;
3035 int i;
3bb65a22 3036
5777ed34 3037 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3038
651dd37a
JR
3039 if (mmu_check_root(vcpu, root_gfn))
3040 return 1;
3041
3042 /*
3043 * Do we shadow a long mode page table? If so we need to
3044 * write-protect the guests page table root.
3045 */
3046 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3047 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3048
3049 ASSERT(!VALID_PAGE(root));
651dd37a 3050
8facbbff 3051 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3052 make_mmu_pages_available(vcpu);
651dd37a
JR
3053 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3054 0, ACC_ALL, NULL);
4db35314
AK
3055 root = __pa(sp->spt);
3056 ++sp->root_count;
8facbbff 3057 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3058 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3059 return 0;
17ac10ad 3060 }
f87f9288 3061
651dd37a
JR
3062 /*
3063 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3064 * or a PAE 3-level page table. In either case we need to be aware that
3065 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3066 */
81407ca5
JR
3067 pm_mask = PT_PRESENT_MASK;
3068 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3069 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3070
17ac10ad 3071 for (i = 0; i < 4; ++i) {
ad312c7c 3072 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3073
3074 ASSERT(!VALID_PAGE(root));
ad312c7c 3075 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3076 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3077 if (!is_present_gpte(pdptr)) {
ad312c7c 3078 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3079 continue;
3080 }
6de4f3ad 3081 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3082 if (mmu_check_root(vcpu, root_gfn))
3083 return 1;
5a7388c2 3084 }
8facbbff 3085 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3086 make_mmu_pages_available(vcpu);
4db35314 3087 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3088 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3089 ACC_ALL, NULL);
4db35314
AK
3090 root = __pa(sp->spt);
3091 ++sp->root_count;
8facbbff
AK
3092 spin_unlock(&vcpu->kvm->mmu_lock);
3093
81407ca5 3094 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3095 }
6292757f 3096 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3097
3098 /*
3099 * If we shadow a 32 bit page table with a long mode page
3100 * table we enter this path.
3101 */
3102 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3103 if (vcpu->arch.mmu.lm_root == NULL) {
3104 /*
3105 * The additional page necessary for this is only
3106 * allocated on demand.
3107 */
3108
3109 u64 *lm_root;
3110
3111 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3112 if (lm_root == NULL)
3113 return 1;
3114
3115 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3116
3117 vcpu->arch.mmu.lm_root = lm_root;
3118 }
3119
3120 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3121 }
3122
8986ecc0 3123 return 0;
17ac10ad
AK
3124}
3125
651dd37a
JR
3126static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3127{
3128 if (vcpu->arch.mmu.direct_map)
3129 return mmu_alloc_direct_roots(vcpu);
3130 else
3131 return mmu_alloc_shadow_roots(vcpu);
3132}
3133
0ba73cda
MT
3134static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3135{
3136 int i;
3137 struct kvm_mmu_page *sp;
3138
81407ca5
JR
3139 if (vcpu->arch.mmu.direct_map)
3140 return;
3141
0ba73cda
MT
3142 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3143 return;
6903074c 3144
bebb106a 3145 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3146 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3147 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3148 hpa_t root = vcpu->arch.mmu.root_hpa;
3149 sp = page_header(root);
3150 mmu_sync_children(vcpu, sp);
0375f7fa 3151 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3152 return;
3153 }
3154 for (i = 0; i < 4; ++i) {
3155 hpa_t root = vcpu->arch.mmu.pae_root[i];
3156
8986ecc0 3157 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3158 root &= PT64_BASE_ADDR_MASK;
3159 sp = page_header(root);
3160 mmu_sync_children(vcpu, sp);
3161 }
3162 }
0375f7fa 3163 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3164}
3165
3166void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3167{
3168 spin_lock(&vcpu->kvm->mmu_lock);
3169 mmu_sync_roots(vcpu);
6cffe8ca 3170 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3171}
3172
1871c602 3173static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3174 u32 access, struct x86_exception *exception)
6aa8b732 3175{
ab9ae313
AK
3176 if (exception)
3177 exception->error_code = 0;
6aa8b732
AK
3178 return vaddr;
3179}
3180
6539e738 3181static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3182 u32 access,
3183 struct x86_exception *exception)
6539e738 3184{
ab9ae313
AK
3185 if (exception)
3186 exception->error_code = 0;
6539e738
JR
3187 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3188}
3189
ce88decf
XG
3190static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3191{
3192 if (direct)
3193 return vcpu_match_mmio_gpa(vcpu, addr);
3194
3195 return vcpu_match_mmio_gva(vcpu, addr);
3196}
3197
3198
3199/*
3200 * On direct hosts, the last spte is only allows two states
3201 * for mmio page fault:
3202 * - It is the mmio spte
3203 * - It is zapped or it is being zapped.
3204 *
3205 * This function completely checks the spte when the last spte
3206 * is not the mmio spte.
3207 */
3208static bool check_direct_spte_mmio_pf(u64 spte)
3209{
3210 return __check_direct_spte_mmio_pf(spte);
3211}
3212
3213static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3214{
3215 struct kvm_shadow_walk_iterator iterator;
3216 u64 spte = 0ull;
3217
3218 walk_shadow_page_lockless_begin(vcpu);
3219 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3220 if (!is_shadow_present_pte(spte))
3221 break;
3222 walk_shadow_page_lockless_end(vcpu);
3223
3224 return spte;
3225}
3226
3227/*
3228 * If it is a real mmio page fault, return 1 and emulat the instruction
3229 * directly, return 0 to let CPU fault again on the address, -1 is
3230 * returned if bug is detected.
3231 */
3232int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3233{
3234 u64 spte;
3235
3236 if (quickly_check_mmio_pf(vcpu, addr, direct))
3237 return 1;
3238
3239 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3240
3241 if (is_mmio_spte(spte)) {
3242 gfn_t gfn = get_mmio_spte_gfn(spte);
3243 unsigned access = get_mmio_spte_access(spte);
3244
3245 if (direct)
3246 addr = 0;
4f022648
XG
3247
3248 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3249 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3250 return 1;
3251 }
3252
3253 /*
3254 * It's ok if the gva is remapped by other cpus on shadow guest,
3255 * it's a BUG if the gfn is not a mmio page.
3256 */
3257 if (direct && !check_direct_spte_mmio_pf(spte))
3258 return -1;
3259
3260 /*
3261 * If the page table is zapped by other cpus, let CPU fault again on
3262 * the address.
3263 */
3264 return 0;
3265}
3266EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3267
3268static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3269 u32 error_code, bool direct)
3270{
3271 int ret;
3272
3273 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3274 WARN_ON(ret < 0);
3275 return ret;
3276}
3277
6aa8b732 3278static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3279 u32 error_code, bool prefault)
6aa8b732 3280{
e833240f 3281 gfn_t gfn;
e2dec939 3282 int r;
6aa8b732 3283
b8688d51 3284 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3285
3286 if (unlikely(error_code & PFERR_RSVD_MASK))
3287 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3288
e2dec939
AK
3289 r = mmu_topup_memory_caches(vcpu);
3290 if (r)
3291 return r;
714b93da 3292
6aa8b732 3293 ASSERT(vcpu);
ad312c7c 3294 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3295
e833240f 3296 gfn = gva >> PAGE_SHIFT;
6aa8b732 3297
e833240f 3298 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3299 error_code, gfn, prefault);
6aa8b732
AK
3300}
3301
7e1fbeac 3302static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3303{
3304 struct kvm_arch_async_pf arch;
fb67e14f 3305
7c90705b 3306 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3307 arch.gfn = gfn;
c4806acd 3308 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3309 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3310
3311 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3312}
3313
3314static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3315{
3316 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3317 kvm_event_needs_reinjection(vcpu)))
3318 return false;
3319
3320 return kvm_x86_ops->interrupt_allowed(vcpu);
3321}
3322
78b2c54a 3323static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3324 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3325{
3326 bool async;
3327
612819c3 3328 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3329
3330 if (!async)
3331 return false; /* *pfn has correct page already */
3332
78b2c54a 3333 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3334 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3335 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3336 trace_kvm_async_pf_doublefault(gva, gfn);
3337 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3338 return true;
3339 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3340 return true;
3341 }
3342
612819c3 3343 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3344
3345 return false;
3346}
3347
56028d08 3348static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3349 bool prefault)
fb72d167 3350{
35149e21 3351 pfn_t pfn;
fb72d167 3352 int r;
852e3c19 3353 int level;
936a5fe6 3354 int force_pt_level;
05da4558 3355 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3356 unsigned long mmu_seq;
612819c3
MT
3357 int write = error_code & PFERR_WRITE_MASK;
3358 bool map_writable;
fb72d167
JR
3359
3360 ASSERT(vcpu);
3361 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3362
ce88decf
XG
3363 if (unlikely(error_code & PFERR_RSVD_MASK))
3364 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3365
fb72d167
JR
3366 r = mmu_topup_memory_caches(vcpu);
3367 if (r)
3368 return r;
3369
936a5fe6
AA
3370 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3371 if (likely(!force_pt_level)) {
3372 level = mapping_level(vcpu, gfn);
3373 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3374 } else
3375 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3376
c7ba5b48
XG
3377 if (fast_page_fault(vcpu, gpa, level, error_code))
3378 return 0;
3379
e930bffe 3380 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3381 smp_rmb();
af585b92 3382
78b2c54a 3383 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3384 return 0;
3385
d7c55201
XG
3386 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3387 return r;
3388
fb72d167 3389 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3390 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3391 goto out_unlock;
450e0b41 3392 make_mmu_pages_available(vcpu);
936a5fe6
AA
3393 if (likely(!force_pt_level))
3394 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3395 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3396 level, gfn, pfn, prefault);
fb72d167 3397 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3398
3399 return r;
e930bffe
AA
3400
3401out_unlock:
3402 spin_unlock(&vcpu->kvm->mmu_lock);
3403 kvm_release_pfn_clean(pfn);
3404 return 0;
fb72d167
JR
3405}
3406
6aa8b732
AK
3407static void nonpaging_free(struct kvm_vcpu *vcpu)
3408{
17ac10ad 3409 mmu_free_roots(vcpu);
6aa8b732
AK
3410}
3411
52fde8df
JR
3412static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3413 struct kvm_mmu *context)
6aa8b732 3414{
6aa8b732
AK
3415 context->new_cr3 = nonpaging_new_cr3;
3416 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3417 context->gva_to_gpa = nonpaging_gva_to_gpa;
3418 context->free = nonpaging_free;
e8bc217a 3419 context->sync_page = nonpaging_sync_page;
a7052897 3420 context->invlpg = nonpaging_invlpg;
0f53b5b1 3421 context->update_pte = nonpaging_update_pte;
cea0f0e7 3422 context->root_level = 0;
6aa8b732 3423 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3424 context->root_hpa = INVALID_PAGE;
c5a78f2b 3425 context->direct_map = true;
2d48a985 3426 context->nx = false;
6aa8b732
AK
3427 return 0;
3428}
3429
d835dfec 3430void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3431{
1165f5fe 3432 ++vcpu->stat.tlb_flush;
a8eeb04a 3433 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3434}
3435
3436static void paging_new_cr3(struct kvm_vcpu *vcpu)
3437{
9f8fe504 3438 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3439 mmu_free_roots(vcpu);
6aa8b732
AK
3440}
3441
5777ed34
JR
3442static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3443{
9f8fe504 3444 return kvm_read_cr3(vcpu);
5777ed34
JR
3445}
3446
6389ee94
AK
3447static void inject_page_fault(struct kvm_vcpu *vcpu,
3448 struct x86_exception *fault)
6aa8b732 3449{
6389ee94 3450 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3451}
3452
6aa8b732
AK
3453static void paging_free(struct kvm_vcpu *vcpu)
3454{
3455 nonpaging_free(vcpu);
3456}
3457
8ea667f2
AK
3458static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3459{
3460 unsigned mask;
3461
3462 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3463
3464 mask = (unsigned)~ACC_WRITE_MASK;
3465 /* Allow write access to dirty gptes */
3466 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3467 *access &= mask;
3468}
3469
f2fd125d
XG
3470static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3471 unsigned access, int *nr_present)
ce88decf
XG
3472{
3473 if (unlikely(is_mmio_spte(*sptep))) {
3474 if (gfn != get_mmio_spte_gfn(*sptep)) {
3475 mmu_spte_clear_no_track(sptep);
3476 return true;
3477 }
3478
3479 (*nr_present)++;
f2fd125d 3480 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3481 return true;
3482 }
3483
3484 return false;
3485}
3486
3d34adec
AK
3487static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3488{
3489 unsigned access;
3490
3491 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3492 access &= ~(gpte >> PT64_NX_SHIFT);
3493
3494 return access;
3495}
3496
6fd01b71
AK
3497static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3498{
3499 unsigned index;
3500
3501 index = level - 1;
3502 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3503 return mmu->last_pte_bitmap & (1 << index);
3504}
3505
6aa8b732
AK
3506#define PTTYPE 64
3507#include "paging_tmpl.h"
3508#undef PTTYPE
3509
3510#define PTTYPE 32
3511#include "paging_tmpl.h"
3512#undef PTTYPE
3513
52fde8df 3514static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3515 struct kvm_mmu *context)
82725b20 3516{
82725b20
DE
3517 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3518 u64 exb_bit_rsvd = 0;
3519
2d48a985 3520 if (!context->nx)
82725b20 3521 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3522 switch (context->root_level) {
82725b20
DE
3523 case PT32_ROOT_LEVEL:
3524 /* no rsvd bits for 2 level 4K page table entries */
3525 context->rsvd_bits_mask[0][1] = 0;
3526 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3527 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3528
3529 if (!is_pse(vcpu)) {
3530 context->rsvd_bits_mask[1][1] = 0;
3531 break;
3532 }
3533
82725b20
DE
3534 if (is_cpuid_PSE36())
3535 /* 36bits PSE 4MB page */
3536 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3537 else
3538 /* 32 bits PSE 4MB page */
3539 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3540 break;
3541 case PT32E_ROOT_LEVEL:
20c466b5
DE
3542 context->rsvd_bits_mask[0][2] =
3543 rsvd_bits(maxphyaddr, 63) |
3544 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3545 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3546 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3547 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3548 rsvd_bits(maxphyaddr, 62); /* PTE */
3549 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3550 rsvd_bits(maxphyaddr, 62) |
3551 rsvd_bits(13, 20); /* large page */
f815bce8 3552 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3553 break;
3554 case PT64_ROOT_LEVEL:
3555 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3556 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3557 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3558 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3559 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3560 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3561 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3562 rsvd_bits(maxphyaddr, 51);
3563 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3564 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3565 rsvd_bits(maxphyaddr, 51) |
3566 rsvd_bits(13, 29);
82725b20 3567 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3568 rsvd_bits(maxphyaddr, 51) |
3569 rsvd_bits(13, 20); /* large page */
f815bce8 3570 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3571 break;
3572 }
3573}
3574
97d64b78
AK
3575static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3576{
3577 unsigned bit, byte, pfec;
3578 u8 map;
3579 bool fault, x, w, u, wf, uf, ff, smep;
3580
3581 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3582 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3583 pfec = byte << 1;
3584 map = 0;
3585 wf = pfec & PFERR_WRITE_MASK;
3586 uf = pfec & PFERR_USER_MASK;
3587 ff = pfec & PFERR_FETCH_MASK;
3588 for (bit = 0; bit < 8; ++bit) {
3589 x = bit & ACC_EXEC_MASK;
3590 w = bit & ACC_WRITE_MASK;
3591 u = bit & ACC_USER_MASK;
3592
3593 /* Not really needed: !nx will cause pte.nx to fault */
3594 x |= !mmu->nx;
3595 /* Allow supervisor writes if !cr0.wp */
3596 w |= !is_write_protection(vcpu) && !uf;
3597 /* Disallow supervisor fetches of user code if cr4.smep */
3598 x &= !(smep && u && !uf);
3599
3600 fault = (ff && !x) || (uf && !u) || (wf && !w);
3601 map |= fault << bit;
3602 }
3603 mmu->permissions[byte] = map;
3604 }
3605}
3606
6fd01b71
AK
3607static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3608{
3609 u8 map;
3610 unsigned level, root_level = mmu->root_level;
3611 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3612
3613 if (root_level == PT32E_ROOT_LEVEL)
3614 --root_level;
3615 /* PT_PAGE_TABLE_LEVEL always terminates */
3616 map = 1 | (1 << ps_set_index);
3617 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3618 if (level <= PT_PDPE_LEVEL
3619 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3620 map |= 1 << (ps_set_index | (level - 1));
3621 }
3622 mmu->last_pte_bitmap = map;
3623}
3624
52fde8df
JR
3625static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3626 struct kvm_mmu *context,
3627 int level)
6aa8b732 3628{
2d48a985 3629 context->nx = is_nx(vcpu);
4d6931c3 3630 context->root_level = level;
2d48a985 3631
4d6931c3 3632 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3633 update_permission_bitmask(vcpu, context);
6fd01b71 3634 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3635
3636 ASSERT(is_pae(vcpu));
3637 context->new_cr3 = paging_new_cr3;
3638 context->page_fault = paging64_page_fault;
6aa8b732 3639 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3640 context->sync_page = paging64_sync_page;
a7052897 3641 context->invlpg = paging64_invlpg;
0f53b5b1 3642 context->update_pte = paging64_update_pte;
6aa8b732 3643 context->free = paging_free;
17ac10ad 3644 context->shadow_root_level = level;
17c3ba9d 3645 context->root_hpa = INVALID_PAGE;
c5a78f2b 3646 context->direct_map = false;
6aa8b732
AK
3647 return 0;
3648}
3649
52fde8df
JR
3650static int paging64_init_context(struct kvm_vcpu *vcpu,
3651 struct kvm_mmu *context)
17ac10ad 3652{
52fde8df 3653 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3654}
3655
52fde8df
JR
3656static int paging32_init_context(struct kvm_vcpu *vcpu,
3657 struct kvm_mmu *context)
6aa8b732 3658{
2d48a985 3659 context->nx = false;
4d6931c3 3660 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3661
4d6931c3 3662 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3663 update_permission_bitmask(vcpu, context);
6fd01b71 3664 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3665
3666 context->new_cr3 = paging_new_cr3;
3667 context->page_fault = paging32_page_fault;
6aa8b732
AK
3668 context->gva_to_gpa = paging32_gva_to_gpa;
3669 context->free = paging_free;
e8bc217a 3670 context->sync_page = paging32_sync_page;
a7052897 3671 context->invlpg = paging32_invlpg;
0f53b5b1 3672 context->update_pte = paging32_update_pte;
6aa8b732 3673 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3674 context->root_hpa = INVALID_PAGE;
c5a78f2b 3675 context->direct_map = false;
6aa8b732
AK
3676 return 0;
3677}
3678
52fde8df
JR
3679static int paging32E_init_context(struct kvm_vcpu *vcpu,
3680 struct kvm_mmu *context)
6aa8b732 3681{
52fde8df 3682 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3683}
3684
fb72d167
JR
3685static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3686{
14dfe855 3687 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3688
c445f8ef 3689 context->base_role.word = 0;
fb72d167
JR
3690 context->new_cr3 = nonpaging_new_cr3;
3691 context->page_fault = tdp_page_fault;
3692 context->free = nonpaging_free;
e8bc217a 3693 context->sync_page = nonpaging_sync_page;
a7052897 3694 context->invlpg = nonpaging_invlpg;
0f53b5b1 3695 context->update_pte = nonpaging_update_pte;
67253af5 3696 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3697 context->root_hpa = INVALID_PAGE;
c5a78f2b 3698 context->direct_map = true;
1c97f0a0 3699 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3700 context->get_cr3 = get_cr3;
e4e517b4 3701 context->get_pdptr = kvm_pdptr_read;
cb659db8 3702 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3703
3704 if (!is_paging(vcpu)) {
2d48a985 3705 context->nx = false;
fb72d167
JR
3706 context->gva_to_gpa = nonpaging_gva_to_gpa;
3707 context->root_level = 0;
3708 } else if (is_long_mode(vcpu)) {
2d48a985 3709 context->nx = is_nx(vcpu);
fb72d167 3710 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3711 reset_rsvds_bits_mask(vcpu, context);
3712 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3713 } else if (is_pae(vcpu)) {
2d48a985 3714 context->nx = is_nx(vcpu);
fb72d167 3715 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3716 reset_rsvds_bits_mask(vcpu, context);
3717 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3718 } else {
2d48a985 3719 context->nx = false;
fb72d167 3720 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3721 reset_rsvds_bits_mask(vcpu, context);
3722 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3723 }
3724
97d64b78 3725 update_permission_bitmask(vcpu, context);
6fd01b71 3726 update_last_pte_bitmap(vcpu, context);
97d64b78 3727
fb72d167
JR
3728 return 0;
3729}
3730
52fde8df 3731int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3732{
a770f6f2 3733 int r;
411c588d 3734 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3735 ASSERT(vcpu);
ad312c7c 3736 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3737
3738 if (!is_paging(vcpu))
52fde8df 3739 r = nonpaging_init_context(vcpu, context);
a9058ecd 3740 else if (is_long_mode(vcpu))
52fde8df 3741 r = paging64_init_context(vcpu, context);
6aa8b732 3742 else if (is_pae(vcpu))
52fde8df 3743 r = paging32E_init_context(vcpu, context);
6aa8b732 3744 else
52fde8df 3745 r = paging32_init_context(vcpu, context);
a770f6f2 3746
2c9afa52 3747 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3748 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3749 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3750 vcpu->arch.mmu.base_role.smep_andnot_wp
3751 = smep && !is_write_protection(vcpu);
52fde8df
JR
3752
3753 return r;
3754}
3755EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3756
3757static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3758{
14dfe855 3759 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3760
14dfe855
JR
3761 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3762 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3763 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3764 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3765
3766 return r;
6aa8b732
AK
3767}
3768
02f59dc9
JR
3769static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3770{
3771 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3772
3773 g_context->get_cr3 = get_cr3;
e4e517b4 3774 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3775 g_context->inject_page_fault = kvm_inject_page_fault;
3776
3777 /*
3778 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3779 * translation of l2_gpa to l1_gpa addresses is done using the
3780 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3781 * functions between mmu and nested_mmu are swapped.
3782 */
3783 if (!is_paging(vcpu)) {
2d48a985 3784 g_context->nx = false;
02f59dc9
JR
3785 g_context->root_level = 0;
3786 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3787 } else if (is_long_mode(vcpu)) {
2d48a985 3788 g_context->nx = is_nx(vcpu);
02f59dc9 3789 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3790 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3791 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3792 } else if (is_pae(vcpu)) {
2d48a985 3793 g_context->nx = is_nx(vcpu);
02f59dc9 3794 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3795 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3796 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3797 } else {
2d48a985 3798 g_context->nx = false;
02f59dc9 3799 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3800 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3801 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3802 }
3803
97d64b78 3804 update_permission_bitmask(vcpu, g_context);
6fd01b71 3805 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3806
02f59dc9
JR
3807 return 0;
3808}
3809
fb72d167
JR
3810static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3811{
02f59dc9
JR
3812 if (mmu_is_nested(vcpu))
3813 return init_kvm_nested_mmu(vcpu);
3814 else if (tdp_enabled)
fb72d167
JR
3815 return init_kvm_tdp_mmu(vcpu);
3816 else
3817 return init_kvm_softmmu(vcpu);
3818}
3819
6aa8b732
AK
3820static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3821{
3822 ASSERT(vcpu);
62ad0755
SY
3823 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3824 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3825 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3826}
3827
3828int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3829{
3830 destroy_kvm_mmu(vcpu);
f8f7e5ee 3831 return init_kvm_mmu(vcpu);
17c3ba9d 3832}
8668a3c4 3833EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3834
3835int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3836{
714b93da
AK
3837 int r;
3838
e2dec939 3839 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3840 if (r)
3841 goto out;
8986ecc0 3842 r = mmu_alloc_roots(vcpu);
e2858b4a 3843 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3844 if (r)
3845 goto out;
3662cb1c 3846 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3847 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3848out:
3849 return r;
6aa8b732 3850}
17c3ba9d
AK
3851EXPORT_SYMBOL_GPL(kvm_mmu_load);
3852
3853void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3854{
3855 mmu_free_roots(vcpu);
3856}
4b16184c 3857EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3858
0028425f 3859static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3860 struct kvm_mmu_page *sp, u64 *spte,
3861 const void *new)
0028425f 3862{
30945387 3863 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3864 ++vcpu->kvm->stat.mmu_pde_zapped;
3865 return;
30945387 3866 }
0028425f 3867
4cee5764 3868 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3869 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3870}
3871
79539cec
AK
3872static bool need_remote_flush(u64 old, u64 new)
3873{
3874 if (!is_shadow_present_pte(old))
3875 return false;
3876 if (!is_shadow_present_pte(new))
3877 return true;
3878 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3879 return true;
3880 old ^= PT64_NX_MASK;
3881 new ^= PT64_NX_MASK;
3882 return (old & ~new & PT64_PERM_MASK) != 0;
3883}
3884
0671a8e7
XG
3885static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3886 bool remote_flush, bool local_flush)
79539cec 3887{
0671a8e7
XG
3888 if (zap_page)
3889 return;
3890
3891 if (remote_flush)
79539cec 3892 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3893 else if (local_flush)
79539cec
AK
3894 kvm_mmu_flush_tlb(vcpu);
3895}
3896
889e5cbc
XG
3897static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3898 const u8 *new, int *bytes)
da4a00f0 3899{
889e5cbc
XG
3900 u64 gentry;
3901 int r;
72016f3a 3902
72016f3a
AK
3903 /*
3904 * Assume that the pte write on a page table of the same type
49b26e26
XG
3905 * as the current vcpu paging mode since we update the sptes only
3906 * when they have the same mode.
72016f3a 3907 */
889e5cbc 3908 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3909 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3910 *gpa &= ~(gpa_t)7;
3911 *bytes = 8;
116eb3d3 3912 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3913 if (r)
3914 gentry = 0;
08e850c6
AK
3915 new = (const u8 *)&gentry;
3916 }
3917
889e5cbc 3918 switch (*bytes) {
08e850c6
AK
3919 case 4:
3920 gentry = *(const u32 *)new;
3921 break;
3922 case 8:
3923 gentry = *(const u64 *)new;
3924 break;
3925 default:
3926 gentry = 0;
3927 break;
72016f3a
AK
3928 }
3929
889e5cbc
XG
3930 return gentry;
3931}
3932
3933/*
3934 * If we're seeing too many writes to a page, it may no longer be a page table,
3935 * or we may be forking, in which case it is better to unmap the page.
3936 */
a138fe75 3937static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3938{
a30f47cb
XG
3939 /*
3940 * Skip write-flooding detected for the sp whose level is 1, because
3941 * it can become unsync, then the guest page is not write-protected.
3942 */
f71fa31f 3943 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3944 return false;
3246af0e 3945
a30f47cb 3946 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3947}
3948
3949/*
3950 * Misaligned accesses are too much trouble to fix up; also, they usually
3951 * indicate a page is not used as a page table.
3952 */
3953static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3954 int bytes)
3955{
3956 unsigned offset, pte_size, misaligned;
3957
3958 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3959 gpa, bytes, sp->role.word);
3960
3961 offset = offset_in_page(gpa);
3962 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3963
3964 /*
3965 * Sometimes, the OS only writes the last one bytes to update status
3966 * bits, for example, in linux, andb instruction is used in clear_bit().
3967 */
3968 if (!(offset & (pte_size - 1)) && bytes == 1)
3969 return false;
3970
889e5cbc
XG
3971 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3972 misaligned |= bytes < 4;
3973
3974 return misaligned;
3975}
3976
3977static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3978{
3979 unsigned page_offset, quadrant;
3980 u64 *spte;
3981 int level;
3982
3983 page_offset = offset_in_page(gpa);
3984 level = sp->role.level;
3985 *nspte = 1;
3986 if (!sp->role.cr4_pae) {
3987 page_offset <<= 1; /* 32->64 */
3988 /*
3989 * A 32-bit pde maps 4MB while the shadow pdes map
3990 * only 2MB. So we need to double the offset again
3991 * and zap two pdes instead of one.
3992 */
3993 if (level == PT32_ROOT_LEVEL) {
3994 page_offset &= ~7; /* kill rounding error */
3995 page_offset <<= 1;
3996 *nspte = 2;
3997 }
3998 quadrant = page_offset >> PAGE_SHIFT;
3999 page_offset &= ~PAGE_MASK;
4000 if (quadrant != sp->role.quadrant)
4001 return NULL;
4002 }
4003
4004 spte = &sp->spt[page_offset / sizeof(*spte)];
4005 return spte;
4006}
4007
4008void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4009 const u8 *new, int bytes)
4010{
4011 gfn_t gfn = gpa >> PAGE_SHIFT;
4012 union kvm_mmu_page_role mask = { .word = 0 };
4013 struct kvm_mmu_page *sp;
889e5cbc
XG
4014 LIST_HEAD(invalid_list);
4015 u64 entry, gentry, *spte;
4016 int npte;
a30f47cb 4017 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4018
4019 /*
4020 * If we don't have indirect shadow pages, it means no page is
4021 * write-protected, so we can exit simply.
4022 */
4023 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4024 return;
4025
4026 zap_page = remote_flush = local_flush = false;
4027
4028 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4029
4030 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4031
4032 /*
4033 * No need to care whether allocation memory is successful
4034 * or not since pte prefetch is skiped if it does not have
4035 * enough objects in the cache.
4036 */
4037 mmu_topup_memory_caches(vcpu);
4038
4039 spin_lock(&vcpu->kvm->mmu_lock);
4040 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4041 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4042
fa1de2bf 4043 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4044 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4045 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4046 detect_write_flooding(sp)) {
0671a8e7 4047 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4048 &invalid_list);
4cee5764 4049 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4050 continue;
4051 }
889e5cbc
XG
4052
4053 spte = get_written_sptes(sp, gpa, &npte);
4054 if (!spte)
4055 continue;
4056
0671a8e7 4057 local_flush = true;
ac1b714e 4058 while (npte--) {
79539cec 4059 entry = *spte;
38e3b2b2 4060 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4061 if (gentry &&
4062 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4063 & mask.word) && rmap_can_add(vcpu))
7c562522 4064 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4065 if (need_remote_flush(entry, *spte))
0671a8e7 4066 remote_flush = true;
ac1b714e 4067 ++spte;
9b7a0325 4068 }
9b7a0325 4069 }
0671a8e7 4070 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4071 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4072 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4073 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4074}
4075
a436036b
AK
4076int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4077{
10589a46
MT
4078 gpa_t gpa;
4079 int r;
a436036b 4080
c5a78f2b 4081 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4082 return 0;
4083
1871c602 4084 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4085
10589a46 4086 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4087
10589a46 4088 return r;
a436036b 4089}
577bdc49 4090EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4091
81f4f76b 4092static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4093{
d98ba053 4094 LIST_HEAD(invalid_list);
103ad25a 4095
81f4f76b
TY
4096 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4097 return;
4098
5da59607
TY
4099 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4100 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4101 break;
ebeace86 4102
4cee5764 4103 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4104 }
aa6bd187 4105 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4106}
ebeace86 4107
1cb3f3ae
XG
4108static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4109{
4110 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4111 return vcpu_match_mmio_gpa(vcpu, addr);
4112
4113 return vcpu_match_mmio_gva(vcpu, addr);
4114}
4115
dc25e89e
AP
4116int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4117 void *insn, int insn_len)
3067714c 4118{
1cb3f3ae 4119 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4120 enum emulation_result er;
4121
56028d08 4122 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4123 if (r < 0)
4124 goto out;
4125
4126 if (!r) {
4127 r = 1;
4128 goto out;
4129 }
4130
1cb3f3ae
XG
4131 if (is_mmio_page_fault(vcpu, cr2))
4132 emulation_type = 0;
4133
4134 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4135
4136 switch (er) {
4137 case EMULATE_DONE:
4138 return 1;
4139 case EMULATE_DO_MMIO:
4140 ++vcpu->stat.mmio_exits;
6d77dbfc 4141 /* fall through */
3067714c 4142 case EMULATE_FAIL:
3f5d18a9 4143 return 0;
3067714c
AK
4144 default:
4145 BUG();
4146 }
4147out:
3067714c
AK
4148 return r;
4149}
4150EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4151
a7052897
MT
4152void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4153{
a7052897 4154 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4155 kvm_mmu_flush_tlb(vcpu);
4156 ++vcpu->stat.invlpg;
4157}
4158EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4159
18552672
JR
4160void kvm_enable_tdp(void)
4161{
4162 tdp_enabled = true;
4163}
4164EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4165
5f4cb662
JR
4166void kvm_disable_tdp(void)
4167{
4168 tdp_enabled = false;
4169}
4170EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4171
6aa8b732
AK
4172static void free_mmu_pages(struct kvm_vcpu *vcpu)
4173{
ad312c7c 4174 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4175 if (vcpu->arch.mmu.lm_root != NULL)
4176 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4177}
4178
4179static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4180{
17ac10ad 4181 struct page *page;
6aa8b732
AK
4182 int i;
4183
4184 ASSERT(vcpu);
4185
17ac10ad
AK
4186 /*
4187 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4188 * Therefore we need to allocate shadow page tables in the first
4189 * 4GB of memory, which happens to fit the DMA32 zone.
4190 */
4191 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4192 if (!page)
d7fa6ab2
WY
4193 return -ENOMEM;
4194
ad312c7c 4195 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4196 for (i = 0; i < 4; ++i)
ad312c7c 4197 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4198
6aa8b732 4199 return 0;
6aa8b732
AK
4200}
4201
8018c27b 4202int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4203{
6aa8b732 4204 ASSERT(vcpu);
e459e322
XG
4205
4206 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4207 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4208 vcpu->arch.mmu.translate_gpa = translate_gpa;
4209 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4210
8018c27b
IM
4211 return alloc_mmu_pages(vcpu);
4212}
6aa8b732 4213
8018c27b
IM
4214int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4215{
4216 ASSERT(vcpu);
ad312c7c 4217 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4218
8018c27b 4219 return init_kvm_mmu(vcpu);
6aa8b732
AK
4220}
4221
90cb0529 4222void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4223{
b99db1d3
TY
4224 struct kvm_memory_slot *memslot;
4225 gfn_t last_gfn;
4226 int i;
6aa8b732 4227
b99db1d3
TY
4228 memslot = id_to_memslot(kvm->memslots, slot);
4229 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4230
9d1beefb
TY
4231 spin_lock(&kvm->mmu_lock);
4232
b99db1d3
TY
4233 for (i = PT_PAGE_TABLE_LEVEL;
4234 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4235 unsigned long *rmapp;
4236 unsigned long last_index, index;
6aa8b732 4237
b99db1d3
TY
4238 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4239 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4240
b99db1d3
TY
4241 for (index = 0; index <= last_index; ++index, ++rmapp) {
4242 if (*rmapp)
4243 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4244
4245 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4246 kvm_flush_remote_tlbs(kvm);
4247 cond_resched_lock(&kvm->mmu_lock);
4248 }
8234b22e 4249 }
6aa8b732 4250 }
b99db1d3 4251
171d595d 4252 kvm_flush_remote_tlbs(kvm);
9d1beefb 4253 spin_unlock(&kvm->mmu_lock);
6aa8b732 4254}
37a7d8b0 4255
e7d11c7a 4256#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4257static void kvm_zap_obsolete_pages(struct kvm *kvm)
4258{
4259 struct kvm_mmu_page *sp, *node;
e7d11c7a 4260 int batch = 0;
5304b8d3
XG
4261
4262restart:
4263 list_for_each_entry_safe_reverse(sp, node,
4264 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4265 int ret;
4266
5304b8d3
XG
4267 /*
4268 * No obsolete page exists before new created page since
4269 * active_mmu_pages is the FIFO list.
4270 */
4271 if (!is_obsolete_sp(kvm, sp))
4272 break;
4273
4274 /*
5304b8d3
XG
4275 * Since we are reversely walking the list and the invalid
4276 * list will be moved to the head, skip the invalid page
4277 * can help us to avoid the infinity list walking.
4278 */
4279 if (sp->role.invalid)
4280 continue;
4281
f34d251d
XG
4282 /*
4283 * Need not flush tlb since we only zap the sp with invalid
4284 * generation number.
4285 */
e7d11c7a 4286 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4287 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4288 batch = 0;
5304b8d3
XG
4289 goto restart;
4290 }
4291
365c8868
XG
4292 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4293 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4294 batch += ret;
4295
4296 if (ret)
5304b8d3
XG
4297 goto restart;
4298 }
4299
f34d251d
XG
4300 /*
4301 * Should flush tlb before free page tables since lockless-walking
4302 * may use the pages.
4303 */
365c8868 4304 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4305}
4306
4307/*
4308 * Fast invalidate all shadow pages and use lock-break technique
4309 * to zap obsolete pages.
4310 *
4311 * It's required when memslot is being deleted or VM is being
4312 * destroyed, in these cases, we should ensure that KVM MMU does
4313 * not use any resource of the being-deleted slot or all slots
4314 * after calling the function.
4315 */
4316void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4317{
4318 spin_lock(&kvm->mmu_lock);
35006126 4319 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4320 kvm->arch.mmu_valid_gen++;
4321
f34d251d
XG
4322 /*
4323 * Notify all vcpus to reload its shadow page table
4324 * and flush TLB. Then all vcpus will switch to new
4325 * shadow page table with the new mmu_valid_gen.
4326 *
4327 * Note: we should do this under the protection of
4328 * mmu-lock, otherwise, vcpu would purge shadow page
4329 * but miss tlb flush.
4330 */
4331 kvm_reload_remote_mmus(kvm);
4332
5304b8d3
XG
4333 kvm_zap_obsolete_pages(kvm);
4334 spin_unlock(&kvm->mmu_lock);
4335}
4336
982b3394
TY
4337void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4338{
4339 struct kvm_mmu_page *sp, *node;
4340 LIST_HEAD(invalid_list);
4341
4342 spin_lock(&kvm->mmu_lock);
4343restart:
4344 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4345 if (!sp->mmio_cached)
4346 continue;
4347 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4348 goto restart;
4349 }
4350
4351 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4352 spin_unlock(&kvm->mmu_lock);
4353}
4354
365c8868
XG
4355static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4356{
4357 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4358}
4359
1495f230 4360static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4361{
4362 struct kvm *kvm;
1495f230 4363 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4364
4365 if (nr_to_scan == 0)
4366 goto out;
3ee16c81 4367
e935b837 4368 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4369
4370 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4371 int idx;
d98ba053 4372 LIST_HEAD(invalid_list);
3ee16c81 4373
35f2d16b
TY
4374 /*
4375 * Never scan more than sc->nr_to_scan VM instances.
4376 * Will not hit this condition practically since we do not try
4377 * to shrink more than one VM and it is very unlikely to see
4378 * !n_used_mmu_pages so many times.
4379 */
4380 if (!nr_to_scan--)
4381 break;
19526396
GN
4382 /*
4383 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4384 * here. We may skip a VM instance errorneosly, but we do not
4385 * want to shrink a VM that only started to populate its MMU
4386 * anyway.
4387 */
365c8868
XG
4388 if (!kvm->arch.n_used_mmu_pages &&
4389 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4390 continue;
19526396 4391
f656ce01 4392 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4393 spin_lock(&kvm->mmu_lock);
3ee16c81 4394
365c8868
XG
4395 if (kvm_has_zapped_obsolete_pages(kvm)) {
4396 kvm_mmu_commit_zap_page(kvm,
4397 &kvm->arch.zapped_obsolete_pages);
4398 goto unlock;
4399 }
4400
5da59607 4401 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4402 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4403
365c8868 4404unlock:
3ee16c81 4405 spin_unlock(&kvm->mmu_lock);
f656ce01 4406 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4407
4408 list_move_tail(&kvm->vm_list, &vm_list);
4409 break;
3ee16c81 4410 }
3ee16c81 4411
e935b837 4412 raw_spin_unlock(&kvm_lock);
3ee16c81 4413
45221ab6
DH
4414out:
4415 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4416}
4417
4418static struct shrinker mmu_shrinker = {
4419 .shrink = mmu_shrink,
4420 .seeks = DEFAULT_SEEKS * 10,
4421};
4422
2ddfd20e 4423static void mmu_destroy_caches(void)
b5a33a75 4424{
53c07b18
XG
4425 if (pte_list_desc_cache)
4426 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4427 if (mmu_page_header_cache)
4428 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4429}
4430
4431int kvm_mmu_module_init(void)
4432{
53c07b18
XG
4433 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4434 sizeof(struct pte_list_desc),
20c2df83 4435 0, 0, NULL);
53c07b18 4436 if (!pte_list_desc_cache)
b5a33a75
AK
4437 goto nomem;
4438
d3d25b04
AK
4439 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4440 sizeof(struct kvm_mmu_page),
20c2df83 4441 0, 0, NULL);
d3d25b04
AK
4442 if (!mmu_page_header_cache)
4443 goto nomem;
4444
45bf21a8
WY
4445 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4446 goto nomem;
4447
3ee16c81
IE
4448 register_shrinker(&mmu_shrinker);
4449
b5a33a75
AK
4450 return 0;
4451
4452nomem:
3ee16c81 4453 mmu_destroy_caches();
b5a33a75
AK
4454 return -ENOMEM;
4455}
4456
3ad82a7e
ZX
4457/*
4458 * Caculate mmu pages needed for kvm.
4459 */
4460unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4461{
3ad82a7e
ZX
4462 unsigned int nr_mmu_pages;
4463 unsigned int nr_pages = 0;
bc6678a3 4464 struct kvm_memslots *slots;
be6ba0f0 4465 struct kvm_memory_slot *memslot;
3ad82a7e 4466
90d83dc3
LJ
4467 slots = kvm_memslots(kvm);
4468
be6ba0f0
XG
4469 kvm_for_each_memslot(memslot, slots)
4470 nr_pages += memslot->npages;
3ad82a7e
ZX
4471
4472 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4473 nr_mmu_pages = max(nr_mmu_pages,
4474 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4475
4476 return nr_mmu_pages;
4477}
4478
94d8b056
MT
4479int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4480{
4481 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4482 u64 spte;
94d8b056
MT
4483 int nr_sptes = 0;
4484
c2a2ac2b
XG
4485 walk_shadow_page_lockless_begin(vcpu);
4486 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4487 sptes[iterator.level-1] = spte;
94d8b056 4488 nr_sptes++;
c2a2ac2b 4489 if (!is_shadow_present_pte(spte))
94d8b056
MT
4490 break;
4491 }
c2a2ac2b 4492 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4493
4494 return nr_sptes;
4495}
4496EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4497
c42fffe3
XG
4498void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4499{
4500 ASSERT(vcpu);
4501
4502 destroy_kvm_mmu(vcpu);
4503 free_mmu_pages(vcpu);
4504 mmu_free_memory_caches(vcpu);
b034cf01
XG
4505}
4506
b034cf01
XG
4507void kvm_mmu_module_exit(void)
4508{
4509 mmu_destroy_caches();
4510 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4511 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4512 mmu_audit_disable();
4513}