KVM: MMU: fix decoding cache type from MTRR
[linux-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
fa4a2c08
PB
66static bool dbg = 0;
67module_param(dbg, bool, 0644);
37a7d8b0
AK
68
69#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
70#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 71#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 72#else
37a7d8b0
AK
73#define pgprintk(x...) do { } while (0)
74#define rmap_printk(x...) do { } while (0)
fa4a2c08 75#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 76#endif
6aa8b732 77
957ed9ef
XG
78#define PTE_PREFETCH_NUM 8
79
00763e41 80#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
81#define PT64_SECOND_AVAIL_BITS_SHIFT 52
82
6aa8b732
AK
83#define PT64_LEVEL_BITS 9
84
85#define PT64_LEVEL_SHIFT(level) \
d77c26fc 86 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 87
6aa8b732
AK
88#define PT64_INDEX(address, level)\
89 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
90
91
92#define PT32_LEVEL_BITS 10
93
94#define PT32_LEVEL_SHIFT(level) \
d77c26fc 95 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 96
e04da980
JR
97#define PT32_LVL_OFFSET_MASK(level) \
98 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
99 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
100
101#define PT32_INDEX(address, level)\
102 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
103
104
27aba766 105#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
106#define PT64_DIR_BASE_ADDR_MASK \
107 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
108#define PT64_LVL_ADDR_MASK(level) \
109 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
110 * PT64_LEVEL_BITS))) - 1))
111#define PT64_LVL_OFFSET_MASK(level) \
112 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_BASE_ADDR_MASK PAGE_MASK
116#define PT32_DIR_BASE_ADDR_MASK \
117 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
118#define PT32_LVL_ADDR_MASK(level) \
119 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
120 * PT32_LEVEL_BITS))) - 1))
6aa8b732 121
53166229
GN
122#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
123 | shadow_x_mask | shadow_nx_mask)
6aa8b732 124
fe135d2c
AK
125#define ACC_EXEC_MASK 1
126#define ACC_WRITE_MASK PT_WRITABLE_MASK
127#define ACC_USER_MASK PT_USER_MASK
128#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
129
90bb6fc5
AK
130#include <trace/events/kvm.h>
131
07420171
AK
132#define CREATE_TRACE_POINTS
133#include "mmutrace.h"
134
49fde340
XG
135#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
136#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 137
135f8c2b
AK
138#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
139
220f773a
TY
140/* make pte_list_desc fit well in cache line */
141#define PTE_LIST_EXT 3
142
53c07b18
XG
143struct pte_list_desc {
144 u64 *sptes[PTE_LIST_EXT];
145 struct pte_list_desc *more;
cd4a4e53
AK
146};
147
2d11123a
AK
148struct kvm_shadow_walk_iterator {
149 u64 addr;
150 hpa_t shadow_addr;
2d11123a 151 u64 *sptep;
dd3bfd59 152 int level;
2d11123a
AK
153 unsigned index;
154};
155
156#define for_each_shadow_entry(_vcpu, _addr, _walker) \
157 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
158 shadow_walk_okay(&(_walker)); \
159 shadow_walk_next(&(_walker)))
160
c2a2ac2b
XG
161#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
162 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
163 shadow_walk_okay(&(_walker)) && \
164 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
165 __shadow_walk_next(&(_walker), spte))
166
53c07b18 167static struct kmem_cache *pte_list_desc_cache;
d3d25b04 168static struct kmem_cache *mmu_page_header_cache;
45221ab6 169static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 170
7b52345e
SY
171static u64 __read_mostly shadow_nx_mask;
172static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
173static u64 __read_mostly shadow_user_mask;
174static u64 __read_mostly shadow_accessed_mask;
175static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
176static u64 __read_mostly shadow_mmio_mask;
177
178static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 179static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
180
181void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
182{
183 shadow_mmio_mask = mmio_mask;
184}
185EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
186
f2fd125d 187/*
ee3d1570
DM
188 * the low bit of the generation number is always presumed to be zero.
189 * This disables mmio caching during memslot updates. The concept is
190 * similar to a seqcount but instead of retrying the access we just punt
191 * and ignore the cache.
192 *
193 * spte bits 3-11 are used as bits 1-9 of the generation number,
194 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 195 */
ee3d1570 196#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
197#define MMIO_SPTE_GEN_HIGH_SHIFT 52
198
ee3d1570
DM
199#define MMIO_GEN_SHIFT 20
200#define MMIO_GEN_LOW_SHIFT 10
201#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942 202#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
203
204static u64 generation_mmio_spte_mask(unsigned int gen)
205{
206 u64 mask;
207
842bb26a 208 WARN_ON(gen & ~MMIO_GEN_MASK);
f2fd125d
XG
209
210 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
211 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
212 return mask;
213}
214
215static unsigned int get_mmio_spte_generation(u64 spte)
216{
217 unsigned int gen;
218
219 spte &= ~shadow_mmio_mask;
220
221 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
222 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
223 return gen;
224}
225
f8f55942
XG
226static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
227{
00f034a1 228 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
229}
230
f2fd125d
XG
231static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
232 unsigned access)
ce88decf 233{
f8f55942
XG
234 unsigned int gen = kvm_current_mmio_generation(kvm);
235 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 236
ce88decf 237 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 238 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 239
f8f55942 240 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 241 mmu_spte_set(sptep, mask);
ce88decf
XG
242}
243
244static bool is_mmio_spte(u64 spte)
245{
246 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
247}
248
249static gfn_t get_mmio_spte_gfn(u64 spte)
250{
842bb26a 251 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 252 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
253}
254
255static unsigned get_mmio_spte_access(u64 spte)
256{
842bb26a 257 u64 mask = generation_mmio_spte_mask(MMIO_GEN_MASK) | shadow_mmio_mask;
f2fd125d 258 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
259}
260
f2fd125d
XG
261static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
262 pfn_t pfn, unsigned access)
ce88decf
XG
263{
264 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 265 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
266 return true;
267 }
268
269 return false;
270}
c7addb90 271
f8f55942
XG
272static bool check_mmio_spte(struct kvm *kvm, u64 spte)
273{
089504c0
XG
274 unsigned int kvm_gen, spte_gen;
275
276 kvm_gen = kvm_current_mmio_generation(kvm);
277 spte_gen = get_mmio_spte_generation(spte);
278
279 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
280 return likely(kvm_gen == spte_gen);
f8f55942
XG
281}
282
7b52345e 283void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 284 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
285{
286 shadow_user_mask = user_mask;
287 shadow_accessed_mask = accessed_mask;
288 shadow_dirty_mask = dirty_mask;
289 shadow_nx_mask = nx_mask;
290 shadow_x_mask = x_mask;
291}
292EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
293
6aa8b732
AK
294static int is_cpuid_PSE36(void)
295{
296 return 1;
297}
298
73b1087e
AK
299static int is_nx(struct kvm_vcpu *vcpu)
300{
f6801dff 301 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
302}
303
c7addb90
AK
304static int is_shadow_present_pte(u64 pte)
305{
ce88decf 306 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
307}
308
05da4558
MT
309static int is_large_pte(u64 pte)
310{
311 return pte & PT_PAGE_SIZE_MASK;
312}
313
43a3795a 314static int is_rmap_spte(u64 pte)
cd4a4e53 315{
4b1a80fa 316 return is_shadow_present_pte(pte);
cd4a4e53
AK
317}
318
776e6633
MT
319static int is_last_spte(u64 pte, int level)
320{
321 if (level == PT_PAGE_TABLE_LEVEL)
322 return 1;
852e3c19 323 if (is_large_pte(pte))
776e6633
MT
324 return 1;
325 return 0;
326}
327
35149e21 328static pfn_t spte_to_pfn(u64 pte)
0b49ea86 329{
35149e21 330 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
331}
332
da928521
AK
333static gfn_t pse36_gfn_delta(u32 gpte)
334{
335 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
336
337 return (gpte & PT32_DIR_PSE36_MASK) << shift;
338}
339
603e0651 340#ifdef CONFIG_X86_64
d555c333 341static void __set_spte(u64 *sptep, u64 spte)
e663ee64 342{
603e0651 343 *sptep = spte;
e663ee64
AK
344}
345
603e0651 346static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 347{
603e0651
XG
348 *sptep = spte;
349}
350
351static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
352{
353 return xchg(sptep, spte);
354}
c2a2ac2b
XG
355
356static u64 __get_spte_lockless(u64 *sptep)
357{
358 return ACCESS_ONCE(*sptep);
359}
ce88decf
XG
360
361static bool __check_direct_spte_mmio_pf(u64 spte)
362{
363 /* It is valid if the spte is zapped. */
364 return spte == 0ull;
365}
a9221dd5 366#else
603e0651
XG
367union split_spte {
368 struct {
369 u32 spte_low;
370 u32 spte_high;
371 };
372 u64 spte;
373};
a9221dd5 374
c2a2ac2b
XG
375static void count_spte_clear(u64 *sptep, u64 spte)
376{
377 struct kvm_mmu_page *sp = page_header(__pa(sptep));
378
379 if (is_shadow_present_pte(spte))
380 return;
381
382 /* Ensure the spte is completely set before we increase the count */
383 smp_wmb();
384 sp->clear_spte_count++;
385}
386
603e0651
XG
387static void __set_spte(u64 *sptep, u64 spte)
388{
389 union split_spte *ssptep, sspte;
a9221dd5 390
603e0651
XG
391 ssptep = (union split_spte *)sptep;
392 sspte = (union split_spte)spte;
393
394 ssptep->spte_high = sspte.spte_high;
395
396 /*
397 * If we map the spte from nonpresent to present, We should store
398 * the high bits firstly, then set present bit, so cpu can not
399 * fetch this spte while we are setting the spte.
400 */
401 smp_wmb();
402
403 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
404}
405
603e0651
XG
406static void __update_clear_spte_fast(u64 *sptep, u64 spte)
407{
408 union split_spte *ssptep, sspte;
409
410 ssptep = (union split_spte *)sptep;
411 sspte = (union split_spte)spte;
412
413 ssptep->spte_low = sspte.spte_low;
414
415 /*
416 * If we map the spte from present to nonpresent, we should clear
417 * present bit firstly to avoid vcpu fetch the old high bits.
418 */
419 smp_wmb();
420
421 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 422 count_spte_clear(sptep, spte);
603e0651
XG
423}
424
425static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
426{
427 union split_spte *ssptep, sspte, orig;
428
429 ssptep = (union split_spte *)sptep;
430 sspte = (union split_spte)spte;
431
432 /* xchg acts as a barrier before the setting of the high bits */
433 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
434 orig.spte_high = ssptep->spte_high;
435 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 436 count_spte_clear(sptep, spte);
603e0651
XG
437
438 return orig.spte;
439}
c2a2ac2b
XG
440
441/*
442 * The idea using the light way get the spte on x86_32 guest is from
443 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
444 *
445 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
446 * coalesces them and we are running out of the MMU lock. Therefore
447 * we need to protect against in-progress updates of the spte.
448 *
449 * Reading the spte while an update is in progress may get the old value
450 * for the high part of the spte. The race is fine for a present->non-present
451 * change (because the high part of the spte is ignored for non-present spte),
452 * but for a present->present change we must reread the spte.
453 *
454 * All such changes are done in two steps (present->non-present and
455 * non-present->present), hence it is enough to count the number of
456 * present->non-present updates: if it changed while reading the spte,
457 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
458 */
459static u64 __get_spte_lockless(u64 *sptep)
460{
461 struct kvm_mmu_page *sp = page_header(__pa(sptep));
462 union split_spte spte, *orig = (union split_spte *)sptep;
463 int count;
464
465retry:
466 count = sp->clear_spte_count;
467 smp_rmb();
468
469 spte.spte_low = orig->spte_low;
470 smp_rmb();
471
472 spte.spte_high = orig->spte_high;
473 smp_rmb();
474
475 if (unlikely(spte.spte_low != orig->spte_low ||
476 count != sp->clear_spte_count))
477 goto retry;
478
479 return spte.spte;
480}
ce88decf
XG
481
482static bool __check_direct_spte_mmio_pf(u64 spte)
483{
484 union split_spte sspte = (union split_spte)spte;
485 u32 high_mmio_mask = shadow_mmio_mask >> 32;
486
487 /* It is valid if the spte is zapped. */
488 if (spte == 0ull)
489 return true;
490
491 /* It is valid if the spte is being zapped. */
492 if (sspte.spte_low == 0ull &&
493 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
494 return true;
495
496 return false;
497}
603e0651
XG
498#endif
499
c7ba5b48
XG
500static bool spte_is_locklessly_modifiable(u64 spte)
501{
feb3eb70
GN
502 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
503 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
504}
505
8672b721
XG
506static bool spte_has_volatile_bits(u64 spte)
507{
c7ba5b48
XG
508 /*
509 * Always atomicly update spte if it can be updated
510 * out of mmu-lock, it can ensure dirty bit is not lost,
511 * also, it can help us to get a stable is_writable_pte()
512 * to ensure tlb flush is not missed.
513 */
514 if (spte_is_locklessly_modifiable(spte))
515 return true;
516
8672b721
XG
517 if (!shadow_accessed_mask)
518 return false;
519
520 if (!is_shadow_present_pte(spte))
521 return false;
522
4132779b
XG
523 if ((spte & shadow_accessed_mask) &&
524 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
525 return false;
526
527 return true;
528}
529
4132779b
XG
530static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
531{
532 return (old_spte & bit_mask) && !(new_spte & bit_mask);
533}
534
7e71a59b
KH
535static bool spte_is_bit_changed(u64 old_spte, u64 new_spte, u64 bit_mask)
536{
537 return (old_spte & bit_mask) != (new_spte & bit_mask);
538}
539
1df9f2dc
XG
540/* Rules for using mmu_spte_set:
541 * Set the sptep from nonpresent to present.
542 * Note: the sptep being assigned *must* be either not present
543 * or in a state where the hardware will not attempt to update
544 * the spte.
545 */
546static void mmu_spte_set(u64 *sptep, u64 new_spte)
547{
548 WARN_ON(is_shadow_present_pte(*sptep));
549 __set_spte(sptep, new_spte);
550}
551
552/* Rules for using mmu_spte_update:
553 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
554 *
555 * Whenever we overwrite a writable spte with a read-only one we
556 * should flush remote TLBs. Otherwise rmap_write_protect
557 * will find a read-only spte, even though the writable spte
558 * might be cached on a CPU's TLB, the return value indicates this
559 * case.
1df9f2dc 560 */
6e7d0354 561static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 562{
c7ba5b48 563 u64 old_spte = *sptep;
6e7d0354 564 bool ret = false;
4132779b
XG
565
566 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 567
6e7d0354
XG
568 if (!is_shadow_present_pte(old_spte)) {
569 mmu_spte_set(sptep, new_spte);
570 return ret;
571 }
4132779b 572
c7ba5b48 573 if (!spte_has_volatile_bits(old_spte))
603e0651 574 __update_clear_spte_fast(sptep, new_spte);
4132779b 575 else
603e0651 576 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 577
c7ba5b48
XG
578 /*
579 * For the spte updated out of mmu-lock is safe, since
580 * we always atomicly update it, see the comments in
581 * spte_has_volatile_bits().
582 */
7f31c959
XG
583 if (spte_is_locklessly_modifiable(old_spte) &&
584 !is_writable_pte(new_spte))
6e7d0354
XG
585 ret = true;
586
4132779b 587 if (!shadow_accessed_mask)
6e7d0354 588 return ret;
4132779b 589
7e71a59b
KH
590 /*
591 * Flush TLB when accessed/dirty bits are changed in the page tables,
592 * to guarantee consistency between TLB and page tables.
593 */
594 if (spte_is_bit_changed(old_spte, new_spte,
595 shadow_accessed_mask | shadow_dirty_mask))
596 ret = true;
597
4132779b
XG
598 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
599 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
601 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
602
603 return ret;
b79b93f9
AK
604}
605
1df9f2dc
XG
606/*
607 * Rules for using mmu_spte_clear_track_bits:
608 * It sets the sptep from present to nonpresent, and track the
609 * state bits, it is used to clear the last level sptep.
610 */
611static int mmu_spte_clear_track_bits(u64 *sptep)
612{
613 pfn_t pfn;
614 u64 old_spte = *sptep;
615
616 if (!spte_has_volatile_bits(old_spte))
603e0651 617 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 618 else
603e0651 619 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
620
621 if (!is_rmap_spte(old_spte))
622 return 0;
623
624 pfn = spte_to_pfn(old_spte);
86fde74c
XG
625
626 /*
627 * KVM does not hold the refcount of the page used by
628 * kvm mmu, before reclaiming the page, we should
629 * unmap it from mmu first.
630 */
bf4bea8e 631 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 632
1df9f2dc
XG
633 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
634 kvm_set_pfn_accessed(pfn);
635 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
636 kvm_set_pfn_dirty(pfn);
637 return 1;
638}
639
640/*
641 * Rules for using mmu_spte_clear_no_track:
642 * Directly clear spte without caring the state bits of sptep,
643 * it is used to set the upper level spte.
644 */
645static void mmu_spte_clear_no_track(u64 *sptep)
646{
603e0651 647 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
648}
649
c2a2ac2b
XG
650static u64 mmu_spte_get_lockless(u64 *sptep)
651{
652 return __get_spte_lockless(sptep);
653}
654
655static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
656{
c142786c
AK
657 /*
658 * Prevent page table teardown by making any free-er wait during
659 * kvm_flush_remote_tlbs() IPI to all active vcpus.
660 */
661 local_irq_disable();
662 vcpu->mode = READING_SHADOW_PAGE_TABLES;
663 /*
664 * Make sure a following spte read is not reordered ahead of the write
665 * to vcpu->mode.
666 */
667 smp_mb();
c2a2ac2b
XG
668}
669
670static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
671{
c142786c
AK
672 /*
673 * Make sure the write to vcpu->mode is not reordered in front of
674 * reads to sptes. If it does, kvm_commit_zap_page() can see us
675 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
676 */
677 smp_mb();
678 vcpu->mode = OUTSIDE_GUEST_MODE;
679 local_irq_enable();
c2a2ac2b
XG
680}
681
e2dec939 682static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 683 struct kmem_cache *base_cache, int min)
714b93da
AK
684{
685 void *obj;
686
687 if (cache->nobjs >= min)
e2dec939 688 return 0;
714b93da 689 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 690 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 691 if (!obj)
e2dec939 692 return -ENOMEM;
714b93da
AK
693 cache->objects[cache->nobjs++] = obj;
694 }
e2dec939 695 return 0;
714b93da
AK
696}
697
f759e2b4
XG
698static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
699{
700 return cache->nobjs;
701}
702
e8ad9a70
XG
703static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
704 struct kmem_cache *cache)
714b93da
AK
705{
706 while (mc->nobjs)
e8ad9a70 707 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
708}
709
c1158e63 710static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 711 int min)
c1158e63 712{
842f22ed 713 void *page;
c1158e63
AK
714
715 if (cache->nobjs >= min)
716 return 0;
717 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 718 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
719 if (!page)
720 return -ENOMEM;
842f22ed 721 cache->objects[cache->nobjs++] = page;
c1158e63
AK
722 }
723 return 0;
724}
725
726static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
727{
728 while (mc->nobjs)
c4d198d5 729 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
730}
731
2e3e5882 732static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 733{
e2dec939
AK
734 int r;
735
53c07b18 736 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 737 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
738 if (r)
739 goto out;
ad312c7c 740 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
741 if (r)
742 goto out;
ad312c7c 743 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 744 mmu_page_header_cache, 4);
e2dec939
AK
745out:
746 return r;
714b93da
AK
747}
748
749static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
750{
53c07b18
XG
751 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
752 pte_list_desc_cache);
ad312c7c 753 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
754 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
755 mmu_page_header_cache);
714b93da
AK
756}
757
80feb89a 758static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
759{
760 void *p;
761
762 BUG_ON(!mc->nobjs);
763 p = mc->objects[--mc->nobjs];
714b93da
AK
764 return p;
765}
766
53c07b18 767static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 768{
80feb89a 769 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
770}
771
53c07b18 772static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 773{
53c07b18 774 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
775}
776
2032a93d
LJ
777static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
778{
779 if (!sp->role.direct)
780 return sp->gfns[index];
781
782 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
783}
784
785static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
786{
787 if (sp->role.direct)
788 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
789 else
790 sp->gfns[index] = gfn;
791}
792
05da4558 793/*
d4dbf470
TY
794 * Return the pointer to the large page information for a given gfn,
795 * handling slots that are not large page aligned.
05da4558 796 */
d4dbf470
TY
797static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
798 struct kvm_memory_slot *slot,
799 int level)
05da4558
MT
800{
801 unsigned long idx;
802
fb03cb6f 803 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 804 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
805}
806
807static void account_shadowed(struct kvm *kvm, gfn_t gfn)
808{
d25797b2 809 struct kvm_memory_slot *slot;
d4dbf470 810 struct kvm_lpage_info *linfo;
d25797b2 811 int i;
05da4558 812
a1f4d395 813 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 814 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
815 linfo = lpage_info_slot(gfn, slot, i);
816 linfo->write_count += 1;
d25797b2 817 }
332b207d 818 kvm->arch.indirect_shadow_pages++;
05da4558
MT
819}
820
821static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
822{
d25797b2 823 struct kvm_memory_slot *slot;
d4dbf470 824 struct kvm_lpage_info *linfo;
d25797b2 825 int i;
05da4558 826
a1f4d395 827 slot = gfn_to_memslot(kvm, gfn);
8a3d08f1 828 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d4dbf470
TY
829 linfo = lpage_info_slot(gfn, slot, i);
830 linfo->write_count -= 1;
831 WARN_ON(linfo->write_count < 0);
d25797b2 832 }
332b207d 833 kvm->arch.indirect_shadow_pages--;
05da4558
MT
834}
835
d25797b2
JR
836static int has_wrprotected_page(struct kvm *kvm,
837 gfn_t gfn,
838 int level)
05da4558 839{
2843099f 840 struct kvm_memory_slot *slot;
d4dbf470 841 struct kvm_lpage_info *linfo;
05da4558 842
a1f4d395 843 slot = gfn_to_memslot(kvm, gfn);
05da4558 844 if (slot) {
d4dbf470
TY
845 linfo = lpage_info_slot(gfn, slot, level);
846 return linfo->write_count;
05da4558
MT
847 }
848
849 return 1;
850}
851
d25797b2 852static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 853{
8f0b1ab6 854 unsigned long page_size;
d25797b2 855 int i, ret = 0;
05da4558 856
8f0b1ab6 857 page_size = kvm_host_page_size(kvm, gfn);
05da4558 858
8a3d08f1 859 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
d25797b2
JR
860 if (page_size >= KVM_HPAGE_SIZE(i))
861 ret = i;
862 else
863 break;
864 }
865
4c2155ce 866 return ret;
05da4558
MT
867}
868
5d163b1c
XG
869static struct kvm_memory_slot *
870gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
871 bool no_dirty_log)
05da4558
MT
872{
873 struct kvm_memory_slot *slot;
5d163b1c
XG
874
875 slot = gfn_to_memslot(vcpu->kvm, gfn);
876 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
877 (no_dirty_log && slot->dirty_bitmap))
878 slot = NULL;
879
880 return slot;
881}
882
883static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
884{
a0a8eaba 885 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
886}
887
888static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889{
890 int host_level, level, max_level;
05da4558 891
d25797b2
JR
892 host_level = host_mapping_level(vcpu->kvm, large_gfn);
893
894 if (host_level == PT_PAGE_TABLE_LEVEL)
895 return host_level;
896
55dd98c3 897 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
898
899 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
900 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
901 break;
d25797b2
JR
902
903 return level - 1;
05da4558
MT
904}
905
290fc38d 906/*
53c07b18 907 * Pte mapping structures:
cd4a4e53 908 *
53c07b18 909 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 910 *
53c07b18
XG
911 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
912 * pte_list_desc containing more mappings.
53a27b39 913 *
53c07b18 914 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
915 * the spte was not added.
916 *
cd4a4e53 917 */
53c07b18
XG
918static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
919 unsigned long *pte_list)
cd4a4e53 920{
53c07b18 921 struct pte_list_desc *desc;
53a27b39 922 int i, count = 0;
cd4a4e53 923
53c07b18
XG
924 if (!*pte_list) {
925 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
926 *pte_list = (unsigned long)spte;
927 } else if (!(*pte_list & 1)) {
928 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
929 desc = mmu_alloc_pte_list_desc(vcpu);
930 desc->sptes[0] = (u64 *)*pte_list;
d555c333 931 desc->sptes[1] = spte;
53c07b18 932 *pte_list = (unsigned long)desc | 1;
cb16a7b3 933 ++count;
cd4a4e53 934 } else {
53c07b18
XG
935 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
936 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
937 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 938 desc = desc->more;
53c07b18 939 count += PTE_LIST_EXT;
53a27b39 940 }
53c07b18
XG
941 if (desc->sptes[PTE_LIST_EXT-1]) {
942 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
943 desc = desc->more;
944 }
d555c333 945 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 946 ++count;
d555c333 947 desc->sptes[i] = spte;
cd4a4e53 948 }
53a27b39 949 return count;
cd4a4e53
AK
950}
951
53c07b18
XG
952static void
953pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
954 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
955{
956 int j;
957
53c07b18 958 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 959 ;
d555c333
AK
960 desc->sptes[i] = desc->sptes[j];
961 desc->sptes[j] = NULL;
cd4a4e53
AK
962 if (j != 0)
963 return;
964 if (!prev_desc && !desc->more)
53c07b18 965 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
966 else
967 if (prev_desc)
968 prev_desc->more = desc->more;
969 else
53c07b18
XG
970 *pte_list = (unsigned long)desc->more | 1;
971 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
972}
973
53c07b18 974static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 975{
53c07b18
XG
976 struct pte_list_desc *desc;
977 struct pte_list_desc *prev_desc;
cd4a4e53
AK
978 int i;
979
53c07b18
XG
980 if (!*pte_list) {
981 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 982 BUG();
53c07b18
XG
983 } else if (!(*pte_list & 1)) {
984 rmap_printk("pte_list_remove: %p 1->0\n", spte);
985 if ((u64 *)*pte_list != spte) {
986 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
987 BUG();
988 }
53c07b18 989 *pte_list = 0;
cd4a4e53 990 } else {
53c07b18
XG
991 rmap_printk("pte_list_remove: %p many->many\n", spte);
992 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
993 prev_desc = NULL;
994 while (desc) {
53c07b18 995 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 996 if (desc->sptes[i] == spte) {
53c07b18 997 pte_list_desc_remove_entry(pte_list,
714b93da 998 desc, i,
cd4a4e53
AK
999 prev_desc);
1000 return;
1001 }
1002 prev_desc = desc;
1003 desc = desc->more;
1004 }
53c07b18 1005 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1006 BUG();
1007 }
1008}
1009
67052b35
XG
1010typedef void (*pte_list_walk_fn) (u64 *spte);
1011static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1012{
1013 struct pte_list_desc *desc;
1014 int i;
1015
1016 if (!*pte_list)
1017 return;
1018
1019 if (!(*pte_list & 1))
1020 return fn((u64 *)*pte_list);
1021
1022 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1023 while (desc) {
1024 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1025 fn(desc->sptes[i]);
1026 desc = desc->more;
1027 }
1028}
1029
9373e2c0 1030static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1031 struct kvm_memory_slot *slot)
53c07b18 1032{
77d11309 1033 unsigned long idx;
53c07b18 1034
77d11309 1035 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1036 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1037}
1038
9b9b1492
TY
1039/*
1040 * Take gfn and return the reverse mapping to it.
1041 */
1042static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1043{
1044 struct kvm_memory_slot *slot;
1045
1046 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1047 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1048}
1049
f759e2b4
XG
1050static bool rmap_can_add(struct kvm_vcpu *vcpu)
1051{
1052 struct kvm_mmu_memory_cache *cache;
1053
1054 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1055 return mmu_memory_cache_free_objects(cache);
1056}
1057
53c07b18
XG
1058static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1059{
1060 struct kvm_mmu_page *sp;
1061 unsigned long *rmapp;
1062
53c07b18
XG
1063 sp = page_header(__pa(spte));
1064 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1065 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1066 return pte_list_add(vcpu, spte, rmapp);
1067}
1068
53c07b18
XG
1069static void rmap_remove(struct kvm *kvm, u64 *spte)
1070{
1071 struct kvm_mmu_page *sp;
1072 gfn_t gfn;
1073 unsigned long *rmapp;
1074
1075 sp = page_header(__pa(spte));
1076 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1077 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1078 pte_list_remove(spte, rmapp);
1079}
1080
1e3f42f0
TY
1081/*
1082 * Used by the following functions to iterate through the sptes linked by a
1083 * rmap. All fields are private and not assumed to be used outside.
1084 */
1085struct rmap_iterator {
1086 /* private fields */
1087 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1088 int pos; /* index of the sptep */
1089};
1090
1091/*
1092 * Iteration must be started by this function. This should also be used after
1093 * removing/dropping sptes from the rmap link because in such cases the
1094 * information in the itererator may not be valid.
1095 *
1096 * Returns sptep if found, NULL otherwise.
1097 */
1098static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1099{
1100 if (!rmap)
1101 return NULL;
1102
1103 if (!(rmap & 1)) {
1104 iter->desc = NULL;
1105 return (u64 *)rmap;
1106 }
1107
1108 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1109 iter->pos = 0;
1110 return iter->desc->sptes[iter->pos];
1111}
1112
1113/*
1114 * Must be used with a valid iterator: e.g. after rmap_get_first().
1115 *
1116 * Returns sptep if found, NULL otherwise.
1117 */
1118static u64 *rmap_get_next(struct rmap_iterator *iter)
1119{
1120 if (iter->desc) {
1121 if (iter->pos < PTE_LIST_EXT - 1) {
1122 u64 *sptep;
1123
1124 ++iter->pos;
1125 sptep = iter->desc->sptes[iter->pos];
1126 if (sptep)
1127 return sptep;
1128 }
1129
1130 iter->desc = iter->desc->more;
1131
1132 if (iter->desc) {
1133 iter->pos = 0;
1134 /* desc->sptes[0] cannot be NULL */
1135 return iter->desc->sptes[iter->pos];
1136 }
1137 }
1138
1139 return NULL;
1140}
1141
0d536790
XG
1142#define for_each_rmap_spte(_rmap_, _iter_, _spte_) \
1143 for (_spte_ = rmap_get_first(*_rmap_, _iter_); \
1144 _spte_ && ({BUG_ON(!is_shadow_present_pte(*_spte_)); 1;}); \
1145 _spte_ = rmap_get_next(_iter_))
1146
c3707958 1147static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1148{
1df9f2dc 1149 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1150 rmap_remove(kvm, sptep);
be38d276
AK
1151}
1152
8e22f955
XG
1153
1154static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155{
1156 if (is_large_pte(*sptep)) {
1157 WARN_ON(page_header(__pa(sptep))->role.level ==
1158 PT_PAGE_TABLE_LEVEL);
1159 drop_spte(kvm, sptep);
1160 --kvm->stat.lpages;
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
1167static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168{
1169 if (__drop_large_spte(vcpu->kvm, sptep))
1170 kvm_flush_remote_tlbs(vcpu->kvm);
1171}
1172
1173/*
49fde340 1174 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1175 * spte write-protection is caused by protecting shadow page table.
49fde340 1176 *
b4619660 1177 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1178 * protection:
1179 * - for dirty logging, the spte can be set to writable at anytime if
1180 * its dirty bitmap is properly set.
1181 * - for spte protection, the spte can be writable only after unsync-ing
1182 * shadow page.
8e22f955 1183 *
c126d94f 1184 * Return true if tlb need be flushed.
8e22f955 1185 */
c126d94f 1186static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
49fde340
XG
1196 if (pt_protect)
1197 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1198 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1199
c126d94f 1200 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1201}
1202
49fde340 1203static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1204 bool pt_protect)
98348e95 1205{
1e3f42f0
TY
1206 u64 *sptep;
1207 struct rmap_iterator iter;
d13bc5b5 1208 bool flush = false;
374cbac0 1209
0d536790 1210 for_each_rmap_spte(rmapp, &iter, sptep)
c126d94f 1211 flush |= spte_write_protect(kvm, sptep, pt_protect);
855149aa 1212
d13bc5b5 1213 return flush;
a0ed4607
TY
1214}
1215
f4b4b180
KH
1216static bool spte_clear_dirty(struct kvm *kvm, u64 *sptep)
1217{
1218 u64 spte = *sptep;
1219
1220 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1221
1222 spte &= ~shadow_dirty_mask;
1223
1224 return mmu_spte_update(sptep, spte);
1225}
1226
1227static bool __rmap_clear_dirty(struct kvm *kvm, unsigned long *rmapp)
1228{
1229 u64 *sptep;
1230 struct rmap_iterator iter;
1231 bool flush = false;
1232
0d536790 1233 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1234 flush |= spte_clear_dirty(kvm, sptep);
f4b4b180
KH
1235
1236 return flush;
1237}
1238
1239static bool spte_set_dirty(struct kvm *kvm, u64 *sptep)
1240{
1241 u64 spte = *sptep;
1242
1243 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1244
1245 spte |= shadow_dirty_mask;
1246
1247 return mmu_spte_update(sptep, spte);
1248}
1249
1250static bool __rmap_set_dirty(struct kvm *kvm, unsigned long *rmapp)
1251{
1252 u64 *sptep;
1253 struct rmap_iterator iter;
1254 bool flush = false;
1255
0d536790 1256 for_each_rmap_spte(rmapp, &iter, sptep)
f4b4b180 1257 flush |= spte_set_dirty(kvm, sptep);
f4b4b180
KH
1258
1259 return flush;
1260}
1261
5dc99b23 1262/**
3b0f1d01 1263 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1264 * @kvm: kvm instance
1265 * @slot: slot to protect
1266 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1267 * @mask: indicates which pages we should protect
1268 *
1269 * Used when we do not need to care about huge page mappings: e.g. during dirty
1270 * logging we do not have any such mappings.
1271 */
3b0f1d01 1272static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1273 struct kvm_memory_slot *slot,
1274 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1275{
1276 unsigned long *rmapp;
a0ed4607 1277
5dc99b23 1278 while (mask) {
65fbe37c
TY
1279 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1280 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1281 __rmap_write_protect(kvm, rmapp, false);
05da4558 1282
5dc99b23
TY
1283 /* clear the first set bit */
1284 mask &= mask - 1;
1285 }
374cbac0
AK
1286}
1287
f4b4b180
KH
1288/**
1289 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages
1290 * @kvm: kvm instance
1291 * @slot: slot to clear D-bit
1292 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1293 * @mask: indicates which pages we should clear D-bit
1294 *
1295 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1296 */
1297void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1298 struct kvm_memory_slot *slot,
1299 gfn_t gfn_offset, unsigned long mask)
1300{
1301 unsigned long *rmapp;
1302
1303 while (mask) {
1304 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1305 PT_PAGE_TABLE_LEVEL, slot);
1306 __rmap_clear_dirty(kvm, rmapp);
1307
1308 /* clear the first set bit */
1309 mask &= mask - 1;
1310 }
1311}
1312EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1313
3b0f1d01
KH
1314/**
1315 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1316 * PT level pages.
1317 *
1318 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1319 * enable dirty logging for them.
1320 *
1321 * Used when we do not need to care about huge page mappings: e.g. during dirty
1322 * logging we do not have any such mappings.
1323 */
1324void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1325 struct kvm_memory_slot *slot,
1326 gfn_t gfn_offset, unsigned long mask)
1327{
88178fd4
KH
1328 if (kvm_x86_ops->enable_log_dirty_pt_masked)
1329 kvm_x86_ops->enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
1330 mask);
1331 else
1332 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1333}
1334
2f84569f 1335static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1336{
1337 struct kvm_memory_slot *slot;
5dc99b23
TY
1338 unsigned long *rmapp;
1339 int i;
2f84569f 1340 bool write_protected = false;
95d4c16c
TY
1341
1342 slot = gfn_to_memslot(kvm, gfn);
5dc99b23 1343
8a3d08f1 1344 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
5dc99b23 1345 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1346 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1347 }
1348
1349 return write_protected;
95d4c16c
TY
1350}
1351
6a49f85c 1352static bool kvm_zap_rmapp(struct kvm *kvm, unsigned long *rmapp)
e930bffe 1353{
1e3f42f0
TY
1354 u64 *sptep;
1355 struct rmap_iterator iter;
6a49f85c 1356 bool flush = false;
e930bffe 1357
1e3f42f0
TY
1358 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1359 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6a49f85c 1360 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0
TY
1361
1362 drop_spte(kvm, sptep);
6a49f85c 1363 flush = true;
e930bffe 1364 }
1e3f42f0 1365
6a49f85c
XG
1366 return flush;
1367}
1368
1369static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1370 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1371 unsigned long data)
1372{
1373 return kvm_zap_rmapp(kvm, rmapp);
e930bffe
AA
1374}
1375
8a8365c5 1376static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1377 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1378 unsigned long data)
3da0dd43 1379{
1e3f42f0
TY
1380 u64 *sptep;
1381 struct rmap_iterator iter;
3da0dd43 1382 int need_flush = 0;
1e3f42f0 1383 u64 new_spte;
3da0dd43
IE
1384 pte_t *ptep = (pte_t *)data;
1385 pfn_t new_pfn;
1386
1387 WARN_ON(pte_huge(*ptep));
1388 new_pfn = pte_pfn(*ptep);
1e3f42f0 1389
0d536790
XG
1390restart:
1391 for_each_rmap_spte(rmapp, &iter, sptep) {
8a9522d2
ALC
1392 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1393 sptep, *sptep, gfn, level);
1e3f42f0 1394
3da0dd43 1395 need_flush = 1;
1e3f42f0 1396
3da0dd43 1397 if (pte_write(*ptep)) {
1e3f42f0 1398 drop_spte(kvm, sptep);
0d536790 1399 goto restart;
3da0dd43 1400 } else {
1e3f42f0 1401 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1402 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1403
1404 new_spte &= ~PT_WRITABLE_MASK;
1405 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1406 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1407
1408 mmu_spte_clear_track_bits(sptep);
1409 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1410 }
1411 }
1e3f42f0 1412
3da0dd43
IE
1413 if (need_flush)
1414 kvm_flush_remote_tlbs(kvm);
1415
1416 return 0;
1417}
1418
6ce1f4e2
XG
1419struct slot_rmap_walk_iterator {
1420 /* input fields. */
1421 struct kvm_memory_slot *slot;
1422 gfn_t start_gfn;
1423 gfn_t end_gfn;
1424 int start_level;
1425 int end_level;
1426
1427 /* output fields. */
1428 gfn_t gfn;
1429 unsigned long *rmap;
1430 int level;
1431
1432 /* private field. */
1433 unsigned long *end_rmap;
1434};
1435
1436static void
1437rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1438{
1439 iterator->level = level;
1440 iterator->gfn = iterator->start_gfn;
1441 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1442 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1443 iterator->slot);
1444}
1445
1446static void
1447slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1448 struct kvm_memory_slot *slot, int start_level,
1449 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1450{
1451 iterator->slot = slot;
1452 iterator->start_level = start_level;
1453 iterator->end_level = end_level;
1454 iterator->start_gfn = start_gfn;
1455 iterator->end_gfn = end_gfn;
1456
1457 rmap_walk_init_level(iterator, iterator->start_level);
1458}
1459
1460static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1461{
1462 return !!iterator->rmap;
1463}
1464
1465static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1466{
1467 if (++iterator->rmap <= iterator->end_rmap) {
1468 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1469 return;
1470 }
1471
1472 if (++iterator->level > iterator->end_level) {
1473 iterator->rmap = NULL;
1474 return;
1475 }
1476
1477 rmap_walk_init_level(iterator, iterator->level);
1478}
1479
1480#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1481 _start_gfn, _end_gfn, _iter_) \
1482 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1483 _end_level_, _start_gfn, _end_gfn); \
1484 slot_rmap_walk_okay(_iter_); \
1485 slot_rmap_walk_next(_iter_))
1486
84504ef3
TY
1487static int kvm_handle_hva_range(struct kvm *kvm,
1488 unsigned long start,
1489 unsigned long end,
1490 unsigned long data,
1491 int (*handler)(struct kvm *kvm,
1492 unsigned long *rmapp,
048212d0 1493 struct kvm_memory_slot *slot,
8a9522d2
ALC
1494 gfn_t gfn,
1495 int level,
84504ef3 1496 unsigned long data))
e930bffe 1497{
bc6678a3 1498 struct kvm_memslots *slots;
be6ba0f0 1499 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1500 struct slot_rmap_walk_iterator iterator;
1501 int ret = 0;
bc6678a3 1502
90d83dc3 1503 slots = kvm_memslots(kvm);
e930bffe 1504
be6ba0f0 1505 kvm_for_each_memslot(memslot, slots) {
84504ef3 1506 unsigned long hva_start, hva_end;
bcd3ef58 1507 gfn_t gfn_start, gfn_end;
e930bffe 1508
84504ef3
TY
1509 hva_start = max(start, memslot->userspace_addr);
1510 hva_end = min(end, memslot->userspace_addr +
1511 (memslot->npages << PAGE_SHIFT));
1512 if (hva_start >= hva_end)
1513 continue;
1514 /*
1515 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1516 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1517 */
bcd3ef58 1518 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1519 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1520
6ce1f4e2
XG
1521 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1522 PT_MAX_HUGEPAGE_LEVEL, gfn_start, gfn_end - 1,
1523 &iterator)
1524 ret |= handler(kvm, iterator.rmap, memslot,
1525 iterator.gfn, iterator.level, data);
e930bffe
AA
1526 }
1527
f395302e 1528 return ret;
e930bffe
AA
1529}
1530
84504ef3
TY
1531static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1532 unsigned long data,
1533 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1534 struct kvm_memory_slot *slot,
8a9522d2 1535 gfn_t gfn, int level,
84504ef3
TY
1536 unsigned long data))
1537{
1538 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1539}
1540
1541int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1542{
3da0dd43
IE
1543 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1544}
1545
b3ae2096
TY
1546int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1547{
1548 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1549}
1550
3da0dd43
IE
1551void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1552{
8a8365c5 1553 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1554}
1555
8a8365c5 1556static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1557 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1558 unsigned long data)
e930bffe 1559{
1e3f42f0 1560 u64 *sptep;
79f702a6 1561 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1562 int young = 0;
1563
57128468 1564 BUG_ON(!shadow_accessed_mask);
534e38b4 1565
0d536790 1566 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1567 if (*sptep & shadow_accessed_mask) {
e930bffe 1568 young = 1;
3f6d8c8a
XH
1569 clear_bit((ffs(shadow_accessed_mask) - 1),
1570 (unsigned long *)sptep);
e930bffe 1571 }
0d536790 1572
8a9522d2 1573 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1574 return young;
1575}
1576
8ee53820 1577static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1578 struct kvm_memory_slot *slot, gfn_t gfn,
1579 int level, unsigned long data)
8ee53820 1580{
1e3f42f0
TY
1581 u64 *sptep;
1582 struct rmap_iterator iter;
8ee53820
AA
1583 int young = 0;
1584
1585 /*
1586 * If there's no access bit in the secondary pte set by the
1587 * hardware it's up to gup-fast/gup to set the access bit in
1588 * the primary pte or in the page structure.
1589 */
1590 if (!shadow_accessed_mask)
1591 goto out;
1592
0d536790 1593 for_each_rmap_spte(rmapp, &iter, sptep)
3f6d8c8a 1594 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1595 young = 1;
1596 break;
1597 }
8ee53820
AA
1598out:
1599 return young;
1600}
1601
53a27b39
MT
1602#define RMAP_RECYCLE_THRESHOLD 1000
1603
852e3c19 1604static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1605{
1606 unsigned long *rmapp;
852e3c19
JR
1607 struct kvm_mmu_page *sp;
1608
1609 sp = page_header(__pa(spte));
53a27b39 1610
852e3c19 1611 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1612
8a9522d2 1613 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1614 kvm_flush_remote_tlbs(vcpu->kvm);
1615}
1616
57128468 1617int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 1618{
57128468
ALC
1619 /*
1620 * In case of absence of EPT Access and Dirty Bits supports,
1621 * emulate the accessed bit for EPT, by checking if this page has
1622 * an EPT mapping, and clearing it if it does. On the next access,
1623 * a new EPT mapping will be established.
1624 * This has some overhead, but not as much as the cost of swapping
1625 * out actively used pages or breaking up actively used hugepages.
1626 */
1627 if (!shadow_accessed_mask) {
1628 /*
1629 * We are holding the kvm->mmu_lock, and we are blowing up
1630 * shadow PTEs. MMU notifier consumers need to be kept at bay.
1631 * This is correct as long as we don't decouple the mmu_lock
1632 * protected regions (like invalidate_range_start|end does).
1633 */
1634 kvm->mmu_notifier_seq++;
1635 return kvm_handle_hva_range(kvm, start, end, 0,
1636 kvm_unmap_rmapp);
1637 }
1638
1639 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
1640}
1641
8ee53820
AA
1642int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1643{
1644 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1645}
1646
d6c69ee9 1647#ifdef MMU_DEBUG
47ad8e68 1648static int is_empty_shadow_page(u64 *spt)
6aa8b732 1649{
139bdb2d
AK
1650 u64 *pos;
1651 u64 *end;
1652
47ad8e68 1653 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1654 if (is_shadow_present_pte(*pos)) {
b8688d51 1655 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1656 pos, *pos);
6aa8b732 1657 return 0;
139bdb2d 1658 }
6aa8b732
AK
1659 return 1;
1660}
d6c69ee9 1661#endif
6aa8b732 1662
45221ab6
DH
1663/*
1664 * This value is the sum of all of the kvm instances's
1665 * kvm->arch.n_used_mmu_pages values. We need a global,
1666 * aggregate version in order to make the slab shrinker
1667 * faster
1668 */
1669static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1670{
1671 kvm->arch.n_used_mmu_pages += nr;
1672 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1673}
1674
834be0d8 1675static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1676{
fa4a2c08 1677 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 1678 hlist_del(&sp->hash_link);
bd4c86ea
XG
1679 list_del(&sp->link);
1680 free_page((unsigned long)sp->spt);
834be0d8
GN
1681 if (!sp->role.direct)
1682 free_page((unsigned long)sp->gfns);
e8ad9a70 1683 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1684}
1685
cea0f0e7
AK
1686static unsigned kvm_page_table_hashfn(gfn_t gfn)
1687{
1ae0a13d 1688 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1689}
1690
714b93da 1691static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1692 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1693{
cea0f0e7
AK
1694 if (!parent_pte)
1695 return;
cea0f0e7 1696
67052b35 1697 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1698}
1699
4db35314 1700static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1701 u64 *parent_pte)
1702{
67052b35 1703 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1704}
1705
bcdd9a93
XG
1706static void drop_parent_pte(struct kvm_mmu_page *sp,
1707 u64 *parent_pte)
1708{
1709 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1710 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1711}
1712
67052b35
XG
1713static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1714 u64 *parent_pte, int direct)
ad8cfbe3 1715{
67052b35 1716 struct kvm_mmu_page *sp;
7ddca7e4 1717
80feb89a
TY
1718 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1719 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1720 if (!direct)
80feb89a 1721 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1722 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1723
1724 /*
1725 * The active_mmu_pages list is the FIFO list, do not move the
1726 * page until it is zapped. kvm_zap_obsolete_pages depends on
1727 * this feature. See the comments in kvm_zap_obsolete_pages().
1728 */
67052b35 1729 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1730 sp->parent_ptes = 0;
1731 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1732 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1733 return sp;
ad8cfbe3
MT
1734}
1735
67052b35 1736static void mark_unsync(u64 *spte);
1047df1f 1737static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1738{
67052b35 1739 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1740}
1741
67052b35 1742static void mark_unsync(u64 *spte)
0074ff63 1743{
67052b35 1744 struct kvm_mmu_page *sp;
1047df1f 1745 unsigned int index;
0074ff63 1746
67052b35 1747 sp = page_header(__pa(spte));
1047df1f
XG
1748 index = spte - sp->spt;
1749 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1750 return;
1047df1f 1751 if (sp->unsync_children++)
0074ff63 1752 return;
1047df1f 1753 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1754}
1755
e8bc217a 1756static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1757 struct kvm_mmu_page *sp)
e8bc217a
MT
1758{
1759 return 1;
1760}
1761
a7052897
MT
1762static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1763{
1764}
1765
0f53b5b1
XG
1766static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1767 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1768 const void *pte)
0f53b5b1
XG
1769{
1770 WARN_ON(1);
1771}
1772
60c8aec6
MT
1773#define KVM_PAGE_ARRAY_NR 16
1774
1775struct kvm_mmu_pages {
1776 struct mmu_page_and_offset {
1777 struct kvm_mmu_page *sp;
1778 unsigned int idx;
1779 } page[KVM_PAGE_ARRAY_NR];
1780 unsigned int nr;
1781};
1782
cded19f3
HE
1783static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1784 int idx)
4731d4c7 1785{
60c8aec6 1786 int i;
4731d4c7 1787
60c8aec6
MT
1788 if (sp->unsync)
1789 for (i=0; i < pvec->nr; i++)
1790 if (pvec->page[i].sp == sp)
1791 return 0;
1792
1793 pvec->page[pvec->nr].sp = sp;
1794 pvec->page[pvec->nr].idx = idx;
1795 pvec->nr++;
1796 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1797}
1798
1799static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1800 struct kvm_mmu_pages *pvec)
1801{
1802 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1803
37178b8b 1804 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1805 struct kvm_mmu_page *child;
4731d4c7
MT
1806 u64 ent = sp->spt[i];
1807
7a8f1a74
XG
1808 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1809 goto clear_child_bitmap;
1810
1811 child = page_header(ent & PT64_BASE_ADDR_MASK);
1812
1813 if (child->unsync_children) {
1814 if (mmu_pages_add(pvec, child, i))
1815 return -ENOSPC;
1816
1817 ret = __mmu_unsync_walk(child, pvec);
1818 if (!ret)
1819 goto clear_child_bitmap;
1820 else if (ret > 0)
1821 nr_unsync_leaf += ret;
1822 else
1823 return ret;
1824 } else if (child->unsync) {
1825 nr_unsync_leaf++;
1826 if (mmu_pages_add(pvec, child, i))
1827 return -ENOSPC;
1828 } else
1829 goto clear_child_bitmap;
1830
1831 continue;
1832
1833clear_child_bitmap:
1834 __clear_bit(i, sp->unsync_child_bitmap);
1835 sp->unsync_children--;
1836 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1837 }
1838
4731d4c7 1839
60c8aec6
MT
1840 return nr_unsync_leaf;
1841}
1842
1843static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1844 struct kvm_mmu_pages *pvec)
1845{
1846 if (!sp->unsync_children)
1847 return 0;
1848
1849 mmu_pages_add(pvec, sp, 0);
1850 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1851}
1852
4731d4c7
MT
1853static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1854{
1855 WARN_ON(!sp->unsync);
5e1b3ddb 1856 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1857 sp->unsync = 0;
1858 --kvm->stat.mmu_unsync;
1859}
1860
7775834a
XG
1861static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1862 struct list_head *invalid_list);
1863static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1864 struct list_head *invalid_list);
4731d4c7 1865
f34d251d
XG
1866/*
1867 * NOTE: we should pay more attention on the zapped-obsolete page
1868 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1869 * since it has been deleted from active_mmu_pages but still can be found
1870 * at hast list.
1871 *
1872 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1873 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1874 * all the obsolete pages.
1875 */
1044b030
TY
1876#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1877 hlist_for_each_entry(_sp, \
1878 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1879 if ((_sp)->gfn != (_gfn)) {} else
1880
1881#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1882 for_each_gfn_sp(_kvm, _sp, _gfn) \
1883 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1884
f918b443 1885/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1886static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1887 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1888{
5b7e0102 1889 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1890 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1891 return 1;
1892 }
1893
f918b443 1894 if (clear_unsync)
1d9dc7e0 1895 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1896
a4a8e6f7 1897 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1898 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1899 return 1;
1900 }
1901
77c3913b 1902 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1903 return 0;
1904}
1905
1d9dc7e0
XG
1906static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1907 struct kvm_mmu_page *sp)
1908{
d98ba053 1909 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1910 int ret;
1911
d98ba053 1912 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1913 if (ret)
d98ba053
XG
1914 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1915
1d9dc7e0
XG
1916 return ret;
1917}
1918
e37fa785
XG
1919#ifdef CONFIG_KVM_MMU_AUDIT
1920#include "mmu_audit.c"
1921#else
1922static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1923static void mmu_audit_disable(void) { }
1924#endif
1925
d98ba053
XG
1926static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1927 struct list_head *invalid_list)
1d9dc7e0 1928{
d98ba053 1929 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1930}
1931
9f1a122f
XG
1932/* @gfn should be write-protected at the call site */
1933static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1934{
9f1a122f 1935 struct kvm_mmu_page *s;
d98ba053 1936 LIST_HEAD(invalid_list);
9f1a122f
XG
1937 bool flush = false;
1938
b67bfe0d 1939 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1940 if (!s->unsync)
9f1a122f
XG
1941 continue;
1942
1943 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1944 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1945 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1946 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1947 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1948 continue;
1949 }
9f1a122f
XG
1950 flush = true;
1951 }
1952
d98ba053 1953 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1954 if (flush)
77c3913b 1955 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1956}
1957
60c8aec6
MT
1958struct mmu_page_path {
1959 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1960 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1961};
1962
60c8aec6
MT
1963#define for_each_sp(pvec, sp, parents, i) \
1964 for (i = mmu_pages_next(&pvec, &parents, -1), \
1965 sp = pvec.page[i].sp; \
1966 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1967 i = mmu_pages_next(&pvec, &parents, i))
1968
cded19f3
HE
1969static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1970 struct mmu_page_path *parents,
1971 int i)
60c8aec6
MT
1972{
1973 int n;
1974
1975 for (n = i+1; n < pvec->nr; n++) {
1976 struct kvm_mmu_page *sp = pvec->page[n].sp;
1977
1978 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1979 parents->idx[0] = pvec->page[n].idx;
1980 return n;
1981 }
1982
1983 parents->parent[sp->role.level-2] = sp;
1984 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1985 }
1986
1987 return n;
1988}
1989
cded19f3 1990static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1991{
60c8aec6
MT
1992 struct kvm_mmu_page *sp;
1993 unsigned int level = 0;
1994
1995 do {
1996 unsigned int idx = parents->idx[level];
4731d4c7 1997
60c8aec6
MT
1998 sp = parents->parent[level];
1999 if (!sp)
2000 return;
2001
2002 --sp->unsync_children;
2003 WARN_ON((int)sp->unsync_children < 0);
2004 __clear_bit(idx, sp->unsync_child_bitmap);
2005 level++;
2006 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
2007}
2008
60c8aec6
MT
2009static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
2010 struct mmu_page_path *parents,
2011 struct kvm_mmu_pages *pvec)
4731d4c7 2012{
60c8aec6
MT
2013 parents->parent[parent->role.level-1] = NULL;
2014 pvec->nr = 0;
2015}
4731d4c7 2016
60c8aec6
MT
2017static void mmu_sync_children(struct kvm_vcpu *vcpu,
2018 struct kvm_mmu_page *parent)
2019{
2020 int i;
2021 struct kvm_mmu_page *sp;
2022 struct mmu_page_path parents;
2023 struct kvm_mmu_pages pages;
d98ba053 2024 LIST_HEAD(invalid_list);
60c8aec6
MT
2025
2026 kvm_mmu_pages_init(parent, &parents, &pages);
2027 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2028 bool protected = false;
b1a36821
MT
2029
2030 for_each_sp(pages, sp, parents, i)
2031 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
2032
2033 if (protected)
2034 kvm_flush_remote_tlbs(vcpu->kvm);
2035
60c8aec6 2036 for_each_sp(pages, sp, parents, i) {
d98ba053 2037 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2038 mmu_pages_clear_parents(&parents);
2039 }
d98ba053 2040 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 2041 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
2042 kvm_mmu_pages_init(parent, &parents, &pages);
2043 }
4731d4c7
MT
2044}
2045
c3707958
XG
2046static void init_shadow_page_table(struct kvm_mmu_page *sp)
2047{
2048 int i;
2049
2050 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2051 sp->spt[i] = 0ull;
2052}
2053
a30f47cb
XG
2054static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2055{
2056 sp->write_flooding_count = 0;
2057}
2058
2059static void clear_sp_write_flooding_count(u64 *spte)
2060{
2061 struct kvm_mmu_page *sp = page_header(__pa(spte));
2062
2063 __clear_sp_write_flooding_count(sp);
2064}
2065
5304b8d3
XG
2066static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2067{
2068 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
2069}
2070
cea0f0e7
AK
2071static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2072 gfn_t gfn,
2073 gva_t gaddr,
2074 unsigned level,
f6e2c02b 2075 int direct,
41074d07 2076 unsigned access,
f7d9c7b7 2077 u64 *parent_pte)
cea0f0e7
AK
2078{
2079 union kvm_mmu_page_role role;
cea0f0e7 2080 unsigned quadrant;
9f1a122f 2081 struct kvm_mmu_page *sp;
9f1a122f 2082 bool need_sync = false;
cea0f0e7 2083
a770f6f2 2084 role = vcpu->arch.mmu.base_role;
cea0f0e7 2085 role.level = level;
f6e2c02b 2086 role.direct = direct;
84b0c8c6 2087 if (role.direct)
5b7e0102 2088 role.cr4_pae = 0;
41074d07 2089 role.access = access;
c5a78f2b
JR
2090 if (!vcpu->arch.mmu.direct_map
2091 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2092 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2093 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2094 role.quadrant = quadrant;
2095 }
b67bfe0d 2096 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
2097 if (is_obsolete_sp(vcpu->kvm, sp))
2098 continue;
2099
7ae680eb
XG
2100 if (!need_sync && sp->unsync)
2101 need_sync = true;
4731d4c7 2102
7ae680eb
XG
2103 if (sp->role.word != role.word)
2104 continue;
4731d4c7 2105
7ae680eb
XG
2106 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
2107 break;
e02aa901 2108
7ae680eb
XG
2109 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
2110 if (sp->unsync_children) {
a8eeb04a 2111 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
2112 kvm_mmu_mark_parents_unsync(sp);
2113 } else if (sp->unsync)
2114 kvm_mmu_mark_parents_unsync(sp);
e02aa901 2115
a30f47cb 2116 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
2117 trace_kvm_mmu_get_page(sp, false);
2118 return sp;
2119 }
dfc5aa00 2120 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 2121 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
2122 if (!sp)
2123 return sp;
4db35314
AK
2124 sp->gfn = gfn;
2125 sp->role = role;
7ae680eb
XG
2126 hlist_add_head(&sp->hash_link,
2127 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2128 if (!direct) {
b1a36821
MT
2129 if (rmap_write_protect(vcpu->kvm, gfn))
2130 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
2131 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2132 kvm_sync_pages(vcpu, gfn);
2133
4731d4c7
MT
2134 account_shadowed(vcpu->kvm, gfn);
2135 }
5304b8d3 2136 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 2137 init_shadow_page_table(sp);
f691fe1d 2138 trace_kvm_mmu_get_page(sp, true);
4db35314 2139 return sp;
cea0f0e7
AK
2140}
2141
2d11123a
AK
2142static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2143 struct kvm_vcpu *vcpu, u64 addr)
2144{
2145 iterator->addr = addr;
2146 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2147 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2148
2149 if (iterator->level == PT64_ROOT_LEVEL &&
2150 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2151 !vcpu->arch.mmu.direct_map)
2152 --iterator->level;
2153
2d11123a
AK
2154 if (iterator->level == PT32E_ROOT_LEVEL) {
2155 iterator->shadow_addr
2156 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2157 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2158 --iterator->level;
2159 if (!iterator->shadow_addr)
2160 iterator->level = 0;
2161 }
2162}
2163
2164static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2165{
2166 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2167 return false;
4d88954d 2168
2d11123a
AK
2169 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2170 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2171 return true;
2172}
2173
c2a2ac2b
XG
2174static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2175 u64 spte)
2d11123a 2176{
c2a2ac2b 2177 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2178 iterator->level = 0;
2179 return;
2180 }
2181
c2a2ac2b 2182 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2183 --iterator->level;
2184}
2185
c2a2ac2b
XG
2186static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2187{
2188 return __shadow_walk_next(iterator, *iterator->sptep);
2189}
2190
7a1638ce 2191static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2192{
2193 u64 spte;
2194
7a1638ce
YZ
2195 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2196 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2197
24db2734 2198 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2199 shadow_user_mask | shadow_x_mask;
2200
2201 if (accessed)
2202 spte |= shadow_accessed_mask;
24db2734 2203
1df9f2dc 2204 mmu_spte_set(sptep, spte);
32ef26a3
AK
2205}
2206
a357bd22
AK
2207static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2208 unsigned direct_access)
2209{
2210 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2211 struct kvm_mmu_page *child;
2212
2213 /*
2214 * For the direct sp, if the guest pte's dirty bit
2215 * changed form clean to dirty, it will corrupt the
2216 * sp's access: allow writable in the read-only sp,
2217 * so we should update the spte at this point to get
2218 * a new sp with the correct access.
2219 */
2220 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2221 if (child->role.access == direct_access)
2222 return;
2223
bcdd9a93 2224 drop_parent_pte(child, sptep);
a357bd22
AK
2225 kvm_flush_remote_tlbs(vcpu->kvm);
2226 }
2227}
2228
505aef8f 2229static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2230 u64 *spte)
2231{
2232 u64 pte;
2233 struct kvm_mmu_page *child;
2234
2235 pte = *spte;
2236 if (is_shadow_present_pte(pte)) {
505aef8f 2237 if (is_last_spte(pte, sp->role.level)) {
c3707958 2238 drop_spte(kvm, spte);
505aef8f
XG
2239 if (is_large_pte(pte))
2240 --kvm->stat.lpages;
2241 } else {
38e3b2b2 2242 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2243 drop_parent_pte(child, spte);
38e3b2b2 2244 }
505aef8f
XG
2245 return true;
2246 }
2247
2248 if (is_mmio_spte(pte))
ce88decf 2249 mmu_spte_clear_no_track(spte);
c3707958 2250
505aef8f 2251 return false;
38e3b2b2
XG
2252}
2253
90cb0529 2254static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2255 struct kvm_mmu_page *sp)
a436036b 2256{
697fe2e2 2257 unsigned i;
697fe2e2 2258
38e3b2b2
XG
2259 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2260 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2261}
2262
4db35314 2263static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2264{
4db35314 2265 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2266}
2267
31aa2b44 2268static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2269{
1e3f42f0
TY
2270 u64 *sptep;
2271 struct rmap_iterator iter;
a436036b 2272
1e3f42f0
TY
2273 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2274 drop_parent_pte(sp, sptep);
31aa2b44
AK
2275}
2276
60c8aec6 2277static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2278 struct kvm_mmu_page *parent,
2279 struct list_head *invalid_list)
4731d4c7 2280{
60c8aec6
MT
2281 int i, zapped = 0;
2282 struct mmu_page_path parents;
2283 struct kvm_mmu_pages pages;
4731d4c7 2284
60c8aec6 2285 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2286 return 0;
60c8aec6
MT
2287
2288 kvm_mmu_pages_init(parent, &parents, &pages);
2289 while (mmu_unsync_walk(parent, &pages)) {
2290 struct kvm_mmu_page *sp;
2291
2292 for_each_sp(pages, sp, parents, i) {
7775834a 2293 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2294 mmu_pages_clear_parents(&parents);
77662e00 2295 zapped++;
60c8aec6 2296 }
60c8aec6
MT
2297 kvm_mmu_pages_init(parent, &parents, &pages);
2298 }
2299
2300 return zapped;
4731d4c7
MT
2301}
2302
7775834a
XG
2303static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2304 struct list_head *invalid_list)
31aa2b44 2305{
4731d4c7 2306 int ret;
f691fe1d 2307
7775834a 2308 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2309 ++kvm->stat.mmu_shadow_zapped;
7775834a 2310 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2311 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2312 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2313
f6e2c02b 2314 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2315 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2316
4731d4c7
MT
2317 if (sp->unsync)
2318 kvm_unlink_unsync_page(kvm, sp);
4db35314 2319 if (!sp->root_count) {
54a4f023
GJ
2320 /* Count self */
2321 ret++;
7775834a 2322 list_move(&sp->link, invalid_list);
aa6bd187 2323 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2324 } else {
5b5c6a5a 2325 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2326
2327 /*
2328 * The obsolete pages can not be used on any vcpus.
2329 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2330 */
2331 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2332 kvm_reload_remote_mmus(kvm);
2e53d63a 2333 }
7775834a
XG
2334
2335 sp->role.invalid = 1;
4731d4c7 2336 return ret;
a436036b
AK
2337}
2338
7775834a
XG
2339static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2340 struct list_head *invalid_list)
2341{
945315b9 2342 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2343
2344 if (list_empty(invalid_list))
2345 return;
2346
c142786c
AK
2347 /*
2348 * wmb: make sure everyone sees our modifications to the page tables
2349 * rmb: make sure we see changes to vcpu->mode
2350 */
2351 smp_mb();
4f022648 2352
c142786c
AK
2353 /*
2354 * Wait for all vcpus to exit guest mode and/or lockless shadow
2355 * page table walks.
2356 */
2357 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2358
945315b9 2359 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2360 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2361 kvm_mmu_free_page(sp);
945315b9 2362 }
7775834a
XG
2363}
2364
5da59607
TY
2365static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2366 struct list_head *invalid_list)
2367{
2368 struct kvm_mmu_page *sp;
2369
2370 if (list_empty(&kvm->arch.active_mmu_pages))
2371 return false;
2372
2373 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2374 struct kvm_mmu_page, link);
2375 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2376
2377 return true;
2378}
2379
82ce2c96
IE
2380/*
2381 * Changing the number of mmu pages allocated to the vm
49d5ca26 2382 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2383 */
49d5ca26 2384void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2385{
d98ba053 2386 LIST_HEAD(invalid_list);
82ce2c96 2387
b34cb590
TY
2388 spin_lock(&kvm->mmu_lock);
2389
49d5ca26 2390 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2391 /* Need to free some mmu pages to achieve the goal. */
2392 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2393 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2394 break;
82ce2c96 2395
aa6bd187 2396 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2397 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2398 }
82ce2c96 2399
49d5ca26 2400 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2401
2402 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2403}
2404
1cb3f3ae 2405int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2406{
4db35314 2407 struct kvm_mmu_page *sp;
d98ba053 2408 LIST_HEAD(invalid_list);
a436036b
AK
2409 int r;
2410
9ad17b10 2411 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2412 r = 0;
1cb3f3ae 2413 spin_lock(&kvm->mmu_lock);
b67bfe0d 2414 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2415 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2416 sp->role.word);
2417 r = 1;
f41d335a 2418 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2419 }
d98ba053 2420 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2421 spin_unlock(&kvm->mmu_lock);
2422
a436036b 2423 return r;
cea0f0e7 2424}
1cb3f3ae 2425EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2426
74be52e3
SY
2427/*
2428 * The function is based on mtrr_type_lookup() in
2429 * arch/x86/kernel/cpu/mtrr/generic.c
2430 */
2431static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2432 u64 start, u64 end)
2433{
74be52e3
SY
2434 u64 base, mask;
2435 u8 prev_match, curr_match;
d69afbc6 2436 int i, num_var_ranges = KVM_NR_VAR_MTRR;
74be52e3 2437
d69afbc6
XG
2438 /* MTRR is completely disabled, use UC for all of physical memory. */
2439 if (!(mtrr_state->enabled & 0x2))
2440 return MTRR_TYPE_UNCACHABLE;
74be52e3
SY
2441
2442 /* Make end inclusive end, instead of exclusive */
2443 end--;
2444
2445 /* Look in fixed ranges. Just return the type as per start */
d69afbc6
XG
2446 if (mtrr_state->have_fixed && (mtrr_state->enabled & 0x1) &&
2447 (start < 0x100000)) {
74be52e3
SY
2448 int idx;
2449
2450 if (start < 0x80000) {
2451 idx = 0;
2452 idx += (start >> 16);
2453 return mtrr_state->fixed_ranges[idx];
2454 } else if (start < 0xC0000) {
2455 idx = 1 * 8;
2456 idx += ((start - 0x80000) >> 14);
2457 return mtrr_state->fixed_ranges[idx];
2458 } else if (start < 0x1000000) {
2459 idx = 3 * 8;
2460 idx += ((start - 0xC0000) >> 12);
2461 return mtrr_state->fixed_ranges[idx];
2462 }
2463 }
2464
2465 /*
2466 * Look in variable ranges
2467 * Look of multiple ranges matching this address and pick type
2468 * as per MTRR precedence
2469 */
74be52e3
SY
2470 prev_match = 0xFF;
2471 for (i = 0; i < num_var_ranges; ++i) {
2472 unsigned short start_state, end_state;
2473
2474 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2475 continue;
2476
2477 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2478 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2479 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2480 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2481
2482 start_state = ((start & mask) == (base & mask));
2483 end_state = ((end & mask) == (base & mask));
2484 if (start_state != end_state)
2485 return 0xFE;
2486
2487 if ((start & mask) != (base & mask))
2488 continue;
2489
2490 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2491 if (prev_match == 0xFF) {
2492 prev_match = curr_match;
2493 continue;
2494 }
2495
2496 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2497 curr_match == MTRR_TYPE_UNCACHABLE)
2498 return MTRR_TYPE_UNCACHABLE;
2499
2500 if ((prev_match == MTRR_TYPE_WRBACK &&
2501 curr_match == MTRR_TYPE_WRTHROUGH) ||
2502 (prev_match == MTRR_TYPE_WRTHROUGH &&
2503 curr_match == MTRR_TYPE_WRBACK)) {
2504 prev_match = MTRR_TYPE_WRTHROUGH;
2505 curr_match = MTRR_TYPE_WRTHROUGH;
2506 }
2507
2508 if (prev_match != curr_match)
2509 return MTRR_TYPE_UNCACHABLE;
2510 }
2511
2512 if (prev_match != 0xFF)
2513 return prev_match;
2514
2515 return mtrr_state->def_type;
2516}
2517
4b12f0de 2518u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2519{
2520 u8 mtrr;
2521
2522 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2523 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2524 if (mtrr == 0xfe || mtrr == 0xff)
2525 mtrr = MTRR_TYPE_WRBACK;
2526 return mtrr;
2527}
4b12f0de 2528EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2529
9cf5cf5a
XG
2530static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2531{
2532 trace_kvm_mmu_unsync_page(sp);
2533 ++vcpu->kvm->stat.mmu_unsync;
2534 sp->unsync = 1;
2535
2536 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2537}
2538
2539static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2540{
4731d4c7 2541 struct kvm_mmu_page *s;
9cf5cf5a 2542
b67bfe0d 2543 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2544 if (s->unsync)
4731d4c7 2545 continue;
9cf5cf5a
XG
2546 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2547 __kvm_unsync_page(vcpu, s);
4731d4c7 2548 }
4731d4c7
MT
2549}
2550
2551static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2552 bool can_unsync)
2553{
9cf5cf5a 2554 struct kvm_mmu_page *s;
9cf5cf5a
XG
2555 bool need_unsync = false;
2556
b67bfe0d 2557 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2558 if (!can_unsync)
2559 return 1;
2560
9cf5cf5a 2561 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2562 return 1;
9cf5cf5a 2563
9bb4f6b1 2564 if (!s->unsync)
9cf5cf5a 2565 need_unsync = true;
4731d4c7 2566 }
9cf5cf5a
XG
2567 if (need_unsync)
2568 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2569 return 0;
2570}
2571
d555c333 2572static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2573 unsigned pte_access, int level,
c2d0ee46 2574 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2575 bool can_unsync, bool host_writable)
1c4f1fd6 2576{
6e7d0354 2577 u64 spte;
1e73f9dd 2578 int ret = 0;
64d4d521 2579
f2fd125d 2580 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2581 return 0;
2582
982c2565 2583 spte = PT_PRESENT_MASK;
947da538 2584 if (!speculative)
3201b5d9 2585 spte |= shadow_accessed_mask;
640d9b0d 2586
7b52345e
SY
2587 if (pte_access & ACC_EXEC_MASK)
2588 spte |= shadow_x_mask;
2589 else
2590 spte |= shadow_nx_mask;
49fde340 2591
1c4f1fd6 2592 if (pte_access & ACC_USER_MASK)
7b52345e 2593 spte |= shadow_user_mask;
49fde340 2594
852e3c19 2595 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2596 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2597 if (tdp_enabled)
4b12f0de 2598 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
bf4bea8e 2599 kvm_is_reserved_pfn(pfn));
1c4f1fd6 2600
9bdbba13 2601 if (host_writable)
1403283a 2602 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2603 else
2604 pte_access &= ~ACC_WRITE_MASK;
1403283a 2605
35149e21 2606 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2607
c2288505 2608 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2609
c2193463 2610 /*
7751babd
XG
2611 * Other vcpu creates new sp in the window between
2612 * mapping_level() and acquiring mmu-lock. We can
2613 * allow guest to retry the access, the mapping can
2614 * be fixed if guest refault.
c2193463 2615 */
852e3c19 2616 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2617 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2618 goto done;
38187c83 2619
49fde340 2620 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2621
ecc5589f
MT
2622 /*
2623 * Optimization: for pte sync, if spte was writable the hash
2624 * lookup is unnecessary (and expensive). Write protection
2625 * is responsibility of mmu_get_page / kvm_sync_page.
2626 * Same reasoning can be applied to dirty page accounting.
2627 */
8dae4445 2628 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2629 goto set_pte;
2630
4731d4c7 2631 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2632 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2633 __func__, gfn);
1e73f9dd 2634 ret = 1;
1c4f1fd6 2635 pte_access &= ~ACC_WRITE_MASK;
49fde340 2636 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2637 }
2638 }
2639
9b51a630 2640 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2641 mark_page_dirty(vcpu->kvm, gfn);
9b51a630
KH
2642 spte |= shadow_dirty_mask;
2643 }
1c4f1fd6 2644
38187c83 2645set_pte:
6e7d0354 2646 if (mmu_spte_update(sptep, spte))
b330aa0c 2647 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2648done:
1e73f9dd
MT
2649 return ret;
2650}
2651
d555c333 2652static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2653 unsigned pte_access, int write_fault, int *emulate,
2654 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2655 bool host_writable)
1e73f9dd
MT
2656{
2657 int was_rmapped = 0;
53a27b39 2658 int rmap_count;
1e73f9dd 2659
f7616203
XG
2660 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2661 *sptep, write_fault, gfn);
1e73f9dd 2662
d555c333 2663 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2664 /*
2665 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2666 * the parent of the now unreachable PTE.
2667 */
852e3c19
JR
2668 if (level > PT_PAGE_TABLE_LEVEL &&
2669 !is_large_pte(*sptep)) {
1e73f9dd 2670 struct kvm_mmu_page *child;
d555c333 2671 u64 pte = *sptep;
1e73f9dd
MT
2672
2673 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2674 drop_parent_pte(child, sptep);
3be2264b 2675 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2676 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2677 pgprintk("hfn old %llx new %llx\n",
d555c333 2678 spte_to_pfn(*sptep), pfn);
c3707958 2679 drop_spte(vcpu->kvm, sptep);
91546356 2680 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2681 } else
2682 was_rmapped = 1;
1e73f9dd 2683 }
852e3c19 2684
c2288505
XG
2685 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2686 true, host_writable)) {
1e73f9dd 2687 if (write_fault)
b90a0e6c 2688 *emulate = 1;
77c3913b 2689 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2690 }
1e73f9dd 2691
ce88decf
XG
2692 if (unlikely(is_mmio_spte(*sptep) && emulate))
2693 *emulate = 1;
2694
d555c333 2695 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2696 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2697 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2698 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2699 *sptep, sptep);
d555c333 2700 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2701 ++vcpu->kvm->stat.lpages;
2702
ffb61bb3 2703 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2704 if (!was_rmapped) {
2705 rmap_count = rmap_add(vcpu, sptep, gfn);
2706 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2707 rmap_recycle(vcpu, sptep, gfn);
2708 }
1c4f1fd6 2709 }
cb9aaa30 2710
f3ac1a4b 2711 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2712}
2713
957ed9ef
XG
2714static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2715 bool no_dirty_log)
2716{
2717 struct kvm_memory_slot *slot;
957ed9ef 2718
5d163b1c 2719 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2720 if (!slot)
6c8ee57b 2721 return KVM_PFN_ERR_FAULT;
957ed9ef 2722
037d92dc 2723 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2724}
2725
2726static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2727 struct kvm_mmu_page *sp,
2728 u64 *start, u64 *end)
2729{
2730 struct page *pages[PTE_PREFETCH_NUM];
2731 unsigned access = sp->role.access;
2732 int i, ret;
2733 gfn_t gfn;
2734
2735 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2736 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2737 return -1;
2738
2739 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2740 if (ret <= 0)
2741 return -1;
2742
2743 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2744 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2745 sp->role.level, gfn, page_to_pfn(pages[i]),
2746 true, true);
957ed9ef
XG
2747
2748 return 0;
2749}
2750
2751static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2752 struct kvm_mmu_page *sp, u64 *sptep)
2753{
2754 u64 *spte, *start = NULL;
2755 int i;
2756
2757 WARN_ON(!sp->role.direct);
2758
2759 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2760 spte = sp->spt + i;
2761
2762 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2763 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2764 if (!start)
2765 continue;
2766 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2767 break;
2768 start = NULL;
2769 } else if (!start)
2770 start = spte;
2771 }
2772}
2773
2774static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2775{
2776 struct kvm_mmu_page *sp;
2777
2778 /*
2779 * Since it's no accessed bit on EPT, it's no way to
2780 * distinguish between actually accessed translations
2781 * and prefetched, so disable pte prefetch if EPT is
2782 * enabled.
2783 */
2784 if (!shadow_accessed_mask)
2785 return;
2786
2787 sp = page_header(__pa(sptep));
2788 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2789 return;
2790
2791 __direct_pte_prefetch(vcpu, sp, sptep);
2792}
2793
9f652d21 2794static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2795 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2796 bool prefault)
140754bc 2797{
9f652d21 2798 struct kvm_shadow_walk_iterator iterator;
140754bc 2799 struct kvm_mmu_page *sp;
b90a0e6c 2800 int emulate = 0;
140754bc 2801 gfn_t pseudo_gfn;
6aa8b732 2802
989c6b34
MT
2803 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2804 return 0;
2805
9f652d21 2806 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2807 if (iterator.level == level) {
f7616203 2808 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2809 write, &emulate, level, gfn, pfn,
2810 prefault, map_writable);
957ed9ef 2811 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2812 ++vcpu->stat.pf_fixed;
2813 break;
6aa8b732
AK
2814 }
2815
404381c5 2816 drop_large_spte(vcpu, iterator.sptep);
c3707958 2817 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2818 u64 base_addr = iterator.addr;
2819
2820 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2821 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2822 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2823 iterator.level - 1,
2824 1, ACC_ALL, iterator.sptep);
140754bc 2825
7a1638ce 2826 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2827 }
2828 }
b90a0e6c 2829 return emulate;
6aa8b732
AK
2830}
2831
77db5cbd 2832static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2833{
77db5cbd
HY
2834 siginfo_t info;
2835
2836 info.si_signo = SIGBUS;
2837 info.si_errno = 0;
2838 info.si_code = BUS_MCEERR_AR;
2839 info.si_addr = (void __user *)address;
2840 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2841
77db5cbd 2842 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2843}
2844
d7c55201 2845static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2846{
4d8b81ab
XG
2847 /*
2848 * Do not cache the mmio info caused by writing the readonly gfn
2849 * into the spte otherwise read access on readonly gfn also can
2850 * caused mmio page fault and treat it as mmio access.
2851 * Return 1 to tell kvm to emulate it.
2852 */
2853 if (pfn == KVM_PFN_ERR_RO_FAULT)
2854 return 1;
2855
e6c1502b 2856 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2857 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2858 return 0;
d7c55201 2859 }
edba23e5 2860
d7c55201 2861 return -EFAULT;
bf998156
HY
2862}
2863
936a5fe6
AA
2864static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2865 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2866{
2867 pfn_t pfn = *pfnp;
2868 gfn_t gfn = *gfnp;
2869 int level = *levelp;
2870
2871 /*
2872 * Check if it's a transparent hugepage. If this would be an
2873 * hugetlbfs page, level wouldn't be set to
2874 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2875 * here.
2876 */
bf4bea8e 2877 if (!is_error_noslot_pfn(pfn) && !kvm_is_reserved_pfn(pfn) &&
936a5fe6
AA
2878 level == PT_PAGE_TABLE_LEVEL &&
2879 PageTransCompound(pfn_to_page(pfn)) &&
2880 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2881 unsigned long mask;
2882 /*
2883 * mmu_notifier_retry was successful and we hold the
2884 * mmu_lock here, so the pmd can't become splitting
2885 * from under us, and in turn
2886 * __split_huge_page_refcount() can't run from under
2887 * us and we can safely transfer the refcount from
2888 * PG_tail to PG_head as we switch the pfn to tail to
2889 * head.
2890 */
2891 *levelp = level = PT_DIRECTORY_LEVEL;
2892 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2893 VM_BUG_ON((gfn & mask) != (pfn & mask));
2894 if (pfn & mask) {
2895 gfn &= ~mask;
2896 *gfnp = gfn;
2897 kvm_release_pfn_clean(pfn);
2898 pfn &= ~mask;
c3586667 2899 kvm_get_pfn(pfn);
936a5fe6
AA
2900 *pfnp = pfn;
2901 }
2902 }
2903}
2904
d7c55201
XG
2905static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2906 pfn_t pfn, unsigned access, int *ret_val)
2907{
2908 bool ret = true;
2909
2910 /* The pfn is invalid, report the error! */
81c52c56 2911 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2912 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2913 goto exit;
2914 }
2915
ce88decf 2916 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2917 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2918
2919 ret = false;
2920exit:
2921 return ret;
2922}
2923
e5552fd2 2924static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2925{
1c118b82
XG
2926 /*
2927 * Do not fix the mmio spte with invalid generation number which
2928 * need to be updated by slow page fault path.
2929 */
2930 if (unlikely(error_code & PFERR_RSVD_MASK))
2931 return false;
2932
c7ba5b48
XG
2933 /*
2934 * #PF can be fast only if the shadow page table is present and it
2935 * is caused by write-protect, that means we just need change the
2936 * W bit of the spte which can be done out of mmu-lock.
2937 */
2938 if (!(error_code & PFERR_PRESENT_MASK) ||
2939 !(error_code & PFERR_WRITE_MASK))
2940 return false;
2941
2942 return true;
2943}
2944
2945static bool
92a476cb
XG
2946fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2947 u64 *sptep, u64 spte)
c7ba5b48 2948{
c7ba5b48
XG
2949 gfn_t gfn;
2950
2951 WARN_ON(!sp->role.direct);
2952
2953 /*
2954 * The gfn of direct spte is stable since it is calculated
2955 * by sp->gfn.
2956 */
2957 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2958
9b51a630
KH
2959 /*
2960 * Theoretically we could also set dirty bit (and flush TLB) here in
2961 * order to eliminate unnecessary PML logging. See comments in
2962 * set_spte. But fast_page_fault is very unlikely to happen with PML
2963 * enabled, so we do not do this. This might result in the same GPA
2964 * to be logged in PML buffer again when the write really happens, and
2965 * eventually to be called by mark_page_dirty twice. But it's also no
2966 * harm. This also avoids the TLB flush needed after setting dirty bit
2967 * so non-PML cases won't be impacted.
2968 *
2969 * Compare with set_spte where instead shadow_dirty_mask is set.
2970 */
c7ba5b48
XG
2971 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2972 mark_page_dirty(vcpu->kvm, gfn);
2973
2974 return true;
2975}
2976
2977/*
2978 * Return value:
2979 * - true: let the vcpu to access on the same address again.
2980 * - false: let the real page fault path to fix it.
2981 */
2982static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2983 u32 error_code)
2984{
2985 struct kvm_shadow_walk_iterator iterator;
92a476cb 2986 struct kvm_mmu_page *sp;
c7ba5b48
XG
2987 bool ret = false;
2988 u64 spte = 0ull;
2989
37f6a4e2
MT
2990 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2991 return false;
2992
e5552fd2 2993 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2994 return false;
2995
2996 walk_shadow_page_lockless_begin(vcpu);
2997 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2998 if (!is_shadow_present_pte(spte) || iterator.level < level)
2999 break;
3000
3001 /*
3002 * If the mapping has been changed, let the vcpu fault on the
3003 * same address again.
3004 */
3005 if (!is_rmap_spte(spte)) {
3006 ret = true;
3007 goto exit;
3008 }
3009
92a476cb
XG
3010 sp = page_header(__pa(iterator.sptep));
3011 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
3012 goto exit;
3013
3014 /*
3015 * Check if it is a spurious fault caused by TLB lazily flushed.
3016 *
3017 * Need not check the access of upper level table entries since
3018 * they are always ACC_ALL.
3019 */
3020 if (is_writable_pte(spte)) {
3021 ret = true;
3022 goto exit;
3023 }
3024
3025 /*
3026 * Currently, to simplify the code, only the spte write-protected
3027 * by dirty-log can be fast fixed.
3028 */
3029 if (!spte_is_locklessly_modifiable(spte))
3030 goto exit;
3031
c126d94f
XG
3032 /*
3033 * Do not fix write-permission on the large spte since we only dirty
3034 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
3035 * that means other pages are missed if its slot is dirty-logged.
3036 *
3037 * Instead, we let the slow page fault path create a normal spte to
3038 * fix the access.
3039 *
3040 * See the comments in kvm_arch_commit_memory_region().
3041 */
3042 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3043 goto exit;
3044
c7ba5b48
XG
3045 /*
3046 * Currently, fast page fault only works for direct mapping since
3047 * the gfn is not stable for indirect shadow page.
3048 * See Documentation/virtual/kvm/locking.txt to get more detail.
3049 */
92a476cb 3050 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 3051exit:
a72faf25
XG
3052 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
3053 spte, ret);
c7ba5b48
XG
3054 walk_shadow_page_lockless_end(vcpu);
3055
3056 return ret;
3057}
3058
78b2c54a 3059static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 3060 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 3061static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 3062
c7ba5b48
XG
3063static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
3064 gfn_t gfn, bool prefault)
10589a46
MT
3065{
3066 int r;
852e3c19 3067 int level;
936a5fe6 3068 int force_pt_level;
35149e21 3069 pfn_t pfn;
e930bffe 3070 unsigned long mmu_seq;
c7ba5b48 3071 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 3072
936a5fe6
AA
3073 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3074 if (likely(!force_pt_level)) {
3075 level = mapping_level(vcpu, gfn);
3076 /*
3077 * This path builds a PAE pagetable - so we can map
3078 * 2mb pages at maximum. Therefore check if the level
3079 * is larger than that.
3080 */
3081 if (level > PT_DIRECTORY_LEVEL)
3082 level = PT_DIRECTORY_LEVEL;
852e3c19 3083
936a5fe6
AA
3084 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3085 } else
3086 level = PT_PAGE_TABLE_LEVEL;
05da4558 3087
c7ba5b48
XG
3088 if (fast_page_fault(vcpu, v, level, error_code))
3089 return 0;
3090
e930bffe 3091 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3092 smp_rmb();
060c2abe 3093
78b2c54a 3094 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 3095 return 0;
aaee2c94 3096
d7c55201
XG
3097 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
3098 return r;
d196e343 3099
aaee2c94 3100 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3101 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3102 goto out_unlock;
450e0b41 3103 make_mmu_pages_available(vcpu);
936a5fe6
AA
3104 if (likely(!force_pt_level))
3105 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
3106 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
3107 prefault);
aaee2c94
MT
3108 spin_unlock(&vcpu->kvm->mmu_lock);
3109
aaee2c94 3110
10589a46 3111 return r;
e930bffe
AA
3112
3113out_unlock:
3114 spin_unlock(&vcpu->kvm->mmu_lock);
3115 kvm_release_pfn_clean(pfn);
3116 return 0;
10589a46
MT
3117}
3118
3119
17ac10ad
AK
3120static void mmu_free_roots(struct kvm_vcpu *vcpu)
3121{
3122 int i;
4db35314 3123 struct kvm_mmu_page *sp;
d98ba053 3124 LIST_HEAD(invalid_list);
17ac10ad 3125
ad312c7c 3126 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 3127 return;
35af577a 3128
81407ca5
JR
3129 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
3130 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
3131 vcpu->arch.mmu.direct_map)) {
ad312c7c 3132 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3133
35af577a 3134 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
3135 sp = page_header(root);
3136 --sp->root_count;
d98ba053
XG
3137 if (!sp->root_count && sp->role.invalid) {
3138 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
3139 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
3140 }
aaee2c94 3141 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 3142 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3143 return;
3144 }
35af577a
GN
3145
3146 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3147 for (i = 0; i < 4; ++i) {
ad312c7c 3148 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3149
417726a3 3150 if (root) {
417726a3 3151 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
3152 sp = page_header(root);
3153 --sp->root_count;
2e53d63a 3154 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
3155 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
3156 &invalid_list);
417726a3 3157 }
ad312c7c 3158 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3159 }
d98ba053 3160 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3161 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3162 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3163}
3164
8986ecc0
MT
3165static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3166{
3167 int ret = 0;
3168
3169 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3170 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3171 ret = 1;
3172 }
3173
3174 return ret;
3175}
3176
651dd37a
JR
3177static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3178{
3179 struct kvm_mmu_page *sp;
7ebaf15e 3180 unsigned i;
651dd37a
JR
3181
3182 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3183 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3184 make_mmu_pages_available(vcpu);
651dd37a
JR
3185 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3186 1, ACC_ALL, NULL);
3187 ++sp->root_count;
3188 spin_unlock(&vcpu->kvm->mmu_lock);
3189 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3190 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3191 for (i = 0; i < 4; ++i) {
3192 hpa_t root = vcpu->arch.mmu.pae_root[i];
3193
fa4a2c08 3194 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3195 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3196 make_mmu_pages_available(vcpu);
649497d1
AK
3197 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3198 i << 30,
651dd37a
JR
3199 PT32_ROOT_LEVEL, 1, ACC_ALL,
3200 NULL);
3201 root = __pa(sp->spt);
3202 ++sp->root_count;
3203 spin_unlock(&vcpu->kvm->mmu_lock);
3204 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3205 }
6292757f 3206 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3207 } else
3208 BUG();
3209
3210 return 0;
3211}
3212
3213static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3214{
4db35314 3215 struct kvm_mmu_page *sp;
81407ca5
JR
3216 u64 pdptr, pm_mask;
3217 gfn_t root_gfn;
3218 int i;
3bb65a22 3219
5777ed34 3220 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3221
651dd37a
JR
3222 if (mmu_check_root(vcpu, root_gfn))
3223 return 1;
3224
3225 /*
3226 * Do we shadow a long mode page table? If so we need to
3227 * write-protect the guests page table root.
3228 */
3229 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3230 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 3231
fa4a2c08 3232 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3233
8facbbff 3234 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3235 make_mmu_pages_available(vcpu);
651dd37a
JR
3236 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3237 0, ACC_ALL, NULL);
4db35314
AK
3238 root = __pa(sp->spt);
3239 ++sp->root_count;
8facbbff 3240 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3241 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3242 return 0;
17ac10ad 3243 }
f87f9288 3244
651dd37a
JR
3245 /*
3246 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3247 * or a PAE 3-level page table. In either case we need to be aware that
3248 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3249 */
81407ca5
JR
3250 pm_mask = PT_PRESENT_MASK;
3251 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3252 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3253
17ac10ad 3254 for (i = 0; i < 4; ++i) {
ad312c7c 3255 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 3256
fa4a2c08 3257 MMU_WARN_ON(VALID_PAGE(root));
ad312c7c 3258 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3259 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3260 if (!is_present_gpte(pdptr)) {
ad312c7c 3261 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3262 continue;
3263 }
6de4f3ad 3264 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3265 if (mmu_check_root(vcpu, root_gfn))
3266 return 1;
5a7388c2 3267 }
8facbbff 3268 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3269 make_mmu_pages_available(vcpu);
4db35314 3270 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3271 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3272 ACC_ALL, NULL);
4db35314
AK
3273 root = __pa(sp->spt);
3274 ++sp->root_count;
8facbbff
AK
3275 spin_unlock(&vcpu->kvm->mmu_lock);
3276
81407ca5 3277 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3278 }
6292757f 3279 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3280
3281 /*
3282 * If we shadow a 32 bit page table with a long mode page
3283 * table we enter this path.
3284 */
3285 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3286 if (vcpu->arch.mmu.lm_root == NULL) {
3287 /*
3288 * The additional page necessary for this is only
3289 * allocated on demand.
3290 */
3291
3292 u64 *lm_root;
3293
3294 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3295 if (lm_root == NULL)
3296 return 1;
3297
3298 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3299
3300 vcpu->arch.mmu.lm_root = lm_root;
3301 }
3302
3303 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3304 }
3305
8986ecc0 3306 return 0;
17ac10ad
AK
3307}
3308
651dd37a
JR
3309static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3310{
3311 if (vcpu->arch.mmu.direct_map)
3312 return mmu_alloc_direct_roots(vcpu);
3313 else
3314 return mmu_alloc_shadow_roots(vcpu);
3315}
3316
0ba73cda
MT
3317static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3318{
3319 int i;
3320 struct kvm_mmu_page *sp;
3321
81407ca5
JR
3322 if (vcpu->arch.mmu.direct_map)
3323 return;
3324
0ba73cda
MT
3325 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3326 return;
6903074c 3327
56f17dd3 3328 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3329 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3330 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3331 hpa_t root = vcpu->arch.mmu.root_hpa;
3332 sp = page_header(root);
3333 mmu_sync_children(vcpu, sp);
0375f7fa 3334 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3335 return;
3336 }
3337 for (i = 0; i < 4; ++i) {
3338 hpa_t root = vcpu->arch.mmu.pae_root[i];
3339
8986ecc0 3340 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3341 root &= PT64_BASE_ADDR_MASK;
3342 sp = page_header(root);
3343 mmu_sync_children(vcpu, sp);
3344 }
3345 }
0375f7fa 3346 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3347}
3348
3349void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3350{
3351 spin_lock(&vcpu->kvm->mmu_lock);
3352 mmu_sync_roots(vcpu);
6cffe8ca 3353 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3354}
bfd0a56b 3355EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3356
1871c602 3357static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3358 u32 access, struct x86_exception *exception)
6aa8b732 3359{
ab9ae313
AK
3360 if (exception)
3361 exception->error_code = 0;
6aa8b732
AK
3362 return vaddr;
3363}
3364
6539e738 3365static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3366 u32 access,
3367 struct x86_exception *exception)
6539e738 3368{
ab9ae313
AK
3369 if (exception)
3370 exception->error_code = 0;
54987b7a 3371 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3372}
3373
ce88decf
XG
3374static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3375{
3376 if (direct)
3377 return vcpu_match_mmio_gpa(vcpu, addr);
3378
3379 return vcpu_match_mmio_gva(vcpu, addr);
3380}
3381
3382
3383/*
3384 * On direct hosts, the last spte is only allows two states
3385 * for mmio page fault:
3386 * - It is the mmio spte
3387 * - It is zapped or it is being zapped.
3388 *
3389 * This function completely checks the spte when the last spte
3390 * is not the mmio spte.
3391 */
3392static bool check_direct_spte_mmio_pf(u64 spte)
3393{
3394 return __check_direct_spte_mmio_pf(spte);
3395}
3396
3397static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3398{
3399 struct kvm_shadow_walk_iterator iterator;
3400 u64 spte = 0ull;
3401
37f6a4e2
MT
3402 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3403 return spte;
3404
ce88decf
XG
3405 walk_shadow_page_lockless_begin(vcpu);
3406 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3407 if (!is_shadow_present_pte(spte))
3408 break;
3409 walk_shadow_page_lockless_end(vcpu);
3410
3411 return spte;
3412}
3413
ce88decf
XG
3414int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3415{
3416 u64 spte;
3417
3418 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3419 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3420
3421 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3422
3423 if (is_mmio_spte(spte)) {
3424 gfn_t gfn = get_mmio_spte_gfn(spte);
3425 unsigned access = get_mmio_spte_access(spte);
3426
f8f55942
XG
3427 if (!check_mmio_spte(vcpu->kvm, spte))
3428 return RET_MMIO_PF_INVALID;
3429
ce88decf
XG
3430 if (direct)
3431 addr = 0;
4f022648
XG
3432
3433 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3434 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3435 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3436 }
3437
3438 /*
3439 * It's ok if the gva is remapped by other cpus on shadow guest,
3440 * it's a BUG if the gfn is not a mmio page.
3441 */
3442 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3443 return RET_MMIO_PF_BUG;
ce88decf
XG
3444
3445 /*
3446 * If the page table is zapped by other cpus, let CPU fault again on
3447 * the address.
3448 */
b37fbea6 3449 return RET_MMIO_PF_RETRY;
ce88decf
XG
3450}
3451EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3452
3453static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3454 u32 error_code, bool direct)
3455{
3456 int ret;
3457
3458 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3459 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3460 return ret;
3461}
3462
6aa8b732 3463static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3464 u32 error_code, bool prefault)
6aa8b732 3465{
e833240f 3466 gfn_t gfn;
e2dec939 3467 int r;
6aa8b732 3468
b8688d51 3469 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3470
f8f55942
XG
3471 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3472 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3473
3474 if (likely(r != RET_MMIO_PF_INVALID))
3475 return r;
3476 }
ce88decf 3477
e2dec939
AK
3478 r = mmu_topup_memory_caches(vcpu);
3479 if (r)
3480 return r;
714b93da 3481
fa4a2c08 3482 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3483
e833240f 3484 gfn = gva >> PAGE_SHIFT;
6aa8b732 3485
e833240f 3486 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3487 error_code, gfn, prefault);
6aa8b732
AK
3488}
3489
7e1fbeac 3490static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3491{
3492 struct kvm_arch_async_pf arch;
fb67e14f 3493
7c90705b 3494 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3495 arch.gfn = gfn;
c4806acd 3496 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3497 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3498
e0ead41a 3499 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3500}
3501
3502static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3503{
3504 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3505 kvm_event_needs_reinjection(vcpu)))
3506 return false;
3507
3508 return kvm_x86_ops->interrupt_allowed(vcpu);
3509}
3510
78b2c54a 3511static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3512 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3513{
3514 bool async;
3515
612819c3 3516 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3517
3518 if (!async)
3519 return false; /* *pfn has correct page already */
3520
78b2c54a 3521 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3522 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3523 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3524 trace_kvm_async_pf_doublefault(gva, gfn);
3525 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3526 return true;
3527 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3528 return true;
3529 }
3530
612819c3 3531 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3532
3533 return false;
3534}
3535
56028d08 3536static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3537 bool prefault)
fb72d167 3538{
35149e21 3539 pfn_t pfn;
fb72d167 3540 int r;
852e3c19 3541 int level;
936a5fe6 3542 int force_pt_level;
05da4558 3543 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3544 unsigned long mmu_seq;
612819c3
MT
3545 int write = error_code & PFERR_WRITE_MASK;
3546 bool map_writable;
fb72d167 3547
fa4a2c08 3548 MMU_WARN_ON(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
fb72d167 3549
f8f55942
XG
3550 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3551 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3552
3553 if (likely(r != RET_MMIO_PF_INVALID))
3554 return r;
3555 }
ce88decf 3556
fb72d167
JR
3557 r = mmu_topup_memory_caches(vcpu);
3558 if (r)
3559 return r;
3560
936a5fe6
AA
3561 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3562 if (likely(!force_pt_level)) {
3563 level = mapping_level(vcpu, gfn);
3564 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3565 } else
3566 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3567
c7ba5b48
XG
3568 if (fast_page_fault(vcpu, gpa, level, error_code))
3569 return 0;
3570
e930bffe 3571 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3572 smp_rmb();
af585b92 3573
78b2c54a 3574 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3575 return 0;
3576
d7c55201
XG
3577 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3578 return r;
3579
fb72d167 3580 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3581 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3582 goto out_unlock;
450e0b41 3583 make_mmu_pages_available(vcpu);
936a5fe6
AA
3584 if (likely(!force_pt_level))
3585 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3586 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3587 level, gfn, pfn, prefault);
fb72d167 3588 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3589
3590 return r;
e930bffe
AA
3591
3592out_unlock:
3593 spin_unlock(&vcpu->kvm->mmu_lock);
3594 kvm_release_pfn_clean(pfn);
3595 return 0;
fb72d167
JR
3596}
3597
8a3c1a33
PB
3598static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3599 struct kvm_mmu *context)
6aa8b732 3600{
6aa8b732 3601 context->page_fault = nonpaging_page_fault;
6aa8b732 3602 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3603 context->sync_page = nonpaging_sync_page;
a7052897 3604 context->invlpg = nonpaging_invlpg;
0f53b5b1 3605 context->update_pte = nonpaging_update_pte;
cea0f0e7 3606 context->root_level = 0;
6aa8b732 3607 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3608 context->root_hpa = INVALID_PAGE;
c5a78f2b 3609 context->direct_map = true;
2d48a985 3610 context->nx = false;
6aa8b732
AK
3611}
3612
d8d173da 3613void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3614{
cea0f0e7 3615 mmu_free_roots(vcpu);
6aa8b732
AK
3616}
3617
5777ed34
JR
3618static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3619{
9f8fe504 3620 return kvm_read_cr3(vcpu);
5777ed34
JR
3621}
3622
6389ee94
AK
3623static void inject_page_fault(struct kvm_vcpu *vcpu,
3624 struct x86_exception *fault)
6aa8b732 3625{
6389ee94 3626 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3627}
3628
f2fd125d
XG
3629static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3630 unsigned access, int *nr_present)
ce88decf
XG
3631{
3632 if (unlikely(is_mmio_spte(*sptep))) {
3633 if (gfn != get_mmio_spte_gfn(*sptep)) {
3634 mmu_spte_clear_no_track(sptep);
3635 return true;
3636 }
3637
3638 (*nr_present)++;
f2fd125d 3639 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3640 return true;
3641 }
3642
3643 return false;
3644}
3645
6fd01b71
AK
3646static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3647{
3648 unsigned index;
3649
3650 index = level - 1;
3651 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3652 return mmu->last_pte_bitmap & (1 << index);
3653}
3654
37406aaa
NHE
3655#define PTTYPE_EPT 18 /* arbitrary */
3656#define PTTYPE PTTYPE_EPT
3657#include "paging_tmpl.h"
3658#undef PTTYPE
3659
6aa8b732
AK
3660#define PTTYPE 64
3661#include "paging_tmpl.h"
3662#undef PTTYPE
3663
3664#define PTTYPE 32
3665#include "paging_tmpl.h"
3666#undef PTTYPE
3667
52fde8df 3668static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3669 struct kvm_mmu *context)
82725b20 3670{
82725b20
DE
3671 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3672 u64 exb_bit_rsvd = 0;
5f7dde7b 3673 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3674 u64 nonleaf_bit8_rsvd = 0;
82725b20 3675
25d92081
YZ
3676 context->bad_mt_xwr = 0;
3677
2d48a985 3678 if (!context->nx)
82725b20 3679 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3680 if (!guest_cpuid_has_gbpages(vcpu))
3681 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3682
3683 /*
3684 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3685 * leaf entries) on AMD CPUs only.
3686 */
3687 if (guest_cpuid_is_amd(vcpu))
3688 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3689
4d6931c3 3690 switch (context->root_level) {
82725b20
DE
3691 case PT32_ROOT_LEVEL:
3692 /* no rsvd bits for 2 level 4K page table entries */
3693 context->rsvd_bits_mask[0][1] = 0;
3694 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3695 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3696
3697 if (!is_pse(vcpu)) {
3698 context->rsvd_bits_mask[1][1] = 0;
3699 break;
3700 }
3701
82725b20
DE
3702 if (is_cpuid_PSE36())
3703 /* 36bits PSE 4MB page */
3704 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3705 else
3706 /* 32 bits PSE 4MB page */
3707 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3708 break;
3709 case PT32E_ROOT_LEVEL:
20c466b5
DE
3710 context->rsvd_bits_mask[0][2] =
3711 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3712 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3713 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3714 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3715 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3716 rsvd_bits(maxphyaddr, 62); /* PTE */
3717 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3718 rsvd_bits(maxphyaddr, 62) |
3719 rsvd_bits(13, 20); /* large page */
f815bce8 3720 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3721 break;
3722 case PT64_ROOT_LEVEL:
3723 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3724 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3725 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3726 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3727 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3728 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3729 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3730 rsvd_bits(maxphyaddr, 51);
3731 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3732 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3733 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3734 rsvd_bits(13, 29);
82725b20 3735 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3736 rsvd_bits(maxphyaddr, 51) |
3737 rsvd_bits(13, 20); /* large page */
f815bce8 3738 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3739 break;
3740 }
3741}
3742
25d92081
YZ
3743static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3744 struct kvm_mmu *context, bool execonly)
3745{
3746 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3747 int pte;
3748
3749 context->rsvd_bits_mask[0][3] =
3750 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3751 context->rsvd_bits_mask[0][2] =
3752 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3753 context->rsvd_bits_mask[0][1] =
3754 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3755 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3756
3757 /* large page */
3758 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3759 context->rsvd_bits_mask[1][2] =
3760 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3761 context->rsvd_bits_mask[1][1] =
3762 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3763 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3764
3765 for (pte = 0; pte < 64; pte++) {
3766 int rwx_bits = pte & 7;
3767 int mt = pte >> 3;
3768 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3769 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3770 (rwx_bits == 0x4 && !execonly))
3771 context->bad_mt_xwr |= (1ull << pte);
3772 }
3773}
3774
edc90b7d
XG
3775static void update_permission_bitmask(struct kvm_vcpu *vcpu,
3776 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3777{
3778 unsigned bit, byte, pfec;
3779 u8 map;
66386ade 3780 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3781
66386ade 3782 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3783 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3784 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3785 pfec = byte << 1;
3786 map = 0;
3787 wf = pfec & PFERR_WRITE_MASK;
3788 uf = pfec & PFERR_USER_MASK;
3789 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3790 /*
3791 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3792 * subject to SMAP restrictions, and cleared otherwise. The
3793 * bit is only meaningful if the SMAP bit is set in CR4.
3794 */
3795 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3796 for (bit = 0; bit < 8; ++bit) {
3797 x = bit & ACC_EXEC_MASK;
3798 w = bit & ACC_WRITE_MASK;
3799 u = bit & ACC_USER_MASK;
3800
25d92081
YZ
3801 if (!ept) {
3802 /* Not really needed: !nx will cause pte.nx to fault */
3803 x |= !mmu->nx;
3804 /* Allow supervisor writes if !cr0.wp */
3805 w |= !is_write_protection(vcpu) && !uf;
3806 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3807 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3808
3809 /*
3810 * SMAP:kernel-mode data accesses from user-mode
3811 * mappings should fault. A fault is considered
3812 * as a SMAP violation if all of the following
3813 * conditions are ture:
3814 * - X86_CR4_SMAP is set in CR4
3815 * - An user page is accessed
3816 * - Page fault in kernel mode
3817 * - if CPL = 3 or X86_EFLAGS_AC is clear
3818 *
3819 * Here, we cover the first three conditions.
3820 * The fourth is computed dynamically in
3821 * permission_fault() and is in smapf.
3822 *
3823 * Also, SMAP does not affect instruction
3824 * fetches, add the !ff check here to make it
3825 * clearer.
3826 */
3827 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3828 } else
3829 /* Not really needed: no U/S accesses on ept */
3830 u = 1;
97d64b78 3831
97ec8c06
FW
3832 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3833 (smapf && smap);
97d64b78
AK
3834 map |= fault << bit;
3835 }
3836 mmu->permissions[byte] = map;
3837 }
3838}
3839
6fd01b71
AK
3840static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3841{
3842 u8 map;
3843 unsigned level, root_level = mmu->root_level;
3844 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3845
3846 if (root_level == PT32E_ROOT_LEVEL)
3847 --root_level;
3848 /* PT_PAGE_TABLE_LEVEL always terminates */
3849 map = 1 | (1 << ps_set_index);
3850 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3851 if (level <= PT_PDPE_LEVEL
3852 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3853 map |= 1 << (ps_set_index | (level - 1));
3854 }
3855 mmu->last_pte_bitmap = map;
3856}
3857
8a3c1a33
PB
3858static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3859 struct kvm_mmu *context,
3860 int level)
6aa8b732 3861{
2d48a985 3862 context->nx = is_nx(vcpu);
4d6931c3 3863 context->root_level = level;
2d48a985 3864
4d6931c3 3865 reset_rsvds_bits_mask(vcpu, context);
25d92081 3866 update_permission_bitmask(vcpu, context, false);
6fd01b71 3867 update_last_pte_bitmap(vcpu, context);
6aa8b732 3868
fa4a2c08 3869 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 3870 context->page_fault = paging64_page_fault;
6aa8b732 3871 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3872 context->sync_page = paging64_sync_page;
a7052897 3873 context->invlpg = paging64_invlpg;
0f53b5b1 3874 context->update_pte = paging64_update_pte;
17ac10ad 3875 context->shadow_root_level = level;
17c3ba9d 3876 context->root_hpa = INVALID_PAGE;
c5a78f2b 3877 context->direct_map = false;
6aa8b732
AK
3878}
3879
8a3c1a33
PB
3880static void paging64_init_context(struct kvm_vcpu *vcpu,
3881 struct kvm_mmu *context)
17ac10ad 3882{
8a3c1a33 3883 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3884}
3885
8a3c1a33
PB
3886static void paging32_init_context(struct kvm_vcpu *vcpu,
3887 struct kvm_mmu *context)
6aa8b732 3888{
2d48a985 3889 context->nx = false;
4d6931c3 3890 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3891
4d6931c3 3892 reset_rsvds_bits_mask(vcpu, context);
25d92081 3893 update_permission_bitmask(vcpu, context, false);
6fd01b71 3894 update_last_pte_bitmap(vcpu, context);
6aa8b732 3895
6aa8b732 3896 context->page_fault = paging32_page_fault;
6aa8b732 3897 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3898 context->sync_page = paging32_sync_page;
a7052897 3899 context->invlpg = paging32_invlpg;
0f53b5b1 3900 context->update_pte = paging32_update_pte;
6aa8b732 3901 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3902 context->root_hpa = INVALID_PAGE;
c5a78f2b 3903 context->direct_map = false;
6aa8b732
AK
3904}
3905
8a3c1a33
PB
3906static void paging32E_init_context(struct kvm_vcpu *vcpu,
3907 struct kvm_mmu *context)
6aa8b732 3908{
8a3c1a33 3909 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3910}
3911
8a3c1a33 3912static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3913{
ad896af0 3914 struct kvm_mmu *context = &vcpu->arch.mmu;
fb72d167 3915
c445f8ef 3916 context->base_role.word = 0;
fb72d167 3917 context->page_fault = tdp_page_fault;
e8bc217a 3918 context->sync_page = nonpaging_sync_page;
a7052897 3919 context->invlpg = nonpaging_invlpg;
0f53b5b1 3920 context->update_pte = nonpaging_update_pte;
67253af5 3921 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3922 context->root_hpa = INVALID_PAGE;
c5a78f2b 3923 context->direct_map = true;
1c97f0a0 3924 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3925 context->get_cr3 = get_cr3;
e4e517b4 3926 context->get_pdptr = kvm_pdptr_read;
cb659db8 3927 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3928
3929 if (!is_paging(vcpu)) {
2d48a985 3930 context->nx = false;
fb72d167
JR
3931 context->gva_to_gpa = nonpaging_gva_to_gpa;
3932 context->root_level = 0;
3933 } else if (is_long_mode(vcpu)) {
2d48a985 3934 context->nx = is_nx(vcpu);
fb72d167 3935 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3936 reset_rsvds_bits_mask(vcpu, context);
3937 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3938 } else if (is_pae(vcpu)) {
2d48a985 3939 context->nx = is_nx(vcpu);
fb72d167 3940 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3941 reset_rsvds_bits_mask(vcpu, context);
3942 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3943 } else {
2d48a985 3944 context->nx = false;
fb72d167 3945 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3946 reset_rsvds_bits_mask(vcpu, context);
3947 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3948 }
3949
25d92081 3950 update_permission_bitmask(vcpu, context, false);
6fd01b71 3951 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3952}
3953
ad896af0 3954void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
6aa8b732 3955{
411c588d 3956 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
edc90b7d 3957 bool smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
ad896af0
PB
3958 struct kvm_mmu *context = &vcpu->arch.mmu;
3959
fa4a2c08 3960 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
6aa8b732
AK
3961
3962 if (!is_paging(vcpu))
8a3c1a33 3963 nonpaging_init_context(vcpu, context);
a9058ecd 3964 else if (is_long_mode(vcpu))
8a3c1a33 3965 paging64_init_context(vcpu, context);
6aa8b732 3966 else if (is_pae(vcpu))
8a3c1a33 3967 paging32E_init_context(vcpu, context);
6aa8b732 3968 else
8a3c1a33 3969 paging32_init_context(vcpu, context);
a770f6f2 3970
ad896af0
PB
3971 context->base_role.nxe = is_nx(vcpu);
3972 context->base_role.cr4_pae = !!is_pae(vcpu);
3973 context->base_role.cr0_wp = is_write_protection(vcpu);
3974 context->base_role.smep_andnot_wp
411c588d 3975 = smep && !is_write_protection(vcpu);
edc90b7d
XG
3976 context->base_role.smap_andnot_wp
3977 = smap && !is_write_protection(vcpu);
52fde8df
JR
3978}
3979EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3980
ad896af0 3981void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly)
155a97a3 3982{
ad896af0
PB
3983 struct kvm_mmu *context = &vcpu->arch.mmu;
3984
fa4a2c08 3985 MMU_WARN_ON(VALID_PAGE(context->root_hpa));
155a97a3
NHE
3986
3987 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3988
3989 context->nx = true;
155a97a3
NHE
3990 context->page_fault = ept_page_fault;
3991 context->gva_to_gpa = ept_gva_to_gpa;
3992 context->sync_page = ept_sync_page;
3993 context->invlpg = ept_invlpg;
3994 context->update_pte = ept_update_pte;
155a97a3
NHE
3995 context->root_level = context->shadow_root_level;
3996 context->root_hpa = INVALID_PAGE;
3997 context->direct_map = false;
3998
3999 update_permission_bitmask(vcpu, context, true);
4000 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
4001}
4002EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
4003
8a3c1a33 4004static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 4005{
ad896af0
PB
4006 struct kvm_mmu *context = &vcpu->arch.mmu;
4007
4008 kvm_init_shadow_mmu(vcpu);
4009 context->set_cr3 = kvm_x86_ops->set_cr3;
4010 context->get_cr3 = get_cr3;
4011 context->get_pdptr = kvm_pdptr_read;
4012 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
4013}
4014
8a3c1a33 4015static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
4016{
4017 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
4018
4019 g_context->get_cr3 = get_cr3;
e4e517b4 4020 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
4021 g_context->inject_page_fault = kvm_inject_page_fault;
4022
4023 /*
4024 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
4025 * translation of l2_gpa to l1_gpa addresses is done using the
4026 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
4027 * functions between mmu and nested_mmu are swapped.
4028 */
4029 if (!is_paging(vcpu)) {
2d48a985 4030 g_context->nx = false;
02f59dc9
JR
4031 g_context->root_level = 0;
4032 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
4033 } else if (is_long_mode(vcpu)) {
2d48a985 4034 g_context->nx = is_nx(vcpu);
02f59dc9 4035 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 4036 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4037 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4038 } else if (is_pae(vcpu)) {
2d48a985 4039 g_context->nx = is_nx(vcpu);
02f59dc9 4040 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 4041 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4042 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
4043 } else {
2d48a985 4044 g_context->nx = false;
02f59dc9 4045 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 4046 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
4047 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
4048 }
4049
25d92081 4050 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 4051 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
4052}
4053
8a3c1a33 4054static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 4055{
02f59dc9 4056 if (mmu_is_nested(vcpu))
e0c6db3e 4057 init_kvm_nested_mmu(vcpu);
02f59dc9 4058 else if (tdp_enabled)
e0c6db3e 4059 init_kvm_tdp_mmu(vcpu);
fb72d167 4060 else
e0c6db3e 4061 init_kvm_softmmu(vcpu);
fb72d167
JR
4062}
4063
8a3c1a33 4064void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 4065{
95f93af4 4066 kvm_mmu_unload(vcpu);
8a3c1a33 4067 init_kvm_mmu(vcpu);
17c3ba9d 4068}
8668a3c4 4069EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
4070
4071int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 4072{
714b93da
AK
4073 int r;
4074
e2dec939 4075 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
4076 if (r)
4077 goto out;
8986ecc0 4078 r = mmu_alloc_roots(vcpu);
e2858b4a 4079 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
4080 if (r)
4081 goto out;
3662cb1c 4082 /* set_cr3() should ensure TLB has been flushed */
f43addd4 4083 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
4084out:
4085 return r;
6aa8b732 4086}
17c3ba9d
AK
4087EXPORT_SYMBOL_GPL(kvm_mmu_load);
4088
4089void kvm_mmu_unload(struct kvm_vcpu *vcpu)
4090{
4091 mmu_free_roots(vcpu);
95f93af4 4092 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 4093}
4b16184c 4094EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 4095
0028425f 4096static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
4097 struct kvm_mmu_page *sp, u64 *spte,
4098 const void *new)
0028425f 4099{
30945387 4100 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
4101 ++vcpu->kvm->stat.mmu_pde_zapped;
4102 return;
30945387 4103 }
0028425f 4104
4cee5764 4105 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 4106 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
4107}
4108
79539cec
AK
4109static bool need_remote_flush(u64 old, u64 new)
4110{
4111 if (!is_shadow_present_pte(old))
4112 return false;
4113 if (!is_shadow_present_pte(new))
4114 return true;
4115 if ((old ^ new) & PT64_BASE_ADDR_MASK)
4116 return true;
53166229
GN
4117 old ^= shadow_nx_mask;
4118 new ^= shadow_nx_mask;
79539cec
AK
4119 return (old & ~new & PT64_PERM_MASK) != 0;
4120}
4121
0671a8e7
XG
4122static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
4123 bool remote_flush, bool local_flush)
79539cec 4124{
0671a8e7
XG
4125 if (zap_page)
4126 return;
4127
4128 if (remote_flush)
79539cec 4129 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 4130 else if (local_flush)
77c3913b 4131 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
4132}
4133
889e5cbc
XG
4134static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
4135 const u8 *new, int *bytes)
da4a00f0 4136{
889e5cbc
XG
4137 u64 gentry;
4138 int r;
72016f3a 4139
72016f3a
AK
4140 /*
4141 * Assume that the pte write on a page table of the same type
49b26e26
XG
4142 * as the current vcpu paging mode since we update the sptes only
4143 * when they have the same mode.
72016f3a 4144 */
889e5cbc 4145 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 4146 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
4147 *gpa &= ~(gpa_t)7;
4148 *bytes = 8;
116eb3d3 4149 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
4150 if (r)
4151 gentry = 0;
08e850c6
AK
4152 new = (const u8 *)&gentry;
4153 }
4154
889e5cbc 4155 switch (*bytes) {
08e850c6
AK
4156 case 4:
4157 gentry = *(const u32 *)new;
4158 break;
4159 case 8:
4160 gentry = *(const u64 *)new;
4161 break;
4162 default:
4163 gentry = 0;
4164 break;
72016f3a
AK
4165 }
4166
889e5cbc
XG
4167 return gentry;
4168}
4169
4170/*
4171 * If we're seeing too many writes to a page, it may no longer be a page table,
4172 * or we may be forking, in which case it is better to unmap the page.
4173 */
a138fe75 4174static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4175{
a30f47cb
XG
4176 /*
4177 * Skip write-flooding detected for the sp whose level is 1, because
4178 * it can become unsync, then the guest page is not write-protected.
4179 */
f71fa31f 4180 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4181 return false;
3246af0e 4182
a30f47cb 4183 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4184}
4185
4186/*
4187 * Misaligned accesses are too much trouble to fix up; also, they usually
4188 * indicate a page is not used as a page table.
4189 */
4190static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4191 int bytes)
4192{
4193 unsigned offset, pte_size, misaligned;
4194
4195 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4196 gpa, bytes, sp->role.word);
4197
4198 offset = offset_in_page(gpa);
4199 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4200
4201 /*
4202 * Sometimes, the OS only writes the last one bytes to update status
4203 * bits, for example, in linux, andb instruction is used in clear_bit().
4204 */
4205 if (!(offset & (pte_size - 1)) && bytes == 1)
4206 return false;
4207
889e5cbc
XG
4208 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4209 misaligned |= bytes < 4;
4210
4211 return misaligned;
4212}
4213
4214static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4215{
4216 unsigned page_offset, quadrant;
4217 u64 *spte;
4218 int level;
4219
4220 page_offset = offset_in_page(gpa);
4221 level = sp->role.level;
4222 *nspte = 1;
4223 if (!sp->role.cr4_pae) {
4224 page_offset <<= 1; /* 32->64 */
4225 /*
4226 * A 32-bit pde maps 4MB while the shadow pdes map
4227 * only 2MB. So we need to double the offset again
4228 * and zap two pdes instead of one.
4229 */
4230 if (level == PT32_ROOT_LEVEL) {
4231 page_offset &= ~7; /* kill rounding error */
4232 page_offset <<= 1;
4233 *nspte = 2;
4234 }
4235 quadrant = page_offset >> PAGE_SHIFT;
4236 page_offset &= ~PAGE_MASK;
4237 if (quadrant != sp->role.quadrant)
4238 return NULL;
4239 }
4240
4241 spte = &sp->spt[page_offset / sizeof(*spte)];
4242 return spte;
4243}
4244
4245void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4246 const u8 *new, int bytes)
4247{
4248 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 4249 struct kvm_mmu_page *sp;
889e5cbc
XG
4250 LIST_HEAD(invalid_list);
4251 u64 entry, gentry, *spte;
4252 int npte;
a30f47cb 4253 bool remote_flush, local_flush, zap_page;
edc90b7d
XG
4254 union kvm_mmu_page_role mask = (union kvm_mmu_page_role) {
4255 .cr0_wp = 1,
4256 .cr4_pae = 1,
4257 .nxe = 1,
4258 .smep_andnot_wp = 1,
4259 .smap_andnot_wp = 1,
4260 };
889e5cbc
XG
4261
4262 /*
4263 * If we don't have indirect shadow pages, it means no page is
4264 * write-protected, so we can exit simply.
4265 */
4266 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4267 return;
4268
4269 zap_page = remote_flush = local_flush = false;
4270
4271 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4272
4273 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4274
4275 /*
4276 * No need to care whether allocation memory is successful
4277 * or not since pte prefetch is skiped if it does not have
4278 * enough objects in the cache.
4279 */
4280 mmu_topup_memory_caches(vcpu);
4281
4282 spin_lock(&vcpu->kvm->mmu_lock);
4283 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4284 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4285
b67bfe0d 4286 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4287 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4288 detect_write_flooding(sp)) {
0671a8e7 4289 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4290 &invalid_list);
4cee5764 4291 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4292 continue;
4293 }
889e5cbc
XG
4294
4295 spte = get_written_sptes(sp, gpa, &npte);
4296 if (!spte)
4297 continue;
4298
0671a8e7 4299 local_flush = true;
ac1b714e 4300 while (npte--) {
79539cec 4301 entry = *spte;
38e3b2b2 4302 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4303 if (gentry &&
4304 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4305 & mask.word) && rmap_can_add(vcpu))
7c562522 4306 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4307 if (need_remote_flush(entry, *spte))
0671a8e7 4308 remote_flush = true;
ac1b714e 4309 ++spte;
9b7a0325 4310 }
9b7a0325 4311 }
0671a8e7 4312 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4313 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4314 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4315 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4316}
4317
a436036b
AK
4318int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4319{
10589a46
MT
4320 gpa_t gpa;
4321 int r;
a436036b 4322
c5a78f2b 4323 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4324 return 0;
4325
1871c602 4326 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4327
10589a46 4328 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4329
10589a46 4330 return r;
a436036b 4331}
577bdc49 4332EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4333
81f4f76b 4334static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4335{
d98ba053 4336 LIST_HEAD(invalid_list);
103ad25a 4337
81f4f76b
TY
4338 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4339 return;
4340
5da59607
TY
4341 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4342 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4343 break;
ebeace86 4344
4cee5764 4345 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4346 }
aa6bd187 4347 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4348}
ebeace86 4349
1cb3f3ae
XG
4350static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4351{
4352 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4353 return vcpu_match_mmio_gpa(vcpu, addr);
4354
4355 return vcpu_match_mmio_gva(vcpu, addr);
4356}
4357
dc25e89e
AP
4358int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4359 void *insn, int insn_len)
3067714c 4360{
1cb3f3ae 4361 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4362 enum emulation_result er;
4363
56028d08 4364 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4365 if (r < 0)
4366 goto out;
4367
4368 if (!r) {
4369 r = 1;
4370 goto out;
4371 }
4372
1cb3f3ae
XG
4373 if (is_mmio_page_fault(vcpu, cr2))
4374 emulation_type = 0;
4375
4376 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4377
4378 switch (er) {
4379 case EMULATE_DONE:
4380 return 1;
ac0a48c3 4381 case EMULATE_USER_EXIT:
3067714c 4382 ++vcpu->stat.mmio_exits;
6d77dbfc 4383 /* fall through */
3067714c 4384 case EMULATE_FAIL:
3f5d18a9 4385 return 0;
3067714c
AK
4386 default:
4387 BUG();
4388 }
4389out:
3067714c
AK
4390 return r;
4391}
4392EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4393
a7052897
MT
4394void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4395{
a7052897 4396 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4397 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4398 ++vcpu->stat.invlpg;
4399}
4400EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4401
18552672
JR
4402void kvm_enable_tdp(void)
4403{
4404 tdp_enabled = true;
4405}
4406EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4407
5f4cb662
JR
4408void kvm_disable_tdp(void)
4409{
4410 tdp_enabled = false;
4411}
4412EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4413
6aa8b732
AK
4414static void free_mmu_pages(struct kvm_vcpu *vcpu)
4415{
ad312c7c 4416 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4417 if (vcpu->arch.mmu.lm_root != NULL)
4418 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4419}
4420
4421static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4422{
17ac10ad 4423 struct page *page;
6aa8b732
AK
4424 int i;
4425
17ac10ad
AK
4426 /*
4427 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4428 * Therefore we need to allocate shadow page tables in the first
4429 * 4GB of memory, which happens to fit the DMA32 zone.
4430 */
4431 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4432 if (!page)
d7fa6ab2
WY
4433 return -ENOMEM;
4434
ad312c7c 4435 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4436 for (i = 0; i < 4; ++i)
ad312c7c 4437 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4438
6aa8b732 4439 return 0;
6aa8b732
AK
4440}
4441
8018c27b 4442int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4443{
e459e322
XG
4444 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4445 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4446 vcpu->arch.mmu.translate_gpa = translate_gpa;
4447 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4448
8018c27b
IM
4449 return alloc_mmu_pages(vcpu);
4450}
6aa8b732 4451
8a3c1a33 4452void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b 4453{
fa4a2c08 4454 MMU_WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4455
8a3c1a33 4456 init_kvm_mmu(vcpu);
6aa8b732
AK
4457}
4458
1bad2b2a
XG
4459/* The return value indicates if tlb flush on all vcpus is needed. */
4460typedef bool (*slot_level_handler) (struct kvm *kvm, unsigned long *rmap);
4461
4462/* The caller should hold mmu-lock before calling this function. */
4463static bool
4464slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
4465 slot_level_handler fn, int start_level, int end_level,
4466 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
4467{
4468 struct slot_rmap_walk_iterator iterator;
4469 bool flush = false;
4470
4471 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
4472 end_gfn, &iterator) {
4473 if (iterator.rmap)
4474 flush |= fn(kvm, iterator.rmap);
4475
4476 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4477 if (flush && lock_flush_tlb) {
4478 kvm_flush_remote_tlbs(kvm);
4479 flush = false;
4480 }
4481 cond_resched_lock(&kvm->mmu_lock);
4482 }
4483 }
4484
4485 if (flush && lock_flush_tlb) {
4486 kvm_flush_remote_tlbs(kvm);
4487 flush = false;
4488 }
4489
4490 return flush;
4491}
4492
4493static bool
4494slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4495 slot_level_handler fn, int start_level, int end_level,
4496 bool lock_flush_tlb)
4497{
4498 return slot_handle_level_range(kvm, memslot, fn, start_level,
4499 end_level, memslot->base_gfn,
4500 memslot->base_gfn + memslot->npages - 1,
4501 lock_flush_tlb);
4502}
4503
4504static bool
4505slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4506 slot_level_handler fn, bool lock_flush_tlb)
4507{
4508 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4509 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4510}
4511
4512static bool
4513slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
4514 slot_level_handler fn, bool lock_flush_tlb)
4515{
4516 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
4517 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
4518}
4519
4520static bool
4521slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
4522 slot_level_handler fn, bool lock_flush_tlb)
4523{
4524 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
4525 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
4526}
4527
d77aa73c
XG
4528static bool slot_rmap_write_protect(struct kvm *kvm, unsigned long *rmapp)
4529{
4530 return __rmap_write_protect(kvm, rmapp, false);
4531}
4532
1c91cad4
KH
4533void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
4534 struct kvm_memory_slot *memslot)
6aa8b732 4535{
d77aa73c 4536 bool flush;
6aa8b732 4537
9d1beefb 4538 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4539 flush = slot_handle_all_level(kvm, memslot, slot_rmap_write_protect,
4540 false);
9d1beefb 4541 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4542
4543 /*
4544 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4545 * which do tlb flush out of mmu-lock should be serialized by
4546 * kvm->slots_lock otherwise tlb flush would be missed.
4547 */
4548 lockdep_assert_held(&kvm->slots_lock);
4549
4550 /*
4551 * We can flush all the TLBs out of the mmu lock without TLB
4552 * corruption since we just change the spte from writable to
4553 * readonly so that we only need to care the case of changing
4554 * spte from present to present (changing the spte from present
4555 * to nonpresent will flush all the TLBs immediately), in other
4556 * words, the only case we care is mmu_spte_update() where we
4557 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4558 * instead of PT_WRITABLE_MASK, that means it does not depend
4559 * on PT_WRITABLE_MASK anymore.
4560 */
d91ffee9
KH
4561 if (flush)
4562 kvm_flush_remote_tlbs(kvm);
6aa8b732 4563}
37a7d8b0 4564
3ea3b7fa
WL
4565static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
4566 unsigned long *rmapp)
4567{
4568 u64 *sptep;
4569 struct rmap_iterator iter;
4570 int need_tlb_flush = 0;
4571 pfn_t pfn;
4572 struct kvm_mmu_page *sp;
4573
0d536790
XG
4574restart:
4575 for_each_rmap_spte(rmapp, &iter, sptep) {
3ea3b7fa
WL
4576 sp = page_header(__pa(sptep));
4577 pfn = spte_to_pfn(*sptep);
4578
4579 /*
decf6333
XG
4580 * We cannot do huge page mapping for indirect shadow pages,
4581 * which are found on the last rmap (level = 1) when not using
4582 * tdp; such shadow pages are synced with the page table in
4583 * the guest, and the guest page table is using 4K page size
4584 * mapping if the indirect sp has level = 1.
3ea3b7fa
WL
4585 */
4586 if (sp->role.direct &&
4587 !kvm_is_reserved_pfn(pfn) &&
4588 PageTransCompound(pfn_to_page(pfn))) {
4589 drop_spte(kvm, sptep);
3ea3b7fa 4590 need_tlb_flush = 1;
0d536790
XG
4591 goto restart;
4592 }
3ea3b7fa
WL
4593 }
4594
4595 return need_tlb_flush;
4596}
4597
4598void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
4599 struct kvm_memory_slot *memslot)
4600{
3ea3b7fa 4601 spin_lock(&kvm->mmu_lock);
d77aa73c 4602 slot_handle_leaf(kvm, memslot, kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
4603 spin_unlock(&kvm->mmu_lock);
4604}
4605
f4b4b180
KH
4606void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
4607 struct kvm_memory_slot *memslot)
4608{
d77aa73c 4609 bool flush;
f4b4b180
KH
4610
4611 spin_lock(&kvm->mmu_lock);
d77aa73c 4612 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
4613 spin_unlock(&kvm->mmu_lock);
4614
4615 lockdep_assert_held(&kvm->slots_lock);
4616
4617 /*
4618 * It's also safe to flush TLBs out of mmu lock here as currently this
4619 * function is only used for dirty logging, in which case flushing TLB
4620 * out of mmu lock also guarantees no dirty pages will be lost in
4621 * dirty_bitmap.
4622 */
4623 if (flush)
4624 kvm_flush_remote_tlbs(kvm);
4625}
4626EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
4627
4628void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
4629 struct kvm_memory_slot *memslot)
4630{
d77aa73c 4631 bool flush;
f4b4b180
KH
4632
4633 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
4634 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
4635 false);
f4b4b180
KH
4636 spin_unlock(&kvm->mmu_lock);
4637
4638 /* see kvm_mmu_slot_remove_write_access */
4639 lockdep_assert_held(&kvm->slots_lock);
4640
4641 if (flush)
4642 kvm_flush_remote_tlbs(kvm);
4643}
4644EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
4645
4646void kvm_mmu_slot_set_dirty(struct kvm *kvm,
4647 struct kvm_memory_slot *memslot)
4648{
d77aa73c 4649 bool flush;
f4b4b180
KH
4650
4651 spin_lock(&kvm->mmu_lock);
d77aa73c 4652 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
4653 spin_unlock(&kvm->mmu_lock);
4654
4655 lockdep_assert_held(&kvm->slots_lock);
4656
4657 /* see kvm_mmu_slot_leaf_clear_dirty */
4658 if (flush)
4659 kvm_flush_remote_tlbs(kvm);
4660}
4661EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
4662
e7d11c7a 4663#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4664static void kvm_zap_obsolete_pages(struct kvm *kvm)
4665{
4666 struct kvm_mmu_page *sp, *node;
e7d11c7a 4667 int batch = 0;
5304b8d3
XG
4668
4669restart:
4670 list_for_each_entry_safe_reverse(sp, node,
4671 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4672 int ret;
4673
5304b8d3
XG
4674 /*
4675 * No obsolete page exists before new created page since
4676 * active_mmu_pages is the FIFO list.
4677 */
4678 if (!is_obsolete_sp(kvm, sp))
4679 break;
4680
4681 /*
5304b8d3
XG
4682 * Since we are reversely walking the list and the invalid
4683 * list will be moved to the head, skip the invalid page
4684 * can help us to avoid the infinity list walking.
4685 */
4686 if (sp->role.invalid)
4687 continue;
4688
f34d251d
XG
4689 /*
4690 * Need not flush tlb since we only zap the sp with invalid
4691 * generation number.
4692 */
e7d11c7a 4693 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4694 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4695 batch = 0;
5304b8d3
XG
4696 goto restart;
4697 }
4698
365c8868
XG
4699 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4700 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4701 batch += ret;
4702
4703 if (ret)
5304b8d3
XG
4704 goto restart;
4705 }
4706
f34d251d
XG
4707 /*
4708 * Should flush tlb before free page tables since lockless-walking
4709 * may use the pages.
4710 */
365c8868 4711 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4712}
4713
4714/*
4715 * Fast invalidate all shadow pages and use lock-break technique
4716 * to zap obsolete pages.
4717 *
4718 * It's required when memslot is being deleted or VM is being
4719 * destroyed, in these cases, we should ensure that KVM MMU does
4720 * not use any resource of the being-deleted slot or all slots
4721 * after calling the function.
4722 */
4723void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4724{
4725 spin_lock(&kvm->mmu_lock);
35006126 4726 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4727 kvm->arch.mmu_valid_gen++;
4728
f34d251d
XG
4729 /*
4730 * Notify all vcpus to reload its shadow page table
4731 * and flush TLB. Then all vcpus will switch to new
4732 * shadow page table with the new mmu_valid_gen.
4733 *
4734 * Note: we should do this under the protection of
4735 * mmu-lock, otherwise, vcpu would purge shadow page
4736 * but miss tlb flush.
4737 */
4738 kvm_reload_remote_mmus(kvm);
4739
5304b8d3
XG
4740 kvm_zap_obsolete_pages(kvm);
4741 spin_unlock(&kvm->mmu_lock);
4742}
4743
365c8868
XG
4744static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4745{
4746 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4747}
4748
f8f55942
XG
4749void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4750{
4751 /*
4752 * The very rare case: if the generation-number is round,
4753 * zap all shadow pages.
f8f55942 4754 */
ee3d1570 4755 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
a629df7e 4756 printk_ratelimited(KERN_DEBUG "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4757 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4758 }
f8f55942
XG
4759}
4760
70534a73
DC
4761static unsigned long
4762mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4763{
4764 struct kvm *kvm;
1495f230 4765 int nr_to_scan = sc->nr_to_scan;
70534a73 4766 unsigned long freed = 0;
3ee16c81 4767
2f303b74 4768 spin_lock(&kvm_lock);
3ee16c81
IE
4769
4770 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4771 int idx;
d98ba053 4772 LIST_HEAD(invalid_list);
3ee16c81 4773
35f2d16b
TY
4774 /*
4775 * Never scan more than sc->nr_to_scan VM instances.
4776 * Will not hit this condition practically since we do not try
4777 * to shrink more than one VM and it is very unlikely to see
4778 * !n_used_mmu_pages so many times.
4779 */
4780 if (!nr_to_scan--)
4781 break;
19526396
GN
4782 /*
4783 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4784 * here. We may skip a VM instance errorneosly, but we do not
4785 * want to shrink a VM that only started to populate its MMU
4786 * anyway.
4787 */
365c8868
XG
4788 if (!kvm->arch.n_used_mmu_pages &&
4789 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4790 continue;
19526396 4791
f656ce01 4792 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4793 spin_lock(&kvm->mmu_lock);
3ee16c81 4794
365c8868
XG
4795 if (kvm_has_zapped_obsolete_pages(kvm)) {
4796 kvm_mmu_commit_zap_page(kvm,
4797 &kvm->arch.zapped_obsolete_pages);
4798 goto unlock;
4799 }
4800
70534a73
DC
4801 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4802 freed++;
d98ba053 4803 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4804
365c8868 4805unlock:
3ee16c81 4806 spin_unlock(&kvm->mmu_lock);
f656ce01 4807 srcu_read_unlock(&kvm->srcu, idx);
19526396 4808
70534a73
DC
4809 /*
4810 * unfair on small ones
4811 * per-vm shrinkers cry out
4812 * sadness comes quickly
4813 */
19526396
GN
4814 list_move_tail(&kvm->vm_list, &vm_list);
4815 break;
3ee16c81 4816 }
3ee16c81 4817
2f303b74 4818 spin_unlock(&kvm_lock);
70534a73 4819 return freed;
70534a73
DC
4820}
4821
4822static unsigned long
4823mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4824{
45221ab6 4825 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4826}
4827
4828static struct shrinker mmu_shrinker = {
70534a73
DC
4829 .count_objects = mmu_shrink_count,
4830 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4831 .seeks = DEFAULT_SEEKS * 10,
4832};
4833
2ddfd20e 4834static void mmu_destroy_caches(void)
b5a33a75 4835{
53c07b18
XG
4836 if (pte_list_desc_cache)
4837 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4838 if (mmu_page_header_cache)
4839 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4840}
4841
4842int kvm_mmu_module_init(void)
4843{
53c07b18
XG
4844 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4845 sizeof(struct pte_list_desc),
20c2df83 4846 0, 0, NULL);
53c07b18 4847 if (!pte_list_desc_cache)
b5a33a75
AK
4848 goto nomem;
4849
d3d25b04
AK
4850 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4851 sizeof(struct kvm_mmu_page),
20c2df83 4852 0, 0, NULL);
d3d25b04
AK
4853 if (!mmu_page_header_cache)
4854 goto nomem;
4855
908c7f19 4856 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
45bf21a8
WY
4857 goto nomem;
4858
3ee16c81
IE
4859 register_shrinker(&mmu_shrinker);
4860
b5a33a75
AK
4861 return 0;
4862
4863nomem:
3ee16c81 4864 mmu_destroy_caches();
b5a33a75
AK
4865 return -ENOMEM;
4866}
4867
3ad82a7e
ZX
4868/*
4869 * Caculate mmu pages needed for kvm.
4870 */
4871unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4872{
3ad82a7e
ZX
4873 unsigned int nr_mmu_pages;
4874 unsigned int nr_pages = 0;
bc6678a3 4875 struct kvm_memslots *slots;
be6ba0f0 4876 struct kvm_memory_slot *memslot;
3ad82a7e 4877
90d83dc3
LJ
4878 slots = kvm_memslots(kvm);
4879
be6ba0f0
XG
4880 kvm_for_each_memslot(memslot, slots)
4881 nr_pages += memslot->npages;
3ad82a7e
ZX
4882
4883 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4884 nr_mmu_pages = max(nr_mmu_pages,
4885 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4886
4887 return nr_mmu_pages;
4888}
4889
94d8b056
MT
4890int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4891{
4892 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4893 u64 spte;
94d8b056
MT
4894 int nr_sptes = 0;
4895
37f6a4e2
MT
4896 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4897 return nr_sptes;
4898
c2a2ac2b
XG
4899 walk_shadow_page_lockless_begin(vcpu);
4900 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4901 sptes[iterator.level-1] = spte;
94d8b056 4902 nr_sptes++;
c2a2ac2b 4903 if (!is_shadow_present_pte(spte))
94d8b056
MT
4904 break;
4905 }
c2a2ac2b 4906 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4907
4908 return nr_sptes;
4909}
4910EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4911
c42fffe3
XG
4912void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4913{
95f93af4 4914 kvm_mmu_unload(vcpu);
c42fffe3
XG
4915 free_mmu_pages(vcpu);
4916 mmu_free_memory_caches(vcpu);
b034cf01
XG
4917}
4918
b034cf01
XG
4919void kvm_mmu_module_exit(void)
4920{
4921 mmu_destroy_caches();
4922 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4923 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4924 mmu_audit_disable();
4925}