kvm/x86/mmu: Pass gfn and level to rmapp callback.
[linux-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
5f7dde7b 25#include "cpuid.h"
e495606d 26
edf88417 27#include <linux/kvm_host.h>
6aa8b732
AK
28#include <linux/types.h>
29#include <linux/string.h>
6aa8b732
AK
30#include <linux/mm.h>
31#include <linux/highmem.h>
32#include <linux/module.h>
448353ca 33#include <linux/swap.h>
05da4558 34#include <linux/hugetlb.h>
2f333bcb 35#include <linux/compiler.h>
bc6678a3 36#include <linux/srcu.h>
5a0e3ad6 37#include <linux/slab.h>
bf998156 38#include <linux/uaccess.h>
6aa8b732 39
e495606d
AK
40#include <asm/page.h>
41#include <asm/cmpxchg.h>
4e542370 42#include <asm/io.h>
13673a90 43#include <asm/vmx.h>
6aa8b732 44
18552672
JR
45/*
46 * When setting this variable to true it enables Two-Dimensional-Paging
47 * where the hardware walks 2 page tables:
48 * 1. the guest-virtual to guest-physical
49 * 2. while doing 1. it walks guest-physical to host-physical
50 * If the hardware supports that we don't need to do shadow paging.
51 */
2f333bcb 52bool tdp_enabled = false;
18552672 53
8b1fe17c
XG
54enum {
55 AUDIT_PRE_PAGE_FAULT,
56 AUDIT_POST_PAGE_FAULT,
57 AUDIT_PRE_PTE_WRITE,
6903074c
XG
58 AUDIT_POST_PTE_WRITE,
59 AUDIT_PRE_SYNC,
60 AUDIT_POST_SYNC
8b1fe17c 61};
37a7d8b0 62
8b1fe17c 63#undef MMU_DEBUG
37a7d8b0
AK
64
65#ifdef MMU_DEBUG
66
67#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
68#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
69
70#else
71
72#define pgprintk(x...) do { } while (0)
73#define rmap_printk(x...) do { } while (0)
74
75#endif
76
8b1fe17c 77#ifdef MMU_DEBUG
476bc001 78static bool dbg = 0;
6ada8cca 79module_param(dbg, bool, 0644);
37a7d8b0 80#endif
6aa8b732 81
d6c69ee9
YD
82#ifndef MMU_DEBUG
83#define ASSERT(x) do { } while (0)
84#else
6aa8b732
AK
85#define ASSERT(x) \
86 if (!(x)) { \
87 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
88 __FILE__, __LINE__, #x); \
89 }
d6c69ee9 90#endif
6aa8b732 91
957ed9ef
XG
92#define PTE_PREFETCH_NUM 8
93
00763e41 94#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
95#define PT64_SECOND_AVAIL_BITS_SHIFT 52
96
6aa8b732
AK
97#define PT64_LEVEL_BITS 9
98
99#define PT64_LEVEL_SHIFT(level) \
d77c26fc 100 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 101
6aa8b732
AK
102#define PT64_INDEX(address, level)\
103 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
104
105
106#define PT32_LEVEL_BITS 10
107
108#define PT32_LEVEL_SHIFT(level) \
d77c26fc 109 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 110
e04da980
JR
111#define PT32_LVL_OFFSET_MASK(level) \
112 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
113 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
114
115#define PT32_INDEX(address, level)\
116 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
117
118
27aba766 119#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
120#define PT64_DIR_BASE_ADDR_MASK \
121 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
122#define PT64_LVL_ADDR_MASK(level) \
123 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
124 * PT64_LEVEL_BITS))) - 1))
125#define PT64_LVL_OFFSET_MASK(level) \
126 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
127 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
128
129#define PT32_BASE_ADDR_MASK PAGE_MASK
130#define PT32_DIR_BASE_ADDR_MASK \
131 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
132#define PT32_LVL_ADDR_MASK(level) \
133 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
134 * PT32_LEVEL_BITS))) - 1))
6aa8b732 135
53166229
GN
136#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
137 | shadow_x_mask | shadow_nx_mask)
6aa8b732 138
fe135d2c
AK
139#define ACC_EXEC_MASK 1
140#define ACC_WRITE_MASK PT_WRITABLE_MASK
141#define ACC_USER_MASK PT_USER_MASK
142#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
143
90bb6fc5
AK
144#include <trace/events/kvm.h>
145
07420171
AK
146#define CREATE_TRACE_POINTS
147#include "mmutrace.h"
148
49fde340
XG
149#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
150#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 151
135f8c2b
AK
152#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
153
220f773a
TY
154/* make pte_list_desc fit well in cache line */
155#define PTE_LIST_EXT 3
156
53c07b18
XG
157struct pte_list_desc {
158 u64 *sptes[PTE_LIST_EXT];
159 struct pte_list_desc *more;
cd4a4e53
AK
160};
161
2d11123a
AK
162struct kvm_shadow_walk_iterator {
163 u64 addr;
164 hpa_t shadow_addr;
2d11123a 165 u64 *sptep;
dd3bfd59 166 int level;
2d11123a
AK
167 unsigned index;
168};
169
170#define for_each_shadow_entry(_vcpu, _addr, _walker) \
171 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
172 shadow_walk_okay(&(_walker)); \
173 shadow_walk_next(&(_walker)))
174
c2a2ac2b
XG
175#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
176 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
177 shadow_walk_okay(&(_walker)) && \
178 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
179 __shadow_walk_next(&(_walker), spte))
180
53c07b18 181static struct kmem_cache *pte_list_desc_cache;
d3d25b04 182static struct kmem_cache *mmu_page_header_cache;
45221ab6 183static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 184
7b52345e
SY
185static u64 __read_mostly shadow_nx_mask;
186static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
187static u64 __read_mostly shadow_user_mask;
188static u64 __read_mostly shadow_accessed_mask;
189static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
190static u64 __read_mostly shadow_mmio_mask;
191
192static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 193static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
194
195void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
196{
197 shadow_mmio_mask = mmio_mask;
198}
199EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
200
f2fd125d 201/*
ee3d1570
DM
202 * the low bit of the generation number is always presumed to be zero.
203 * This disables mmio caching during memslot updates. The concept is
204 * similar to a seqcount but instead of retrying the access we just punt
205 * and ignore the cache.
206 *
207 * spte bits 3-11 are used as bits 1-9 of the generation number,
208 * the bits 52-61 are used as bits 10-19 of the generation number.
f2fd125d 209 */
ee3d1570 210#define MMIO_SPTE_GEN_LOW_SHIFT 2
f2fd125d
XG
211#define MMIO_SPTE_GEN_HIGH_SHIFT 52
212
ee3d1570
DM
213#define MMIO_GEN_SHIFT 20
214#define MMIO_GEN_LOW_SHIFT 10
215#define MMIO_GEN_LOW_MASK ((1 << MMIO_GEN_LOW_SHIFT) - 2)
f8f55942
XG
216#define MMIO_GEN_MASK ((1 << MMIO_GEN_SHIFT) - 1)
217#define MMIO_MAX_GEN ((1 << MMIO_GEN_SHIFT) - 1)
f2fd125d
XG
218
219static u64 generation_mmio_spte_mask(unsigned int gen)
220{
221 u64 mask;
222
223 WARN_ON(gen > MMIO_MAX_GEN);
224
225 mask = (gen & MMIO_GEN_LOW_MASK) << MMIO_SPTE_GEN_LOW_SHIFT;
226 mask |= ((u64)gen >> MMIO_GEN_LOW_SHIFT) << MMIO_SPTE_GEN_HIGH_SHIFT;
227 return mask;
228}
229
230static unsigned int get_mmio_spte_generation(u64 spte)
231{
232 unsigned int gen;
233
234 spte &= ~shadow_mmio_mask;
235
236 gen = (spte >> MMIO_SPTE_GEN_LOW_SHIFT) & MMIO_GEN_LOW_MASK;
237 gen |= (spte >> MMIO_SPTE_GEN_HIGH_SHIFT) << MMIO_GEN_LOW_SHIFT;
238 return gen;
239}
240
f8f55942
XG
241static unsigned int kvm_current_mmio_generation(struct kvm *kvm)
242{
00f034a1 243 return kvm_memslots(kvm)->generation & MMIO_GEN_MASK;
f8f55942
XG
244}
245
f2fd125d
XG
246static void mark_mmio_spte(struct kvm *kvm, u64 *sptep, u64 gfn,
247 unsigned access)
ce88decf 248{
f8f55942
XG
249 unsigned int gen = kvm_current_mmio_generation(kvm);
250 u64 mask = generation_mmio_spte_mask(gen);
95b0430d 251
ce88decf 252 access &= ACC_WRITE_MASK | ACC_USER_MASK;
f2fd125d 253 mask |= shadow_mmio_mask | access | gfn << PAGE_SHIFT;
f2fd125d 254
f8f55942 255 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 256 mmu_spte_set(sptep, mask);
ce88decf
XG
257}
258
259static bool is_mmio_spte(u64 spte)
260{
261 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
262}
263
264static gfn_t get_mmio_spte_gfn(u64 spte)
265{
f2fd125d
XG
266 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
267 return (spte & ~mask) >> PAGE_SHIFT;
ce88decf
XG
268}
269
270static unsigned get_mmio_spte_access(u64 spte)
271{
f2fd125d
XG
272 u64 mask = generation_mmio_spte_mask(MMIO_MAX_GEN) | shadow_mmio_mask;
273 return (spte & ~mask) & ~PAGE_MASK;
ce88decf
XG
274}
275
f2fd125d
XG
276static bool set_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
277 pfn_t pfn, unsigned access)
ce88decf
XG
278{
279 if (unlikely(is_noslot_pfn(pfn))) {
f2fd125d 280 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
281 return true;
282 }
283
284 return false;
285}
c7addb90 286
f8f55942
XG
287static bool check_mmio_spte(struct kvm *kvm, u64 spte)
288{
089504c0
XG
289 unsigned int kvm_gen, spte_gen;
290
291 kvm_gen = kvm_current_mmio_generation(kvm);
292 spte_gen = get_mmio_spte_generation(spte);
293
294 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
295 return likely(kvm_gen == spte_gen);
f8f55942
XG
296}
297
7b52345e 298void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 299 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
300{
301 shadow_user_mask = user_mask;
302 shadow_accessed_mask = accessed_mask;
303 shadow_dirty_mask = dirty_mask;
304 shadow_nx_mask = nx_mask;
305 shadow_x_mask = x_mask;
306}
307EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
308
6aa8b732
AK
309static int is_cpuid_PSE36(void)
310{
311 return 1;
312}
313
73b1087e
AK
314static int is_nx(struct kvm_vcpu *vcpu)
315{
f6801dff 316 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
317}
318
c7addb90
AK
319static int is_shadow_present_pte(u64 pte)
320{
ce88decf 321 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
322}
323
05da4558
MT
324static int is_large_pte(u64 pte)
325{
326 return pte & PT_PAGE_SIZE_MASK;
327}
328
43a3795a 329static int is_rmap_spte(u64 pte)
cd4a4e53 330{
4b1a80fa 331 return is_shadow_present_pte(pte);
cd4a4e53
AK
332}
333
776e6633
MT
334static int is_last_spte(u64 pte, int level)
335{
336 if (level == PT_PAGE_TABLE_LEVEL)
337 return 1;
852e3c19 338 if (is_large_pte(pte))
776e6633
MT
339 return 1;
340 return 0;
341}
342
35149e21 343static pfn_t spte_to_pfn(u64 pte)
0b49ea86 344{
35149e21 345 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
346}
347
da928521
AK
348static gfn_t pse36_gfn_delta(u32 gpte)
349{
350 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
351
352 return (gpte & PT32_DIR_PSE36_MASK) << shift;
353}
354
603e0651 355#ifdef CONFIG_X86_64
d555c333 356static void __set_spte(u64 *sptep, u64 spte)
e663ee64 357{
603e0651 358 *sptep = spte;
e663ee64
AK
359}
360
603e0651 361static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 362{
603e0651
XG
363 *sptep = spte;
364}
365
366static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
367{
368 return xchg(sptep, spte);
369}
c2a2ac2b
XG
370
371static u64 __get_spte_lockless(u64 *sptep)
372{
373 return ACCESS_ONCE(*sptep);
374}
ce88decf
XG
375
376static bool __check_direct_spte_mmio_pf(u64 spte)
377{
378 /* It is valid if the spte is zapped. */
379 return spte == 0ull;
380}
a9221dd5 381#else
603e0651
XG
382union split_spte {
383 struct {
384 u32 spte_low;
385 u32 spte_high;
386 };
387 u64 spte;
388};
a9221dd5 389
c2a2ac2b
XG
390static void count_spte_clear(u64 *sptep, u64 spte)
391{
392 struct kvm_mmu_page *sp = page_header(__pa(sptep));
393
394 if (is_shadow_present_pte(spte))
395 return;
396
397 /* Ensure the spte is completely set before we increase the count */
398 smp_wmb();
399 sp->clear_spte_count++;
400}
401
603e0651
XG
402static void __set_spte(u64 *sptep, u64 spte)
403{
404 union split_spte *ssptep, sspte;
a9221dd5 405
603e0651
XG
406 ssptep = (union split_spte *)sptep;
407 sspte = (union split_spte)spte;
408
409 ssptep->spte_high = sspte.spte_high;
410
411 /*
412 * If we map the spte from nonpresent to present, We should store
413 * the high bits firstly, then set present bit, so cpu can not
414 * fetch this spte while we are setting the spte.
415 */
416 smp_wmb();
417
418 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
419}
420
603e0651
XG
421static void __update_clear_spte_fast(u64 *sptep, u64 spte)
422{
423 union split_spte *ssptep, sspte;
424
425 ssptep = (union split_spte *)sptep;
426 sspte = (union split_spte)spte;
427
428 ssptep->spte_low = sspte.spte_low;
429
430 /*
431 * If we map the spte from present to nonpresent, we should clear
432 * present bit firstly to avoid vcpu fetch the old high bits.
433 */
434 smp_wmb();
435
436 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 437 count_spte_clear(sptep, spte);
603e0651
XG
438}
439
440static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
441{
442 union split_spte *ssptep, sspte, orig;
443
444 ssptep = (union split_spte *)sptep;
445 sspte = (union split_spte)spte;
446
447 /* xchg acts as a barrier before the setting of the high bits */
448 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
449 orig.spte_high = ssptep->spte_high;
450 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 451 count_spte_clear(sptep, spte);
603e0651
XG
452
453 return orig.spte;
454}
c2a2ac2b
XG
455
456/*
457 * The idea using the light way get the spte on x86_32 guest is from
458 * gup_get_pte(arch/x86/mm/gup.c).
accaefe0
XG
459 *
460 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
461 * coalesces them and we are running out of the MMU lock. Therefore
462 * we need to protect against in-progress updates of the spte.
463 *
464 * Reading the spte while an update is in progress may get the old value
465 * for the high part of the spte. The race is fine for a present->non-present
466 * change (because the high part of the spte is ignored for non-present spte),
467 * but for a present->present change we must reread the spte.
468 *
469 * All such changes are done in two steps (present->non-present and
470 * non-present->present), hence it is enough to count the number of
471 * present->non-present updates: if it changed while reading the spte,
472 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
473 */
474static u64 __get_spte_lockless(u64 *sptep)
475{
476 struct kvm_mmu_page *sp = page_header(__pa(sptep));
477 union split_spte spte, *orig = (union split_spte *)sptep;
478 int count;
479
480retry:
481 count = sp->clear_spte_count;
482 smp_rmb();
483
484 spte.spte_low = orig->spte_low;
485 smp_rmb();
486
487 spte.spte_high = orig->spte_high;
488 smp_rmb();
489
490 if (unlikely(spte.spte_low != orig->spte_low ||
491 count != sp->clear_spte_count))
492 goto retry;
493
494 return spte.spte;
495}
ce88decf
XG
496
497static bool __check_direct_spte_mmio_pf(u64 spte)
498{
499 union split_spte sspte = (union split_spte)spte;
500 u32 high_mmio_mask = shadow_mmio_mask >> 32;
501
502 /* It is valid if the spte is zapped. */
503 if (spte == 0ull)
504 return true;
505
506 /* It is valid if the spte is being zapped. */
507 if (sspte.spte_low == 0ull &&
508 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
509 return true;
510
511 return false;
512}
603e0651
XG
513#endif
514
c7ba5b48
XG
515static bool spte_is_locklessly_modifiable(u64 spte)
516{
feb3eb70
GN
517 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
518 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
519}
520
8672b721
XG
521static bool spte_has_volatile_bits(u64 spte)
522{
c7ba5b48
XG
523 /*
524 * Always atomicly update spte if it can be updated
525 * out of mmu-lock, it can ensure dirty bit is not lost,
526 * also, it can help us to get a stable is_writable_pte()
527 * to ensure tlb flush is not missed.
528 */
529 if (spte_is_locklessly_modifiable(spte))
530 return true;
531
8672b721
XG
532 if (!shadow_accessed_mask)
533 return false;
534
535 if (!is_shadow_present_pte(spte))
536 return false;
537
4132779b
XG
538 if ((spte & shadow_accessed_mask) &&
539 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
540 return false;
541
542 return true;
543}
544
4132779b
XG
545static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
546{
547 return (old_spte & bit_mask) && !(new_spte & bit_mask);
548}
549
1df9f2dc
XG
550/* Rules for using mmu_spte_set:
551 * Set the sptep from nonpresent to present.
552 * Note: the sptep being assigned *must* be either not present
553 * or in a state where the hardware will not attempt to update
554 * the spte.
555 */
556static void mmu_spte_set(u64 *sptep, u64 new_spte)
557{
558 WARN_ON(is_shadow_present_pte(*sptep));
559 __set_spte(sptep, new_spte);
560}
561
562/* Rules for using mmu_spte_update:
563 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
564 *
565 * Whenever we overwrite a writable spte with a read-only one we
566 * should flush remote TLBs. Otherwise rmap_write_protect
567 * will find a read-only spte, even though the writable spte
568 * might be cached on a CPU's TLB, the return value indicates this
569 * case.
1df9f2dc 570 */
6e7d0354 571static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 572{
c7ba5b48 573 u64 old_spte = *sptep;
6e7d0354 574 bool ret = false;
4132779b
XG
575
576 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 577
6e7d0354
XG
578 if (!is_shadow_present_pte(old_spte)) {
579 mmu_spte_set(sptep, new_spte);
580 return ret;
581 }
4132779b 582
c7ba5b48 583 if (!spte_has_volatile_bits(old_spte))
603e0651 584 __update_clear_spte_fast(sptep, new_spte);
4132779b 585 else
603e0651 586 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 587
c7ba5b48
XG
588 /*
589 * For the spte updated out of mmu-lock is safe, since
590 * we always atomicly update it, see the comments in
591 * spte_has_volatile_bits().
592 */
7f31c959
XG
593 if (spte_is_locklessly_modifiable(old_spte) &&
594 !is_writable_pte(new_spte))
6e7d0354
XG
595 ret = true;
596
4132779b 597 if (!shadow_accessed_mask)
6e7d0354 598 return ret;
4132779b
XG
599
600 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
601 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
602 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
603 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
604
605 return ret;
b79b93f9
AK
606}
607
1df9f2dc
XG
608/*
609 * Rules for using mmu_spte_clear_track_bits:
610 * It sets the sptep from present to nonpresent, and track the
611 * state bits, it is used to clear the last level sptep.
612 */
613static int mmu_spte_clear_track_bits(u64 *sptep)
614{
615 pfn_t pfn;
616 u64 old_spte = *sptep;
617
618 if (!spte_has_volatile_bits(old_spte))
603e0651 619 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 620 else
603e0651 621 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
622
623 if (!is_rmap_spte(old_spte))
624 return 0;
625
626 pfn = spte_to_pfn(old_spte);
86fde74c
XG
627
628 /*
629 * KVM does not hold the refcount of the page used by
630 * kvm mmu, before reclaiming the page, we should
631 * unmap it from mmu first.
632 */
633 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
634
1df9f2dc
XG
635 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
636 kvm_set_pfn_accessed(pfn);
637 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
638 kvm_set_pfn_dirty(pfn);
639 return 1;
640}
641
642/*
643 * Rules for using mmu_spte_clear_no_track:
644 * Directly clear spte without caring the state bits of sptep,
645 * it is used to set the upper level spte.
646 */
647static void mmu_spte_clear_no_track(u64 *sptep)
648{
603e0651 649 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
650}
651
c2a2ac2b
XG
652static u64 mmu_spte_get_lockless(u64 *sptep)
653{
654 return __get_spte_lockless(sptep);
655}
656
657static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
658{
c142786c
AK
659 /*
660 * Prevent page table teardown by making any free-er wait during
661 * kvm_flush_remote_tlbs() IPI to all active vcpus.
662 */
663 local_irq_disable();
664 vcpu->mode = READING_SHADOW_PAGE_TABLES;
665 /*
666 * Make sure a following spte read is not reordered ahead of the write
667 * to vcpu->mode.
668 */
669 smp_mb();
c2a2ac2b
XG
670}
671
672static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
673{
c142786c
AK
674 /*
675 * Make sure the write to vcpu->mode is not reordered in front of
676 * reads to sptes. If it does, kvm_commit_zap_page() can see us
677 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
678 */
679 smp_mb();
680 vcpu->mode = OUTSIDE_GUEST_MODE;
681 local_irq_enable();
c2a2ac2b
XG
682}
683
e2dec939 684static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 685 struct kmem_cache *base_cache, int min)
714b93da
AK
686{
687 void *obj;
688
689 if (cache->nobjs >= min)
e2dec939 690 return 0;
714b93da 691 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 692 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 693 if (!obj)
e2dec939 694 return -ENOMEM;
714b93da
AK
695 cache->objects[cache->nobjs++] = obj;
696 }
e2dec939 697 return 0;
714b93da
AK
698}
699
f759e2b4
XG
700static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
701{
702 return cache->nobjs;
703}
704
e8ad9a70
XG
705static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
706 struct kmem_cache *cache)
714b93da
AK
707{
708 while (mc->nobjs)
e8ad9a70 709 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
710}
711
c1158e63 712static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 713 int min)
c1158e63 714{
842f22ed 715 void *page;
c1158e63
AK
716
717 if (cache->nobjs >= min)
718 return 0;
719 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 720 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
721 if (!page)
722 return -ENOMEM;
842f22ed 723 cache->objects[cache->nobjs++] = page;
c1158e63
AK
724 }
725 return 0;
726}
727
728static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
729{
730 while (mc->nobjs)
c4d198d5 731 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
732}
733
2e3e5882 734static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 735{
e2dec939
AK
736 int r;
737
53c07b18 738 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 739 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
740 if (r)
741 goto out;
ad312c7c 742 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
743 if (r)
744 goto out;
ad312c7c 745 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 746 mmu_page_header_cache, 4);
e2dec939
AK
747out:
748 return r;
714b93da
AK
749}
750
751static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
752{
53c07b18
XG
753 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
754 pte_list_desc_cache);
ad312c7c 755 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
756 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
757 mmu_page_header_cache);
714b93da
AK
758}
759
80feb89a 760static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
761{
762 void *p;
763
764 BUG_ON(!mc->nobjs);
765 p = mc->objects[--mc->nobjs];
714b93da
AK
766 return p;
767}
768
53c07b18 769static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 770{
80feb89a 771 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
772}
773
53c07b18 774static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 775{
53c07b18 776 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
777}
778
2032a93d
LJ
779static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
780{
781 if (!sp->role.direct)
782 return sp->gfns[index];
783
784 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
785}
786
787static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
788{
789 if (sp->role.direct)
790 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
791 else
792 sp->gfns[index] = gfn;
793}
794
05da4558 795/*
d4dbf470
TY
796 * Return the pointer to the large page information for a given gfn,
797 * handling slots that are not large page aligned.
05da4558 798 */
d4dbf470
TY
799static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
800 struct kvm_memory_slot *slot,
801 int level)
05da4558
MT
802{
803 unsigned long idx;
804
fb03cb6f 805 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 806 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
807}
808
809static void account_shadowed(struct kvm *kvm, gfn_t gfn)
810{
d25797b2 811 struct kvm_memory_slot *slot;
d4dbf470 812 struct kvm_lpage_info *linfo;
d25797b2 813 int i;
05da4558 814
a1f4d395 815 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
816 for (i = PT_DIRECTORY_LEVEL;
817 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
818 linfo = lpage_info_slot(gfn, slot, i);
819 linfo->write_count += 1;
d25797b2 820 }
332b207d 821 kvm->arch.indirect_shadow_pages++;
05da4558
MT
822}
823
824static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
825{
d25797b2 826 struct kvm_memory_slot *slot;
d4dbf470 827 struct kvm_lpage_info *linfo;
d25797b2 828 int i;
05da4558 829
a1f4d395 830 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
831 for (i = PT_DIRECTORY_LEVEL;
832 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
833 linfo = lpage_info_slot(gfn, slot, i);
834 linfo->write_count -= 1;
835 WARN_ON(linfo->write_count < 0);
d25797b2 836 }
332b207d 837 kvm->arch.indirect_shadow_pages--;
05da4558
MT
838}
839
d25797b2
JR
840static int has_wrprotected_page(struct kvm *kvm,
841 gfn_t gfn,
842 int level)
05da4558 843{
2843099f 844 struct kvm_memory_slot *slot;
d4dbf470 845 struct kvm_lpage_info *linfo;
05da4558 846
a1f4d395 847 slot = gfn_to_memslot(kvm, gfn);
05da4558 848 if (slot) {
d4dbf470
TY
849 linfo = lpage_info_slot(gfn, slot, level);
850 return linfo->write_count;
05da4558
MT
851 }
852
853 return 1;
854}
855
d25797b2 856static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 857{
8f0b1ab6 858 unsigned long page_size;
d25797b2 859 int i, ret = 0;
05da4558 860
8f0b1ab6 861 page_size = kvm_host_page_size(kvm, gfn);
05da4558 862
d25797b2
JR
863 for (i = PT_PAGE_TABLE_LEVEL;
864 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
865 if (page_size >= KVM_HPAGE_SIZE(i))
866 ret = i;
867 else
868 break;
869 }
870
4c2155ce 871 return ret;
05da4558
MT
872}
873
5d163b1c
XG
874static struct kvm_memory_slot *
875gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
876 bool no_dirty_log)
05da4558
MT
877{
878 struct kvm_memory_slot *slot;
5d163b1c
XG
879
880 slot = gfn_to_memslot(vcpu->kvm, gfn);
881 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
882 (no_dirty_log && slot->dirty_bitmap))
883 slot = NULL;
884
885 return slot;
886}
887
888static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
889{
a0a8eaba 890 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
891}
892
893static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
894{
895 int host_level, level, max_level;
05da4558 896
d25797b2
JR
897 host_level = host_mapping_level(vcpu->kvm, large_gfn);
898
899 if (host_level == PT_PAGE_TABLE_LEVEL)
900 return host_level;
901
55dd98c3 902 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
903
904 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
905 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
906 break;
d25797b2
JR
907
908 return level - 1;
05da4558
MT
909}
910
290fc38d 911/*
53c07b18 912 * Pte mapping structures:
cd4a4e53 913 *
53c07b18 914 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 915 *
53c07b18
XG
916 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
917 * pte_list_desc containing more mappings.
53a27b39 918 *
53c07b18 919 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
920 * the spte was not added.
921 *
cd4a4e53 922 */
53c07b18
XG
923static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
924 unsigned long *pte_list)
cd4a4e53 925{
53c07b18 926 struct pte_list_desc *desc;
53a27b39 927 int i, count = 0;
cd4a4e53 928
53c07b18
XG
929 if (!*pte_list) {
930 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
931 *pte_list = (unsigned long)spte;
932 } else if (!(*pte_list & 1)) {
933 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
934 desc = mmu_alloc_pte_list_desc(vcpu);
935 desc->sptes[0] = (u64 *)*pte_list;
d555c333 936 desc->sptes[1] = spte;
53c07b18 937 *pte_list = (unsigned long)desc | 1;
cb16a7b3 938 ++count;
cd4a4e53 939 } else {
53c07b18
XG
940 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
941 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
942 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 943 desc = desc->more;
53c07b18 944 count += PTE_LIST_EXT;
53a27b39 945 }
53c07b18
XG
946 if (desc->sptes[PTE_LIST_EXT-1]) {
947 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
948 desc = desc->more;
949 }
d555c333 950 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 951 ++count;
d555c333 952 desc->sptes[i] = spte;
cd4a4e53 953 }
53a27b39 954 return count;
cd4a4e53
AK
955}
956
53c07b18
XG
957static void
958pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
959 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
960{
961 int j;
962
53c07b18 963 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 964 ;
d555c333
AK
965 desc->sptes[i] = desc->sptes[j];
966 desc->sptes[j] = NULL;
cd4a4e53
AK
967 if (j != 0)
968 return;
969 if (!prev_desc && !desc->more)
53c07b18 970 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
971 else
972 if (prev_desc)
973 prev_desc->more = desc->more;
974 else
53c07b18
XG
975 *pte_list = (unsigned long)desc->more | 1;
976 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
977}
978
53c07b18 979static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 980{
53c07b18
XG
981 struct pte_list_desc *desc;
982 struct pte_list_desc *prev_desc;
cd4a4e53
AK
983 int i;
984
53c07b18
XG
985 if (!*pte_list) {
986 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 987 BUG();
53c07b18
XG
988 } else if (!(*pte_list & 1)) {
989 rmap_printk("pte_list_remove: %p 1->0\n", spte);
990 if ((u64 *)*pte_list != spte) {
991 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
992 BUG();
993 }
53c07b18 994 *pte_list = 0;
cd4a4e53 995 } else {
53c07b18
XG
996 rmap_printk("pte_list_remove: %p many->many\n", spte);
997 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
998 prev_desc = NULL;
999 while (desc) {
53c07b18 1000 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 1001 if (desc->sptes[i] == spte) {
53c07b18 1002 pte_list_desc_remove_entry(pte_list,
714b93da 1003 desc, i,
cd4a4e53
AK
1004 prev_desc);
1005 return;
1006 }
1007 prev_desc = desc;
1008 desc = desc->more;
1009 }
53c07b18 1010 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
1011 BUG();
1012 }
1013}
1014
67052b35
XG
1015typedef void (*pte_list_walk_fn) (u64 *spte);
1016static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
1017{
1018 struct pte_list_desc *desc;
1019 int i;
1020
1021 if (!*pte_list)
1022 return;
1023
1024 if (!(*pte_list & 1))
1025 return fn((u64 *)*pte_list);
1026
1027 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
1028 while (desc) {
1029 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
1030 fn(desc->sptes[i]);
1031 desc = desc->more;
1032 }
1033}
1034
9373e2c0 1035static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 1036 struct kvm_memory_slot *slot)
53c07b18 1037{
77d11309 1038 unsigned long idx;
53c07b18 1039
77d11309 1040 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1041 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1042}
1043
9b9b1492
TY
1044/*
1045 * Take gfn and return the reverse mapping to it.
1046 */
1047static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
1048{
1049 struct kvm_memory_slot *slot;
1050
1051 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 1052 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
1053}
1054
f759e2b4
XG
1055static bool rmap_can_add(struct kvm_vcpu *vcpu)
1056{
1057 struct kvm_mmu_memory_cache *cache;
1058
1059 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1060 return mmu_memory_cache_free_objects(cache);
1061}
1062
53c07b18
XG
1063static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1064{
1065 struct kvm_mmu_page *sp;
1066 unsigned long *rmapp;
1067
53c07b18
XG
1068 sp = page_header(__pa(spte));
1069 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1070 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1071 return pte_list_add(vcpu, spte, rmapp);
1072}
1073
53c07b18
XG
1074static void rmap_remove(struct kvm *kvm, u64 *spte)
1075{
1076 struct kvm_mmu_page *sp;
1077 gfn_t gfn;
1078 unsigned long *rmapp;
1079
1080 sp = page_header(__pa(spte));
1081 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1082 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1083 pte_list_remove(spte, rmapp);
1084}
1085
1e3f42f0
TY
1086/*
1087 * Used by the following functions to iterate through the sptes linked by a
1088 * rmap. All fields are private and not assumed to be used outside.
1089 */
1090struct rmap_iterator {
1091 /* private fields */
1092 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1093 int pos; /* index of the sptep */
1094};
1095
1096/*
1097 * Iteration must be started by this function. This should also be used after
1098 * removing/dropping sptes from the rmap link because in such cases the
1099 * information in the itererator may not be valid.
1100 *
1101 * Returns sptep if found, NULL otherwise.
1102 */
1103static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1104{
1105 if (!rmap)
1106 return NULL;
1107
1108 if (!(rmap & 1)) {
1109 iter->desc = NULL;
1110 return (u64 *)rmap;
1111 }
1112
1113 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1114 iter->pos = 0;
1115 return iter->desc->sptes[iter->pos];
1116}
1117
1118/*
1119 * Must be used with a valid iterator: e.g. after rmap_get_first().
1120 *
1121 * Returns sptep if found, NULL otherwise.
1122 */
1123static u64 *rmap_get_next(struct rmap_iterator *iter)
1124{
1125 if (iter->desc) {
1126 if (iter->pos < PTE_LIST_EXT - 1) {
1127 u64 *sptep;
1128
1129 ++iter->pos;
1130 sptep = iter->desc->sptes[iter->pos];
1131 if (sptep)
1132 return sptep;
1133 }
1134
1135 iter->desc = iter->desc->more;
1136
1137 if (iter->desc) {
1138 iter->pos = 0;
1139 /* desc->sptes[0] cannot be NULL */
1140 return iter->desc->sptes[iter->pos];
1141 }
1142 }
1143
1144 return NULL;
1145}
1146
c3707958 1147static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1148{
1df9f2dc 1149 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1150 rmap_remove(kvm, sptep);
be38d276
AK
1151}
1152
8e22f955
XG
1153
1154static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1155{
1156 if (is_large_pte(*sptep)) {
1157 WARN_ON(page_header(__pa(sptep))->role.level ==
1158 PT_PAGE_TABLE_LEVEL);
1159 drop_spte(kvm, sptep);
1160 --kvm->stat.lpages;
1161 return true;
1162 }
1163
1164 return false;
1165}
1166
1167static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1168{
1169 if (__drop_large_spte(vcpu->kvm, sptep))
1170 kvm_flush_remote_tlbs(vcpu->kvm);
1171}
1172
1173/*
49fde340 1174 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1175 * spte write-protection is caused by protecting shadow page table.
49fde340 1176 *
b4619660 1177 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1178 * protection:
1179 * - for dirty logging, the spte can be set to writable at anytime if
1180 * its dirty bitmap is properly set.
1181 * - for spte protection, the spte can be writable only after unsync-ing
1182 * shadow page.
8e22f955 1183 *
c126d94f 1184 * Return true if tlb need be flushed.
8e22f955 1185 */
c126d94f 1186static bool spte_write_protect(struct kvm *kvm, u64 *sptep, bool pt_protect)
d13bc5b5
XG
1187{
1188 u64 spte = *sptep;
1189
49fde340
XG
1190 if (!is_writable_pte(spte) &&
1191 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1192 return false;
1193
1194 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1195
49fde340
XG
1196 if (pt_protect)
1197 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1198 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1199
c126d94f 1200 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1201}
1202
49fde340 1203static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1204 bool pt_protect)
98348e95 1205{
1e3f42f0
TY
1206 u64 *sptep;
1207 struct rmap_iterator iter;
d13bc5b5 1208 bool flush = false;
374cbac0 1209
1e3f42f0
TY
1210 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1211 BUG_ON(!(*sptep & PT_PRESENT_MASK));
a0ed4607 1212
c126d94f 1213 flush |= spte_write_protect(kvm, sptep, pt_protect);
d13bc5b5 1214 sptep = rmap_get_next(&iter);
374cbac0 1215 }
855149aa 1216
d13bc5b5 1217 return flush;
a0ed4607
TY
1218}
1219
5dc99b23
TY
1220/**
1221 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1222 * @kvm: kvm instance
1223 * @slot: slot to protect
1224 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1225 * @mask: indicates which pages we should protect
1226 *
1227 * Used when we do not need to care about huge page mappings: e.g. during dirty
1228 * logging we do not have any such mappings.
1229 */
1230void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1231 struct kvm_memory_slot *slot,
1232 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1233{
1234 unsigned long *rmapp;
a0ed4607 1235
5dc99b23 1236 while (mask) {
65fbe37c
TY
1237 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1238 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1239 __rmap_write_protect(kvm, rmapp, false);
05da4558 1240
5dc99b23
TY
1241 /* clear the first set bit */
1242 mask &= mask - 1;
1243 }
374cbac0
AK
1244}
1245
2f84569f 1246static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1247{
1248 struct kvm_memory_slot *slot;
5dc99b23
TY
1249 unsigned long *rmapp;
1250 int i;
2f84569f 1251 bool write_protected = false;
95d4c16c
TY
1252
1253 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1254
1255 for (i = PT_PAGE_TABLE_LEVEL;
1256 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1257 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1258 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1259 }
1260
1261 return write_protected;
95d4c16c
TY
1262}
1263
8a8365c5 1264static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1265 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1266 unsigned long data)
e930bffe 1267{
1e3f42f0
TY
1268 u64 *sptep;
1269 struct rmap_iterator iter;
e930bffe
AA
1270 int need_tlb_flush = 0;
1271
1e3f42f0
TY
1272 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1273 BUG_ON(!(*sptep & PT_PRESENT_MASK));
8a9522d2
ALC
1274 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx gfn %llx (%d)\n",
1275 sptep, *sptep, gfn, level);
1e3f42f0
TY
1276
1277 drop_spte(kvm, sptep);
e930bffe
AA
1278 need_tlb_flush = 1;
1279 }
1e3f42f0 1280
e930bffe
AA
1281 return need_tlb_flush;
1282}
1283
8a8365c5 1284static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1285 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1286 unsigned long data)
3da0dd43 1287{
1e3f42f0
TY
1288 u64 *sptep;
1289 struct rmap_iterator iter;
3da0dd43 1290 int need_flush = 0;
1e3f42f0 1291 u64 new_spte;
3da0dd43
IE
1292 pte_t *ptep = (pte_t *)data;
1293 pfn_t new_pfn;
1294
1295 WARN_ON(pte_huge(*ptep));
1296 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1297
1298 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1299 BUG_ON(!is_shadow_present_pte(*sptep));
8a9522d2
ALC
1300 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
1301 sptep, *sptep, gfn, level);
1e3f42f0 1302
3da0dd43 1303 need_flush = 1;
1e3f42f0 1304
3da0dd43 1305 if (pte_write(*ptep)) {
1e3f42f0
TY
1306 drop_spte(kvm, sptep);
1307 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1308 } else {
1e3f42f0 1309 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1310 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1311
1312 new_spte &= ~PT_WRITABLE_MASK;
1313 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1314 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1315
1316 mmu_spte_clear_track_bits(sptep);
1317 mmu_spte_set(sptep, new_spte);
1318 sptep = rmap_get_next(&iter);
3da0dd43
IE
1319 }
1320 }
1e3f42f0 1321
3da0dd43
IE
1322 if (need_flush)
1323 kvm_flush_remote_tlbs(kvm);
1324
1325 return 0;
1326}
1327
84504ef3
TY
1328static int kvm_handle_hva_range(struct kvm *kvm,
1329 unsigned long start,
1330 unsigned long end,
1331 unsigned long data,
1332 int (*handler)(struct kvm *kvm,
1333 unsigned long *rmapp,
048212d0 1334 struct kvm_memory_slot *slot,
8a9522d2
ALC
1335 gfn_t gfn,
1336 int level,
84504ef3 1337 unsigned long data))
e930bffe 1338{
be6ba0f0 1339 int j;
f395302e 1340 int ret = 0;
bc6678a3 1341 struct kvm_memslots *slots;
be6ba0f0 1342 struct kvm_memory_slot *memslot;
bc6678a3 1343
90d83dc3 1344 slots = kvm_memslots(kvm);
e930bffe 1345
be6ba0f0 1346 kvm_for_each_memslot(memslot, slots) {
84504ef3 1347 unsigned long hva_start, hva_end;
bcd3ef58 1348 gfn_t gfn_start, gfn_end;
e930bffe 1349
84504ef3
TY
1350 hva_start = max(start, memslot->userspace_addr);
1351 hva_end = min(end, memslot->userspace_addr +
1352 (memslot->npages << PAGE_SHIFT));
1353 if (hva_start >= hva_end)
1354 continue;
1355 /*
1356 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1357 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1358 */
bcd3ef58 1359 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1360 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1361
bcd3ef58
TY
1362 for (j = PT_PAGE_TABLE_LEVEL;
1363 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1364 unsigned long idx, idx_end;
1365 unsigned long *rmapp;
8a9522d2 1366 gfn_t gfn = gfn_start;
d4dbf470 1367
bcd3ef58
TY
1368 /*
1369 * {idx(page_j) | page_j intersects with
1370 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1371 */
1372 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1373 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1374
bcd3ef58 1375 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1376
8a9522d2
ALC
1377 for (; idx <= idx_end;
1378 ++idx, gfn += (1UL << KVM_HPAGE_GFN_SHIFT(j)))
1379 ret |= handler(kvm, rmapp++, memslot,
1380 gfn, j, data);
e930bffe
AA
1381 }
1382 }
1383
f395302e 1384 return ret;
e930bffe
AA
1385}
1386
84504ef3
TY
1387static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1388 unsigned long data,
1389 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1390 struct kvm_memory_slot *slot,
8a9522d2 1391 gfn_t gfn, int level,
84504ef3
TY
1392 unsigned long data))
1393{
1394 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1395}
1396
1397int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1398{
3da0dd43
IE
1399 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1400}
1401
b3ae2096
TY
1402int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1403{
1404 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1405}
1406
3da0dd43
IE
1407void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1408{
8a8365c5 1409 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1410}
1411
8a8365c5 1412static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1413 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1414 unsigned long data)
e930bffe 1415{
1e3f42f0 1416 u64 *sptep;
79f702a6 1417 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1418 int young = 0;
1419
6316e1c8 1420 /*
3f6d8c8a
XH
1421 * In case of absence of EPT Access and Dirty Bits supports,
1422 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1423 * an EPT mapping, and clearing it if it does. On the next access,
1424 * a new EPT mapping will be established.
1425 * This has some overhead, but not as much as the cost of swapping
1426 * out actively used pages or breaking up actively used hugepages.
1427 */
f395302e 1428 if (!shadow_accessed_mask) {
8a9522d2 1429 young = kvm_unmap_rmapp(kvm, rmapp, slot, gfn, level, data);
f395302e
TY
1430 goto out;
1431 }
534e38b4 1432
1e3f42f0
TY
1433 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1434 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1435 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1436
3f6d8c8a 1437 if (*sptep & shadow_accessed_mask) {
e930bffe 1438 young = 1;
3f6d8c8a
XH
1439 clear_bit((ffs(shadow_accessed_mask) - 1),
1440 (unsigned long *)sptep);
e930bffe 1441 }
e930bffe 1442 }
f395302e 1443out:
8a9522d2 1444 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1445 return young;
1446}
1447
8ee53820 1448static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
8a9522d2
ALC
1449 struct kvm_memory_slot *slot, gfn_t gfn,
1450 int level, unsigned long data)
8ee53820 1451{
1e3f42f0
TY
1452 u64 *sptep;
1453 struct rmap_iterator iter;
8ee53820
AA
1454 int young = 0;
1455
1456 /*
1457 * If there's no access bit in the secondary pte set by the
1458 * hardware it's up to gup-fast/gup to set the access bit in
1459 * the primary pte or in the page structure.
1460 */
1461 if (!shadow_accessed_mask)
1462 goto out;
1463
1e3f42f0
TY
1464 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1465 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1466 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1467
3f6d8c8a 1468 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1469 young = 1;
1470 break;
1471 }
8ee53820
AA
1472 }
1473out:
1474 return young;
1475}
1476
53a27b39
MT
1477#define RMAP_RECYCLE_THRESHOLD 1000
1478
852e3c19 1479static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1480{
1481 unsigned long *rmapp;
852e3c19
JR
1482 struct kvm_mmu_page *sp;
1483
1484 sp = page_header(__pa(spte));
53a27b39 1485
852e3c19 1486 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1487
8a9522d2 1488 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, gfn, sp->role.level, 0);
53a27b39
MT
1489 kvm_flush_remote_tlbs(vcpu->kvm);
1490}
1491
e930bffe
AA
1492int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1493{
8a9522d2 1494 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1495}
1496
8ee53820
AA
1497int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1498{
1499 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1500}
1501
d6c69ee9 1502#ifdef MMU_DEBUG
47ad8e68 1503static int is_empty_shadow_page(u64 *spt)
6aa8b732 1504{
139bdb2d
AK
1505 u64 *pos;
1506 u64 *end;
1507
47ad8e68 1508 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1509 if (is_shadow_present_pte(*pos)) {
b8688d51 1510 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1511 pos, *pos);
6aa8b732 1512 return 0;
139bdb2d 1513 }
6aa8b732
AK
1514 return 1;
1515}
d6c69ee9 1516#endif
6aa8b732 1517
45221ab6
DH
1518/*
1519 * This value is the sum of all of the kvm instances's
1520 * kvm->arch.n_used_mmu_pages values. We need a global,
1521 * aggregate version in order to make the slab shrinker
1522 * faster
1523 */
1524static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1525{
1526 kvm->arch.n_used_mmu_pages += nr;
1527 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1528}
1529
834be0d8 1530static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1531{
4db35314 1532 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1533 hlist_del(&sp->hash_link);
bd4c86ea
XG
1534 list_del(&sp->link);
1535 free_page((unsigned long)sp->spt);
834be0d8
GN
1536 if (!sp->role.direct)
1537 free_page((unsigned long)sp->gfns);
e8ad9a70 1538 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1539}
1540
cea0f0e7
AK
1541static unsigned kvm_page_table_hashfn(gfn_t gfn)
1542{
1ae0a13d 1543 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1544}
1545
714b93da 1546static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1547 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1548{
cea0f0e7
AK
1549 if (!parent_pte)
1550 return;
cea0f0e7 1551
67052b35 1552 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1553}
1554
4db35314 1555static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1556 u64 *parent_pte)
1557{
67052b35 1558 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1559}
1560
bcdd9a93
XG
1561static void drop_parent_pte(struct kvm_mmu_page *sp,
1562 u64 *parent_pte)
1563{
1564 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1565 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1566}
1567
67052b35
XG
1568static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1569 u64 *parent_pte, int direct)
ad8cfbe3 1570{
67052b35 1571 struct kvm_mmu_page *sp;
7ddca7e4 1572
80feb89a
TY
1573 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1574 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1575 if (!direct)
80feb89a 1576 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1577 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
5304b8d3
XG
1578
1579 /*
1580 * The active_mmu_pages list is the FIFO list, do not move the
1581 * page until it is zapped. kvm_zap_obsolete_pages depends on
1582 * this feature. See the comments in kvm_zap_obsolete_pages().
1583 */
67052b35 1584 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1585 sp->parent_ptes = 0;
1586 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1587 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1588 return sp;
ad8cfbe3
MT
1589}
1590
67052b35 1591static void mark_unsync(u64 *spte);
1047df1f 1592static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1593{
67052b35 1594 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1595}
1596
67052b35 1597static void mark_unsync(u64 *spte)
0074ff63 1598{
67052b35 1599 struct kvm_mmu_page *sp;
1047df1f 1600 unsigned int index;
0074ff63 1601
67052b35 1602 sp = page_header(__pa(spte));
1047df1f
XG
1603 index = spte - sp->spt;
1604 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1605 return;
1047df1f 1606 if (sp->unsync_children++)
0074ff63 1607 return;
1047df1f 1608 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1609}
1610
e8bc217a 1611static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1612 struct kvm_mmu_page *sp)
e8bc217a
MT
1613{
1614 return 1;
1615}
1616
a7052897
MT
1617static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1618{
1619}
1620
0f53b5b1
XG
1621static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1622 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1623 const void *pte)
0f53b5b1
XG
1624{
1625 WARN_ON(1);
1626}
1627
60c8aec6
MT
1628#define KVM_PAGE_ARRAY_NR 16
1629
1630struct kvm_mmu_pages {
1631 struct mmu_page_and_offset {
1632 struct kvm_mmu_page *sp;
1633 unsigned int idx;
1634 } page[KVM_PAGE_ARRAY_NR];
1635 unsigned int nr;
1636};
1637
cded19f3
HE
1638static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1639 int idx)
4731d4c7 1640{
60c8aec6 1641 int i;
4731d4c7 1642
60c8aec6
MT
1643 if (sp->unsync)
1644 for (i=0; i < pvec->nr; i++)
1645 if (pvec->page[i].sp == sp)
1646 return 0;
1647
1648 pvec->page[pvec->nr].sp = sp;
1649 pvec->page[pvec->nr].idx = idx;
1650 pvec->nr++;
1651 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1652}
1653
1654static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1655 struct kvm_mmu_pages *pvec)
1656{
1657 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1658
37178b8b 1659 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1660 struct kvm_mmu_page *child;
4731d4c7
MT
1661 u64 ent = sp->spt[i];
1662
7a8f1a74
XG
1663 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1664 goto clear_child_bitmap;
1665
1666 child = page_header(ent & PT64_BASE_ADDR_MASK);
1667
1668 if (child->unsync_children) {
1669 if (mmu_pages_add(pvec, child, i))
1670 return -ENOSPC;
1671
1672 ret = __mmu_unsync_walk(child, pvec);
1673 if (!ret)
1674 goto clear_child_bitmap;
1675 else if (ret > 0)
1676 nr_unsync_leaf += ret;
1677 else
1678 return ret;
1679 } else if (child->unsync) {
1680 nr_unsync_leaf++;
1681 if (mmu_pages_add(pvec, child, i))
1682 return -ENOSPC;
1683 } else
1684 goto clear_child_bitmap;
1685
1686 continue;
1687
1688clear_child_bitmap:
1689 __clear_bit(i, sp->unsync_child_bitmap);
1690 sp->unsync_children--;
1691 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1692 }
1693
4731d4c7 1694
60c8aec6
MT
1695 return nr_unsync_leaf;
1696}
1697
1698static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1699 struct kvm_mmu_pages *pvec)
1700{
1701 if (!sp->unsync_children)
1702 return 0;
1703
1704 mmu_pages_add(pvec, sp, 0);
1705 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1706}
1707
4731d4c7
MT
1708static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1709{
1710 WARN_ON(!sp->unsync);
5e1b3ddb 1711 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1712 sp->unsync = 0;
1713 --kvm->stat.mmu_unsync;
1714}
1715
7775834a
XG
1716static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1717 struct list_head *invalid_list);
1718static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1719 struct list_head *invalid_list);
4731d4c7 1720
f34d251d
XG
1721/*
1722 * NOTE: we should pay more attention on the zapped-obsolete page
1723 * (is_obsolete_sp(sp) && sp->role.invalid) when you do hash list walk
1724 * since it has been deleted from active_mmu_pages but still can be found
1725 * at hast list.
1726 *
1727 * for_each_gfn_indirect_valid_sp has skipped that kind of page and
1728 * kvm_mmu_get_page(), the only user of for_each_gfn_sp(), has skipped
1729 * all the obsolete pages.
1730 */
1044b030
TY
1731#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1732 hlist_for_each_entry(_sp, \
1733 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1734 if ((_sp)->gfn != (_gfn)) {} else
1735
1736#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1737 for_each_gfn_sp(_kvm, _sp, _gfn) \
1738 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1739
f918b443 1740/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1741static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1742 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1743{
5b7e0102 1744 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1745 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1746 return 1;
1747 }
1748
f918b443 1749 if (clear_unsync)
1d9dc7e0 1750 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1751
a4a8e6f7 1752 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1753 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1754 return 1;
1755 }
1756
77c3913b 1757 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
4731d4c7
MT
1758 return 0;
1759}
1760
1d9dc7e0
XG
1761static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1762 struct kvm_mmu_page *sp)
1763{
d98ba053 1764 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1765 int ret;
1766
d98ba053 1767 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1768 if (ret)
d98ba053
XG
1769 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1770
1d9dc7e0
XG
1771 return ret;
1772}
1773
e37fa785
XG
1774#ifdef CONFIG_KVM_MMU_AUDIT
1775#include "mmu_audit.c"
1776#else
1777static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1778static void mmu_audit_disable(void) { }
1779#endif
1780
d98ba053
XG
1781static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1782 struct list_head *invalid_list)
1d9dc7e0 1783{
d98ba053 1784 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1785}
1786
9f1a122f
XG
1787/* @gfn should be write-protected at the call site */
1788static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1789{
9f1a122f 1790 struct kvm_mmu_page *s;
d98ba053 1791 LIST_HEAD(invalid_list);
9f1a122f
XG
1792 bool flush = false;
1793
b67bfe0d 1794 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1795 if (!s->unsync)
9f1a122f
XG
1796 continue;
1797
1798 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1799 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1800 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1801 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1802 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1803 continue;
1804 }
9f1a122f
XG
1805 flush = true;
1806 }
1807
d98ba053 1808 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f 1809 if (flush)
77c3913b 1810 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
9f1a122f
XG
1811}
1812
60c8aec6
MT
1813struct mmu_page_path {
1814 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1815 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1816};
1817
60c8aec6
MT
1818#define for_each_sp(pvec, sp, parents, i) \
1819 for (i = mmu_pages_next(&pvec, &parents, -1), \
1820 sp = pvec.page[i].sp; \
1821 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1822 i = mmu_pages_next(&pvec, &parents, i))
1823
cded19f3
HE
1824static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1825 struct mmu_page_path *parents,
1826 int i)
60c8aec6
MT
1827{
1828 int n;
1829
1830 for (n = i+1; n < pvec->nr; n++) {
1831 struct kvm_mmu_page *sp = pvec->page[n].sp;
1832
1833 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1834 parents->idx[0] = pvec->page[n].idx;
1835 return n;
1836 }
1837
1838 parents->parent[sp->role.level-2] = sp;
1839 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1840 }
1841
1842 return n;
1843}
1844
cded19f3 1845static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1846{
60c8aec6
MT
1847 struct kvm_mmu_page *sp;
1848 unsigned int level = 0;
1849
1850 do {
1851 unsigned int idx = parents->idx[level];
4731d4c7 1852
60c8aec6
MT
1853 sp = parents->parent[level];
1854 if (!sp)
1855 return;
1856
1857 --sp->unsync_children;
1858 WARN_ON((int)sp->unsync_children < 0);
1859 __clear_bit(idx, sp->unsync_child_bitmap);
1860 level++;
1861 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1862}
1863
60c8aec6
MT
1864static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1865 struct mmu_page_path *parents,
1866 struct kvm_mmu_pages *pvec)
4731d4c7 1867{
60c8aec6
MT
1868 parents->parent[parent->role.level-1] = NULL;
1869 pvec->nr = 0;
1870}
4731d4c7 1871
60c8aec6
MT
1872static void mmu_sync_children(struct kvm_vcpu *vcpu,
1873 struct kvm_mmu_page *parent)
1874{
1875 int i;
1876 struct kvm_mmu_page *sp;
1877 struct mmu_page_path parents;
1878 struct kvm_mmu_pages pages;
d98ba053 1879 LIST_HEAD(invalid_list);
60c8aec6
MT
1880
1881 kvm_mmu_pages_init(parent, &parents, &pages);
1882 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1883 bool protected = false;
b1a36821
MT
1884
1885 for_each_sp(pages, sp, parents, i)
1886 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1887
1888 if (protected)
1889 kvm_flush_remote_tlbs(vcpu->kvm);
1890
60c8aec6 1891 for_each_sp(pages, sp, parents, i) {
d98ba053 1892 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1893 mmu_pages_clear_parents(&parents);
1894 }
d98ba053 1895 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1896 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1897 kvm_mmu_pages_init(parent, &parents, &pages);
1898 }
4731d4c7
MT
1899}
1900
c3707958
XG
1901static void init_shadow_page_table(struct kvm_mmu_page *sp)
1902{
1903 int i;
1904
1905 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1906 sp->spt[i] = 0ull;
1907}
1908
a30f47cb
XG
1909static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1910{
1911 sp->write_flooding_count = 0;
1912}
1913
1914static void clear_sp_write_flooding_count(u64 *spte)
1915{
1916 struct kvm_mmu_page *sp = page_header(__pa(spte));
1917
1918 __clear_sp_write_flooding_count(sp);
1919}
1920
5304b8d3
XG
1921static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
1922{
1923 return unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
1924}
1925
cea0f0e7
AK
1926static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1927 gfn_t gfn,
1928 gva_t gaddr,
1929 unsigned level,
f6e2c02b 1930 int direct,
41074d07 1931 unsigned access,
f7d9c7b7 1932 u64 *parent_pte)
cea0f0e7
AK
1933{
1934 union kvm_mmu_page_role role;
cea0f0e7 1935 unsigned quadrant;
9f1a122f 1936 struct kvm_mmu_page *sp;
9f1a122f 1937 bool need_sync = false;
cea0f0e7 1938
a770f6f2 1939 role = vcpu->arch.mmu.base_role;
cea0f0e7 1940 role.level = level;
f6e2c02b 1941 role.direct = direct;
84b0c8c6 1942 if (role.direct)
5b7e0102 1943 role.cr4_pae = 0;
41074d07 1944 role.access = access;
c5a78f2b
JR
1945 if (!vcpu->arch.mmu.direct_map
1946 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1947 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1948 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1949 role.quadrant = quadrant;
1950 }
b67bfe0d 1951 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7f52af74
XG
1952 if (is_obsolete_sp(vcpu->kvm, sp))
1953 continue;
1954
7ae680eb
XG
1955 if (!need_sync && sp->unsync)
1956 need_sync = true;
4731d4c7 1957
7ae680eb
XG
1958 if (sp->role.word != role.word)
1959 continue;
4731d4c7 1960
7ae680eb
XG
1961 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1962 break;
e02aa901 1963
7ae680eb
XG
1964 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1965 if (sp->unsync_children) {
a8eeb04a 1966 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1967 kvm_mmu_mark_parents_unsync(sp);
1968 } else if (sp->unsync)
1969 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1970
a30f47cb 1971 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1972 trace_kvm_mmu_get_page(sp, false);
1973 return sp;
1974 }
dfc5aa00 1975 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1976 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1977 if (!sp)
1978 return sp;
4db35314
AK
1979 sp->gfn = gfn;
1980 sp->role = role;
7ae680eb
XG
1981 hlist_add_head(&sp->hash_link,
1982 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1983 if (!direct) {
b1a36821
MT
1984 if (rmap_write_protect(vcpu->kvm, gfn))
1985 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1986 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1987 kvm_sync_pages(vcpu, gfn);
1988
4731d4c7
MT
1989 account_shadowed(vcpu->kvm, gfn);
1990 }
5304b8d3 1991 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
c3707958 1992 init_shadow_page_table(sp);
f691fe1d 1993 trace_kvm_mmu_get_page(sp, true);
4db35314 1994 return sp;
cea0f0e7
AK
1995}
1996
2d11123a
AK
1997static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1998 struct kvm_vcpu *vcpu, u64 addr)
1999{
2000 iterator->addr = addr;
2001 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
2002 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
2003
2004 if (iterator->level == PT64_ROOT_LEVEL &&
2005 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
2006 !vcpu->arch.mmu.direct_map)
2007 --iterator->level;
2008
2d11123a
AK
2009 if (iterator->level == PT32E_ROOT_LEVEL) {
2010 iterator->shadow_addr
2011 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
2012 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2013 --iterator->level;
2014 if (!iterator->shadow_addr)
2015 iterator->level = 0;
2016 }
2017}
2018
2019static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2020{
2021 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2022 return false;
4d88954d 2023
2d11123a
AK
2024 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2025 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2026 return true;
2027}
2028
c2a2ac2b
XG
2029static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2030 u64 spte)
2d11123a 2031{
c2a2ac2b 2032 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2033 iterator->level = 0;
2034 return;
2035 }
2036
c2a2ac2b 2037 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2038 --iterator->level;
2039}
2040
c2a2ac2b
XG
2041static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2042{
2043 return __shadow_walk_next(iterator, *iterator->sptep);
2044}
2045
7a1638ce 2046static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp, bool accessed)
32ef26a3
AK
2047{
2048 u64 spte;
2049
7a1638ce
YZ
2050 BUILD_BUG_ON(VMX_EPT_READABLE_MASK != PT_PRESENT_MASK ||
2051 VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
2052
24db2734 2053 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
7a1638ce
YZ
2054 shadow_user_mask | shadow_x_mask;
2055
2056 if (accessed)
2057 spte |= shadow_accessed_mask;
24db2734 2058
1df9f2dc 2059 mmu_spte_set(sptep, spte);
32ef26a3
AK
2060}
2061
a357bd22
AK
2062static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2063 unsigned direct_access)
2064{
2065 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2066 struct kvm_mmu_page *child;
2067
2068 /*
2069 * For the direct sp, if the guest pte's dirty bit
2070 * changed form clean to dirty, it will corrupt the
2071 * sp's access: allow writable in the read-only sp,
2072 * so we should update the spte at this point to get
2073 * a new sp with the correct access.
2074 */
2075 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2076 if (child->role.access == direct_access)
2077 return;
2078
bcdd9a93 2079 drop_parent_pte(child, sptep);
a357bd22
AK
2080 kvm_flush_remote_tlbs(vcpu->kvm);
2081 }
2082}
2083
505aef8f 2084static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2085 u64 *spte)
2086{
2087 u64 pte;
2088 struct kvm_mmu_page *child;
2089
2090 pte = *spte;
2091 if (is_shadow_present_pte(pte)) {
505aef8f 2092 if (is_last_spte(pte, sp->role.level)) {
c3707958 2093 drop_spte(kvm, spte);
505aef8f
XG
2094 if (is_large_pte(pte))
2095 --kvm->stat.lpages;
2096 } else {
38e3b2b2 2097 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2098 drop_parent_pte(child, spte);
38e3b2b2 2099 }
505aef8f
XG
2100 return true;
2101 }
2102
2103 if (is_mmio_spte(pte))
ce88decf 2104 mmu_spte_clear_no_track(spte);
c3707958 2105
505aef8f 2106 return false;
38e3b2b2
XG
2107}
2108
90cb0529 2109static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2110 struct kvm_mmu_page *sp)
a436036b 2111{
697fe2e2 2112 unsigned i;
697fe2e2 2113
38e3b2b2
XG
2114 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2115 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2116}
2117
4db35314 2118static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2119{
4db35314 2120 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2121}
2122
31aa2b44 2123static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2124{
1e3f42f0
TY
2125 u64 *sptep;
2126 struct rmap_iterator iter;
a436036b 2127
1e3f42f0
TY
2128 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2129 drop_parent_pte(sp, sptep);
31aa2b44
AK
2130}
2131
60c8aec6 2132static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2133 struct kvm_mmu_page *parent,
2134 struct list_head *invalid_list)
4731d4c7 2135{
60c8aec6
MT
2136 int i, zapped = 0;
2137 struct mmu_page_path parents;
2138 struct kvm_mmu_pages pages;
4731d4c7 2139
60c8aec6 2140 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2141 return 0;
60c8aec6
MT
2142
2143 kvm_mmu_pages_init(parent, &parents, &pages);
2144 while (mmu_unsync_walk(parent, &pages)) {
2145 struct kvm_mmu_page *sp;
2146
2147 for_each_sp(pages, sp, parents, i) {
7775834a 2148 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2149 mmu_pages_clear_parents(&parents);
77662e00 2150 zapped++;
60c8aec6 2151 }
60c8aec6
MT
2152 kvm_mmu_pages_init(parent, &parents, &pages);
2153 }
2154
2155 return zapped;
4731d4c7
MT
2156}
2157
7775834a
XG
2158static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2159 struct list_head *invalid_list)
31aa2b44 2160{
4731d4c7 2161 int ret;
f691fe1d 2162
7775834a 2163 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2164 ++kvm->stat.mmu_shadow_zapped;
7775834a 2165 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2166 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2167 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2168
f6e2c02b 2169 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2170 unaccount_shadowed(kvm, sp->gfn);
5304b8d3 2171
4731d4c7
MT
2172 if (sp->unsync)
2173 kvm_unlink_unsync_page(kvm, sp);
4db35314 2174 if (!sp->root_count) {
54a4f023
GJ
2175 /* Count self */
2176 ret++;
7775834a 2177 list_move(&sp->link, invalid_list);
aa6bd187 2178 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2179 } else {
5b5c6a5a 2180 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72
GN
2181
2182 /*
2183 * The obsolete pages can not be used on any vcpus.
2184 * See the comments in kvm_mmu_invalidate_zap_all_pages().
2185 */
2186 if (!sp->role.invalid && !is_obsolete_sp(kvm, sp))
2187 kvm_reload_remote_mmus(kvm);
2e53d63a 2188 }
7775834a
XG
2189
2190 sp->role.invalid = 1;
4731d4c7 2191 return ret;
a436036b
AK
2192}
2193
7775834a
XG
2194static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2195 struct list_head *invalid_list)
2196{
945315b9 2197 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2198
2199 if (list_empty(invalid_list))
2200 return;
2201
c142786c
AK
2202 /*
2203 * wmb: make sure everyone sees our modifications to the page tables
2204 * rmb: make sure we see changes to vcpu->mode
2205 */
2206 smp_mb();
4f022648 2207
c142786c
AK
2208 /*
2209 * Wait for all vcpus to exit guest mode and/or lockless shadow
2210 * page table walks.
2211 */
2212 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2213
945315b9 2214 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2215 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2216 kvm_mmu_free_page(sp);
945315b9 2217 }
7775834a
XG
2218}
2219
5da59607
TY
2220static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2221 struct list_head *invalid_list)
2222{
2223 struct kvm_mmu_page *sp;
2224
2225 if (list_empty(&kvm->arch.active_mmu_pages))
2226 return false;
2227
2228 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2229 struct kvm_mmu_page, link);
2230 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2231
2232 return true;
2233}
2234
82ce2c96
IE
2235/*
2236 * Changing the number of mmu pages allocated to the vm
49d5ca26 2237 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2238 */
49d5ca26 2239void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2240{
d98ba053 2241 LIST_HEAD(invalid_list);
82ce2c96 2242
b34cb590
TY
2243 spin_lock(&kvm->mmu_lock);
2244
49d5ca26 2245 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2246 /* Need to free some mmu pages to achieve the goal. */
2247 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2248 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2249 break;
82ce2c96 2250
aa6bd187 2251 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2252 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2253 }
82ce2c96 2254
49d5ca26 2255 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2256
2257 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2258}
2259
1cb3f3ae 2260int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2261{
4db35314 2262 struct kvm_mmu_page *sp;
d98ba053 2263 LIST_HEAD(invalid_list);
a436036b
AK
2264 int r;
2265
9ad17b10 2266 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2267 r = 0;
1cb3f3ae 2268 spin_lock(&kvm->mmu_lock);
b67bfe0d 2269 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2270 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2271 sp->role.word);
2272 r = 1;
f41d335a 2273 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2274 }
d98ba053 2275 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2276 spin_unlock(&kvm->mmu_lock);
2277
a436036b 2278 return r;
cea0f0e7 2279}
1cb3f3ae 2280EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2281
74be52e3
SY
2282/*
2283 * The function is based on mtrr_type_lookup() in
2284 * arch/x86/kernel/cpu/mtrr/generic.c
2285 */
2286static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2287 u64 start, u64 end)
2288{
2289 int i;
2290 u64 base, mask;
2291 u8 prev_match, curr_match;
2292 int num_var_ranges = KVM_NR_VAR_MTRR;
2293
2294 if (!mtrr_state->enabled)
2295 return 0xFF;
2296
2297 /* Make end inclusive end, instead of exclusive */
2298 end--;
2299
2300 /* Look in fixed ranges. Just return the type as per start */
2301 if (mtrr_state->have_fixed && (start < 0x100000)) {
2302 int idx;
2303
2304 if (start < 0x80000) {
2305 idx = 0;
2306 idx += (start >> 16);
2307 return mtrr_state->fixed_ranges[idx];
2308 } else if (start < 0xC0000) {
2309 idx = 1 * 8;
2310 idx += ((start - 0x80000) >> 14);
2311 return mtrr_state->fixed_ranges[idx];
2312 } else if (start < 0x1000000) {
2313 idx = 3 * 8;
2314 idx += ((start - 0xC0000) >> 12);
2315 return mtrr_state->fixed_ranges[idx];
2316 }
2317 }
2318
2319 /*
2320 * Look in variable ranges
2321 * Look of multiple ranges matching this address and pick type
2322 * as per MTRR precedence
2323 */
2324 if (!(mtrr_state->enabled & 2))
2325 return mtrr_state->def_type;
2326
2327 prev_match = 0xFF;
2328 for (i = 0; i < num_var_ranges; ++i) {
2329 unsigned short start_state, end_state;
2330
2331 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2332 continue;
2333
2334 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2335 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2336 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2337 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2338
2339 start_state = ((start & mask) == (base & mask));
2340 end_state = ((end & mask) == (base & mask));
2341 if (start_state != end_state)
2342 return 0xFE;
2343
2344 if ((start & mask) != (base & mask))
2345 continue;
2346
2347 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2348 if (prev_match == 0xFF) {
2349 prev_match = curr_match;
2350 continue;
2351 }
2352
2353 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2354 curr_match == MTRR_TYPE_UNCACHABLE)
2355 return MTRR_TYPE_UNCACHABLE;
2356
2357 if ((prev_match == MTRR_TYPE_WRBACK &&
2358 curr_match == MTRR_TYPE_WRTHROUGH) ||
2359 (prev_match == MTRR_TYPE_WRTHROUGH &&
2360 curr_match == MTRR_TYPE_WRBACK)) {
2361 prev_match = MTRR_TYPE_WRTHROUGH;
2362 curr_match = MTRR_TYPE_WRTHROUGH;
2363 }
2364
2365 if (prev_match != curr_match)
2366 return MTRR_TYPE_UNCACHABLE;
2367 }
2368
2369 if (prev_match != 0xFF)
2370 return prev_match;
2371
2372 return mtrr_state->def_type;
2373}
2374
4b12f0de 2375u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2376{
2377 u8 mtrr;
2378
2379 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2380 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2381 if (mtrr == 0xfe || mtrr == 0xff)
2382 mtrr = MTRR_TYPE_WRBACK;
2383 return mtrr;
2384}
4b12f0de 2385EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2386
9cf5cf5a
XG
2387static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2388{
2389 trace_kvm_mmu_unsync_page(sp);
2390 ++vcpu->kvm->stat.mmu_unsync;
2391 sp->unsync = 1;
2392
2393 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2394}
2395
2396static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2397{
4731d4c7 2398 struct kvm_mmu_page *s;
9cf5cf5a 2399
b67bfe0d 2400 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2401 if (s->unsync)
4731d4c7 2402 continue;
9cf5cf5a
XG
2403 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2404 __kvm_unsync_page(vcpu, s);
4731d4c7 2405 }
4731d4c7
MT
2406}
2407
2408static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2409 bool can_unsync)
2410{
9cf5cf5a 2411 struct kvm_mmu_page *s;
9cf5cf5a
XG
2412 bool need_unsync = false;
2413
b67bfe0d 2414 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2415 if (!can_unsync)
2416 return 1;
2417
9cf5cf5a 2418 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2419 return 1;
9cf5cf5a 2420
9bb4f6b1 2421 if (!s->unsync)
9cf5cf5a 2422 need_unsync = true;
4731d4c7 2423 }
9cf5cf5a
XG
2424 if (need_unsync)
2425 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2426 return 0;
2427}
2428
d555c333 2429static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2430 unsigned pte_access, int level,
c2d0ee46 2431 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2432 bool can_unsync, bool host_writable)
1c4f1fd6 2433{
6e7d0354 2434 u64 spte;
1e73f9dd 2435 int ret = 0;
64d4d521 2436
f2fd125d 2437 if (set_mmio_spte(vcpu->kvm, sptep, gfn, pfn, pte_access))
ce88decf
XG
2438 return 0;
2439
982c2565 2440 spte = PT_PRESENT_MASK;
947da538 2441 if (!speculative)
3201b5d9 2442 spte |= shadow_accessed_mask;
640d9b0d 2443
7b52345e
SY
2444 if (pte_access & ACC_EXEC_MASK)
2445 spte |= shadow_x_mask;
2446 else
2447 spte |= shadow_nx_mask;
49fde340 2448
1c4f1fd6 2449 if (pte_access & ACC_USER_MASK)
7b52345e 2450 spte |= shadow_user_mask;
49fde340 2451
852e3c19 2452 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2453 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2454 if (tdp_enabled)
4b12f0de
SY
2455 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2456 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2457
9bdbba13 2458 if (host_writable)
1403283a 2459 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2460 else
2461 pte_access &= ~ACC_WRITE_MASK;
1403283a 2462
35149e21 2463 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2464
c2288505 2465 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2466
c2193463 2467 /*
7751babd
XG
2468 * Other vcpu creates new sp in the window between
2469 * mapping_level() and acquiring mmu-lock. We can
2470 * allow guest to retry the access, the mapping can
2471 * be fixed if guest refault.
c2193463 2472 */
852e3c19 2473 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2474 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2475 goto done;
38187c83 2476
49fde340 2477 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2478
ecc5589f
MT
2479 /*
2480 * Optimization: for pte sync, if spte was writable the hash
2481 * lookup is unnecessary (and expensive). Write protection
2482 * is responsibility of mmu_get_page / kvm_sync_page.
2483 * Same reasoning can be applied to dirty page accounting.
2484 */
8dae4445 2485 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2486 goto set_pte;
2487
4731d4c7 2488 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2489 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2490 __func__, gfn);
1e73f9dd 2491 ret = 1;
1c4f1fd6 2492 pte_access &= ~ACC_WRITE_MASK;
49fde340 2493 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2494 }
2495 }
2496
1c4f1fd6
AK
2497 if (pte_access & ACC_WRITE_MASK)
2498 mark_page_dirty(vcpu->kvm, gfn);
2499
38187c83 2500set_pte:
6e7d0354 2501 if (mmu_spte_update(sptep, spte))
b330aa0c 2502 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2503done:
1e73f9dd
MT
2504 return ret;
2505}
2506
d555c333 2507static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2508 unsigned pte_access, int write_fault, int *emulate,
2509 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2510 bool host_writable)
1e73f9dd
MT
2511{
2512 int was_rmapped = 0;
53a27b39 2513 int rmap_count;
1e73f9dd 2514
f7616203
XG
2515 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2516 *sptep, write_fault, gfn);
1e73f9dd 2517
d555c333 2518 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2519 /*
2520 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2521 * the parent of the now unreachable PTE.
2522 */
852e3c19
JR
2523 if (level > PT_PAGE_TABLE_LEVEL &&
2524 !is_large_pte(*sptep)) {
1e73f9dd 2525 struct kvm_mmu_page *child;
d555c333 2526 u64 pte = *sptep;
1e73f9dd
MT
2527
2528 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2529 drop_parent_pte(child, sptep);
3be2264b 2530 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2531 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2532 pgprintk("hfn old %llx new %llx\n",
d555c333 2533 spte_to_pfn(*sptep), pfn);
c3707958 2534 drop_spte(vcpu->kvm, sptep);
91546356 2535 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2536 } else
2537 was_rmapped = 1;
1e73f9dd 2538 }
852e3c19 2539
c2288505
XG
2540 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2541 true, host_writable)) {
1e73f9dd 2542 if (write_fault)
b90a0e6c 2543 *emulate = 1;
77c3913b 2544 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 2545 }
1e73f9dd 2546
ce88decf
XG
2547 if (unlikely(is_mmio_spte(*sptep) && emulate))
2548 *emulate = 1;
2549
d555c333 2550 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2551 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2552 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2553 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2554 *sptep, sptep);
d555c333 2555 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2556 ++vcpu->kvm->stat.lpages;
2557
ffb61bb3 2558 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2559 if (!was_rmapped) {
2560 rmap_count = rmap_add(vcpu, sptep, gfn);
2561 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2562 rmap_recycle(vcpu, sptep, gfn);
2563 }
1c4f1fd6 2564 }
cb9aaa30 2565
f3ac1a4b 2566 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2567}
2568
957ed9ef
XG
2569static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2570 bool no_dirty_log)
2571{
2572 struct kvm_memory_slot *slot;
957ed9ef 2573
5d163b1c 2574 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2575 if (!slot)
6c8ee57b 2576 return KVM_PFN_ERR_FAULT;
957ed9ef 2577
037d92dc 2578 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2579}
2580
2581static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2582 struct kvm_mmu_page *sp,
2583 u64 *start, u64 *end)
2584{
2585 struct page *pages[PTE_PREFETCH_NUM];
2586 unsigned access = sp->role.access;
2587 int i, ret;
2588 gfn_t gfn;
2589
2590 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2591 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2592 return -1;
2593
2594 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2595 if (ret <= 0)
2596 return -1;
2597
2598 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2599 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2600 sp->role.level, gfn, page_to_pfn(pages[i]),
2601 true, true);
957ed9ef
XG
2602
2603 return 0;
2604}
2605
2606static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2607 struct kvm_mmu_page *sp, u64 *sptep)
2608{
2609 u64 *spte, *start = NULL;
2610 int i;
2611
2612 WARN_ON(!sp->role.direct);
2613
2614 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2615 spte = sp->spt + i;
2616
2617 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2618 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2619 if (!start)
2620 continue;
2621 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2622 break;
2623 start = NULL;
2624 } else if (!start)
2625 start = spte;
2626 }
2627}
2628
2629static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2630{
2631 struct kvm_mmu_page *sp;
2632
2633 /*
2634 * Since it's no accessed bit on EPT, it's no way to
2635 * distinguish between actually accessed translations
2636 * and prefetched, so disable pte prefetch if EPT is
2637 * enabled.
2638 */
2639 if (!shadow_accessed_mask)
2640 return;
2641
2642 sp = page_header(__pa(sptep));
2643 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2644 return;
2645
2646 __direct_pte_prefetch(vcpu, sp, sptep);
2647}
2648
9f652d21 2649static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2650 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2651 bool prefault)
140754bc 2652{
9f652d21 2653 struct kvm_shadow_walk_iterator iterator;
140754bc 2654 struct kvm_mmu_page *sp;
b90a0e6c 2655 int emulate = 0;
140754bc 2656 gfn_t pseudo_gfn;
6aa8b732 2657
989c6b34
MT
2658 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2659 return 0;
2660
9f652d21 2661 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2662 if (iterator.level == level) {
f7616203 2663 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2664 write, &emulate, level, gfn, pfn,
2665 prefault, map_writable);
957ed9ef 2666 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2667 ++vcpu->stat.pf_fixed;
2668 break;
6aa8b732
AK
2669 }
2670
404381c5 2671 drop_large_spte(vcpu, iterator.sptep);
c3707958 2672 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2673 u64 base_addr = iterator.addr;
2674
2675 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2676 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2677 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2678 iterator.level - 1,
2679 1, ACC_ALL, iterator.sptep);
140754bc 2680
7a1638ce 2681 link_shadow_page(iterator.sptep, sp, true);
9f652d21
AK
2682 }
2683 }
b90a0e6c 2684 return emulate;
6aa8b732
AK
2685}
2686
77db5cbd 2687static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2688{
77db5cbd
HY
2689 siginfo_t info;
2690
2691 info.si_signo = SIGBUS;
2692 info.si_errno = 0;
2693 info.si_code = BUS_MCEERR_AR;
2694 info.si_addr = (void __user *)address;
2695 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2696
77db5cbd 2697 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2698}
2699
d7c55201 2700static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2701{
4d8b81ab
XG
2702 /*
2703 * Do not cache the mmio info caused by writing the readonly gfn
2704 * into the spte otherwise read access on readonly gfn also can
2705 * caused mmio page fault and treat it as mmio access.
2706 * Return 1 to tell kvm to emulate it.
2707 */
2708 if (pfn == KVM_PFN_ERR_RO_FAULT)
2709 return 1;
2710
e6c1502b 2711 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2712 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2713 return 0;
d7c55201 2714 }
edba23e5 2715
d7c55201 2716 return -EFAULT;
bf998156
HY
2717}
2718
936a5fe6
AA
2719static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2720 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2721{
2722 pfn_t pfn = *pfnp;
2723 gfn_t gfn = *gfnp;
2724 int level = *levelp;
2725
2726 /*
2727 * Check if it's a transparent hugepage. If this would be an
2728 * hugetlbfs page, level wouldn't be set to
2729 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2730 * here.
2731 */
81c52c56 2732 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2733 level == PT_PAGE_TABLE_LEVEL &&
2734 PageTransCompound(pfn_to_page(pfn)) &&
2735 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2736 unsigned long mask;
2737 /*
2738 * mmu_notifier_retry was successful and we hold the
2739 * mmu_lock here, so the pmd can't become splitting
2740 * from under us, and in turn
2741 * __split_huge_page_refcount() can't run from under
2742 * us and we can safely transfer the refcount from
2743 * PG_tail to PG_head as we switch the pfn to tail to
2744 * head.
2745 */
2746 *levelp = level = PT_DIRECTORY_LEVEL;
2747 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2748 VM_BUG_ON((gfn & mask) != (pfn & mask));
2749 if (pfn & mask) {
2750 gfn &= ~mask;
2751 *gfnp = gfn;
2752 kvm_release_pfn_clean(pfn);
2753 pfn &= ~mask;
c3586667 2754 kvm_get_pfn(pfn);
936a5fe6
AA
2755 *pfnp = pfn;
2756 }
2757 }
2758}
2759
d7c55201
XG
2760static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2761 pfn_t pfn, unsigned access, int *ret_val)
2762{
2763 bool ret = true;
2764
2765 /* The pfn is invalid, report the error! */
81c52c56 2766 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2767 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2768 goto exit;
2769 }
2770
ce88decf 2771 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2772 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2773
2774 ret = false;
2775exit:
2776 return ret;
2777}
2778
e5552fd2 2779static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 2780{
1c118b82
XG
2781 /*
2782 * Do not fix the mmio spte with invalid generation number which
2783 * need to be updated by slow page fault path.
2784 */
2785 if (unlikely(error_code & PFERR_RSVD_MASK))
2786 return false;
2787
c7ba5b48
XG
2788 /*
2789 * #PF can be fast only if the shadow page table is present and it
2790 * is caused by write-protect, that means we just need change the
2791 * W bit of the spte which can be done out of mmu-lock.
2792 */
2793 if (!(error_code & PFERR_PRESENT_MASK) ||
2794 !(error_code & PFERR_WRITE_MASK))
2795 return false;
2796
2797 return true;
2798}
2799
2800static bool
92a476cb
XG
2801fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2802 u64 *sptep, u64 spte)
c7ba5b48 2803{
c7ba5b48
XG
2804 gfn_t gfn;
2805
2806 WARN_ON(!sp->role.direct);
2807
2808 /*
2809 * The gfn of direct spte is stable since it is calculated
2810 * by sp->gfn.
2811 */
2812 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2813
2814 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2815 mark_page_dirty(vcpu->kvm, gfn);
2816
2817 return true;
2818}
2819
2820/*
2821 * Return value:
2822 * - true: let the vcpu to access on the same address again.
2823 * - false: let the real page fault path to fix it.
2824 */
2825static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2826 u32 error_code)
2827{
2828 struct kvm_shadow_walk_iterator iterator;
92a476cb 2829 struct kvm_mmu_page *sp;
c7ba5b48
XG
2830 bool ret = false;
2831 u64 spte = 0ull;
2832
37f6a4e2
MT
2833 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2834 return false;
2835
e5552fd2 2836 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
2837 return false;
2838
2839 walk_shadow_page_lockless_begin(vcpu);
2840 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2841 if (!is_shadow_present_pte(spte) || iterator.level < level)
2842 break;
2843
2844 /*
2845 * If the mapping has been changed, let the vcpu fault on the
2846 * same address again.
2847 */
2848 if (!is_rmap_spte(spte)) {
2849 ret = true;
2850 goto exit;
2851 }
2852
92a476cb
XG
2853 sp = page_header(__pa(iterator.sptep));
2854 if (!is_last_spte(spte, sp->role.level))
c7ba5b48
XG
2855 goto exit;
2856
2857 /*
2858 * Check if it is a spurious fault caused by TLB lazily flushed.
2859 *
2860 * Need not check the access of upper level table entries since
2861 * they are always ACC_ALL.
2862 */
2863 if (is_writable_pte(spte)) {
2864 ret = true;
2865 goto exit;
2866 }
2867
2868 /*
2869 * Currently, to simplify the code, only the spte write-protected
2870 * by dirty-log can be fast fixed.
2871 */
2872 if (!spte_is_locklessly_modifiable(spte))
2873 goto exit;
2874
c126d94f
XG
2875 /*
2876 * Do not fix write-permission on the large spte since we only dirty
2877 * the first page into the dirty-bitmap in fast_pf_fix_direct_spte()
2878 * that means other pages are missed if its slot is dirty-logged.
2879 *
2880 * Instead, we let the slow page fault path create a normal spte to
2881 * fix the access.
2882 *
2883 * See the comments in kvm_arch_commit_memory_region().
2884 */
2885 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2886 goto exit;
2887
c7ba5b48
XG
2888 /*
2889 * Currently, fast page fault only works for direct mapping since
2890 * the gfn is not stable for indirect shadow page.
2891 * See Documentation/virtual/kvm/locking.txt to get more detail.
2892 */
92a476cb 2893 ret = fast_pf_fix_direct_spte(vcpu, sp, iterator.sptep, spte);
c7ba5b48 2894exit:
a72faf25
XG
2895 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2896 spte, ret);
c7ba5b48
XG
2897 walk_shadow_page_lockless_end(vcpu);
2898
2899 return ret;
2900}
2901
78b2c54a 2902static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe 2903 gva_t gva, pfn_t *pfn, bool write, bool *writable);
450e0b41 2904static void make_mmu_pages_available(struct kvm_vcpu *vcpu);
060c2abe 2905
c7ba5b48
XG
2906static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2907 gfn_t gfn, bool prefault)
10589a46
MT
2908{
2909 int r;
852e3c19 2910 int level;
936a5fe6 2911 int force_pt_level;
35149e21 2912 pfn_t pfn;
e930bffe 2913 unsigned long mmu_seq;
c7ba5b48 2914 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2915
936a5fe6
AA
2916 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2917 if (likely(!force_pt_level)) {
2918 level = mapping_level(vcpu, gfn);
2919 /*
2920 * This path builds a PAE pagetable - so we can map
2921 * 2mb pages at maximum. Therefore check if the level
2922 * is larger than that.
2923 */
2924 if (level > PT_DIRECTORY_LEVEL)
2925 level = PT_DIRECTORY_LEVEL;
852e3c19 2926
936a5fe6
AA
2927 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2928 } else
2929 level = PT_PAGE_TABLE_LEVEL;
05da4558 2930
c7ba5b48
XG
2931 if (fast_page_fault(vcpu, v, level, error_code))
2932 return 0;
2933
e930bffe 2934 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2935 smp_rmb();
060c2abe 2936
78b2c54a 2937 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2938 return 0;
aaee2c94 2939
d7c55201
XG
2940 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2941 return r;
d196e343 2942
aaee2c94 2943 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2944 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2945 goto out_unlock;
450e0b41 2946 make_mmu_pages_available(vcpu);
936a5fe6
AA
2947 if (likely(!force_pt_level))
2948 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2949 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2950 prefault);
aaee2c94
MT
2951 spin_unlock(&vcpu->kvm->mmu_lock);
2952
aaee2c94 2953
10589a46 2954 return r;
e930bffe
AA
2955
2956out_unlock:
2957 spin_unlock(&vcpu->kvm->mmu_lock);
2958 kvm_release_pfn_clean(pfn);
2959 return 0;
10589a46
MT
2960}
2961
2962
17ac10ad
AK
2963static void mmu_free_roots(struct kvm_vcpu *vcpu)
2964{
2965 int i;
4db35314 2966 struct kvm_mmu_page *sp;
d98ba053 2967 LIST_HEAD(invalid_list);
17ac10ad 2968
ad312c7c 2969 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2970 return;
35af577a 2971
81407ca5
JR
2972 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2973 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2974 vcpu->arch.mmu.direct_map)) {
ad312c7c 2975 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2976
35af577a 2977 spin_lock(&vcpu->kvm->mmu_lock);
4db35314
AK
2978 sp = page_header(root);
2979 --sp->root_count;
d98ba053
XG
2980 if (!sp->root_count && sp->role.invalid) {
2981 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2982 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2983 }
aaee2c94 2984 spin_unlock(&vcpu->kvm->mmu_lock);
35af577a 2985 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2986 return;
2987 }
35af577a
GN
2988
2989 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 2990 for (i = 0; i < 4; ++i) {
ad312c7c 2991 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2992
417726a3 2993 if (root) {
417726a3 2994 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2995 sp = page_header(root);
2996 --sp->root_count;
2e53d63a 2997 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2998 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2999 &invalid_list);
417726a3 3000 }
ad312c7c 3001 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3002 }
d98ba053 3003 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3004 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3005 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
3006}
3007
8986ecc0
MT
3008static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3009{
3010 int ret = 0;
3011
3012 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3013 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3014 ret = 1;
3015 }
3016
3017 return ret;
3018}
3019
651dd37a
JR
3020static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3021{
3022 struct kvm_mmu_page *sp;
7ebaf15e 3023 unsigned i;
651dd37a
JR
3024
3025 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3026 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3027 make_mmu_pages_available(vcpu);
651dd37a
JR
3028 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
3029 1, ACC_ALL, NULL);
3030 ++sp->root_count;
3031 spin_unlock(&vcpu->kvm->mmu_lock);
3032 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
3033 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
3034 for (i = 0; i < 4; ++i) {
3035 hpa_t root = vcpu->arch.mmu.pae_root[i];
3036
3037 ASSERT(!VALID_PAGE(root));
3038 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3039 make_mmu_pages_available(vcpu);
649497d1
AK
3040 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
3041 i << 30,
651dd37a
JR
3042 PT32_ROOT_LEVEL, 1, ACC_ALL,
3043 NULL);
3044 root = __pa(sp->spt);
3045 ++sp->root_count;
3046 spin_unlock(&vcpu->kvm->mmu_lock);
3047 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3048 }
6292757f 3049 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
3050 } else
3051 BUG();
3052
3053 return 0;
3054}
3055
3056static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3057{
4db35314 3058 struct kvm_mmu_page *sp;
81407ca5
JR
3059 u64 pdptr, pm_mask;
3060 gfn_t root_gfn;
3061 int i;
3bb65a22 3062
5777ed34 3063 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 3064
651dd37a
JR
3065 if (mmu_check_root(vcpu, root_gfn))
3066 return 1;
3067
3068 /*
3069 * Do we shadow a long mode page table? If so we need to
3070 * write-protect the guests page table root.
3071 */
3072 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 3073 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
3074
3075 ASSERT(!VALID_PAGE(root));
651dd37a 3076
8facbbff 3077 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3078 make_mmu_pages_available(vcpu);
651dd37a
JR
3079 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3080 0, ACC_ALL, NULL);
4db35314
AK
3081 root = __pa(sp->spt);
3082 ++sp->root_count;
8facbbff 3083 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3084 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3085 return 0;
17ac10ad 3086 }
f87f9288 3087
651dd37a
JR
3088 /*
3089 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3090 * or a PAE 3-level page table. In either case we need to be aware that
3091 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3092 */
81407ca5
JR
3093 pm_mask = PT_PRESENT_MASK;
3094 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3095 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3096
17ac10ad 3097 for (i = 0; i < 4; ++i) {
ad312c7c 3098 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3099
3100 ASSERT(!VALID_PAGE(root));
ad312c7c 3101 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3102 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3103 if (!is_present_gpte(pdptr)) {
ad312c7c 3104 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3105 continue;
3106 }
6de4f3ad 3107 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3108 if (mmu_check_root(vcpu, root_gfn))
3109 return 1;
5a7388c2 3110 }
8facbbff 3111 spin_lock(&vcpu->kvm->mmu_lock);
450e0b41 3112 make_mmu_pages_available(vcpu);
4db35314 3113 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3114 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3115 ACC_ALL, NULL);
4db35314
AK
3116 root = __pa(sp->spt);
3117 ++sp->root_count;
8facbbff
AK
3118 spin_unlock(&vcpu->kvm->mmu_lock);
3119
81407ca5 3120 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3121 }
6292757f 3122 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3123
3124 /*
3125 * If we shadow a 32 bit page table with a long mode page
3126 * table we enter this path.
3127 */
3128 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3129 if (vcpu->arch.mmu.lm_root == NULL) {
3130 /*
3131 * The additional page necessary for this is only
3132 * allocated on demand.
3133 */
3134
3135 u64 *lm_root;
3136
3137 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3138 if (lm_root == NULL)
3139 return 1;
3140
3141 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3142
3143 vcpu->arch.mmu.lm_root = lm_root;
3144 }
3145
3146 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3147 }
3148
8986ecc0 3149 return 0;
17ac10ad
AK
3150}
3151
651dd37a
JR
3152static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3153{
3154 if (vcpu->arch.mmu.direct_map)
3155 return mmu_alloc_direct_roots(vcpu);
3156 else
3157 return mmu_alloc_shadow_roots(vcpu);
3158}
3159
0ba73cda
MT
3160static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3161{
3162 int i;
3163 struct kvm_mmu_page *sp;
3164
81407ca5
JR
3165 if (vcpu->arch.mmu.direct_map)
3166 return;
3167
0ba73cda
MT
3168 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3169 return;
6903074c 3170
56f17dd3 3171 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
0375f7fa 3172 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3173 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3174 hpa_t root = vcpu->arch.mmu.root_hpa;
3175 sp = page_header(root);
3176 mmu_sync_children(vcpu, sp);
0375f7fa 3177 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3178 return;
3179 }
3180 for (i = 0; i < 4; ++i) {
3181 hpa_t root = vcpu->arch.mmu.pae_root[i];
3182
8986ecc0 3183 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3184 root &= PT64_BASE_ADDR_MASK;
3185 sp = page_header(root);
3186 mmu_sync_children(vcpu, sp);
3187 }
3188 }
0375f7fa 3189 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3190}
3191
3192void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3193{
3194 spin_lock(&vcpu->kvm->mmu_lock);
3195 mmu_sync_roots(vcpu);
6cffe8ca 3196 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3197}
bfd0a56b 3198EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3199
1871c602 3200static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3201 u32 access, struct x86_exception *exception)
6aa8b732 3202{
ab9ae313
AK
3203 if (exception)
3204 exception->error_code = 0;
6aa8b732
AK
3205 return vaddr;
3206}
3207
6539e738 3208static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3209 u32 access,
3210 struct x86_exception *exception)
6539e738 3211{
ab9ae313
AK
3212 if (exception)
3213 exception->error_code = 0;
54987b7a 3214 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3215}
3216
ce88decf
XG
3217static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3218{
3219 if (direct)
3220 return vcpu_match_mmio_gpa(vcpu, addr);
3221
3222 return vcpu_match_mmio_gva(vcpu, addr);
3223}
3224
3225
3226/*
3227 * On direct hosts, the last spte is only allows two states
3228 * for mmio page fault:
3229 * - It is the mmio spte
3230 * - It is zapped or it is being zapped.
3231 *
3232 * This function completely checks the spte when the last spte
3233 * is not the mmio spte.
3234 */
3235static bool check_direct_spte_mmio_pf(u64 spte)
3236{
3237 return __check_direct_spte_mmio_pf(spte);
3238}
3239
3240static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3241{
3242 struct kvm_shadow_walk_iterator iterator;
3243 u64 spte = 0ull;
3244
37f6a4e2
MT
3245 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3246 return spte;
3247
ce88decf
XG
3248 walk_shadow_page_lockless_begin(vcpu);
3249 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3250 if (!is_shadow_present_pte(spte))
3251 break;
3252 walk_shadow_page_lockless_end(vcpu);
3253
3254 return spte;
3255}
3256
ce88decf
XG
3257int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3258{
3259 u64 spte;
3260
3261 if (quickly_check_mmio_pf(vcpu, addr, direct))
b37fbea6 3262 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3263
3264 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3265
3266 if (is_mmio_spte(spte)) {
3267 gfn_t gfn = get_mmio_spte_gfn(spte);
3268 unsigned access = get_mmio_spte_access(spte);
3269
f8f55942
XG
3270 if (!check_mmio_spte(vcpu->kvm, spte))
3271 return RET_MMIO_PF_INVALID;
3272
ce88decf
XG
3273 if (direct)
3274 addr = 0;
4f022648
XG
3275
3276 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 3277 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
b37fbea6 3278 return RET_MMIO_PF_EMULATE;
ce88decf
XG
3279 }
3280
3281 /*
3282 * It's ok if the gva is remapped by other cpus on shadow guest,
3283 * it's a BUG if the gfn is not a mmio page.
3284 */
3285 if (direct && !check_direct_spte_mmio_pf(spte))
b37fbea6 3286 return RET_MMIO_PF_BUG;
ce88decf
XG
3287
3288 /*
3289 * If the page table is zapped by other cpus, let CPU fault again on
3290 * the address.
3291 */
b37fbea6 3292 return RET_MMIO_PF_RETRY;
ce88decf
XG
3293}
3294EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3295
3296static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3297 u32 error_code, bool direct)
3298{
3299 int ret;
3300
3301 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
b37fbea6 3302 WARN_ON(ret == RET_MMIO_PF_BUG);
ce88decf
XG
3303 return ret;
3304}
3305
6aa8b732 3306static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3307 u32 error_code, bool prefault)
6aa8b732 3308{
e833240f 3309 gfn_t gfn;
e2dec939 3310 int r;
6aa8b732 3311
b8688d51 3312 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf 3313
f8f55942
XG
3314 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3315 r = handle_mmio_page_fault(vcpu, gva, error_code, true);
3316
3317 if (likely(r != RET_MMIO_PF_INVALID))
3318 return r;
3319 }
ce88decf 3320
e2dec939
AK
3321 r = mmu_topup_memory_caches(vcpu);
3322 if (r)
3323 return r;
714b93da 3324
6aa8b732 3325 ASSERT(vcpu);
ad312c7c 3326 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3327
e833240f 3328 gfn = gva >> PAGE_SHIFT;
6aa8b732 3329
e833240f 3330 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3331 error_code, gfn, prefault);
6aa8b732
AK
3332}
3333
7e1fbeac 3334static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3335{
3336 struct kvm_arch_async_pf arch;
fb67e14f 3337
7c90705b 3338 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3339 arch.gfn = gfn;
c4806acd 3340 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3341 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92 3342
e0ead41a 3343 return kvm_setup_async_pf(vcpu, gva, gfn_to_hva(vcpu->kvm, gfn), &arch);
af585b92
GN
3344}
3345
3346static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3347{
3348 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3349 kvm_event_needs_reinjection(vcpu)))
3350 return false;
3351
3352 return kvm_x86_ops->interrupt_allowed(vcpu);
3353}
3354
78b2c54a 3355static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3356 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3357{
3358 bool async;
3359
612819c3 3360 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3361
3362 if (!async)
3363 return false; /* *pfn has correct page already */
3364
78b2c54a 3365 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3366 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3367 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3368 trace_kvm_async_pf_doublefault(gva, gfn);
3369 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3370 return true;
3371 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3372 return true;
3373 }
3374
612819c3 3375 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3376
3377 return false;
3378}
3379
56028d08 3380static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3381 bool prefault)
fb72d167 3382{
35149e21 3383 pfn_t pfn;
fb72d167 3384 int r;
852e3c19 3385 int level;
936a5fe6 3386 int force_pt_level;
05da4558 3387 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3388 unsigned long mmu_seq;
612819c3
MT
3389 int write = error_code & PFERR_WRITE_MASK;
3390 bool map_writable;
fb72d167
JR
3391
3392 ASSERT(vcpu);
3393 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3394
f8f55942
XG
3395 if (unlikely(error_code & PFERR_RSVD_MASK)) {
3396 r = handle_mmio_page_fault(vcpu, gpa, error_code, true);
3397
3398 if (likely(r != RET_MMIO_PF_INVALID))
3399 return r;
3400 }
ce88decf 3401
fb72d167
JR
3402 r = mmu_topup_memory_caches(vcpu);
3403 if (r)
3404 return r;
3405
936a5fe6
AA
3406 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3407 if (likely(!force_pt_level)) {
3408 level = mapping_level(vcpu, gfn);
3409 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3410 } else
3411 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3412
c7ba5b48
XG
3413 if (fast_page_fault(vcpu, gpa, level, error_code))
3414 return 0;
3415
e930bffe 3416 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3417 smp_rmb();
af585b92 3418
78b2c54a 3419 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3420 return 0;
3421
d7c55201
XG
3422 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3423 return r;
3424
fb72d167 3425 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3426 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3427 goto out_unlock;
450e0b41 3428 make_mmu_pages_available(vcpu);
936a5fe6
AA
3429 if (likely(!force_pt_level))
3430 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3431 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3432 level, gfn, pfn, prefault);
fb72d167 3433 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3434
3435 return r;
e930bffe
AA
3436
3437out_unlock:
3438 spin_unlock(&vcpu->kvm->mmu_lock);
3439 kvm_release_pfn_clean(pfn);
3440 return 0;
fb72d167
JR
3441}
3442
8a3c1a33
PB
3443static void nonpaging_init_context(struct kvm_vcpu *vcpu,
3444 struct kvm_mmu *context)
6aa8b732 3445{
6aa8b732 3446 context->page_fault = nonpaging_page_fault;
6aa8b732 3447 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 3448 context->sync_page = nonpaging_sync_page;
a7052897 3449 context->invlpg = nonpaging_invlpg;
0f53b5b1 3450 context->update_pte = nonpaging_update_pte;
cea0f0e7 3451 context->root_level = 0;
6aa8b732 3452 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3453 context->root_hpa = INVALID_PAGE;
c5a78f2b 3454 context->direct_map = true;
2d48a985 3455 context->nx = false;
6aa8b732
AK
3456}
3457
d8d173da 3458void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu)
6aa8b732 3459{
cea0f0e7 3460 mmu_free_roots(vcpu);
6aa8b732
AK
3461}
3462
5777ed34
JR
3463static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3464{
9f8fe504 3465 return kvm_read_cr3(vcpu);
5777ed34
JR
3466}
3467
6389ee94
AK
3468static void inject_page_fault(struct kvm_vcpu *vcpu,
3469 struct x86_exception *fault)
6aa8b732 3470{
6389ee94 3471 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3472}
3473
f2fd125d
XG
3474static bool sync_mmio_spte(struct kvm *kvm, u64 *sptep, gfn_t gfn,
3475 unsigned access, int *nr_present)
ce88decf
XG
3476{
3477 if (unlikely(is_mmio_spte(*sptep))) {
3478 if (gfn != get_mmio_spte_gfn(*sptep)) {
3479 mmu_spte_clear_no_track(sptep);
3480 return true;
3481 }
3482
3483 (*nr_present)++;
f2fd125d 3484 mark_mmio_spte(kvm, sptep, gfn, access);
ce88decf
XG
3485 return true;
3486 }
3487
3488 return false;
3489}
3490
6fd01b71
AK
3491static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3492{
3493 unsigned index;
3494
3495 index = level - 1;
3496 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3497 return mmu->last_pte_bitmap & (1 << index);
3498}
3499
37406aaa
NHE
3500#define PTTYPE_EPT 18 /* arbitrary */
3501#define PTTYPE PTTYPE_EPT
3502#include "paging_tmpl.h"
3503#undef PTTYPE
3504
6aa8b732
AK
3505#define PTTYPE 64
3506#include "paging_tmpl.h"
3507#undef PTTYPE
3508
3509#define PTTYPE 32
3510#include "paging_tmpl.h"
3511#undef PTTYPE
3512
52fde8df 3513static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3514 struct kvm_mmu *context)
82725b20 3515{
82725b20
DE
3516 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3517 u64 exb_bit_rsvd = 0;
5f7dde7b 3518 u64 gbpages_bit_rsvd = 0;
a0c0feb5 3519 u64 nonleaf_bit8_rsvd = 0;
82725b20 3520
25d92081
YZ
3521 context->bad_mt_xwr = 0;
3522
2d48a985 3523 if (!context->nx)
82725b20 3524 exb_bit_rsvd = rsvd_bits(63, 63);
5f7dde7b
NA
3525 if (!guest_cpuid_has_gbpages(vcpu))
3526 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
3527
3528 /*
3529 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
3530 * leaf entries) on AMD CPUs only.
3531 */
3532 if (guest_cpuid_is_amd(vcpu))
3533 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
3534
4d6931c3 3535 switch (context->root_level) {
82725b20
DE
3536 case PT32_ROOT_LEVEL:
3537 /* no rsvd bits for 2 level 4K page table entries */
3538 context->rsvd_bits_mask[0][1] = 0;
3539 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3540 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3541
3542 if (!is_pse(vcpu)) {
3543 context->rsvd_bits_mask[1][1] = 0;
3544 break;
3545 }
3546
82725b20
DE
3547 if (is_cpuid_PSE36())
3548 /* 36bits PSE 4MB page */
3549 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3550 else
3551 /* 32 bits PSE 4MB page */
3552 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3553 break;
3554 case PT32E_ROOT_LEVEL:
20c466b5
DE
3555 context->rsvd_bits_mask[0][2] =
3556 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 3557 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3558 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3559 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3560 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3561 rsvd_bits(maxphyaddr, 62); /* PTE */
3562 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3563 rsvd_bits(maxphyaddr, 62) |
3564 rsvd_bits(13, 20); /* large page */
f815bce8 3565 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3566 break;
3567 case PT64_ROOT_LEVEL:
3568 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
a0c0feb5 3569 nonleaf_bit8_rsvd | rsvd_bits(7, 7) | rsvd_bits(maxphyaddr, 51);
82725b20 3570 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
a0c0feb5 3571 nonleaf_bit8_rsvd | gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51);
82725b20 3572 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3573 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3574 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3575 rsvd_bits(maxphyaddr, 51);
3576 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980 3577 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 3578 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 3579 rsvd_bits(13, 29);
82725b20 3580 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3581 rsvd_bits(maxphyaddr, 51) |
3582 rsvd_bits(13, 20); /* large page */
f815bce8 3583 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3584 break;
3585 }
3586}
3587
25d92081
YZ
3588static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
3589 struct kvm_mmu *context, bool execonly)
3590{
3591 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3592 int pte;
3593
3594 context->rsvd_bits_mask[0][3] =
3595 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
3596 context->rsvd_bits_mask[0][2] =
3597 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3598 context->rsvd_bits_mask[0][1] =
3599 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
3600 context->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
3601
3602 /* large page */
3603 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
3604 context->rsvd_bits_mask[1][2] =
3605 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
3606 context->rsvd_bits_mask[1][1] =
3607 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
3608 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3609
3610 for (pte = 0; pte < 64; pte++) {
3611 int rwx_bits = pte & 7;
3612 int mt = pte >> 3;
3613 if (mt == 0x2 || mt == 0x3 || mt == 0x7 ||
3614 rwx_bits == 0x2 || rwx_bits == 0x6 ||
3615 (rwx_bits == 0x4 && !execonly))
3616 context->bad_mt_xwr |= (1ull << pte);
3617 }
3618}
3619
97ec8c06 3620void update_permission_bitmask(struct kvm_vcpu *vcpu,
25d92081 3621 struct kvm_mmu *mmu, bool ept)
97d64b78
AK
3622{
3623 unsigned bit, byte, pfec;
3624 u8 map;
66386ade 3625 bool fault, x, w, u, wf, uf, ff, smapf, cr4_smap, cr4_smep, smap = 0;
97d64b78 3626
66386ade 3627 cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
97ec8c06 3628 cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
97d64b78
AK
3629 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3630 pfec = byte << 1;
3631 map = 0;
3632 wf = pfec & PFERR_WRITE_MASK;
3633 uf = pfec & PFERR_USER_MASK;
3634 ff = pfec & PFERR_FETCH_MASK;
97ec8c06
FW
3635 /*
3636 * PFERR_RSVD_MASK bit is set in PFEC if the access is not
3637 * subject to SMAP restrictions, and cleared otherwise. The
3638 * bit is only meaningful if the SMAP bit is set in CR4.
3639 */
3640 smapf = !(pfec & PFERR_RSVD_MASK);
97d64b78
AK
3641 for (bit = 0; bit < 8; ++bit) {
3642 x = bit & ACC_EXEC_MASK;
3643 w = bit & ACC_WRITE_MASK;
3644 u = bit & ACC_USER_MASK;
3645
25d92081
YZ
3646 if (!ept) {
3647 /* Not really needed: !nx will cause pte.nx to fault */
3648 x |= !mmu->nx;
3649 /* Allow supervisor writes if !cr0.wp */
3650 w |= !is_write_protection(vcpu) && !uf;
3651 /* Disallow supervisor fetches of user code if cr4.smep */
66386ade 3652 x &= !(cr4_smep && u && !uf);
97ec8c06
FW
3653
3654 /*
3655 * SMAP:kernel-mode data accesses from user-mode
3656 * mappings should fault. A fault is considered
3657 * as a SMAP violation if all of the following
3658 * conditions are ture:
3659 * - X86_CR4_SMAP is set in CR4
3660 * - An user page is accessed
3661 * - Page fault in kernel mode
3662 * - if CPL = 3 or X86_EFLAGS_AC is clear
3663 *
3664 * Here, we cover the first three conditions.
3665 * The fourth is computed dynamically in
3666 * permission_fault() and is in smapf.
3667 *
3668 * Also, SMAP does not affect instruction
3669 * fetches, add the !ff check here to make it
3670 * clearer.
3671 */
3672 smap = cr4_smap && u && !uf && !ff;
25d92081
YZ
3673 } else
3674 /* Not really needed: no U/S accesses on ept */
3675 u = 1;
97d64b78 3676
97ec8c06
FW
3677 fault = (ff && !x) || (uf && !u) || (wf && !w) ||
3678 (smapf && smap);
97d64b78
AK
3679 map |= fault << bit;
3680 }
3681 mmu->permissions[byte] = map;
3682 }
3683}
3684
6fd01b71
AK
3685static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3686{
3687 u8 map;
3688 unsigned level, root_level = mmu->root_level;
3689 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3690
3691 if (root_level == PT32E_ROOT_LEVEL)
3692 --root_level;
3693 /* PT_PAGE_TABLE_LEVEL always terminates */
3694 map = 1 | (1 << ps_set_index);
3695 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3696 if (level <= PT_PDPE_LEVEL
3697 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3698 map |= 1 << (ps_set_index | (level - 1));
3699 }
3700 mmu->last_pte_bitmap = map;
3701}
3702
8a3c1a33
PB
3703static void paging64_init_context_common(struct kvm_vcpu *vcpu,
3704 struct kvm_mmu *context,
3705 int level)
6aa8b732 3706{
2d48a985 3707 context->nx = is_nx(vcpu);
4d6931c3 3708 context->root_level = level;
2d48a985 3709
4d6931c3 3710 reset_rsvds_bits_mask(vcpu, context);
25d92081 3711 update_permission_bitmask(vcpu, context, false);
6fd01b71 3712 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3713
3714 ASSERT(is_pae(vcpu));
6aa8b732 3715 context->page_fault = paging64_page_fault;
6aa8b732 3716 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3717 context->sync_page = paging64_sync_page;
a7052897 3718 context->invlpg = paging64_invlpg;
0f53b5b1 3719 context->update_pte = paging64_update_pte;
17ac10ad 3720 context->shadow_root_level = level;
17c3ba9d 3721 context->root_hpa = INVALID_PAGE;
c5a78f2b 3722 context->direct_map = false;
6aa8b732
AK
3723}
3724
8a3c1a33
PB
3725static void paging64_init_context(struct kvm_vcpu *vcpu,
3726 struct kvm_mmu *context)
17ac10ad 3727{
8a3c1a33 3728 paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3729}
3730
8a3c1a33
PB
3731static void paging32_init_context(struct kvm_vcpu *vcpu,
3732 struct kvm_mmu *context)
6aa8b732 3733{
2d48a985 3734 context->nx = false;
4d6931c3 3735 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3736
4d6931c3 3737 reset_rsvds_bits_mask(vcpu, context);
25d92081 3738 update_permission_bitmask(vcpu, context, false);
6fd01b71 3739 update_last_pte_bitmap(vcpu, context);
6aa8b732 3740
6aa8b732 3741 context->page_fault = paging32_page_fault;
6aa8b732 3742 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 3743 context->sync_page = paging32_sync_page;
a7052897 3744 context->invlpg = paging32_invlpg;
0f53b5b1 3745 context->update_pte = paging32_update_pte;
6aa8b732 3746 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3747 context->root_hpa = INVALID_PAGE;
c5a78f2b 3748 context->direct_map = false;
6aa8b732
AK
3749}
3750
8a3c1a33
PB
3751static void paging32E_init_context(struct kvm_vcpu *vcpu,
3752 struct kvm_mmu *context)
6aa8b732 3753{
8a3c1a33 3754 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3755}
3756
8a3c1a33 3757static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 3758{
14dfe855 3759 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3760
c445f8ef 3761 context->base_role.word = 0;
fb72d167 3762 context->page_fault = tdp_page_fault;
e8bc217a 3763 context->sync_page = nonpaging_sync_page;
a7052897 3764 context->invlpg = nonpaging_invlpg;
0f53b5b1 3765 context->update_pte = nonpaging_update_pte;
67253af5 3766 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3767 context->root_hpa = INVALID_PAGE;
c5a78f2b 3768 context->direct_map = true;
1c97f0a0 3769 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3770 context->get_cr3 = get_cr3;
e4e517b4 3771 context->get_pdptr = kvm_pdptr_read;
cb659db8 3772 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3773
3774 if (!is_paging(vcpu)) {
2d48a985 3775 context->nx = false;
fb72d167
JR
3776 context->gva_to_gpa = nonpaging_gva_to_gpa;
3777 context->root_level = 0;
3778 } else if (is_long_mode(vcpu)) {
2d48a985 3779 context->nx = is_nx(vcpu);
fb72d167 3780 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3781 reset_rsvds_bits_mask(vcpu, context);
3782 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3783 } else if (is_pae(vcpu)) {
2d48a985 3784 context->nx = is_nx(vcpu);
fb72d167 3785 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3786 reset_rsvds_bits_mask(vcpu, context);
3787 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3788 } else {
2d48a985 3789 context->nx = false;
fb72d167 3790 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3791 reset_rsvds_bits_mask(vcpu, context);
3792 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3793 }
3794
25d92081 3795 update_permission_bitmask(vcpu, context, false);
6fd01b71 3796 update_last_pte_bitmap(vcpu, context);
fb72d167
JR
3797}
3798
8a3c1a33 3799void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3800{
411c588d 3801 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3802 ASSERT(vcpu);
ad312c7c 3803 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3804
3805 if (!is_paging(vcpu))
8a3c1a33 3806 nonpaging_init_context(vcpu, context);
a9058ecd 3807 else if (is_long_mode(vcpu))
8a3c1a33 3808 paging64_init_context(vcpu, context);
6aa8b732 3809 else if (is_pae(vcpu))
8a3c1a33 3810 paging32E_init_context(vcpu, context);
6aa8b732 3811 else
8a3c1a33 3812 paging32_init_context(vcpu, context);
a770f6f2 3813
2c9afa52 3814 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3815 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3816 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3817 vcpu->arch.mmu.base_role.smep_andnot_wp
3818 = smep && !is_write_protection(vcpu);
52fde8df
JR
3819}
3820EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3821
8a3c1a33 3822void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
155a97a3
NHE
3823 bool execonly)
3824{
3825 ASSERT(vcpu);
3826 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
3827
3828 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
3829
3830 context->nx = true;
155a97a3
NHE
3831 context->page_fault = ept_page_fault;
3832 context->gva_to_gpa = ept_gva_to_gpa;
3833 context->sync_page = ept_sync_page;
3834 context->invlpg = ept_invlpg;
3835 context->update_pte = ept_update_pte;
155a97a3
NHE
3836 context->root_level = context->shadow_root_level;
3837 context->root_hpa = INVALID_PAGE;
3838 context->direct_map = false;
3839
3840 update_permission_bitmask(vcpu, context, true);
3841 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
155a97a3
NHE
3842}
3843EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
3844
8a3c1a33 3845static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 3846{
8a3c1a33 3847 kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
14dfe855
JR
3848 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3849 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3850 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3851 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
3852}
3853
8a3c1a33 3854static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9
JR
3855{
3856 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3857
3858 g_context->get_cr3 = get_cr3;
e4e517b4 3859 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3860 g_context->inject_page_fault = kvm_inject_page_fault;
3861
3862 /*
3863 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3864 * translation of l2_gpa to l1_gpa addresses is done using the
3865 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3866 * functions between mmu and nested_mmu are swapped.
3867 */
3868 if (!is_paging(vcpu)) {
2d48a985 3869 g_context->nx = false;
02f59dc9
JR
3870 g_context->root_level = 0;
3871 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3872 } else if (is_long_mode(vcpu)) {
2d48a985 3873 g_context->nx = is_nx(vcpu);
02f59dc9 3874 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3875 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3876 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3877 } else if (is_pae(vcpu)) {
2d48a985 3878 g_context->nx = is_nx(vcpu);
02f59dc9 3879 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3880 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3881 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3882 } else {
2d48a985 3883 g_context->nx = false;
02f59dc9 3884 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3885 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3886 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3887 }
3888
25d92081 3889 update_permission_bitmask(vcpu, g_context, false);
6fd01b71 3890 update_last_pte_bitmap(vcpu, g_context);
02f59dc9
JR
3891}
3892
8a3c1a33 3893static void init_kvm_mmu(struct kvm_vcpu *vcpu)
fb72d167 3894{
02f59dc9
JR
3895 if (mmu_is_nested(vcpu))
3896 return init_kvm_nested_mmu(vcpu);
3897 else if (tdp_enabled)
fb72d167
JR
3898 return init_kvm_tdp_mmu(vcpu);
3899 else
3900 return init_kvm_softmmu(vcpu);
3901}
3902
8a3c1a33 3903void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732
AK
3904{
3905 ASSERT(vcpu);
6aa8b732 3906
95f93af4 3907 kvm_mmu_unload(vcpu);
8a3c1a33 3908 init_kvm_mmu(vcpu);
17c3ba9d 3909}
8668a3c4 3910EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3911
3912int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3913{
714b93da
AK
3914 int r;
3915
e2dec939 3916 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3917 if (r)
3918 goto out;
8986ecc0 3919 r = mmu_alloc_roots(vcpu);
e2858b4a 3920 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
3921 if (r)
3922 goto out;
3662cb1c 3923 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3924 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3925out:
3926 return r;
6aa8b732 3927}
17c3ba9d
AK
3928EXPORT_SYMBOL_GPL(kvm_mmu_load);
3929
3930void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3931{
3932 mmu_free_roots(vcpu);
95f93af4 3933 WARN_ON(VALID_PAGE(vcpu->arch.mmu.root_hpa));
17c3ba9d 3934}
4b16184c 3935EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3936
0028425f 3937static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3938 struct kvm_mmu_page *sp, u64 *spte,
3939 const void *new)
0028425f 3940{
30945387 3941 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3942 ++vcpu->kvm->stat.mmu_pde_zapped;
3943 return;
30945387 3944 }
0028425f 3945
4cee5764 3946 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3947 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3948}
3949
79539cec
AK
3950static bool need_remote_flush(u64 old, u64 new)
3951{
3952 if (!is_shadow_present_pte(old))
3953 return false;
3954 if (!is_shadow_present_pte(new))
3955 return true;
3956 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3957 return true;
53166229
GN
3958 old ^= shadow_nx_mask;
3959 new ^= shadow_nx_mask;
79539cec
AK
3960 return (old & ~new & PT64_PERM_MASK) != 0;
3961}
3962
0671a8e7
XG
3963static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3964 bool remote_flush, bool local_flush)
79539cec 3965{
0671a8e7
XG
3966 if (zap_page)
3967 return;
3968
3969 if (remote_flush)
79539cec 3970 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3971 else if (local_flush)
77c3913b 3972 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
79539cec
AK
3973}
3974
889e5cbc
XG
3975static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3976 const u8 *new, int *bytes)
da4a00f0 3977{
889e5cbc
XG
3978 u64 gentry;
3979 int r;
72016f3a 3980
72016f3a
AK
3981 /*
3982 * Assume that the pte write on a page table of the same type
49b26e26
XG
3983 * as the current vcpu paging mode since we update the sptes only
3984 * when they have the same mode.
72016f3a 3985 */
889e5cbc 3986 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3987 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3988 *gpa &= ~(gpa_t)7;
3989 *bytes = 8;
116eb3d3 3990 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3991 if (r)
3992 gentry = 0;
08e850c6
AK
3993 new = (const u8 *)&gentry;
3994 }
3995
889e5cbc 3996 switch (*bytes) {
08e850c6
AK
3997 case 4:
3998 gentry = *(const u32 *)new;
3999 break;
4000 case 8:
4001 gentry = *(const u64 *)new;
4002 break;
4003 default:
4004 gentry = 0;
4005 break;
72016f3a
AK
4006 }
4007
889e5cbc
XG
4008 return gentry;
4009}
4010
4011/*
4012 * If we're seeing too many writes to a page, it may no longer be a page table,
4013 * or we may be forking, in which case it is better to unmap the page.
4014 */
a138fe75 4015static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 4016{
a30f47cb
XG
4017 /*
4018 * Skip write-flooding detected for the sp whose level is 1, because
4019 * it can become unsync, then the guest page is not write-protected.
4020 */
f71fa31f 4021 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 4022 return false;
3246af0e 4023
a30f47cb 4024 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
4025}
4026
4027/*
4028 * Misaligned accesses are too much trouble to fix up; also, they usually
4029 * indicate a page is not used as a page table.
4030 */
4031static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
4032 int bytes)
4033{
4034 unsigned offset, pte_size, misaligned;
4035
4036 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
4037 gpa, bytes, sp->role.word);
4038
4039 offset = offset_in_page(gpa);
4040 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
4041
4042 /*
4043 * Sometimes, the OS only writes the last one bytes to update status
4044 * bits, for example, in linux, andb instruction is used in clear_bit().
4045 */
4046 if (!(offset & (pte_size - 1)) && bytes == 1)
4047 return false;
4048
889e5cbc
XG
4049 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
4050 misaligned |= bytes < 4;
4051
4052 return misaligned;
4053}
4054
4055static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
4056{
4057 unsigned page_offset, quadrant;
4058 u64 *spte;
4059 int level;
4060
4061 page_offset = offset_in_page(gpa);
4062 level = sp->role.level;
4063 *nspte = 1;
4064 if (!sp->role.cr4_pae) {
4065 page_offset <<= 1; /* 32->64 */
4066 /*
4067 * A 32-bit pde maps 4MB while the shadow pdes map
4068 * only 2MB. So we need to double the offset again
4069 * and zap two pdes instead of one.
4070 */
4071 if (level == PT32_ROOT_LEVEL) {
4072 page_offset &= ~7; /* kill rounding error */
4073 page_offset <<= 1;
4074 *nspte = 2;
4075 }
4076 quadrant = page_offset >> PAGE_SHIFT;
4077 page_offset &= ~PAGE_MASK;
4078 if (quadrant != sp->role.quadrant)
4079 return NULL;
4080 }
4081
4082 spte = &sp->spt[page_offset / sizeof(*spte)];
4083 return spte;
4084}
4085
4086void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
4087 const u8 *new, int bytes)
4088{
4089 gfn_t gfn = gpa >> PAGE_SHIFT;
4090 union kvm_mmu_page_role mask = { .word = 0 };
4091 struct kvm_mmu_page *sp;
889e5cbc
XG
4092 LIST_HEAD(invalid_list);
4093 u64 entry, gentry, *spte;
4094 int npte;
a30f47cb 4095 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
4096
4097 /*
4098 * If we don't have indirect shadow pages, it means no page is
4099 * write-protected, so we can exit simply.
4100 */
4101 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
4102 return;
4103
4104 zap_page = remote_flush = local_flush = false;
4105
4106 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
4107
4108 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
4109
4110 /*
4111 * No need to care whether allocation memory is successful
4112 * or not since pte prefetch is skiped if it does not have
4113 * enough objects in the cache.
4114 */
4115 mmu_topup_memory_caches(vcpu);
4116
4117 spin_lock(&vcpu->kvm->mmu_lock);
4118 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 4119 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 4120
fa1de2bf 4121 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 4122 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 4123 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 4124 detect_write_flooding(sp)) {
0671a8e7 4125 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 4126 &invalid_list);
4cee5764 4127 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
4128 continue;
4129 }
889e5cbc
XG
4130
4131 spte = get_written_sptes(sp, gpa, &npte);
4132 if (!spte)
4133 continue;
4134
0671a8e7 4135 local_flush = true;
ac1b714e 4136 while (npte--) {
79539cec 4137 entry = *spte;
38e3b2b2 4138 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
4139 if (gentry &&
4140 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 4141 & mask.word) && rmap_can_add(vcpu))
7c562522 4142 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 4143 if (need_remote_flush(entry, *spte))
0671a8e7 4144 remote_flush = true;
ac1b714e 4145 ++spte;
9b7a0325 4146 }
9b7a0325 4147 }
0671a8e7 4148 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 4149 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 4150 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 4151 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
4152}
4153
a436036b
AK
4154int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4155{
10589a46
MT
4156 gpa_t gpa;
4157 int r;
a436036b 4158
c5a78f2b 4159 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4160 return 0;
4161
1871c602 4162 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4163
10589a46 4164 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4165
10589a46 4166 return r;
a436036b 4167}
577bdc49 4168EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4169
81f4f76b 4170static void make_mmu_pages_available(struct kvm_vcpu *vcpu)
ebeace86 4171{
d98ba053 4172 LIST_HEAD(invalid_list);
103ad25a 4173
81f4f76b
TY
4174 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
4175 return;
4176
5da59607
TY
4177 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4178 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4179 break;
ebeace86 4180
4cee5764 4181 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4182 }
aa6bd187 4183 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4184}
ebeace86 4185
1cb3f3ae
XG
4186static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4187{
4188 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4189 return vcpu_match_mmio_gpa(vcpu, addr);
4190
4191 return vcpu_match_mmio_gva(vcpu, addr);
4192}
4193
dc25e89e
AP
4194int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4195 void *insn, int insn_len)
3067714c 4196{
1cb3f3ae 4197 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4198 enum emulation_result er;
4199
56028d08 4200 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4201 if (r < 0)
4202 goto out;
4203
4204 if (!r) {
4205 r = 1;
4206 goto out;
4207 }
4208
1cb3f3ae
XG
4209 if (is_mmio_page_fault(vcpu, cr2))
4210 emulation_type = 0;
4211
4212 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4213
4214 switch (er) {
4215 case EMULATE_DONE:
4216 return 1;
ac0a48c3 4217 case EMULATE_USER_EXIT:
3067714c 4218 ++vcpu->stat.mmio_exits;
6d77dbfc 4219 /* fall through */
3067714c 4220 case EMULATE_FAIL:
3f5d18a9 4221 return 0;
3067714c
AK
4222 default:
4223 BUG();
4224 }
4225out:
3067714c
AK
4226 return r;
4227}
4228EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4229
a7052897
MT
4230void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4231{
a7052897 4232 vcpu->arch.mmu.invlpg(vcpu, gva);
77c3913b 4233 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a7052897
MT
4234 ++vcpu->stat.invlpg;
4235}
4236EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4237
18552672
JR
4238void kvm_enable_tdp(void)
4239{
4240 tdp_enabled = true;
4241}
4242EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4243
5f4cb662
JR
4244void kvm_disable_tdp(void)
4245{
4246 tdp_enabled = false;
4247}
4248EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4249
6aa8b732
AK
4250static void free_mmu_pages(struct kvm_vcpu *vcpu)
4251{
ad312c7c 4252 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4253 if (vcpu->arch.mmu.lm_root != NULL)
4254 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4255}
4256
4257static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4258{
17ac10ad 4259 struct page *page;
6aa8b732
AK
4260 int i;
4261
4262 ASSERT(vcpu);
4263
17ac10ad
AK
4264 /*
4265 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4266 * Therefore we need to allocate shadow page tables in the first
4267 * 4GB of memory, which happens to fit the DMA32 zone.
4268 */
4269 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4270 if (!page)
d7fa6ab2
WY
4271 return -ENOMEM;
4272
ad312c7c 4273 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4274 for (i = 0; i < 4; ++i)
ad312c7c 4275 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4276
6aa8b732 4277 return 0;
6aa8b732
AK
4278}
4279
8018c27b 4280int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4281{
6aa8b732 4282 ASSERT(vcpu);
e459e322
XG
4283
4284 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4285 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4286 vcpu->arch.mmu.translate_gpa = translate_gpa;
4287 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4288
8018c27b
IM
4289 return alloc_mmu_pages(vcpu);
4290}
6aa8b732 4291
8a3c1a33 4292void kvm_mmu_setup(struct kvm_vcpu *vcpu)
8018c27b
IM
4293{
4294 ASSERT(vcpu);
ad312c7c 4295 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4296
8a3c1a33 4297 init_kvm_mmu(vcpu);
6aa8b732
AK
4298}
4299
90cb0529 4300void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4301{
b99db1d3
TY
4302 struct kvm_memory_slot *memslot;
4303 gfn_t last_gfn;
4304 int i;
6aa8b732 4305
b99db1d3
TY
4306 memslot = id_to_memslot(kvm->memslots, slot);
4307 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4308
9d1beefb
TY
4309 spin_lock(&kvm->mmu_lock);
4310
b99db1d3
TY
4311 for (i = PT_PAGE_TABLE_LEVEL;
4312 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4313 unsigned long *rmapp;
4314 unsigned long last_index, index;
6aa8b732 4315
b99db1d3
TY
4316 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4317 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4318
b99db1d3
TY
4319 for (index = 0; index <= last_index; ++index, ++rmapp) {
4320 if (*rmapp)
4321 __rmap_write_protect(kvm, rmapp, false);
6b81b05e 4322
198c74f4 4323 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
6b81b05e 4324 cond_resched_lock(&kvm->mmu_lock);
8234b22e 4325 }
6aa8b732 4326 }
b99db1d3 4327
9d1beefb 4328 spin_unlock(&kvm->mmu_lock);
198c74f4
XG
4329
4330 /*
4331 * kvm_mmu_slot_remove_write_access() and kvm_vm_ioctl_get_dirty_log()
4332 * which do tlb flush out of mmu-lock should be serialized by
4333 * kvm->slots_lock otherwise tlb flush would be missed.
4334 */
4335 lockdep_assert_held(&kvm->slots_lock);
4336
4337 /*
4338 * We can flush all the TLBs out of the mmu lock without TLB
4339 * corruption since we just change the spte from writable to
4340 * readonly so that we only need to care the case of changing
4341 * spte from present to present (changing the spte from present
4342 * to nonpresent will flush all the TLBs immediately), in other
4343 * words, the only case we care is mmu_spte_update() where we
4344 * haved checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
4345 * instead of PT_WRITABLE_MASK, that means it does not depend
4346 * on PT_WRITABLE_MASK anymore.
4347 */
4348 kvm_flush_remote_tlbs(kvm);
6aa8b732 4349}
37a7d8b0 4350
e7d11c7a 4351#define BATCH_ZAP_PAGES 10
5304b8d3
XG
4352static void kvm_zap_obsolete_pages(struct kvm *kvm)
4353{
4354 struct kvm_mmu_page *sp, *node;
e7d11c7a 4355 int batch = 0;
5304b8d3
XG
4356
4357restart:
4358 list_for_each_entry_safe_reverse(sp, node,
4359 &kvm->arch.active_mmu_pages, link) {
e7d11c7a
XG
4360 int ret;
4361
5304b8d3
XG
4362 /*
4363 * No obsolete page exists before new created page since
4364 * active_mmu_pages is the FIFO list.
4365 */
4366 if (!is_obsolete_sp(kvm, sp))
4367 break;
4368
4369 /*
5304b8d3
XG
4370 * Since we are reversely walking the list and the invalid
4371 * list will be moved to the head, skip the invalid page
4372 * can help us to avoid the infinity list walking.
4373 */
4374 if (sp->role.invalid)
4375 continue;
4376
f34d251d
XG
4377 /*
4378 * Need not flush tlb since we only zap the sp with invalid
4379 * generation number.
4380 */
e7d11c7a 4381 if (batch >= BATCH_ZAP_PAGES &&
f34d251d 4382 cond_resched_lock(&kvm->mmu_lock)) {
e7d11c7a 4383 batch = 0;
5304b8d3
XG
4384 goto restart;
4385 }
4386
365c8868
XG
4387 ret = kvm_mmu_prepare_zap_page(kvm, sp,
4388 &kvm->arch.zapped_obsolete_pages);
e7d11c7a
XG
4389 batch += ret;
4390
4391 if (ret)
5304b8d3
XG
4392 goto restart;
4393 }
4394
f34d251d
XG
4395 /*
4396 * Should flush tlb before free page tables since lockless-walking
4397 * may use the pages.
4398 */
365c8868 4399 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
5304b8d3
XG
4400}
4401
4402/*
4403 * Fast invalidate all shadow pages and use lock-break technique
4404 * to zap obsolete pages.
4405 *
4406 * It's required when memslot is being deleted or VM is being
4407 * destroyed, in these cases, we should ensure that KVM MMU does
4408 * not use any resource of the being-deleted slot or all slots
4409 * after calling the function.
4410 */
4411void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm)
4412{
4413 spin_lock(&kvm->mmu_lock);
35006126 4414 trace_kvm_mmu_invalidate_zap_all_pages(kvm);
5304b8d3
XG
4415 kvm->arch.mmu_valid_gen++;
4416
f34d251d
XG
4417 /*
4418 * Notify all vcpus to reload its shadow page table
4419 * and flush TLB. Then all vcpus will switch to new
4420 * shadow page table with the new mmu_valid_gen.
4421 *
4422 * Note: we should do this under the protection of
4423 * mmu-lock, otherwise, vcpu would purge shadow page
4424 * but miss tlb flush.
4425 */
4426 kvm_reload_remote_mmus(kvm);
4427
5304b8d3
XG
4428 kvm_zap_obsolete_pages(kvm);
4429 spin_unlock(&kvm->mmu_lock);
4430}
4431
365c8868
XG
4432static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
4433{
4434 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
4435}
4436
f8f55942
XG
4437void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm)
4438{
4439 /*
4440 * The very rare case: if the generation-number is round,
4441 * zap all shadow pages.
f8f55942 4442 */
ee3d1570 4443 if (unlikely(kvm_current_mmio_generation(kvm) == 0)) {
7a2e8aaf 4444 printk_ratelimited(KERN_INFO "kvm: zapping shadow pages for mmio generation wraparound\n");
a8eca9dc 4445 kvm_mmu_invalidate_zap_all_pages(kvm);
7a2e8aaf 4446 }
f8f55942
XG
4447}
4448
70534a73
DC
4449static unsigned long
4450mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4451{
4452 struct kvm *kvm;
1495f230 4453 int nr_to_scan = sc->nr_to_scan;
70534a73 4454 unsigned long freed = 0;
3ee16c81 4455
2f303b74 4456 spin_lock(&kvm_lock);
3ee16c81
IE
4457
4458 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4459 int idx;
d98ba053 4460 LIST_HEAD(invalid_list);
3ee16c81 4461
35f2d16b
TY
4462 /*
4463 * Never scan more than sc->nr_to_scan VM instances.
4464 * Will not hit this condition practically since we do not try
4465 * to shrink more than one VM and it is very unlikely to see
4466 * !n_used_mmu_pages so many times.
4467 */
4468 if (!nr_to_scan--)
4469 break;
19526396
GN
4470 /*
4471 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4472 * here. We may skip a VM instance errorneosly, but we do not
4473 * want to shrink a VM that only started to populate its MMU
4474 * anyway.
4475 */
365c8868
XG
4476 if (!kvm->arch.n_used_mmu_pages &&
4477 !kvm_has_zapped_obsolete_pages(kvm))
19526396 4478 continue;
19526396 4479
f656ce01 4480 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4481 spin_lock(&kvm->mmu_lock);
3ee16c81 4482
365c8868
XG
4483 if (kvm_has_zapped_obsolete_pages(kvm)) {
4484 kvm_mmu_commit_zap_page(kvm,
4485 &kvm->arch.zapped_obsolete_pages);
4486 goto unlock;
4487 }
4488
70534a73
DC
4489 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
4490 freed++;
d98ba053 4491 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4492
365c8868 4493unlock:
3ee16c81 4494 spin_unlock(&kvm->mmu_lock);
f656ce01 4495 srcu_read_unlock(&kvm->srcu, idx);
19526396 4496
70534a73
DC
4497 /*
4498 * unfair on small ones
4499 * per-vm shrinkers cry out
4500 * sadness comes quickly
4501 */
19526396
GN
4502 list_move_tail(&kvm->vm_list, &vm_list);
4503 break;
3ee16c81 4504 }
3ee16c81 4505
2f303b74 4506 spin_unlock(&kvm_lock);
70534a73 4507 return freed;
70534a73
DC
4508}
4509
4510static unsigned long
4511mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
4512{
45221ab6 4513 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4514}
4515
4516static struct shrinker mmu_shrinker = {
70534a73
DC
4517 .count_objects = mmu_shrink_count,
4518 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
4519 .seeks = DEFAULT_SEEKS * 10,
4520};
4521
2ddfd20e 4522static void mmu_destroy_caches(void)
b5a33a75 4523{
53c07b18
XG
4524 if (pte_list_desc_cache)
4525 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4526 if (mmu_page_header_cache)
4527 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4528}
4529
4530int kvm_mmu_module_init(void)
4531{
53c07b18
XG
4532 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4533 sizeof(struct pte_list_desc),
20c2df83 4534 0, 0, NULL);
53c07b18 4535 if (!pte_list_desc_cache)
b5a33a75
AK
4536 goto nomem;
4537
d3d25b04
AK
4538 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4539 sizeof(struct kvm_mmu_page),
20c2df83 4540 0, 0, NULL);
d3d25b04
AK
4541 if (!mmu_page_header_cache)
4542 goto nomem;
4543
45bf21a8
WY
4544 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4545 goto nomem;
4546
3ee16c81
IE
4547 register_shrinker(&mmu_shrinker);
4548
b5a33a75
AK
4549 return 0;
4550
4551nomem:
3ee16c81 4552 mmu_destroy_caches();
b5a33a75
AK
4553 return -ENOMEM;
4554}
4555
3ad82a7e
ZX
4556/*
4557 * Caculate mmu pages needed for kvm.
4558 */
4559unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4560{
3ad82a7e
ZX
4561 unsigned int nr_mmu_pages;
4562 unsigned int nr_pages = 0;
bc6678a3 4563 struct kvm_memslots *slots;
be6ba0f0 4564 struct kvm_memory_slot *memslot;
3ad82a7e 4565
90d83dc3
LJ
4566 slots = kvm_memslots(kvm);
4567
be6ba0f0
XG
4568 kvm_for_each_memslot(memslot, slots)
4569 nr_pages += memslot->npages;
3ad82a7e
ZX
4570
4571 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4572 nr_mmu_pages = max(nr_mmu_pages,
4573 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4574
4575 return nr_mmu_pages;
4576}
4577
94d8b056
MT
4578int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4579{
4580 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4581 u64 spte;
94d8b056
MT
4582 int nr_sptes = 0;
4583
37f6a4e2
MT
4584 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
4585 return nr_sptes;
4586
c2a2ac2b
XG
4587 walk_shadow_page_lockless_begin(vcpu);
4588 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4589 sptes[iterator.level-1] = spte;
94d8b056 4590 nr_sptes++;
c2a2ac2b 4591 if (!is_shadow_present_pte(spte))
94d8b056
MT
4592 break;
4593 }
c2a2ac2b 4594 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4595
4596 return nr_sptes;
4597}
4598EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4599
c42fffe3
XG
4600void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4601{
4602 ASSERT(vcpu);
4603
95f93af4 4604 kvm_mmu_unload(vcpu);
c42fffe3
XG
4605 free_mmu_pages(vcpu);
4606 mmu_free_memory_caches(vcpu);
b034cf01
XG
4607}
4608
b034cf01
XG
4609void kvm_mmu_module_exit(void)
4610{
4611 mmu_destroy_caches();
4612 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4613 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4614 mmu_audit_disable();
4615}