KVM: MMU: Remove unused parameter from mmu_memory_cache_alloc()
[linux-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
6aa8b732
AK
93#define PT_FIRST_AVAIL_BITS_SHIFT 9
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
191
192void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
193{
194 shadow_mmio_mask = mmio_mask;
195}
196EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
197
198static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
199{
200 access &= ACC_WRITE_MASK | ACC_USER_MASK;
201
4f022648 202 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
203 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
204}
205
206static bool is_mmio_spte(u64 spte)
207{
208 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
209}
210
211static gfn_t get_mmio_spte_gfn(u64 spte)
212{
213 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
214}
215
216static unsigned get_mmio_spte_access(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
219}
220
221static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
222{
223 if (unlikely(is_noslot_pfn(pfn))) {
224 mark_mmio_spte(sptep, gfn, access);
225 return true;
226 }
227
228 return false;
229}
c7addb90 230
82725b20
DE
231static inline u64 rsvd_bits(int s, int e)
232{
233 return ((1ULL << (e - s + 1)) - 1) << s;
234}
235
7b52345e 236void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 237 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
238{
239 shadow_user_mask = user_mask;
240 shadow_accessed_mask = accessed_mask;
241 shadow_dirty_mask = dirty_mask;
242 shadow_nx_mask = nx_mask;
243 shadow_x_mask = x_mask;
244}
245EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
246
6aa8b732
AK
247static int is_cpuid_PSE36(void)
248{
249 return 1;
250}
251
73b1087e
AK
252static int is_nx(struct kvm_vcpu *vcpu)
253{
f6801dff 254 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
255}
256
c7addb90
AK
257static int is_shadow_present_pte(u64 pte)
258{
ce88decf 259 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
260}
261
05da4558
MT
262static int is_large_pte(u64 pte)
263{
264 return pte & PT_PAGE_SIZE_MASK;
265}
266
43a3795a 267static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 268{
439e218a 269 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
270}
271
43a3795a 272static int is_rmap_spte(u64 pte)
cd4a4e53 273{
4b1a80fa 274 return is_shadow_present_pte(pte);
cd4a4e53
AK
275}
276
776e6633
MT
277static int is_last_spte(u64 pte, int level)
278{
279 if (level == PT_PAGE_TABLE_LEVEL)
280 return 1;
852e3c19 281 if (is_large_pte(pte))
776e6633
MT
282 return 1;
283 return 0;
284}
285
35149e21 286static pfn_t spte_to_pfn(u64 pte)
0b49ea86 287{
35149e21 288 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
289}
290
da928521
AK
291static gfn_t pse36_gfn_delta(u32 gpte)
292{
293 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
294
295 return (gpte & PT32_DIR_PSE36_MASK) << shift;
296}
297
603e0651 298#ifdef CONFIG_X86_64
d555c333 299static void __set_spte(u64 *sptep, u64 spte)
e663ee64 300{
603e0651 301 *sptep = spte;
e663ee64
AK
302}
303
603e0651 304static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 305{
603e0651
XG
306 *sptep = spte;
307}
308
309static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
310{
311 return xchg(sptep, spte);
312}
c2a2ac2b
XG
313
314static u64 __get_spte_lockless(u64 *sptep)
315{
316 return ACCESS_ONCE(*sptep);
317}
ce88decf
XG
318
319static bool __check_direct_spte_mmio_pf(u64 spte)
320{
321 /* It is valid if the spte is zapped. */
322 return spte == 0ull;
323}
a9221dd5 324#else
603e0651
XG
325union split_spte {
326 struct {
327 u32 spte_low;
328 u32 spte_high;
329 };
330 u64 spte;
331};
a9221dd5 332
c2a2ac2b
XG
333static void count_spte_clear(u64 *sptep, u64 spte)
334{
335 struct kvm_mmu_page *sp = page_header(__pa(sptep));
336
337 if (is_shadow_present_pte(spte))
338 return;
339
340 /* Ensure the spte is completely set before we increase the count */
341 smp_wmb();
342 sp->clear_spte_count++;
343}
344
603e0651
XG
345static void __set_spte(u64 *sptep, u64 spte)
346{
347 union split_spte *ssptep, sspte;
a9221dd5 348
603e0651
XG
349 ssptep = (union split_spte *)sptep;
350 sspte = (union split_spte)spte;
351
352 ssptep->spte_high = sspte.spte_high;
353
354 /*
355 * If we map the spte from nonpresent to present, We should store
356 * the high bits firstly, then set present bit, so cpu can not
357 * fetch this spte while we are setting the spte.
358 */
359 smp_wmb();
360
361 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
362}
363
603e0651
XG
364static void __update_clear_spte_fast(u64 *sptep, u64 spte)
365{
366 union split_spte *ssptep, sspte;
367
368 ssptep = (union split_spte *)sptep;
369 sspte = (union split_spte)spte;
370
371 ssptep->spte_low = sspte.spte_low;
372
373 /*
374 * If we map the spte from present to nonpresent, we should clear
375 * present bit firstly to avoid vcpu fetch the old high bits.
376 */
377 smp_wmb();
378
379 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 380 count_spte_clear(sptep, spte);
603e0651
XG
381}
382
383static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
384{
385 union split_spte *ssptep, sspte, orig;
386
387 ssptep = (union split_spte *)sptep;
388 sspte = (union split_spte)spte;
389
390 /* xchg acts as a barrier before the setting of the high bits */
391 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
392 orig.spte_high = ssptep->spte_high;
393 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 394 count_spte_clear(sptep, spte);
603e0651
XG
395
396 return orig.spte;
397}
c2a2ac2b
XG
398
399/*
400 * The idea using the light way get the spte on x86_32 guest is from
401 * gup_get_pte(arch/x86/mm/gup.c).
402 * The difference is we can not catch the spte tlb flush if we leave
403 * guest mode, so we emulate it by increase clear_spte_count when spte
404 * is cleared.
405 */
406static u64 __get_spte_lockless(u64 *sptep)
407{
408 struct kvm_mmu_page *sp = page_header(__pa(sptep));
409 union split_spte spte, *orig = (union split_spte *)sptep;
410 int count;
411
412retry:
413 count = sp->clear_spte_count;
414 smp_rmb();
415
416 spte.spte_low = orig->spte_low;
417 smp_rmb();
418
419 spte.spte_high = orig->spte_high;
420 smp_rmb();
421
422 if (unlikely(spte.spte_low != orig->spte_low ||
423 count != sp->clear_spte_count))
424 goto retry;
425
426 return spte.spte;
427}
ce88decf
XG
428
429static bool __check_direct_spte_mmio_pf(u64 spte)
430{
431 union split_spte sspte = (union split_spte)spte;
432 u32 high_mmio_mask = shadow_mmio_mask >> 32;
433
434 /* It is valid if the spte is zapped. */
435 if (spte == 0ull)
436 return true;
437
438 /* It is valid if the spte is being zapped. */
439 if (sspte.spte_low == 0ull &&
440 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
441 return true;
442
443 return false;
444}
603e0651
XG
445#endif
446
8672b721
XG
447static bool spte_has_volatile_bits(u64 spte)
448{
449 if (!shadow_accessed_mask)
450 return false;
451
452 if (!is_shadow_present_pte(spte))
453 return false;
454
4132779b
XG
455 if ((spte & shadow_accessed_mask) &&
456 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
457 return false;
458
459 return true;
460}
461
4132779b
XG
462static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
463{
464 return (old_spte & bit_mask) && !(new_spte & bit_mask);
465}
466
1df9f2dc
XG
467/* Rules for using mmu_spte_set:
468 * Set the sptep from nonpresent to present.
469 * Note: the sptep being assigned *must* be either not present
470 * or in a state where the hardware will not attempt to update
471 * the spte.
472 */
473static void mmu_spte_set(u64 *sptep, u64 new_spte)
474{
475 WARN_ON(is_shadow_present_pte(*sptep));
476 __set_spte(sptep, new_spte);
477}
478
479/* Rules for using mmu_spte_update:
480 * Update the state bits, it means the mapped pfn is not changged.
481 */
482static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 483{
4132779b
XG
484 u64 mask, old_spte = *sptep;
485
486 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 487
1df9f2dc
XG
488 if (!is_shadow_present_pte(old_spte))
489 return mmu_spte_set(sptep, new_spte);
490
4132779b
XG
491 new_spte |= old_spte & shadow_dirty_mask;
492
493 mask = shadow_accessed_mask;
494 if (is_writable_pte(old_spte))
495 mask |= shadow_dirty_mask;
496
497 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 498 __update_clear_spte_fast(sptep, new_spte);
4132779b 499 else
603e0651 500 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
501
502 if (!shadow_accessed_mask)
503 return;
504
505 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
506 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
507 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
508 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
509}
510
1df9f2dc
XG
511/*
512 * Rules for using mmu_spte_clear_track_bits:
513 * It sets the sptep from present to nonpresent, and track the
514 * state bits, it is used to clear the last level sptep.
515 */
516static int mmu_spte_clear_track_bits(u64 *sptep)
517{
518 pfn_t pfn;
519 u64 old_spte = *sptep;
520
521 if (!spte_has_volatile_bits(old_spte))
603e0651 522 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 523 else
603e0651 524 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
525
526 if (!is_rmap_spte(old_spte))
527 return 0;
528
529 pfn = spte_to_pfn(old_spte);
530 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
531 kvm_set_pfn_accessed(pfn);
532 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
533 kvm_set_pfn_dirty(pfn);
534 return 1;
535}
536
537/*
538 * Rules for using mmu_spte_clear_no_track:
539 * Directly clear spte without caring the state bits of sptep,
540 * it is used to set the upper level spte.
541 */
542static void mmu_spte_clear_no_track(u64 *sptep)
543{
603e0651 544 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
545}
546
c2a2ac2b
XG
547static u64 mmu_spte_get_lockless(u64 *sptep)
548{
549 return __get_spte_lockless(sptep);
550}
551
552static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
553{
c142786c
AK
554 /*
555 * Prevent page table teardown by making any free-er wait during
556 * kvm_flush_remote_tlbs() IPI to all active vcpus.
557 */
558 local_irq_disable();
559 vcpu->mode = READING_SHADOW_PAGE_TABLES;
560 /*
561 * Make sure a following spte read is not reordered ahead of the write
562 * to vcpu->mode.
563 */
564 smp_mb();
c2a2ac2b
XG
565}
566
567static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
568{
c142786c
AK
569 /*
570 * Make sure the write to vcpu->mode is not reordered in front of
571 * reads to sptes. If it does, kvm_commit_zap_page() can see us
572 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
573 */
574 smp_mb();
575 vcpu->mode = OUTSIDE_GUEST_MODE;
576 local_irq_enable();
c2a2ac2b
XG
577}
578
e2dec939 579static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 580 struct kmem_cache *base_cache, int min)
714b93da
AK
581{
582 void *obj;
583
584 if (cache->nobjs >= min)
e2dec939 585 return 0;
714b93da 586 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 587 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 588 if (!obj)
e2dec939 589 return -ENOMEM;
714b93da
AK
590 cache->objects[cache->nobjs++] = obj;
591 }
e2dec939 592 return 0;
714b93da
AK
593}
594
f759e2b4
XG
595static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
596{
597 return cache->nobjs;
598}
599
e8ad9a70
XG
600static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
601 struct kmem_cache *cache)
714b93da
AK
602{
603 while (mc->nobjs)
e8ad9a70 604 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
605}
606
c1158e63 607static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 608 int min)
c1158e63 609{
842f22ed 610 void *page;
c1158e63
AK
611
612 if (cache->nobjs >= min)
613 return 0;
614 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 615 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
616 if (!page)
617 return -ENOMEM;
842f22ed 618 cache->objects[cache->nobjs++] = page;
c1158e63
AK
619 }
620 return 0;
621}
622
623static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
624{
625 while (mc->nobjs)
c4d198d5 626 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
627}
628
2e3e5882 629static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 630{
e2dec939
AK
631 int r;
632
53c07b18 633 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 634 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
635 if (r)
636 goto out;
ad312c7c 637 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
638 if (r)
639 goto out;
ad312c7c 640 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 641 mmu_page_header_cache, 4);
e2dec939
AK
642out:
643 return r;
714b93da
AK
644}
645
646static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
647{
53c07b18
XG
648 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
649 pte_list_desc_cache);
ad312c7c 650 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
651 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
652 mmu_page_header_cache);
714b93da
AK
653}
654
80feb89a 655static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
656{
657 void *p;
658
659 BUG_ON(!mc->nobjs);
660 p = mc->objects[--mc->nobjs];
714b93da
AK
661 return p;
662}
663
53c07b18 664static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 665{
80feb89a 666 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
667}
668
53c07b18 669static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 670{
53c07b18 671 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
672}
673
2032a93d
LJ
674static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
675{
676 if (!sp->role.direct)
677 return sp->gfns[index];
678
679 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
680}
681
682static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
683{
684 if (sp->role.direct)
685 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
686 else
687 sp->gfns[index] = gfn;
688}
689
05da4558 690/*
d4dbf470
TY
691 * Return the pointer to the large page information for a given gfn,
692 * handling slots that are not large page aligned.
05da4558 693 */
d4dbf470
TY
694static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
695 struct kvm_memory_slot *slot,
696 int level)
05da4558
MT
697{
698 unsigned long idx;
699
fb03cb6f 700 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 701 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
702}
703
704static void account_shadowed(struct kvm *kvm, gfn_t gfn)
705{
d25797b2 706 struct kvm_memory_slot *slot;
d4dbf470 707 struct kvm_lpage_info *linfo;
d25797b2 708 int i;
05da4558 709
a1f4d395 710 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
711 for (i = PT_DIRECTORY_LEVEL;
712 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
713 linfo = lpage_info_slot(gfn, slot, i);
714 linfo->write_count += 1;
d25797b2 715 }
332b207d 716 kvm->arch.indirect_shadow_pages++;
05da4558
MT
717}
718
719static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
720{
d25797b2 721 struct kvm_memory_slot *slot;
d4dbf470 722 struct kvm_lpage_info *linfo;
d25797b2 723 int i;
05da4558 724
a1f4d395 725 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
726 for (i = PT_DIRECTORY_LEVEL;
727 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
728 linfo = lpage_info_slot(gfn, slot, i);
729 linfo->write_count -= 1;
730 WARN_ON(linfo->write_count < 0);
d25797b2 731 }
332b207d 732 kvm->arch.indirect_shadow_pages--;
05da4558
MT
733}
734
d25797b2
JR
735static int has_wrprotected_page(struct kvm *kvm,
736 gfn_t gfn,
737 int level)
05da4558 738{
2843099f 739 struct kvm_memory_slot *slot;
d4dbf470 740 struct kvm_lpage_info *linfo;
05da4558 741
a1f4d395 742 slot = gfn_to_memslot(kvm, gfn);
05da4558 743 if (slot) {
d4dbf470
TY
744 linfo = lpage_info_slot(gfn, slot, level);
745 return linfo->write_count;
05da4558
MT
746 }
747
748 return 1;
749}
750
d25797b2 751static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 752{
8f0b1ab6 753 unsigned long page_size;
d25797b2 754 int i, ret = 0;
05da4558 755
8f0b1ab6 756 page_size = kvm_host_page_size(kvm, gfn);
05da4558 757
d25797b2
JR
758 for (i = PT_PAGE_TABLE_LEVEL;
759 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
760 if (page_size >= KVM_HPAGE_SIZE(i))
761 ret = i;
762 else
763 break;
764 }
765
4c2155ce 766 return ret;
05da4558
MT
767}
768
5d163b1c
XG
769static struct kvm_memory_slot *
770gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
771 bool no_dirty_log)
05da4558
MT
772{
773 struct kvm_memory_slot *slot;
5d163b1c
XG
774
775 slot = gfn_to_memslot(vcpu->kvm, gfn);
776 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
777 (no_dirty_log && slot->dirty_bitmap))
778 slot = NULL;
779
780 return slot;
781}
782
783static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
784{
a0a8eaba 785 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
786}
787
788static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
789{
790 int host_level, level, max_level;
05da4558 791
d25797b2
JR
792 host_level = host_mapping_level(vcpu->kvm, large_gfn);
793
794 if (host_level == PT_PAGE_TABLE_LEVEL)
795 return host_level;
796
878403b7
SY
797 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
798 kvm_x86_ops->get_lpage_level() : host_level;
799
800 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
801 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
802 break;
d25797b2
JR
803
804 return level - 1;
05da4558
MT
805}
806
290fc38d 807/*
53c07b18 808 * Pte mapping structures:
cd4a4e53 809 *
53c07b18 810 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 811 *
53c07b18
XG
812 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
813 * pte_list_desc containing more mappings.
53a27b39 814 *
53c07b18 815 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
816 * the spte was not added.
817 *
cd4a4e53 818 */
53c07b18
XG
819static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
820 unsigned long *pte_list)
cd4a4e53 821{
53c07b18 822 struct pte_list_desc *desc;
53a27b39 823 int i, count = 0;
cd4a4e53 824
53c07b18
XG
825 if (!*pte_list) {
826 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
827 *pte_list = (unsigned long)spte;
828 } else if (!(*pte_list & 1)) {
829 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
830 desc = mmu_alloc_pte_list_desc(vcpu);
831 desc->sptes[0] = (u64 *)*pte_list;
d555c333 832 desc->sptes[1] = spte;
53c07b18 833 *pte_list = (unsigned long)desc | 1;
cb16a7b3 834 ++count;
cd4a4e53 835 } else {
53c07b18
XG
836 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
837 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
838 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 839 desc = desc->more;
53c07b18 840 count += PTE_LIST_EXT;
53a27b39 841 }
53c07b18
XG
842 if (desc->sptes[PTE_LIST_EXT-1]) {
843 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
844 desc = desc->more;
845 }
d555c333 846 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 847 ++count;
d555c333 848 desc->sptes[i] = spte;
cd4a4e53 849 }
53a27b39 850 return count;
cd4a4e53
AK
851}
852
53c07b18
XG
853static void
854pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
855 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
856{
857 int j;
858
53c07b18 859 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 860 ;
d555c333
AK
861 desc->sptes[i] = desc->sptes[j];
862 desc->sptes[j] = NULL;
cd4a4e53
AK
863 if (j != 0)
864 return;
865 if (!prev_desc && !desc->more)
53c07b18 866 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
867 else
868 if (prev_desc)
869 prev_desc->more = desc->more;
870 else
53c07b18
XG
871 *pte_list = (unsigned long)desc->more | 1;
872 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
873}
874
53c07b18 875static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 876{
53c07b18
XG
877 struct pte_list_desc *desc;
878 struct pte_list_desc *prev_desc;
cd4a4e53
AK
879 int i;
880
53c07b18
XG
881 if (!*pte_list) {
882 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 883 BUG();
53c07b18
XG
884 } else if (!(*pte_list & 1)) {
885 rmap_printk("pte_list_remove: %p 1->0\n", spte);
886 if ((u64 *)*pte_list != spte) {
887 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
888 BUG();
889 }
53c07b18 890 *pte_list = 0;
cd4a4e53 891 } else {
53c07b18
XG
892 rmap_printk("pte_list_remove: %p many->many\n", spte);
893 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
894 prev_desc = NULL;
895 while (desc) {
53c07b18 896 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 897 if (desc->sptes[i] == spte) {
53c07b18 898 pte_list_desc_remove_entry(pte_list,
714b93da 899 desc, i,
cd4a4e53
AK
900 prev_desc);
901 return;
902 }
903 prev_desc = desc;
904 desc = desc->more;
905 }
53c07b18 906 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
907 BUG();
908 }
909}
910
67052b35
XG
911typedef void (*pte_list_walk_fn) (u64 *spte);
912static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
913{
914 struct pte_list_desc *desc;
915 int i;
916
917 if (!*pte_list)
918 return;
919
920 if (!(*pte_list & 1))
921 return fn((u64 *)*pte_list);
922
923 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
924 while (desc) {
925 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
926 fn(desc->sptes[i]);
927 desc = desc->more;
928 }
929}
930
9373e2c0 931static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 932 struct kvm_memory_slot *slot)
53c07b18 933{
53c07b18
XG
934 struct kvm_lpage_info *linfo;
935
53c07b18
XG
936 if (likely(level == PT_PAGE_TABLE_LEVEL))
937 return &slot->rmap[gfn - slot->base_gfn];
938
939 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
940 return &linfo->rmap_pde;
941}
942
9b9b1492
TY
943/*
944 * Take gfn and return the reverse mapping to it.
945 */
946static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
947{
948 struct kvm_memory_slot *slot;
949
950 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 951 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
952}
953
f759e2b4
XG
954static bool rmap_can_add(struct kvm_vcpu *vcpu)
955{
956 struct kvm_mmu_memory_cache *cache;
957
958 cache = &vcpu->arch.mmu_pte_list_desc_cache;
959 return mmu_memory_cache_free_objects(cache);
960}
961
53c07b18
XG
962static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
963{
964 struct kvm_mmu_page *sp;
965 unsigned long *rmapp;
966
53c07b18
XG
967 sp = page_header(__pa(spte));
968 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
969 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
970 return pte_list_add(vcpu, spte, rmapp);
971}
972
53c07b18
XG
973static void rmap_remove(struct kvm *kvm, u64 *spte)
974{
975 struct kvm_mmu_page *sp;
976 gfn_t gfn;
977 unsigned long *rmapp;
978
979 sp = page_header(__pa(spte));
980 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
981 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
982 pte_list_remove(spte, rmapp);
983}
984
1e3f42f0
TY
985/*
986 * Used by the following functions to iterate through the sptes linked by a
987 * rmap. All fields are private and not assumed to be used outside.
988 */
989struct rmap_iterator {
990 /* private fields */
991 struct pte_list_desc *desc; /* holds the sptep if not NULL */
992 int pos; /* index of the sptep */
993};
994
995/*
996 * Iteration must be started by this function. This should also be used after
997 * removing/dropping sptes from the rmap link because in such cases the
998 * information in the itererator may not be valid.
999 *
1000 * Returns sptep if found, NULL otherwise.
1001 */
1002static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1003{
1004 if (!rmap)
1005 return NULL;
1006
1007 if (!(rmap & 1)) {
1008 iter->desc = NULL;
1009 return (u64 *)rmap;
1010 }
1011
1012 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1013 iter->pos = 0;
1014 return iter->desc->sptes[iter->pos];
1015}
1016
1017/*
1018 * Must be used with a valid iterator: e.g. after rmap_get_first().
1019 *
1020 * Returns sptep if found, NULL otherwise.
1021 */
1022static u64 *rmap_get_next(struct rmap_iterator *iter)
1023{
1024 if (iter->desc) {
1025 if (iter->pos < PTE_LIST_EXT - 1) {
1026 u64 *sptep;
1027
1028 ++iter->pos;
1029 sptep = iter->desc->sptes[iter->pos];
1030 if (sptep)
1031 return sptep;
1032 }
1033
1034 iter->desc = iter->desc->more;
1035
1036 if (iter->desc) {
1037 iter->pos = 0;
1038 /* desc->sptes[0] cannot be NULL */
1039 return iter->desc->sptes[iter->pos];
1040 }
1041 }
1042
1043 return NULL;
1044}
1045
c3707958 1046static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1047{
1df9f2dc 1048 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1049 rmap_remove(kvm, sptep);
be38d276
AK
1050}
1051
a0ed4607 1052static int __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1053{
1e3f42f0
TY
1054 u64 *sptep;
1055 struct rmap_iterator iter;
a0ed4607 1056 int write_protected = 0;
374cbac0 1057
1e3f42f0
TY
1058 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1059 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1060 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
a0ed4607 1061
1e3f42f0
TY
1062 if (!is_writable_pte(*sptep)) {
1063 sptep = rmap_get_next(&iter);
a0ed4607 1064 continue;
1e3f42f0 1065 }
a0ed4607
TY
1066
1067 if (level == PT_PAGE_TABLE_LEVEL) {
1e3f42f0
TY
1068 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1069 sptep = rmap_get_next(&iter);
a0ed4607 1070 } else {
1e3f42f0
TY
1071 BUG_ON(!is_large_pte(*sptep));
1072 drop_spte(kvm, sptep);
a0ed4607 1073 --kvm->stat.lpages;
1e3f42f0 1074 sptep = rmap_get_first(*rmapp, &iter);
caa5b8a5 1075 }
a0ed4607
TY
1076
1077 write_protected = 1;
374cbac0 1078 }
855149aa 1079
a0ed4607
TY
1080 return write_protected;
1081}
1082
5dc99b23
TY
1083/**
1084 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1085 * @kvm: kvm instance
1086 * @slot: slot to protect
1087 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1088 * @mask: indicates which pages we should protect
1089 *
1090 * Used when we do not need to care about huge page mappings: e.g. during dirty
1091 * logging we do not have any such mappings.
1092 */
1093void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1094 struct kvm_memory_slot *slot,
1095 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1096{
1097 unsigned long *rmapp;
a0ed4607 1098
5dc99b23
TY
1099 while (mask) {
1100 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1101 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1102
5dc99b23
TY
1103 /* clear the first set bit */
1104 mask &= mask - 1;
1105 }
374cbac0
AK
1106}
1107
95d4c16c
TY
1108static int rmap_write_protect(struct kvm *kvm, u64 gfn)
1109{
1110 struct kvm_memory_slot *slot;
5dc99b23
TY
1111 unsigned long *rmapp;
1112 int i;
1113 int write_protected = 0;
95d4c16c
TY
1114
1115 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1116
1117 for (i = PT_PAGE_TABLE_LEVEL;
1118 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1119 rmapp = __gfn_to_rmap(gfn, i, slot);
1120 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1121 }
1122
1123 return write_protected;
95d4c16c
TY
1124}
1125
8a8365c5
FD
1126static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1127 unsigned long data)
e930bffe 1128{
1e3f42f0
TY
1129 u64 *sptep;
1130 struct rmap_iterator iter;
e930bffe
AA
1131 int need_tlb_flush = 0;
1132
1e3f42f0
TY
1133 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1134 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1135 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1136
1137 drop_spte(kvm, sptep);
e930bffe
AA
1138 need_tlb_flush = 1;
1139 }
1e3f42f0 1140
e930bffe
AA
1141 return need_tlb_flush;
1142}
1143
8a8365c5
FD
1144static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1145 unsigned long data)
3da0dd43 1146{
1e3f42f0
TY
1147 u64 *sptep;
1148 struct rmap_iterator iter;
3da0dd43 1149 int need_flush = 0;
1e3f42f0 1150 u64 new_spte;
3da0dd43
IE
1151 pte_t *ptep = (pte_t *)data;
1152 pfn_t new_pfn;
1153
1154 WARN_ON(pte_huge(*ptep));
1155 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1156
1157 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1158 BUG_ON(!is_shadow_present_pte(*sptep));
1159 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1160
3da0dd43 1161 need_flush = 1;
1e3f42f0 1162
3da0dd43 1163 if (pte_write(*ptep)) {
1e3f42f0
TY
1164 drop_spte(kvm, sptep);
1165 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1166 } else {
1e3f42f0 1167 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1168 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1169
1170 new_spte &= ~PT_WRITABLE_MASK;
1171 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1172 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1173
1174 mmu_spte_clear_track_bits(sptep);
1175 mmu_spte_set(sptep, new_spte);
1176 sptep = rmap_get_next(&iter);
3da0dd43
IE
1177 }
1178 }
1e3f42f0 1179
3da0dd43
IE
1180 if (need_flush)
1181 kvm_flush_remote_tlbs(kvm);
1182
1183 return 0;
1184}
1185
8a8365c5
FD
1186static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1187 unsigned long data,
3da0dd43 1188 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1189 unsigned long data))
e930bffe 1190{
be6ba0f0 1191 int j;
90bb6fc5 1192 int ret;
e930bffe 1193 int retval = 0;
bc6678a3 1194 struct kvm_memslots *slots;
be6ba0f0 1195 struct kvm_memory_slot *memslot;
bc6678a3 1196
90d83dc3 1197 slots = kvm_memslots(kvm);
e930bffe 1198
be6ba0f0 1199 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1200 unsigned long start = memslot->userspace_addr;
1201 unsigned long end;
1202
e930bffe
AA
1203 end = start + (memslot->npages << PAGE_SHIFT);
1204 if (hva >= start && hva < end) {
1205 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1206 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1207
90bb6fc5 1208 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1209
1210 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1211 struct kvm_lpage_info *linfo;
1212
1213 linfo = lpage_info_slot(gfn, memslot,
1214 PT_DIRECTORY_LEVEL + j);
1215 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1216 }
90bb6fc5
AK
1217 trace_kvm_age_page(hva, memslot, ret);
1218 retval |= ret;
e930bffe
AA
1219 }
1220 }
1221
1222 return retval;
1223}
1224
1225int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1226{
3da0dd43
IE
1227 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1228}
1229
1230void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1231{
8a8365c5 1232 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1233}
1234
8a8365c5
FD
1235static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1236 unsigned long data)
e930bffe 1237{
1e3f42f0 1238 u64 *sptep;
79f702a6 1239 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1240 int young = 0;
1241
6316e1c8 1242 /*
3f6d8c8a
XH
1243 * In case of absence of EPT Access and Dirty Bits supports,
1244 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1245 * an EPT mapping, and clearing it if it does. On the next access,
1246 * a new EPT mapping will be established.
1247 * This has some overhead, but not as much as the cost of swapping
1248 * out actively used pages or breaking up actively used hugepages.
1249 */
534e38b4 1250 if (!shadow_accessed_mask)
6316e1c8 1251 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1252
1e3f42f0
TY
1253 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1254 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1255 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1256
3f6d8c8a 1257 if (*sptep & shadow_accessed_mask) {
e930bffe 1258 young = 1;
3f6d8c8a
XH
1259 clear_bit((ffs(shadow_accessed_mask) - 1),
1260 (unsigned long *)sptep);
e930bffe 1261 }
e930bffe 1262 }
1e3f42f0 1263
e930bffe
AA
1264 return young;
1265}
1266
8ee53820
AA
1267static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1268 unsigned long data)
1269{
1e3f42f0
TY
1270 u64 *sptep;
1271 struct rmap_iterator iter;
8ee53820
AA
1272 int young = 0;
1273
1274 /*
1275 * If there's no access bit in the secondary pte set by the
1276 * hardware it's up to gup-fast/gup to set the access bit in
1277 * the primary pte or in the page structure.
1278 */
1279 if (!shadow_accessed_mask)
1280 goto out;
1281
1e3f42f0
TY
1282 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1283 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1284 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1285
3f6d8c8a 1286 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1287 young = 1;
1288 break;
1289 }
8ee53820
AA
1290 }
1291out:
1292 return young;
1293}
1294
53a27b39
MT
1295#define RMAP_RECYCLE_THRESHOLD 1000
1296
852e3c19 1297static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1298{
1299 unsigned long *rmapp;
852e3c19
JR
1300 struct kvm_mmu_page *sp;
1301
1302 sp = page_header(__pa(spte));
53a27b39 1303
852e3c19 1304 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1305
3da0dd43 1306 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1307 kvm_flush_remote_tlbs(vcpu->kvm);
1308}
1309
e930bffe
AA
1310int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1311{
3da0dd43 1312 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1313}
1314
8ee53820
AA
1315int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1316{
1317 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1318}
1319
d6c69ee9 1320#ifdef MMU_DEBUG
47ad8e68 1321static int is_empty_shadow_page(u64 *spt)
6aa8b732 1322{
139bdb2d
AK
1323 u64 *pos;
1324 u64 *end;
1325
47ad8e68 1326 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1327 if (is_shadow_present_pte(*pos)) {
b8688d51 1328 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1329 pos, *pos);
6aa8b732 1330 return 0;
139bdb2d 1331 }
6aa8b732
AK
1332 return 1;
1333}
d6c69ee9 1334#endif
6aa8b732 1335
45221ab6
DH
1336/*
1337 * This value is the sum of all of the kvm instances's
1338 * kvm->arch.n_used_mmu_pages values. We need a global,
1339 * aggregate version in order to make the slab shrinker
1340 * faster
1341 */
1342static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1343{
1344 kvm->arch.n_used_mmu_pages += nr;
1345 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1346}
1347
bd4c86ea
XG
1348/*
1349 * Remove the sp from shadow page cache, after call it,
1350 * we can not find this sp from the cache, and the shadow
1351 * page table is still valid.
1352 * It should be under the protection of mmu lock.
1353 */
1354static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1355{
4db35314 1356 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1357 hlist_del(&sp->hash_link);
2032a93d 1358 if (!sp->role.direct)
842f22ed 1359 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1360}
1361
1362/*
1363 * Free the shadow page table and the sp, we can do it
1364 * out of the protection of mmu lock.
1365 */
1366static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1367{
1368 list_del(&sp->link);
1369 free_page((unsigned long)sp->spt);
e8ad9a70 1370 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1371}
1372
cea0f0e7
AK
1373static unsigned kvm_page_table_hashfn(gfn_t gfn)
1374{
1ae0a13d 1375 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1376}
1377
714b93da 1378static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1379 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1380{
cea0f0e7
AK
1381 if (!parent_pte)
1382 return;
cea0f0e7 1383
67052b35 1384 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1385}
1386
4db35314 1387static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1388 u64 *parent_pte)
1389{
67052b35 1390 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1391}
1392
bcdd9a93
XG
1393static void drop_parent_pte(struct kvm_mmu_page *sp,
1394 u64 *parent_pte)
1395{
1396 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1397 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1398}
1399
67052b35
XG
1400static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1401 u64 *parent_pte, int direct)
ad8cfbe3 1402{
67052b35 1403 struct kvm_mmu_page *sp;
80feb89a
TY
1404 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1405 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1406 if (!direct)
80feb89a 1407 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1408 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1409 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1410 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1411 sp->parent_ptes = 0;
1412 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1413 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1414 return sp;
ad8cfbe3
MT
1415}
1416
67052b35 1417static void mark_unsync(u64 *spte);
1047df1f 1418static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1419{
67052b35 1420 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1421}
1422
67052b35 1423static void mark_unsync(u64 *spte)
0074ff63 1424{
67052b35 1425 struct kvm_mmu_page *sp;
1047df1f 1426 unsigned int index;
0074ff63 1427
67052b35 1428 sp = page_header(__pa(spte));
1047df1f
XG
1429 index = spte - sp->spt;
1430 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1431 return;
1047df1f 1432 if (sp->unsync_children++)
0074ff63 1433 return;
1047df1f 1434 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1435}
1436
e8bc217a 1437static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1438 struct kvm_mmu_page *sp)
e8bc217a
MT
1439{
1440 return 1;
1441}
1442
a7052897
MT
1443static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1444{
1445}
1446
0f53b5b1
XG
1447static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1448 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1449 const void *pte)
0f53b5b1
XG
1450{
1451 WARN_ON(1);
1452}
1453
60c8aec6
MT
1454#define KVM_PAGE_ARRAY_NR 16
1455
1456struct kvm_mmu_pages {
1457 struct mmu_page_and_offset {
1458 struct kvm_mmu_page *sp;
1459 unsigned int idx;
1460 } page[KVM_PAGE_ARRAY_NR];
1461 unsigned int nr;
1462};
1463
cded19f3
HE
1464static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1465 int idx)
4731d4c7 1466{
60c8aec6 1467 int i;
4731d4c7 1468
60c8aec6
MT
1469 if (sp->unsync)
1470 for (i=0; i < pvec->nr; i++)
1471 if (pvec->page[i].sp == sp)
1472 return 0;
1473
1474 pvec->page[pvec->nr].sp = sp;
1475 pvec->page[pvec->nr].idx = idx;
1476 pvec->nr++;
1477 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1478}
1479
1480static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1481 struct kvm_mmu_pages *pvec)
1482{
1483 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1484
37178b8b 1485 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1486 struct kvm_mmu_page *child;
4731d4c7
MT
1487 u64 ent = sp->spt[i];
1488
7a8f1a74
XG
1489 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1490 goto clear_child_bitmap;
1491
1492 child = page_header(ent & PT64_BASE_ADDR_MASK);
1493
1494 if (child->unsync_children) {
1495 if (mmu_pages_add(pvec, child, i))
1496 return -ENOSPC;
1497
1498 ret = __mmu_unsync_walk(child, pvec);
1499 if (!ret)
1500 goto clear_child_bitmap;
1501 else if (ret > 0)
1502 nr_unsync_leaf += ret;
1503 else
1504 return ret;
1505 } else if (child->unsync) {
1506 nr_unsync_leaf++;
1507 if (mmu_pages_add(pvec, child, i))
1508 return -ENOSPC;
1509 } else
1510 goto clear_child_bitmap;
1511
1512 continue;
1513
1514clear_child_bitmap:
1515 __clear_bit(i, sp->unsync_child_bitmap);
1516 sp->unsync_children--;
1517 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1518 }
1519
4731d4c7 1520
60c8aec6
MT
1521 return nr_unsync_leaf;
1522}
1523
1524static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1525 struct kvm_mmu_pages *pvec)
1526{
1527 if (!sp->unsync_children)
1528 return 0;
1529
1530 mmu_pages_add(pvec, sp, 0);
1531 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1532}
1533
4731d4c7
MT
1534static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1535{
1536 WARN_ON(!sp->unsync);
5e1b3ddb 1537 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1538 sp->unsync = 0;
1539 --kvm->stat.mmu_unsync;
1540}
1541
7775834a
XG
1542static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1543 struct list_head *invalid_list);
1544static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1545 struct list_head *invalid_list);
4731d4c7 1546
f41d335a
XG
1547#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1548 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1549 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1550 if ((sp)->gfn != (gfn)) {} else
1551
f41d335a
XG
1552#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1553 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1554 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1555 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1556 (sp)->role.invalid) {} else
1557
f918b443 1558/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1559static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1560 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1561{
5b7e0102 1562 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1563 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1564 return 1;
1565 }
1566
f918b443 1567 if (clear_unsync)
1d9dc7e0 1568 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1569
a4a8e6f7 1570 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1571 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1572 return 1;
1573 }
1574
1575 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1576 return 0;
1577}
1578
1d9dc7e0
XG
1579static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1580 struct kvm_mmu_page *sp)
1581{
d98ba053 1582 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1583 int ret;
1584
d98ba053 1585 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1586 if (ret)
d98ba053
XG
1587 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1588
1d9dc7e0
XG
1589 return ret;
1590}
1591
e37fa785
XG
1592#ifdef CONFIG_KVM_MMU_AUDIT
1593#include "mmu_audit.c"
1594#else
1595static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1596static void mmu_audit_disable(void) { }
1597#endif
1598
d98ba053
XG
1599static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1600 struct list_head *invalid_list)
1d9dc7e0 1601{
d98ba053 1602 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1603}
1604
9f1a122f
XG
1605/* @gfn should be write-protected at the call site */
1606static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1607{
9f1a122f 1608 struct kvm_mmu_page *s;
f41d335a 1609 struct hlist_node *node;
d98ba053 1610 LIST_HEAD(invalid_list);
9f1a122f
XG
1611 bool flush = false;
1612
f41d335a 1613 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1614 if (!s->unsync)
9f1a122f
XG
1615 continue;
1616
1617 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1618 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1619 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1620 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1621 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1622 continue;
1623 }
9f1a122f
XG
1624 flush = true;
1625 }
1626
d98ba053 1627 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1628 if (flush)
1629 kvm_mmu_flush_tlb(vcpu);
1630}
1631
60c8aec6
MT
1632struct mmu_page_path {
1633 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1634 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1635};
1636
60c8aec6
MT
1637#define for_each_sp(pvec, sp, parents, i) \
1638 for (i = mmu_pages_next(&pvec, &parents, -1), \
1639 sp = pvec.page[i].sp; \
1640 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1641 i = mmu_pages_next(&pvec, &parents, i))
1642
cded19f3
HE
1643static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1644 struct mmu_page_path *parents,
1645 int i)
60c8aec6
MT
1646{
1647 int n;
1648
1649 for (n = i+1; n < pvec->nr; n++) {
1650 struct kvm_mmu_page *sp = pvec->page[n].sp;
1651
1652 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1653 parents->idx[0] = pvec->page[n].idx;
1654 return n;
1655 }
1656
1657 parents->parent[sp->role.level-2] = sp;
1658 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1659 }
1660
1661 return n;
1662}
1663
cded19f3 1664static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1665{
60c8aec6
MT
1666 struct kvm_mmu_page *sp;
1667 unsigned int level = 0;
1668
1669 do {
1670 unsigned int idx = parents->idx[level];
4731d4c7 1671
60c8aec6
MT
1672 sp = parents->parent[level];
1673 if (!sp)
1674 return;
1675
1676 --sp->unsync_children;
1677 WARN_ON((int)sp->unsync_children < 0);
1678 __clear_bit(idx, sp->unsync_child_bitmap);
1679 level++;
1680 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1681}
1682
60c8aec6
MT
1683static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1684 struct mmu_page_path *parents,
1685 struct kvm_mmu_pages *pvec)
4731d4c7 1686{
60c8aec6
MT
1687 parents->parent[parent->role.level-1] = NULL;
1688 pvec->nr = 0;
1689}
4731d4c7 1690
60c8aec6
MT
1691static void mmu_sync_children(struct kvm_vcpu *vcpu,
1692 struct kvm_mmu_page *parent)
1693{
1694 int i;
1695 struct kvm_mmu_page *sp;
1696 struct mmu_page_path parents;
1697 struct kvm_mmu_pages pages;
d98ba053 1698 LIST_HEAD(invalid_list);
60c8aec6
MT
1699
1700 kvm_mmu_pages_init(parent, &parents, &pages);
1701 while (mmu_unsync_walk(parent, &pages)) {
b1a36821
MT
1702 int protected = 0;
1703
1704 for_each_sp(pages, sp, parents, i)
1705 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1706
1707 if (protected)
1708 kvm_flush_remote_tlbs(vcpu->kvm);
1709
60c8aec6 1710 for_each_sp(pages, sp, parents, i) {
d98ba053 1711 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1712 mmu_pages_clear_parents(&parents);
1713 }
d98ba053 1714 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1715 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1716 kvm_mmu_pages_init(parent, &parents, &pages);
1717 }
4731d4c7
MT
1718}
1719
c3707958
XG
1720static void init_shadow_page_table(struct kvm_mmu_page *sp)
1721{
1722 int i;
1723
1724 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1725 sp->spt[i] = 0ull;
1726}
1727
a30f47cb
XG
1728static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1729{
1730 sp->write_flooding_count = 0;
1731}
1732
1733static void clear_sp_write_flooding_count(u64 *spte)
1734{
1735 struct kvm_mmu_page *sp = page_header(__pa(spte));
1736
1737 __clear_sp_write_flooding_count(sp);
1738}
1739
cea0f0e7
AK
1740static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1741 gfn_t gfn,
1742 gva_t gaddr,
1743 unsigned level,
f6e2c02b 1744 int direct,
41074d07 1745 unsigned access,
f7d9c7b7 1746 u64 *parent_pte)
cea0f0e7
AK
1747{
1748 union kvm_mmu_page_role role;
cea0f0e7 1749 unsigned quadrant;
9f1a122f 1750 struct kvm_mmu_page *sp;
f41d335a 1751 struct hlist_node *node;
9f1a122f 1752 bool need_sync = false;
cea0f0e7 1753
a770f6f2 1754 role = vcpu->arch.mmu.base_role;
cea0f0e7 1755 role.level = level;
f6e2c02b 1756 role.direct = direct;
84b0c8c6 1757 if (role.direct)
5b7e0102 1758 role.cr4_pae = 0;
41074d07 1759 role.access = access;
c5a78f2b
JR
1760 if (!vcpu->arch.mmu.direct_map
1761 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1762 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1763 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1764 role.quadrant = quadrant;
1765 }
f41d335a 1766 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1767 if (!need_sync && sp->unsync)
1768 need_sync = true;
4731d4c7 1769
7ae680eb
XG
1770 if (sp->role.word != role.word)
1771 continue;
4731d4c7 1772
7ae680eb
XG
1773 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1774 break;
e02aa901 1775
7ae680eb
XG
1776 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1777 if (sp->unsync_children) {
a8eeb04a 1778 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1779 kvm_mmu_mark_parents_unsync(sp);
1780 } else if (sp->unsync)
1781 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1782
a30f47cb 1783 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1784 trace_kvm_mmu_get_page(sp, false);
1785 return sp;
1786 }
dfc5aa00 1787 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1788 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1789 if (!sp)
1790 return sp;
4db35314
AK
1791 sp->gfn = gfn;
1792 sp->role = role;
7ae680eb
XG
1793 hlist_add_head(&sp->hash_link,
1794 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1795 if (!direct) {
b1a36821
MT
1796 if (rmap_write_protect(vcpu->kvm, gfn))
1797 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1798 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1799 kvm_sync_pages(vcpu, gfn);
1800
4731d4c7
MT
1801 account_shadowed(vcpu->kvm, gfn);
1802 }
c3707958 1803 init_shadow_page_table(sp);
f691fe1d 1804 trace_kvm_mmu_get_page(sp, true);
4db35314 1805 return sp;
cea0f0e7
AK
1806}
1807
2d11123a
AK
1808static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1809 struct kvm_vcpu *vcpu, u64 addr)
1810{
1811 iterator->addr = addr;
1812 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1813 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1814
1815 if (iterator->level == PT64_ROOT_LEVEL &&
1816 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1817 !vcpu->arch.mmu.direct_map)
1818 --iterator->level;
1819
2d11123a
AK
1820 if (iterator->level == PT32E_ROOT_LEVEL) {
1821 iterator->shadow_addr
1822 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1823 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1824 --iterator->level;
1825 if (!iterator->shadow_addr)
1826 iterator->level = 0;
1827 }
1828}
1829
1830static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1831{
1832 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1833 return false;
4d88954d 1834
2d11123a
AK
1835 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1836 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1837 return true;
1838}
1839
c2a2ac2b
XG
1840static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1841 u64 spte)
2d11123a 1842{
c2a2ac2b 1843 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1844 iterator->level = 0;
1845 return;
1846 }
1847
c2a2ac2b 1848 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1849 --iterator->level;
1850}
1851
c2a2ac2b
XG
1852static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1853{
1854 return __shadow_walk_next(iterator, *iterator->sptep);
1855}
1856
32ef26a3
AK
1857static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1858{
1859 u64 spte;
1860
1861 spte = __pa(sp->spt)
1862 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1863 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1864 mmu_spte_set(sptep, spte);
32ef26a3
AK
1865}
1866
a3aa51cf
AK
1867static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1868{
1869 if (is_large_pte(*sptep)) {
c3707958 1870 drop_spte(vcpu->kvm, sptep);
6addd1aa 1871 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1872 kvm_flush_remote_tlbs(vcpu->kvm);
1873 }
1874}
1875
a357bd22
AK
1876static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1877 unsigned direct_access)
1878{
1879 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1880 struct kvm_mmu_page *child;
1881
1882 /*
1883 * For the direct sp, if the guest pte's dirty bit
1884 * changed form clean to dirty, it will corrupt the
1885 * sp's access: allow writable in the read-only sp,
1886 * so we should update the spte at this point to get
1887 * a new sp with the correct access.
1888 */
1889 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1890 if (child->role.access == direct_access)
1891 return;
1892
bcdd9a93 1893 drop_parent_pte(child, sptep);
a357bd22
AK
1894 kvm_flush_remote_tlbs(vcpu->kvm);
1895 }
1896}
1897
505aef8f 1898static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1899 u64 *spte)
1900{
1901 u64 pte;
1902 struct kvm_mmu_page *child;
1903
1904 pte = *spte;
1905 if (is_shadow_present_pte(pte)) {
505aef8f 1906 if (is_last_spte(pte, sp->role.level)) {
c3707958 1907 drop_spte(kvm, spte);
505aef8f
XG
1908 if (is_large_pte(pte))
1909 --kvm->stat.lpages;
1910 } else {
38e3b2b2 1911 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1912 drop_parent_pte(child, spte);
38e3b2b2 1913 }
505aef8f
XG
1914 return true;
1915 }
1916
1917 if (is_mmio_spte(pte))
ce88decf 1918 mmu_spte_clear_no_track(spte);
c3707958 1919
505aef8f 1920 return false;
38e3b2b2
XG
1921}
1922
90cb0529 1923static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1924 struct kvm_mmu_page *sp)
a436036b 1925{
697fe2e2 1926 unsigned i;
697fe2e2 1927
38e3b2b2
XG
1928 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1929 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1930}
1931
4db35314 1932static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1933{
4db35314 1934 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1935}
1936
31aa2b44 1937static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1938{
1e3f42f0
TY
1939 u64 *sptep;
1940 struct rmap_iterator iter;
a436036b 1941
1e3f42f0
TY
1942 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1943 drop_parent_pte(sp, sptep);
31aa2b44
AK
1944}
1945
60c8aec6 1946static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1947 struct kvm_mmu_page *parent,
1948 struct list_head *invalid_list)
4731d4c7 1949{
60c8aec6
MT
1950 int i, zapped = 0;
1951 struct mmu_page_path parents;
1952 struct kvm_mmu_pages pages;
4731d4c7 1953
60c8aec6 1954 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1955 return 0;
60c8aec6
MT
1956
1957 kvm_mmu_pages_init(parent, &parents, &pages);
1958 while (mmu_unsync_walk(parent, &pages)) {
1959 struct kvm_mmu_page *sp;
1960
1961 for_each_sp(pages, sp, parents, i) {
7775834a 1962 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1963 mmu_pages_clear_parents(&parents);
77662e00 1964 zapped++;
60c8aec6 1965 }
60c8aec6
MT
1966 kvm_mmu_pages_init(parent, &parents, &pages);
1967 }
1968
1969 return zapped;
4731d4c7
MT
1970}
1971
7775834a
XG
1972static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1973 struct list_head *invalid_list)
31aa2b44 1974{
4731d4c7 1975 int ret;
f691fe1d 1976
7775834a 1977 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1978 ++kvm->stat.mmu_shadow_zapped;
7775834a 1979 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1980 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1981 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1982 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1983 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1984 if (sp->unsync)
1985 kvm_unlink_unsync_page(kvm, sp);
4db35314 1986 if (!sp->root_count) {
54a4f023
GJ
1987 /* Count self */
1988 ret++;
7775834a 1989 list_move(&sp->link, invalid_list);
aa6bd187 1990 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1991 } else {
5b5c6a5a 1992 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1993 kvm_reload_remote_mmus(kvm);
1994 }
7775834a
XG
1995
1996 sp->role.invalid = 1;
4731d4c7 1997 return ret;
a436036b
AK
1998}
1999
7775834a
XG
2000static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2001 struct list_head *invalid_list)
2002{
2003 struct kvm_mmu_page *sp;
2004
2005 if (list_empty(invalid_list))
2006 return;
2007
c142786c
AK
2008 /*
2009 * wmb: make sure everyone sees our modifications to the page tables
2010 * rmb: make sure we see changes to vcpu->mode
2011 */
2012 smp_mb();
4f022648 2013
c142786c
AK
2014 /*
2015 * Wait for all vcpus to exit guest mode and/or lockless shadow
2016 * page table walks.
2017 */
2018 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2019
7775834a
XG
2020 do {
2021 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2022 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2023 kvm_mmu_isolate_page(sp);
aa6bd187 2024 kvm_mmu_free_page(sp);
7775834a 2025 } while (!list_empty(invalid_list));
7775834a
XG
2026}
2027
82ce2c96
IE
2028/*
2029 * Changing the number of mmu pages allocated to the vm
49d5ca26 2030 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2031 */
49d5ca26 2032void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2033{
d98ba053 2034 LIST_HEAD(invalid_list);
82ce2c96
IE
2035 /*
2036 * If we set the number of mmu pages to be smaller be than the
2037 * number of actived pages , we must to free some mmu pages before we
2038 * change the value
2039 */
2040
49d5ca26
DH
2041 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2042 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2043 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2044 struct kvm_mmu_page *page;
2045
f05e70ac 2046 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2047 struct kvm_mmu_page, link);
80b63faf 2048 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2049 }
aa6bd187 2050 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2051 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2052 }
82ce2c96 2053
49d5ca26 2054 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2055}
2056
1cb3f3ae 2057int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2058{
4db35314 2059 struct kvm_mmu_page *sp;
f41d335a 2060 struct hlist_node *node;
d98ba053 2061 LIST_HEAD(invalid_list);
a436036b
AK
2062 int r;
2063
9ad17b10 2064 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2065 r = 0;
1cb3f3ae 2066 spin_lock(&kvm->mmu_lock);
f41d335a 2067 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2068 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2069 sp->role.word);
2070 r = 1;
f41d335a 2071 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2072 }
d98ba053 2073 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2074 spin_unlock(&kvm->mmu_lock);
2075
a436036b 2076 return r;
cea0f0e7 2077}
1cb3f3ae 2078EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2079
38c335f1 2080static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2081{
bc6678a3 2082 int slot = memslot_id(kvm, gfn);
4db35314 2083 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2084
291f26bc 2085 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2086}
2087
74be52e3
SY
2088/*
2089 * The function is based on mtrr_type_lookup() in
2090 * arch/x86/kernel/cpu/mtrr/generic.c
2091 */
2092static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2093 u64 start, u64 end)
2094{
2095 int i;
2096 u64 base, mask;
2097 u8 prev_match, curr_match;
2098 int num_var_ranges = KVM_NR_VAR_MTRR;
2099
2100 if (!mtrr_state->enabled)
2101 return 0xFF;
2102
2103 /* Make end inclusive end, instead of exclusive */
2104 end--;
2105
2106 /* Look in fixed ranges. Just return the type as per start */
2107 if (mtrr_state->have_fixed && (start < 0x100000)) {
2108 int idx;
2109
2110 if (start < 0x80000) {
2111 idx = 0;
2112 idx += (start >> 16);
2113 return mtrr_state->fixed_ranges[idx];
2114 } else if (start < 0xC0000) {
2115 idx = 1 * 8;
2116 idx += ((start - 0x80000) >> 14);
2117 return mtrr_state->fixed_ranges[idx];
2118 } else if (start < 0x1000000) {
2119 idx = 3 * 8;
2120 idx += ((start - 0xC0000) >> 12);
2121 return mtrr_state->fixed_ranges[idx];
2122 }
2123 }
2124
2125 /*
2126 * Look in variable ranges
2127 * Look of multiple ranges matching this address and pick type
2128 * as per MTRR precedence
2129 */
2130 if (!(mtrr_state->enabled & 2))
2131 return mtrr_state->def_type;
2132
2133 prev_match = 0xFF;
2134 for (i = 0; i < num_var_ranges; ++i) {
2135 unsigned short start_state, end_state;
2136
2137 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2138 continue;
2139
2140 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2141 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2142 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2143 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2144
2145 start_state = ((start & mask) == (base & mask));
2146 end_state = ((end & mask) == (base & mask));
2147 if (start_state != end_state)
2148 return 0xFE;
2149
2150 if ((start & mask) != (base & mask))
2151 continue;
2152
2153 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2154 if (prev_match == 0xFF) {
2155 prev_match = curr_match;
2156 continue;
2157 }
2158
2159 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2160 curr_match == MTRR_TYPE_UNCACHABLE)
2161 return MTRR_TYPE_UNCACHABLE;
2162
2163 if ((prev_match == MTRR_TYPE_WRBACK &&
2164 curr_match == MTRR_TYPE_WRTHROUGH) ||
2165 (prev_match == MTRR_TYPE_WRTHROUGH &&
2166 curr_match == MTRR_TYPE_WRBACK)) {
2167 prev_match = MTRR_TYPE_WRTHROUGH;
2168 curr_match = MTRR_TYPE_WRTHROUGH;
2169 }
2170
2171 if (prev_match != curr_match)
2172 return MTRR_TYPE_UNCACHABLE;
2173 }
2174
2175 if (prev_match != 0xFF)
2176 return prev_match;
2177
2178 return mtrr_state->def_type;
2179}
2180
4b12f0de 2181u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2182{
2183 u8 mtrr;
2184
2185 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2186 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2187 if (mtrr == 0xfe || mtrr == 0xff)
2188 mtrr = MTRR_TYPE_WRBACK;
2189 return mtrr;
2190}
4b12f0de 2191EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2192
9cf5cf5a
XG
2193static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2194{
2195 trace_kvm_mmu_unsync_page(sp);
2196 ++vcpu->kvm->stat.mmu_unsync;
2197 sp->unsync = 1;
2198
2199 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2200}
2201
2202static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2203{
4731d4c7 2204 struct kvm_mmu_page *s;
f41d335a 2205 struct hlist_node *node;
9cf5cf5a 2206
f41d335a 2207 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2208 if (s->unsync)
4731d4c7 2209 continue;
9cf5cf5a
XG
2210 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2211 __kvm_unsync_page(vcpu, s);
4731d4c7 2212 }
4731d4c7
MT
2213}
2214
2215static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2216 bool can_unsync)
2217{
9cf5cf5a 2218 struct kvm_mmu_page *s;
f41d335a 2219 struct hlist_node *node;
9cf5cf5a
XG
2220 bool need_unsync = false;
2221
f41d335a 2222 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2223 if (!can_unsync)
2224 return 1;
2225
9cf5cf5a 2226 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2227 return 1;
9cf5cf5a
XG
2228
2229 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2230 need_unsync = true;
2231 }
4731d4c7 2232 }
9cf5cf5a
XG
2233 if (need_unsync)
2234 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2235 return 0;
2236}
2237
d555c333 2238static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2239 unsigned pte_access, int user_fault,
640d9b0d 2240 int write_fault, int level,
c2d0ee46 2241 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2242 bool can_unsync, bool host_writable)
1c4f1fd6 2243{
b330aa0c 2244 u64 spte, entry = *sptep;
1e73f9dd 2245 int ret = 0;
64d4d521 2246
ce88decf
XG
2247 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2248 return 0;
2249
982c2565 2250 spte = PT_PRESENT_MASK;
947da538 2251 if (!speculative)
3201b5d9 2252 spte |= shadow_accessed_mask;
640d9b0d 2253
7b52345e
SY
2254 if (pte_access & ACC_EXEC_MASK)
2255 spte |= shadow_x_mask;
2256 else
2257 spte |= shadow_nx_mask;
1c4f1fd6 2258 if (pte_access & ACC_USER_MASK)
7b52345e 2259 spte |= shadow_user_mask;
852e3c19 2260 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2261 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2262 if (tdp_enabled)
4b12f0de
SY
2263 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2264 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2265
9bdbba13 2266 if (host_writable)
1403283a 2267 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2268 else
2269 pte_access &= ~ACC_WRITE_MASK;
1403283a 2270
35149e21 2271 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2272
2273 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2274 || (!vcpu->arch.mmu.direct_map && write_fault
2275 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2276
852e3c19
JR
2277 if (level > PT_PAGE_TABLE_LEVEL &&
2278 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2279 ret = 1;
c3707958 2280 drop_spte(vcpu->kvm, sptep);
be38d276 2281 goto done;
38187c83
MT
2282 }
2283
1c4f1fd6 2284 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2285
c5a78f2b 2286 if (!vcpu->arch.mmu.direct_map
411c588d 2287 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2288 spte &= ~PT_USER_MASK;
411c588d
AK
2289 /*
2290 * If we converted a user page to a kernel page,
2291 * so that the kernel can write to it when cr0.wp=0,
2292 * then we should prevent the kernel from executing it
2293 * if SMEP is enabled.
2294 */
2295 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2296 spte |= PT64_NX_MASK;
2297 }
69325a12 2298
ecc5589f
MT
2299 /*
2300 * Optimization: for pte sync, if spte was writable the hash
2301 * lookup is unnecessary (and expensive). Write protection
2302 * is responsibility of mmu_get_page / kvm_sync_page.
2303 * Same reasoning can be applied to dirty page accounting.
2304 */
8dae4445 2305 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2306 goto set_pte;
2307
4731d4c7 2308 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2309 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2310 __func__, gfn);
1e73f9dd 2311 ret = 1;
1c4f1fd6 2312 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2313 if (is_writable_pte(spte))
1c4f1fd6 2314 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2315 }
2316 }
2317
1c4f1fd6
AK
2318 if (pte_access & ACC_WRITE_MASK)
2319 mark_page_dirty(vcpu->kvm, gfn);
2320
38187c83 2321set_pte:
1df9f2dc 2322 mmu_spte_update(sptep, spte);
b330aa0c
XG
2323 /*
2324 * If we overwrite a writable spte with a read-only one we
2325 * should flush remote TLBs. Otherwise rmap_write_protect
2326 * will find a read-only spte, even though the writable spte
2327 * might be cached on a CPU's TLB.
2328 */
2329 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2330 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2331done:
1e73f9dd
MT
2332 return ret;
2333}
2334
d555c333 2335static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2336 unsigned pt_access, unsigned pte_access,
640d9b0d 2337 int user_fault, int write_fault,
b90a0e6c 2338 int *emulate, int level, gfn_t gfn,
1403283a 2339 pfn_t pfn, bool speculative,
9bdbba13 2340 bool host_writable)
1e73f9dd
MT
2341{
2342 int was_rmapped = 0;
53a27b39 2343 int rmap_count;
1e73f9dd
MT
2344
2345 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2346 " user_fault %d gfn %llx\n",
d555c333 2347 __func__, *sptep, pt_access,
1e73f9dd
MT
2348 write_fault, user_fault, gfn);
2349
d555c333 2350 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2351 /*
2352 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2353 * the parent of the now unreachable PTE.
2354 */
852e3c19
JR
2355 if (level > PT_PAGE_TABLE_LEVEL &&
2356 !is_large_pte(*sptep)) {
1e73f9dd 2357 struct kvm_mmu_page *child;
d555c333 2358 u64 pte = *sptep;
1e73f9dd
MT
2359
2360 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2361 drop_parent_pte(child, sptep);
3be2264b 2362 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2363 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2364 pgprintk("hfn old %llx new %llx\n",
d555c333 2365 spte_to_pfn(*sptep), pfn);
c3707958 2366 drop_spte(vcpu->kvm, sptep);
91546356 2367 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2368 } else
2369 was_rmapped = 1;
1e73f9dd 2370 }
852e3c19 2371
d555c333 2372 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2373 level, gfn, pfn, speculative, true,
9bdbba13 2374 host_writable)) {
1e73f9dd 2375 if (write_fault)
b90a0e6c 2376 *emulate = 1;
5304efde 2377 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2378 }
1e73f9dd 2379
ce88decf
XG
2380 if (unlikely(is_mmio_spte(*sptep) && emulate))
2381 *emulate = 1;
2382
d555c333 2383 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2384 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2385 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2386 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2387 *sptep, sptep);
d555c333 2388 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2389 ++vcpu->kvm->stat.lpages;
2390
ffb61bb3
XG
2391 if (is_shadow_present_pte(*sptep)) {
2392 page_header_update_slot(vcpu->kvm, sptep, gfn);
2393 if (!was_rmapped) {
2394 rmap_count = rmap_add(vcpu, sptep, gfn);
2395 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2396 rmap_recycle(vcpu, sptep, gfn);
2397 }
1c4f1fd6 2398 }
9ed5520d 2399 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2400}
2401
6aa8b732
AK
2402static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2403{
2404}
2405
957ed9ef
XG
2406static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2407 bool no_dirty_log)
2408{
2409 struct kvm_memory_slot *slot;
2410 unsigned long hva;
2411
5d163b1c 2412 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2413 if (!slot) {
fce92dce
XG
2414 get_page(fault_page);
2415 return page_to_pfn(fault_page);
957ed9ef
XG
2416 }
2417
2418 hva = gfn_to_hva_memslot(slot, gfn);
2419
2420 return hva_to_pfn_atomic(vcpu->kvm, hva);
2421}
2422
2423static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2424 struct kvm_mmu_page *sp,
2425 u64 *start, u64 *end)
2426{
2427 struct page *pages[PTE_PREFETCH_NUM];
2428 unsigned access = sp->role.access;
2429 int i, ret;
2430 gfn_t gfn;
2431
2432 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2433 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2434 return -1;
2435
2436 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2437 if (ret <= 0)
2438 return -1;
2439
2440 for (i = 0; i < ret; i++, gfn++, start++)
2441 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2442 access, 0, 0, NULL,
957ed9ef
XG
2443 sp->role.level, gfn,
2444 page_to_pfn(pages[i]), true, true);
2445
2446 return 0;
2447}
2448
2449static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2450 struct kvm_mmu_page *sp, u64 *sptep)
2451{
2452 u64 *spte, *start = NULL;
2453 int i;
2454
2455 WARN_ON(!sp->role.direct);
2456
2457 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2458 spte = sp->spt + i;
2459
2460 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2461 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2462 if (!start)
2463 continue;
2464 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2465 break;
2466 start = NULL;
2467 } else if (!start)
2468 start = spte;
2469 }
2470}
2471
2472static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2473{
2474 struct kvm_mmu_page *sp;
2475
2476 /*
2477 * Since it's no accessed bit on EPT, it's no way to
2478 * distinguish between actually accessed translations
2479 * and prefetched, so disable pte prefetch if EPT is
2480 * enabled.
2481 */
2482 if (!shadow_accessed_mask)
2483 return;
2484
2485 sp = page_header(__pa(sptep));
2486 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2487 return;
2488
2489 __direct_pte_prefetch(vcpu, sp, sptep);
2490}
2491
9f652d21 2492static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2493 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2494 bool prefault)
140754bc 2495{
9f652d21 2496 struct kvm_shadow_walk_iterator iterator;
140754bc 2497 struct kvm_mmu_page *sp;
b90a0e6c 2498 int emulate = 0;
140754bc 2499 gfn_t pseudo_gfn;
6aa8b732 2500
9f652d21 2501 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2502 if (iterator.level == level) {
612819c3
MT
2503 unsigned pte_access = ACC_ALL;
2504
612819c3 2505 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2506 0, write, &emulate,
2ec4739d 2507 level, gfn, pfn, prefault, map_writable);
957ed9ef 2508 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2509 ++vcpu->stat.pf_fixed;
2510 break;
6aa8b732
AK
2511 }
2512
c3707958 2513 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2514 u64 base_addr = iterator.addr;
2515
2516 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2517 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2518 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2519 iterator.level - 1,
2520 1, ACC_ALL, iterator.sptep);
2521 if (!sp) {
2522 pgprintk("nonpaging_map: ENOMEM\n");
2523 kvm_release_pfn_clean(pfn);
2524 return -ENOMEM;
2525 }
140754bc 2526
1df9f2dc
XG
2527 mmu_spte_set(iterator.sptep,
2528 __pa(sp->spt)
2529 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2530 | shadow_user_mask | shadow_x_mask
2531 | shadow_accessed_mask);
9f652d21
AK
2532 }
2533 }
b90a0e6c 2534 return emulate;
6aa8b732
AK
2535}
2536
77db5cbd 2537static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2538{
77db5cbd
HY
2539 siginfo_t info;
2540
2541 info.si_signo = SIGBUS;
2542 info.si_errno = 0;
2543 info.si_code = BUS_MCEERR_AR;
2544 info.si_addr = (void __user *)address;
2545 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2546
77db5cbd 2547 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2548}
2549
d7c55201 2550static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2551{
2552 kvm_release_pfn_clean(pfn);
2553 if (is_hwpoison_pfn(pfn)) {
bebb106a 2554 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2555 return 0;
d7c55201 2556 }
edba23e5 2557
d7c55201 2558 return -EFAULT;
bf998156
HY
2559}
2560
936a5fe6
AA
2561static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2562 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2563{
2564 pfn_t pfn = *pfnp;
2565 gfn_t gfn = *gfnp;
2566 int level = *levelp;
2567
2568 /*
2569 * Check if it's a transparent hugepage. If this would be an
2570 * hugetlbfs page, level wouldn't be set to
2571 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2572 * here.
2573 */
2574 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2575 level == PT_PAGE_TABLE_LEVEL &&
2576 PageTransCompound(pfn_to_page(pfn)) &&
2577 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2578 unsigned long mask;
2579 /*
2580 * mmu_notifier_retry was successful and we hold the
2581 * mmu_lock here, so the pmd can't become splitting
2582 * from under us, and in turn
2583 * __split_huge_page_refcount() can't run from under
2584 * us and we can safely transfer the refcount from
2585 * PG_tail to PG_head as we switch the pfn to tail to
2586 * head.
2587 */
2588 *levelp = level = PT_DIRECTORY_LEVEL;
2589 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2590 VM_BUG_ON((gfn & mask) != (pfn & mask));
2591 if (pfn & mask) {
2592 gfn &= ~mask;
2593 *gfnp = gfn;
2594 kvm_release_pfn_clean(pfn);
2595 pfn &= ~mask;
c3586667 2596 kvm_get_pfn(pfn);
936a5fe6
AA
2597 *pfnp = pfn;
2598 }
2599 }
2600}
2601
d7c55201
XG
2602static bool mmu_invalid_pfn(pfn_t pfn)
2603{
ce88decf 2604 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2605}
2606
2607static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2608 pfn_t pfn, unsigned access, int *ret_val)
2609{
2610 bool ret = true;
2611
2612 /* The pfn is invalid, report the error! */
2613 if (unlikely(is_invalid_pfn(pfn))) {
2614 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2615 goto exit;
2616 }
2617
ce88decf 2618 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2619 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2620
2621 ret = false;
2622exit:
2623 return ret;
2624}
2625
78b2c54a 2626static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2627 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2628
2629static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2630 bool prefault)
10589a46
MT
2631{
2632 int r;
852e3c19 2633 int level;
936a5fe6 2634 int force_pt_level;
35149e21 2635 pfn_t pfn;
e930bffe 2636 unsigned long mmu_seq;
612819c3 2637 bool map_writable;
aaee2c94 2638
936a5fe6
AA
2639 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2640 if (likely(!force_pt_level)) {
2641 level = mapping_level(vcpu, gfn);
2642 /*
2643 * This path builds a PAE pagetable - so we can map
2644 * 2mb pages at maximum. Therefore check if the level
2645 * is larger than that.
2646 */
2647 if (level > PT_DIRECTORY_LEVEL)
2648 level = PT_DIRECTORY_LEVEL;
852e3c19 2649
936a5fe6
AA
2650 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2651 } else
2652 level = PT_PAGE_TABLE_LEVEL;
05da4558 2653
e930bffe 2654 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2655 smp_rmb();
060c2abe 2656
78b2c54a 2657 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2658 return 0;
aaee2c94 2659
d7c55201
XG
2660 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2661 return r;
d196e343 2662
aaee2c94 2663 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2664 if (mmu_notifier_retry(vcpu, mmu_seq))
2665 goto out_unlock;
eb787d10 2666 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2667 if (likely(!force_pt_level))
2668 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2669 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2670 prefault);
aaee2c94
MT
2671 spin_unlock(&vcpu->kvm->mmu_lock);
2672
aaee2c94 2673
10589a46 2674 return r;
e930bffe
AA
2675
2676out_unlock:
2677 spin_unlock(&vcpu->kvm->mmu_lock);
2678 kvm_release_pfn_clean(pfn);
2679 return 0;
10589a46
MT
2680}
2681
2682
17ac10ad
AK
2683static void mmu_free_roots(struct kvm_vcpu *vcpu)
2684{
2685 int i;
4db35314 2686 struct kvm_mmu_page *sp;
d98ba053 2687 LIST_HEAD(invalid_list);
17ac10ad 2688
ad312c7c 2689 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2690 return;
aaee2c94 2691 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2692 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2693 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2694 vcpu->arch.mmu.direct_map)) {
ad312c7c 2695 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2696
4db35314
AK
2697 sp = page_header(root);
2698 --sp->root_count;
d98ba053
XG
2699 if (!sp->root_count && sp->role.invalid) {
2700 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2701 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2702 }
ad312c7c 2703 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2704 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2705 return;
2706 }
17ac10ad 2707 for (i = 0; i < 4; ++i) {
ad312c7c 2708 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2709
417726a3 2710 if (root) {
417726a3 2711 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2712 sp = page_header(root);
2713 --sp->root_count;
2e53d63a 2714 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2715 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2716 &invalid_list);
417726a3 2717 }
ad312c7c 2718 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2719 }
d98ba053 2720 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2721 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2722 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2723}
2724
8986ecc0
MT
2725static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2726{
2727 int ret = 0;
2728
2729 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2730 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2731 ret = 1;
2732 }
2733
2734 return ret;
2735}
2736
651dd37a
JR
2737static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2738{
2739 struct kvm_mmu_page *sp;
7ebaf15e 2740 unsigned i;
651dd37a
JR
2741
2742 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2743 spin_lock(&vcpu->kvm->mmu_lock);
2744 kvm_mmu_free_some_pages(vcpu);
2745 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2746 1, ACC_ALL, NULL);
2747 ++sp->root_count;
2748 spin_unlock(&vcpu->kvm->mmu_lock);
2749 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2750 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2751 for (i = 0; i < 4; ++i) {
2752 hpa_t root = vcpu->arch.mmu.pae_root[i];
2753
2754 ASSERT(!VALID_PAGE(root));
2755 spin_lock(&vcpu->kvm->mmu_lock);
2756 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2757 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2758 i << 30,
651dd37a
JR
2759 PT32_ROOT_LEVEL, 1, ACC_ALL,
2760 NULL);
2761 root = __pa(sp->spt);
2762 ++sp->root_count;
2763 spin_unlock(&vcpu->kvm->mmu_lock);
2764 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2765 }
6292757f 2766 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2767 } else
2768 BUG();
2769
2770 return 0;
2771}
2772
2773static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2774{
4db35314 2775 struct kvm_mmu_page *sp;
81407ca5
JR
2776 u64 pdptr, pm_mask;
2777 gfn_t root_gfn;
2778 int i;
3bb65a22 2779
5777ed34 2780 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2781
651dd37a
JR
2782 if (mmu_check_root(vcpu, root_gfn))
2783 return 1;
2784
2785 /*
2786 * Do we shadow a long mode page table? If so we need to
2787 * write-protect the guests page table root.
2788 */
2789 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2790 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2791
2792 ASSERT(!VALID_PAGE(root));
651dd37a 2793
8facbbff 2794 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2795 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2796 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2797 0, ACC_ALL, NULL);
4db35314
AK
2798 root = __pa(sp->spt);
2799 ++sp->root_count;
8facbbff 2800 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2801 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2802 return 0;
17ac10ad 2803 }
f87f9288 2804
651dd37a
JR
2805 /*
2806 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2807 * or a PAE 3-level page table. In either case we need to be aware that
2808 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2809 */
81407ca5
JR
2810 pm_mask = PT_PRESENT_MASK;
2811 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2812 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2813
17ac10ad 2814 for (i = 0; i < 4; ++i) {
ad312c7c 2815 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2816
2817 ASSERT(!VALID_PAGE(root));
ad312c7c 2818 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2819 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2820 if (!is_present_gpte(pdptr)) {
ad312c7c 2821 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2822 continue;
2823 }
6de4f3ad 2824 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2825 if (mmu_check_root(vcpu, root_gfn))
2826 return 1;
5a7388c2 2827 }
8facbbff 2828 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2829 kvm_mmu_free_some_pages(vcpu);
4db35314 2830 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2831 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2832 ACC_ALL, NULL);
4db35314
AK
2833 root = __pa(sp->spt);
2834 ++sp->root_count;
8facbbff
AK
2835 spin_unlock(&vcpu->kvm->mmu_lock);
2836
81407ca5 2837 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2838 }
6292757f 2839 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2840
2841 /*
2842 * If we shadow a 32 bit page table with a long mode page
2843 * table we enter this path.
2844 */
2845 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2846 if (vcpu->arch.mmu.lm_root == NULL) {
2847 /*
2848 * The additional page necessary for this is only
2849 * allocated on demand.
2850 */
2851
2852 u64 *lm_root;
2853
2854 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2855 if (lm_root == NULL)
2856 return 1;
2857
2858 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2859
2860 vcpu->arch.mmu.lm_root = lm_root;
2861 }
2862
2863 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2864 }
2865
8986ecc0 2866 return 0;
17ac10ad
AK
2867}
2868
651dd37a
JR
2869static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2870{
2871 if (vcpu->arch.mmu.direct_map)
2872 return mmu_alloc_direct_roots(vcpu);
2873 else
2874 return mmu_alloc_shadow_roots(vcpu);
2875}
2876
0ba73cda
MT
2877static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2878{
2879 int i;
2880 struct kvm_mmu_page *sp;
2881
81407ca5
JR
2882 if (vcpu->arch.mmu.direct_map)
2883 return;
2884
0ba73cda
MT
2885 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2886 return;
6903074c 2887
bebb106a 2888 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2889 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2890 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2891 hpa_t root = vcpu->arch.mmu.root_hpa;
2892 sp = page_header(root);
2893 mmu_sync_children(vcpu, sp);
0375f7fa 2894 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2895 return;
2896 }
2897 for (i = 0; i < 4; ++i) {
2898 hpa_t root = vcpu->arch.mmu.pae_root[i];
2899
8986ecc0 2900 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2901 root &= PT64_BASE_ADDR_MASK;
2902 sp = page_header(root);
2903 mmu_sync_children(vcpu, sp);
2904 }
2905 }
0375f7fa 2906 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2907}
2908
2909void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2910{
2911 spin_lock(&vcpu->kvm->mmu_lock);
2912 mmu_sync_roots(vcpu);
6cffe8ca 2913 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2914}
2915
1871c602 2916static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2917 u32 access, struct x86_exception *exception)
6aa8b732 2918{
ab9ae313
AK
2919 if (exception)
2920 exception->error_code = 0;
6aa8b732
AK
2921 return vaddr;
2922}
2923
6539e738 2924static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2925 u32 access,
2926 struct x86_exception *exception)
6539e738 2927{
ab9ae313
AK
2928 if (exception)
2929 exception->error_code = 0;
6539e738
JR
2930 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2931}
2932
ce88decf
XG
2933static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2934{
2935 if (direct)
2936 return vcpu_match_mmio_gpa(vcpu, addr);
2937
2938 return vcpu_match_mmio_gva(vcpu, addr);
2939}
2940
2941
2942/*
2943 * On direct hosts, the last spte is only allows two states
2944 * for mmio page fault:
2945 * - It is the mmio spte
2946 * - It is zapped or it is being zapped.
2947 *
2948 * This function completely checks the spte when the last spte
2949 * is not the mmio spte.
2950 */
2951static bool check_direct_spte_mmio_pf(u64 spte)
2952{
2953 return __check_direct_spte_mmio_pf(spte);
2954}
2955
2956static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2957{
2958 struct kvm_shadow_walk_iterator iterator;
2959 u64 spte = 0ull;
2960
2961 walk_shadow_page_lockless_begin(vcpu);
2962 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2963 if (!is_shadow_present_pte(spte))
2964 break;
2965 walk_shadow_page_lockless_end(vcpu);
2966
2967 return spte;
2968}
2969
2970/*
2971 * If it is a real mmio page fault, return 1 and emulat the instruction
2972 * directly, return 0 to let CPU fault again on the address, -1 is
2973 * returned if bug is detected.
2974 */
2975int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2976{
2977 u64 spte;
2978
2979 if (quickly_check_mmio_pf(vcpu, addr, direct))
2980 return 1;
2981
2982 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2983
2984 if (is_mmio_spte(spte)) {
2985 gfn_t gfn = get_mmio_spte_gfn(spte);
2986 unsigned access = get_mmio_spte_access(spte);
2987
2988 if (direct)
2989 addr = 0;
4f022648
XG
2990
2991 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2992 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2993 return 1;
2994 }
2995
2996 /*
2997 * It's ok if the gva is remapped by other cpus on shadow guest,
2998 * it's a BUG if the gfn is not a mmio page.
2999 */
3000 if (direct && !check_direct_spte_mmio_pf(spte))
3001 return -1;
3002
3003 /*
3004 * If the page table is zapped by other cpus, let CPU fault again on
3005 * the address.
3006 */
3007 return 0;
3008}
3009EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3010
3011static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3012 u32 error_code, bool direct)
3013{
3014 int ret;
3015
3016 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3017 WARN_ON(ret < 0);
3018 return ret;
3019}
3020
6aa8b732 3021static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3022 u32 error_code, bool prefault)
6aa8b732 3023{
e833240f 3024 gfn_t gfn;
e2dec939 3025 int r;
6aa8b732 3026
b8688d51 3027 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3028
3029 if (unlikely(error_code & PFERR_RSVD_MASK))
3030 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3031
e2dec939
AK
3032 r = mmu_topup_memory_caches(vcpu);
3033 if (r)
3034 return r;
714b93da 3035
6aa8b732 3036 ASSERT(vcpu);
ad312c7c 3037 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3038
e833240f 3039 gfn = gva >> PAGE_SHIFT;
6aa8b732 3040
e833240f 3041 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3042 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3043}
3044
7e1fbeac 3045static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3046{
3047 struct kvm_arch_async_pf arch;
fb67e14f 3048
7c90705b 3049 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3050 arch.gfn = gfn;
c4806acd 3051 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3052 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3053
3054 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3055}
3056
3057static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3058{
3059 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3060 kvm_event_needs_reinjection(vcpu)))
3061 return false;
3062
3063 return kvm_x86_ops->interrupt_allowed(vcpu);
3064}
3065
78b2c54a 3066static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3067 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3068{
3069 bool async;
3070
612819c3 3071 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3072
3073 if (!async)
3074 return false; /* *pfn has correct page already */
3075
3076 put_page(pfn_to_page(*pfn));
3077
78b2c54a 3078 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3079 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3080 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3081 trace_kvm_async_pf_doublefault(gva, gfn);
3082 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3083 return true;
3084 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3085 return true;
3086 }
3087
612819c3 3088 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3089
3090 return false;
3091}
3092
56028d08 3093static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3094 bool prefault)
fb72d167 3095{
35149e21 3096 pfn_t pfn;
fb72d167 3097 int r;
852e3c19 3098 int level;
936a5fe6 3099 int force_pt_level;
05da4558 3100 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3101 unsigned long mmu_seq;
612819c3
MT
3102 int write = error_code & PFERR_WRITE_MASK;
3103 bool map_writable;
fb72d167
JR
3104
3105 ASSERT(vcpu);
3106 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3107
ce88decf
XG
3108 if (unlikely(error_code & PFERR_RSVD_MASK))
3109 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3110
fb72d167
JR
3111 r = mmu_topup_memory_caches(vcpu);
3112 if (r)
3113 return r;
3114
936a5fe6
AA
3115 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3116 if (likely(!force_pt_level)) {
3117 level = mapping_level(vcpu, gfn);
3118 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3119 } else
3120 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3121
e930bffe 3122 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3123 smp_rmb();
af585b92 3124
78b2c54a 3125 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3126 return 0;
3127
d7c55201
XG
3128 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3129 return r;
3130
fb72d167 3131 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3132 if (mmu_notifier_retry(vcpu, mmu_seq))
3133 goto out_unlock;
fb72d167 3134 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3135 if (likely(!force_pt_level))
3136 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3137 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3138 level, gfn, pfn, prefault);
fb72d167 3139 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3140
3141 return r;
e930bffe
AA
3142
3143out_unlock:
3144 spin_unlock(&vcpu->kvm->mmu_lock);
3145 kvm_release_pfn_clean(pfn);
3146 return 0;
fb72d167
JR
3147}
3148
6aa8b732
AK
3149static void nonpaging_free(struct kvm_vcpu *vcpu)
3150{
17ac10ad 3151 mmu_free_roots(vcpu);
6aa8b732
AK
3152}
3153
52fde8df
JR
3154static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3155 struct kvm_mmu *context)
6aa8b732 3156{
6aa8b732
AK
3157 context->new_cr3 = nonpaging_new_cr3;
3158 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3159 context->gva_to_gpa = nonpaging_gva_to_gpa;
3160 context->free = nonpaging_free;
e8bc217a 3161 context->sync_page = nonpaging_sync_page;
a7052897 3162 context->invlpg = nonpaging_invlpg;
0f53b5b1 3163 context->update_pte = nonpaging_update_pte;
cea0f0e7 3164 context->root_level = 0;
6aa8b732 3165 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3166 context->root_hpa = INVALID_PAGE;
c5a78f2b 3167 context->direct_map = true;
2d48a985 3168 context->nx = false;
6aa8b732
AK
3169 return 0;
3170}
3171
d835dfec 3172void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3173{
1165f5fe 3174 ++vcpu->stat.tlb_flush;
a8eeb04a 3175 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3176}
3177
3178static void paging_new_cr3(struct kvm_vcpu *vcpu)
3179{
9f8fe504 3180 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3181 mmu_free_roots(vcpu);
6aa8b732
AK
3182}
3183
5777ed34
JR
3184static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3185{
9f8fe504 3186 return kvm_read_cr3(vcpu);
5777ed34
JR
3187}
3188
6389ee94
AK
3189static void inject_page_fault(struct kvm_vcpu *vcpu,
3190 struct x86_exception *fault)
6aa8b732 3191{
6389ee94 3192 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3193}
3194
6aa8b732
AK
3195static void paging_free(struct kvm_vcpu *vcpu)
3196{
3197 nonpaging_free(vcpu);
3198}
3199
3241f22d 3200static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3201{
3202 int bit7;
3203
3204 bit7 = (gpte >> 7) & 1;
3241f22d 3205 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3206}
3207
ce88decf
XG
3208static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3209 int *nr_present)
3210{
3211 if (unlikely(is_mmio_spte(*sptep))) {
3212 if (gfn != get_mmio_spte_gfn(*sptep)) {
3213 mmu_spte_clear_no_track(sptep);
3214 return true;
3215 }
3216
3217 (*nr_present)++;
3218 mark_mmio_spte(sptep, gfn, access);
3219 return true;
3220 }
3221
3222 return false;
3223}
3224
6aa8b732
AK
3225#define PTTYPE 64
3226#include "paging_tmpl.h"
3227#undef PTTYPE
3228
3229#define PTTYPE 32
3230#include "paging_tmpl.h"
3231#undef PTTYPE
3232
52fde8df 3233static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3234 struct kvm_mmu *context)
82725b20 3235{
82725b20
DE
3236 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3237 u64 exb_bit_rsvd = 0;
3238
2d48a985 3239 if (!context->nx)
82725b20 3240 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3241 switch (context->root_level) {
82725b20
DE
3242 case PT32_ROOT_LEVEL:
3243 /* no rsvd bits for 2 level 4K page table entries */
3244 context->rsvd_bits_mask[0][1] = 0;
3245 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3246 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3247
3248 if (!is_pse(vcpu)) {
3249 context->rsvd_bits_mask[1][1] = 0;
3250 break;
3251 }
3252
82725b20
DE
3253 if (is_cpuid_PSE36())
3254 /* 36bits PSE 4MB page */
3255 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3256 else
3257 /* 32 bits PSE 4MB page */
3258 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3259 break;
3260 case PT32E_ROOT_LEVEL:
20c466b5
DE
3261 context->rsvd_bits_mask[0][2] =
3262 rsvd_bits(maxphyaddr, 63) |
3263 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3264 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3265 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3266 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3267 rsvd_bits(maxphyaddr, 62); /* PTE */
3268 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3269 rsvd_bits(maxphyaddr, 62) |
3270 rsvd_bits(13, 20); /* large page */
f815bce8 3271 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3272 break;
3273 case PT64_ROOT_LEVEL:
3274 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3275 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3276 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3277 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3278 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3279 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3280 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3281 rsvd_bits(maxphyaddr, 51);
3282 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3283 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3284 rsvd_bits(maxphyaddr, 51) |
3285 rsvd_bits(13, 29);
82725b20 3286 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3287 rsvd_bits(maxphyaddr, 51) |
3288 rsvd_bits(13, 20); /* large page */
f815bce8 3289 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3290 break;
3291 }
3292}
3293
52fde8df
JR
3294static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3295 struct kvm_mmu *context,
3296 int level)
6aa8b732 3297{
2d48a985 3298 context->nx = is_nx(vcpu);
4d6931c3 3299 context->root_level = level;
2d48a985 3300
4d6931c3 3301 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3302
3303 ASSERT(is_pae(vcpu));
3304 context->new_cr3 = paging_new_cr3;
3305 context->page_fault = paging64_page_fault;
6aa8b732 3306 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3307 context->sync_page = paging64_sync_page;
a7052897 3308 context->invlpg = paging64_invlpg;
0f53b5b1 3309 context->update_pte = paging64_update_pte;
6aa8b732 3310 context->free = paging_free;
17ac10ad 3311 context->shadow_root_level = level;
17c3ba9d 3312 context->root_hpa = INVALID_PAGE;
c5a78f2b 3313 context->direct_map = false;
6aa8b732
AK
3314 return 0;
3315}
3316
52fde8df
JR
3317static int paging64_init_context(struct kvm_vcpu *vcpu,
3318 struct kvm_mmu *context)
17ac10ad 3319{
52fde8df 3320 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3321}
3322
52fde8df
JR
3323static int paging32_init_context(struct kvm_vcpu *vcpu,
3324 struct kvm_mmu *context)
6aa8b732 3325{
2d48a985 3326 context->nx = false;
4d6931c3 3327 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3328
4d6931c3 3329 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3330
3331 context->new_cr3 = paging_new_cr3;
3332 context->page_fault = paging32_page_fault;
6aa8b732
AK
3333 context->gva_to_gpa = paging32_gva_to_gpa;
3334 context->free = paging_free;
e8bc217a 3335 context->sync_page = paging32_sync_page;
a7052897 3336 context->invlpg = paging32_invlpg;
0f53b5b1 3337 context->update_pte = paging32_update_pte;
6aa8b732 3338 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3339 context->root_hpa = INVALID_PAGE;
c5a78f2b 3340 context->direct_map = false;
6aa8b732
AK
3341 return 0;
3342}
3343
52fde8df
JR
3344static int paging32E_init_context(struct kvm_vcpu *vcpu,
3345 struct kvm_mmu *context)
6aa8b732 3346{
52fde8df 3347 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3348}
3349
fb72d167
JR
3350static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3351{
14dfe855 3352 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3353
c445f8ef 3354 context->base_role.word = 0;
fb72d167
JR
3355 context->new_cr3 = nonpaging_new_cr3;
3356 context->page_fault = tdp_page_fault;
3357 context->free = nonpaging_free;
e8bc217a 3358 context->sync_page = nonpaging_sync_page;
a7052897 3359 context->invlpg = nonpaging_invlpg;
0f53b5b1 3360 context->update_pte = nonpaging_update_pte;
67253af5 3361 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3362 context->root_hpa = INVALID_PAGE;
c5a78f2b 3363 context->direct_map = true;
1c97f0a0 3364 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3365 context->get_cr3 = get_cr3;
e4e517b4 3366 context->get_pdptr = kvm_pdptr_read;
cb659db8 3367 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3368
3369 if (!is_paging(vcpu)) {
2d48a985 3370 context->nx = false;
fb72d167
JR
3371 context->gva_to_gpa = nonpaging_gva_to_gpa;
3372 context->root_level = 0;
3373 } else if (is_long_mode(vcpu)) {
2d48a985 3374 context->nx = is_nx(vcpu);
fb72d167 3375 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3376 reset_rsvds_bits_mask(vcpu, context);
3377 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3378 } else if (is_pae(vcpu)) {
2d48a985 3379 context->nx = is_nx(vcpu);
fb72d167 3380 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3381 reset_rsvds_bits_mask(vcpu, context);
3382 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3383 } else {
2d48a985 3384 context->nx = false;
fb72d167 3385 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3386 reset_rsvds_bits_mask(vcpu, context);
3387 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3388 }
3389
3390 return 0;
3391}
3392
52fde8df 3393int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3394{
a770f6f2 3395 int r;
411c588d 3396 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3397 ASSERT(vcpu);
ad312c7c 3398 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3399
3400 if (!is_paging(vcpu))
52fde8df 3401 r = nonpaging_init_context(vcpu, context);
a9058ecd 3402 else if (is_long_mode(vcpu))
52fde8df 3403 r = paging64_init_context(vcpu, context);
6aa8b732 3404 else if (is_pae(vcpu))
52fde8df 3405 r = paging32E_init_context(vcpu, context);
6aa8b732 3406 else
52fde8df 3407 r = paging32_init_context(vcpu, context);
a770f6f2 3408
5b7e0102 3409 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3410 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3411 vcpu->arch.mmu.base_role.smep_andnot_wp
3412 = smep && !is_write_protection(vcpu);
52fde8df
JR
3413
3414 return r;
3415}
3416EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3417
3418static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3419{
14dfe855 3420 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3421
14dfe855
JR
3422 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3423 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3424 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3425 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3426
3427 return r;
6aa8b732
AK
3428}
3429
02f59dc9
JR
3430static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3431{
3432 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3433
3434 g_context->get_cr3 = get_cr3;
e4e517b4 3435 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3436 g_context->inject_page_fault = kvm_inject_page_fault;
3437
3438 /*
3439 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3440 * translation of l2_gpa to l1_gpa addresses is done using the
3441 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3442 * functions between mmu and nested_mmu are swapped.
3443 */
3444 if (!is_paging(vcpu)) {
2d48a985 3445 g_context->nx = false;
02f59dc9
JR
3446 g_context->root_level = 0;
3447 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3448 } else if (is_long_mode(vcpu)) {
2d48a985 3449 g_context->nx = is_nx(vcpu);
02f59dc9 3450 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3451 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3452 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3453 } else if (is_pae(vcpu)) {
2d48a985 3454 g_context->nx = is_nx(vcpu);
02f59dc9 3455 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3456 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3457 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3458 } else {
2d48a985 3459 g_context->nx = false;
02f59dc9 3460 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3461 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3462 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3463 }
3464
3465 return 0;
3466}
3467
fb72d167
JR
3468static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3469{
02f59dc9
JR
3470 if (mmu_is_nested(vcpu))
3471 return init_kvm_nested_mmu(vcpu);
3472 else if (tdp_enabled)
fb72d167
JR
3473 return init_kvm_tdp_mmu(vcpu);
3474 else
3475 return init_kvm_softmmu(vcpu);
3476}
3477
6aa8b732
AK
3478static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3479{
3480 ASSERT(vcpu);
62ad0755
SY
3481 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3482 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3483 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3484}
3485
3486int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3487{
3488 destroy_kvm_mmu(vcpu);
f8f7e5ee 3489 return init_kvm_mmu(vcpu);
17c3ba9d 3490}
8668a3c4 3491EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3492
3493int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3494{
714b93da
AK
3495 int r;
3496
e2dec939 3497 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3498 if (r)
3499 goto out;
8986ecc0 3500 r = mmu_alloc_roots(vcpu);
8facbbff 3501 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3502 mmu_sync_roots(vcpu);
aaee2c94 3503 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3504 if (r)
3505 goto out;
3662cb1c 3506 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3507 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3508out:
3509 return r;
6aa8b732 3510}
17c3ba9d
AK
3511EXPORT_SYMBOL_GPL(kvm_mmu_load);
3512
3513void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3514{
3515 mmu_free_roots(vcpu);
3516}
4b16184c 3517EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3518
0028425f 3519static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3520 struct kvm_mmu_page *sp, u64 *spte,
3521 const void *new)
0028425f 3522{
30945387 3523 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3524 ++vcpu->kvm->stat.mmu_pde_zapped;
3525 return;
30945387 3526 }
0028425f 3527
4cee5764 3528 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3529 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3530}
3531
79539cec
AK
3532static bool need_remote_flush(u64 old, u64 new)
3533{
3534 if (!is_shadow_present_pte(old))
3535 return false;
3536 if (!is_shadow_present_pte(new))
3537 return true;
3538 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3539 return true;
3540 old ^= PT64_NX_MASK;
3541 new ^= PT64_NX_MASK;
3542 return (old & ~new & PT64_PERM_MASK) != 0;
3543}
3544
0671a8e7
XG
3545static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3546 bool remote_flush, bool local_flush)
79539cec 3547{
0671a8e7
XG
3548 if (zap_page)
3549 return;
3550
3551 if (remote_flush)
79539cec 3552 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3553 else if (local_flush)
79539cec
AK
3554 kvm_mmu_flush_tlb(vcpu);
3555}
3556
889e5cbc
XG
3557static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3558 const u8 *new, int *bytes)
da4a00f0 3559{
889e5cbc
XG
3560 u64 gentry;
3561 int r;
72016f3a 3562
72016f3a
AK
3563 /*
3564 * Assume that the pte write on a page table of the same type
49b26e26
XG
3565 * as the current vcpu paging mode since we update the sptes only
3566 * when they have the same mode.
72016f3a 3567 */
889e5cbc 3568 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3569 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3570 *gpa &= ~(gpa_t)7;
3571 *bytes = 8;
3572 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3573 if (r)
3574 gentry = 0;
08e850c6
AK
3575 new = (const u8 *)&gentry;
3576 }
3577
889e5cbc 3578 switch (*bytes) {
08e850c6
AK
3579 case 4:
3580 gentry = *(const u32 *)new;
3581 break;
3582 case 8:
3583 gentry = *(const u64 *)new;
3584 break;
3585 default:
3586 gentry = 0;
3587 break;
72016f3a
AK
3588 }
3589
889e5cbc
XG
3590 return gentry;
3591}
3592
3593/*
3594 * If we're seeing too many writes to a page, it may no longer be a page table,
3595 * or we may be forking, in which case it is better to unmap the page.
3596 */
a138fe75 3597static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3598{
a30f47cb
XG
3599 /*
3600 * Skip write-flooding detected for the sp whose level is 1, because
3601 * it can become unsync, then the guest page is not write-protected.
3602 */
f71fa31f 3603 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3604 return false;
3246af0e 3605
a30f47cb 3606 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3607}
3608
3609/*
3610 * Misaligned accesses are too much trouble to fix up; also, they usually
3611 * indicate a page is not used as a page table.
3612 */
3613static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3614 int bytes)
3615{
3616 unsigned offset, pte_size, misaligned;
3617
3618 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3619 gpa, bytes, sp->role.word);
3620
3621 offset = offset_in_page(gpa);
3622 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3623
3624 /*
3625 * Sometimes, the OS only writes the last one bytes to update status
3626 * bits, for example, in linux, andb instruction is used in clear_bit().
3627 */
3628 if (!(offset & (pte_size - 1)) && bytes == 1)
3629 return false;
3630
889e5cbc
XG
3631 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3632 misaligned |= bytes < 4;
3633
3634 return misaligned;
3635}
3636
3637static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3638{
3639 unsigned page_offset, quadrant;
3640 u64 *spte;
3641 int level;
3642
3643 page_offset = offset_in_page(gpa);
3644 level = sp->role.level;
3645 *nspte = 1;
3646 if (!sp->role.cr4_pae) {
3647 page_offset <<= 1; /* 32->64 */
3648 /*
3649 * A 32-bit pde maps 4MB while the shadow pdes map
3650 * only 2MB. So we need to double the offset again
3651 * and zap two pdes instead of one.
3652 */
3653 if (level == PT32_ROOT_LEVEL) {
3654 page_offset &= ~7; /* kill rounding error */
3655 page_offset <<= 1;
3656 *nspte = 2;
3657 }
3658 quadrant = page_offset >> PAGE_SHIFT;
3659 page_offset &= ~PAGE_MASK;
3660 if (quadrant != sp->role.quadrant)
3661 return NULL;
3662 }
3663
3664 spte = &sp->spt[page_offset / sizeof(*spte)];
3665 return spte;
3666}
3667
3668void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3669 const u8 *new, int bytes)
3670{
3671 gfn_t gfn = gpa >> PAGE_SHIFT;
3672 union kvm_mmu_page_role mask = { .word = 0 };
3673 struct kvm_mmu_page *sp;
3674 struct hlist_node *node;
3675 LIST_HEAD(invalid_list);
3676 u64 entry, gentry, *spte;
3677 int npte;
a30f47cb 3678 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3679
3680 /*
3681 * If we don't have indirect shadow pages, it means no page is
3682 * write-protected, so we can exit simply.
3683 */
3684 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3685 return;
3686
3687 zap_page = remote_flush = local_flush = false;
3688
3689 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3690
3691 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3692
3693 /*
3694 * No need to care whether allocation memory is successful
3695 * or not since pte prefetch is skiped if it does not have
3696 * enough objects in the cache.
3697 */
3698 mmu_topup_memory_caches(vcpu);
3699
3700 spin_lock(&vcpu->kvm->mmu_lock);
3701 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3702 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3703
fa1de2bf 3704 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3705 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3706 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3707 detect_write_flooding(sp)) {
0671a8e7 3708 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3709 &invalid_list);
4cee5764 3710 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3711 continue;
3712 }
889e5cbc
XG
3713
3714 spte = get_written_sptes(sp, gpa, &npte);
3715 if (!spte)
3716 continue;
3717
0671a8e7 3718 local_flush = true;
ac1b714e 3719 while (npte--) {
79539cec 3720 entry = *spte;
38e3b2b2 3721 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3722 if (gentry &&
3723 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3724 & mask.word) && rmap_can_add(vcpu))
7c562522 3725 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3726 if (!remote_flush && need_remote_flush(entry, *spte))
3727 remote_flush = true;
ac1b714e 3728 ++spte;
9b7a0325 3729 }
9b7a0325 3730 }
0671a8e7 3731 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3732 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3733 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3734 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3735}
3736
a436036b
AK
3737int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3738{
10589a46
MT
3739 gpa_t gpa;
3740 int r;
a436036b 3741
c5a78f2b 3742 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3743 return 0;
3744
1871c602 3745 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3746
10589a46 3747 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3748
10589a46 3749 return r;
a436036b 3750}
577bdc49 3751EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3752
22d95b12 3753void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3754{
d98ba053 3755 LIST_HEAD(invalid_list);
103ad25a 3756
e0df7b9f 3757 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3758 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3759 struct kvm_mmu_page *sp;
ebeace86 3760
f05e70ac 3761 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3762 struct kvm_mmu_page, link);
e0df7b9f 3763 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3764 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3765 }
aa6bd187 3766 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3767}
ebeace86 3768
1cb3f3ae
XG
3769static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3770{
3771 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3772 return vcpu_match_mmio_gpa(vcpu, addr);
3773
3774 return vcpu_match_mmio_gva(vcpu, addr);
3775}
3776
dc25e89e
AP
3777int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3778 void *insn, int insn_len)
3067714c 3779{
1cb3f3ae 3780 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3781 enum emulation_result er;
3782
56028d08 3783 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3784 if (r < 0)
3785 goto out;
3786
3787 if (!r) {
3788 r = 1;
3789 goto out;
3790 }
3791
1cb3f3ae
XG
3792 if (is_mmio_page_fault(vcpu, cr2))
3793 emulation_type = 0;
3794
3795 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3796
3797 switch (er) {
3798 case EMULATE_DONE:
3799 return 1;
3800 case EMULATE_DO_MMIO:
3801 ++vcpu->stat.mmio_exits;
6d77dbfc 3802 /* fall through */
3067714c 3803 case EMULATE_FAIL:
3f5d18a9 3804 return 0;
3067714c
AK
3805 default:
3806 BUG();
3807 }
3808out:
3067714c
AK
3809 return r;
3810}
3811EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3812
a7052897
MT
3813void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3814{
a7052897 3815 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3816 kvm_mmu_flush_tlb(vcpu);
3817 ++vcpu->stat.invlpg;
3818}
3819EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3820
18552672
JR
3821void kvm_enable_tdp(void)
3822{
3823 tdp_enabled = true;
3824}
3825EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3826
5f4cb662
JR
3827void kvm_disable_tdp(void)
3828{
3829 tdp_enabled = false;
3830}
3831EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3832
6aa8b732
AK
3833static void free_mmu_pages(struct kvm_vcpu *vcpu)
3834{
ad312c7c 3835 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3836 if (vcpu->arch.mmu.lm_root != NULL)
3837 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3838}
3839
3840static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3841{
17ac10ad 3842 struct page *page;
6aa8b732
AK
3843 int i;
3844
3845 ASSERT(vcpu);
3846
17ac10ad
AK
3847 /*
3848 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3849 * Therefore we need to allocate shadow page tables in the first
3850 * 4GB of memory, which happens to fit the DMA32 zone.
3851 */
3852 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3853 if (!page)
d7fa6ab2
WY
3854 return -ENOMEM;
3855
ad312c7c 3856 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3857 for (i = 0; i < 4; ++i)
ad312c7c 3858 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3859
6aa8b732 3860 return 0;
6aa8b732
AK
3861}
3862
8018c27b 3863int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3864{
6aa8b732 3865 ASSERT(vcpu);
e459e322
XG
3866
3867 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3868 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3869 vcpu->arch.mmu.translate_gpa = translate_gpa;
3870 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3871
8018c27b
IM
3872 return alloc_mmu_pages(vcpu);
3873}
6aa8b732 3874
8018c27b
IM
3875int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3876{
3877 ASSERT(vcpu);
ad312c7c 3878 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3879
8018c27b 3880 return init_kvm_mmu(vcpu);
6aa8b732
AK
3881}
3882
90cb0529 3883void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3884{
4db35314 3885 struct kvm_mmu_page *sp;
6aa8b732 3886
f05e70ac 3887 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3888 int i;
3889 u64 *pt;
3890
291f26bc 3891 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3892 continue;
3893
4db35314 3894 pt = sp->spt;
8234b22e 3895 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3896 if (!is_shadow_present_pte(pt[i]) ||
3897 !is_last_spte(pt[i], sp->role.level))
3898 continue;
3899
3900 if (is_large_pte(pt[i])) {
c3707958 3901 drop_spte(kvm, &pt[i]);
8234b22e 3902 --kvm->stat.lpages;
da8dc75f 3903 continue;
8234b22e 3904 }
da8dc75f 3905
6aa8b732 3906 /* avoid RMW */
01c168ac 3907 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3908 mmu_spte_update(&pt[i],
3909 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3910 }
6aa8b732 3911 }
171d595d 3912 kvm_flush_remote_tlbs(kvm);
6aa8b732 3913}
37a7d8b0 3914
90cb0529 3915void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3916{
4db35314 3917 struct kvm_mmu_page *sp, *node;
d98ba053 3918 LIST_HEAD(invalid_list);
e0fa826f 3919
aaee2c94 3920 spin_lock(&kvm->mmu_lock);
3246af0e 3921restart:
f05e70ac 3922 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3923 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3924 goto restart;
3925
d98ba053 3926 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3927 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3928}
3929
3d56cbdf
JK
3930static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3931 struct list_head *invalid_list)
3ee16c81
IE
3932{
3933 struct kvm_mmu_page *page;
3934
3935 page = container_of(kvm->arch.active_mmu_pages.prev,
3936 struct kvm_mmu_page, link);
3d56cbdf 3937 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3938}
3939
1495f230 3940static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3941{
3942 struct kvm *kvm;
1495f230 3943 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3944
3945 if (nr_to_scan == 0)
3946 goto out;
3ee16c81 3947
e935b837 3948 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3949
3950 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3951 int idx;
d98ba053 3952 LIST_HEAD(invalid_list);
3ee16c81 3953
19526396
GN
3954 /*
3955 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3956 * here. We may skip a VM instance errorneosly, but we do not
3957 * want to shrink a VM that only started to populate its MMU
3958 * anyway.
3959 */
3960 if (kvm->arch.n_used_mmu_pages > 0) {
3961 if (!nr_to_scan--)
3962 break;
3963 continue;
3964 }
3965
f656ce01 3966 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3967 spin_lock(&kvm->mmu_lock);
3ee16c81 3968
19526396 3969 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 3970 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 3971
3ee16c81 3972 spin_unlock(&kvm->mmu_lock);
f656ce01 3973 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
3974
3975 list_move_tail(&kvm->vm_list, &vm_list);
3976 break;
3ee16c81 3977 }
3ee16c81 3978
e935b837 3979 raw_spin_unlock(&kvm_lock);
3ee16c81 3980
45221ab6
DH
3981out:
3982 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3983}
3984
3985static struct shrinker mmu_shrinker = {
3986 .shrink = mmu_shrink,
3987 .seeks = DEFAULT_SEEKS * 10,
3988};
3989
2ddfd20e 3990static void mmu_destroy_caches(void)
b5a33a75 3991{
53c07b18
XG
3992 if (pte_list_desc_cache)
3993 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3994 if (mmu_page_header_cache)
3995 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3996}
3997
3998int kvm_mmu_module_init(void)
3999{
53c07b18
XG
4000 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4001 sizeof(struct pte_list_desc),
20c2df83 4002 0, 0, NULL);
53c07b18 4003 if (!pte_list_desc_cache)
b5a33a75
AK
4004 goto nomem;
4005
d3d25b04
AK
4006 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4007 sizeof(struct kvm_mmu_page),
20c2df83 4008 0, 0, NULL);
d3d25b04
AK
4009 if (!mmu_page_header_cache)
4010 goto nomem;
4011
45bf21a8
WY
4012 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4013 goto nomem;
4014
3ee16c81
IE
4015 register_shrinker(&mmu_shrinker);
4016
b5a33a75
AK
4017 return 0;
4018
4019nomem:
3ee16c81 4020 mmu_destroy_caches();
b5a33a75
AK
4021 return -ENOMEM;
4022}
4023
3ad82a7e
ZX
4024/*
4025 * Caculate mmu pages needed for kvm.
4026 */
4027unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4028{
3ad82a7e
ZX
4029 unsigned int nr_mmu_pages;
4030 unsigned int nr_pages = 0;
bc6678a3 4031 struct kvm_memslots *slots;
be6ba0f0 4032 struct kvm_memory_slot *memslot;
3ad82a7e 4033
90d83dc3
LJ
4034 slots = kvm_memslots(kvm);
4035
be6ba0f0
XG
4036 kvm_for_each_memslot(memslot, slots)
4037 nr_pages += memslot->npages;
3ad82a7e
ZX
4038
4039 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4040 nr_mmu_pages = max(nr_mmu_pages,
4041 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4042
4043 return nr_mmu_pages;
4044}
4045
94d8b056
MT
4046int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4047{
4048 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4049 u64 spte;
94d8b056
MT
4050 int nr_sptes = 0;
4051
c2a2ac2b
XG
4052 walk_shadow_page_lockless_begin(vcpu);
4053 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4054 sptes[iterator.level-1] = spte;
94d8b056 4055 nr_sptes++;
c2a2ac2b 4056 if (!is_shadow_present_pte(spte))
94d8b056
MT
4057 break;
4058 }
c2a2ac2b 4059 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4060
4061 return nr_sptes;
4062}
4063EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4064
c42fffe3
XG
4065void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4066{
4067 ASSERT(vcpu);
4068
4069 destroy_kvm_mmu(vcpu);
4070 free_mmu_pages(vcpu);
4071 mmu_free_memory_caches(vcpu);
b034cf01
XG
4072}
4073
b034cf01
XG
4074void kvm_mmu_module_exit(void)
4075{
4076 mmu_destroy_caches();
4077 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4078 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4079 mmu_audit_disable();
4080}