KVM: MMU: return bool in __rmap_write_protect
[linux-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
1403283a
IE
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149
135f8c2b
AK
150#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
151
220f773a
TY
152/* make pte_list_desc fit well in cache line */
153#define PTE_LIST_EXT 3
154
53c07b18
XG
155struct pte_list_desc {
156 u64 *sptes[PTE_LIST_EXT];
157 struct pte_list_desc *more;
cd4a4e53
AK
158};
159
2d11123a
AK
160struct kvm_shadow_walk_iterator {
161 u64 addr;
162 hpa_t shadow_addr;
2d11123a 163 u64 *sptep;
dd3bfd59 164 int level;
2d11123a
AK
165 unsigned index;
166};
167
168#define for_each_shadow_entry(_vcpu, _addr, _walker) \
169 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
170 shadow_walk_okay(&(_walker)); \
171 shadow_walk_next(&(_walker)))
172
c2a2ac2b
XG
173#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
174 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
175 shadow_walk_okay(&(_walker)) && \
176 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
177 __shadow_walk_next(&(_walker), spte))
178
53c07b18 179static struct kmem_cache *pte_list_desc_cache;
d3d25b04 180static struct kmem_cache *mmu_page_header_cache;
45221ab6 181static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 182
7b52345e
SY
183static u64 __read_mostly shadow_nx_mask;
184static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
185static u64 __read_mostly shadow_user_mask;
186static u64 __read_mostly shadow_accessed_mask;
187static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
188static u64 __read_mostly shadow_mmio_mask;
189
190static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 191static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
192
193void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
194{
195 shadow_mmio_mask = mmio_mask;
196}
197EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
198
199static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
200{
201 access &= ACC_WRITE_MASK | ACC_USER_MASK;
202
4f022648 203 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
204 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
205}
206
207static bool is_mmio_spte(u64 spte)
208{
209 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
210}
211
212static gfn_t get_mmio_spte_gfn(u64 spte)
213{
214 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
215}
216
217static unsigned get_mmio_spte_access(u64 spte)
218{
219 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
220}
221
222static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
223{
224 if (unlikely(is_noslot_pfn(pfn))) {
225 mark_mmio_spte(sptep, gfn, access);
226 return true;
227 }
228
229 return false;
230}
c7addb90 231
82725b20
DE
232static inline u64 rsvd_bits(int s, int e)
233{
234 return ((1ULL << (e - s + 1)) - 1) << s;
235}
236
7b52345e 237void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 238 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
239{
240 shadow_user_mask = user_mask;
241 shadow_accessed_mask = accessed_mask;
242 shadow_dirty_mask = dirty_mask;
243 shadow_nx_mask = nx_mask;
244 shadow_x_mask = x_mask;
245}
246EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
247
6aa8b732
AK
248static int is_cpuid_PSE36(void)
249{
250 return 1;
251}
252
73b1087e
AK
253static int is_nx(struct kvm_vcpu *vcpu)
254{
f6801dff 255 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
256}
257
c7addb90
AK
258static int is_shadow_present_pte(u64 pte)
259{
ce88decf 260 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
261}
262
05da4558
MT
263static int is_large_pte(u64 pte)
264{
265 return pte & PT_PAGE_SIZE_MASK;
266}
267
43a3795a 268static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 269{
439e218a 270 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
271}
272
43a3795a 273static int is_rmap_spte(u64 pte)
cd4a4e53 274{
4b1a80fa 275 return is_shadow_present_pte(pte);
cd4a4e53
AK
276}
277
776e6633
MT
278static int is_last_spte(u64 pte, int level)
279{
280 if (level == PT_PAGE_TABLE_LEVEL)
281 return 1;
852e3c19 282 if (is_large_pte(pte))
776e6633
MT
283 return 1;
284 return 0;
285}
286
35149e21 287static pfn_t spte_to_pfn(u64 pte)
0b49ea86 288{
35149e21 289 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
290}
291
da928521
AK
292static gfn_t pse36_gfn_delta(u32 gpte)
293{
294 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
295
296 return (gpte & PT32_DIR_PSE36_MASK) << shift;
297}
298
603e0651 299#ifdef CONFIG_X86_64
d555c333 300static void __set_spte(u64 *sptep, u64 spte)
e663ee64 301{
603e0651 302 *sptep = spte;
e663ee64
AK
303}
304
603e0651 305static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 306{
603e0651
XG
307 *sptep = spte;
308}
309
310static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
311{
312 return xchg(sptep, spte);
313}
c2a2ac2b
XG
314
315static u64 __get_spte_lockless(u64 *sptep)
316{
317 return ACCESS_ONCE(*sptep);
318}
ce88decf
XG
319
320static bool __check_direct_spte_mmio_pf(u64 spte)
321{
322 /* It is valid if the spte is zapped. */
323 return spte == 0ull;
324}
a9221dd5 325#else
603e0651
XG
326union split_spte {
327 struct {
328 u32 spte_low;
329 u32 spte_high;
330 };
331 u64 spte;
332};
a9221dd5 333
c2a2ac2b
XG
334static void count_spte_clear(u64 *sptep, u64 spte)
335{
336 struct kvm_mmu_page *sp = page_header(__pa(sptep));
337
338 if (is_shadow_present_pte(spte))
339 return;
340
341 /* Ensure the spte is completely set before we increase the count */
342 smp_wmb();
343 sp->clear_spte_count++;
344}
345
603e0651
XG
346static void __set_spte(u64 *sptep, u64 spte)
347{
348 union split_spte *ssptep, sspte;
a9221dd5 349
603e0651
XG
350 ssptep = (union split_spte *)sptep;
351 sspte = (union split_spte)spte;
352
353 ssptep->spte_high = sspte.spte_high;
354
355 /*
356 * If we map the spte from nonpresent to present, We should store
357 * the high bits firstly, then set present bit, so cpu can not
358 * fetch this spte while we are setting the spte.
359 */
360 smp_wmb();
361
362 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
363}
364
603e0651
XG
365static void __update_clear_spte_fast(u64 *sptep, u64 spte)
366{
367 union split_spte *ssptep, sspte;
368
369 ssptep = (union split_spte *)sptep;
370 sspte = (union split_spte)spte;
371
372 ssptep->spte_low = sspte.spte_low;
373
374 /*
375 * If we map the spte from present to nonpresent, we should clear
376 * present bit firstly to avoid vcpu fetch the old high bits.
377 */
378 smp_wmb();
379
380 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 381 count_spte_clear(sptep, spte);
603e0651
XG
382}
383
384static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
385{
386 union split_spte *ssptep, sspte, orig;
387
388 ssptep = (union split_spte *)sptep;
389 sspte = (union split_spte)spte;
390
391 /* xchg acts as a barrier before the setting of the high bits */
392 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
393 orig.spte_high = ssptep->spte_high;
394 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 395 count_spte_clear(sptep, spte);
603e0651
XG
396
397 return orig.spte;
398}
c2a2ac2b
XG
399
400/*
401 * The idea using the light way get the spte on x86_32 guest is from
402 * gup_get_pte(arch/x86/mm/gup.c).
403 * The difference is we can not catch the spte tlb flush if we leave
404 * guest mode, so we emulate it by increase clear_spte_count when spte
405 * is cleared.
406 */
407static u64 __get_spte_lockless(u64 *sptep)
408{
409 struct kvm_mmu_page *sp = page_header(__pa(sptep));
410 union split_spte spte, *orig = (union split_spte *)sptep;
411 int count;
412
413retry:
414 count = sp->clear_spte_count;
415 smp_rmb();
416
417 spte.spte_low = orig->spte_low;
418 smp_rmb();
419
420 spte.spte_high = orig->spte_high;
421 smp_rmb();
422
423 if (unlikely(spte.spte_low != orig->spte_low ||
424 count != sp->clear_spte_count))
425 goto retry;
426
427 return spte.spte;
428}
ce88decf
XG
429
430static bool __check_direct_spte_mmio_pf(u64 spte)
431{
432 union split_spte sspte = (union split_spte)spte;
433 u32 high_mmio_mask = shadow_mmio_mask >> 32;
434
435 /* It is valid if the spte is zapped. */
436 if (spte == 0ull)
437 return true;
438
439 /* It is valid if the spte is being zapped. */
440 if (sspte.spte_low == 0ull &&
441 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
442 return true;
443
444 return false;
445}
603e0651
XG
446#endif
447
8672b721
XG
448static bool spte_has_volatile_bits(u64 spte)
449{
450 if (!shadow_accessed_mask)
451 return false;
452
453 if (!is_shadow_present_pte(spte))
454 return false;
455
4132779b
XG
456 if ((spte & shadow_accessed_mask) &&
457 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
458 return false;
459
460 return true;
461}
462
4132779b
XG
463static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
464{
465 return (old_spte & bit_mask) && !(new_spte & bit_mask);
466}
467
1df9f2dc
XG
468/* Rules for using mmu_spte_set:
469 * Set the sptep from nonpresent to present.
470 * Note: the sptep being assigned *must* be either not present
471 * or in a state where the hardware will not attempt to update
472 * the spte.
473 */
474static void mmu_spte_set(u64 *sptep, u64 new_spte)
475{
476 WARN_ON(is_shadow_present_pte(*sptep));
477 __set_spte(sptep, new_spte);
478}
479
480/* Rules for using mmu_spte_update:
481 * Update the state bits, it means the mapped pfn is not changged.
482 */
483static void mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 484{
4132779b
XG
485 u64 mask, old_spte = *sptep;
486
487 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 488
1df9f2dc
XG
489 if (!is_shadow_present_pte(old_spte))
490 return mmu_spte_set(sptep, new_spte);
491
4132779b
XG
492 new_spte |= old_spte & shadow_dirty_mask;
493
494 mask = shadow_accessed_mask;
495 if (is_writable_pte(old_spte))
496 mask |= shadow_dirty_mask;
497
498 if (!spte_has_volatile_bits(old_spte) || (new_spte & mask) == mask)
603e0651 499 __update_clear_spte_fast(sptep, new_spte);
4132779b 500 else
603e0651 501 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b
XG
502
503 if (!shadow_accessed_mask)
504 return;
505
506 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
507 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
508 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
509 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
b79b93f9
AK
510}
511
1df9f2dc
XG
512/*
513 * Rules for using mmu_spte_clear_track_bits:
514 * It sets the sptep from present to nonpresent, and track the
515 * state bits, it is used to clear the last level sptep.
516 */
517static int mmu_spte_clear_track_bits(u64 *sptep)
518{
519 pfn_t pfn;
520 u64 old_spte = *sptep;
521
522 if (!spte_has_volatile_bits(old_spte))
603e0651 523 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 524 else
603e0651 525 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
526
527 if (!is_rmap_spte(old_spte))
528 return 0;
529
530 pfn = spte_to_pfn(old_spte);
531 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
532 kvm_set_pfn_accessed(pfn);
533 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
534 kvm_set_pfn_dirty(pfn);
535 return 1;
536}
537
538/*
539 * Rules for using mmu_spte_clear_no_track:
540 * Directly clear spte without caring the state bits of sptep,
541 * it is used to set the upper level spte.
542 */
543static void mmu_spte_clear_no_track(u64 *sptep)
544{
603e0651 545 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
546}
547
c2a2ac2b
XG
548static u64 mmu_spte_get_lockless(u64 *sptep)
549{
550 return __get_spte_lockless(sptep);
551}
552
553static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
554{
c142786c
AK
555 /*
556 * Prevent page table teardown by making any free-er wait during
557 * kvm_flush_remote_tlbs() IPI to all active vcpus.
558 */
559 local_irq_disable();
560 vcpu->mode = READING_SHADOW_PAGE_TABLES;
561 /*
562 * Make sure a following spte read is not reordered ahead of the write
563 * to vcpu->mode.
564 */
565 smp_mb();
c2a2ac2b
XG
566}
567
568static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
569{
c142786c
AK
570 /*
571 * Make sure the write to vcpu->mode is not reordered in front of
572 * reads to sptes. If it does, kvm_commit_zap_page() can see us
573 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
574 */
575 smp_mb();
576 vcpu->mode = OUTSIDE_GUEST_MODE;
577 local_irq_enable();
c2a2ac2b
XG
578}
579
e2dec939 580static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 581 struct kmem_cache *base_cache, int min)
714b93da
AK
582{
583 void *obj;
584
585 if (cache->nobjs >= min)
e2dec939 586 return 0;
714b93da 587 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 588 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 589 if (!obj)
e2dec939 590 return -ENOMEM;
714b93da
AK
591 cache->objects[cache->nobjs++] = obj;
592 }
e2dec939 593 return 0;
714b93da
AK
594}
595
f759e2b4
XG
596static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
597{
598 return cache->nobjs;
599}
600
e8ad9a70
XG
601static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
602 struct kmem_cache *cache)
714b93da
AK
603{
604 while (mc->nobjs)
e8ad9a70 605 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
606}
607
c1158e63 608static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 609 int min)
c1158e63 610{
842f22ed 611 void *page;
c1158e63
AK
612
613 if (cache->nobjs >= min)
614 return 0;
615 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 616 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
617 if (!page)
618 return -ENOMEM;
842f22ed 619 cache->objects[cache->nobjs++] = page;
c1158e63
AK
620 }
621 return 0;
622}
623
624static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
625{
626 while (mc->nobjs)
c4d198d5 627 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
628}
629
2e3e5882 630static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 631{
e2dec939
AK
632 int r;
633
53c07b18 634 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 635 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
636 if (r)
637 goto out;
ad312c7c 638 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
639 if (r)
640 goto out;
ad312c7c 641 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 642 mmu_page_header_cache, 4);
e2dec939
AK
643out:
644 return r;
714b93da
AK
645}
646
647static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
648{
53c07b18
XG
649 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
650 pte_list_desc_cache);
ad312c7c 651 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
652 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
653 mmu_page_header_cache);
714b93da
AK
654}
655
80feb89a 656static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
657{
658 void *p;
659
660 BUG_ON(!mc->nobjs);
661 p = mc->objects[--mc->nobjs];
714b93da
AK
662 return p;
663}
664
53c07b18 665static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 666{
80feb89a 667 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
668}
669
53c07b18 670static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 671{
53c07b18 672 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
673}
674
2032a93d
LJ
675static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
676{
677 if (!sp->role.direct)
678 return sp->gfns[index];
679
680 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
681}
682
683static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
684{
685 if (sp->role.direct)
686 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
687 else
688 sp->gfns[index] = gfn;
689}
690
05da4558 691/*
d4dbf470
TY
692 * Return the pointer to the large page information for a given gfn,
693 * handling slots that are not large page aligned.
05da4558 694 */
d4dbf470
TY
695static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
696 struct kvm_memory_slot *slot,
697 int level)
05da4558
MT
698{
699 unsigned long idx;
700
fb03cb6f 701 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 702 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
703}
704
705static void account_shadowed(struct kvm *kvm, gfn_t gfn)
706{
d25797b2 707 struct kvm_memory_slot *slot;
d4dbf470 708 struct kvm_lpage_info *linfo;
d25797b2 709 int i;
05da4558 710
a1f4d395 711 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
712 for (i = PT_DIRECTORY_LEVEL;
713 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
714 linfo = lpage_info_slot(gfn, slot, i);
715 linfo->write_count += 1;
d25797b2 716 }
332b207d 717 kvm->arch.indirect_shadow_pages++;
05da4558
MT
718}
719
720static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
721{
d25797b2 722 struct kvm_memory_slot *slot;
d4dbf470 723 struct kvm_lpage_info *linfo;
d25797b2 724 int i;
05da4558 725
a1f4d395 726 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
727 for (i = PT_DIRECTORY_LEVEL;
728 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
729 linfo = lpage_info_slot(gfn, slot, i);
730 linfo->write_count -= 1;
731 WARN_ON(linfo->write_count < 0);
d25797b2 732 }
332b207d 733 kvm->arch.indirect_shadow_pages--;
05da4558
MT
734}
735
d25797b2
JR
736static int has_wrprotected_page(struct kvm *kvm,
737 gfn_t gfn,
738 int level)
05da4558 739{
2843099f 740 struct kvm_memory_slot *slot;
d4dbf470 741 struct kvm_lpage_info *linfo;
05da4558 742
a1f4d395 743 slot = gfn_to_memslot(kvm, gfn);
05da4558 744 if (slot) {
d4dbf470
TY
745 linfo = lpage_info_slot(gfn, slot, level);
746 return linfo->write_count;
05da4558
MT
747 }
748
749 return 1;
750}
751
d25797b2 752static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 753{
8f0b1ab6 754 unsigned long page_size;
d25797b2 755 int i, ret = 0;
05da4558 756
8f0b1ab6 757 page_size = kvm_host_page_size(kvm, gfn);
05da4558 758
d25797b2
JR
759 for (i = PT_PAGE_TABLE_LEVEL;
760 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
761 if (page_size >= KVM_HPAGE_SIZE(i))
762 ret = i;
763 else
764 break;
765 }
766
4c2155ce 767 return ret;
05da4558
MT
768}
769
5d163b1c
XG
770static struct kvm_memory_slot *
771gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
772 bool no_dirty_log)
05da4558
MT
773{
774 struct kvm_memory_slot *slot;
5d163b1c
XG
775
776 slot = gfn_to_memslot(vcpu->kvm, gfn);
777 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
778 (no_dirty_log && slot->dirty_bitmap))
779 slot = NULL;
780
781 return slot;
782}
783
784static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
785{
a0a8eaba 786 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
787}
788
789static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
790{
791 int host_level, level, max_level;
05da4558 792
d25797b2
JR
793 host_level = host_mapping_level(vcpu->kvm, large_gfn);
794
795 if (host_level == PT_PAGE_TABLE_LEVEL)
796 return host_level;
797
878403b7
SY
798 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
799 kvm_x86_ops->get_lpage_level() : host_level;
800
801 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
802 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
803 break;
d25797b2
JR
804
805 return level - 1;
05da4558
MT
806}
807
290fc38d 808/*
53c07b18 809 * Pte mapping structures:
cd4a4e53 810 *
53c07b18 811 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 812 *
53c07b18
XG
813 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
814 * pte_list_desc containing more mappings.
53a27b39 815 *
53c07b18 816 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
817 * the spte was not added.
818 *
cd4a4e53 819 */
53c07b18
XG
820static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
821 unsigned long *pte_list)
cd4a4e53 822{
53c07b18 823 struct pte_list_desc *desc;
53a27b39 824 int i, count = 0;
cd4a4e53 825
53c07b18
XG
826 if (!*pte_list) {
827 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
828 *pte_list = (unsigned long)spte;
829 } else if (!(*pte_list & 1)) {
830 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
831 desc = mmu_alloc_pte_list_desc(vcpu);
832 desc->sptes[0] = (u64 *)*pte_list;
d555c333 833 desc->sptes[1] = spte;
53c07b18 834 *pte_list = (unsigned long)desc | 1;
cb16a7b3 835 ++count;
cd4a4e53 836 } else {
53c07b18
XG
837 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
838 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
839 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 840 desc = desc->more;
53c07b18 841 count += PTE_LIST_EXT;
53a27b39 842 }
53c07b18
XG
843 if (desc->sptes[PTE_LIST_EXT-1]) {
844 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
845 desc = desc->more;
846 }
d555c333 847 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 848 ++count;
d555c333 849 desc->sptes[i] = spte;
cd4a4e53 850 }
53a27b39 851 return count;
cd4a4e53
AK
852}
853
53c07b18
XG
854static void
855pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
856 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
857{
858 int j;
859
53c07b18 860 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 861 ;
d555c333
AK
862 desc->sptes[i] = desc->sptes[j];
863 desc->sptes[j] = NULL;
cd4a4e53
AK
864 if (j != 0)
865 return;
866 if (!prev_desc && !desc->more)
53c07b18 867 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
868 else
869 if (prev_desc)
870 prev_desc->more = desc->more;
871 else
53c07b18
XG
872 *pte_list = (unsigned long)desc->more | 1;
873 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
874}
875
53c07b18 876static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 877{
53c07b18
XG
878 struct pte_list_desc *desc;
879 struct pte_list_desc *prev_desc;
cd4a4e53
AK
880 int i;
881
53c07b18
XG
882 if (!*pte_list) {
883 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 884 BUG();
53c07b18
XG
885 } else if (!(*pte_list & 1)) {
886 rmap_printk("pte_list_remove: %p 1->0\n", spte);
887 if ((u64 *)*pte_list != spte) {
888 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
889 BUG();
890 }
53c07b18 891 *pte_list = 0;
cd4a4e53 892 } else {
53c07b18
XG
893 rmap_printk("pte_list_remove: %p many->many\n", spte);
894 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
895 prev_desc = NULL;
896 while (desc) {
53c07b18 897 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 898 if (desc->sptes[i] == spte) {
53c07b18 899 pte_list_desc_remove_entry(pte_list,
714b93da 900 desc, i,
cd4a4e53
AK
901 prev_desc);
902 return;
903 }
904 prev_desc = desc;
905 desc = desc->more;
906 }
53c07b18 907 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
908 BUG();
909 }
910}
911
67052b35
XG
912typedef void (*pte_list_walk_fn) (u64 *spte);
913static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
914{
915 struct pte_list_desc *desc;
916 int i;
917
918 if (!*pte_list)
919 return;
920
921 if (!(*pte_list & 1))
922 return fn((u64 *)*pte_list);
923
924 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
925 while (desc) {
926 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
927 fn(desc->sptes[i]);
928 desc = desc->more;
929 }
930}
931
9373e2c0 932static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 933 struct kvm_memory_slot *slot)
53c07b18 934{
53c07b18
XG
935 struct kvm_lpage_info *linfo;
936
53c07b18
XG
937 if (likely(level == PT_PAGE_TABLE_LEVEL))
938 return &slot->rmap[gfn - slot->base_gfn];
939
940 linfo = lpage_info_slot(gfn, slot, level);
53c07b18
XG
941 return &linfo->rmap_pde;
942}
943
9b9b1492
TY
944/*
945 * Take gfn and return the reverse mapping to it.
946 */
947static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
948{
949 struct kvm_memory_slot *slot;
950
951 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 952 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
953}
954
f759e2b4
XG
955static bool rmap_can_add(struct kvm_vcpu *vcpu)
956{
957 struct kvm_mmu_memory_cache *cache;
958
959 cache = &vcpu->arch.mmu_pte_list_desc_cache;
960 return mmu_memory_cache_free_objects(cache);
961}
962
53c07b18
XG
963static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
964{
965 struct kvm_mmu_page *sp;
966 unsigned long *rmapp;
967
53c07b18
XG
968 sp = page_header(__pa(spte));
969 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
970 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
971 return pte_list_add(vcpu, spte, rmapp);
972}
973
53c07b18
XG
974static void rmap_remove(struct kvm *kvm, u64 *spte)
975{
976 struct kvm_mmu_page *sp;
977 gfn_t gfn;
978 unsigned long *rmapp;
979
980 sp = page_header(__pa(spte));
981 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
982 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
983 pte_list_remove(spte, rmapp);
984}
985
1e3f42f0
TY
986/*
987 * Used by the following functions to iterate through the sptes linked by a
988 * rmap. All fields are private and not assumed to be used outside.
989 */
990struct rmap_iterator {
991 /* private fields */
992 struct pte_list_desc *desc; /* holds the sptep if not NULL */
993 int pos; /* index of the sptep */
994};
995
996/*
997 * Iteration must be started by this function. This should also be used after
998 * removing/dropping sptes from the rmap link because in such cases the
999 * information in the itererator may not be valid.
1000 *
1001 * Returns sptep if found, NULL otherwise.
1002 */
1003static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1004{
1005 if (!rmap)
1006 return NULL;
1007
1008 if (!(rmap & 1)) {
1009 iter->desc = NULL;
1010 return (u64 *)rmap;
1011 }
1012
1013 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1014 iter->pos = 0;
1015 return iter->desc->sptes[iter->pos];
1016}
1017
1018/*
1019 * Must be used with a valid iterator: e.g. after rmap_get_first().
1020 *
1021 * Returns sptep if found, NULL otherwise.
1022 */
1023static u64 *rmap_get_next(struct rmap_iterator *iter)
1024{
1025 if (iter->desc) {
1026 if (iter->pos < PTE_LIST_EXT - 1) {
1027 u64 *sptep;
1028
1029 ++iter->pos;
1030 sptep = iter->desc->sptes[iter->pos];
1031 if (sptep)
1032 return sptep;
1033 }
1034
1035 iter->desc = iter->desc->more;
1036
1037 if (iter->desc) {
1038 iter->pos = 0;
1039 /* desc->sptes[0] cannot be NULL */
1040 return iter->desc->sptes[iter->pos];
1041 }
1042 }
1043
1044 return NULL;
1045}
1046
c3707958 1047static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1048{
1df9f2dc 1049 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1050 rmap_remove(kvm, sptep);
be38d276
AK
1051}
1052
2f84569f
XG
1053static bool
1054__rmap_write_protect(struct kvm *kvm, unsigned long *rmapp, int level)
98348e95 1055{
1e3f42f0
TY
1056 u64 *sptep;
1057 struct rmap_iterator iter;
2f84569f 1058 bool write_protected = false;
374cbac0 1059
1e3f42f0
TY
1060 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1061 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1062 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
a0ed4607 1063
1e3f42f0
TY
1064 if (!is_writable_pte(*sptep)) {
1065 sptep = rmap_get_next(&iter);
a0ed4607 1066 continue;
1e3f42f0 1067 }
a0ed4607
TY
1068
1069 if (level == PT_PAGE_TABLE_LEVEL) {
1e3f42f0
TY
1070 mmu_spte_update(sptep, *sptep & ~PT_WRITABLE_MASK);
1071 sptep = rmap_get_next(&iter);
a0ed4607 1072 } else {
1e3f42f0
TY
1073 BUG_ON(!is_large_pte(*sptep));
1074 drop_spte(kvm, sptep);
a0ed4607 1075 --kvm->stat.lpages;
1e3f42f0 1076 sptep = rmap_get_first(*rmapp, &iter);
caa5b8a5 1077 }
a0ed4607 1078
2f84569f 1079 write_protected = true;
374cbac0 1080 }
855149aa 1081
a0ed4607
TY
1082 return write_protected;
1083}
1084
5dc99b23
TY
1085/**
1086 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1087 * @kvm: kvm instance
1088 * @slot: slot to protect
1089 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1090 * @mask: indicates which pages we should protect
1091 *
1092 * Used when we do not need to care about huge page mappings: e.g. during dirty
1093 * logging we do not have any such mappings.
1094 */
1095void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1096 struct kvm_memory_slot *slot,
1097 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1098{
1099 unsigned long *rmapp;
a0ed4607 1100
5dc99b23
TY
1101 while (mask) {
1102 rmapp = &slot->rmap[gfn_offset + __ffs(mask)];
1103 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL);
05da4558 1104
5dc99b23
TY
1105 /* clear the first set bit */
1106 mask &= mask - 1;
1107 }
374cbac0
AK
1108}
1109
2f84569f 1110static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1111{
1112 struct kvm_memory_slot *slot;
5dc99b23
TY
1113 unsigned long *rmapp;
1114 int i;
2f84569f 1115 bool write_protected = false;
95d4c16c
TY
1116
1117 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1118
1119 for (i = PT_PAGE_TABLE_LEVEL;
1120 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1121 rmapp = __gfn_to_rmap(gfn, i, slot);
1122 write_protected |= __rmap_write_protect(kvm, rmapp, i);
1123 }
1124
1125 return write_protected;
95d4c16c
TY
1126}
1127
8a8365c5
FD
1128static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
1129 unsigned long data)
e930bffe 1130{
1e3f42f0
TY
1131 u64 *sptep;
1132 struct rmap_iterator iter;
e930bffe
AA
1133 int need_tlb_flush = 0;
1134
1e3f42f0
TY
1135 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1136 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1137 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1138
1139 drop_spte(kvm, sptep);
e930bffe
AA
1140 need_tlb_flush = 1;
1141 }
1e3f42f0 1142
e930bffe
AA
1143 return need_tlb_flush;
1144}
1145
8a8365c5
FD
1146static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
1147 unsigned long data)
3da0dd43 1148{
1e3f42f0
TY
1149 u64 *sptep;
1150 struct rmap_iterator iter;
3da0dd43 1151 int need_flush = 0;
1e3f42f0 1152 u64 new_spte;
3da0dd43
IE
1153 pte_t *ptep = (pte_t *)data;
1154 pfn_t new_pfn;
1155
1156 WARN_ON(pte_huge(*ptep));
1157 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1158
1159 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1160 BUG_ON(!is_shadow_present_pte(*sptep));
1161 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1162
3da0dd43 1163 need_flush = 1;
1e3f42f0 1164
3da0dd43 1165 if (pte_write(*ptep)) {
1e3f42f0
TY
1166 drop_spte(kvm, sptep);
1167 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1168 } else {
1e3f42f0 1169 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1170 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1171
1172 new_spte &= ~PT_WRITABLE_MASK;
1173 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1174 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1175
1176 mmu_spte_clear_track_bits(sptep);
1177 mmu_spte_set(sptep, new_spte);
1178 sptep = rmap_get_next(&iter);
3da0dd43
IE
1179 }
1180 }
1e3f42f0 1181
3da0dd43
IE
1182 if (need_flush)
1183 kvm_flush_remote_tlbs(kvm);
1184
1185 return 0;
1186}
1187
8a8365c5
FD
1188static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1189 unsigned long data,
3da0dd43 1190 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
8a8365c5 1191 unsigned long data))
e930bffe 1192{
be6ba0f0 1193 int j;
90bb6fc5 1194 int ret;
e930bffe 1195 int retval = 0;
bc6678a3 1196 struct kvm_memslots *slots;
be6ba0f0 1197 struct kvm_memory_slot *memslot;
bc6678a3 1198
90d83dc3 1199 slots = kvm_memslots(kvm);
e930bffe 1200
be6ba0f0 1201 kvm_for_each_memslot(memslot, slots) {
e930bffe
AA
1202 unsigned long start = memslot->userspace_addr;
1203 unsigned long end;
1204
e930bffe
AA
1205 end = start + (memslot->npages << PAGE_SHIFT);
1206 if (hva >= start && hva < end) {
1207 gfn_t gfn_offset = (hva - start) >> PAGE_SHIFT;
d4dbf470 1208 gfn_t gfn = memslot->base_gfn + gfn_offset;
852e3c19 1209
90bb6fc5 1210 ret = handler(kvm, &memslot->rmap[gfn_offset], data);
852e3c19
JR
1211
1212 for (j = 0; j < KVM_NR_PAGE_SIZES - 1; ++j) {
d4dbf470
TY
1213 struct kvm_lpage_info *linfo;
1214
1215 linfo = lpage_info_slot(gfn, memslot,
1216 PT_DIRECTORY_LEVEL + j);
1217 ret |= handler(kvm, &linfo->rmap_pde, data);
852e3c19 1218 }
90bb6fc5
AK
1219 trace_kvm_age_page(hva, memslot, ret);
1220 retval |= ret;
e930bffe
AA
1221 }
1222 }
1223
1224 return retval;
1225}
1226
1227int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1228{
3da0dd43
IE
1229 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1230}
1231
1232void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1233{
8a8365c5 1234 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1235}
1236
8a8365c5
FD
1237static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1238 unsigned long data)
e930bffe 1239{
1e3f42f0 1240 u64 *sptep;
79f702a6 1241 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1242 int young = 0;
1243
6316e1c8 1244 /*
3f6d8c8a
XH
1245 * In case of absence of EPT Access and Dirty Bits supports,
1246 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1247 * an EPT mapping, and clearing it if it does. On the next access,
1248 * a new EPT mapping will be established.
1249 * This has some overhead, but not as much as the cost of swapping
1250 * out actively used pages or breaking up actively used hugepages.
1251 */
534e38b4 1252 if (!shadow_accessed_mask)
6316e1c8 1253 return kvm_unmap_rmapp(kvm, rmapp, data);
534e38b4 1254
1e3f42f0
TY
1255 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1256 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1257 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1258
3f6d8c8a 1259 if (*sptep & shadow_accessed_mask) {
e930bffe 1260 young = 1;
3f6d8c8a
XH
1261 clear_bit((ffs(shadow_accessed_mask) - 1),
1262 (unsigned long *)sptep);
e930bffe 1263 }
e930bffe 1264 }
1e3f42f0 1265
e930bffe
AA
1266 return young;
1267}
1268
8ee53820
AA
1269static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
1270 unsigned long data)
1271{
1e3f42f0
TY
1272 u64 *sptep;
1273 struct rmap_iterator iter;
8ee53820
AA
1274 int young = 0;
1275
1276 /*
1277 * If there's no access bit in the secondary pte set by the
1278 * hardware it's up to gup-fast/gup to set the access bit in
1279 * the primary pte or in the page structure.
1280 */
1281 if (!shadow_accessed_mask)
1282 goto out;
1283
1e3f42f0
TY
1284 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1285 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1286 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1287
3f6d8c8a 1288 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1289 young = 1;
1290 break;
1291 }
8ee53820
AA
1292 }
1293out:
1294 return young;
1295}
1296
53a27b39
MT
1297#define RMAP_RECYCLE_THRESHOLD 1000
1298
852e3c19 1299static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1300{
1301 unsigned long *rmapp;
852e3c19
JR
1302 struct kvm_mmu_page *sp;
1303
1304 sp = page_header(__pa(spte));
53a27b39 1305
852e3c19 1306 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1307
3da0dd43 1308 kvm_unmap_rmapp(vcpu->kvm, rmapp, 0);
53a27b39
MT
1309 kvm_flush_remote_tlbs(vcpu->kvm);
1310}
1311
e930bffe
AA
1312int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1313{
3da0dd43 1314 return kvm_handle_hva(kvm, hva, 0, kvm_age_rmapp);
e930bffe
AA
1315}
1316
8ee53820
AA
1317int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1318{
1319 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1320}
1321
d6c69ee9 1322#ifdef MMU_DEBUG
47ad8e68 1323static int is_empty_shadow_page(u64 *spt)
6aa8b732 1324{
139bdb2d
AK
1325 u64 *pos;
1326 u64 *end;
1327
47ad8e68 1328 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1329 if (is_shadow_present_pte(*pos)) {
b8688d51 1330 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1331 pos, *pos);
6aa8b732 1332 return 0;
139bdb2d 1333 }
6aa8b732
AK
1334 return 1;
1335}
d6c69ee9 1336#endif
6aa8b732 1337
45221ab6
DH
1338/*
1339 * This value is the sum of all of the kvm instances's
1340 * kvm->arch.n_used_mmu_pages values. We need a global,
1341 * aggregate version in order to make the slab shrinker
1342 * faster
1343 */
1344static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1345{
1346 kvm->arch.n_used_mmu_pages += nr;
1347 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1348}
1349
bd4c86ea
XG
1350/*
1351 * Remove the sp from shadow page cache, after call it,
1352 * we can not find this sp from the cache, and the shadow
1353 * page table is still valid.
1354 * It should be under the protection of mmu lock.
1355 */
1356static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1357{
4db35314 1358 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1359 hlist_del(&sp->hash_link);
2032a93d 1360 if (!sp->role.direct)
842f22ed 1361 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1362}
1363
1364/*
1365 * Free the shadow page table and the sp, we can do it
1366 * out of the protection of mmu lock.
1367 */
1368static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1369{
1370 list_del(&sp->link);
1371 free_page((unsigned long)sp->spt);
e8ad9a70 1372 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1373}
1374
cea0f0e7
AK
1375static unsigned kvm_page_table_hashfn(gfn_t gfn)
1376{
1ae0a13d 1377 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1378}
1379
714b93da 1380static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1381 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1382{
cea0f0e7
AK
1383 if (!parent_pte)
1384 return;
cea0f0e7 1385
67052b35 1386 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1387}
1388
4db35314 1389static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1390 u64 *parent_pte)
1391{
67052b35 1392 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1393}
1394
bcdd9a93
XG
1395static void drop_parent_pte(struct kvm_mmu_page *sp,
1396 u64 *parent_pte)
1397{
1398 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1399 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1400}
1401
67052b35
XG
1402static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1403 u64 *parent_pte, int direct)
ad8cfbe3 1404{
67052b35 1405 struct kvm_mmu_page *sp;
80feb89a
TY
1406 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1407 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1408 if (!direct)
80feb89a 1409 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1410 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1411 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1412 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1413 sp->parent_ptes = 0;
1414 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1415 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1416 return sp;
ad8cfbe3
MT
1417}
1418
67052b35 1419static void mark_unsync(u64 *spte);
1047df1f 1420static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1421{
67052b35 1422 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1423}
1424
67052b35 1425static void mark_unsync(u64 *spte)
0074ff63 1426{
67052b35 1427 struct kvm_mmu_page *sp;
1047df1f 1428 unsigned int index;
0074ff63 1429
67052b35 1430 sp = page_header(__pa(spte));
1047df1f
XG
1431 index = spte - sp->spt;
1432 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1433 return;
1047df1f 1434 if (sp->unsync_children++)
0074ff63 1435 return;
1047df1f 1436 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1437}
1438
e8bc217a 1439static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1440 struct kvm_mmu_page *sp)
e8bc217a
MT
1441{
1442 return 1;
1443}
1444
a7052897
MT
1445static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1446{
1447}
1448
0f53b5b1
XG
1449static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1450 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1451 const void *pte)
0f53b5b1
XG
1452{
1453 WARN_ON(1);
1454}
1455
60c8aec6
MT
1456#define KVM_PAGE_ARRAY_NR 16
1457
1458struct kvm_mmu_pages {
1459 struct mmu_page_and_offset {
1460 struct kvm_mmu_page *sp;
1461 unsigned int idx;
1462 } page[KVM_PAGE_ARRAY_NR];
1463 unsigned int nr;
1464};
1465
cded19f3
HE
1466static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1467 int idx)
4731d4c7 1468{
60c8aec6 1469 int i;
4731d4c7 1470
60c8aec6
MT
1471 if (sp->unsync)
1472 for (i=0; i < pvec->nr; i++)
1473 if (pvec->page[i].sp == sp)
1474 return 0;
1475
1476 pvec->page[pvec->nr].sp = sp;
1477 pvec->page[pvec->nr].idx = idx;
1478 pvec->nr++;
1479 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1480}
1481
1482static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1483 struct kvm_mmu_pages *pvec)
1484{
1485 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1486
37178b8b 1487 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1488 struct kvm_mmu_page *child;
4731d4c7
MT
1489 u64 ent = sp->spt[i];
1490
7a8f1a74
XG
1491 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1492 goto clear_child_bitmap;
1493
1494 child = page_header(ent & PT64_BASE_ADDR_MASK);
1495
1496 if (child->unsync_children) {
1497 if (mmu_pages_add(pvec, child, i))
1498 return -ENOSPC;
1499
1500 ret = __mmu_unsync_walk(child, pvec);
1501 if (!ret)
1502 goto clear_child_bitmap;
1503 else if (ret > 0)
1504 nr_unsync_leaf += ret;
1505 else
1506 return ret;
1507 } else if (child->unsync) {
1508 nr_unsync_leaf++;
1509 if (mmu_pages_add(pvec, child, i))
1510 return -ENOSPC;
1511 } else
1512 goto clear_child_bitmap;
1513
1514 continue;
1515
1516clear_child_bitmap:
1517 __clear_bit(i, sp->unsync_child_bitmap);
1518 sp->unsync_children--;
1519 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1520 }
1521
4731d4c7 1522
60c8aec6
MT
1523 return nr_unsync_leaf;
1524}
1525
1526static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1527 struct kvm_mmu_pages *pvec)
1528{
1529 if (!sp->unsync_children)
1530 return 0;
1531
1532 mmu_pages_add(pvec, sp, 0);
1533 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1534}
1535
4731d4c7
MT
1536static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1537{
1538 WARN_ON(!sp->unsync);
5e1b3ddb 1539 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1540 sp->unsync = 0;
1541 --kvm->stat.mmu_unsync;
1542}
1543
7775834a
XG
1544static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1545 struct list_head *invalid_list);
1546static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1547 struct list_head *invalid_list);
4731d4c7 1548
f41d335a
XG
1549#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1550 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1551 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1552 if ((sp)->gfn != (gfn)) {} else
1553
f41d335a
XG
1554#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1555 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1556 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1557 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1558 (sp)->role.invalid) {} else
1559
f918b443 1560/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1561static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1562 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1563{
5b7e0102 1564 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1565 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1566 return 1;
1567 }
1568
f918b443 1569 if (clear_unsync)
1d9dc7e0 1570 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1571
a4a8e6f7 1572 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1573 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1574 return 1;
1575 }
1576
1577 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1578 return 0;
1579}
1580
1d9dc7e0
XG
1581static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1582 struct kvm_mmu_page *sp)
1583{
d98ba053 1584 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1585 int ret;
1586
d98ba053 1587 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1588 if (ret)
d98ba053
XG
1589 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1590
1d9dc7e0
XG
1591 return ret;
1592}
1593
e37fa785
XG
1594#ifdef CONFIG_KVM_MMU_AUDIT
1595#include "mmu_audit.c"
1596#else
1597static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1598static void mmu_audit_disable(void) { }
1599#endif
1600
d98ba053
XG
1601static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1602 struct list_head *invalid_list)
1d9dc7e0 1603{
d98ba053 1604 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1605}
1606
9f1a122f
XG
1607/* @gfn should be write-protected at the call site */
1608static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1609{
9f1a122f 1610 struct kvm_mmu_page *s;
f41d335a 1611 struct hlist_node *node;
d98ba053 1612 LIST_HEAD(invalid_list);
9f1a122f
XG
1613 bool flush = false;
1614
f41d335a 1615 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1616 if (!s->unsync)
9f1a122f
XG
1617 continue;
1618
1619 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1620 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1621 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1622 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1623 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1624 continue;
1625 }
9f1a122f
XG
1626 flush = true;
1627 }
1628
d98ba053 1629 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1630 if (flush)
1631 kvm_mmu_flush_tlb(vcpu);
1632}
1633
60c8aec6
MT
1634struct mmu_page_path {
1635 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1636 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1637};
1638
60c8aec6
MT
1639#define for_each_sp(pvec, sp, parents, i) \
1640 for (i = mmu_pages_next(&pvec, &parents, -1), \
1641 sp = pvec.page[i].sp; \
1642 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1643 i = mmu_pages_next(&pvec, &parents, i))
1644
cded19f3
HE
1645static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1646 struct mmu_page_path *parents,
1647 int i)
60c8aec6
MT
1648{
1649 int n;
1650
1651 for (n = i+1; n < pvec->nr; n++) {
1652 struct kvm_mmu_page *sp = pvec->page[n].sp;
1653
1654 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1655 parents->idx[0] = pvec->page[n].idx;
1656 return n;
1657 }
1658
1659 parents->parent[sp->role.level-2] = sp;
1660 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1661 }
1662
1663 return n;
1664}
1665
cded19f3 1666static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1667{
60c8aec6
MT
1668 struct kvm_mmu_page *sp;
1669 unsigned int level = 0;
1670
1671 do {
1672 unsigned int idx = parents->idx[level];
4731d4c7 1673
60c8aec6
MT
1674 sp = parents->parent[level];
1675 if (!sp)
1676 return;
1677
1678 --sp->unsync_children;
1679 WARN_ON((int)sp->unsync_children < 0);
1680 __clear_bit(idx, sp->unsync_child_bitmap);
1681 level++;
1682 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1683}
1684
60c8aec6
MT
1685static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1686 struct mmu_page_path *parents,
1687 struct kvm_mmu_pages *pvec)
4731d4c7 1688{
60c8aec6
MT
1689 parents->parent[parent->role.level-1] = NULL;
1690 pvec->nr = 0;
1691}
4731d4c7 1692
60c8aec6
MT
1693static void mmu_sync_children(struct kvm_vcpu *vcpu,
1694 struct kvm_mmu_page *parent)
1695{
1696 int i;
1697 struct kvm_mmu_page *sp;
1698 struct mmu_page_path parents;
1699 struct kvm_mmu_pages pages;
d98ba053 1700 LIST_HEAD(invalid_list);
60c8aec6
MT
1701
1702 kvm_mmu_pages_init(parent, &parents, &pages);
1703 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1704 bool protected = false;
b1a36821
MT
1705
1706 for_each_sp(pages, sp, parents, i)
1707 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1708
1709 if (protected)
1710 kvm_flush_remote_tlbs(vcpu->kvm);
1711
60c8aec6 1712 for_each_sp(pages, sp, parents, i) {
d98ba053 1713 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1714 mmu_pages_clear_parents(&parents);
1715 }
d98ba053 1716 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1717 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1718 kvm_mmu_pages_init(parent, &parents, &pages);
1719 }
4731d4c7
MT
1720}
1721
c3707958
XG
1722static void init_shadow_page_table(struct kvm_mmu_page *sp)
1723{
1724 int i;
1725
1726 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1727 sp->spt[i] = 0ull;
1728}
1729
a30f47cb
XG
1730static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1731{
1732 sp->write_flooding_count = 0;
1733}
1734
1735static void clear_sp_write_flooding_count(u64 *spte)
1736{
1737 struct kvm_mmu_page *sp = page_header(__pa(spte));
1738
1739 __clear_sp_write_flooding_count(sp);
1740}
1741
cea0f0e7
AK
1742static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1743 gfn_t gfn,
1744 gva_t gaddr,
1745 unsigned level,
f6e2c02b 1746 int direct,
41074d07 1747 unsigned access,
f7d9c7b7 1748 u64 *parent_pte)
cea0f0e7
AK
1749{
1750 union kvm_mmu_page_role role;
cea0f0e7 1751 unsigned quadrant;
9f1a122f 1752 struct kvm_mmu_page *sp;
f41d335a 1753 struct hlist_node *node;
9f1a122f 1754 bool need_sync = false;
cea0f0e7 1755
a770f6f2 1756 role = vcpu->arch.mmu.base_role;
cea0f0e7 1757 role.level = level;
f6e2c02b 1758 role.direct = direct;
84b0c8c6 1759 if (role.direct)
5b7e0102 1760 role.cr4_pae = 0;
41074d07 1761 role.access = access;
c5a78f2b
JR
1762 if (!vcpu->arch.mmu.direct_map
1763 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1764 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1765 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1766 role.quadrant = quadrant;
1767 }
f41d335a 1768 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1769 if (!need_sync && sp->unsync)
1770 need_sync = true;
4731d4c7 1771
7ae680eb
XG
1772 if (sp->role.word != role.word)
1773 continue;
4731d4c7 1774
7ae680eb
XG
1775 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1776 break;
e02aa901 1777
7ae680eb
XG
1778 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1779 if (sp->unsync_children) {
a8eeb04a 1780 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1781 kvm_mmu_mark_parents_unsync(sp);
1782 } else if (sp->unsync)
1783 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1784
a30f47cb 1785 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1786 trace_kvm_mmu_get_page(sp, false);
1787 return sp;
1788 }
dfc5aa00 1789 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1790 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1791 if (!sp)
1792 return sp;
4db35314
AK
1793 sp->gfn = gfn;
1794 sp->role = role;
7ae680eb
XG
1795 hlist_add_head(&sp->hash_link,
1796 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1797 if (!direct) {
b1a36821
MT
1798 if (rmap_write_protect(vcpu->kvm, gfn))
1799 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1800 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1801 kvm_sync_pages(vcpu, gfn);
1802
4731d4c7
MT
1803 account_shadowed(vcpu->kvm, gfn);
1804 }
c3707958 1805 init_shadow_page_table(sp);
f691fe1d 1806 trace_kvm_mmu_get_page(sp, true);
4db35314 1807 return sp;
cea0f0e7
AK
1808}
1809
2d11123a
AK
1810static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1811 struct kvm_vcpu *vcpu, u64 addr)
1812{
1813 iterator->addr = addr;
1814 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1815 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1816
1817 if (iterator->level == PT64_ROOT_LEVEL &&
1818 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1819 !vcpu->arch.mmu.direct_map)
1820 --iterator->level;
1821
2d11123a
AK
1822 if (iterator->level == PT32E_ROOT_LEVEL) {
1823 iterator->shadow_addr
1824 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1825 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1826 --iterator->level;
1827 if (!iterator->shadow_addr)
1828 iterator->level = 0;
1829 }
1830}
1831
1832static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1833{
1834 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1835 return false;
4d88954d 1836
2d11123a
AK
1837 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1838 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1839 return true;
1840}
1841
c2a2ac2b
XG
1842static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1843 u64 spte)
2d11123a 1844{
c2a2ac2b 1845 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1846 iterator->level = 0;
1847 return;
1848 }
1849
c2a2ac2b 1850 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1851 --iterator->level;
1852}
1853
c2a2ac2b
XG
1854static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1855{
1856 return __shadow_walk_next(iterator, *iterator->sptep);
1857}
1858
32ef26a3
AK
1859static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1860{
1861 u64 spte;
1862
1863 spte = __pa(sp->spt)
1864 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1865 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1866 mmu_spte_set(sptep, spte);
32ef26a3
AK
1867}
1868
a3aa51cf
AK
1869static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1870{
1871 if (is_large_pte(*sptep)) {
c3707958 1872 drop_spte(vcpu->kvm, sptep);
6addd1aa 1873 --vcpu->kvm->stat.lpages;
a3aa51cf
AK
1874 kvm_flush_remote_tlbs(vcpu->kvm);
1875 }
1876}
1877
a357bd22
AK
1878static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1879 unsigned direct_access)
1880{
1881 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1882 struct kvm_mmu_page *child;
1883
1884 /*
1885 * For the direct sp, if the guest pte's dirty bit
1886 * changed form clean to dirty, it will corrupt the
1887 * sp's access: allow writable in the read-only sp,
1888 * so we should update the spte at this point to get
1889 * a new sp with the correct access.
1890 */
1891 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1892 if (child->role.access == direct_access)
1893 return;
1894
bcdd9a93 1895 drop_parent_pte(child, sptep);
a357bd22
AK
1896 kvm_flush_remote_tlbs(vcpu->kvm);
1897 }
1898}
1899
505aef8f 1900static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1901 u64 *spte)
1902{
1903 u64 pte;
1904 struct kvm_mmu_page *child;
1905
1906 pte = *spte;
1907 if (is_shadow_present_pte(pte)) {
505aef8f 1908 if (is_last_spte(pte, sp->role.level)) {
c3707958 1909 drop_spte(kvm, spte);
505aef8f
XG
1910 if (is_large_pte(pte))
1911 --kvm->stat.lpages;
1912 } else {
38e3b2b2 1913 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 1914 drop_parent_pte(child, spte);
38e3b2b2 1915 }
505aef8f
XG
1916 return true;
1917 }
1918
1919 if (is_mmio_spte(pte))
ce88decf 1920 mmu_spte_clear_no_track(spte);
c3707958 1921
505aef8f 1922 return false;
38e3b2b2
XG
1923}
1924
90cb0529 1925static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 1926 struct kvm_mmu_page *sp)
a436036b 1927{
697fe2e2 1928 unsigned i;
697fe2e2 1929
38e3b2b2
XG
1930 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1931 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
1932}
1933
4db35314 1934static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1935{
4db35314 1936 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
1937}
1938
31aa2b44 1939static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 1940{
1e3f42f0
TY
1941 u64 *sptep;
1942 struct rmap_iterator iter;
a436036b 1943
1e3f42f0
TY
1944 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
1945 drop_parent_pte(sp, sptep);
31aa2b44
AK
1946}
1947
60c8aec6 1948static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
1949 struct kvm_mmu_page *parent,
1950 struct list_head *invalid_list)
4731d4c7 1951{
60c8aec6
MT
1952 int i, zapped = 0;
1953 struct mmu_page_path parents;
1954 struct kvm_mmu_pages pages;
4731d4c7 1955
60c8aec6 1956 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 1957 return 0;
60c8aec6
MT
1958
1959 kvm_mmu_pages_init(parent, &parents, &pages);
1960 while (mmu_unsync_walk(parent, &pages)) {
1961 struct kvm_mmu_page *sp;
1962
1963 for_each_sp(pages, sp, parents, i) {
7775834a 1964 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 1965 mmu_pages_clear_parents(&parents);
77662e00 1966 zapped++;
60c8aec6 1967 }
60c8aec6
MT
1968 kvm_mmu_pages_init(parent, &parents, &pages);
1969 }
1970
1971 return zapped;
4731d4c7
MT
1972}
1973
7775834a
XG
1974static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1975 struct list_head *invalid_list)
31aa2b44 1976{
4731d4c7 1977 int ret;
f691fe1d 1978
7775834a 1979 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 1980 ++kvm->stat.mmu_shadow_zapped;
7775834a 1981 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 1982 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 1983 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 1984 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 1985 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
1986 if (sp->unsync)
1987 kvm_unlink_unsync_page(kvm, sp);
4db35314 1988 if (!sp->root_count) {
54a4f023
GJ
1989 /* Count self */
1990 ret++;
7775834a 1991 list_move(&sp->link, invalid_list);
aa6bd187 1992 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 1993 } else {
5b5c6a5a 1994 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
1995 kvm_reload_remote_mmus(kvm);
1996 }
7775834a
XG
1997
1998 sp->role.invalid = 1;
4731d4c7 1999 return ret;
a436036b
AK
2000}
2001
7775834a
XG
2002static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2003 struct list_head *invalid_list)
2004{
2005 struct kvm_mmu_page *sp;
2006
2007 if (list_empty(invalid_list))
2008 return;
2009
c142786c
AK
2010 /*
2011 * wmb: make sure everyone sees our modifications to the page tables
2012 * rmb: make sure we see changes to vcpu->mode
2013 */
2014 smp_mb();
4f022648 2015
c142786c
AK
2016 /*
2017 * Wait for all vcpus to exit guest mode and/or lockless shadow
2018 * page table walks.
2019 */
2020 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2021
7775834a
XG
2022 do {
2023 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2024 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2025 kvm_mmu_isolate_page(sp);
aa6bd187 2026 kvm_mmu_free_page(sp);
7775834a 2027 } while (!list_empty(invalid_list));
7775834a
XG
2028}
2029
82ce2c96
IE
2030/*
2031 * Changing the number of mmu pages allocated to the vm
49d5ca26 2032 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2033 */
49d5ca26 2034void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2035{
d98ba053 2036 LIST_HEAD(invalid_list);
82ce2c96
IE
2037 /*
2038 * If we set the number of mmu pages to be smaller be than the
2039 * number of actived pages , we must to free some mmu pages before we
2040 * change the value
2041 */
2042
49d5ca26
DH
2043 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2044 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2045 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2046 struct kvm_mmu_page *page;
2047
f05e70ac 2048 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2049 struct kvm_mmu_page, link);
80b63faf 2050 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2051 }
aa6bd187 2052 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2053 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2054 }
82ce2c96 2055
49d5ca26 2056 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2057}
2058
1cb3f3ae 2059int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2060{
4db35314 2061 struct kvm_mmu_page *sp;
f41d335a 2062 struct hlist_node *node;
d98ba053 2063 LIST_HEAD(invalid_list);
a436036b
AK
2064 int r;
2065
9ad17b10 2066 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2067 r = 0;
1cb3f3ae 2068 spin_lock(&kvm->mmu_lock);
f41d335a 2069 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2070 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2071 sp->role.word);
2072 r = 1;
f41d335a 2073 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2074 }
d98ba053 2075 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2076 spin_unlock(&kvm->mmu_lock);
2077
a436036b 2078 return r;
cea0f0e7 2079}
1cb3f3ae 2080EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2081
38c335f1 2082static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2083{
bc6678a3 2084 int slot = memslot_id(kvm, gfn);
4db35314 2085 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2086
291f26bc 2087 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2088}
2089
74be52e3
SY
2090/*
2091 * The function is based on mtrr_type_lookup() in
2092 * arch/x86/kernel/cpu/mtrr/generic.c
2093 */
2094static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2095 u64 start, u64 end)
2096{
2097 int i;
2098 u64 base, mask;
2099 u8 prev_match, curr_match;
2100 int num_var_ranges = KVM_NR_VAR_MTRR;
2101
2102 if (!mtrr_state->enabled)
2103 return 0xFF;
2104
2105 /* Make end inclusive end, instead of exclusive */
2106 end--;
2107
2108 /* Look in fixed ranges. Just return the type as per start */
2109 if (mtrr_state->have_fixed && (start < 0x100000)) {
2110 int idx;
2111
2112 if (start < 0x80000) {
2113 idx = 0;
2114 idx += (start >> 16);
2115 return mtrr_state->fixed_ranges[idx];
2116 } else if (start < 0xC0000) {
2117 idx = 1 * 8;
2118 idx += ((start - 0x80000) >> 14);
2119 return mtrr_state->fixed_ranges[idx];
2120 } else if (start < 0x1000000) {
2121 idx = 3 * 8;
2122 idx += ((start - 0xC0000) >> 12);
2123 return mtrr_state->fixed_ranges[idx];
2124 }
2125 }
2126
2127 /*
2128 * Look in variable ranges
2129 * Look of multiple ranges matching this address and pick type
2130 * as per MTRR precedence
2131 */
2132 if (!(mtrr_state->enabled & 2))
2133 return mtrr_state->def_type;
2134
2135 prev_match = 0xFF;
2136 for (i = 0; i < num_var_ranges; ++i) {
2137 unsigned short start_state, end_state;
2138
2139 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2140 continue;
2141
2142 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2143 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2144 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2145 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2146
2147 start_state = ((start & mask) == (base & mask));
2148 end_state = ((end & mask) == (base & mask));
2149 if (start_state != end_state)
2150 return 0xFE;
2151
2152 if ((start & mask) != (base & mask))
2153 continue;
2154
2155 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2156 if (prev_match == 0xFF) {
2157 prev_match = curr_match;
2158 continue;
2159 }
2160
2161 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2162 curr_match == MTRR_TYPE_UNCACHABLE)
2163 return MTRR_TYPE_UNCACHABLE;
2164
2165 if ((prev_match == MTRR_TYPE_WRBACK &&
2166 curr_match == MTRR_TYPE_WRTHROUGH) ||
2167 (prev_match == MTRR_TYPE_WRTHROUGH &&
2168 curr_match == MTRR_TYPE_WRBACK)) {
2169 prev_match = MTRR_TYPE_WRTHROUGH;
2170 curr_match = MTRR_TYPE_WRTHROUGH;
2171 }
2172
2173 if (prev_match != curr_match)
2174 return MTRR_TYPE_UNCACHABLE;
2175 }
2176
2177 if (prev_match != 0xFF)
2178 return prev_match;
2179
2180 return mtrr_state->def_type;
2181}
2182
4b12f0de 2183u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2184{
2185 u8 mtrr;
2186
2187 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2188 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2189 if (mtrr == 0xfe || mtrr == 0xff)
2190 mtrr = MTRR_TYPE_WRBACK;
2191 return mtrr;
2192}
4b12f0de 2193EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2194
9cf5cf5a
XG
2195static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2196{
2197 trace_kvm_mmu_unsync_page(sp);
2198 ++vcpu->kvm->stat.mmu_unsync;
2199 sp->unsync = 1;
2200
2201 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2202}
2203
2204static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2205{
4731d4c7 2206 struct kvm_mmu_page *s;
f41d335a 2207 struct hlist_node *node;
9cf5cf5a 2208
f41d335a 2209 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2210 if (s->unsync)
4731d4c7 2211 continue;
9cf5cf5a
XG
2212 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2213 __kvm_unsync_page(vcpu, s);
4731d4c7 2214 }
4731d4c7
MT
2215}
2216
2217static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2218 bool can_unsync)
2219{
9cf5cf5a 2220 struct kvm_mmu_page *s;
f41d335a 2221 struct hlist_node *node;
9cf5cf5a
XG
2222 bool need_unsync = false;
2223
f41d335a 2224 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2225 if (!can_unsync)
2226 return 1;
2227
9cf5cf5a 2228 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2229 return 1;
9cf5cf5a
XG
2230
2231 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2232 need_unsync = true;
2233 }
4731d4c7 2234 }
9cf5cf5a
XG
2235 if (need_unsync)
2236 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2237 return 0;
2238}
2239
d555c333 2240static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2241 unsigned pte_access, int user_fault,
640d9b0d 2242 int write_fault, int level,
c2d0ee46 2243 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2244 bool can_unsync, bool host_writable)
1c4f1fd6 2245{
b330aa0c 2246 u64 spte, entry = *sptep;
1e73f9dd 2247 int ret = 0;
64d4d521 2248
ce88decf
XG
2249 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2250 return 0;
2251
982c2565 2252 spte = PT_PRESENT_MASK;
947da538 2253 if (!speculative)
3201b5d9 2254 spte |= shadow_accessed_mask;
640d9b0d 2255
7b52345e
SY
2256 if (pte_access & ACC_EXEC_MASK)
2257 spte |= shadow_x_mask;
2258 else
2259 spte |= shadow_nx_mask;
1c4f1fd6 2260 if (pte_access & ACC_USER_MASK)
7b52345e 2261 spte |= shadow_user_mask;
852e3c19 2262 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2263 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2264 if (tdp_enabled)
4b12f0de
SY
2265 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2266 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2267
9bdbba13 2268 if (host_writable)
1403283a 2269 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2270 else
2271 pte_access &= ~ACC_WRITE_MASK;
1403283a 2272
35149e21 2273 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2274
2275 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2276 || (!vcpu->arch.mmu.direct_map && write_fault
2277 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2278
852e3c19
JR
2279 if (level > PT_PAGE_TABLE_LEVEL &&
2280 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2281 ret = 1;
c3707958 2282 drop_spte(vcpu->kvm, sptep);
be38d276 2283 goto done;
38187c83
MT
2284 }
2285
1c4f1fd6 2286 spte |= PT_WRITABLE_MASK;
1c4f1fd6 2287
c5a78f2b 2288 if (!vcpu->arch.mmu.direct_map
411c588d 2289 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2290 spte &= ~PT_USER_MASK;
411c588d
AK
2291 /*
2292 * If we converted a user page to a kernel page,
2293 * so that the kernel can write to it when cr0.wp=0,
2294 * then we should prevent the kernel from executing it
2295 * if SMEP is enabled.
2296 */
2297 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2298 spte |= PT64_NX_MASK;
2299 }
69325a12 2300
ecc5589f
MT
2301 /*
2302 * Optimization: for pte sync, if spte was writable the hash
2303 * lookup is unnecessary (and expensive). Write protection
2304 * is responsibility of mmu_get_page / kvm_sync_page.
2305 * Same reasoning can be applied to dirty page accounting.
2306 */
8dae4445 2307 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2308 goto set_pte;
2309
4731d4c7 2310 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2311 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2312 __func__, gfn);
1e73f9dd 2313 ret = 1;
1c4f1fd6 2314 pte_access &= ~ACC_WRITE_MASK;
8dae4445 2315 if (is_writable_pte(spte))
1c4f1fd6 2316 spte &= ~PT_WRITABLE_MASK;
1c4f1fd6
AK
2317 }
2318 }
2319
1c4f1fd6
AK
2320 if (pte_access & ACC_WRITE_MASK)
2321 mark_page_dirty(vcpu->kvm, gfn);
2322
38187c83 2323set_pte:
1df9f2dc 2324 mmu_spte_update(sptep, spte);
b330aa0c
XG
2325 /*
2326 * If we overwrite a writable spte with a read-only one we
2327 * should flush remote TLBs. Otherwise rmap_write_protect
2328 * will find a read-only spte, even though the writable spte
2329 * might be cached on a CPU's TLB.
2330 */
2331 if (is_writable_pte(entry) && !is_writable_pte(*sptep))
2332 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2333done:
1e73f9dd
MT
2334 return ret;
2335}
2336
d555c333 2337static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2338 unsigned pt_access, unsigned pte_access,
640d9b0d 2339 int user_fault, int write_fault,
b90a0e6c 2340 int *emulate, int level, gfn_t gfn,
1403283a 2341 pfn_t pfn, bool speculative,
9bdbba13 2342 bool host_writable)
1e73f9dd
MT
2343{
2344 int was_rmapped = 0;
53a27b39 2345 int rmap_count;
1e73f9dd
MT
2346
2347 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2348 " user_fault %d gfn %llx\n",
d555c333 2349 __func__, *sptep, pt_access,
1e73f9dd
MT
2350 write_fault, user_fault, gfn);
2351
d555c333 2352 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2353 /*
2354 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2355 * the parent of the now unreachable PTE.
2356 */
852e3c19
JR
2357 if (level > PT_PAGE_TABLE_LEVEL &&
2358 !is_large_pte(*sptep)) {
1e73f9dd 2359 struct kvm_mmu_page *child;
d555c333 2360 u64 pte = *sptep;
1e73f9dd
MT
2361
2362 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2363 drop_parent_pte(child, sptep);
3be2264b 2364 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2365 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2366 pgprintk("hfn old %llx new %llx\n",
d555c333 2367 spte_to_pfn(*sptep), pfn);
c3707958 2368 drop_spte(vcpu->kvm, sptep);
91546356 2369 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2370 } else
2371 was_rmapped = 1;
1e73f9dd 2372 }
852e3c19 2373
d555c333 2374 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2375 level, gfn, pfn, speculative, true,
9bdbba13 2376 host_writable)) {
1e73f9dd 2377 if (write_fault)
b90a0e6c 2378 *emulate = 1;
5304efde 2379 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2380 }
1e73f9dd 2381
ce88decf
XG
2382 if (unlikely(is_mmio_spte(*sptep) && emulate))
2383 *emulate = 1;
2384
d555c333 2385 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2386 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2387 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2388 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2389 *sptep, sptep);
d555c333 2390 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2391 ++vcpu->kvm->stat.lpages;
2392
ffb61bb3
XG
2393 if (is_shadow_present_pte(*sptep)) {
2394 page_header_update_slot(vcpu->kvm, sptep, gfn);
2395 if (!was_rmapped) {
2396 rmap_count = rmap_add(vcpu, sptep, gfn);
2397 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2398 rmap_recycle(vcpu, sptep, gfn);
2399 }
1c4f1fd6 2400 }
9ed5520d 2401 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2402}
2403
6aa8b732
AK
2404static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2405{
e676505a 2406 mmu_free_roots(vcpu);
6aa8b732
AK
2407}
2408
957ed9ef
XG
2409static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2410 bool no_dirty_log)
2411{
2412 struct kvm_memory_slot *slot;
2413 unsigned long hva;
2414
5d163b1c 2415 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
957ed9ef 2416 if (!slot) {
fce92dce
XG
2417 get_page(fault_page);
2418 return page_to_pfn(fault_page);
957ed9ef
XG
2419 }
2420
2421 hva = gfn_to_hva_memslot(slot, gfn);
2422
2423 return hva_to_pfn_atomic(vcpu->kvm, hva);
2424}
2425
2426static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2427 struct kvm_mmu_page *sp,
2428 u64 *start, u64 *end)
2429{
2430 struct page *pages[PTE_PREFETCH_NUM];
2431 unsigned access = sp->role.access;
2432 int i, ret;
2433 gfn_t gfn;
2434
2435 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2436 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2437 return -1;
2438
2439 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2440 if (ret <= 0)
2441 return -1;
2442
2443 for (i = 0; i < ret; i++, gfn++, start++)
2444 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2445 access, 0, 0, NULL,
957ed9ef
XG
2446 sp->role.level, gfn,
2447 page_to_pfn(pages[i]), true, true);
2448
2449 return 0;
2450}
2451
2452static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2453 struct kvm_mmu_page *sp, u64 *sptep)
2454{
2455 u64 *spte, *start = NULL;
2456 int i;
2457
2458 WARN_ON(!sp->role.direct);
2459
2460 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2461 spte = sp->spt + i;
2462
2463 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2464 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2465 if (!start)
2466 continue;
2467 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2468 break;
2469 start = NULL;
2470 } else if (!start)
2471 start = spte;
2472 }
2473}
2474
2475static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2476{
2477 struct kvm_mmu_page *sp;
2478
2479 /*
2480 * Since it's no accessed bit on EPT, it's no way to
2481 * distinguish between actually accessed translations
2482 * and prefetched, so disable pte prefetch if EPT is
2483 * enabled.
2484 */
2485 if (!shadow_accessed_mask)
2486 return;
2487
2488 sp = page_header(__pa(sptep));
2489 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2490 return;
2491
2492 __direct_pte_prefetch(vcpu, sp, sptep);
2493}
2494
9f652d21 2495static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2496 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2497 bool prefault)
140754bc 2498{
9f652d21 2499 struct kvm_shadow_walk_iterator iterator;
140754bc 2500 struct kvm_mmu_page *sp;
b90a0e6c 2501 int emulate = 0;
140754bc 2502 gfn_t pseudo_gfn;
6aa8b732 2503
9f652d21 2504 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2505 if (iterator.level == level) {
612819c3
MT
2506 unsigned pte_access = ACC_ALL;
2507
612819c3 2508 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2509 0, write, &emulate,
2ec4739d 2510 level, gfn, pfn, prefault, map_writable);
957ed9ef 2511 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2512 ++vcpu->stat.pf_fixed;
2513 break;
6aa8b732
AK
2514 }
2515
c3707958 2516 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2517 u64 base_addr = iterator.addr;
2518
2519 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2520 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2521 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2522 iterator.level - 1,
2523 1, ACC_ALL, iterator.sptep);
2524 if (!sp) {
2525 pgprintk("nonpaging_map: ENOMEM\n");
2526 kvm_release_pfn_clean(pfn);
2527 return -ENOMEM;
2528 }
140754bc 2529
1df9f2dc
XG
2530 mmu_spte_set(iterator.sptep,
2531 __pa(sp->spt)
2532 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2533 | shadow_user_mask | shadow_x_mask
2534 | shadow_accessed_mask);
9f652d21
AK
2535 }
2536 }
b90a0e6c 2537 return emulate;
6aa8b732
AK
2538}
2539
77db5cbd 2540static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2541{
77db5cbd
HY
2542 siginfo_t info;
2543
2544 info.si_signo = SIGBUS;
2545 info.si_errno = 0;
2546 info.si_code = BUS_MCEERR_AR;
2547 info.si_addr = (void __user *)address;
2548 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2549
77db5cbd 2550 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2551}
2552
d7c55201 2553static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2554{
2555 kvm_release_pfn_clean(pfn);
2556 if (is_hwpoison_pfn(pfn)) {
bebb106a 2557 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2558 return 0;
d7c55201 2559 }
edba23e5 2560
d7c55201 2561 return -EFAULT;
bf998156
HY
2562}
2563
936a5fe6
AA
2564static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2565 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2566{
2567 pfn_t pfn = *pfnp;
2568 gfn_t gfn = *gfnp;
2569 int level = *levelp;
2570
2571 /*
2572 * Check if it's a transparent hugepage. If this would be an
2573 * hugetlbfs page, level wouldn't be set to
2574 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2575 * here.
2576 */
2577 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2578 level == PT_PAGE_TABLE_LEVEL &&
2579 PageTransCompound(pfn_to_page(pfn)) &&
2580 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2581 unsigned long mask;
2582 /*
2583 * mmu_notifier_retry was successful and we hold the
2584 * mmu_lock here, so the pmd can't become splitting
2585 * from under us, and in turn
2586 * __split_huge_page_refcount() can't run from under
2587 * us and we can safely transfer the refcount from
2588 * PG_tail to PG_head as we switch the pfn to tail to
2589 * head.
2590 */
2591 *levelp = level = PT_DIRECTORY_LEVEL;
2592 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2593 VM_BUG_ON((gfn & mask) != (pfn & mask));
2594 if (pfn & mask) {
2595 gfn &= ~mask;
2596 *gfnp = gfn;
2597 kvm_release_pfn_clean(pfn);
2598 pfn &= ~mask;
c3586667 2599 kvm_get_pfn(pfn);
936a5fe6
AA
2600 *pfnp = pfn;
2601 }
2602 }
2603}
2604
d7c55201
XG
2605static bool mmu_invalid_pfn(pfn_t pfn)
2606{
ce88decf 2607 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2608}
2609
2610static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2611 pfn_t pfn, unsigned access, int *ret_val)
2612{
2613 bool ret = true;
2614
2615 /* The pfn is invalid, report the error! */
2616 if (unlikely(is_invalid_pfn(pfn))) {
2617 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2618 goto exit;
2619 }
2620
ce88decf 2621 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2622 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2623
2624 ret = false;
2625exit:
2626 return ret;
2627}
2628
78b2c54a 2629static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2630 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2631
2632static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, int write, gfn_t gfn,
78b2c54a 2633 bool prefault)
10589a46
MT
2634{
2635 int r;
852e3c19 2636 int level;
936a5fe6 2637 int force_pt_level;
35149e21 2638 pfn_t pfn;
e930bffe 2639 unsigned long mmu_seq;
612819c3 2640 bool map_writable;
aaee2c94 2641
936a5fe6
AA
2642 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2643 if (likely(!force_pt_level)) {
2644 level = mapping_level(vcpu, gfn);
2645 /*
2646 * This path builds a PAE pagetable - so we can map
2647 * 2mb pages at maximum. Therefore check if the level
2648 * is larger than that.
2649 */
2650 if (level > PT_DIRECTORY_LEVEL)
2651 level = PT_DIRECTORY_LEVEL;
852e3c19 2652
936a5fe6
AA
2653 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2654 } else
2655 level = PT_PAGE_TABLE_LEVEL;
05da4558 2656
e930bffe 2657 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2658 smp_rmb();
060c2abe 2659
78b2c54a 2660 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2661 return 0;
aaee2c94 2662
d7c55201
XG
2663 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2664 return r;
d196e343 2665
aaee2c94 2666 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2667 if (mmu_notifier_retry(vcpu, mmu_seq))
2668 goto out_unlock;
eb787d10 2669 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2670 if (likely(!force_pt_level))
2671 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2672 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2673 prefault);
aaee2c94
MT
2674 spin_unlock(&vcpu->kvm->mmu_lock);
2675
aaee2c94 2676
10589a46 2677 return r;
e930bffe
AA
2678
2679out_unlock:
2680 spin_unlock(&vcpu->kvm->mmu_lock);
2681 kvm_release_pfn_clean(pfn);
2682 return 0;
10589a46
MT
2683}
2684
2685
17ac10ad
AK
2686static void mmu_free_roots(struct kvm_vcpu *vcpu)
2687{
2688 int i;
4db35314 2689 struct kvm_mmu_page *sp;
d98ba053 2690 LIST_HEAD(invalid_list);
17ac10ad 2691
ad312c7c 2692 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2693 return;
aaee2c94 2694 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2695 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2696 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2697 vcpu->arch.mmu.direct_map)) {
ad312c7c 2698 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2699
4db35314
AK
2700 sp = page_header(root);
2701 --sp->root_count;
d98ba053
XG
2702 if (!sp->root_count && sp->role.invalid) {
2703 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2704 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2705 }
ad312c7c 2706 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2707 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2708 return;
2709 }
17ac10ad 2710 for (i = 0; i < 4; ++i) {
ad312c7c 2711 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2712
417726a3 2713 if (root) {
417726a3 2714 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2715 sp = page_header(root);
2716 --sp->root_count;
2e53d63a 2717 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2718 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2719 &invalid_list);
417726a3 2720 }
ad312c7c 2721 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2722 }
d98ba053 2723 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2724 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2725 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2726}
2727
8986ecc0
MT
2728static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2729{
2730 int ret = 0;
2731
2732 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2733 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2734 ret = 1;
2735 }
2736
2737 return ret;
2738}
2739
651dd37a
JR
2740static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2741{
2742 struct kvm_mmu_page *sp;
7ebaf15e 2743 unsigned i;
651dd37a
JR
2744
2745 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2746 spin_lock(&vcpu->kvm->mmu_lock);
2747 kvm_mmu_free_some_pages(vcpu);
2748 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2749 1, ACC_ALL, NULL);
2750 ++sp->root_count;
2751 spin_unlock(&vcpu->kvm->mmu_lock);
2752 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2753 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2754 for (i = 0; i < 4; ++i) {
2755 hpa_t root = vcpu->arch.mmu.pae_root[i];
2756
2757 ASSERT(!VALID_PAGE(root));
2758 spin_lock(&vcpu->kvm->mmu_lock);
2759 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2760 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2761 i << 30,
651dd37a
JR
2762 PT32_ROOT_LEVEL, 1, ACC_ALL,
2763 NULL);
2764 root = __pa(sp->spt);
2765 ++sp->root_count;
2766 spin_unlock(&vcpu->kvm->mmu_lock);
2767 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2768 }
6292757f 2769 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2770 } else
2771 BUG();
2772
2773 return 0;
2774}
2775
2776static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2777{
4db35314 2778 struct kvm_mmu_page *sp;
81407ca5
JR
2779 u64 pdptr, pm_mask;
2780 gfn_t root_gfn;
2781 int i;
3bb65a22 2782
5777ed34 2783 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2784
651dd37a
JR
2785 if (mmu_check_root(vcpu, root_gfn))
2786 return 1;
2787
2788 /*
2789 * Do we shadow a long mode page table? If so we need to
2790 * write-protect the guests page table root.
2791 */
2792 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2793 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2794
2795 ASSERT(!VALID_PAGE(root));
651dd37a 2796
8facbbff 2797 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2798 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2799 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2800 0, ACC_ALL, NULL);
4db35314
AK
2801 root = __pa(sp->spt);
2802 ++sp->root_count;
8facbbff 2803 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2804 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2805 return 0;
17ac10ad 2806 }
f87f9288 2807
651dd37a
JR
2808 /*
2809 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2810 * or a PAE 3-level page table. In either case we need to be aware that
2811 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2812 */
81407ca5
JR
2813 pm_mask = PT_PRESENT_MASK;
2814 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2815 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2816
17ac10ad 2817 for (i = 0; i < 4; ++i) {
ad312c7c 2818 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2819
2820 ASSERT(!VALID_PAGE(root));
ad312c7c 2821 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2822 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2823 if (!is_present_gpte(pdptr)) {
ad312c7c 2824 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
2825 continue;
2826 }
6de4f3ad 2827 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
2828 if (mmu_check_root(vcpu, root_gfn))
2829 return 1;
5a7388c2 2830 }
8facbbff 2831 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2832 kvm_mmu_free_some_pages(vcpu);
4db35314 2833 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 2834 PT32_ROOT_LEVEL, 0,
f7d9c7b7 2835 ACC_ALL, NULL);
4db35314
AK
2836 root = __pa(sp->spt);
2837 ++sp->root_count;
8facbbff
AK
2838 spin_unlock(&vcpu->kvm->mmu_lock);
2839
81407ca5 2840 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 2841 }
6292757f 2842 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
2843
2844 /*
2845 * If we shadow a 32 bit page table with a long mode page
2846 * table we enter this path.
2847 */
2848 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2849 if (vcpu->arch.mmu.lm_root == NULL) {
2850 /*
2851 * The additional page necessary for this is only
2852 * allocated on demand.
2853 */
2854
2855 u64 *lm_root;
2856
2857 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
2858 if (lm_root == NULL)
2859 return 1;
2860
2861 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
2862
2863 vcpu->arch.mmu.lm_root = lm_root;
2864 }
2865
2866 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
2867 }
2868
8986ecc0 2869 return 0;
17ac10ad
AK
2870}
2871
651dd37a
JR
2872static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
2873{
2874 if (vcpu->arch.mmu.direct_map)
2875 return mmu_alloc_direct_roots(vcpu);
2876 else
2877 return mmu_alloc_shadow_roots(vcpu);
2878}
2879
0ba73cda
MT
2880static void mmu_sync_roots(struct kvm_vcpu *vcpu)
2881{
2882 int i;
2883 struct kvm_mmu_page *sp;
2884
81407ca5
JR
2885 if (vcpu->arch.mmu.direct_map)
2886 return;
2887
0ba73cda
MT
2888 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
2889 return;
6903074c 2890
bebb106a 2891 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 2892 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 2893 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
2894 hpa_t root = vcpu->arch.mmu.root_hpa;
2895 sp = page_header(root);
2896 mmu_sync_children(vcpu, sp);
0375f7fa 2897 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2898 return;
2899 }
2900 for (i = 0; i < 4; ++i) {
2901 hpa_t root = vcpu->arch.mmu.pae_root[i];
2902
8986ecc0 2903 if (root && VALID_PAGE(root)) {
0ba73cda
MT
2904 root &= PT64_BASE_ADDR_MASK;
2905 sp = page_header(root);
2906 mmu_sync_children(vcpu, sp);
2907 }
2908 }
0375f7fa 2909 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
2910}
2911
2912void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
2913{
2914 spin_lock(&vcpu->kvm->mmu_lock);
2915 mmu_sync_roots(vcpu);
6cffe8ca 2916 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
2917}
2918
1871c602 2919static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 2920 u32 access, struct x86_exception *exception)
6aa8b732 2921{
ab9ae313
AK
2922 if (exception)
2923 exception->error_code = 0;
6aa8b732
AK
2924 return vaddr;
2925}
2926
6539e738 2927static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
2928 u32 access,
2929 struct x86_exception *exception)
6539e738 2930{
ab9ae313
AK
2931 if (exception)
2932 exception->error_code = 0;
6539e738
JR
2933 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
2934}
2935
ce88decf
XG
2936static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2937{
2938 if (direct)
2939 return vcpu_match_mmio_gpa(vcpu, addr);
2940
2941 return vcpu_match_mmio_gva(vcpu, addr);
2942}
2943
2944
2945/*
2946 * On direct hosts, the last spte is only allows two states
2947 * for mmio page fault:
2948 * - It is the mmio spte
2949 * - It is zapped or it is being zapped.
2950 *
2951 * This function completely checks the spte when the last spte
2952 * is not the mmio spte.
2953 */
2954static bool check_direct_spte_mmio_pf(u64 spte)
2955{
2956 return __check_direct_spte_mmio_pf(spte);
2957}
2958
2959static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
2960{
2961 struct kvm_shadow_walk_iterator iterator;
2962 u64 spte = 0ull;
2963
2964 walk_shadow_page_lockless_begin(vcpu);
2965 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
2966 if (!is_shadow_present_pte(spte))
2967 break;
2968 walk_shadow_page_lockless_end(vcpu);
2969
2970 return spte;
2971}
2972
2973/*
2974 * If it is a real mmio page fault, return 1 and emulat the instruction
2975 * directly, return 0 to let CPU fault again on the address, -1 is
2976 * returned if bug is detected.
2977 */
2978int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
2979{
2980 u64 spte;
2981
2982 if (quickly_check_mmio_pf(vcpu, addr, direct))
2983 return 1;
2984
2985 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
2986
2987 if (is_mmio_spte(spte)) {
2988 gfn_t gfn = get_mmio_spte_gfn(spte);
2989 unsigned access = get_mmio_spte_access(spte);
2990
2991 if (direct)
2992 addr = 0;
4f022648
XG
2993
2994 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
2995 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
2996 return 1;
2997 }
2998
2999 /*
3000 * It's ok if the gva is remapped by other cpus on shadow guest,
3001 * it's a BUG if the gfn is not a mmio page.
3002 */
3003 if (direct && !check_direct_spte_mmio_pf(spte))
3004 return -1;
3005
3006 /*
3007 * If the page table is zapped by other cpus, let CPU fault again on
3008 * the address.
3009 */
3010 return 0;
3011}
3012EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3013
3014static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3015 u32 error_code, bool direct)
3016{
3017 int ret;
3018
3019 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3020 WARN_ON(ret < 0);
3021 return ret;
3022}
3023
6aa8b732 3024static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3025 u32 error_code, bool prefault)
6aa8b732 3026{
e833240f 3027 gfn_t gfn;
e2dec939 3028 int r;
6aa8b732 3029
b8688d51 3030 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3031
3032 if (unlikely(error_code & PFERR_RSVD_MASK))
3033 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3034
e2dec939
AK
3035 r = mmu_topup_memory_caches(vcpu);
3036 if (r)
3037 return r;
714b93da 3038
6aa8b732 3039 ASSERT(vcpu);
ad312c7c 3040 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3041
e833240f 3042 gfn = gva >> PAGE_SHIFT;
6aa8b732 3043
e833240f 3044 return nonpaging_map(vcpu, gva & PAGE_MASK,
78b2c54a 3045 error_code & PFERR_WRITE_MASK, gfn, prefault);
6aa8b732
AK
3046}
3047
7e1fbeac 3048static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3049{
3050 struct kvm_arch_async_pf arch;
fb67e14f 3051
7c90705b 3052 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3053 arch.gfn = gfn;
c4806acd 3054 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3055 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3056
3057 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3058}
3059
3060static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3061{
3062 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3063 kvm_event_needs_reinjection(vcpu)))
3064 return false;
3065
3066 return kvm_x86_ops->interrupt_allowed(vcpu);
3067}
3068
78b2c54a 3069static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3070 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3071{
3072 bool async;
3073
612819c3 3074 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3075
3076 if (!async)
3077 return false; /* *pfn has correct page already */
3078
3079 put_page(pfn_to_page(*pfn));
3080
78b2c54a 3081 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3082 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3083 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3084 trace_kvm_async_pf_doublefault(gva, gfn);
3085 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3086 return true;
3087 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3088 return true;
3089 }
3090
612819c3 3091 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3092
3093 return false;
3094}
3095
56028d08 3096static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3097 bool prefault)
fb72d167 3098{
35149e21 3099 pfn_t pfn;
fb72d167 3100 int r;
852e3c19 3101 int level;
936a5fe6 3102 int force_pt_level;
05da4558 3103 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3104 unsigned long mmu_seq;
612819c3
MT
3105 int write = error_code & PFERR_WRITE_MASK;
3106 bool map_writable;
fb72d167
JR
3107
3108 ASSERT(vcpu);
3109 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3110
ce88decf
XG
3111 if (unlikely(error_code & PFERR_RSVD_MASK))
3112 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3113
fb72d167
JR
3114 r = mmu_topup_memory_caches(vcpu);
3115 if (r)
3116 return r;
3117
936a5fe6
AA
3118 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3119 if (likely(!force_pt_level)) {
3120 level = mapping_level(vcpu, gfn);
3121 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3122 } else
3123 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3124
e930bffe 3125 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3126 smp_rmb();
af585b92 3127
78b2c54a 3128 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3129 return 0;
3130
d7c55201
XG
3131 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3132 return r;
3133
fb72d167 3134 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3135 if (mmu_notifier_retry(vcpu, mmu_seq))
3136 goto out_unlock;
fb72d167 3137 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3138 if (likely(!force_pt_level))
3139 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3140 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3141 level, gfn, pfn, prefault);
fb72d167 3142 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3143
3144 return r;
e930bffe
AA
3145
3146out_unlock:
3147 spin_unlock(&vcpu->kvm->mmu_lock);
3148 kvm_release_pfn_clean(pfn);
3149 return 0;
fb72d167
JR
3150}
3151
6aa8b732
AK
3152static void nonpaging_free(struct kvm_vcpu *vcpu)
3153{
17ac10ad 3154 mmu_free_roots(vcpu);
6aa8b732
AK
3155}
3156
52fde8df
JR
3157static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3158 struct kvm_mmu *context)
6aa8b732 3159{
6aa8b732
AK
3160 context->new_cr3 = nonpaging_new_cr3;
3161 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3162 context->gva_to_gpa = nonpaging_gva_to_gpa;
3163 context->free = nonpaging_free;
e8bc217a 3164 context->sync_page = nonpaging_sync_page;
a7052897 3165 context->invlpg = nonpaging_invlpg;
0f53b5b1 3166 context->update_pte = nonpaging_update_pte;
cea0f0e7 3167 context->root_level = 0;
6aa8b732 3168 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3169 context->root_hpa = INVALID_PAGE;
c5a78f2b 3170 context->direct_map = true;
2d48a985 3171 context->nx = false;
6aa8b732
AK
3172 return 0;
3173}
3174
d835dfec 3175void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3176{
1165f5fe 3177 ++vcpu->stat.tlb_flush;
a8eeb04a 3178 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3179}
3180
3181static void paging_new_cr3(struct kvm_vcpu *vcpu)
3182{
9f8fe504 3183 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3184 mmu_free_roots(vcpu);
6aa8b732
AK
3185}
3186
5777ed34
JR
3187static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3188{
9f8fe504 3189 return kvm_read_cr3(vcpu);
5777ed34
JR
3190}
3191
6389ee94
AK
3192static void inject_page_fault(struct kvm_vcpu *vcpu,
3193 struct x86_exception *fault)
6aa8b732 3194{
6389ee94 3195 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3196}
3197
6aa8b732
AK
3198static void paging_free(struct kvm_vcpu *vcpu)
3199{
3200 nonpaging_free(vcpu);
3201}
3202
3241f22d 3203static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3204{
3205 int bit7;
3206
3207 bit7 = (gpte >> 7) & 1;
3241f22d 3208 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3209}
3210
ce88decf
XG
3211static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3212 int *nr_present)
3213{
3214 if (unlikely(is_mmio_spte(*sptep))) {
3215 if (gfn != get_mmio_spte_gfn(*sptep)) {
3216 mmu_spte_clear_no_track(sptep);
3217 return true;
3218 }
3219
3220 (*nr_present)++;
3221 mark_mmio_spte(sptep, gfn, access);
3222 return true;
3223 }
3224
3225 return false;
3226}
3227
6aa8b732
AK
3228#define PTTYPE 64
3229#include "paging_tmpl.h"
3230#undef PTTYPE
3231
3232#define PTTYPE 32
3233#include "paging_tmpl.h"
3234#undef PTTYPE
3235
52fde8df 3236static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3237 struct kvm_mmu *context)
82725b20 3238{
82725b20
DE
3239 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3240 u64 exb_bit_rsvd = 0;
3241
2d48a985 3242 if (!context->nx)
82725b20 3243 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3244 switch (context->root_level) {
82725b20
DE
3245 case PT32_ROOT_LEVEL:
3246 /* no rsvd bits for 2 level 4K page table entries */
3247 context->rsvd_bits_mask[0][1] = 0;
3248 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3249 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3250
3251 if (!is_pse(vcpu)) {
3252 context->rsvd_bits_mask[1][1] = 0;
3253 break;
3254 }
3255
82725b20
DE
3256 if (is_cpuid_PSE36())
3257 /* 36bits PSE 4MB page */
3258 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3259 else
3260 /* 32 bits PSE 4MB page */
3261 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3262 break;
3263 case PT32E_ROOT_LEVEL:
20c466b5
DE
3264 context->rsvd_bits_mask[0][2] =
3265 rsvd_bits(maxphyaddr, 63) |
3266 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3267 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3268 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3269 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3270 rsvd_bits(maxphyaddr, 62); /* PTE */
3271 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3272 rsvd_bits(maxphyaddr, 62) |
3273 rsvd_bits(13, 20); /* large page */
f815bce8 3274 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3275 break;
3276 case PT64_ROOT_LEVEL:
3277 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3278 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3279 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3280 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3281 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3282 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3283 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3284 rsvd_bits(maxphyaddr, 51);
3285 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3286 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3287 rsvd_bits(maxphyaddr, 51) |
3288 rsvd_bits(13, 29);
82725b20 3289 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3290 rsvd_bits(maxphyaddr, 51) |
3291 rsvd_bits(13, 20); /* large page */
f815bce8 3292 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3293 break;
3294 }
3295}
3296
52fde8df
JR
3297static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3298 struct kvm_mmu *context,
3299 int level)
6aa8b732 3300{
2d48a985 3301 context->nx = is_nx(vcpu);
4d6931c3 3302 context->root_level = level;
2d48a985 3303
4d6931c3 3304 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3305
3306 ASSERT(is_pae(vcpu));
3307 context->new_cr3 = paging_new_cr3;
3308 context->page_fault = paging64_page_fault;
6aa8b732 3309 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3310 context->sync_page = paging64_sync_page;
a7052897 3311 context->invlpg = paging64_invlpg;
0f53b5b1 3312 context->update_pte = paging64_update_pte;
6aa8b732 3313 context->free = paging_free;
17ac10ad 3314 context->shadow_root_level = level;
17c3ba9d 3315 context->root_hpa = INVALID_PAGE;
c5a78f2b 3316 context->direct_map = false;
6aa8b732
AK
3317 return 0;
3318}
3319
52fde8df
JR
3320static int paging64_init_context(struct kvm_vcpu *vcpu,
3321 struct kvm_mmu *context)
17ac10ad 3322{
52fde8df 3323 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3324}
3325
52fde8df
JR
3326static int paging32_init_context(struct kvm_vcpu *vcpu,
3327 struct kvm_mmu *context)
6aa8b732 3328{
2d48a985 3329 context->nx = false;
4d6931c3 3330 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3331
4d6931c3 3332 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3333
3334 context->new_cr3 = paging_new_cr3;
3335 context->page_fault = paging32_page_fault;
6aa8b732
AK
3336 context->gva_to_gpa = paging32_gva_to_gpa;
3337 context->free = paging_free;
e8bc217a 3338 context->sync_page = paging32_sync_page;
a7052897 3339 context->invlpg = paging32_invlpg;
0f53b5b1 3340 context->update_pte = paging32_update_pte;
6aa8b732 3341 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3342 context->root_hpa = INVALID_PAGE;
c5a78f2b 3343 context->direct_map = false;
6aa8b732
AK
3344 return 0;
3345}
3346
52fde8df
JR
3347static int paging32E_init_context(struct kvm_vcpu *vcpu,
3348 struct kvm_mmu *context)
6aa8b732 3349{
52fde8df 3350 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3351}
3352
fb72d167
JR
3353static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3354{
14dfe855 3355 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3356
c445f8ef 3357 context->base_role.word = 0;
fb72d167
JR
3358 context->new_cr3 = nonpaging_new_cr3;
3359 context->page_fault = tdp_page_fault;
3360 context->free = nonpaging_free;
e8bc217a 3361 context->sync_page = nonpaging_sync_page;
a7052897 3362 context->invlpg = nonpaging_invlpg;
0f53b5b1 3363 context->update_pte = nonpaging_update_pte;
67253af5 3364 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3365 context->root_hpa = INVALID_PAGE;
c5a78f2b 3366 context->direct_map = true;
1c97f0a0 3367 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3368 context->get_cr3 = get_cr3;
e4e517b4 3369 context->get_pdptr = kvm_pdptr_read;
cb659db8 3370 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3371
3372 if (!is_paging(vcpu)) {
2d48a985 3373 context->nx = false;
fb72d167
JR
3374 context->gva_to_gpa = nonpaging_gva_to_gpa;
3375 context->root_level = 0;
3376 } else if (is_long_mode(vcpu)) {
2d48a985 3377 context->nx = is_nx(vcpu);
fb72d167 3378 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3379 reset_rsvds_bits_mask(vcpu, context);
3380 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3381 } else if (is_pae(vcpu)) {
2d48a985 3382 context->nx = is_nx(vcpu);
fb72d167 3383 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3384 reset_rsvds_bits_mask(vcpu, context);
3385 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3386 } else {
2d48a985 3387 context->nx = false;
fb72d167 3388 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3389 reset_rsvds_bits_mask(vcpu, context);
3390 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3391 }
3392
3393 return 0;
3394}
3395
52fde8df 3396int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3397{
a770f6f2 3398 int r;
411c588d 3399 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3400 ASSERT(vcpu);
ad312c7c 3401 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3402
3403 if (!is_paging(vcpu))
52fde8df 3404 r = nonpaging_init_context(vcpu, context);
a9058ecd 3405 else if (is_long_mode(vcpu))
52fde8df 3406 r = paging64_init_context(vcpu, context);
6aa8b732 3407 else if (is_pae(vcpu))
52fde8df 3408 r = paging32E_init_context(vcpu, context);
6aa8b732 3409 else
52fde8df 3410 r = paging32_init_context(vcpu, context);
a770f6f2 3411
5b7e0102 3412 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3413 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3414 vcpu->arch.mmu.base_role.smep_andnot_wp
3415 = smep && !is_write_protection(vcpu);
52fde8df
JR
3416
3417 return r;
3418}
3419EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3420
3421static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3422{
14dfe855 3423 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3424
14dfe855
JR
3425 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3426 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3427 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3428 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3429
3430 return r;
6aa8b732
AK
3431}
3432
02f59dc9
JR
3433static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3434{
3435 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3436
3437 g_context->get_cr3 = get_cr3;
e4e517b4 3438 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3439 g_context->inject_page_fault = kvm_inject_page_fault;
3440
3441 /*
3442 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3443 * translation of l2_gpa to l1_gpa addresses is done using the
3444 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3445 * functions between mmu and nested_mmu are swapped.
3446 */
3447 if (!is_paging(vcpu)) {
2d48a985 3448 g_context->nx = false;
02f59dc9
JR
3449 g_context->root_level = 0;
3450 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3451 } else if (is_long_mode(vcpu)) {
2d48a985 3452 g_context->nx = is_nx(vcpu);
02f59dc9 3453 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3454 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3455 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3456 } else if (is_pae(vcpu)) {
2d48a985 3457 g_context->nx = is_nx(vcpu);
02f59dc9 3458 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3459 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3460 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3461 } else {
2d48a985 3462 g_context->nx = false;
02f59dc9 3463 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3464 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3465 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3466 }
3467
3468 return 0;
3469}
3470
fb72d167
JR
3471static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3472{
02f59dc9
JR
3473 if (mmu_is_nested(vcpu))
3474 return init_kvm_nested_mmu(vcpu);
3475 else if (tdp_enabled)
fb72d167
JR
3476 return init_kvm_tdp_mmu(vcpu);
3477 else
3478 return init_kvm_softmmu(vcpu);
3479}
3480
6aa8b732
AK
3481static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3482{
3483 ASSERT(vcpu);
62ad0755
SY
3484 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3485 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3486 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3487}
3488
3489int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3490{
3491 destroy_kvm_mmu(vcpu);
f8f7e5ee 3492 return init_kvm_mmu(vcpu);
17c3ba9d 3493}
8668a3c4 3494EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3495
3496int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3497{
714b93da
AK
3498 int r;
3499
e2dec939 3500 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3501 if (r)
3502 goto out;
8986ecc0 3503 r = mmu_alloc_roots(vcpu);
8facbbff 3504 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3505 mmu_sync_roots(vcpu);
aaee2c94 3506 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3507 if (r)
3508 goto out;
3662cb1c 3509 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3510 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3511out:
3512 return r;
6aa8b732 3513}
17c3ba9d
AK
3514EXPORT_SYMBOL_GPL(kvm_mmu_load);
3515
3516void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3517{
3518 mmu_free_roots(vcpu);
3519}
4b16184c 3520EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3521
0028425f 3522static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3523 struct kvm_mmu_page *sp, u64 *spte,
3524 const void *new)
0028425f 3525{
30945387 3526 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3527 ++vcpu->kvm->stat.mmu_pde_zapped;
3528 return;
30945387 3529 }
0028425f 3530
4cee5764 3531 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3532 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3533}
3534
79539cec
AK
3535static bool need_remote_flush(u64 old, u64 new)
3536{
3537 if (!is_shadow_present_pte(old))
3538 return false;
3539 if (!is_shadow_present_pte(new))
3540 return true;
3541 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3542 return true;
3543 old ^= PT64_NX_MASK;
3544 new ^= PT64_NX_MASK;
3545 return (old & ~new & PT64_PERM_MASK) != 0;
3546}
3547
0671a8e7
XG
3548static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3549 bool remote_flush, bool local_flush)
79539cec 3550{
0671a8e7
XG
3551 if (zap_page)
3552 return;
3553
3554 if (remote_flush)
79539cec 3555 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3556 else if (local_flush)
79539cec
AK
3557 kvm_mmu_flush_tlb(vcpu);
3558}
3559
889e5cbc
XG
3560static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3561 const u8 *new, int *bytes)
da4a00f0 3562{
889e5cbc
XG
3563 u64 gentry;
3564 int r;
72016f3a 3565
72016f3a
AK
3566 /*
3567 * Assume that the pte write on a page table of the same type
49b26e26
XG
3568 * as the current vcpu paging mode since we update the sptes only
3569 * when they have the same mode.
72016f3a 3570 */
889e5cbc 3571 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3572 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3573 *gpa &= ~(gpa_t)7;
3574 *bytes = 8;
3575 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3576 if (r)
3577 gentry = 0;
08e850c6
AK
3578 new = (const u8 *)&gentry;
3579 }
3580
889e5cbc 3581 switch (*bytes) {
08e850c6
AK
3582 case 4:
3583 gentry = *(const u32 *)new;
3584 break;
3585 case 8:
3586 gentry = *(const u64 *)new;
3587 break;
3588 default:
3589 gentry = 0;
3590 break;
72016f3a
AK
3591 }
3592
889e5cbc
XG
3593 return gentry;
3594}
3595
3596/*
3597 * If we're seeing too many writes to a page, it may no longer be a page table,
3598 * or we may be forking, in which case it is better to unmap the page.
3599 */
a138fe75 3600static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3601{
a30f47cb
XG
3602 /*
3603 * Skip write-flooding detected for the sp whose level is 1, because
3604 * it can become unsync, then the guest page is not write-protected.
3605 */
f71fa31f 3606 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3607 return false;
3246af0e 3608
a30f47cb 3609 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3610}
3611
3612/*
3613 * Misaligned accesses are too much trouble to fix up; also, they usually
3614 * indicate a page is not used as a page table.
3615 */
3616static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3617 int bytes)
3618{
3619 unsigned offset, pte_size, misaligned;
3620
3621 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3622 gpa, bytes, sp->role.word);
3623
3624 offset = offset_in_page(gpa);
3625 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3626
3627 /*
3628 * Sometimes, the OS only writes the last one bytes to update status
3629 * bits, for example, in linux, andb instruction is used in clear_bit().
3630 */
3631 if (!(offset & (pte_size - 1)) && bytes == 1)
3632 return false;
3633
889e5cbc
XG
3634 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3635 misaligned |= bytes < 4;
3636
3637 return misaligned;
3638}
3639
3640static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3641{
3642 unsigned page_offset, quadrant;
3643 u64 *spte;
3644 int level;
3645
3646 page_offset = offset_in_page(gpa);
3647 level = sp->role.level;
3648 *nspte = 1;
3649 if (!sp->role.cr4_pae) {
3650 page_offset <<= 1; /* 32->64 */
3651 /*
3652 * A 32-bit pde maps 4MB while the shadow pdes map
3653 * only 2MB. So we need to double the offset again
3654 * and zap two pdes instead of one.
3655 */
3656 if (level == PT32_ROOT_LEVEL) {
3657 page_offset &= ~7; /* kill rounding error */
3658 page_offset <<= 1;
3659 *nspte = 2;
3660 }
3661 quadrant = page_offset >> PAGE_SHIFT;
3662 page_offset &= ~PAGE_MASK;
3663 if (quadrant != sp->role.quadrant)
3664 return NULL;
3665 }
3666
3667 spte = &sp->spt[page_offset / sizeof(*spte)];
3668 return spte;
3669}
3670
3671void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3672 const u8 *new, int bytes)
3673{
3674 gfn_t gfn = gpa >> PAGE_SHIFT;
3675 union kvm_mmu_page_role mask = { .word = 0 };
3676 struct kvm_mmu_page *sp;
3677 struct hlist_node *node;
3678 LIST_HEAD(invalid_list);
3679 u64 entry, gentry, *spte;
3680 int npte;
a30f47cb 3681 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3682
3683 /*
3684 * If we don't have indirect shadow pages, it means no page is
3685 * write-protected, so we can exit simply.
3686 */
3687 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3688 return;
3689
3690 zap_page = remote_flush = local_flush = false;
3691
3692 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3693
3694 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3695
3696 /*
3697 * No need to care whether allocation memory is successful
3698 * or not since pte prefetch is skiped if it does not have
3699 * enough objects in the cache.
3700 */
3701 mmu_topup_memory_caches(vcpu);
3702
3703 spin_lock(&vcpu->kvm->mmu_lock);
3704 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3705 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3706
fa1de2bf 3707 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3708 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3709 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3710 detect_write_flooding(sp)) {
0671a8e7 3711 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3712 &invalid_list);
4cee5764 3713 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3714 continue;
3715 }
889e5cbc
XG
3716
3717 spte = get_written_sptes(sp, gpa, &npte);
3718 if (!spte)
3719 continue;
3720
0671a8e7 3721 local_flush = true;
ac1b714e 3722 while (npte--) {
79539cec 3723 entry = *spte;
38e3b2b2 3724 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3725 if (gentry &&
3726 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3727 & mask.word) && rmap_can_add(vcpu))
7c562522 3728 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3729 if (!remote_flush && need_remote_flush(entry, *spte))
3730 remote_flush = true;
ac1b714e 3731 ++spte;
9b7a0325 3732 }
9b7a0325 3733 }
0671a8e7 3734 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3735 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3736 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3737 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3738}
3739
a436036b
AK
3740int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3741{
10589a46
MT
3742 gpa_t gpa;
3743 int r;
a436036b 3744
c5a78f2b 3745 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3746 return 0;
3747
1871c602 3748 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3749
10589a46 3750 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3751
10589a46 3752 return r;
a436036b 3753}
577bdc49 3754EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3755
22d95b12 3756void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3757{
d98ba053 3758 LIST_HEAD(invalid_list);
103ad25a 3759
e0df7b9f 3760 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3761 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3762 struct kvm_mmu_page *sp;
ebeace86 3763
f05e70ac 3764 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3765 struct kvm_mmu_page, link);
e0df7b9f 3766 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3767 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3768 }
aa6bd187 3769 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3770}
ebeace86 3771
1cb3f3ae
XG
3772static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3773{
3774 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3775 return vcpu_match_mmio_gpa(vcpu, addr);
3776
3777 return vcpu_match_mmio_gva(vcpu, addr);
3778}
3779
dc25e89e
AP
3780int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3781 void *insn, int insn_len)
3067714c 3782{
1cb3f3ae 3783 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3784 enum emulation_result er;
3785
56028d08 3786 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3787 if (r < 0)
3788 goto out;
3789
3790 if (!r) {
3791 r = 1;
3792 goto out;
3793 }
3794
1cb3f3ae
XG
3795 if (is_mmio_page_fault(vcpu, cr2))
3796 emulation_type = 0;
3797
3798 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
3799
3800 switch (er) {
3801 case EMULATE_DONE:
3802 return 1;
3803 case EMULATE_DO_MMIO:
3804 ++vcpu->stat.mmio_exits;
6d77dbfc 3805 /* fall through */
3067714c 3806 case EMULATE_FAIL:
3f5d18a9 3807 return 0;
3067714c
AK
3808 default:
3809 BUG();
3810 }
3811out:
3067714c
AK
3812 return r;
3813}
3814EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
3815
a7052897
MT
3816void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
3817{
a7052897 3818 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
3819 kvm_mmu_flush_tlb(vcpu);
3820 ++vcpu->stat.invlpg;
3821}
3822EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
3823
18552672
JR
3824void kvm_enable_tdp(void)
3825{
3826 tdp_enabled = true;
3827}
3828EXPORT_SYMBOL_GPL(kvm_enable_tdp);
3829
5f4cb662
JR
3830void kvm_disable_tdp(void)
3831{
3832 tdp_enabled = false;
3833}
3834EXPORT_SYMBOL_GPL(kvm_disable_tdp);
3835
6aa8b732
AK
3836static void free_mmu_pages(struct kvm_vcpu *vcpu)
3837{
ad312c7c 3838 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
3839 if (vcpu->arch.mmu.lm_root != NULL)
3840 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
3841}
3842
3843static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
3844{
17ac10ad 3845 struct page *page;
6aa8b732
AK
3846 int i;
3847
3848 ASSERT(vcpu);
3849
17ac10ad
AK
3850 /*
3851 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
3852 * Therefore we need to allocate shadow page tables in the first
3853 * 4GB of memory, which happens to fit the DMA32 zone.
3854 */
3855 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
3856 if (!page)
d7fa6ab2
WY
3857 return -ENOMEM;
3858
ad312c7c 3859 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 3860 for (i = 0; i < 4; ++i)
ad312c7c 3861 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 3862
6aa8b732 3863 return 0;
6aa8b732
AK
3864}
3865
8018c27b 3866int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 3867{
6aa8b732 3868 ASSERT(vcpu);
e459e322
XG
3869
3870 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
3871 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
3872 vcpu->arch.mmu.translate_gpa = translate_gpa;
3873 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 3874
8018c27b
IM
3875 return alloc_mmu_pages(vcpu);
3876}
6aa8b732 3877
8018c27b
IM
3878int kvm_mmu_setup(struct kvm_vcpu *vcpu)
3879{
3880 ASSERT(vcpu);
ad312c7c 3881 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 3882
8018c27b 3883 return init_kvm_mmu(vcpu);
6aa8b732
AK
3884}
3885
90cb0529 3886void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 3887{
4db35314 3888 struct kvm_mmu_page *sp;
6aa8b732 3889
f05e70ac 3890 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
3891 int i;
3892 u64 *pt;
3893
291f26bc 3894 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
3895 continue;
3896
4db35314 3897 pt = sp->spt;
8234b22e 3898 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
3899 if (!is_shadow_present_pte(pt[i]) ||
3900 !is_last_spte(pt[i], sp->role.level))
3901 continue;
3902
3903 if (is_large_pte(pt[i])) {
c3707958 3904 drop_spte(kvm, &pt[i]);
8234b22e 3905 --kvm->stat.lpages;
da8dc75f 3906 continue;
8234b22e 3907 }
da8dc75f 3908
6aa8b732 3909 /* avoid RMW */
01c168ac 3910 if (is_writable_pte(pt[i]))
1df9f2dc
XG
3911 mmu_spte_update(&pt[i],
3912 pt[i] & ~PT_WRITABLE_MASK);
8234b22e 3913 }
6aa8b732 3914 }
171d595d 3915 kvm_flush_remote_tlbs(kvm);
6aa8b732 3916}
37a7d8b0 3917
90cb0529 3918void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 3919{
4db35314 3920 struct kvm_mmu_page *sp, *node;
d98ba053 3921 LIST_HEAD(invalid_list);
e0fa826f 3922
aaee2c94 3923 spin_lock(&kvm->mmu_lock);
3246af0e 3924restart:
f05e70ac 3925 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 3926 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
3927 goto restart;
3928
d98ba053 3929 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 3930 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
3931}
3932
3d56cbdf
JK
3933static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
3934 struct list_head *invalid_list)
3ee16c81
IE
3935{
3936 struct kvm_mmu_page *page;
3937
3938 page = container_of(kvm->arch.active_mmu_pages.prev,
3939 struct kvm_mmu_page, link);
3d56cbdf 3940 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
3941}
3942
1495f230 3943static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
3944{
3945 struct kvm *kvm;
1495f230 3946 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
3947
3948 if (nr_to_scan == 0)
3949 goto out;
3ee16c81 3950
e935b837 3951 raw_spin_lock(&kvm_lock);
3ee16c81
IE
3952
3953 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 3954 int idx;
d98ba053 3955 LIST_HEAD(invalid_list);
3ee16c81 3956
19526396
GN
3957 /*
3958 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
3959 * here. We may skip a VM instance errorneosly, but we do not
3960 * want to shrink a VM that only started to populate its MMU
3961 * anyway.
3962 */
3963 if (kvm->arch.n_used_mmu_pages > 0) {
3964 if (!nr_to_scan--)
3965 break;
3966 continue;
3967 }
3968
f656ce01 3969 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 3970 spin_lock(&kvm->mmu_lock);
3ee16c81 3971
19526396 3972 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 3973 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 3974
3ee16c81 3975 spin_unlock(&kvm->mmu_lock);
f656ce01 3976 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
3977
3978 list_move_tail(&kvm->vm_list, &vm_list);
3979 break;
3ee16c81 3980 }
3ee16c81 3981
e935b837 3982 raw_spin_unlock(&kvm_lock);
3ee16c81 3983
45221ab6
DH
3984out:
3985 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
3986}
3987
3988static struct shrinker mmu_shrinker = {
3989 .shrink = mmu_shrink,
3990 .seeks = DEFAULT_SEEKS * 10,
3991};
3992
2ddfd20e 3993static void mmu_destroy_caches(void)
b5a33a75 3994{
53c07b18
XG
3995 if (pte_list_desc_cache)
3996 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
3997 if (mmu_page_header_cache)
3998 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
3999}
4000
4001int kvm_mmu_module_init(void)
4002{
53c07b18
XG
4003 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4004 sizeof(struct pte_list_desc),
20c2df83 4005 0, 0, NULL);
53c07b18 4006 if (!pte_list_desc_cache)
b5a33a75
AK
4007 goto nomem;
4008
d3d25b04
AK
4009 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4010 sizeof(struct kvm_mmu_page),
20c2df83 4011 0, 0, NULL);
d3d25b04
AK
4012 if (!mmu_page_header_cache)
4013 goto nomem;
4014
45bf21a8
WY
4015 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4016 goto nomem;
4017
3ee16c81
IE
4018 register_shrinker(&mmu_shrinker);
4019
b5a33a75
AK
4020 return 0;
4021
4022nomem:
3ee16c81 4023 mmu_destroy_caches();
b5a33a75
AK
4024 return -ENOMEM;
4025}
4026
3ad82a7e
ZX
4027/*
4028 * Caculate mmu pages needed for kvm.
4029 */
4030unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4031{
3ad82a7e
ZX
4032 unsigned int nr_mmu_pages;
4033 unsigned int nr_pages = 0;
bc6678a3 4034 struct kvm_memslots *slots;
be6ba0f0 4035 struct kvm_memory_slot *memslot;
3ad82a7e 4036
90d83dc3
LJ
4037 slots = kvm_memslots(kvm);
4038
be6ba0f0
XG
4039 kvm_for_each_memslot(memslot, slots)
4040 nr_pages += memslot->npages;
3ad82a7e
ZX
4041
4042 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4043 nr_mmu_pages = max(nr_mmu_pages,
4044 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4045
4046 return nr_mmu_pages;
4047}
4048
94d8b056
MT
4049int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4050{
4051 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4052 u64 spte;
94d8b056
MT
4053 int nr_sptes = 0;
4054
c2a2ac2b
XG
4055 walk_shadow_page_lockless_begin(vcpu);
4056 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4057 sptes[iterator.level-1] = spte;
94d8b056 4058 nr_sptes++;
c2a2ac2b 4059 if (!is_shadow_present_pte(spte))
94d8b056
MT
4060 break;
4061 }
c2a2ac2b 4062 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4063
4064 return nr_sptes;
4065}
4066EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4067
c42fffe3
XG
4068void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4069{
4070 ASSERT(vcpu);
4071
4072 destroy_kvm_mmu(vcpu);
4073 free_mmu_pages(vcpu);
4074 mmu_free_memory_caches(vcpu);
b034cf01
XG
4075}
4076
b034cf01
XG
4077void kvm_mmu_module_exit(void)
4078{
4079 mmu_destroy_caches();
4080 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4081 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4082 mmu_audit_disable();
4083}