Merge remote-tracking branch 'upstream/master' into queue
[linux-2.6-block.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
95b0430d
TY
202 struct kvm_mmu_page *sp = page_header(__pa(sptep));
203
ce88decf
XG
204 access &= ACC_WRITE_MASK | ACC_USER_MASK;
205
95b0430d 206 sp->mmio_cached = true;
4f022648 207 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
208 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
209}
210
211static bool is_mmio_spte(u64 spte)
212{
213 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
214}
215
216static gfn_t get_mmio_spte_gfn(u64 spte)
217{
218 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
219}
220
221static unsigned get_mmio_spte_access(u64 spte)
222{
223 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
224}
225
226static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
227{
228 if (unlikely(is_noslot_pfn(pfn))) {
229 mark_mmio_spte(sptep, gfn, access);
230 return true;
231 }
232
233 return false;
234}
c7addb90 235
82725b20
DE
236static inline u64 rsvd_bits(int s, int e)
237{
238 return ((1ULL << (e - s + 1)) - 1) << s;
239}
240
7b52345e 241void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 242 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
243{
244 shadow_user_mask = user_mask;
245 shadow_accessed_mask = accessed_mask;
246 shadow_dirty_mask = dirty_mask;
247 shadow_nx_mask = nx_mask;
248 shadow_x_mask = x_mask;
249}
250EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
251
6aa8b732
AK
252static int is_cpuid_PSE36(void)
253{
254 return 1;
255}
256
73b1087e
AK
257static int is_nx(struct kvm_vcpu *vcpu)
258{
f6801dff 259 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
260}
261
c7addb90
AK
262static int is_shadow_present_pte(u64 pte)
263{
ce88decf 264 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
265}
266
05da4558
MT
267static int is_large_pte(u64 pte)
268{
269 return pte & PT_PAGE_SIZE_MASK;
270}
271
43a3795a 272static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 273{
439e218a 274 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
275}
276
43a3795a 277static int is_rmap_spte(u64 pte)
cd4a4e53 278{
4b1a80fa 279 return is_shadow_present_pte(pte);
cd4a4e53
AK
280}
281
776e6633
MT
282static int is_last_spte(u64 pte, int level)
283{
284 if (level == PT_PAGE_TABLE_LEVEL)
285 return 1;
852e3c19 286 if (is_large_pte(pte))
776e6633
MT
287 return 1;
288 return 0;
289}
290
35149e21 291static pfn_t spte_to_pfn(u64 pte)
0b49ea86 292{
35149e21 293 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
294}
295
da928521
AK
296static gfn_t pse36_gfn_delta(u32 gpte)
297{
298 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
299
300 return (gpte & PT32_DIR_PSE36_MASK) << shift;
301}
302
603e0651 303#ifdef CONFIG_X86_64
d555c333 304static void __set_spte(u64 *sptep, u64 spte)
e663ee64 305{
603e0651 306 *sptep = spte;
e663ee64
AK
307}
308
603e0651 309static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 310{
603e0651
XG
311 *sptep = spte;
312}
313
314static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
315{
316 return xchg(sptep, spte);
317}
c2a2ac2b
XG
318
319static u64 __get_spte_lockless(u64 *sptep)
320{
321 return ACCESS_ONCE(*sptep);
322}
ce88decf
XG
323
324static bool __check_direct_spte_mmio_pf(u64 spte)
325{
326 /* It is valid if the spte is zapped. */
327 return spte == 0ull;
328}
a9221dd5 329#else
603e0651
XG
330union split_spte {
331 struct {
332 u32 spte_low;
333 u32 spte_high;
334 };
335 u64 spte;
336};
a9221dd5 337
c2a2ac2b
XG
338static void count_spte_clear(u64 *sptep, u64 spte)
339{
340 struct kvm_mmu_page *sp = page_header(__pa(sptep));
341
342 if (is_shadow_present_pte(spte))
343 return;
344
345 /* Ensure the spte is completely set before we increase the count */
346 smp_wmb();
347 sp->clear_spte_count++;
348}
349
603e0651
XG
350static void __set_spte(u64 *sptep, u64 spte)
351{
352 union split_spte *ssptep, sspte;
a9221dd5 353
603e0651
XG
354 ssptep = (union split_spte *)sptep;
355 sspte = (union split_spte)spte;
356
357 ssptep->spte_high = sspte.spte_high;
358
359 /*
360 * If we map the spte from nonpresent to present, We should store
361 * the high bits firstly, then set present bit, so cpu can not
362 * fetch this spte while we are setting the spte.
363 */
364 smp_wmb();
365
366 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
367}
368
603e0651
XG
369static void __update_clear_spte_fast(u64 *sptep, u64 spte)
370{
371 union split_spte *ssptep, sspte;
372
373 ssptep = (union split_spte *)sptep;
374 sspte = (union split_spte)spte;
375
376 ssptep->spte_low = sspte.spte_low;
377
378 /*
379 * If we map the spte from present to nonpresent, we should clear
380 * present bit firstly to avoid vcpu fetch the old high bits.
381 */
382 smp_wmb();
383
384 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 385 count_spte_clear(sptep, spte);
603e0651
XG
386}
387
388static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
389{
390 union split_spte *ssptep, sspte, orig;
391
392 ssptep = (union split_spte *)sptep;
393 sspte = (union split_spte)spte;
394
395 /* xchg acts as a barrier before the setting of the high bits */
396 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
397 orig.spte_high = ssptep->spte_high;
398 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 399 count_spte_clear(sptep, spte);
603e0651
XG
400
401 return orig.spte;
402}
c2a2ac2b
XG
403
404/*
405 * The idea using the light way get the spte on x86_32 guest is from
406 * gup_get_pte(arch/x86/mm/gup.c).
407 * The difference is we can not catch the spte tlb flush if we leave
408 * guest mode, so we emulate it by increase clear_spte_count when spte
409 * is cleared.
410 */
411static u64 __get_spte_lockless(u64 *sptep)
412{
413 struct kvm_mmu_page *sp = page_header(__pa(sptep));
414 union split_spte spte, *orig = (union split_spte *)sptep;
415 int count;
416
417retry:
418 count = sp->clear_spte_count;
419 smp_rmb();
420
421 spte.spte_low = orig->spte_low;
422 smp_rmb();
423
424 spte.spte_high = orig->spte_high;
425 smp_rmb();
426
427 if (unlikely(spte.spte_low != orig->spte_low ||
428 count != sp->clear_spte_count))
429 goto retry;
430
431 return spte.spte;
432}
ce88decf
XG
433
434static bool __check_direct_spte_mmio_pf(u64 spte)
435{
436 union split_spte sspte = (union split_spte)spte;
437 u32 high_mmio_mask = shadow_mmio_mask >> 32;
438
439 /* It is valid if the spte is zapped. */
440 if (spte == 0ull)
441 return true;
442
443 /* It is valid if the spte is being zapped. */
444 if (sspte.spte_low == 0ull &&
445 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
446 return true;
447
448 return false;
449}
603e0651
XG
450#endif
451
c7ba5b48
XG
452static bool spte_is_locklessly_modifiable(u64 spte)
453{
feb3eb70
GN
454 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
455 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
456}
457
8672b721
XG
458static bool spte_has_volatile_bits(u64 spte)
459{
c7ba5b48
XG
460 /*
461 * Always atomicly update spte if it can be updated
462 * out of mmu-lock, it can ensure dirty bit is not lost,
463 * also, it can help us to get a stable is_writable_pte()
464 * to ensure tlb flush is not missed.
465 */
466 if (spte_is_locklessly_modifiable(spte))
467 return true;
468
8672b721
XG
469 if (!shadow_accessed_mask)
470 return false;
471
472 if (!is_shadow_present_pte(spte))
473 return false;
474
4132779b
XG
475 if ((spte & shadow_accessed_mask) &&
476 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
477 return false;
478
479 return true;
480}
481
4132779b
XG
482static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
483{
484 return (old_spte & bit_mask) && !(new_spte & bit_mask);
485}
486
1df9f2dc
XG
487/* Rules for using mmu_spte_set:
488 * Set the sptep from nonpresent to present.
489 * Note: the sptep being assigned *must* be either not present
490 * or in a state where the hardware will not attempt to update
491 * the spte.
492 */
493static void mmu_spte_set(u64 *sptep, u64 new_spte)
494{
495 WARN_ON(is_shadow_present_pte(*sptep));
496 __set_spte(sptep, new_spte);
497}
498
499/* Rules for using mmu_spte_update:
500 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
501 *
502 * Whenever we overwrite a writable spte with a read-only one we
503 * should flush remote TLBs. Otherwise rmap_write_protect
504 * will find a read-only spte, even though the writable spte
505 * might be cached on a CPU's TLB, the return value indicates this
506 * case.
1df9f2dc 507 */
6e7d0354 508static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 509{
c7ba5b48 510 u64 old_spte = *sptep;
6e7d0354 511 bool ret = false;
4132779b
XG
512
513 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 514
6e7d0354
XG
515 if (!is_shadow_present_pte(old_spte)) {
516 mmu_spte_set(sptep, new_spte);
517 return ret;
518 }
4132779b 519
c7ba5b48 520 if (!spte_has_volatile_bits(old_spte))
603e0651 521 __update_clear_spte_fast(sptep, new_spte);
4132779b 522 else
603e0651 523 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 524
c7ba5b48
XG
525 /*
526 * For the spte updated out of mmu-lock is safe, since
527 * we always atomicly update it, see the comments in
528 * spte_has_volatile_bits().
529 */
6e7d0354
XG
530 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
531 ret = true;
532
4132779b 533 if (!shadow_accessed_mask)
6e7d0354 534 return ret;
4132779b
XG
535
536 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
537 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
538 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
539 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
540
541 return ret;
b79b93f9
AK
542}
543
1df9f2dc
XG
544/*
545 * Rules for using mmu_spte_clear_track_bits:
546 * It sets the sptep from present to nonpresent, and track the
547 * state bits, it is used to clear the last level sptep.
548 */
549static int mmu_spte_clear_track_bits(u64 *sptep)
550{
551 pfn_t pfn;
552 u64 old_spte = *sptep;
553
554 if (!spte_has_volatile_bits(old_spte))
603e0651 555 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 556 else
603e0651 557 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
558
559 if (!is_rmap_spte(old_spte))
560 return 0;
561
562 pfn = spte_to_pfn(old_spte);
86fde74c
XG
563
564 /*
565 * KVM does not hold the refcount of the page used by
566 * kvm mmu, before reclaiming the page, we should
567 * unmap it from mmu first.
568 */
569 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
570
1df9f2dc
XG
571 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
572 kvm_set_pfn_accessed(pfn);
573 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
574 kvm_set_pfn_dirty(pfn);
575 return 1;
576}
577
578/*
579 * Rules for using mmu_spte_clear_no_track:
580 * Directly clear spte without caring the state bits of sptep,
581 * it is used to set the upper level spte.
582 */
583static void mmu_spte_clear_no_track(u64 *sptep)
584{
603e0651 585 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
586}
587
c2a2ac2b
XG
588static u64 mmu_spte_get_lockless(u64 *sptep)
589{
590 return __get_spte_lockless(sptep);
591}
592
593static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
594{
c142786c
AK
595 /*
596 * Prevent page table teardown by making any free-er wait during
597 * kvm_flush_remote_tlbs() IPI to all active vcpus.
598 */
599 local_irq_disable();
600 vcpu->mode = READING_SHADOW_PAGE_TABLES;
601 /*
602 * Make sure a following spte read is not reordered ahead of the write
603 * to vcpu->mode.
604 */
605 smp_mb();
c2a2ac2b
XG
606}
607
608static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
609{
c142786c
AK
610 /*
611 * Make sure the write to vcpu->mode is not reordered in front of
612 * reads to sptes. If it does, kvm_commit_zap_page() can see us
613 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
614 */
615 smp_mb();
616 vcpu->mode = OUTSIDE_GUEST_MODE;
617 local_irq_enable();
c2a2ac2b
XG
618}
619
e2dec939 620static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 621 struct kmem_cache *base_cache, int min)
714b93da
AK
622{
623 void *obj;
624
625 if (cache->nobjs >= min)
e2dec939 626 return 0;
714b93da 627 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 628 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 629 if (!obj)
e2dec939 630 return -ENOMEM;
714b93da
AK
631 cache->objects[cache->nobjs++] = obj;
632 }
e2dec939 633 return 0;
714b93da
AK
634}
635
f759e2b4
XG
636static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
637{
638 return cache->nobjs;
639}
640
e8ad9a70
XG
641static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
642 struct kmem_cache *cache)
714b93da
AK
643{
644 while (mc->nobjs)
e8ad9a70 645 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
646}
647
c1158e63 648static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 649 int min)
c1158e63 650{
842f22ed 651 void *page;
c1158e63
AK
652
653 if (cache->nobjs >= min)
654 return 0;
655 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 656 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
657 if (!page)
658 return -ENOMEM;
842f22ed 659 cache->objects[cache->nobjs++] = page;
c1158e63
AK
660 }
661 return 0;
662}
663
664static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
665{
666 while (mc->nobjs)
c4d198d5 667 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
668}
669
2e3e5882 670static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 671{
e2dec939
AK
672 int r;
673
53c07b18 674 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 675 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
676 if (r)
677 goto out;
ad312c7c 678 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
679 if (r)
680 goto out;
ad312c7c 681 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 682 mmu_page_header_cache, 4);
e2dec939
AK
683out:
684 return r;
714b93da
AK
685}
686
687static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
688{
53c07b18
XG
689 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
690 pte_list_desc_cache);
ad312c7c 691 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
692 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
693 mmu_page_header_cache);
714b93da
AK
694}
695
80feb89a 696static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
697{
698 void *p;
699
700 BUG_ON(!mc->nobjs);
701 p = mc->objects[--mc->nobjs];
714b93da
AK
702 return p;
703}
704
53c07b18 705static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 706{
80feb89a 707 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
708}
709
53c07b18 710static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 711{
53c07b18 712 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
713}
714
2032a93d
LJ
715static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
716{
717 if (!sp->role.direct)
718 return sp->gfns[index];
719
720 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
721}
722
723static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
724{
725 if (sp->role.direct)
726 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
727 else
728 sp->gfns[index] = gfn;
729}
730
05da4558 731/*
d4dbf470
TY
732 * Return the pointer to the large page information for a given gfn,
733 * handling slots that are not large page aligned.
05da4558 734 */
d4dbf470
TY
735static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
736 struct kvm_memory_slot *slot,
737 int level)
05da4558
MT
738{
739 unsigned long idx;
740
fb03cb6f 741 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 742 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
743}
744
745static void account_shadowed(struct kvm *kvm, gfn_t gfn)
746{
d25797b2 747 struct kvm_memory_slot *slot;
d4dbf470 748 struct kvm_lpage_info *linfo;
d25797b2 749 int i;
05da4558 750
a1f4d395 751 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
752 for (i = PT_DIRECTORY_LEVEL;
753 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
754 linfo = lpage_info_slot(gfn, slot, i);
755 linfo->write_count += 1;
d25797b2 756 }
332b207d 757 kvm->arch.indirect_shadow_pages++;
05da4558
MT
758}
759
760static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
761{
d25797b2 762 struct kvm_memory_slot *slot;
d4dbf470 763 struct kvm_lpage_info *linfo;
d25797b2 764 int i;
05da4558 765
a1f4d395 766 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
767 for (i = PT_DIRECTORY_LEVEL;
768 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
769 linfo = lpage_info_slot(gfn, slot, i);
770 linfo->write_count -= 1;
771 WARN_ON(linfo->write_count < 0);
d25797b2 772 }
332b207d 773 kvm->arch.indirect_shadow_pages--;
05da4558
MT
774}
775
d25797b2
JR
776static int has_wrprotected_page(struct kvm *kvm,
777 gfn_t gfn,
778 int level)
05da4558 779{
2843099f 780 struct kvm_memory_slot *slot;
d4dbf470 781 struct kvm_lpage_info *linfo;
05da4558 782
a1f4d395 783 slot = gfn_to_memslot(kvm, gfn);
05da4558 784 if (slot) {
d4dbf470
TY
785 linfo = lpage_info_slot(gfn, slot, level);
786 return linfo->write_count;
05da4558
MT
787 }
788
789 return 1;
790}
791
d25797b2 792static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 793{
8f0b1ab6 794 unsigned long page_size;
d25797b2 795 int i, ret = 0;
05da4558 796
8f0b1ab6 797 page_size = kvm_host_page_size(kvm, gfn);
05da4558 798
d25797b2
JR
799 for (i = PT_PAGE_TABLE_LEVEL;
800 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
801 if (page_size >= KVM_HPAGE_SIZE(i))
802 ret = i;
803 else
804 break;
805 }
806
4c2155ce 807 return ret;
05da4558
MT
808}
809
5d163b1c
XG
810static struct kvm_memory_slot *
811gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
812 bool no_dirty_log)
05da4558
MT
813{
814 struct kvm_memory_slot *slot;
5d163b1c
XG
815
816 slot = gfn_to_memslot(vcpu->kvm, gfn);
817 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
818 (no_dirty_log && slot->dirty_bitmap))
819 slot = NULL;
820
821 return slot;
822}
823
824static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
825{
a0a8eaba 826 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
827}
828
829static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
830{
831 int host_level, level, max_level;
05da4558 832
d25797b2
JR
833 host_level = host_mapping_level(vcpu->kvm, large_gfn);
834
835 if (host_level == PT_PAGE_TABLE_LEVEL)
836 return host_level;
837
55dd98c3 838 max_level = min(kvm_x86_ops->get_lpage_level(), host_level);
878403b7
SY
839
840 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
841 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
842 break;
d25797b2
JR
843
844 return level - 1;
05da4558
MT
845}
846
290fc38d 847/*
53c07b18 848 * Pte mapping structures:
cd4a4e53 849 *
53c07b18 850 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 851 *
53c07b18
XG
852 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
853 * pte_list_desc containing more mappings.
53a27b39 854 *
53c07b18 855 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
856 * the spte was not added.
857 *
cd4a4e53 858 */
53c07b18
XG
859static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
860 unsigned long *pte_list)
cd4a4e53 861{
53c07b18 862 struct pte_list_desc *desc;
53a27b39 863 int i, count = 0;
cd4a4e53 864
53c07b18
XG
865 if (!*pte_list) {
866 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
867 *pte_list = (unsigned long)spte;
868 } else if (!(*pte_list & 1)) {
869 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
870 desc = mmu_alloc_pte_list_desc(vcpu);
871 desc->sptes[0] = (u64 *)*pte_list;
d555c333 872 desc->sptes[1] = spte;
53c07b18 873 *pte_list = (unsigned long)desc | 1;
cb16a7b3 874 ++count;
cd4a4e53 875 } else {
53c07b18
XG
876 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
877 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
878 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 879 desc = desc->more;
53c07b18 880 count += PTE_LIST_EXT;
53a27b39 881 }
53c07b18
XG
882 if (desc->sptes[PTE_LIST_EXT-1]) {
883 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
884 desc = desc->more;
885 }
d555c333 886 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 887 ++count;
d555c333 888 desc->sptes[i] = spte;
cd4a4e53 889 }
53a27b39 890 return count;
cd4a4e53
AK
891}
892
53c07b18
XG
893static void
894pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
895 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
896{
897 int j;
898
53c07b18 899 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 900 ;
d555c333
AK
901 desc->sptes[i] = desc->sptes[j];
902 desc->sptes[j] = NULL;
cd4a4e53
AK
903 if (j != 0)
904 return;
905 if (!prev_desc && !desc->more)
53c07b18 906 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
907 else
908 if (prev_desc)
909 prev_desc->more = desc->more;
910 else
53c07b18
XG
911 *pte_list = (unsigned long)desc->more | 1;
912 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
913}
914
53c07b18 915static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 916{
53c07b18
XG
917 struct pte_list_desc *desc;
918 struct pte_list_desc *prev_desc;
cd4a4e53
AK
919 int i;
920
53c07b18
XG
921 if (!*pte_list) {
922 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 923 BUG();
53c07b18
XG
924 } else if (!(*pte_list & 1)) {
925 rmap_printk("pte_list_remove: %p 1->0\n", spte);
926 if ((u64 *)*pte_list != spte) {
927 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
928 BUG();
929 }
53c07b18 930 *pte_list = 0;
cd4a4e53 931 } else {
53c07b18
XG
932 rmap_printk("pte_list_remove: %p many->many\n", spte);
933 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
934 prev_desc = NULL;
935 while (desc) {
53c07b18 936 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 937 if (desc->sptes[i] == spte) {
53c07b18 938 pte_list_desc_remove_entry(pte_list,
714b93da 939 desc, i,
cd4a4e53
AK
940 prev_desc);
941 return;
942 }
943 prev_desc = desc;
944 desc = desc->more;
945 }
53c07b18 946 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
947 BUG();
948 }
949}
950
67052b35
XG
951typedef void (*pte_list_walk_fn) (u64 *spte);
952static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
953{
954 struct pte_list_desc *desc;
955 int i;
956
957 if (!*pte_list)
958 return;
959
960 if (!(*pte_list & 1))
961 return fn((u64 *)*pte_list);
962
963 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
964 while (desc) {
965 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
966 fn(desc->sptes[i]);
967 desc = desc->more;
968 }
969}
970
9373e2c0 971static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 972 struct kvm_memory_slot *slot)
53c07b18 973{
77d11309 974 unsigned long idx;
53c07b18 975
77d11309 976 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 977 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340 1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
6b73a960
MT
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
49fde340
XG
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955 1120 *
6b73a960 1121 * Return true if the spte is dropped.
8e22f955 1122 */
6b73a960
MT
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
6b73a960
MT
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
1136 return true;
1137 }
1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1142
6b73a960
MT
1143 *flush |= mmu_spte_update(sptep, spte);
1144 return false;
d13bc5b5
XG
1145}
1146
49fde340 1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
245c3912 1148 bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
6b73a960
MT
1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1157 sptep = rmap_get_first(*rmapp, &iter);
1158 continue;
1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23 1183 while (mask) {
65fbe37c
TY
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
245c3912 1186 __rmap_write_protect(kvm, rmapp, false);
05da4558 1187
5dc99b23
TY
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
374cbac0
AK
1191}
1192
2f84569f 1193static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1194{
1195 struct kvm_memory_slot *slot;
5dc99b23
TY
1196 unsigned long *rmapp;
1197 int i;
2f84569f 1198 bool write_protected = false;
95d4c16c
TY
1199
1200 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
245c3912 1205 write_protected |= __rmap_write_protect(kvm, rmapp, true);
5dc99b23
TY
1206 }
1207
1208 return write_protected;
95d4c16c
TY
1209}
1210
8a8365c5 1211static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1212 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1213{
1e3f42f0
TY
1214 u64 *sptep;
1215 struct rmap_iterator iter;
e930bffe
AA
1216 int need_tlb_flush = 0;
1217
1e3f42f0
TY
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
e930bffe
AA
1223 need_tlb_flush = 1;
1224 }
1e3f42f0 1225
e930bffe
AA
1226 return need_tlb_flush;
1227}
1228
8a8365c5 1229static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1230 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
3da0dd43 1234 int need_flush = 0;
1e3f42f0 1235 u64 new_spte;
3da0dd43
IE
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
3da0dd43 1246 need_flush = 1;
1e3f42f0 1247
3da0dd43 1248 if (pte_write(*ptep)) {
1e3f42f0
TY
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1251 } else {
1e3f42f0 1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1257 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
3da0dd43
IE
1262 }
1263 }
1e3f42f0 1264
3da0dd43
IE
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269}
1270
84504ef3
TY
1271static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
048212d0 1277 struct kvm_memory_slot *slot,
84504ef3 1278 unsigned long data))
e930bffe 1279{
be6ba0f0 1280 int j;
f395302e 1281 int ret = 0;
bc6678a3 1282 struct kvm_memslots *slots;
be6ba0f0 1283 struct kvm_memory_slot *memslot;
bc6678a3 1284
90d83dc3 1285 slots = kvm_memslots(kvm);
e930bffe 1286
be6ba0f0 1287 kvm_for_each_memslot(memslot, slots) {
84504ef3 1288 unsigned long hva_start, hva_end;
bcd3ef58 1289 gfn_t gfn_start, gfn_end;
e930bffe 1290
84504ef3
TY
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1299 */
bcd3ef58 1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1302
bcd3ef58
TY
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
d4dbf470 1307
bcd3ef58
TY
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1314
bcd3ef58 1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1316
bcd3ef58
TY
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1319 }
1320 }
1321
f395302e 1322 return ret;
e930bffe
AA
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1328 struct kvm_memory_slot *slot,
84504ef3
TY
1329 unsigned long data))
1330{
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1332}
1333
1334int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335{
3da0dd43
IE
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337}
1338
b3ae2096
TY
1339int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340{
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342}
1343
3da0dd43
IE
1344void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345{
8a8365c5 1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1347}
1348
8a8365c5 1349static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1350 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1351{
1e3f42f0 1352 u64 *sptep;
79f702a6 1353 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1354 int young = 0;
1355
6316e1c8 1356 /*
3f6d8c8a
XH
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
f395302e
TY
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
534e38b4 1368
1e3f42f0
TY
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1371 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1372
3f6d8c8a 1373 if (*sptep & shadow_accessed_mask) {
e930bffe 1374 young = 1;
3f6d8c8a
XH
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
e930bffe 1377 }
e930bffe 1378 }
f395302e
TY
1379out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1382 return young;
1383}
1384
8ee53820 1385static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1387{
1e3f42f0
TY
1388 u64 *sptep;
1389 struct rmap_iterator iter;
8ee53820
AA
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1e3f42f0
TY
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1402 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1403
3f6d8c8a 1404 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1405 young = 1;
1406 break;
1407 }
8ee53820
AA
1408 }
1409out:
1410 return young;
1411}
1412
53a27b39
MT
1413#define RMAP_RECYCLE_THRESHOLD 1000
1414
852e3c19 1415static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1416{
1417 unsigned long *rmapp;
852e3c19
JR
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
53a27b39 1421
852e3c19 1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1423
048212d0 1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426}
1427
e930bffe
AA
1428int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429{
f395302e 1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1431}
1432
8ee53820
AA
1433int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434{
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436}
1437
d6c69ee9 1438#ifdef MMU_DEBUG
47ad8e68 1439static int is_empty_shadow_page(u64 *spt)
6aa8b732 1440{
139bdb2d
AK
1441 u64 *pos;
1442 u64 *end;
1443
47ad8e68 1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1445 if (is_shadow_present_pte(*pos)) {
b8688d51 1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1447 pos, *pos);
6aa8b732 1448 return 0;
139bdb2d 1449 }
6aa8b732
AK
1450 return 1;
1451}
d6c69ee9 1452#endif
6aa8b732 1453
45221ab6
DH
1454/*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461{
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464}
1465
834be0d8 1466static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 1467{
4db35314 1468 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1469 hlist_del(&sp->hash_link);
bd4c86ea
XG
1470 list_del(&sp->link);
1471 free_page((unsigned long)sp->spt);
834be0d8
GN
1472 if (!sp->role.direct)
1473 free_page((unsigned long)sp->gfns);
e8ad9a70 1474 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1475}
1476
cea0f0e7
AK
1477static unsigned kvm_page_table_hashfn(gfn_t gfn)
1478{
1ae0a13d 1479 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1480}
1481
714b93da 1482static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1483 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1484{
cea0f0e7
AK
1485 if (!parent_pte)
1486 return;
cea0f0e7 1487
67052b35 1488 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1489}
1490
4db35314 1491static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1492 u64 *parent_pte)
1493{
67052b35 1494 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1495}
1496
bcdd9a93
XG
1497static void drop_parent_pte(struct kvm_mmu_page *sp,
1498 u64 *parent_pte)
1499{
1500 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1501 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1502}
1503
67052b35
XG
1504static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1505 u64 *parent_pte, int direct)
ad8cfbe3 1506{
67052b35 1507 struct kvm_mmu_page *sp;
80feb89a
TY
1508 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1509 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1510 if (!direct)
80feb89a 1511 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1512 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1513 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
1514 sp->parent_ptes = 0;
1515 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1516 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1517 return sp;
ad8cfbe3
MT
1518}
1519
67052b35 1520static void mark_unsync(u64 *spte);
1047df1f 1521static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1522{
67052b35 1523 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1524}
1525
67052b35 1526static void mark_unsync(u64 *spte)
0074ff63 1527{
67052b35 1528 struct kvm_mmu_page *sp;
1047df1f 1529 unsigned int index;
0074ff63 1530
67052b35 1531 sp = page_header(__pa(spte));
1047df1f
XG
1532 index = spte - sp->spt;
1533 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1534 return;
1047df1f 1535 if (sp->unsync_children++)
0074ff63 1536 return;
1047df1f 1537 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1538}
1539
e8bc217a 1540static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1541 struct kvm_mmu_page *sp)
e8bc217a
MT
1542{
1543 return 1;
1544}
1545
a7052897
MT
1546static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1547{
1548}
1549
0f53b5b1
XG
1550static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1551 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1552 const void *pte)
0f53b5b1
XG
1553{
1554 WARN_ON(1);
1555}
1556
60c8aec6
MT
1557#define KVM_PAGE_ARRAY_NR 16
1558
1559struct kvm_mmu_pages {
1560 struct mmu_page_and_offset {
1561 struct kvm_mmu_page *sp;
1562 unsigned int idx;
1563 } page[KVM_PAGE_ARRAY_NR];
1564 unsigned int nr;
1565};
1566
cded19f3
HE
1567static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1568 int idx)
4731d4c7 1569{
60c8aec6 1570 int i;
4731d4c7 1571
60c8aec6
MT
1572 if (sp->unsync)
1573 for (i=0; i < pvec->nr; i++)
1574 if (pvec->page[i].sp == sp)
1575 return 0;
1576
1577 pvec->page[pvec->nr].sp = sp;
1578 pvec->page[pvec->nr].idx = idx;
1579 pvec->nr++;
1580 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1581}
1582
1583static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1584 struct kvm_mmu_pages *pvec)
1585{
1586 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1587
37178b8b 1588 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1589 struct kvm_mmu_page *child;
4731d4c7
MT
1590 u64 ent = sp->spt[i];
1591
7a8f1a74
XG
1592 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1593 goto clear_child_bitmap;
1594
1595 child = page_header(ent & PT64_BASE_ADDR_MASK);
1596
1597 if (child->unsync_children) {
1598 if (mmu_pages_add(pvec, child, i))
1599 return -ENOSPC;
1600
1601 ret = __mmu_unsync_walk(child, pvec);
1602 if (!ret)
1603 goto clear_child_bitmap;
1604 else if (ret > 0)
1605 nr_unsync_leaf += ret;
1606 else
1607 return ret;
1608 } else if (child->unsync) {
1609 nr_unsync_leaf++;
1610 if (mmu_pages_add(pvec, child, i))
1611 return -ENOSPC;
1612 } else
1613 goto clear_child_bitmap;
1614
1615 continue;
1616
1617clear_child_bitmap:
1618 __clear_bit(i, sp->unsync_child_bitmap);
1619 sp->unsync_children--;
1620 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1621 }
1622
4731d4c7 1623
60c8aec6
MT
1624 return nr_unsync_leaf;
1625}
1626
1627static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1628 struct kvm_mmu_pages *pvec)
1629{
1630 if (!sp->unsync_children)
1631 return 0;
1632
1633 mmu_pages_add(pvec, sp, 0);
1634 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1635}
1636
4731d4c7
MT
1637static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1638{
1639 WARN_ON(!sp->unsync);
5e1b3ddb 1640 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1641 sp->unsync = 0;
1642 --kvm->stat.mmu_unsync;
1643}
1644
7775834a
XG
1645static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1646 struct list_head *invalid_list);
1647static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1648 struct list_head *invalid_list);
4731d4c7 1649
1044b030
TY
1650#define for_each_gfn_sp(_kvm, _sp, _gfn) \
1651 hlist_for_each_entry(_sp, \
1652 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
1653 if ((_sp)->gfn != (_gfn)) {} else
1654
1655#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
1656 for_each_gfn_sp(_kvm, _sp, _gfn) \
1657 if ((_sp)->role.direct || (_sp)->role.invalid) {} else
7ae680eb 1658
f918b443 1659/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1660static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1661 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1662{
5b7e0102 1663 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1664 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1665 return 1;
1666 }
1667
f918b443 1668 if (clear_unsync)
1d9dc7e0 1669 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1670
a4a8e6f7 1671 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1672 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1673 return 1;
1674 }
1675
1676 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1677 return 0;
1678}
1679
1d9dc7e0
XG
1680static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1681 struct kvm_mmu_page *sp)
1682{
d98ba053 1683 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1684 int ret;
1685
d98ba053 1686 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1687 if (ret)
d98ba053
XG
1688 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1689
1d9dc7e0
XG
1690 return ret;
1691}
1692
e37fa785
XG
1693#ifdef CONFIG_KVM_MMU_AUDIT
1694#include "mmu_audit.c"
1695#else
1696static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1697static void mmu_audit_disable(void) { }
1698#endif
1699
d98ba053
XG
1700static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1701 struct list_head *invalid_list)
1d9dc7e0 1702{
d98ba053 1703 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1704}
1705
9f1a122f
XG
1706/* @gfn should be write-protected at the call site */
1707static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1708{
9f1a122f 1709 struct kvm_mmu_page *s;
d98ba053 1710 LIST_HEAD(invalid_list);
9f1a122f
XG
1711 bool flush = false;
1712
b67bfe0d 1713 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 1714 if (!s->unsync)
9f1a122f
XG
1715 continue;
1716
1717 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1718 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1719 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1720 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1721 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1722 continue;
1723 }
9f1a122f
XG
1724 flush = true;
1725 }
1726
d98ba053 1727 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1728 if (flush)
1729 kvm_mmu_flush_tlb(vcpu);
1730}
1731
60c8aec6
MT
1732struct mmu_page_path {
1733 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1734 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1735};
1736
60c8aec6
MT
1737#define for_each_sp(pvec, sp, parents, i) \
1738 for (i = mmu_pages_next(&pvec, &parents, -1), \
1739 sp = pvec.page[i].sp; \
1740 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1741 i = mmu_pages_next(&pvec, &parents, i))
1742
cded19f3
HE
1743static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1744 struct mmu_page_path *parents,
1745 int i)
60c8aec6
MT
1746{
1747 int n;
1748
1749 for (n = i+1; n < pvec->nr; n++) {
1750 struct kvm_mmu_page *sp = pvec->page[n].sp;
1751
1752 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1753 parents->idx[0] = pvec->page[n].idx;
1754 return n;
1755 }
1756
1757 parents->parent[sp->role.level-2] = sp;
1758 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1759 }
1760
1761 return n;
1762}
1763
cded19f3 1764static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1765{
60c8aec6
MT
1766 struct kvm_mmu_page *sp;
1767 unsigned int level = 0;
1768
1769 do {
1770 unsigned int idx = parents->idx[level];
4731d4c7 1771
60c8aec6
MT
1772 sp = parents->parent[level];
1773 if (!sp)
1774 return;
1775
1776 --sp->unsync_children;
1777 WARN_ON((int)sp->unsync_children < 0);
1778 __clear_bit(idx, sp->unsync_child_bitmap);
1779 level++;
1780 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1781}
1782
60c8aec6
MT
1783static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1784 struct mmu_page_path *parents,
1785 struct kvm_mmu_pages *pvec)
4731d4c7 1786{
60c8aec6
MT
1787 parents->parent[parent->role.level-1] = NULL;
1788 pvec->nr = 0;
1789}
4731d4c7 1790
60c8aec6
MT
1791static void mmu_sync_children(struct kvm_vcpu *vcpu,
1792 struct kvm_mmu_page *parent)
1793{
1794 int i;
1795 struct kvm_mmu_page *sp;
1796 struct mmu_page_path parents;
1797 struct kvm_mmu_pages pages;
d98ba053 1798 LIST_HEAD(invalid_list);
60c8aec6
MT
1799
1800 kvm_mmu_pages_init(parent, &parents, &pages);
1801 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1802 bool protected = false;
b1a36821
MT
1803
1804 for_each_sp(pages, sp, parents, i)
1805 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1806
1807 if (protected)
1808 kvm_flush_remote_tlbs(vcpu->kvm);
1809
60c8aec6 1810 for_each_sp(pages, sp, parents, i) {
d98ba053 1811 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1812 mmu_pages_clear_parents(&parents);
1813 }
d98ba053 1814 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1815 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1816 kvm_mmu_pages_init(parent, &parents, &pages);
1817 }
4731d4c7
MT
1818}
1819
c3707958
XG
1820static void init_shadow_page_table(struct kvm_mmu_page *sp)
1821{
1822 int i;
1823
1824 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1825 sp->spt[i] = 0ull;
1826}
1827
a30f47cb
XG
1828static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1829{
1830 sp->write_flooding_count = 0;
1831}
1832
1833static void clear_sp_write_flooding_count(u64 *spte)
1834{
1835 struct kvm_mmu_page *sp = page_header(__pa(spte));
1836
1837 __clear_sp_write_flooding_count(sp);
1838}
1839
cea0f0e7
AK
1840static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1841 gfn_t gfn,
1842 gva_t gaddr,
1843 unsigned level,
f6e2c02b 1844 int direct,
41074d07 1845 unsigned access,
f7d9c7b7 1846 u64 *parent_pte)
cea0f0e7
AK
1847{
1848 union kvm_mmu_page_role role;
cea0f0e7 1849 unsigned quadrant;
9f1a122f 1850 struct kvm_mmu_page *sp;
9f1a122f 1851 bool need_sync = false;
cea0f0e7 1852
a770f6f2 1853 role = vcpu->arch.mmu.base_role;
cea0f0e7 1854 role.level = level;
f6e2c02b 1855 role.direct = direct;
84b0c8c6 1856 if (role.direct)
5b7e0102 1857 role.cr4_pae = 0;
41074d07 1858 role.access = access;
c5a78f2b
JR
1859 if (!vcpu->arch.mmu.direct_map
1860 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1861 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1862 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1863 role.quadrant = quadrant;
1864 }
b67bfe0d 1865 for_each_gfn_sp(vcpu->kvm, sp, gfn) {
7ae680eb
XG
1866 if (!need_sync && sp->unsync)
1867 need_sync = true;
4731d4c7 1868
7ae680eb
XG
1869 if (sp->role.word != role.word)
1870 continue;
4731d4c7 1871
7ae680eb
XG
1872 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1873 break;
e02aa901 1874
7ae680eb
XG
1875 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1876 if (sp->unsync_children) {
a8eeb04a 1877 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1878 kvm_mmu_mark_parents_unsync(sp);
1879 } else if (sp->unsync)
1880 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1881
a30f47cb 1882 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1883 trace_kvm_mmu_get_page(sp, false);
1884 return sp;
1885 }
dfc5aa00 1886 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1887 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1888 if (!sp)
1889 return sp;
4db35314
AK
1890 sp->gfn = gfn;
1891 sp->role = role;
7ae680eb
XG
1892 hlist_add_head(&sp->hash_link,
1893 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1894 if (!direct) {
b1a36821
MT
1895 if (rmap_write_protect(vcpu->kvm, gfn))
1896 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1897 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1898 kvm_sync_pages(vcpu, gfn);
1899
4731d4c7
MT
1900 account_shadowed(vcpu->kvm, gfn);
1901 }
c3707958 1902 init_shadow_page_table(sp);
f691fe1d 1903 trace_kvm_mmu_get_page(sp, true);
4db35314 1904 return sp;
cea0f0e7
AK
1905}
1906
2d11123a
AK
1907static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1908 struct kvm_vcpu *vcpu, u64 addr)
1909{
1910 iterator->addr = addr;
1911 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1912 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1913
1914 if (iterator->level == PT64_ROOT_LEVEL &&
1915 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1916 !vcpu->arch.mmu.direct_map)
1917 --iterator->level;
1918
2d11123a
AK
1919 if (iterator->level == PT32E_ROOT_LEVEL) {
1920 iterator->shadow_addr
1921 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1922 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1923 --iterator->level;
1924 if (!iterator->shadow_addr)
1925 iterator->level = 0;
1926 }
1927}
1928
1929static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1930{
1931 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1932 return false;
4d88954d 1933
2d11123a
AK
1934 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1935 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1936 return true;
1937}
1938
c2a2ac2b
XG
1939static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1940 u64 spte)
2d11123a 1941{
c2a2ac2b 1942 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1943 iterator->level = 0;
1944 return;
1945 }
1946
c2a2ac2b 1947 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1948 --iterator->level;
1949}
1950
c2a2ac2b
XG
1951static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1952{
1953 return __shadow_walk_next(iterator, *iterator->sptep);
1954}
1955
32ef26a3
AK
1956static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1957{
1958 u64 spte;
1959
24db2734
XG
1960 spte = __pa(sp->spt) | PT_PRESENT_MASK | PT_WRITABLE_MASK |
1961 shadow_user_mask | shadow_x_mask | shadow_accessed_mask;
1962
1df9f2dc 1963 mmu_spte_set(sptep, spte);
32ef26a3
AK
1964}
1965
a357bd22
AK
1966static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1967 unsigned direct_access)
1968{
1969 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1970 struct kvm_mmu_page *child;
1971
1972 /*
1973 * For the direct sp, if the guest pte's dirty bit
1974 * changed form clean to dirty, it will corrupt the
1975 * sp's access: allow writable in the read-only sp,
1976 * so we should update the spte at this point to get
1977 * a new sp with the correct access.
1978 */
1979 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1980 if (child->role.access == direct_access)
1981 return;
1982
bcdd9a93 1983 drop_parent_pte(child, sptep);
a357bd22
AK
1984 kvm_flush_remote_tlbs(vcpu->kvm);
1985 }
1986}
1987
505aef8f 1988static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
1989 u64 *spte)
1990{
1991 u64 pte;
1992 struct kvm_mmu_page *child;
1993
1994 pte = *spte;
1995 if (is_shadow_present_pte(pte)) {
505aef8f 1996 if (is_last_spte(pte, sp->role.level)) {
c3707958 1997 drop_spte(kvm, spte);
505aef8f
XG
1998 if (is_large_pte(pte))
1999 --kvm->stat.lpages;
2000 } else {
38e3b2b2 2001 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2002 drop_parent_pte(child, spte);
38e3b2b2 2003 }
505aef8f
XG
2004 return true;
2005 }
2006
2007 if (is_mmio_spte(pte))
ce88decf 2008 mmu_spte_clear_no_track(spte);
c3707958 2009
505aef8f 2010 return false;
38e3b2b2
XG
2011}
2012
90cb0529 2013static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2014 struct kvm_mmu_page *sp)
a436036b 2015{
697fe2e2 2016 unsigned i;
697fe2e2 2017
38e3b2b2
XG
2018 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2019 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2020}
2021
4db35314 2022static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2023{
4db35314 2024 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2025}
2026
31aa2b44 2027static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2028{
1e3f42f0
TY
2029 u64 *sptep;
2030 struct rmap_iterator iter;
a436036b 2031
1e3f42f0
TY
2032 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2033 drop_parent_pte(sp, sptep);
31aa2b44
AK
2034}
2035
60c8aec6 2036static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2037 struct kvm_mmu_page *parent,
2038 struct list_head *invalid_list)
4731d4c7 2039{
60c8aec6
MT
2040 int i, zapped = 0;
2041 struct mmu_page_path parents;
2042 struct kvm_mmu_pages pages;
4731d4c7 2043
60c8aec6 2044 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2045 return 0;
60c8aec6
MT
2046
2047 kvm_mmu_pages_init(parent, &parents, &pages);
2048 while (mmu_unsync_walk(parent, &pages)) {
2049 struct kvm_mmu_page *sp;
2050
2051 for_each_sp(pages, sp, parents, i) {
7775834a 2052 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2053 mmu_pages_clear_parents(&parents);
77662e00 2054 zapped++;
60c8aec6 2055 }
60c8aec6
MT
2056 kvm_mmu_pages_init(parent, &parents, &pages);
2057 }
2058
2059 return zapped;
4731d4c7
MT
2060}
2061
7775834a
XG
2062static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2063 struct list_head *invalid_list)
31aa2b44 2064{
4731d4c7 2065 int ret;
f691fe1d 2066
7775834a 2067 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2068 ++kvm->stat.mmu_shadow_zapped;
7775834a 2069 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2070 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2071 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2072 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2073 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2074 if (sp->unsync)
2075 kvm_unlink_unsync_page(kvm, sp);
4db35314 2076 if (!sp->root_count) {
54a4f023
GJ
2077 /* Count self */
2078 ret++;
7775834a 2079 list_move(&sp->link, invalid_list);
aa6bd187 2080 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2081 } else {
5b5c6a5a 2082 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2083 kvm_reload_remote_mmus(kvm);
2084 }
7775834a
XG
2085
2086 sp->role.invalid = 1;
4731d4c7 2087 return ret;
a436036b
AK
2088}
2089
7775834a
XG
2090static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2091 struct list_head *invalid_list)
2092{
945315b9 2093 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2094
2095 if (list_empty(invalid_list))
2096 return;
2097
c142786c
AK
2098 /*
2099 * wmb: make sure everyone sees our modifications to the page tables
2100 * rmb: make sure we see changes to vcpu->mode
2101 */
2102 smp_mb();
4f022648 2103
c142786c
AK
2104 /*
2105 * Wait for all vcpus to exit guest mode and/or lockless shadow
2106 * page table walks.
2107 */
2108 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2109
945315b9 2110 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2111 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2112 kvm_mmu_free_page(sp);
945315b9 2113 }
7775834a
XG
2114}
2115
5da59607
TY
2116static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2117 struct list_head *invalid_list)
2118{
2119 struct kvm_mmu_page *sp;
2120
2121 if (list_empty(&kvm->arch.active_mmu_pages))
2122 return false;
2123
2124 sp = list_entry(kvm->arch.active_mmu_pages.prev,
2125 struct kvm_mmu_page, link);
2126 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
2127
2128 return true;
2129}
2130
82ce2c96
IE
2131/*
2132 * Changing the number of mmu pages allocated to the vm
49d5ca26 2133 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2134 */
49d5ca26 2135void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2136{
d98ba053 2137 LIST_HEAD(invalid_list);
82ce2c96 2138
b34cb590
TY
2139 spin_lock(&kvm->mmu_lock);
2140
49d5ca26 2141 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2142 /* Need to free some mmu pages to achieve the goal. */
2143 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2144 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2145 break;
82ce2c96 2146
aa6bd187 2147 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2148 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2149 }
82ce2c96 2150
49d5ca26 2151 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2152
2153 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2154}
2155
1cb3f3ae 2156int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2157{
4db35314 2158 struct kvm_mmu_page *sp;
d98ba053 2159 LIST_HEAD(invalid_list);
a436036b
AK
2160 int r;
2161
9ad17b10 2162 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2163 r = 0;
1cb3f3ae 2164 spin_lock(&kvm->mmu_lock);
b67bfe0d 2165 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2166 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2167 sp->role.word);
2168 r = 1;
f41d335a 2169 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2170 }
d98ba053 2171 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2172 spin_unlock(&kvm->mmu_lock);
2173
a436036b 2174 return r;
cea0f0e7 2175}
1cb3f3ae 2176EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2177
74be52e3
SY
2178/*
2179 * The function is based on mtrr_type_lookup() in
2180 * arch/x86/kernel/cpu/mtrr/generic.c
2181 */
2182static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2183 u64 start, u64 end)
2184{
2185 int i;
2186 u64 base, mask;
2187 u8 prev_match, curr_match;
2188 int num_var_ranges = KVM_NR_VAR_MTRR;
2189
2190 if (!mtrr_state->enabled)
2191 return 0xFF;
2192
2193 /* Make end inclusive end, instead of exclusive */
2194 end--;
2195
2196 /* Look in fixed ranges. Just return the type as per start */
2197 if (mtrr_state->have_fixed && (start < 0x100000)) {
2198 int idx;
2199
2200 if (start < 0x80000) {
2201 idx = 0;
2202 idx += (start >> 16);
2203 return mtrr_state->fixed_ranges[idx];
2204 } else if (start < 0xC0000) {
2205 idx = 1 * 8;
2206 idx += ((start - 0x80000) >> 14);
2207 return mtrr_state->fixed_ranges[idx];
2208 } else if (start < 0x1000000) {
2209 idx = 3 * 8;
2210 idx += ((start - 0xC0000) >> 12);
2211 return mtrr_state->fixed_ranges[idx];
2212 }
2213 }
2214
2215 /*
2216 * Look in variable ranges
2217 * Look of multiple ranges matching this address and pick type
2218 * as per MTRR precedence
2219 */
2220 if (!(mtrr_state->enabled & 2))
2221 return mtrr_state->def_type;
2222
2223 prev_match = 0xFF;
2224 for (i = 0; i < num_var_ranges; ++i) {
2225 unsigned short start_state, end_state;
2226
2227 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2228 continue;
2229
2230 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2231 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2232 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2233 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2234
2235 start_state = ((start & mask) == (base & mask));
2236 end_state = ((end & mask) == (base & mask));
2237 if (start_state != end_state)
2238 return 0xFE;
2239
2240 if ((start & mask) != (base & mask))
2241 continue;
2242
2243 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2244 if (prev_match == 0xFF) {
2245 prev_match = curr_match;
2246 continue;
2247 }
2248
2249 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2250 curr_match == MTRR_TYPE_UNCACHABLE)
2251 return MTRR_TYPE_UNCACHABLE;
2252
2253 if ((prev_match == MTRR_TYPE_WRBACK &&
2254 curr_match == MTRR_TYPE_WRTHROUGH) ||
2255 (prev_match == MTRR_TYPE_WRTHROUGH &&
2256 curr_match == MTRR_TYPE_WRBACK)) {
2257 prev_match = MTRR_TYPE_WRTHROUGH;
2258 curr_match = MTRR_TYPE_WRTHROUGH;
2259 }
2260
2261 if (prev_match != curr_match)
2262 return MTRR_TYPE_UNCACHABLE;
2263 }
2264
2265 if (prev_match != 0xFF)
2266 return prev_match;
2267
2268 return mtrr_state->def_type;
2269}
2270
4b12f0de 2271u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2272{
2273 u8 mtrr;
2274
2275 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2276 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2277 if (mtrr == 0xfe || mtrr == 0xff)
2278 mtrr = MTRR_TYPE_WRBACK;
2279 return mtrr;
2280}
4b12f0de 2281EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2282
9cf5cf5a
XG
2283static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2284{
2285 trace_kvm_mmu_unsync_page(sp);
2286 ++vcpu->kvm->stat.mmu_unsync;
2287 sp->unsync = 1;
2288
2289 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2290}
2291
2292static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2293{
4731d4c7 2294 struct kvm_mmu_page *s;
9cf5cf5a 2295
b67bfe0d 2296 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2297 if (s->unsync)
4731d4c7 2298 continue;
9cf5cf5a
XG
2299 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2300 __kvm_unsync_page(vcpu, s);
4731d4c7 2301 }
4731d4c7
MT
2302}
2303
2304static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2305 bool can_unsync)
2306{
9cf5cf5a 2307 struct kvm_mmu_page *s;
9cf5cf5a
XG
2308 bool need_unsync = false;
2309
b67bfe0d 2310 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
36a2e677
XG
2311 if (!can_unsync)
2312 return 1;
2313
9cf5cf5a 2314 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2315 return 1;
9cf5cf5a 2316
9bb4f6b1 2317 if (!s->unsync)
9cf5cf5a 2318 need_unsync = true;
4731d4c7 2319 }
9cf5cf5a
XG
2320 if (need_unsync)
2321 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2322 return 0;
2323}
2324
d555c333 2325static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
c2288505 2326 unsigned pte_access, int level,
c2d0ee46 2327 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2328 bool can_unsync, bool host_writable)
1c4f1fd6 2329{
6e7d0354 2330 u64 spte;
1e73f9dd 2331 int ret = 0;
64d4d521 2332
ce88decf
XG
2333 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2334 return 0;
2335
982c2565 2336 spte = PT_PRESENT_MASK;
947da538 2337 if (!speculative)
3201b5d9 2338 spte |= shadow_accessed_mask;
640d9b0d 2339
7b52345e
SY
2340 if (pte_access & ACC_EXEC_MASK)
2341 spte |= shadow_x_mask;
2342 else
2343 spte |= shadow_nx_mask;
49fde340 2344
1c4f1fd6 2345 if (pte_access & ACC_USER_MASK)
7b52345e 2346 spte |= shadow_user_mask;
49fde340 2347
852e3c19 2348 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2349 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2350 if (tdp_enabled)
4b12f0de
SY
2351 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2352 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2353
9bdbba13 2354 if (host_writable)
1403283a 2355 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2356 else
2357 pte_access &= ~ACC_WRITE_MASK;
1403283a 2358
35149e21 2359 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 2360
c2288505 2361 if (pte_access & ACC_WRITE_MASK) {
1c4f1fd6 2362
c2193463 2363 /*
7751babd
XG
2364 * Other vcpu creates new sp in the window between
2365 * mapping_level() and acquiring mmu-lock. We can
2366 * allow guest to retry the access, the mapping can
2367 * be fixed if guest refault.
c2193463 2368 */
852e3c19 2369 if (level > PT_PAGE_TABLE_LEVEL &&
c2193463 2370 has_wrprotected_page(vcpu->kvm, gfn, level))
be38d276 2371 goto done;
38187c83 2372
49fde340 2373 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2374
ecc5589f
MT
2375 /*
2376 * Optimization: for pte sync, if spte was writable the hash
2377 * lookup is unnecessary (and expensive). Write protection
2378 * is responsibility of mmu_get_page / kvm_sync_page.
2379 * Same reasoning can be applied to dirty page accounting.
2380 */
8dae4445 2381 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2382 goto set_pte;
2383
4731d4c7 2384 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2385 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2386 __func__, gfn);
1e73f9dd 2387 ret = 1;
1c4f1fd6 2388 pte_access &= ~ACC_WRITE_MASK;
49fde340 2389 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2390 }
2391 }
2392
1c4f1fd6
AK
2393 if (pte_access & ACC_WRITE_MASK)
2394 mark_page_dirty(vcpu->kvm, gfn);
2395
38187c83 2396set_pte:
6e7d0354 2397 if (mmu_spte_update(sptep, spte))
b330aa0c 2398 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2399done:
1e73f9dd
MT
2400 return ret;
2401}
2402
d555c333 2403static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
f7616203
XG
2404 unsigned pte_access, int write_fault, int *emulate,
2405 int level, gfn_t gfn, pfn_t pfn, bool speculative,
2406 bool host_writable)
1e73f9dd
MT
2407{
2408 int was_rmapped = 0;
53a27b39 2409 int rmap_count;
1e73f9dd 2410
f7616203
XG
2411 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
2412 *sptep, write_fault, gfn);
1e73f9dd 2413
d555c333 2414 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2415 /*
2416 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2417 * the parent of the now unreachable PTE.
2418 */
852e3c19
JR
2419 if (level > PT_PAGE_TABLE_LEVEL &&
2420 !is_large_pte(*sptep)) {
1e73f9dd 2421 struct kvm_mmu_page *child;
d555c333 2422 u64 pte = *sptep;
1e73f9dd
MT
2423
2424 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2425 drop_parent_pte(child, sptep);
3be2264b 2426 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2427 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2428 pgprintk("hfn old %llx new %llx\n",
d555c333 2429 spte_to_pfn(*sptep), pfn);
c3707958 2430 drop_spte(vcpu->kvm, sptep);
91546356 2431 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2432 } else
2433 was_rmapped = 1;
1e73f9dd 2434 }
852e3c19 2435
c2288505
XG
2436 if (set_spte(vcpu, sptep, pte_access, level, gfn, pfn, speculative,
2437 true, host_writable)) {
1e73f9dd 2438 if (write_fault)
b90a0e6c 2439 *emulate = 1;
5304efde 2440 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2441 }
1e73f9dd 2442
ce88decf
XG
2443 if (unlikely(is_mmio_spte(*sptep) && emulate))
2444 *emulate = 1;
2445
d555c333 2446 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2447 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2448 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2449 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2450 *sptep, sptep);
d555c333 2451 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2452 ++vcpu->kvm->stat.lpages;
2453
ffb61bb3 2454 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
2455 if (!was_rmapped) {
2456 rmap_count = rmap_add(vcpu, sptep, gfn);
2457 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2458 rmap_recycle(vcpu, sptep, gfn);
2459 }
1c4f1fd6 2460 }
cb9aaa30 2461
f3ac1a4b 2462 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2463}
2464
6aa8b732
AK
2465static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2466{
e676505a 2467 mmu_free_roots(vcpu);
6aa8b732
AK
2468}
2469
a052b42b
XG
2470static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
2471{
2472 int bit7;
2473
2474 bit7 = (gpte >> 7) & 1;
2475 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
2476}
2477
957ed9ef
XG
2478static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2479 bool no_dirty_log)
2480{
2481 struct kvm_memory_slot *slot;
957ed9ef 2482
5d163b1c 2483 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 2484 if (!slot)
6c8ee57b 2485 return KVM_PFN_ERR_FAULT;
957ed9ef 2486
037d92dc 2487 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
2488}
2489
a052b42b
XG
2490static bool prefetch_invalid_gpte(struct kvm_vcpu *vcpu,
2491 struct kvm_mmu_page *sp, u64 *spte,
2492 u64 gpte)
2493{
2494 if (is_rsvd_bits_set(&vcpu->arch.mmu, gpte, PT_PAGE_TABLE_LEVEL))
2495 goto no_present;
2496
2497 if (!is_present_gpte(gpte))
2498 goto no_present;
2499
2500 if (!(gpte & PT_ACCESSED_MASK))
2501 goto no_present;
2502
2503 return false;
2504
2505no_present:
2506 drop_spte(vcpu->kvm, spte);
2507 return true;
2508}
2509
957ed9ef
XG
2510static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2511 struct kvm_mmu_page *sp,
2512 u64 *start, u64 *end)
2513{
2514 struct page *pages[PTE_PREFETCH_NUM];
2515 unsigned access = sp->role.access;
2516 int i, ret;
2517 gfn_t gfn;
2518
2519 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2520 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2521 return -1;
2522
2523 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2524 if (ret <= 0)
2525 return -1;
2526
2527 for (i = 0; i < ret; i++, gfn++, start++)
f7616203 2528 mmu_set_spte(vcpu, start, access, 0, NULL,
c2288505
XG
2529 sp->role.level, gfn, page_to_pfn(pages[i]),
2530 true, true);
957ed9ef
XG
2531
2532 return 0;
2533}
2534
2535static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2536 struct kvm_mmu_page *sp, u64 *sptep)
2537{
2538 u64 *spte, *start = NULL;
2539 int i;
2540
2541 WARN_ON(!sp->role.direct);
2542
2543 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2544 spte = sp->spt + i;
2545
2546 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2547 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2548 if (!start)
2549 continue;
2550 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2551 break;
2552 start = NULL;
2553 } else if (!start)
2554 start = spte;
2555 }
2556}
2557
2558static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2559{
2560 struct kvm_mmu_page *sp;
2561
2562 /*
2563 * Since it's no accessed bit on EPT, it's no way to
2564 * distinguish between actually accessed translations
2565 * and prefetched, so disable pte prefetch if EPT is
2566 * enabled.
2567 */
2568 if (!shadow_accessed_mask)
2569 return;
2570
2571 sp = page_header(__pa(sptep));
2572 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2573 return;
2574
2575 __direct_pte_prefetch(vcpu, sp, sptep);
2576}
2577
9f652d21 2578static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2579 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2580 bool prefault)
140754bc 2581{
9f652d21 2582 struct kvm_shadow_walk_iterator iterator;
140754bc 2583 struct kvm_mmu_page *sp;
b90a0e6c 2584 int emulate = 0;
140754bc 2585 gfn_t pseudo_gfn;
6aa8b732 2586
9f652d21 2587 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2588 if (iterator.level == level) {
f7616203 2589 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL,
c2288505
XG
2590 write, &emulate, level, gfn, pfn,
2591 prefault, map_writable);
957ed9ef 2592 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2593 ++vcpu->stat.pf_fixed;
2594 break;
6aa8b732
AK
2595 }
2596
c3707958 2597 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2598 u64 base_addr = iterator.addr;
2599
2600 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2601 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2602 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2603 iterator.level - 1,
2604 1, ACC_ALL, iterator.sptep);
140754bc 2605
24db2734 2606 link_shadow_page(iterator.sptep, sp);
9f652d21
AK
2607 }
2608 }
b90a0e6c 2609 return emulate;
6aa8b732
AK
2610}
2611
77db5cbd 2612static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2613{
77db5cbd
HY
2614 siginfo_t info;
2615
2616 info.si_signo = SIGBUS;
2617 info.si_errno = 0;
2618 info.si_code = BUS_MCEERR_AR;
2619 info.si_addr = (void __user *)address;
2620 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2621
77db5cbd 2622 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2623}
2624
d7c55201 2625static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156 2626{
4d8b81ab
XG
2627 /*
2628 * Do not cache the mmio info caused by writing the readonly gfn
2629 * into the spte otherwise read access on readonly gfn also can
2630 * caused mmio page fault and treat it as mmio access.
2631 * Return 1 to tell kvm to emulate it.
2632 */
2633 if (pfn == KVM_PFN_ERR_RO_FAULT)
2634 return 1;
2635
e6c1502b 2636 if (pfn == KVM_PFN_ERR_HWPOISON) {
bebb106a 2637 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2638 return 0;
d7c55201 2639 }
edba23e5 2640
d7c55201 2641 return -EFAULT;
bf998156
HY
2642}
2643
936a5fe6
AA
2644static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2645 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2646{
2647 pfn_t pfn = *pfnp;
2648 gfn_t gfn = *gfnp;
2649 int level = *levelp;
2650
2651 /*
2652 * Check if it's a transparent hugepage. If this would be an
2653 * hugetlbfs page, level wouldn't be set to
2654 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2655 * here.
2656 */
81c52c56 2657 if (!is_error_noslot_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
936a5fe6
AA
2658 level == PT_PAGE_TABLE_LEVEL &&
2659 PageTransCompound(pfn_to_page(pfn)) &&
2660 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2661 unsigned long mask;
2662 /*
2663 * mmu_notifier_retry was successful and we hold the
2664 * mmu_lock here, so the pmd can't become splitting
2665 * from under us, and in turn
2666 * __split_huge_page_refcount() can't run from under
2667 * us and we can safely transfer the refcount from
2668 * PG_tail to PG_head as we switch the pfn to tail to
2669 * head.
2670 */
2671 *levelp = level = PT_DIRECTORY_LEVEL;
2672 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2673 VM_BUG_ON((gfn & mask) != (pfn & mask));
2674 if (pfn & mask) {
2675 gfn &= ~mask;
2676 *gfnp = gfn;
2677 kvm_release_pfn_clean(pfn);
2678 pfn &= ~mask;
c3586667 2679 kvm_get_pfn(pfn);
936a5fe6
AA
2680 *pfnp = pfn;
2681 }
2682 }
2683}
2684
d7c55201
XG
2685static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2686 pfn_t pfn, unsigned access, int *ret_val)
2687{
2688 bool ret = true;
2689
2690 /* The pfn is invalid, report the error! */
81c52c56 2691 if (unlikely(is_error_pfn(pfn))) {
d7c55201
XG
2692 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2693 goto exit;
2694 }
2695
ce88decf 2696 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2697 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2698
2699 ret = false;
2700exit:
2701 return ret;
2702}
2703
c7ba5b48
XG
2704static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2705{
2706 /*
2707 * #PF can be fast only if the shadow page table is present and it
2708 * is caused by write-protect, that means we just need change the
2709 * W bit of the spte which can be done out of mmu-lock.
2710 */
2711 if (!(error_code & PFERR_PRESENT_MASK) ||
2712 !(error_code & PFERR_WRITE_MASK))
2713 return false;
2714
2715 return true;
2716}
2717
2718static bool
2719fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2720{
2721 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2722 gfn_t gfn;
2723
2724 WARN_ON(!sp->role.direct);
2725
2726 /*
2727 * The gfn of direct spte is stable since it is calculated
2728 * by sp->gfn.
2729 */
2730 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2731
2732 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2733 mark_page_dirty(vcpu->kvm, gfn);
2734
2735 return true;
2736}
2737
2738/*
2739 * Return value:
2740 * - true: let the vcpu to access on the same address again.
2741 * - false: let the real page fault path to fix it.
2742 */
2743static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2744 u32 error_code)
2745{
2746 struct kvm_shadow_walk_iterator iterator;
2747 bool ret = false;
2748 u64 spte = 0ull;
2749
2750 if (!page_fault_can_be_fast(vcpu, error_code))
2751 return false;
2752
2753 walk_shadow_page_lockless_begin(vcpu);
2754 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2755 if (!is_shadow_present_pte(spte) || iterator.level < level)
2756 break;
2757
2758 /*
2759 * If the mapping has been changed, let the vcpu fault on the
2760 * same address again.
2761 */
2762 if (!is_rmap_spte(spte)) {
2763 ret = true;
2764 goto exit;
2765 }
2766
2767 if (!is_last_spte(spte, level))
2768 goto exit;
2769
2770 /*
2771 * Check if it is a spurious fault caused by TLB lazily flushed.
2772 *
2773 * Need not check the access of upper level table entries since
2774 * they are always ACC_ALL.
2775 */
2776 if (is_writable_pte(spte)) {
2777 ret = true;
2778 goto exit;
2779 }
2780
2781 /*
2782 * Currently, to simplify the code, only the spte write-protected
2783 * by dirty-log can be fast fixed.
2784 */
2785 if (!spte_is_locklessly_modifiable(spte))
2786 goto exit;
2787
2788 /*
2789 * Currently, fast page fault only works for direct mapping since
2790 * the gfn is not stable for indirect shadow page.
2791 * See Documentation/virtual/kvm/locking.txt to get more detail.
2792 */
2793 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2794exit:
a72faf25
XG
2795 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2796 spte, ret);
c7ba5b48
XG
2797 walk_shadow_page_lockless_end(vcpu);
2798
2799 return ret;
2800}
2801
78b2c54a 2802static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2803 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2804
c7ba5b48
XG
2805static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2806 gfn_t gfn, bool prefault)
10589a46
MT
2807{
2808 int r;
852e3c19 2809 int level;
936a5fe6 2810 int force_pt_level;
35149e21 2811 pfn_t pfn;
e930bffe 2812 unsigned long mmu_seq;
c7ba5b48 2813 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2814
936a5fe6
AA
2815 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2816 if (likely(!force_pt_level)) {
2817 level = mapping_level(vcpu, gfn);
2818 /*
2819 * This path builds a PAE pagetable - so we can map
2820 * 2mb pages at maximum. Therefore check if the level
2821 * is larger than that.
2822 */
2823 if (level > PT_DIRECTORY_LEVEL)
2824 level = PT_DIRECTORY_LEVEL;
852e3c19 2825
936a5fe6
AA
2826 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2827 } else
2828 level = PT_PAGE_TABLE_LEVEL;
05da4558 2829
c7ba5b48
XG
2830 if (fast_page_fault(vcpu, v, level, error_code))
2831 return 0;
2832
e930bffe 2833 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2834 smp_rmb();
060c2abe 2835
78b2c54a 2836 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2837 return 0;
aaee2c94 2838
d7c55201
XG
2839 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2840 return r;
d196e343 2841
aaee2c94 2842 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 2843 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 2844 goto out_unlock;
eb787d10 2845 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2846 if (likely(!force_pt_level))
2847 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2848 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2849 prefault);
aaee2c94
MT
2850 spin_unlock(&vcpu->kvm->mmu_lock);
2851
aaee2c94 2852
10589a46 2853 return r;
e930bffe
AA
2854
2855out_unlock:
2856 spin_unlock(&vcpu->kvm->mmu_lock);
2857 kvm_release_pfn_clean(pfn);
2858 return 0;
10589a46
MT
2859}
2860
2861
17ac10ad
AK
2862static void mmu_free_roots(struct kvm_vcpu *vcpu)
2863{
2864 int i;
4db35314 2865 struct kvm_mmu_page *sp;
d98ba053 2866 LIST_HEAD(invalid_list);
17ac10ad 2867
ad312c7c 2868 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2869 return;
aaee2c94 2870 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2871 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2872 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2873 vcpu->arch.mmu.direct_map)) {
ad312c7c 2874 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2875
4db35314
AK
2876 sp = page_header(root);
2877 --sp->root_count;
d98ba053
XG
2878 if (!sp->root_count && sp->role.invalid) {
2879 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2880 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2881 }
ad312c7c 2882 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2883 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2884 return;
2885 }
17ac10ad 2886 for (i = 0; i < 4; ++i) {
ad312c7c 2887 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2888
417726a3 2889 if (root) {
417726a3 2890 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2891 sp = page_header(root);
2892 --sp->root_count;
2e53d63a 2893 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2894 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2895 &invalid_list);
417726a3 2896 }
ad312c7c 2897 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2898 }
d98ba053 2899 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2900 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2901 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2902}
2903
8986ecc0
MT
2904static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2905{
2906 int ret = 0;
2907
2908 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2909 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2910 ret = 1;
2911 }
2912
2913 return ret;
2914}
2915
651dd37a
JR
2916static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2917{
2918 struct kvm_mmu_page *sp;
7ebaf15e 2919 unsigned i;
651dd37a
JR
2920
2921 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2922 spin_lock(&vcpu->kvm->mmu_lock);
2923 kvm_mmu_free_some_pages(vcpu);
2924 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2925 1, ACC_ALL, NULL);
2926 ++sp->root_count;
2927 spin_unlock(&vcpu->kvm->mmu_lock);
2928 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2929 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2930 for (i = 0; i < 4; ++i) {
2931 hpa_t root = vcpu->arch.mmu.pae_root[i];
2932
2933 ASSERT(!VALID_PAGE(root));
2934 spin_lock(&vcpu->kvm->mmu_lock);
2935 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2936 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2937 i << 30,
651dd37a
JR
2938 PT32_ROOT_LEVEL, 1, ACC_ALL,
2939 NULL);
2940 root = __pa(sp->spt);
2941 ++sp->root_count;
2942 spin_unlock(&vcpu->kvm->mmu_lock);
2943 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2944 }
6292757f 2945 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2946 } else
2947 BUG();
2948
2949 return 0;
2950}
2951
2952static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2953{
4db35314 2954 struct kvm_mmu_page *sp;
81407ca5
JR
2955 u64 pdptr, pm_mask;
2956 gfn_t root_gfn;
2957 int i;
3bb65a22 2958
5777ed34 2959 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2960
651dd37a
JR
2961 if (mmu_check_root(vcpu, root_gfn))
2962 return 1;
2963
2964 /*
2965 * Do we shadow a long mode page table? If so we need to
2966 * write-protect the guests page table root.
2967 */
2968 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2969 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2970
2971 ASSERT(!VALID_PAGE(root));
651dd37a 2972
8facbbff 2973 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2974 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2975 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
2976 0, ACC_ALL, NULL);
4db35314
AK
2977 root = __pa(sp->spt);
2978 ++sp->root_count;
8facbbff 2979 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2980 vcpu->arch.mmu.root_hpa = root;
8986ecc0 2981 return 0;
17ac10ad 2982 }
f87f9288 2983
651dd37a
JR
2984 /*
2985 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
2986 * or a PAE 3-level page table. In either case we need to be aware that
2987 * the shadow page table may be a PAE or a long mode page table.
651dd37a 2988 */
81407ca5
JR
2989 pm_mask = PT_PRESENT_MASK;
2990 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
2991 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
2992
17ac10ad 2993 for (i = 0; i < 4; ++i) {
ad312c7c 2994 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
2995
2996 ASSERT(!VALID_PAGE(root));
ad312c7c 2997 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 2998 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 2999 if (!is_present_gpte(pdptr)) {
ad312c7c 3000 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3001 continue;
3002 }
6de4f3ad 3003 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3004 if (mmu_check_root(vcpu, root_gfn))
3005 return 1;
5a7388c2 3006 }
8facbbff 3007 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3008 kvm_mmu_free_some_pages(vcpu);
4db35314 3009 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3010 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3011 ACC_ALL, NULL);
4db35314
AK
3012 root = __pa(sp->spt);
3013 ++sp->root_count;
8facbbff
AK
3014 spin_unlock(&vcpu->kvm->mmu_lock);
3015
81407ca5 3016 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3017 }
6292757f 3018 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3019
3020 /*
3021 * If we shadow a 32 bit page table with a long mode page
3022 * table we enter this path.
3023 */
3024 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3025 if (vcpu->arch.mmu.lm_root == NULL) {
3026 /*
3027 * The additional page necessary for this is only
3028 * allocated on demand.
3029 */
3030
3031 u64 *lm_root;
3032
3033 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3034 if (lm_root == NULL)
3035 return 1;
3036
3037 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3038
3039 vcpu->arch.mmu.lm_root = lm_root;
3040 }
3041
3042 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3043 }
3044
8986ecc0 3045 return 0;
17ac10ad
AK
3046}
3047
651dd37a
JR
3048static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3049{
3050 if (vcpu->arch.mmu.direct_map)
3051 return mmu_alloc_direct_roots(vcpu);
3052 else
3053 return mmu_alloc_shadow_roots(vcpu);
3054}
3055
0ba73cda
MT
3056static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3057{
3058 int i;
3059 struct kvm_mmu_page *sp;
3060
81407ca5
JR
3061 if (vcpu->arch.mmu.direct_map)
3062 return;
3063
0ba73cda
MT
3064 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3065 return;
6903074c 3066
bebb106a 3067 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3068 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3069 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3070 hpa_t root = vcpu->arch.mmu.root_hpa;
3071 sp = page_header(root);
3072 mmu_sync_children(vcpu, sp);
0375f7fa 3073 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3074 return;
3075 }
3076 for (i = 0; i < 4; ++i) {
3077 hpa_t root = vcpu->arch.mmu.pae_root[i];
3078
8986ecc0 3079 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3080 root &= PT64_BASE_ADDR_MASK;
3081 sp = page_header(root);
3082 mmu_sync_children(vcpu, sp);
3083 }
3084 }
0375f7fa 3085 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3086}
3087
3088void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3089{
3090 spin_lock(&vcpu->kvm->mmu_lock);
3091 mmu_sync_roots(vcpu);
6cffe8ca 3092 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3093}
3094
1871c602 3095static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3096 u32 access, struct x86_exception *exception)
6aa8b732 3097{
ab9ae313
AK
3098 if (exception)
3099 exception->error_code = 0;
6aa8b732
AK
3100 return vaddr;
3101}
3102
6539e738 3103static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3104 u32 access,
3105 struct x86_exception *exception)
6539e738 3106{
ab9ae313
AK
3107 if (exception)
3108 exception->error_code = 0;
6539e738
JR
3109 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3110}
3111
ce88decf
XG
3112static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3113{
3114 if (direct)
3115 return vcpu_match_mmio_gpa(vcpu, addr);
3116
3117 return vcpu_match_mmio_gva(vcpu, addr);
3118}
3119
3120
3121/*
3122 * On direct hosts, the last spte is only allows two states
3123 * for mmio page fault:
3124 * - It is the mmio spte
3125 * - It is zapped or it is being zapped.
3126 *
3127 * This function completely checks the spte when the last spte
3128 * is not the mmio spte.
3129 */
3130static bool check_direct_spte_mmio_pf(u64 spte)
3131{
3132 return __check_direct_spte_mmio_pf(spte);
3133}
3134
3135static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3136{
3137 struct kvm_shadow_walk_iterator iterator;
3138 u64 spte = 0ull;
3139
3140 walk_shadow_page_lockless_begin(vcpu);
3141 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3142 if (!is_shadow_present_pte(spte))
3143 break;
3144 walk_shadow_page_lockless_end(vcpu);
3145
3146 return spte;
3147}
3148
3149/*
3150 * If it is a real mmio page fault, return 1 and emulat the instruction
3151 * directly, return 0 to let CPU fault again on the address, -1 is
3152 * returned if bug is detected.
3153 */
3154int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3155{
3156 u64 spte;
3157
3158 if (quickly_check_mmio_pf(vcpu, addr, direct))
3159 return 1;
3160
3161 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3162
3163 if (is_mmio_spte(spte)) {
3164 gfn_t gfn = get_mmio_spte_gfn(spte);
3165 unsigned access = get_mmio_spte_access(spte);
3166
3167 if (direct)
3168 addr = 0;
4f022648
XG
3169
3170 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3171 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3172 return 1;
3173 }
3174
3175 /*
3176 * It's ok if the gva is remapped by other cpus on shadow guest,
3177 * it's a BUG if the gfn is not a mmio page.
3178 */
3179 if (direct && !check_direct_spte_mmio_pf(spte))
3180 return -1;
3181
3182 /*
3183 * If the page table is zapped by other cpus, let CPU fault again on
3184 * the address.
3185 */
3186 return 0;
3187}
3188EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3189
3190static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3191 u32 error_code, bool direct)
3192{
3193 int ret;
3194
3195 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3196 WARN_ON(ret < 0);
3197 return ret;
3198}
3199
6aa8b732 3200static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3201 u32 error_code, bool prefault)
6aa8b732 3202{
e833240f 3203 gfn_t gfn;
e2dec939 3204 int r;
6aa8b732 3205
b8688d51 3206 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3207
3208 if (unlikely(error_code & PFERR_RSVD_MASK))
3209 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3210
e2dec939
AK
3211 r = mmu_topup_memory_caches(vcpu);
3212 if (r)
3213 return r;
714b93da 3214
6aa8b732 3215 ASSERT(vcpu);
ad312c7c 3216 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3217
e833240f 3218 gfn = gva >> PAGE_SHIFT;
6aa8b732 3219
e833240f 3220 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3221 error_code, gfn, prefault);
6aa8b732
AK
3222}
3223
7e1fbeac 3224static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3225{
3226 struct kvm_arch_async_pf arch;
fb67e14f 3227
7c90705b 3228 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3229 arch.gfn = gfn;
c4806acd 3230 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3231 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3232
3233 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3234}
3235
3236static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3237{
3238 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3239 kvm_event_needs_reinjection(vcpu)))
3240 return false;
3241
3242 return kvm_x86_ops->interrupt_allowed(vcpu);
3243}
3244
78b2c54a 3245static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3246 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3247{
3248 bool async;
3249
612819c3 3250 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3251
3252 if (!async)
3253 return false; /* *pfn has correct page already */
3254
78b2c54a 3255 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3256 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3257 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3258 trace_kvm_async_pf_doublefault(gva, gfn);
3259 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3260 return true;
3261 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3262 return true;
3263 }
3264
612819c3 3265 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3266
3267 return false;
3268}
3269
56028d08 3270static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3271 bool prefault)
fb72d167 3272{
35149e21 3273 pfn_t pfn;
fb72d167 3274 int r;
852e3c19 3275 int level;
936a5fe6 3276 int force_pt_level;
05da4558 3277 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3278 unsigned long mmu_seq;
612819c3
MT
3279 int write = error_code & PFERR_WRITE_MASK;
3280 bool map_writable;
fb72d167
JR
3281
3282 ASSERT(vcpu);
3283 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3284
ce88decf
XG
3285 if (unlikely(error_code & PFERR_RSVD_MASK))
3286 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3287
fb72d167
JR
3288 r = mmu_topup_memory_caches(vcpu);
3289 if (r)
3290 return r;
3291
936a5fe6
AA
3292 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3293 if (likely(!force_pt_level)) {
3294 level = mapping_level(vcpu, gfn);
3295 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3296 } else
3297 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3298
c7ba5b48
XG
3299 if (fast_page_fault(vcpu, gpa, level, error_code))
3300 return 0;
3301
e930bffe 3302 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3303 smp_rmb();
af585b92 3304
78b2c54a 3305 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3306 return 0;
3307
d7c55201
XG
3308 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3309 return r;
3310
fb72d167 3311 spin_lock(&vcpu->kvm->mmu_lock);
8ca40a70 3312 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
e930bffe 3313 goto out_unlock;
fb72d167 3314 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3315 if (likely(!force_pt_level))
3316 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3317 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3318 level, gfn, pfn, prefault);
fb72d167 3319 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3320
3321 return r;
e930bffe
AA
3322
3323out_unlock:
3324 spin_unlock(&vcpu->kvm->mmu_lock);
3325 kvm_release_pfn_clean(pfn);
3326 return 0;
fb72d167
JR
3327}
3328
6aa8b732
AK
3329static void nonpaging_free(struct kvm_vcpu *vcpu)
3330{
17ac10ad 3331 mmu_free_roots(vcpu);
6aa8b732
AK
3332}
3333
52fde8df
JR
3334static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3335 struct kvm_mmu *context)
6aa8b732 3336{
6aa8b732
AK
3337 context->new_cr3 = nonpaging_new_cr3;
3338 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3339 context->gva_to_gpa = nonpaging_gva_to_gpa;
3340 context->free = nonpaging_free;
e8bc217a 3341 context->sync_page = nonpaging_sync_page;
a7052897 3342 context->invlpg = nonpaging_invlpg;
0f53b5b1 3343 context->update_pte = nonpaging_update_pte;
cea0f0e7 3344 context->root_level = 0;
6aa8b732 3345 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3346 context->root_hpa = INVALID_PAGE;
c5a78f2b 3347 context->direct_map = true;
2d48a985 3348 context->nx = false;
6aa8b732
AK
3349 return 0;
3350}
3351
d835dfec 3352void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3353{
1165f5fe 3354 ++vcpu->stat.tlb_flush;
a8eeb04a 3355 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3356}
3357
3358static void paging_new_cr3(struct kvm_vcpu *vcpu)
3359{
9f8fe504 3360 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3361 mmu_free_roots(vcpu);
6aa8b732
AK
3362}
3363
5777ed34
JR
3364static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3365{
9f8fe504 3366 return kvm_read_cr3(vcpu);
5777ed34
JR
3367}
3368
6389ee94
AK
3369static void inject_page_fault(struct kvm_vcpu *vcpu,
3370 struct x86_exception *fault)
6aa8b732 3371{
6389ee94 3372 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3373}
3374
6aa8b732
AK
3375static void paging_free(struct kvm_vcpu *vcpu)
3376{
3377 nonpaging_free(vcpu);
3378}
3379
8ea667f2
AK
3380static inline void protect_clean_gpte(unsigned *access, unsigned gpte)
3381{
3382 unsigned mask;
3383
3384 BUILD_BUG_ON(PT_WRITABLE_MASK != ACC_WRITE_MASK);
3385
3386 mask = (unsigned)~ACC_WRITE_MASK;
3387 /* Allow write access to dirty gptes */
3388 mask |= (gpte >> (PT_DIRTY_SHIFT - PT_WRITABLE_SHIFT)) & PT_WRITABLE_MASK;
3389 *access &= mask;
3390}
3391
ce88decf
XG
3392static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3393 int *nr_present)
3394{
3395 if (unlikely(is_mmio_spte(*sptep))) {
3396 if (gfn != get_mmio_spte_gfn(*sptep)) {
3397 mmu_spte_clear_no_track(sptep);
3398 return true;
3399 }
3400
3401 (*nr_present)++;
3402 mark_mmio_spte(sptep, gfn, access);
3403 return true;
3404 }
3405
3406 return false;
3407}
3408
3d34adec
AK
3409static inline unsigned gpte_access(struct kvm_vcpu *vcpu, u64 gpte)
3410{
3411 unsigned access;
3412
3413 access = (gpte & (PT_WRITABLE_MASK | PT_USER_MASK)) | ACC_EXEC_MASK;
3414 access &= ~(gpte >> PT64_NX_SHIFT);
3415
3416 return access;
3417}
3418
6fd01b71
AK
3419static inline bool is_last_gpte(struct kvm_mmu *mmu, unsigned level, unsigned gpte)
3420{
3421 unsigned index;
3422
3423 index = level - 1;
3424 index |= (gpte & PT_PAGE_SIZE_MASK) >> (PT_PAGE_SIZE_SHIFT - 2);
3425 return mmu->last_pte_bitmap & (1 << index);
3426}
3427
6aa8b732
AK
3428#define PTTYPE 64
3429#include "paging_tmpl.h"
3430#undef PTTYPE
3431
3432#define PTTYPE 32
3433#include "paging_tmpl.h"
3434#undef PTTYPE
3435
52fde8df 3436static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3437 struct kvm_mmu *context)
82725b20 3438{
82725b20
DE
3439 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3440 u64 exb_bit_rsvd = 0;
3441
2d48a985 3442 if (!context->nx)
82725b20 3443 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3444 switch (context->root_level) {
82725b20
DE
3445 case PT32_ROOT_LEVEL:
3446 /* no rsvd bits for 2 level 4K page table entries */
3447 context->rsvd_bits_mask[0][1] = 0;
3448 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3449 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3450
3451 if (!is_pse(vcpu)) {
3452 context->rsvd_bits_mask[1][1] = 0;
3453 break;
3454 }
3455
82725b20
DE
3456 if (is_cpuid_PSE36())
3457 /* 36bits PSE 4MB page */
3458 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3459 else
3460 /* 32 bits PSE 4MB page */
3461 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3462 break;
3463 case PT32E_ROOT_LEVEL:
20c466b5
DE
3464 context->rsvd_bits_mask[0][2] =
3465 rsvd_bits(maxphyaddr, 63) |
3466 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3467 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3468 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3469 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3470 rsvd_bits(maxphyaddr, 62); /* PTE */
3471 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3472 rsvd_bits(maxphyaddr, 62) |
3473 rsvd_bits(13, 20); /* large page */
f815bce8 3474 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3475 break;
3476 case PT64_ROOT_LEVEL:
3477 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3478 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3479 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3480 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3481 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3482 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3483 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3484 rsvd_bits(maxphyaddr, 51);
3485 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3486 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3487 rsvd_bits(maxphyaddr, 51) |
3488 rsvd_bits(13, 29);
82725b20 3489 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3490 rsvd_bits(maxphyaddr, 51) |
3491 rsvd_bits(13, 20); /* large page */
f815bce8 3492 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3493 break;
3494 }
3495}
3496
97d64b78
AK
3497static void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3498{
3499 unsigned bit, byte, pfec;
3500 u8 map;
3501 bool fault, x, w, u, wf, uf, ff, smep;
3502
3503 smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
3504 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
3505 pfec = byte << 1;
3506 map = 0;
3507 wf = pfec & PFERR_WRITE_MASK;
3508 uf = pfec & PFERR_USER_MASK;
3509 ff = pfec & PFERR_FETCH_MASK;
3510 for (bit = 0; bit < 8; ++bit) {
3511 x = bit & ACC_EXEC_MASK;
3512 w = bit & ACC_WRITE_MASK;
3513 u = bit & ACC_USER_MASK;
3514
3515 /* Not really needed: !nx will cause pte.nx to fault */
3516 x |= !mmu->nx;
3517 /* Allow supervisor writes if !cr0.wp */
3518 w |= !is_write_protection(vcpu) && !uf;
3519 /* Disallow supervisor fetches of user code if cr4.smep */
3520 x &= !(smep && u && !uf);
3521
3522 fault = (ff && !x) || (uf && !u) || (wf && !w);
3523 map |= fault << bit;
3524 }
3525 mmu->permissions[byte] = map;
3526 }
3527}
3528
6fd01b71
AK
3529static void update_last_pte_bitmap(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
3530{
3531 u8 map;
3532 unsigned level, root_level = mmu->root_level;
3533 const unsigned ps_set_index = 1 << 2; /* bit 2 of index: ps */
3534
3535 if (root_level == PT32E_ROOT_LEVEL)
3536 --root_level;
3537 /* PT_PAGE_TABLE_LEVEL always terminates */
3538 map = 1 | (1 << ps_set_index);
3539 for (level = PT_DIRECTORY_LEVEL; level <= root_level; ++level) {
3540 if (level <= PT_PDPE_LEVEL
3541 && (mmu->root_level >= PT32E_ROOT_LEVEL || is_pse(vcpu)))
3542 map |= 1 << (ps_set_index | (level - 1));
3543 }
3544 mmu->last_pte_bitmap = map;
3545}
3546
52fde8df
JR
3547static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3548 struct kvm_mmu *context,
3549 int level)
6aa8b732 3550{
2d48a985 3551 context->nx = is_nx(vcpu);
4d6931c3 3552 context->root_level = level;
2d48a985 3553
4d6931c3 3554 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3555 update_permission_bitmask(vcpu, context);
6fd01b71 3556 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3557
3558 ASSERT(is_pae(vcpu));
3559 context->new_cr3 = paging_new_cr3;
3560 context->page_fault = paging64_page_fault;
6aa8b732 3561 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3562 context->sync_page = paging64_sync_page;
a7052897 3563 context->invlpg = paging64_invlpg;
0f53b5b1 3564 context->update_pte = paging64_update_pte;
6aa8b732 3565 context->free = paging_free;
17ac10ad 3566 context->shadow_root_level = level;
17c3ba9d 3567 context->root_hpa = INVALID_PAGE;
c5a78f2b 3568 context->direct_map = false;
6aa8b732
AK
3569 return 0;
3570}
3571
52fde8df
JR
3572static int paging64_init_context(struct kvm_vcpu *vcpu,
3573 struct kvm_mmu *context)
17ac10ad 3574{
52fde8df 3575 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3576}
3577
52fde8df
JR
3578static int paging32_init_context(struct kvm_vcpu *vcpu,
3579 struct kvm_mmu *context)
6aa8b732 3580{
2d48a985 3581 context->nx = false;
4d6931c3 3582 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3583
4d6931c3 3584 reset_rsvds_bits_mask(vcpu, context);
97d64b78 3585 update_permission_bitmask(vcpu, context);
6fd01b71 3586 update_last_pte_bitmap(vcpu, context);
6aa8b732
AK
3587
3588 context->new_cr3 = paging_new_cr3;
3589 context->page_fault = paging32_page_fault;
6aa8b732
AK
3590 context->gva_to_gpa = paging32_gva_to_gpa;
3591 context->free = paging_free;
e8bc217a 3592 context->sync_page = paging32_sync_page;
a7052897 3593 context->invlpg = paging32_invlpg;
0f53b5b1 3594 context->update_pte = paging32_update_pte;
6aa8b732 3595 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3596 context->root_hpa = INVALID_PAGE;
c5a78f2b 3597 context->direct_map = false;
6aa8b732
AK
3598 return 0;
3599}
3600
52fde8df
JR
3601static int paging32E_init_context(struct kvm_vcpu *vcpu,
3602 struct kvm_mmu *context)
6aa8b732 3603{
52fde8df 3604 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3605}
3606
fb72d167
JR
3607static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3608{
14dfe855 3609 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3610
c445f8ef 3611 context->base_role.word = 0;
fb72d167
JR
3612 context->new_cr3 = nonpaging_new_cr3;
3613 context->page_fault = tdp_page_fault;
3614 context->free = nonpaging_free;
e8bc217a 3615 context->sync_page = nonpaging_sync_page;
a7052897 3616 context->invlpg = nonpaging_invlpg;
0f53b5b1 3617 context->update_pte = nonpaging_update_pte;
67253af5 3618 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3619 context->root_hpa = INVALID_PAGE;
c5a78f2b 3620 context->direct_map = true;
1c97f0a0 3621 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3622 context->get_cr3 = get_cr3;
e4e517b4 3623 context->get_pdptr = kvm_pdptr_read;
cb659db8 3624 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3625
3626 if (!is_paging(vcpu)) {
2d48a985 3627 context->nx = false;
fb72d167
JR
3628 context->gva_to_gpa = nonpaging_gva_to_gpa;
3629 context->root_level = 0;
3630 } else if (is_long_mode(vcpu)) {
2d48a985 3631 context->nx = is_nx(vcpu);
fb72d167 3632 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3633 reset_rsvds_bits_mask(vcpu, context);
3634 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3635 } else if (is_pae(vcpu)) {
2d48a985 3636 context->nx = is_nx(vcpu);
fb72d167 3637 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3638 reset_rsvds_bits_mask(vcpu, context);
3639 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3640 } else {
2d48a985 3641 context->nx = false;
fb72d167 3642 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3643 reset_rsvds_bits_mask(vcpu, context);
3644 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3645 }
3646
97d64b78 3647 update_permission_bitmask(vcpu, context);
6fd01b71 3648 update_last_pte_bitmap(vcpu, context);
97d64b78 3649
fb72d167
JR
3650 return 0;
3651}
3652
52fde8df 3653int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3654{
a770f6f2 3655 int r;
411c588d 3656 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3657 ASSERT(vcpu);
ad312c7c 3658 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3659
3660 if (!is_paging(vcpu))
52fde8df 3661 r = nonpaging_init_context(vcpu, context);
a9058ecd 3662 else if (is_long_mode(vcpu))
52fde8df 3663 r = paging64_init_context(vcpu, context);
6aa8b732 3664 else if (is_pae(vcpu))
52fde8df 3665 r = paging32E_init_context(vcpu, context);
6aa8b732 3666 else
52fde8df 3667 r = paging32_init_context(vcpu, context);
a770f6f2 3668
2c9afa52 3669 vcpu->arch.mmu.base_role.nxe = is_nx(vcpu);
5b7e0102 3670 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3671 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3672 vcpu->arch.mmu.base_role.smep_andnot_wp
3673 = smep && !is_write_protection(vcpu);
52fde8df
JR
3674
3675 return r;
3676}
3677EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3678
3679static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3680{
14dfe855 3681 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3682
14dfe855
JR
3683 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3684 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3685 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3686 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3687
3688 return r;
6aa8b732
AK
3689}
3690
02f59dc9
JR
3691static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3692{
3693 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3694
3695 g_context->get_cr3 = get_cr3;
e4e517b4 3696 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3697 g_context->inject_page_fault = kvm_inject_page_fault;
3698
3699 /*
3700 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3701 * translation of l2_gpa to l1_gpa addresses is done using the
3702 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3703 * functions between mmu and nested_mmu are swapped.
3704 */
3705 if (!is_paging(vcpu)) {
2d48a985 3706 g_context->nx = false;
02f59dc9
JR
3707 g_context->root_level = 0;
3708 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3709 } else if (is_long_mode(vcpu)) {
2d48a985 3710 g_context->nx = is_nx(vcpu);
02f59dc9 3711 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3712 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3713 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3714 } else if (is_pae(vcpu)) {
2d48a985 3715 g_context->nx = is_nx(vcpu);
02f59dc9 3716 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3717 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3718 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3719 } else {
2d48a985 3720 g_context->nx = false;
02f59dc9 3721 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3722 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3723 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3724 }
3725
97d64b78 3726 update_permission_bitmask(vcpu, g_context);
6fd01b71 3727 update_last_pte_bitmap(vcpu, g_context);
97d64b78 3728
02f59dc9
JR
3729 return 0;
3730}
3731
fb72d167
JR
3732static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3733{
02f59dc9
JR
3734 if (mmu_is_nested(vcpu))
3735 return init_kvm_nested_mmu(vcpu);
3736 else if (tdp_enabled)
fb72d167
JR
3737 return init_kvm_tdp_mmu(vcpu);
3738 else
3739 return init_kvm_softmmu(vcpu);
3740}
3741
6aa8b732
AK
3742static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3743{
3744 ASSERT(vcpu);
62ad0755
SY
3745 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3746 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3747 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3748}
3749
3750int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3751{
3752 destroy_kvm_mmu(vcpu);
f8f7e5ee 3753 return init_kvm_mmu(vcpu);
17c3ba9d 3754}
8668a3c4 3755EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3756
3757int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3758{
714b93da
AK
3759 int r;
3760
e2dec939 3761 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3762 if (r)
3763 goto out;
8986ecc0 3764 r = mmu_alloc_roots(vcpu);
8facbbff 3765 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3766 mmu_sync_roots(vcpu);
aaee2c94 3767 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3768 if (r)
3769 goto out;
3662cb1c 3770 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3771 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3772out:
3773 return r;
6aa8b732 3774}
17c3ba9d
AK
3775EXPORT_SYMBOL_GPL(kvm_mmu_load);
3776
3777void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3778{
3779 mmu_free_roots(vcpu);
3780}
4b16184c 3781EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3782
0028425f 3783static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3784 struct kvm_mmu_page *sp, u64 *spte,
3785 const void *new)
0028425f 3786{
30945387 3787 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3788 ++vcpu->kvm->stat.mmu_pde_zapped;
3789 return;
30945387 3790 }
0028425f 3791
4cee5764 3792 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3793 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3794}
3795
79539cec
AK
3796static bool need_remote_flush(u64 old, u64 new)
3797{
3798 if (!is_shadow_present_pte(old))
3799 return false;
3800 if (!is_shadow_present_pte(new))
3801 return true;
3802 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3803 return true;
3804 old ^= PT64_NX_MASK;
3805 new ^= PT64_NX_MASK;
3806 return (old & ~new & PT64_PERM_MASK) != 0;
3807}
3808
0671a8e7
XG
3809static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3810 bool remote_flush, bool local_flush)
79539cec 3811{
0671a8e7
XG
3812 if (zap_page)
3813 return;
3814
3815 if (remote_flush)
79539cec 3816 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3817 else if (local_flush)
79539cec
AK
3818 kvm_mmu_flush_tlb(vcpu);
3819}
3820
889e5cbc
XG
3821static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3822 const u8 *new, int *bytes)
da4a00f0 3823{
889e5cbc
XG
3824 u64 gentry;
3825 int r;
72016f3a 3826
72016f3a
AK
3827 /*
3828 * Assume that the pte write on a page table of the same type
49b26e26
XG
3829 * as the current vcpu paging mode since we update the sptes only
3830 * when they have the same mode.
72016f3a 3831 */
889e5cbc 3832 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3833 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3834 *gpa &= ~(gpa_t)7;
3835 *bytes = 8;
116eb3d3 3836 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, 8);
72016f3a
AK
3837 if (r)
3838 gentry = 0;
08e850c6
AK
3839 new = (const u8 *)&gentry;
3840 }
3841
889e5cbc 3842 switch (*bytes) {
08e850c6
AK
3843 case 4:
3844 gentry = *(const u32 *)new;
3845 break;
3846 case 8:
3847 gentry = *(const u64 *)new;
3848 break;
3849 default:
3850 gentry = 0;
3851 break;
72016f3a
AK
3852 }
3853
889e5cbc
XG
3854 return gentry;
3855}
3856
3857/*
3858 * If we're seeing too many writes to a page, it may no longer be a page table,
3859 * or we may be forking, in which case it is better to unmap the page.
3860 */
a138fe75 3861static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3862{
a30f47cb
XG
3863 /*
3864 * Skip write-flooding detected for the sp whose level is 1, because
3865 * it can become unsync, then the guest page is not write-protected.
3866 */
f71fa31f 3867 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3868 return false;
3246af0e 3869
a30f47cb 3870 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3871}
3872
3873/*
3874 * Misaligned accesses are too much trouble to fix up; also, they usually
3875 * indicate a page is not used as a page table.
3876 */
3877static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3878 int bytes)
3879{
3880 unsigned offset, pte_size, misaligned;
3881
3882 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3883 gpa, bytes, sp->role.word);
3884
3885 offset = offset_in_page(gpa);
3886 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3887
3888 /*
3889 * Sometimes, the OS only writes the last one bytes to update status
3890 * bits, for example, in linux, andb instruction is used in clear_bit().
3891 */
3892 if (!(offset & (pte_size - 1)) && bytes == 1)
3893 return false;
3894
889e5cbc
XG
3895 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3896 misaligned |= bytes < 4;
3897
3898 return misaligned;
3899}
3900
3901static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3902{
3903 unsigned page_offset, quadrant;
3904 u64 *spte;
3905 int level;
3906
3907 page_offset = offset_in_page(gpa);
3908 level = sp->role.level;
3909 *nspte = 1;
3910 if (!sp->role.cr4_pae) {
3911 page_offset <<= 1; /* 32->64 */
3912 /*
3913 * A 32-bit pde maps 4MB while the shadow pdes map
3914 * only 2MB. So we need to double the offset again
3915 * and zap two pdes instead of one.
3916 */
3917 if (level == PT32_ROOT_LEVEL) {
3918 page_offset &= ~7; /* kill rounding error */
3919 page_offset <<= 1;
3920 *nspte = 2;
3921 }
3922 quadrant = page_offset >> PAGE_SHIFT;
3923 page_offset &= ~PAGE_MASK;
3924 if (quadrant != sp->role.quadrant)
3925 return NULL;
3926 }
3927
3928 spte = &sp->spt[page_offset / sizeof(*spte)];
3929 return spte;
3930}
3931
3932void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3933 const u8 *new, int bytes)
3934{
3935 gfn_t gfn = gpa >> PAGE_SHIFT;
3936 union kvm_mmu_page_role mask = { .word = 0 };
3937 struct kvm_mmu_page *sp;
889e5cbc
XG
3938 LIST_HEAD(invalid_list);
3939 u64 entry, gentry, *spte;
3940 int npte;
a30f47cb 3941 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3942
3943 /*
3944 * If we don't have indirect shadow pages, it means no page is
3945 * write-protected, so we can exit simply.
3946 */
3947 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3948 return;
3949
3950 zap_page = remote_flush = local_flush = false;
3951
3952 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3953
3954 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3955
3956 /*
3957 * No need to care whether allocation memory is successful
3958 * or not since pte prefetch is skiped if it does not have
3959 * enough objects in the cache.
3960 */
3961 mmu_topup_memory_caches(vcpu);
3962
3963 spin_lock(&vcpu->kvm->mmu_lock);
3964 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3965 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3966
fa1de2bf 3967 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
b67bfe0d 3968 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 3969 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3970 detect_write_flooding(sp)) {
0671a8e7 3971 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3972 &invalid_list);
4cee5764 3973 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3974 continue;
3975 }
889e5cbc
XG
3976
3977 spte = get_written_sptes(sp, gpa, &npte);
3978 if (!spte)
3979 continue;
3980
0671a8e7 3981 local_flush = true;
ac1b714e 3982 while (npte--) {
79539cec 3983 entry = *spte;
38e3b2b2 3984 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3985 if (gentry &&
3986 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3987 & mask.word) && rmap_can_add(vcpu))
7c562522 3988 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 3989 if (need_remote_flush(entry, *spte))
0671a8e7 3990 remote_flush = true;
ac1b714e 3991 ++spte;
9b7a0325 3992 }
9b7a0325 3993 }
0671a8e7 3994 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3995 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3996 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3997 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3998}
3999
a436036b
AK
4000int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
4001{
10589a46
MT
4002 gpa_t gpa;
4003 int r;
a436036b 4004
c5a78f2b 4005 if (vcpu->arch.mmu.direct_map)
60f24784
AK
4006 return 0;
4007
1871c602 4008 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 4009
10589a46 4010 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 4011
10589a46 4012 return r;
a436036b 4013}
577bdc49 4014EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 4015
22d95b12 4016void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 4017{
d98ba053 4018 LIST_HEAD(invalid_list);
103ad25a 4019
5da59607
TY
4020 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
4021 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
4022 break;
ebeace86 4023
4cee5764 4024 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 4025 }
aa6bd187 4026 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 4027}
ebeace86 4028
1cb3f3ae
XG
4029static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
4030{
4031 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
4032 return vcpu_match_mmio_gpa(vcpu, addr);
4033
4034 return vcpu_match_mmio_gva(vcpu, addr);
4035}
4036
dc25e89e
AP
4037int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
4038 void *insn, int insn_len)
3067714c 4039{
1cb3f3ae 4040 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
4041 enum emulation_result er;
4042
56028d08 4043 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
4044 if (r < 0)
4045 goto out;
4046
4047 if (!r) {
4048 r = 1;
4049 goto out;
4050 }
4051
1cb3f3ae
XG
4052 if (is_mmio_page_fault(vcpu, cr2))
4053 emulation_type = 0;
4054
4055 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4056
4057 switch (er) {
4058 case EMULATE_DONE:
4059 return 1;
4060 case EMULATE_DO_MMIO:
4061 ++vcpu->stat.mmio_exits;
6d77dbfc 4062 /* fall through */
3067714c 4063 case EMULATE_FAIL:
3f5d18a9 4064 return 0;
3067714c
AK
4065 default:
4066 BUG();
4067 }
4068out:
3067714c
AK
4069 return r;
4070}
4071EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4072
a7052897
MT
4073void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4074{
a7052897 4075 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4076 kvm_mmu_flush_tlb(vcpu);
4077 ++vcpu->stat.invlpg;
4078}
4079EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4080
18552672
JR
4081void kvm_enable_tdp(void)
4082{
4083 tdp_enabled = true;
4084}
4085EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4086
5f4cb662
JR
4087void kvm_disable_tdp(void)
4088{
4089 tdp_enabled = false;
4090}
4091EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4092
6aa8b732
AK
4093static void free_mmu_pages(struct kvm_vcpu *vcpu)
4094{
ad312c7c 4095 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4096 if (vcpu->arch.mmu.lm_root != NULL)
4097 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4098}
4099
4100static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4101{
17ac10ad 4102 struct page *page;
6aa8b732
AK
4103 int i;
4104
4105 ASSERT(vcpu);
4106
17ac10ad
AK
4107 /*
4108 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4109 * Therefore we need to allocate shadow page tables in the first
4110 * 4GB of memory, which happens to fit the DMA32 zone.
4111 */
4112 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4113 if (!page)
d7fa6ab2
WY
4114 return -ENOMEM;
4115
ad312c7c 4116 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4117 for (i = 0; i < 4; ++i)
ad312c7c 4118 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4119
6aa8b732 4120 return 0;
6aa8b732
AK
4121}
4122
8018c27b 4123int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4124{
6aa8b732 4125 ASSERT(vcpu);
e459e322
XG
4126
4127 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4128 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4129 vcpu->arch.mmu.translate_gpa = translate_gpa;
4130 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4131
8018c27b
IM
4132 return alloc_mmu_pages(vcpu);
4133}
6aa8b732 4134
8018c27b
IM
4135int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4136{
4137 ASSERT(vcpu);
ad312c7c 4138 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4139
8018c27b 4140 return init_kvm_mmu(vcpu);
6aa8b732
AK
4141}
4142
90cb0529 4143void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4144{
b99db1d3
TY
4145 struct kvm_memory_slot *memslot;
4146 gfn_t last_gfn;
4147 int i;
6aa8b732 4148
b99db1d3
TY
4149 memslot = id_to_memslot(kvm->memslots, slot);
4150 last_gfn = memslot->base_gfn + memslot->npages - 1;
6aa8b732 4151
9d1beefb
TY
4152 spin_lock(&kvm->mmu_lock);
4153
b99db1d3
TY
4154 for (i = PT_PAGE_TABLE_LEVEL;
4155 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
4156 unsigned long *rmapp;
4157 unsigned long last_index, index;
6aa8b732 4158
b99db1d3
TY
4159 rmapp = memslot->arch.rmap[i - PT_PAGE_TABLE_LEVEL];
4160 last_index = gfn_to_index(last_gfn, memslot->base_gfn, i);
da8dc75f 4161
b99db1d3
TY
4162 for (index = 0; index <= last_index; ++index, ++rmapp) {
4163 if (*rmapp)
4164 __rmap_write_protect(kvm, rmapp, false);
6b81b05e
TY
4165
4166 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
4167 kvm_flush_remote_tlbs(kvm);
4168 cond_resched_lock(&kvm->mmu_lock);
4169 }
8234b22e 4170 }
6aa8b732 4171 }
b99db1d3 4172
171d595d 4173 kvm_flush_remote_tlbs(kvm);
9d1beefb 4174 spin_unlock(&kvm->mmu_lock);
6aa8b732 4175}
37a7d8b0 4176
90cb0529 4177void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4178{
4db35314 4179 struct kvm_mmu_page *sp, *node;
d98ba053 4180 LIST_HEAD(invalid_list);
e0fa826f 4181
aaee2c94 4182 spin_lock(&kvm->mmu_lock);
3246af0e 4183restart:
f05e70ac 4184 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4185 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4186 goto restart;
4187
d98ba053 4188 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4189 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4190}
4191
982b3394
TY
4192void kvm_mmu_zap_mmio_sptes(struct kvm *kvm)
4193{
4194 struct kvm_mmu_page *sp, *node;
4195 LIST_HEAD(invalid_list);
4196
4197 spin_lock(&kvm->mmu_lock);
4198restart:
4199 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
4200 if (!sp->mmio_cached)
4201 continue;
4202 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
4203 goto restart;
4204 }
4205
4206 kvm_mmu_commit_zap_page(kvm, &invalid_list);
4207 spin_unlock(&kvm->mmu_lock);
4208}
4209
1495f230 4210static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4211{
4212 struct kvm *kvm;
1495f230 4213 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4214
4215 if (nr_to_scan == 0)
4216 goto out;
3ee16c81 4217
e935b837 4218 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4219
4220 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4221 int idx;
d98ba053 4222 LIST_HEAD(invalid_list);
3ee16c81 4223
35f2d16b
TY
4224 /*
4225 * Never scan more than sc->nr_to_scan VM instances.
4226 * Will not hit this condition practically since we do not try
4227 * to shrink more than one VM and it is very unlikely to see
4228 * !n_used_mmu_pages so many times.
4229 */
4230 if (!nr_to_scan--)
4231 break;
19526396
GN
4232 /*
4233 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4234 * here. We may skip a VM instance errorneosly, but we do not
4235 * want to shrink a VM that only started to populate its MMU
4236 * anyway.
4237 */
35f2d16b 4238 if (!kvm->arch.n_used_mmu_pages)
19526396 4239 continue;
19526396 4240
f656ce01 4241 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4242 spin_lock(&kvm->mmu_lock);
3ee16c81 4243
5da59607 4244 prepare_zap_oldest_mmu_page(kvm, &invalid_list);
d98ba053 4245 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4246
3ee16c81 4247 spin_unlock(&kvm->mmu_lock);
f656ce01 4248 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4249
4250 list_move_tail(&kvm->vm_list, &vm_list);
4251 break;
3ee16c81 4252 }
3ee16c81 4253
e935b837 4254 raw_spin_unlock(&kvm_lock);
3ee16c81 4255
45221ab6
DH
4256out:
4257 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4258}
4259
4260static struct shrinker mmu_shrinker = {
4261 .shrink = mmu_shrink,
4262 .seeks = DEFAULT_SEEKS * 10,
4263};
4264
2ddfd20e 4265static void mmu_destroy_caches(void)
b5a33a75 4266{
53c07b18
XG
4267 if (pte_list_desc_cache)
4268 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4269 if (mmu_page_header_cache)
4270 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4271}
4272
4273int kvm_mmu_module_init(void)
4274{
53c07b18
XG
4275 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4276 sizeof(struct pte_list_desc),
20c2df83 4277 0, 0, NULL);
53c07b18 4278 if (!pte_list_desc_cache)
b5a33a75
AK
4279 goto nomem;
4280
d3d25b04
AK
4281 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4282 sizeof(struct kvm_mmu_page),
20c2df83 4283 0, 0, NULL);
d3d25b04
AK
4284 if (!mmu_page_header_cache)
4285 goto nomem;
4286
45bf21a8
WY
4287 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4288 goto nomem;
4289
3ee16c81
IE
4290 register_shrinker(&mmu_shrinker);
4291
b5a33a75
AK
4292 return 0;
4293
4294nomem:
3ee16c81 4295 mmu_destroy_caches();
b5a33a75
AK
4296 return -ENOMEM;
4297}
4298
3ad82a7e
ZX
4299/*
4300 * Caculate mmu pages needed for kvm.
4301 */
4302unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4303{
3ad82a7e
ZX
4304 unsigned int nr_mmu_pages;
4305 unsigned int nr_pages = 0;
bc6678a3 4306 struct kvm_memslots *slots;
be6ba0f0 4307 struct kvm_memory_slot *memslot;
3ad82a7e 4308
90d83dc3
LJ
4309 slots = kvm_memslots(kvm);
4310
be6ba0f0
XG
4311 kvm_for_each_memslot(memslot, slots)
4312 nr_pages += memslot->npages;
3ad82a7e
ZX
4313
4314 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4315 nr_mmu_pages = max(nr_mmu_pages,
4316 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4317
4318 return nr_mmu_pages;
4319}
4320
94d8b056
MT
4321int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4322{
4323 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4324 u64 spte;
94d8b056
MT
4325 int nr_sptes = 0;
4326
c2a2ac2b
XG
4327 walk_shadow_page_lockless_begin(vcpu);
4328 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4329 sptes[iterator.level-1] = spte;
94d8b056 4330 nr_sptes++;
c2a2ac2b 4331 if (!is_shadow_present_pte(spte))
94d8b056
MT
4332 break;
4333 }
c2a2ac2b 4334 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4335
4336 return nr_sptes;
4337}
4338EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4339
c42fffe3
XG
4340void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4341{
4342 ASSERT(vcpu);
4343
4344 destroy_kvm_mmu(vcpu);
4345 free_mmu_pages(vcpu);
4346 mmu_free_memory_caches(vcpu);
b034cf01
XG
4347}
4348
b034cf01
XG
4349void kvm_mmu_module_exit(void)
4350{
4351 mmu_destroy_caches();
4352 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4353 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4354 mmu_audit_disable();
4355}