KVM: x86/mmu: Don't redundantly clear TDP MMU pt memory
[linux-block.git] / arch / x86 / kvm / mmu / tdp_mmu.c
CommitLineData
fe5db27d
BG
1// SPDX-License-Identifier: GPL-2.0
2
02c00b3a
BG
3#include "mmu.h"
4#include "mmu_internal.h"
bb18842e 5#include "mmutrace.h"
2f2fad08 6#include "tdp_iter.h"
fe5db27d 7#include "tdp_mmu.h"
02c00b3a 8#include "spte.h"
fe5db27d 9
33dd3574
BG
10#include <trace/events/kvm.h>
11
95fb5b02 12#ifdef CONFIG_X86_64
fe5db27d 13static bool __read_mostly tdp_mmu_enabled = false;
95fb5b02
BG
14module_param_named(tdp_mmu, tdp_mmu_enabled, bool, 0644);
15#endif
fe5db27d
BG
16
17static bool is_tdp_mmu_enabled(void)
18{
19#ifdef CONFIG_X86_64
20 return tdp_enabled && READ_ONCE(tdp_mmu_enabled);
21#else
22 return false;
23#endif /* CONFIG_X86_64 */
24}
25
26/* Initializes the TDP MMU for the VM, if enabled. */
27void kvm_mmu_init_tdp_mmu(struct kvm *kvm)
28{
29 if (!is_tdp_mmu_enabled())
30 return;
31
32 /* This should not be changed for the lifetime of the VM. */
33 kvm->arch.tdp_mmu_enabled = true;
02c00b3a
BG
34
35 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_roots);
89c0fd49 36 INIT_LIST_HEAD(&kvm->arch.tdp_mmu_pages);
fe5db27d
BG
37}
38
39void kvm_mmu_uninit_tdp_mmu(struct kvm *kvm)
40{
41 if (!kvm->arch.tdp_mmu_enabled)
42 return;
02c00b3a
BG
43
44 WARN_ON(!list_empty(&kvm->arch.tdp_mmu_roots));
45}
46
a889ea54
BG
47static void tdp_mmu_put_root(struct kvm *kvm, struct kvm_mmu_page *root)
48{
49 if (kvm_mmu_put_root(kvm, root))
50 kvm_tdp_mmu_free_root(kvm, root);
51}
52
53static inline bool tdp_mmu_next_root_valid(struct kvm *kvm,
54 struct kvm_mmu_page *root)
55{
56 lockdep_assert_held(&kvm->mmu_lock);
57
58 if (list_entry_is_head(root, &kvm->arch.tdp_mmu_roots, link))
59 return false;
60
61 kvm_mmu_get_root(kvm, root);
62 return true;
63
64}
65
66static inline struct kvm_mmu_page *tdp_mmu_next_root(struct kvm *kvm,
67 struct kvm_mmu_page *root)
68{
69 struct kvm_mmu_page *next_root;
70
71 next_root = list_next_entry(root, link);
72 tdp_mmu_put_root(kvm, root);
73 return next_root;
74}
75
76/*
77 * Note: this iterator gets and puts references to the roots it iterates over.
78 * This makes it safe to release the MMU lock and yield within the loop, but
79 * if exiting the loop early, the caller must drop the reference to the most
80 * recent root. (Unless keeping a live reference is desirable.)
81 */
82#define for_each_tdp_mmu_root_yield_safe(_kvm, _root) \
83 for (_root = list_first_entry(&_kvm->arch.tdp_mmu_roots, \
84 typeof(*_root), link); \
85 tdp_mmu_next_root_valid(_kvm, _root); \
86 _root = tdp_mmu_next_root(_kvm, _root))
87
88#define for_each_tdp_mmu_root(_kvm, _root) \
02c00b3a
BG
89 list_for_each_entry(_root, &_kvm->arch.tdp_mmu_roots, link)
90
91bool is_tdp_mmu_root(struct kvm *kvm, hpa_t hpa)
92{
93 struct kvm_mmu_page *sp;
94
c887c9b9
PB
95 if (!kvm->arch.tdp_mmu_enabled)
96 return false;
97 if (WARN_ON(!VALID_PAGE(hpa)))
98 return false;
99
02c00b3a 100 sp = to_shadow_page(hpa);
c887c9b9
PB
101 if (WARN_ON(!sp))
102 return false;
02c00b3a
BG
103
104 return sp->tdp_mmu_page && sp->root_count;
105}
106
faaf05b0 107static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
063afacd 108 gfn_t start, gfn_t end, bool can_yield);
faaf05b0 109
02c00b3a
BG
110void kvm_tdp_mmu_free_root(struct kvm *kvm, struct kvm_mmu_page *root)
111{
339f5a7f 112 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
faaf05b0 113
02c00b3a
BG
114 lockdep_assert_held(&kvm->mmu_lock);
115
116 WARN_ON(root->root_count);
117 WARN_ON(!root->tdp_mmu_page);
118
119 list_del(&root->link);
120
063afacd 121 zap_gfn_range(kvm, root, 0, max_gfn, false);
faaf05b0 122
02c00b3a
BG
123 free_page((unsigned long)root->spt);
124 kmem_cache_free(mmu_page_header_cache, root);
125}
126
127static union kvm_mmu_page_role page_role_for_level(struct kvm_vcpu *vcpu,
128 int level)
129{
130 union kvm_mmu_page_role role;
131
132 role = vcpu->arch.mmu->mmu_role.base;
133 role.level = level;
134 role.direct = true;
135 role.gpte_is_8_bytes = true;
136 role.access = ACC_ALL;
137
138 return role;
139}
140
141static struct kvm_mmu_page *alloc_tdp_mmu_page(struct kvm_vcpu *vcpu, gfn_t gfn,
142 int level)
143{
144 struct kvm_mmu_page *sp;
145
146 sp = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
147 sp->spt = kvm_mmu_memory_cache_alloc(&vcpu->arch.mmu_shadow_page_cache);
148 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
149
150 sp->role.word = page_role_for_level(vcpu, level).word;
151 sp->gfn = gfn;
152 sp->tdp_mmu_page = true;
153
33dd3574
BG
154 trace_kvm_mmu_get_page(sp, true);
155
02c00b3a
BG
156 return sp;
157}
158
159static struct kvm_mmu_page *get_tdp_mmu_vcpu_root(struct kvm_vcpu *vcpu)
160{
161 union kvm_mmu_page_role role;
162 struct kvm *kvm = vcpu->kvm;
163 struct kvm_mmu_page *root;
164
165 role = page_role_for_level(vcpu, vcpu->arch.mmu->shadow_root_level);
166
167 spin_lock(&kvm->mmu_lock);
168
169 /* Check for an existing root before allocating a new one. */
170 for_each_tdp_mmu_root(kvm, root) {
171 if (root->role.word == role.word) {
172 kvm_mmu_get_root(kvm, root);
173 spin_unlock(&kvm->mmu_lock);
174 return root;
175 }
176 }
177
178 root = alloc_tdp_mmu_page(vcpu, 0, vcpu->arch.mmu->shadow_root_level);
179 root->root_count = 1;
180
181 list_add(&root->link, &kvm->arch.tdp_mmu_roots);
182
183 spin_unlock(&kvm->mmu_lock);
184
185 return root;
186}
187
188hpa_t kvm_tdp_mmu_get_vcpu_root_hpa(struct kvm_vcpu *vcpu)
189{
190 struct kvm_mmu_page *root;
191
192 root = get_tdp_mmu_vcpu_root(vcpu);
193 if (!root)
194 return INVALID_PAGE;
195
196 return __pa(root->spt);
fe5db27d 197}
2f2fad08
BG
198
199static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
200 u64 old_spte, u64 new_spte, int level);
201
faaf05b0
BG
202static int kvm_mmu_page_as_id(struct kvm_mmu_page *sp)
203{
204 return sp->role.smm ? 1 : 0;
205}
206
f8e14497
BG
207static void handle_changed_spte_acc_track(u64 old_spte, u64 new_spte, int level)
208{
209 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
210
211 if (!is_shadow_present_pte(old_spte) || !is_last_spte(old_spte, level))
212 return;
213
214 if (is_accessed_spte(old_spte) &&
215 (!is_accessed_spte(new_spte) || pfn_changed))
216 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
217}
218
a6a0b05d
BG
219static void handle_changed_spte_dirty_log(struct kvm *kvm, int as_id, gfn_t gfn,
220 u64 old_spte, u64 new_spte, int level)
221{
222 bool pfn_changed;
223 struct kvm_memory_slot *slot;
224
225 if (level > PG_LEVEL_4K)
226 return;
227
228 pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
229
230 if ((!is_writable_pte(old_spte) || pfn_changed) &&
231 is_writable_pte(new_spte)) {
232 slot = __gfn_to_memslot(__kvm_memslots(kvm, as_id), gfn);
fb04a1ed 233 mark_page_dirty_in_slot(kvm, slot, gfn);
a6a0b05d
BG
234 }
235}
236
2f2fad08
BG
237/**
238 * handle_changed_spte - handle bookkeeping associated with an SPTE change
239 * @kvm: kvm instance
240 * @as_id: the address space of the paging structure the SPTE was a part of
241 * @gfn: the base GFN that was mapped by the SPTE
242 * @old_spte: The value of the SPTE before the change
243 * @new_spte: The value of the SPTE after the change
244 * @level: the level of the PT the SPTE is part of in the paging structure
245 *
246 * Handle bookkeeping that might result from the modification of a SPTE.
247 * This function must be called for all TDP SPTE modifications.
248 */
249static void __handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
250 u64 old_spte, u64 new_spte, int level)
251{
252 bool was_present = is_shadow_present_pte(old_spte);
253 bool is_present = is_shadow_present_pte(new_spte);
254 bool was_leaf = was_present && is_last_spte(old_spte, level);
255 bool is_leaf = is_present && is_last_spte(new_spte, level);
256 bool pfn_changed = spte_to_pfn(old_spte) != spte_to_pfn(new_spte);
257 u64 *pt;
89c0fd49 258 struct kvm_mmu_page *sp;
2f2fad08
BG
259 u64 old_child_spte;
260 int i;
261
262 WARN_ON(level > PT64_ROOT_MAX_LEVEL);
263 WARN_ON(level < PG_LEVEL_4K);
764388ce 264 WARN_ON(gfn & (KVM_PAGES_PER_HPAGE(level) - 1));
2f2fad08
BG
265
266 /*
267 * If this warning were to trigger it would indicate that there was a
268 * missing MMU notifier or a race with some notifier handler.
269 * A present, leaf SPTE should never be directly replaced with another
270 * present leaf SPTE pointing to a differnt PFN. A notifier handler
271 * should be zapping the SPTE before the main MM's page table is
272 * changed, or the SPTE should be zeroed, and the TLBs flushed by the
273 * thread before replacement.
274 */
275 if (was_leaf && is_leaf && pfn_changed) {
276 pr_err("Invalid SPTE change: cannot replace a present leaf\n"
277 "SPTE with another present leaf SPTE mapping a\n"
278 "different PFN!\n"
279 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
280 as_id, gfn, old_spte, new_spte, level);
281
282 /*
283 * Crash the host to prevent error propagation and guest data
284 * courruption.
285 */
286 BUG();
287 }
288
289 if (old_spte == new_spte)
290 return;
291
b9a98c34
BG
292 trace_kvm_tdp_mmu_spte_changed(as_id, gfn, level, old_spte, new_spte);
293
2f2fad08
BG
294 /*
295 * The only times a SPTE should be changed from a non-present to
296 * non-present state is when an MMIO entry is installed/modified/
297 * removed. In that case, there is nothing to do here.
298 */
299 if (!was_present && !is_present) {
300 /*
301 * If this change does not involve a MMIO SPTE, it is
302 * unexpected. Log the change, though it should not impact the
303 * guest since both the former and current SPTEs are nonpresent.
304 */
305 if (WARN_ON(!is_mmio_spte(old_spte) && !is_mmio_spte(new_spte)))
306 pr_err("Unexpected SPTE change! Nonpresent SPTEs\n"
307 "should not be replaced with another,\n"
308 "different nonpresent SPTE, unless one or both\n"
309 "are MMIO SPTEs.\n"
310 "as_id: %d gfn: %llx old_spte: %llx new_spte: %llx level: %d",
311 as_id, gfn, old_spte, new_spte, level);
312 return;
313 }
314
315
316 if (was_leaf && is_dirty_spte(old_spte) &&
317 (!is_dirty_spte(new_spte) || pfn_changed))
318 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
319
320 /*
321 * Recursively handle child PTs if the change removed a subtree from
322 * the paging structure.
323 */
324 if (was_present && !was_leaf && (pfn_changed || !is_present)) {
325 pt = spte_to_child_pt(old_spte, level);
89c0fd49
BG
326 sp = sptep_to_sp(pt);
327
33dd3574
BG
328 trace_kvm_mmu_prepare_zap_page(sp);
329
89c0fd49 330 list_del(&sp->link);
2f2fad08 331
29cf0f50
BG
332 if (sp->lpage_disallowed)
333 unaccount_huge_nx_page(kvm, sp);
334
2f2fad08
BG
335 for (i = 0; i < PT64_ENT_PER_PAGE; i++) {
336 old_child_spte = READ_ONCE(*(pt + i));
337 WRITE_ONCE(*(pt + i), 0);
338 handle_changed_spte(kvm, as_id,
339 gfn + (i * KVM_PAGES_PER_HPAGE(level - 1)),
340 old_child_spte, 0, level - 1);
341 }
342
343 kvm_flush_remote_tlbs_with_address(kvm, gfn,
344 KVM_PAGES_PER_HPAGE(level));
345
346 free_page((unsigned long)pt);
89c0fd49 347 kmem_cache_free(mmu_page_header_cache, sp);
2f2fad08
BG
348 }
349}
350
351static void handle_changed_spte(struct kvm *kvm, int as_id, gfn_t gfn,
352 u64 old_spte, u64 new_spte, int level)
353{
354 __handle_changed_spte(kvm, as_id, gfn, old_spte, new_spte, level);
f8e14497 355 handle_changed_spte_acc_track(old_spte, new_spte, level);
a6a0b05d
BG
356 handle_changed_spte_dirty_log(kvm, as_id, gfn, old_spte,
357 new_spte, level);
2f2fad08 358}
faaf05b0 359
fe43fa2f
BG
360/*
361 * __tdp_mmu_set_spte - Set a TDP MMU SPTE and handle the associated bookkeeping
362 * @kvm: kvm instance
363 * @iter: a tdp_iter instance currently on the SPTE that should be set
364 * @new_spte: The value the SPTE should be set to
365 * @record_acc_track: Notify the MM subsystem of changes to the accessed state
366 * of the page. Should be set unless handling an MMU
367 * notifier for access tracking. Leaving record_acc_track
368 * unset in that case prevents page accesses from being
369 * double counted.
370 * @record_dirty_log: Record the page as dirty in the dirty bitmap if
371 * appropriate for the change being made. Should be set
372 * unless performing certain dirty logging operations.
373 * Leaving record_dirty_log unset in that case prevents page
374 * writes from being double counted.
375 */
f8e14497 376static inline void __tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
a6a0b05d
BG
377 u64 new_spte, bool record_acc_track,
378 bool record_dirty_log)
faaf05b0
BG
379{
380 u64 *root_pt = tdp_iter_root_pt(iter);
381 struct kvm_mmu_page *root = sptep_to_sp(root_pt);
382 int as_id = kvm_mmu_page_as_id(root);
383
3a9a4aa5
BG
384 lockdep_assert_held(&kvm->mmu_lock);
385
f8e14497
BG
386 WRITE_ONCE(*iter->sptep, new_spte);
387
388 __handle_changed_spte(kvm, as_id, iter->gfn, iter->old_spte, new_spte,
389 iter->level);
390 if (record_acc_track)
391 handle_changed_spte_acc_track(iter->old_spte, new_spte,
392 iter->level);
a6a0b05d
BG
393 if (record_dirty_log)
394 handle_changed_spte_dirty_log(kvm, as_id, iter->gfn,
395 iter->old_spte, new_spte,
396 iter->level);
f8e14497
BG
397}
398
399static inline void tdp_mmu_set_spte(struct kvm *kvm, struct tdp_iter *iter,
400 u64 new_spte)
401{
a6a0b05d 402 __tdp_mmu_set_spte(kvm, iter, new_spte, true, true);
f8e14497 403}
faaf05b0 404
f8e14497
BG
405static inline void tdp_mmu_set_spte_no_acc_track(struct kvm *kvm,
406 struct tdp_iter *iter,
407 u64 new_spte)
408{
a6a0b05d
BG
409 __tdp_mmu_set_spte(kvm, iter, new_spte, false, true);
410}
411
412static inline void tdp_mmu_set_spte_no_dirty_log(struct kvm *kvm,
413 struct tdp_iter *iter,
414 u64 new_spte)
415{
416 __tdp_mmu_set_spte(kvm, iter, new_spte, true, false);
faaf05b0
BG
417}
418
419#define tdp_root_for_each_pte(_iter, _root, _start, _end) \
420 for_each_tdp_pte(_iter, _root->spt, _root->role.level, _start, _end)
421
f8e14497
BG
422#define tdp_root_for_each_leaf_pte(_iter, _root, _start, _end) \
423 tdp_root_for_each_pte(_iter, _root, _start, _end) \
424 if (!is_shadow_present_pte(_iter.old_spte) || \
425 !is_last_spte(_iter.old_spte, _iter.level)) \
426 continue; \
427 else
428
bb18842e
BG
429#define tdp_mmu_for_each_pte(_iter, _mmu, _start, _end) \
430 for_each_tdp_pte(_iter, __va(_mmu->root_hpa), \
431 _mmu->shadow_root_level, _start, _end)
432
faaf05b0 433/*
e28a436c
BG
434 * Flush the TLB and yield if the MMU lock is contended or this thread needs to
435 * return control to the scheduler.
436 *
437 * If this function yields, it will also reset the tdp_iter's walk over the
438 * paging structure and the calling function should allow the iterator to
439 * continue its traversal from the paging structure root.
440 *
441 * Return true if this function yielded, the TLBs were flushed, and the
442 * iterator's traversal was reset. Return false if a yield was not needed.
faaf05b0
BG
443 */
444static bool tdp_mmu_iter_flush_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
445{
446 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
447 kvm_flush_remote_tlbs(kvm);
448 cond_resched_lock(&kvm->mmu_lock);
449 tdp_iter_refresh_walk(iter);
faaf05b0
BG
450 return true;
451 }
e28a436c
BG
452
453 return false;
faaf05b0
BG
454}
455
e28a436c
BG
456/*
457 * Yield if the MMU lock is contended or this thread needs to return control
458 * to the scheduler.
459 *
460 * If this function yields, it will also reset the tdp_iter's walk over the
461 * paging structure and the calling function should allow the iterator to
462 * continue its traversal from the paging structure root.
463 *
464 * Return true if this function yielded and the iterator's traversal was reset.
465 * Return false if a yield was not needed.
466 */
467static bool tdp_mmu_iter_cond_resched(struct kvm *kvm, struct tdp_iter *iter)
a6a0b05d
BG
468{
469 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
470 cond_resched_lock(&kvm->mmu_lock);
471 tdp_iter_refresh_walk(iter);
e28a436c 472 return true;
a6a0b05d 473 }
e28a436c
BG
474
475 return false;
a6a0b05d
BG
476}
477
faaf05b0
BG
478/*
479 * Tears down the mappings for the range of gfns, [start, end), and frees the
480 * non-root pages mapping GFNs strictly within that range. Returns true if
481 * SPTEs have been cleared and a TLB flush is needed before releasing the
482 * MMU lock.
063afacd
BG
483 * If can_yield is true, will release the MMU lock and reschedule if the
484 * scheduler needs the CPU or there is contention on the MMU lock. If this
485 * function cannot yield, it will not release the MMU lock or reschedule and
486 * the caller must ensure it does not supply too large a GFN range, or the
487 * operation can cause a soft lockup.
faaf05b0
BG
488 */
489static bool zap_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
063afacd 490 gfn_t start, gfn_t end, bool can_yield)
faaf05b0
BG
491{
492 struct tdp_iter iter;
493 bool flush_needed = false;
494
495 tdp_root_for_each_pte(iter, root, start, end) {
496 if (!is_shadow_present_pte(iter.old_spte))
497 continue;
498
499 /*
500 * If this is a non-last-level SPTE that covers a larger range
501 * than should be zapped, continue, and zap the mappings at a
502 * lower level.
503 */
504 if ((iter.gfn < start ||
505 iter.gfn + KVM_PAGES_PER_HPAGE(iter.level) > end) &&
506 !is_last_spte(iter.old_spte, iter.level))
507 continue;
508
509 tdp_mmu_set_spte(kvm, &iter, 0);
510
e28a436c
BG
511 flush_needed = !can_yield ||
512 !tdp_mmu_iter_flush_cond_resched(kvm, &iter);
faaf05b0
BG
513 }
514 return flush_needed;
515}
516
517/*
518 * Tears down the mappings for the range of gfns, [start, end), and frees the
519 * non-root pages mapping GFNs strictly within that range. Returns true if
520 * SPTEs have been cleared and a TLB flush is needed before releasing the
521 * MMU lock.
522 */
523bool kvm_tdp_mmu_zap_gfn_range(struct kvm *kvm, gfn_t start, gfn_t end)
524{
525 struct kvm_mmu_page *root;
526 bool flush = false;
527
a889ea54 528 for_each_tdp_mmu_root_yield_safe(kvm, root)
063afacd 529 flush |= zap_gfn_range(kvm, root, start, end, true);
faaf05b0 530
faaf05b0
BG
531 return flush;
532}
533
534void kvm_tdp_mmu_zap_all(struct kvm *kvm)
535{
339f5a7f 536 gfn_t max_gfn = 1ULL << (shadow_phys_bits - PAGE_SHIFT);
faaf05b0
BG
537 bool flush;
538
539 flush = kvm_tdp_mmu_zap_gfn_range(kvm, 0, max_gfn);
540 if (flush)
541 kvm_flush_remote_tlbs(kvm);
542}
bb18842e
BG
543
544/*
545 * Installs a last-level SPTE to handle a TDP page fault.
546 * (NPT/EPT violation/misconfiguration)
547 */
548static int tdp_mmu_map_handle_target_level(struct kvm_vcpu *vcpu, int write,
549 int map_writable,
550 struct tdp_iter *iter,
551 kvm_pfn_t pfn, bool prefault)
552{
553 u64 new_spte;
554 int ret = 0;
555 int make_spte_ret = 0;
556
557 if (unlikely(is_noslot_pfn(pfn))) {
558 new_spte = make_mmio_spte(vcpu, iter->gfn, ACC_ALL);
559 trace_mark_mmio_spte(iter->sptep, iter->gfn, new_spte);
33dd3574 560 } else {
bb18842e
BG
561 make_spte_ret = make_spte(vcpu, ACC_ALL, iter->level, iter->gfn,
562 pfn, iter->old_spte, prefault, true,
563 map_writable, !shadow_accessed_mask,
564 &new_spte);
33dd3574
BG
565 trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
566 }
bb18842e
BG
567
568 if (new_spte == iter->old_spte)
569 ret = RET_PF_SPURIOUS;
570 else
571 tdp_mmu_set_spte(vcpu->kvm, iter, new_spte);
572
573 /*
574 * If the page fault was caused by a write but the page is write
575 * protected, emulation is needed. If the emulation was skipped,
576 * the vCPU would have the same fault again.
577 */
578 if (make_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
579 if (write)
580 ret = RET_PF_EMULATE;
581 kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
582 }
583
584 /* If a MMIO SPTE is installed, the MMIO will need to be emulated. */
585 if (unlikely(is_mmio_spte(new_spte)))
586 ret = RET_PF_EMULATE;
587
588 trace_kvm_mmu_set_spte(iter->level, iter->gfn, iter->sptep);
589 if (!prefault)
590 vcpu->stat.pf_fixed++;
591
592 return ret;
593}
594
595/*
596 * Handle a TDP page fault (NPT/EPT violation/misconfiguration) by installing
597 * page tables and SPTEs to translate the faulting guest physical address.
598 */
599int kvm_tdp_mmu_map(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
600 int map_writable, int max_level, kvm_pfn_t pfn,
601 bool prefault)
602{
603 bool nx_huge_page_workaround_enabled = is_nx_huge_page_enabled();
604 bool write = error_code & PFERR_WRITE_MASK;
605 bool exec = error_code & PFERR_FETCH_MASK;
606 bool huge_page_disallowed = exec && nx_huge_page_workaround_enabled;
607 struct kvm_mmu *mmu = vcpu->arch.mmu;
608 struct tdp_iter iter;
89c0fd49 609 struct kvm_mmu_page *sp;
bb18842e
BG
610 u64 *child_pt;
611 u64 new_spte;
612 int ret;
613 gfn_t gfn = gpa >> PAGE_SHIFT;
614 int level;
615 int req_level;
616
617 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
618 return RET_PF_RETRY;
619 if (WARN_ON(!is_tdp_mmu_root(vcpu->kvm, vcpu->arch.mmu->root_hpa)))
620 return RET_PF_RETRY;
621
622 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn,
623 huge_page_disallowed, &req_level);
624
625 trace_kvm_mmu_spte_requested(gpa, level, pfn);
626 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
627 if (nx_huge_page_workaround_enabled)
628 disallowed_hugepage_adjust(iter.old_spte, gfn,
629 iter.level, &pfn, &level);
630
631 if (iter.level == level)
632 break;
633
634 /*
635 * If there is an SPTE mapping a large page at a higher level
636 * than the target, that SPTE must be cleared and replaced
637 * with a non-leaf SPTE.
638 */
639 if (is_shadow_present_pte(iter.old_spte) &&
640 is_large_pte(iter.old_spte)) {
641 tdp_mmu_set_spte(vcpu->kvm, &iter, 0);
642
643 kvm_flush_remote_tlbs_with_address(vcpu->kvm, iter.gfn,
644 KVM_PAGES_PER_HPAGE(iter.level));
645
646 /*
647 * The iter must explicitly re-read the spte here
648 * because the new value informs the !present
649 * path below.
650 */
651 iter.old_spte = READ_ONCE(*iter.sptep);
652 }
653
654 if (!is_shadow_present_pte(iter.old_spte)) {
89c0fd49
BG
655 sp = alloc_tdp_mmu_page(vcpu, iter.gfn, iter.level);
656 list_add(&sp->link, &vcpu->kvm->arch.tdp_mmu_pages);
657 child_pt = sp->spt;
bb18842e
BG
658 new_spte = make_nonleaf_spte(child_pt,
659 !shadow_accessed_mask);
660
661 trace_kvm_mmu_get_page(sp, true);
29cf0f50
BG
662 if (huge_page_disallowed && req_level >= iter.level)
663 account_huge_nx_page(vcpu->kvm, sp);
664
bb18842e
BG
665 tdp_mmu_set_spte(vcpu->kvm, &iter, new_spte);
666 }
667 }
668
669 if (WARN_ON(iter.level != level))
670 return RET_PF_RETRY;
671
672 ret = tdp_mmu_map_handle_target_level(vcpu, write, map_writable, &iter,
673 pfn, prefault);
674
675 return ret;
676}
063afacd
BG
677
678static int kvm_tdp_mmu_handle_hva_range(struct kvm *kvm, unsigned long start,
679 unsigned long end, unsigned long data,
680 int (*handler)(struct kvm *kvm, struct kvm_memory_slot *slot,
681 struct kvm_mmu_page *root, gfn_t start,
682 gfn_t end, unsigned long data))
683{
684 struct kvm_memslots *slots;
685 struct kvm_memory_slot *memslot;
686 struct kvm_mmu_page *root;
687 int ret = 0;
688 int as_id;
689
a889ea54 690 for_each_tdp_mmu_root_yield_safe(kvm, root) {
063afacd
BG
691 as_id = kvm_mmu_page_as_id(root);
692 slots = __kvm_memslots(kvm, as_id);
693 kvm_for_each_memslot(memslot, slots) {
694 unsigned long hva_start, hva_end;
695 gfn_t gfn_start, gfn_end;
696
697 hva_start = max(start, memslot->userspace_addr);
698 hva_end = min(end, memslot->userspace_addr +
699 (memslot->npages << PAGE_SHIFT));
700 if (hva_start >= hva_end)
701 continue;
702 /*
703 * {gfn(page) | page intersects with [hva_start, hva_end)} =
704 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
705 */
706 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
707 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
708
709 ret |= handler(kvm, memslot, root, gfn_start,
710 gfn_end, data);
711 }
063afacd
BG
712 }
713
714 return ret;
715}
716
717static int zap_gfn_range_hva_wrapper(struct kvm *kvm,
718 struct kvm_memory_slot *slot,
719 struct kvm_mmu_page *root, gfn_t start,
720 gfn_t end, unsigned long unused)
721{
722 return zap_gfn_range(kvm, root, start, end, false);
723}
724
725int kvm_tdp_mmu_zap_hva_range(struct kvm *kvm, unsigned long start,
726 unsigned long end)
727{
728 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
729 zap_gfn_range_hva_wrapper);
730}
f8e14497
BG
731
732/*
733 * Mark the SPTEs range of GFNs [start, end) unaccessed and return non-zero
734 * if any of the GFNs in the range have been accessed.
735 */
736static int age_gfn_range(struct kvm *kvm, struct kvm_memory_slot *slot,
737 struct kvm_mmu_page *root, gfn_t start, gfn_t end,
738 unsigned long unused)
739{
740 struct tdp_iter iter;
741 int young = 0;
742 u64 new_spte = 0;
743
744 tdp_root_for_each_leaf_pte(iter, root, start, end) {
745 /*
746 * If we have a non-accessed entry we don't need to change the
747 * pte.
748 */
749 if (!is_accessed_spte(iter.old_spte))
750 continue;
751
752 new_spte = iter.old_spte;
753
754 if (spte_ad_enabled(new_spte)) {
755 clear_bit((ffs(shadow_accessed_mask) - 1),
756 (unsigned long *)&new_spte);
757 } else {
758 /*
759 * Capture the dirty status of the page, so that it doesn't get
760 * lost when the SPTE is marked for access tracking.
761 */
762 if (is_writable_pte(new_spte))
763 kvm_set_pfn_dirty(spte_to_pfn(new_spte));
764
765 new_spte = mark_spte_for_access_track(new_spte);
766 }
a6a0b05d 767 new_spte &= ~shadow_dirty_mask;
f8e14497
BG
768
769 tdp_mmu_set_spte_no_acc_track(kvm, &iter, new_spte);
770 young = 1;
33dd3574
BG
771
772 trace_kvm_age_page(iter.gfn, iter.level, slot, young);
f8e14497
BG
773 }
774
775 return young;
776}
777
778int kvm_tdp_mmu_age_hva_range(struct kvm *kvm, unsigned long start,
779 unsigned long end)
780{
781 return kvm_tdp_mmu_handle_hva_range(kvm, start, end, 0,
782 age_gfn_range);
783}
784
785static int test_age_gfn(struct kvm *kvm, struct kvm_memory_slot *slot,
786 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
787 unsigned long unused2)
788{
789 struct tdp_iter iter;
790
791 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1)
792 if (is_accessed_spte(iter.old_spte))
793 return 1;
794
795 return 0;
796}
797
798int kvm_tdp_mmu_test_age_hva(struct kvm *kvm, unsigned long hva)
799{
800 return kvm_tdp_mmu_handle_hva_range(kvm, hva, hva + 1, 0,
801 test_age_gfn);
802}
1d8dd6b3
BG
803
804/*
805 * Handle the changed_pte MMU notifier for the TDP MMU.
806 * data is a pointer to the new pte_t mapping the HVA specified by the MMU
807 * notifier.
808 * Returns non-zero if a flush is needed before releasing the MMU lock.
809 */
810static int set_tdp_spte(struct kvm *kvm, struct kvm_memory_slot *slot,
811 struct kvm_mmu_page *root, gfn_t gfn, gfn_t unused,
812 unsigned long data)
813{
814 struct tdp_iter iter;
815 pte_t *ptep = (pte_t *)data;
816 kvm_pfn_t new_pfn;
817 u64 new_spte;
818 int need_flush = 0;
819
820 WARN_ON(pte_huge(*ptep));
821
822 new_pfn = pte_pfn(*ptep);
823
824 tdp_root_for_each_pte(iter, root, gfn, gfn + 1) {
825 if (iter.level != PG_LEVEL_4K)
826 continue;
827
828 if (!is_shadow_present_pte(iter.old_spte))
829 break;
830
831 tdp_mmu_set_spte(kvm, &iter, 0);
832
833 kvm_flush_remote_tlbs_with_address(kvm, iter.gfn, 1);
834
835 if (!pte_write(*ptep)) {
836 new_spte = kvm_mmu_changed_pte_notifier_make_spte(
837 iter.old_spte, new_pfn);
838
839 tdp_mmu_set_spte(kvm, &iter, new_spte);
840 }
841
842 need_flush = 1;
843 }
844
845 if (need_flush)
846 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
847
848 return 0;
849}
850
851int kvm_tdp_mmu_set_spte_hva(struct kvm *kvm, unsigned long address,
852 pte_t *host_ptep)
853{
854 return kvm_tdp_mmu_handle_hva_range(kvm, address, address + 1,
855 (unsigned long)host_ptep,
856 set_tdp_spte);
857}
858
a6a0b05d
BG
859/*
860 * Remove write access from all the SPTEs mapping GFNs [start, end). If
861 * skip_4k is set, SPTEs that map 4k pages, will not be write-protected.
862 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
863 */
864static bool wrprot_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
865 gfn_t start, gfn_t end, int min_level)
866{
867 struct tdp_iter iter;
868 u64 new_spte;
869 bool spte_set = false;
870
871 BUG_ON(min_level > KVM_MAX_HUGEPAGE_LEVEL);
872
873 for_each_tdp_pte_min_level(iter, root->spt, root->role.level,
874 min_level, start, end) {
875 if (!is_shadow_present_pte(iter.old_spte) ||
876 !is_last_spte(iter.old_spte, iter.level))
877 continue;
878
879 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
880
881 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
882 spte_set = true;
883
884 tdp_mmu_iter_cond_resched(kvm, &iter);
885 }
886 return spte_set;
887}
888
889/*
890 * Remove write access from all the SPTEs mapping GFNs in the memslot. Will
891 * only affect leaf SPTEs down to min_level.
892 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
893 */
894bool kvm_tdp_mmu_wrprot_slot(struct kvm *kvm, struct kvm_memory_slot *slot,
895 int min_level)
896{
897 struct kvm_mmu_page *root;
898 int root_as_id;
899 bool spte_set = false;
900
a889ea54 901 for_each_tdp_mmu_root_yield_safe(kvm, root) {
a6a0b05d
BG
902 root_as_id = kvm_mmu_page_as_id(root);
903 if (root_as_id != slot->as_id)
904 continue;
905
a6a0b05d
BG
906 spte_set |= wrprot_gfn_range(kvm, root, slot->base_gfn,
907 slot->base_gfn + slot->npages, min_level);
a6a0b05d
BG
908 }
909
910 return spte_set;
911}
912
913/*
914 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
915 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
916 * If AD bits are not enabled, this will require clearing the writable bit on
917 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
918 * be flushed.
919 */
920static bool clear_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
921 gfn_t start, gfn_t end)
922{
923 struct tdp_iter iter;
924 u64 new_spte;
925 bool spte_set = false;
926
927 tdp_root_for_each_leaf_pte(iter, root, start, end) {
928 if (spte_ad_need_write_protect(iter.old_spte)) {
929 if (is_writable_pte(iter.old_spte))
930 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
931 else
932 continue;
933 } else {
934 if (iter.old_spte & shadow_dirty_mask)
935 new_spte = iter.old_spte & ~shadow_dirty_mask;
936 else
937 continue;
938 }
939
940 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
941 spte_set = true;
942
943 tdp_mmu_iter_cond_resched(kvm, &iter);
944 }
945 return spte_set;
946}
947
948/*
949 * Clear the dirty status of all the SPTEs mapping GFNs in the memslot. If
950 * AD bits are enabled, this will involve clearing the dirty bit on each SPTE.
951 * If AD bits are not enabled, this will require clearing the writable bit on
952 * each SPTE. Returns true if an SPTE has been changed and the TLBs need to
953 * be flushed.
954 */
955bool kvm_tdp_mmu_clear_dirty_slot(struct kvm *kvm, struct kvm_memory_slot *slot)
956{
957 struct kvm_mmu_page *root;
958 int root_as_id;
959 bool spte_set = false;
960
a889ea54 961 for_each_tdp_mmu_root_yield_safe(kvm, root) {
a6a0b05d
BG
962 root_as_id = kvm_mmu_page_as_id(root);
963 if (root_as_id != slot->as_id)
964 continue;
965
a6a0b05d
BG
966 spte_set |= clear_dirty_gfn_range(kvm, root, slot->base_gfn,
967 slot->base_gfn + slot->npages);
a6a0b05d
BG
968 }
969
970 return spte_set;
971}
972
973/*
974 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
975 * set in mask, starting at gfn. The given memslot is expected to contain all
976 * the GFNs represented by set bits in the mask. If AD bits are enabled,
977 * clearing the dirty status will involve clearing the dirty bit on each SPTE
978 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
979 */
980static void clear_dirty_pt_masked(struct kvm *kvm, struct kvm_mmu_page *root,
981 gfn_t gfn, unsigned long mask, bool wrprot)
982{
983 struct tdp_iter iter;
984 u64 new_spte;
985
986 tdp_root_for_each_leaf_pte(iter, root, gfn + __ffs(mask),
987 gfn + BITS_PER_LONG) {
988 if (!mask)
989 break;
990
991 if (iter.level > PG_LEVEL_4K ||
992 !(mask & (1UL << (iter.gfn - gfn))))
993 continue;
994
995 if (wrprot || spte_ad_need_write_protect(iter.old_spte)) {
996 if (is_writable_pte(iter.old_spte))
997 new_spte = iter.old_spte & ~PT_WRITABLE_MASK;
998 else
999 continue;
1000 } else {
1001 if (iter.old_spte & shadow_dirty_mask)
1002 new_spte = iter.old_spte & ~shadow_dirty_mask;
1003 else
1004 continue;
1005 }
1006
1007 tdp_mmu_set_spte_no_dirty_log(kvm, &iter, new_spte);
1008
1009 mask &= ~(1UL << (iter.gfn - gfn));
1010 }
1011}
1012
1013/*
1014 * Clears the dirty status of all the 4k SPTEs mapping GFNs for which a bit is
1015 * set in mask, starting at gfn. The given memslot is expected to contain all
1016 * the GFNs represented by set bits in the mask. If AD bits are enabled,
1017 * clearing the dirty status will involve clearing the dirty bit on each SPTE
1018 * or, if AD bits are not enabled, clearing the writable bit on each SPTE.
1019 */
1020void kvm_tdp_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1021 struct kvm_memory_slot *slot,
1022 gfn_t gfn, unsigned long mask,
1023 bool wrprot)
1024{
1025 struct kvm_mmu_page *root;
1026 int root_as_id;
1027
1028 lockdep_assert_held(&kvm->mmu_lock);
1029 for_each_tdp_mmu_root(kvm, root) {
1030 root_as_id = kvm_mmu_page_as_id(root);
1031 if (root_as_id != slot->as_id)
1032 continue;
1033
1034 clear_dirty_pt_masked(kvm, root, gfn, mask, wrprot);
1035 }
1036}
1037
1038/*
1039 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1040 * only used for PML, and so will involve setting the dirty bit on each SPTE.
1041 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1042 */
1043static bool set_dirty_gfn_range(struct kvm *kvm, struct kvm_mmu_page *root,
1044 gfn_t start, gfn_t end)
1045{
1046 struct tdp_iter iter;
1047 u64 new_spte;
1048 bool spte_set = false;
1049
1050 tdp_root_for_each_pte(iter, root, start, end) {
1051 if (!is_shadow_present_pte(iter.old_spte))
1052 continue;
1053
1054 new_spte = iter.old_spte | shadow_dirty_mask;
1055
1056 tdp_mmu_set_spte(kvm, &iter, new_spte);
1057 spte_set = true;
1058
1059 tdp_mmu_iter_cond_resched(kvm, &iter);
1060 }
1061
1062 return spte_set;
1063}
1064
1065/*
1066 * Set the dirty status of all the SPTEs mapping GFNs in the memslot. This is
1067 * only used for PML, and so will involve setting the dirty bit on each SPTE.
1068 * Returns true if an SPTE has been changed and the TLBs need to be flushed.
1069 */
1070bool kvm_tdp_mmu_slot_set_dirty(struct kvm *kvm, struct kvm_memory_slot *slot)
1071{
1072 struct kvm_mmu_page *root;
1073 int root_as_id;
1074 bool spte_set = false;
1075
a889ea54 1076 for_each_tdp_mmu_root_yield_safe(kvm, root) {
a6a0b05d
BG
1077 root_as_id = kvm_mmu_page_as_id(root);
1078 if (root_as_id != slot->as_id)
1079 continue;
1080
a6a0b05d
BG
1081 spte_set |= set_dirty_gfn_range(kvm, root, slot->base_gfn,
1082 slot->base_gfn + slot->npages);
a6a0b05d
BG
1083 }
1084 return spte_set;
1085}
1086
14881998 1087/*
87aa9ec9
BG
1088 * Clear leaf entries which could be replaced by large mappings, for
1089 * GFNs within the slot.
14881998
BG
1090 */
1091static void zap_collapsible_spte_range(struct kvm *kvm,
1092 struct kvm_mmu_page *root,
1093 gfn_t start, gfn_t end)
1094{
1095 struct tdp_iter iter;
1096 kvm_pfn_t pfn;
1097 bool spte_set = false;
1098
1099 tdp_root_for_each_pte(iter, root, start, end) {
1100 if (!is_shadow_present_pte(iter.old_spte) ||
87aa9ec9 1101 !is_last_spte(iter.old_spte, iter.level))
14881998
BG
1102 continue;
1103
1104 pfn = spte_to_pfn(iter.old_spte);
1105 if (kvm_is_reserved_pfn(pfn) ||
1106 !PageTransCompoundMap(pfn_to_page(pfn)))
1107 continue;
1108
1109 tdp_mmu_set_spte(kvm, &iter, 0);
1110
e28a436c 1111 spte_set = !tdp_mmu_iter_flush_cond_resched(kvm, &iter);
14881998
BG
1112 }
1113
1114 if (spte_set)
1115 kvm_flush_remote_tlbs(kvm);
1116}
1117
1118/*
1119 * Clear non-leaf entries (and free associated page tables) which could
1120 * be replaced by large mappings, for GFNs within the slot.
1121 */
1122void kvm_tdp_mmu_zap_collapsible_sptes(struct kvm *kvm,
1123 const struct kvm_memory_slot *slot)
1124{
1125 struct kvm_mmu_page *root;
1126 int root_as_id;
1127
a889ea54 1128 for_each_tdp_mmu_root_yield_safe(kvm, root) {
14881998
BG
1129 root_as_id = kvm_mmu_page_as_id(root);
1130 if (root_as_id != slot->as_id)
1131 continue;
1132
14881998
BG
1133 zap_collapsible_spte_range(kvm, root, slot->base_gfn,
1134 slot->base_gfn + slot->npages);
14881998
BG
1135 }
1136}
46044f72
BG
1137
1138/*
1139 * Removes write access on the last level SPTE mapping this GFN and unsets the
1140 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1141 * Returns true if an SPTE was set and a TLB flush is needed.
1142 */
1143static bool write_protect_gfn(struct kvm *kvm, struct kvm_mmu_page *root,
1144 gfn_t gfn)
1145{
1146 struct tdp_iter iter;
1147 u64 new_spte;
1148 bool spte_set = false;
1149
1150 tdp_root_for_each_leaf_pte(iter, root, gfn, gfn + 1) {
1151 if (!is_writable_pte(iter.old_spte))
1152 break;
1153
1154 new_spte = iter.old_spte &
1155 ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1156
1157 tdp_mmu_set_spte(kvm, &iter, new_spte);
1158 spte_set = true;
1159 }
1160
1161 return spte_set;
1162}
1163
1164/*
1165 * Removes write access on the last level SPTE mapping this GFN and unsets the
1166 * SPTE_MMU_WRITABLE bit to ensure future writes continue to be intercepted.
1167 * Returns true if an SPTE was set and a TLB flush is needed.
1168 */
1169bool kvm_tdp_mmu_write_protect_gfn(struct kvm *kvm,
1170 struct kvm_memory_slot *slot, gfn_t gfn)
1171{
1172 struct kvm_mmu_page *root;
1173 int root_as_id;
1174 bool spte_set = false;
1175
1176 lockdep_assert_held(&kvm->mmu_lock);
1177 for_each_tdp_mmu_root(kvm, root) {
1178 root_as_id = kvm_mmu_page_as_id(root);
1179 if (root_as_id != slot->as_id)
1180 continue;
1181
1182 spte_set |= write_protect_gfn(kvm, root, gfn);
1183 }
1184 return spte_set;
1185}
1186
95fb5b02
BG
1187/*
1188 * Return the level of the lowest level SPTE added to sptes.
1189 * That SPTE may be non-present.
1190 */
39b4d43e
SC
1191int kvm_tdp_mmu_get_walk(struct kvm_vcpu *vcpu, u64 addr, u64 *sptes,
1192 int *root_level)
95fb5b02
BG
1193{
1194 struct tdp_iter iter;
1195 struct kvm_mmu *mmu = vcpu->arch.mmu;
95fb5b02 1196 gfn_t gfn = addr >> PAGE_SHIFT;
2aa07893 1197 int leaf = -1;
95fb5b02 1198
39b4d43e 1199 *root_level = vcpu->arch.mmu->shadow_root_level;
95fb5b02
BG
1200
1201 tdp_mmu_for_each_pte(iter, mmu, gfn, gfn + 1) {
1202 leaf = iter.level;
dde81f94 1203 sptes[leaf] = iter.old_spte;
95fb5b02
BG
1204 }
1205
1206 return leaf;
1207}