Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux-block.git] / arch / x86 / kvm / mmu / spte.h
CommitLineData
5a9624af
PB
1// SPDX-License-Identifier: GPL-2.0-only
2
3#ifndef KVM_X86_MMU_SPTE_H
4#define KVM_X86_MMU_SPTE_H
5
6#include "mmu_internal.h"
7
edea7c4f
SC
8/*
9 * A MMU present SPTE is backed by actual memory and may or may not be present
10 * in hardware. E.g. MMIO SPTEs are not considered present. Use bit 11, as it
11 * is ignored by all flavors of SPTEs and checking a low bit often generates
12 * better code than for a high bit, e.g. 56+. MMU present checks are pervasive
13 * enough that the improved code generation is noticeable in KVM's footprint.
14 */
15#define SPTE_MMU_PRESENT_MASK BIT_ULL(11)
16
8a406c89
SC
17/*
18 * TDP SPTES (more specifically, EPT SPTEs) may not have A/D bits, and may also
19 * be restricted to using write-protection (for L2 when CPU dirty logging, i.e.
20 * PML, is enabled). Use bits 52 and 53 to hold the type of A/D tracking that
21 * is must be employed for a given TDP SPTE.
22 *
23 * Note, the "enabled" mask must be '0', as bits 62:52 are _reserved_ for PAE
24 * paging, including NPT PAE. This scheme works because legacy shadow paging
25 * is guaranteed to have A/D bits and write-protection is forced only for
26 * TDP with CPU dirty logging (PML). If NPT ever gains PML-like support, it
27 * must be restricted to 64-bit KVM.
28 */
29#define SPTE_TDP_AD_SHIFT 52
30#define SPTE_TDP_AD_MASK (3ULL << SPTE_TDP_AD_SHIFT)
31#define SPTE_TDP_AD_ENABLED_MASK (0ULL << SPTE_TDP_AD_SHIFT)
32#define SPTE_TDP_AD_DISABLED_MASK (1ULL << SPTE_TDP_AD_SHIFT)
33#define SPTE_TDP_AD_WRPROT_ONLY_MASK (2ULL << SPTE_TDP_AD_SHIFT)
34static_assert(SPTE_TDP_AD_ENABLED_MASK == 0);
5a9624af
PB
35
36#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
2ca3129e 37#define SPTE_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
5a9624af 38#else
2ca3129e 39#define SPTE_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
5a9624af 40#endif
5a9624af 41
2ca3129e 42#define SPTE_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
5a9624af
PB
43 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
44
45#define ACC_EXEC_MASK 1
46#define ACC_WRITE_MASK PT_WRITABLE_MASK
47#define ACC_USER_MASK PT_USER_MASK
48#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
49
50/* The mask for the R/X bits in EPT PTEs */
2ca3129e
SC
51#define SPTE_EPT_READABLE_MASK 0x1ull
52#define SPTE_EPT_EXECUTABLE_MASK 0x4ull
5a9624af 53
2ca3129e
SC
54#define SPTE_LEVEL_BITS 9
55#define SPTE_LEVEL_SHIFT(level) __PT_LEVEL_SHIFT(level, SPTE_LEVEL_BITS)
56#define SPTE_INDEX(address, level) __PT_INDEX(address, level, SPTE_LEVEL_BITS)
57#define SPTE_ENT_PER_PAGE __PT_ENT_PER_PAGE(SPTE_LEVEL_BITS)
5a9624af 58
613a3f37
SC
59/*
60 * The mask/shift to use for saving the original R/X bits when marking the PTE
61 * as not-present for access tracking purposes. We do not save the W bit as the
62 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
63 * restored only when a write is attempted to the page. This mask obviously
64 * must not overlap the A/D type mask.
65 */
2ca3129e
SC
66#define SHADOW_ACC_TRACK_SAVED_BITS_MASK (SPTE_EPT_READABLE_MASK | \
67 SPTE_EPT_EXECUTABLE_MASK)
613a3f37
SC
68#define SHADOW_ACC_TRACK_SAVED_BITS_SHIFT 54
69#define SHADOW_ACC_TRACK_SAVED_MASK (SHADOW_ACC_TRACK_SAVED_BITS_MASK << \
70 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
71static_assert(!(SPTE_TDP_AD_MASK & SHADOW_ACC_TRACK_SAVED_MASK));
72
5f16bcac 73/*
02844ac1
DM
74 * {DEFAULT,EPT}_SPTE_{HOST,MMU}_WRITABLE are used to keep track of why a given
75 * SPTE is write-protected. See is_writable_pte() for details.
5f16bcac
DM
76 */
77
78/* Bits 9 and 10 are ignored by all non-EPT PTEs. */
1ca87e01
DM
79#define DEFAULT_SPTE_HOST_WRITABLE BIT_ULL(9)
80#define DEFAULT_SPTE_MMU_WRITABLE BIT_ULL(10)
5f16bcac 81
613a3f37
SC
82/*
83 * Low ignored bits are at a premium for EPT, use high ignored bits, taking care
84 * to not overlap the A/D type mask or the saved access bits of access-tracked
85 * SPTEs when A/D bits are disabled.
86 */
87#define EPT_SPTE_HOST_WRITABLE BIT_ULL(57)
88#define EPT_SPTE_MMU_WRITABLE BIT_ULL(58)
89
90static_assert(!(EPT_SPTE_HOST_WRITABLE & SPTE_TDP_AD_MASK));
91static_assert(!(EPT_SPTE_MMU_WRITABLE & SPTE_TDP_AD_MASK));
92static_assert(!(EPT_SPTE_HOST_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
93static_assert(!(EPT_SPTE_MMU_WRITABLE & SHADOW_ACC_TRACK_SAVED_MASK));
94
95/* Defined only to keep the above static asserts readable. */
96#undef SHADOW_ACC_TRACK_SAVED_MASK
5a9624af
PB
97
98/*
edea7c4f 99 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
5a9624af
PB
100 * the memslots generation and is derived as follows:
101 *
edea7c4f
SC
102 * Bits 0-7 of the MMIO generation are propagated to spte bits 3-10
103 * Bits 8-18 of the MMIO generation are propagated to spte bits 52-62
5a9624af
PB
104 *
105 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
106 * the MMIO generation number, as doing so would require stealing a bit from
107 * the "real" generation number and thus effectively halve the maximum number
108 * of MMIO generations that can be handled before encountering a wrap (which
109 * requires a full MMU zap). The flag is instead explicitly queried when
110 * checking for MMIO spte cache hits.
111 */
5a9624af
PB
112
113#define MMIO_SPTE_GEN_LOW_START 3
edea7c4f 114#define MMIO_SPTE_GEN_LOW_END 10
5a9624af 115
b0de5680 116#define MMIO_SPTE_GEN_HIGH_START 52
5a9624af 117#define MMIO_SPTE_GEN_HIGH_END 62
34c0f6f2
MS
118
119#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
120 MMIO_SPTE_GEN_LOW_START)
5a9624af
PB
121#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
122 MMIO_SPTE_GEN_HIGH_START)
edea7c4f
SC
123static_assert(!(SPTE_MMU_PRESENT_MASK &
124 (MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
5a9624af 125
8bad4606
SC
126/*
127 * The SPTE MMIO mask must NOT overlap the MMIO generation bits or the
128 * MMU-present bit. The generation obviously co-exists with the magic MMIO
129 * mask/value, and MMIO SPTEs are considered !MMU-present.
130 *
131 * The SPTE MMIO mask is allowed to use hardware "present" bits (i.e. all EPT
132 * RWX bits), all physical address bits (legal PA bits are used for "fast" MMIO
133 * and so they're off-limits for generation; additional checks ensure the mask
134 * doesn't overlap legal PA bits), and bit 63 (carved out for future usage).
135 */
136#define SPTE_MMIO_ALLOWED_MASK (BIT_ULL(63) | GENMASK_ULL(51, 12) | GENMASK_ULL(2, 0))
137static_assert(!(SPTE_MMIO_ALLOWED_MASK &
138 (SPTE_MMU_PRESENT_MASK | MMIO_SPTE_GEN_LOW_MASK | MMIO_SPTE_GEN_HIGH_MASK)));
139
34c0f6f2
MS
140#define MMIO_SPTE_GEN_LOW_BITS (MMIO_SPTE_GEN_LOW_END - MMIO_SPTE_GEN_LOW_START + 1)
141#define MMIO_SPTE_GEN_HIGH_BITS (MMIO_SPTE_GEN_HIGH_END - MMIO_SPTE_GEN_HIGH_START + 1)
142
143/* remember to adjust the comment above as well if you change these */
edea7c4f 144static_assert(MMIO_SPTE_GEN_LOW_BITS == 8 && MMIO_SPTE_GEN_HIGH_BITS == 11);
34c0f6f2
MS
145
146#define MMIO_SPTE_GEN_LOW_SHIFT (MMIO_SPTE_GEN_LOW_START - 0)
147#define MMIO_SPTE_GEN_HIGH_SHIFT (MMIO_SPTE_GEN_HIGH_START - MMIO_SPTE_GEN_LOW_BITS)
148
149#define MMIO_SPTE_GEN_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_BITS + MMIO_SPTE_GEN_HIGH_BITS - 1, 0)
150
5fc3424f
SC
151extern u64 __read_mostly shadow_host_writable_mask;
152extern u64 __read_mostly shadow_mmu_writable_mask;
5a9624af
PB
153extern u64 __read_mostly shadow_nx_mask;
154extern u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
155extern u64 __read_mostly shadow_user_mask;
156extern u64 __read_mostly shadow_accessed_mask;
157extern u64 __read_mostly shadow_dirty_mask;
158extern u64 __read_mostly shadow_mmio_value;
8120337a 159extern u64 __read_mostly shadow_mmio_mask;
5a9624af
PB
160extern u64 __read_mostly shadow_mmio_access_mask;
161extern u64 __read_mostly shadow_present_mask;
38bf9d7b 162extern u64 __read_mostly shadow_memtype_mask;
e54f1ff2 163extern u64 __read_mostly shadow_me_value;
5a9624af
PB
164extern u64 __read_mostly shadow_me_mask;
165
166/*
8a406c89 167 * SPTEs in MMUs without A/D bits are marked with SPTE_TDP_AD_DISABLED_MASK;
5a9624af
PB
168 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
169 * pages.
170 */
171extern u64 __read_mostly shadow_acc_track_mask;
172
173/*
174 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
175 * to guard against L1TF attacks.
176 */
177extern u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
178
8a967d65
PB
179/*
180 * The number of high-order 1 bits to use in the mask above.
181 */
182#define SHADOW_NONPRESENT_OR_RSVD_MASK_LEN 5
183
08f07c80
BG
184/*
185 * If a thread running without exclusive control of the MMU lock must perform a
186 * multi-part operation on an SPTE, it can set the SPTE to REMOVED_SPTE as a
187 * non-present intermediate value. Other threads which encounter this value
188 * should not modify the SPTE.
189 *
715f1079 190 * Use a semi-arbitrary value that doesn't set RWX bits, i.e. is not-present on
fa3e4203 191 * both AMD and Intel CPUs, and doesn't set PFN bits, i.e. doesn't create a L1TF
715f1079 192 * vulnerability. Use only low bits to avoid 64-bit immediates.
08f07c80
BG
193 *
194 * Only used by the TDP MMU.
195 */
715f1079
SC
196#define REMOVED_SPTE 0x5a0ULL
197
198/* Removed SPTEs must not be misconstrued as shadow present PTEs. */
199static_assert(!(REMOVED_SPTE & SPTE_MMU_PRESENT_MASK));
08f07c80
BG
200
201static inline bool is_removed_spte(u64 spte)
202{
203 return spte == REMOVED_SPTE;
204}
205
79e48cec
SC
206/* Get an SPTE's index into its parent's page table (and the spt array). */
207static inline int spte_index(u64 *sptep)
208{
209 return ((unsigned long)sptep / sizeof(*sptep)) & (SPTE_ENT_PER_PAGE - 1);
210}
211
5a9624af
PB
212/*
213 * In some cases, we need to preserve the GFN of a non-present or reserved
214 * SPTE when we usurp the upper five bits of the physical address space to
215 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
216 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
217 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
218 * high and low parts. This mask covers the lower bits of the GFN.
219 */
220extern u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
221
5e3edd7e
SC
222static inline struct kvm_mmu_page *to_shadow_page(hpa_t shadow_page)
223{
224 struct page *page = pfn_to_page((shadow_page) >> PAGE_SHIFT);
225
226 return (struct kvm_mmu_page *)page_private(page);
227}
228
229static inline struct kvm_mmu_page *spte_to_child_sp(u64 spte)
230{
231 return to_shadow_page(spte & SPTE_BASE_ADDR_MASK);
232}
233
234static inline struct kvm_mmu_page *sptep_to_sp(u64 *sptep)
235{
236 return to_shadow_page(__pa(sptep));
237}
238
5a9624af
PB
239static inline bool is_mmio_spte(u64 spte)
240{
8120337a 241 return (spte & shadow_mmio_mask) == shadow_mmio_value &&
8b9e74bf 242 likely(enable_mmio_caching);
5a9624af
PB
243}
244
8f366ae6
SC
245static inline bool is_shadow_present_pte(u64 pte)
246{
247 return !!(pte & SPTE_MMU_PRESENT_MASK);
248}
249
54275f74
SC
250/*
251 * Returns true if A/D bits are supported in hardware and are enabled by KVM.
252 * When enabled, KVM uses A/D bits for all non-nested MMUs. Because L1 can
253 * disable A/D bits in EPTP12, SP and SPTE variants are needed to handle the
254 * scenario where KVM is using A/D bits for L1, but not L2.
255 */
256static inline bool kvm_ad_enabled(void)
257{
258 return !!shadow_accessed_mask;
259}
260
5a9624af
PB
261static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
262{
263 return sp->role.ad_disabled;
264}
265
266static inline bool spte_ad_enabled(u64 spte)
267{
8f366ae6 268 MMU_WARN_ON(!is_shadow_present_pte(spte));
8a406c89 269 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_DISABLED_MASK;
5a9624af
PB
270}
271
272static inline bool spte_ad_need_write_protect(u64 spte)
273{
8f366ae6 274 MMU_WARN_ON(!is_shadow_present_pte(spte));
8a406c89
SC
275 /*
276 * This is benign for non-TDP SPTEs as SPTE_TDP_AD_ENABLED_MASK is '0',
277 * and non-TDP SPTEs will never set these bits. Optimize for 64-bit
278 * TDP and do the A/D type check unconditionally.
279 */
280 return (spte & SPTE_TDP_AD_MASK) != SPTE_TDP_AD_ENABLED_MASK;
5a9624af
PB
281}
282
283static inline u64 spte_shadow_accessed_mask(u64 spte)
284{
8f366ae6 285 MMU_WARN_ON(!is_shadow_present_pte(spte));
5a9624af
PB
286 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
287}
288
289static inline u64 spte_shadow_dirty_mask(u64 spte)
290{
8f366ae6 291 MMU_WARN_ON(!is_shadow_present_pte(spte));
5a9624af
PB
292 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
293}
294
295static inline bool is_access_track_spte(u64 spte)
296{
297 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
298}
299
15e6a7e5 300static inline bool is_large_pte(u64 pte)
5a9624af
PB
301{
302 return pte & PT_PAGE_SIZE_MASK;
303}
304
15e6a7e5 305static inline bool is_last_spte(u64 pte, int level)
5a9624af 306{
15e6a7e5 307 return (level == PG_LEVEL_4K) || is_large_pte(pte);
5a9624af
PB
308}
309
310static inline bool is_executable_pte(u64 spte)
311{
312 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
313}
314
315static inline kvm_pfn_t spte_to_pfn(u64 pte)
316{
2ca3129e 317 return (pte & SPTE_BASE_ADDR_MASK) >> PAGE_SHIFT;
5a9624af
PB
318}
319
320static inline bool is_accessed_spte(u64 spte)
321{
322 u64 accessed_mask = spte_shadow_accessed_mask(spte);
323
324 return accessed_mask ? spte & accessed_mask
325 : !is_access_track_spte(spte);
326}
327
328static inline bool is_dirty_spte(u64 spte)
329{
330 u64 dirty_mask = spte_shadow_dirty_mask(spte);
331
332 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
333}
334
961f8445
SC
335static inline u64 get_rsvd_bits(struct rsvd_bits_validate *rsvd_check, u64 pte,
336 int level)
337{
338 int bit7 = (pte >> 7) & 1;
339
340 return rsvd_check->rsvd_bits_mask[bit7][level-1];
341}
342
343static inline bool __is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check,
344 u64 pte, int level)
345{
346 return pte & get_rsvd_bits(rsvd_check, pte, level);
347}
348
349static inline bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check,
350 u64 pte)
351{
352 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
353}
354
355static __always_inline bool is_rsvd_spte(struct rsvd_bits_validate *rsvd_check,
356 u64 spte, int level)
357{
3d5e7a28 358 return __is_bad_mt_xwr(rsvd_check, spte) ||
961f8445
SC
359 __is_rsvd_bits_set(rsvd_check, spte, level);
360}
361
00610021 362/*
b64d740e 363 * A shadow-present leaf SPTE may be non-writable for 4 possible reasons:
02844ac1
DM
364 *
365 * 1. To intercept writes for dirty logging. KVM write-protects huge pages
366 * so that they can be split be split down into the dirty logging
367 * granularity (4KiB) whenever the guest writes to them. KVM also
368 * write-protects 4KiB pages so that writes can be recorded in the dirty log
369 * (e.g. if not using PML). SPTEs are write-protected for dirty logging
370 * during the VM-iotcls that enable dirty logging.
371 *
372 * 2. To intercept writes to guest page tables that KVM is shadowing. When a
373 * guest writes to its page table the corresponding shadow page table will
374 * be marked "unsync". That way KVM knows which shadow page tables need to
375 * be updated on the next TLB flush, INVLPG, etc. and which do not.
376 *
377 * 3. To prevent guest writes to read-only memory, such as for memory in a
378 * read-only memslot or guest memory backed by a read-only VMA. Writes to
379 * such pages are disallowed entirely.
380 *
b64d740e
JS
381 * 4. To emulate the Accessed bit for SPTEs without A/D bits. Note, in this
382 * case, the SPTE is access-protected, not just write-protected!
383 *
384 * For cases #1 and #4, KVM can safely make such SPTEs writable without taking
385 * mmu_lock as capturing the Accessed/Dirty state doesn't require taking it.
386 * To differentiate #1 and #4 from #2 and #3, KVM uses two software-only bits
387 * in the SPTE:
02844ac1
DM
388 *
389 * shadow_mmu_writable_mask, aka MMU-writable -
390 * Cleared on SPTEs that KVM is currently write-protecting for shadow paging
391 * purposes (case 2 above).
392 *
393 * shadow_host_writable_mask, aka Host-writable -
394 * Cleared on SPTEs that are not host-writable (case 3 above)
395 *
396 * Note, not all possible combinations of PT_WRITABLE_MASK,
397 * shadow_mmu_writable_mask, and shadow_host_writable_mask are valid. A given
398 * SPTE can be in only one of the following states, which map to the
399 * aforementioned 3 cases:
400 *
401 * shadow_host_writable_mask | shadow_mmu_writable_mask | PT_WRITABLE_MASK
402 * ------------------------- | ------------------------ | ----------------
403 * 1 | 1 | 1 (writable)
404 * 1 | 1 | 0 (case 1)
405 * 1 | 0 | 0 (case 2)
406 * 0 | 0 | 0 (case 3)
00610021 407 *
02844ac1
DM
408 * The valid combinations of these bits are checked by
409 * check_spte_writable_invariants() whenever an SPTE is modified.
00610021 410 *
02844ac1
DM
411 * Clearing the MMU-writable bit is always done under the MMU lock and always
412 * accompanied by a TLB flush before dropping the lock to avoid corrupting the
413 * shadow page tables between vCPUs. Write-protecting an SPTE for dirty logging
414 * (which does not clear the MMU-writable bit), does not flush TLBs before
415 * dropping the lock, as it only needs to synchronize guest writes with the
b64d740e
JS
416 * dirty bitmap. Similarly, making the SPTE inaccessible (and non-writable) for
417 * access-tracking via the clear_young() MMU notifier also does not flush TLBs.
00610021 418 *
02844ac1
DM
419 * So, there is the problem: clearing the MMU-writable bit can encounter a
420 * write-protected SPTE while CPUs still have writable mappings for that SPTE
421 * cached in their TLB. To address this, KVM always flushes TLBs when
422 * write-protecting SPTEs if the MMU-writable bit is set on the old SPTE.
00610021 423 *
02844ac1
DM
424 * The Host-writable bit is not modified on present SPTEs, it is only set or
425 * cleared when an SPTE is first faulted in from non-present and then remains
426 * immutable.
00610021
DM
427 */
428static inline bool is_writable_pte(unsigned long pte)
429{
430 return pte & PT_WRITABLE_MASK;
431}
432
115111ef 433/* Note: spte must be a shadow-present leaf SPTE. */
932859a4 434static inline void check_spte_writable_invariants(u64 spte)
5a9624af 435{
932859a4
DM
436 if (spte & shadow_mmu_writable_mask)
437 WARN_ONCE(!(spte & shadow_host_writable_mask),
438 "kvm: MMU-writable SPTE is not Host-writable: %llx",
439 spte);
440 else
00610021 441 WARN_ONCE(is_writable_pte(spte),
932859a4
DM
442 "kvm: Writable SPTE is not MMU-writable: %llx", spte);
443}
5f16bcac 444
706c9c55 445static inline bool is_mmu_writable_spte(u64 spte)
932859a4 446{
932859a4 447 return spte & shadow_mmu_writable_mask;
5a9624af
PB
448}
449
450static inline u64 get_mmio_spte_generation(u64 spte)
451{
452 u64 gen;
453
34c0f6f2
MS
454 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_SHIFT;
455 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_SHIFT;
5a9624af
PB
456 return gen;
457}
458
54eb3ef5
SC
459bool spte_has_volatile_bits(u64 spte);
460
7158bee4 461bool make_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
8283e36a 462 const struct kvm_memory_slot *slot,
7158bee4 463 unsigned int pte_access, gfn_t gfn, kvm_pfn_t pfn,
2839180c 464 u64 old_spte, bool prefetch, bool can_unsync,
7158bee4 465 bool host_writable, u64 *new_spte);
47855da0
DM
466u64 make_huge_page_split_spte(struct kvm *kvm, u64 huge_spte,
467 union kvm_mmu_page_role role, int index);
5a9624af
PB
468u64 make_nonleaf_spte(u64 *child_pt, bool ad_disabled);
469u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access);
470u64 mark_spte_for_access_track(u64 spte);
315d86da
DM
471
472/* Restore an acc-track PTE back to a regular PTE */
473static inline u64 restore_acc_track_spte(u64 spte)
474{
475 u64 saved_bits = (spte >> SHADOW_ACC_TRACK_SAVED_BITS_SHIFT)
476 & SHADOW_ACC_TRACK_SAVED_BITS_MASK;
477
478 spte &= ~shadow_acc_track_mask;
479 spte &= ~(SHADOW_ACC_TRACK_SAVED_BITS_MASK <<
480 SHADOW_ACC_TRACK_SAVED_BITS_SHIFT);
481 spte |= saved_bits;
482
483 return spte;
484}
485
5a9624af
PB
486u64 kvm_mmu_changed_pte_notifier_make_spte(u64 old_spte, kvm_pfn_t new_pfn);
487
c3e0c8c2 488void __init kvm_mmu_spte_module_init(void);
5a9624af
PB
489void kvm_mmu_reset_all_pte_masks(void);
490
491#endif