KVM: x86: cleanup kvm_inject_emulated_page_fault
[linux-2.6-block.git] / arch / x86 / kvm / mmu / mmu.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
6aa8b732
AK
2/*
3 * Kernel-based Virtual Machine driver for Linux
4 *
5 * This module enables machines with Intel VT-x extensions to run virtual
6 * machines without emulation or binary translation.
7 *
8 * MMU support
9 *
10 * Copyright (C) 2006 Qumranet, Inc.
9611c187 11 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
12 *
13 * Authors:
14 * Yaniv Kamay <yaniv@qumranet.com>
15 * Avi Kivity <avi@qumranet.com>
6aa8b732 16 */
e495606d 17
af585b92 18#include "irq.h"
1d737c8a 19#include "mmu.h"
836a1b3c 20#include "x86.h"
6de4f3ad 21#include "kvm_cache_regs.h"
2f728d66 22#include "kvm_emulate.h"
5f7dde7b 23#include "cpuid.h"
e495606d 24
edf88417 25#include <linux/kvm_host.h>
6aa8b732
AK
26#include <linux/types.h>
27#include <linux/string.h>
6aa8b732
AK
28#include <linux/mm.h>
29#include <linux/highmem.h>
1767e931
PG
30#include <linux/moduleparam.h>
31#include <linux/export.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
3f07c014 37#include <linux/sched/signal.h>
bf998156 38#include <linux/uaccess.h>
114df303 39#include <linux/hash.h>
f160c7b7 40#include <linux/kern_levels.h>
1aa9b957 41#include <linux/kthread.h>
6aa8b732 42
e495606d 43#include <asm/page.h>
eb243d1d 44#include <asm/memtype.h>
e495606d 45#include <asm/cmpxchg.h>
0c55671f 46#include <asm/e820/api.h>
4e542370 47#include <asm/io.h>
13673a90 48#include <asm/vmx.h>
3d0c27ad 49#include <asm/kvm_page_track.h>
1261bfa3 50#include "trace.h"
6aa8b732 51
b8e8c830
PB
52extern bool itlb_multihit_kvm_mitigation;
53
54static int __read_mostly nx_huge_pages = -1;
13fb5927
PB
55#ifdef CONFIG_PREEMPT_RT
56/* Recovery can cause latency spikes, disable it for PREEMPT_RT. */
57static uint __read_mostly nx_huge_pages_recovery_ratio = 0;
58#else
1aa9b957 59static uint __read_mostly nx_huge_pages_recovery_ratio = 60;
13fb5927 60#endif
b8e8c830
PB
61
62static int set_nx_huge_pages(const char *val, const struct kernel_param *kp);
1aa9b957 63static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp);
b8e8c830
PB
64
65static struct kernel_param_ops nx_huge_pages_ops = {
66 .set = set_nx_huge_pages,
67 .get = param_get_bool,
68};
69
1aa9b957
JS
70static struct kernel_param_ops nx_huge_pages_recovery_ratio_ops = {
71 .set = set_nx_huge_pages_recovery_ratio,
72 .get = param_get_uint,
73};
74
b8e8c830
PB
75module_param_cb(nx_huge_pages, &nx_huge_pages_ops, &nx_huge_pages, 0644);
76__MODULE_PARM_TYPE(nx_huge_pages, "bool");
1aa9b957
JS
77module_param_cb(nx_huge_pages_recovery_ratio, &nx_huge_pages_recovery_ratio_ops,
78 &nx_huge_pages_recovery_ratio, 0644);
79__MODULE_PARM_TYPE(nx_huge_pages_recovery_ratio, "uint");
b8e8c830 80
18552672
JR
81/*
82 * When setting this variable to true it enables Two-Dimensional-Paging
83 * where the hardware walks 2 page tables:
84 * 1. the guest-virtual to guest-physical
85 * 2. while doing 1. it walks guest-physical to host-physical
86 * If the hardware supports that we don't need to do shadow paging.
87 */
2f333bcb 88bool tdp_enabled = false;
18552672 89
703c335d
SC
90static int max_page_level __read_mostly;
91
8b1fe17c
XG
92enum {
93 AUDIT_PRE_PAGE_FAULT,
94 AUDIT_POST_PAGE_FAULT,
95 AUDIT_PRE_PTE_WRITE,
6903074c
XG
96 AUDIT_POST_PTE_WRITE,
97 AUDIT_PRE_SYNC,
98 AUDIT_POST_SYNC
8b1fe17c 99};
37a7d8b0 100
8b1fe17c 101#undef MMU_DEBUG
37a7d8b0
AK
102
103#ifdef MMU_DEBUG
fa4a2c08
PB
104static bool dbg = 0;
105module_param(dbg, bool, 0644);
37a7d8b0
AK
106
107#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
108#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
fa4a2c08 109#define MMU_WARN_ON(x) WARN_ON(x)
37a7d8b0 110#else
37a7d8b0
AK
111#define pgprintk(x...) do { } while (0)
112#define rmap_printk(x...) do { } while (0)
fa4a2c08 113#define MMU_WARN_ON(x) do { } while (0)
d6c69ee9 114#endif
6aa8b732 115
957ed9ef
XG
116#define PTE_PREFETCH_NUM 8
117
00763e41 118#define PT_FIRST_AVAIL_BITS_SHIFT 10
6eeb4ef0
PB
119#define PT64_SECOND_AVAIL_BITS_SHIFT 54
120
121/*
122 * The mask used to denote special SPTEs, which can be either MMIO SPTEs or
123 * Access Tracking SPTEs.
124 */
125#define SPTE_SPECIAL_MASK (3ULL << 52)
126#define SPTE_AD_ENABLED_MASK (0ULL << 52)
127#define SPTE_AD_DISABLED_MASK (1ULL << 52)
1f4e5fc8 128#define SPTE_AD_WRPROT_ONLY_MASK (2ULL << 52)
6eeb4ef0 129#define SPTE_MMIO_MASK (3ULL << 52)
6aa8b732 130
6aa8b732
AK
131#define PT64_LEVEL_BITS 9
132
133#define PT64_LEVEL_SHIFT(level) \
d77c26fc 134 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 135
6aa8b732
AK
136#define PT64_INDEX(address, level)\
137 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
138
139
140#define PT32_LEVEL_BITS 10
141
142#define PT32_LEVEL_SHIFT(level) \
d77c26fc 143 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 144
e04da980
JR
145#define PT32_LVL_OFFSET_MASK(level) \
146 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
147 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
148
149#define PT32_INDEX(address, level)\
150 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
151
152
8acc0993
KH
153#ifdef CONFIG_DYNAMIC_PHYSICAL_MASK
154#define PT64_BASE_ADDR_MASK (physical_mask & ~(u64)(PAGE_SIZE-1))
155#else
156#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
157#endif
e04da980
JR
158#define PT64_LVL_ADDR_MASK(level) \
159 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
160 * PT64_LEVEL_BITS))) - 1))
161#define PT64_LVL_OFFSET_MASK(level) \
162 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
163 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
164
165#define PT32_BASE_ADDR_MASK PAGE_MASK
166#define PT32_DIR_BASE_ADDR_MASK \
167 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
168#define PT32_LVL_ADDR_MASK(level) \
169 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
170 * PT32_LEVEL_BITS))) - 1))
6aa8b732 171
53166229 172#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | shadow_user_mask \
d0ec49d4 173 | shadow_x_mask | shadow_nx_mask | shadow_me_mask)
6aa8b732 174
fe135d2c
AK
175#define ACC_EXEC_MASK 1
176#define ACC_WRITE_MASK PT_WRITABLE_MASK
177#define ACC_USER_MASK PT_USER_MASK
178#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
179
f160c7b7
JS
180/* The mask for the R/X bits in EPT PTEs */
181#define PT64_EPT_READABLE_MASK 0x1ull
182#define PT64_EPT_EXECUTABLE_MASK 0x4ull
183
90bb6fc5
AK
184#include <trace/events/kvm.h>
185
49fde340
XG
186#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
187#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 188
135f8c2b
AK
189#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
190
220f773a
TY
191/* make pte_list_desc fit well in cache line */
192#define PTE_LIST_EXT 3
193
9b8ebbdb
PB
194/*
195 * Return values of handle_mmio_page_fault and mmu.page_fault:
196 * RET_PF_RETRY: let CPU fault again on the address.
197 * RET_PF_EMULATE: mmio page fault, emulate the instruction directly.
198 *
199 * For handle_mmio_page_fault only:
200 * RET_PF_INVALID: the spte is invalid, let the real page fault path update it.
201 */
202enum {
203 RET_PF_RETRY = 0,
204 RET_PF_EMULATE = 1,
205 RET_PF_INVALID = 2,
206};
207
53c07b18
XG
208struct pte_list_desc {
209 u64 *sptes[PTE_LIST_EXT];
210 struct pte_list_desc *more;
cd4a4e53
AK
211};
212
2d11123a
AK
213struct kvm_shadow_walk_iterator {
214 u64 addr;
215 hpa_t shadow_addr;
2d11123a 216 u64 *sptep;
dd3bfd59 217 int level;
2d11123a
AK
218 unsigned index;
219};
220
7eb77e9f
JS
221#define for_each_shadow_entry_using_root(_vcpu, _root, _addr, _walker) \
222 for (shadow_walk_init_using_root(&(_walker), (_vcpu), \
223 (_root), (_addr)); \
224 shadow_walk_okay(&(_walker)); \
225 shadow_walk_next(&(_walker)))
226
227#define for_each_shadow_entry(_vcpu, _addr, _walker) \
2d11123a
AK
228 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
229 shadow_walk_okay(&(_walker)); \
230 shadow_walk_next(&(_walker)))
231
c2a2ac2b
XG
232#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
233 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
234 shadow_walk_okay(&(_walker)) && \
235 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
236 __shadow_walk_next(&(_walker), spte))
237
53c07b18 238static struct kmem_cache *pte_list_desc_cache;
d3d25b04 239static struct kmem_cache *mmu_page_header_cache;
45221ab6 240static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 241
7b52345e
SY
242static u64 __read_mostly shadow_nx_mask;
243static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
244static u64 __read_mostly shadow_user_mask;
245static u64 __read_mostly shadow_accessed_mask;
246static u64 __read_mostly shadow_dirty_mask;
ce88decf 247static u64 __read_mostly shadow_mmio_mask;
dcdca5fe 248static u64 __read_mostly shadow_mmio_value;
4af77151 249static u64 __read_mostly shadow_mmio_access_mask;
ffb128c8 250static u64 __read_mostly shadow_present_mask;
d0ec49d4 251static u64 __read_mostly shadow_me_mask;
ce88decf 252
f160c7b7 253/*
6eeb4ef0
PB
254 * SPTEs used by MMUs without A/D bits are marked with SPTE_AD_DISABLED_MASK;
255 * shadow_acc_track_mask is the set of bits to be cleared in non-accessed
256 * pages.
f160c7b7
JS
257 */
258static u64 __read_mostly shadow_acc_track_mask;
f160c7b7
JS
259
260/*
261 * The mask/shift to use for saving the original R/X bits when marking the PTE
262 * as not-present for access tracking purposes. We do not save the W bit as the
263 * PTEs being access tracked also need to be dirty tracked, so the W bit will be
264 * restored only when a write is attempted to the page.
265 */
266static const u64 shadow_acc_track_saved_bits_mask = PT64_EPT_READABLE_MASK |
267 PT64_EPT_EXECUTABLE_MASK;
268static const u64 shadow_acc_track_saved_bits_shift = PT64_SECOND_AVAIL_BITS_SHIFT;
269
28a1f3ac
JS
270/*
271 * This mask must be set on all non-zero Non-Present or Reserved SPTEs in order
272 * to guard against L1TF attacks.
273 */
274static u64 __read_mostly shadow_nonpresent_or_rsvd_mask;
275
276/*
277 * The number of high-order 1 bits to use in the mask above.
278 */
279static const u64 shadow_nonpresent_or_rsvd_mask_len = 5;
280
daa07cbc
SC
281/*
282 * In some cases, we need to preserve the GFN of a non-present or reserved
283 * SPTE when we usurp the upper five bits of the physical address space to
284 * defend against L1TF, e.g. for MMIO SPTEs. To preserve the GFN, we'll
285 * shift bits of the GFN that overlap with shadow_nonpresent_or_rsvd_mask
286 * left into the reserved bits, i.e. the GFN in the SPTE will be split into
287 * high and low parts. This mask covers the lower bits of the GFN.
288 */
289static u64 __read_mostly shadow_nonpresent_or_rsvd_lower_gfn_mask;
290
f3ecb59d
KH
291/*
292 * The number of non-reserved physical address bits irrespective of features
293 * that repurpose legal bits, e.g. MKTME.
294 */
295static u8 __read_mostly shadow_phys_bits;
daa07cbc 296
ce88decf 297static void mmu_spte_set(u64 *sptep, u64 spte);
335e192a 298static bool is_executable_pte(u64 spte);
9fa72119
JS
299static union kvm_mmu_page_role
300kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu);
ce88decf 301
335e192a
PB
302#define CREATE_TRACE_POINTS
303#include "mmutrace.h"
304
40ef75a7
LT
305
306static inline bool kvm_available_flush_tlb_with_range(void)
307{
afaf0b2f 308 return kvm_x86_ops.tlb_remote_flush_with_range;
40ef75a7
LT
309}
310
311static void kvm_flush_remote_tlbs_with_range(struct kvm *kvm,
312 struct kvm_tlb_range *range)
313{
314 int ret = -ENOTSUPP;
315
afaf0b2f
SC
316 if (range && kvm_x86_ops.tlb_remote_flush_with_range)
317 ret = kvm_x86_ops.tlb_remote_flush_with_range(kvm, range);
40ef75a7
LT
318
319 if (ret)
320 kvm_flush_remote_tlbs(kvm);
321}
322
323static void kvm_flush_remote_tlbs_with_address(struct kvm *kvm,
324 u64 start_gfn, u64 pages)
325{
326 struct kvm_tlb_range range;
327
328 range.start_gfn = start_gfn;
329 range.pages = pages;
330
331 kvm_flush_remote_tlbs_with_range(kvm, &range);
332}
333
4af77151 334void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask)
ce88decf 335{
4af77151 336 BUG_ON((u64)(unsigned)access_mask != access_mask);
dcdca5fe 337 BUG_ON((mmio_mask & mmio_value) != mmio_value);
6eeb4ef0 338 shadow_mmio_value = mmio_value | SPTE_MMIO_MASK;
312b616b 339 shadow_mmio_mask = mmio_mask | SPTE_SPECIAL_MASK;
4af77151 340 shadow_mmio_access_mask = access_mask;
ce88decf
XG
341}
342EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
343
26c44a63
SC
344static bool is_mmio_spte(u64 spte)
345{
346 return (spte & shadow_mmio_mask) == shadow_mmio_value;
347}
348
ac8d57e5
PF
349static inline bool sp_ad_disabled(struct kvm_mmu_page *sp)
350{
351 return sp->role.ad_disabled;
352}
353
1f4e5fc8
PB
354static inline bool kvm_vcpu_ad_need_write_protect(struct kvm_vcpu *vcpu)
355{
356 /*
357 * When using the EPT page-modification log, the GPAs in the log
358 * would come from L2 rather than L1. Therefore, we need to rely
359 * on write protection to record dirty pages. This also bypasses
360 * PML, since writes now result in a vmexit.
361 */
362 return vcpu->arch.mmu == &vcpu->arch.guest_mmu;
363}
364
ac8d57e5
PF
365static inline bool spte_ad_enabled(u64 spte)
366{
26c44a63 367 MMU_WARN_ON(is_mmio_spte(spte));
1f4e5fc8
PB
368 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_DISABLED_MASK;
369}
370
371static inline bool spte_ad_need_write_protect(u64 spte)
372{
373 MMU_WARN_ON(is_mmio_spte(spte));
374 return (spte & SPTE_SPECIAL_MASK) != SPTE_AD_ENABLED_MASK;
ac8d57e5
PF
375}
376
b8e8c830
PB
377static bool is_nx_huge_page_enabled(void)
378{
379 return READ_ONCE(nx_huge_pages);
380}
381
ac8d57e5
PF
382static inline u64 spte_shadow_accessed_mask(u64 spte)
383{
26c44a63 384 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
385 return spte_ad_enabled(spte) ? shadow_accessed_mask : 0;
386}
387
388static inline u64 spte_shadow_dirty_mask(u64 spte)
389{
26c44a63 390 MMU_WARN_ON(is_mmio_spte(spte));
ac8d57e5
PF
391 return spte_ad_enabled(spte) ? shadow_dirty_mask : 0;
392}
393
f160c7b7
JS
394static inline bool is_access_track_spte(u64 spte)
395{
ac8d57e5 396 return !spte_ad_enabled(spte) && (spte & shadow_acc_track_mask) == 0;
f160c7b7
JS
397}
398
f2fd125d 399/*
cae7ed3c
SC
400 * Due to limited space in PTEs, the MMIO generation is a 19 bit subset of
401 * the memslots generation and is derived as follows:
ee3d1570 402 *
164bf7e5
SC
403 * Bits 0-8 of the MMIO generation are propagated to spte bits 3-11
404 * Bits 9-18 of the MMIO generation are propagated to spte bits 52-61
cae7ed3c 405 *
164bf7e5
SC
406 * The KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS flag is intentionally not included in
407 * the MMIO generation number, as doing so would require stealing a bit from
408 * the "real" generation number and thus effectively halve the maximum number
409 * of MMIO generations that can be handled before encountering a wrap (which
410 * requires a full MMU zap). The flag is instead explicitly queried when
411 * checking for MMIO spte cache hits.
f2fd125d 412 */
56871d44 413#define MMIO_SPTE_GEN_MASK GENMASK_ULL(17, 0)
f2fd125d 414
cae7ed3c
SC
415#define MMIO_SPTE_GEN_LOW_START 3
416#define MMIO_SPTE_GEN_LOW_END 11
417#define MMIO_SPTE_GEN_LOW_MASK GENMASK_ULL(MMIO_SPTE_GEN_LOW_END, \
418 MMIO_SPTE_GEN_LOW_START)
f2fd125d 419
56871d44
PB
420#define MMIO_SPTE_GEN_HIGH_START PT64_SECOND_AVAIL_BITS_SHIFT
421#define MMIO_SPTE_GEN_HIGH_END 62
cae7ed3c
SC
422#define MMIO_SPTE_GEN_HIGH_MASK GENMASK_ULL(MMIO_SPTE_GEN_HIGH_END, \
423 MMIO_SPTE_GEN_HIGH_START)
56871d44 424
5192f9b9 425static u64 generation_mmio_spte_mask(u64 gen)
f2fd125d
XG
426{
427 u64 mask;
428
cae7ed3c 429 WARN_ON(gen & ~MMIO_SPTE_GEN_MASK);
56871d44 430 BUILD_BUG_ON((MMIO_SPTE_GEN_HIGH_MASK | MMIO_SPTE_GEN_LOW_MASK) & SPTE_SPECIAL_MASK);
f2fd125d 431
cae7ed3c
SC
432 mask = (gen << MMIO_SPTE_GEN_LOW_START) & MMIO_SPTE_GEN_LOW_MASK;
433 mask |= (gen << MMIO_SPTE_GEN_HIGH_START) & MMIO_SPTE_GEN_HIGH_MASK;
f2fd125d
XG
434 return mask;
435}
436
5192f9b9 437static u64 get_mmio_spte_generation(u64 spte)
f2fd125d 438{
5192f9b9 439 u64 gen;
f2fd125d 440
cae7ed3c
SC
441 gen = (spte & MMIO_SPTE_GEN_LOW_MASK) >> MMIO_SPTE_GEN_LOW_START;
442 gen |= (spte & MMIO_SPTE_GEN_HIGH_MASK) >> MMIO_SPTE_GEN_HIGH_START;
f2fd125d
XG
443 return gen;
444}
445
8f79b064 446static u64 make_mmio_spte(struct kvm_vcpu *vcpu, u64 gfn, unsigned int access)
ce88decf 447{
8f79b064 448
cae7ed3c 449 u64 gen = kvm_vcpu_memslots(vcpu)->generation & MMIO_SPTE_GEN_MASK;
f8f55942 450 u64 mask = generation_mmio_spte_mask(gen);
28a1f3ac 451 u64 gpa = gfn << PAGE_SHIFT;
95b0430d 452
4af77151 453 access &= shadow_mmio_access_mask;
28a1f3ac
JS
454 mask |= shadow_mmio_value | access;
455 mask |= gpa | shadow_nonpresent_or_rsvd_mask;
456 mask |= (gpa & shadow_nonpresent_or_rsvd_mask)
457 << shadow_nonpresent_or_rsvd_mask_len;
f2fd125d 458
8f79b064
BG
459 return mask;
460}
461
462static void mark_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 gfn,
463 unsigned int access)
464{
465 u64 mask = make_mmio_spte(vcpu, gfn, access);
466 unsigned int gen = get_mmio_spte_generation(mask);
467
468 access = mask & ACC_ALL;
469
f8f55942 470 trace_mark_mmio_spte(sptep, gfn, access, gen);
f2fd125d 471 mmu_spte_set(sptep, mask);
ce88decf
XG
472}
473
ce88decf
XG
474static gfn_t get_mmio_spte_gfn(u64 spte)
475{
daa07cbc 476 u64 gpa = spte & shadow_nonpresent_or_rsvd_lower_gfn_mask;
28a1f3ac
JS
477
478 gpa |= (spte >> shadow_nonpresent_or_rsvd_mask_len)
479 & shadow_nonpresent_or_rsvd_mask;
480
481 return gpa >> PAGE_SHIFT;
ce88decf
XG
482}
483
484static unsigned get_mmio_spte_access(u64 spte)
485{
4af77151 486 return spte & shadow_mmio_access_mask;
ce88decf
XG
487}
488
54bf36aa 489static bool set_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 490 kvm_pfn_t pfn, unsigned int access)
ce88decf
XG
491{
492 if (unlikely(is_noslot_pfn(pfn))) {
54bf36aa 493 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
494 return true;
495 }
496
497 return false;
498}
c7addb90 499
54bf36aa 500static bool check_mmio_spte(struct kvm_vcpu *vcpu, u64 spte)
f8f55942 501{
cae7ed3c 502 u64 kvm_gen, spte_gen, gen;
089504c0 503
cae7ed3c
SC
504 gen = kvm_vcpu_memslots(vcpu)->generation;
505 if (unlikely(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS))
506 return false;
089504c0 507
cae7ed3c 508 kvm_gen = gen & MMIO_SPTE_GEN_MASK;
089504c0
XG
509 spte_gen = get_mmio_spte_generation(spte);
510
511 trace_check_mmio_spte(spte, kvm_gen, spte_gen);
512 return likely(kvm_gen == spte_gen);
f8f55942
XG
513}
514
ce00053b
PF
515/*
516 * Sets the shadow PTE masks used by the MMU.
517 *
518 * Assumptions:
519 * - Setting either @accessed_mask or @dirty_mask requires setting both
520 * - At least one of @accessed_mask or @acc_track_mask must be set
521 */
7b52345e 522void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
f160c7b7 523 u64 dirty_mask, u64 nx_mask, u64 x_mask, u64 p_mask,
d0ec49d4 524 u64 acc_track_mask, u64 me_mask)
7b52345e 525{
ce00053b
PF
526 BUG_ON(!dirty_mask != !accessed_mask);
527 BUG_ON(!accessed_mask && !acc_track_mask);
6eeb4ef0 528 BUG_ON(acc_track_mask & SPTE_SPECIAL_MASK);
312b616b 529
7b52345e
SY
530 shadow_user_mask = user_mask;
531 shadow_accessed_mask = accessed_mask;
532 shadow_dirty_mask = dirty_mask;
533 shadow_nx_mask = nx_mask;
534 shadow_x_mask = x_mask;
ffb128c8 535 shadow_present_mask = p_mask;
f160c7b7 536 shadow_acc_track_mask = acc_track_mask;
d0ec49d4 537 shadow_me_mask = me_mask;
7b52345e
SY
538}
539EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
540
f3ecb59d
KH
541static u8 kvm_get_shadow_phys_bits(void)
542{
543 /*
7adacf5e
PB
544 * boot_cpu_data.x86_phys_bits is reduced when MKTME or SME are detected
545 * in CPU detection code, but the processor treats those reduced bits as
546 * 'keyID' thus they are not reserved bits. Therefore KVM needs to look at
547 * the physical address bits reported by CPUID.
f3ecb59d 548 */
7adacf5e
PB
549 if (likely(boot_cpu_data.extended_cpuid_level >= 0x80000008))
550 return cpuid_eax(0x80000008) & 0xff;
f3ecb59d 551
7adacf5e
PB
552 /*
553 * Quite weird to have VMX or SVM but not MAXPHYADDR; probably a VM with
554 * custom CPUID. Proceed with whatever the kernel found since these features
555 * aren't virtualizable (SME/SEV also require CPUIDs higher than 0x80000008).
556 */
557 return boot_cpu_data.x86_phys_bits;
f3ecb59d
KH
558}
559
28a1f3ac 560static void kvm_mmu_reset_all_pte_masks(void)
f160c7b7 561{
daa07cbc
SC
562 u8 low_phys_bits;
563
f160c7b7
JS
564 shadow_user_mask = 0;
565 shadow_accessed_mask = 0;
566 shadow_dirty_mask = 0;
567 shadow_nx_mask = 0;
568 shadow_x_mask = 0;
569 shadow_mmio_mask = 0;
570 shadow_present_mask = 0;
571 shadow_acc_track_mask = 0;
28a1f3ac 572
f3ecb59d
KH
573 shadow_phys_bits = kvm_get_shadow_phys_bits();
574
28a1f3ac
JS
575 /*
576 * If the CPU has 46 or less physical address bits, then set an
577 * appropriate mask to guard against L1TF attacks. Otherwise, it is
578 * assumed that the CPU is not vulnerable to L1TF.
61455bf2
KH
579 *
580 * Some Intel CPUs address the L1 cache using more PA bits than are
581 * reported by CPUID. Use the PA width of the L1 cache when possible
582 * to achieve more effective mitigation, e.g. if system RAM overlaps
583 * the most significant bits of legal physical address space.
28a1f3ac 584 */
61455bf2
KH
585 shadow_nonpresent_or_rsvd_mask = 0;
586 low_phys_bits = boot_cpu_data.x86_cache_bits;
587 if (boot_cpu_data.x86_cache_bits <
daa07cbc 588 52 - shadow_nonpresent_or_rsvd_mask_len) {
28a1f3ac 589 shadow_nonpresent_or_rsvd_mask =
61455bf2 590 rsvd_bits(boot_cpu_data.x86_cache_bits -
28a1f3ac 591 shadow_nonpresent_or_rsvd_mask_len,
61455bf2 592 boot_cpu_data.x86_cache_bits - 1);
daa07cbc 593 low_phys_bits -= shadow_nonpresent_or_rsvd_mask_len;
61455bf2
KH
594 } else
595 WARN_ON_ONCE(boot_cpu_has_bug(X86_BUG_L1TF));
596
daa07cbc
SC
597 shadow_nonpresent_or_rsvd_lower_gfn_mask =
598 GENMASK_ULL(low_phys_bits - 1, PAGE_SHIFT);
f160c7b7
JS
599}
600
6aa8b732
AK
601static int is_cpuid_PSE36(void)
602{
603 return 1;
604}
605
73b1087e
AK
606static int is_nx(struct kvm_vcpu *vcpu)
607{
f6801dff 608 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
609}
610
c7addb90
AK
611static int is_shadow_present_pte(u64 pte)
612{
f160c7b7 613 return (pte != 0) && !is_mmio_spte(pte);
c7addb90
AK
614}
615
05da4558
MT
616static int is_large_pte(u64 pte)
617{
618 return pte & PT_PAGE_SIZE_MASK;
619}
620
776e6633
MT
621static int is_last_spte(u64 pte, int level)
622{
623 if (level == PT_PAGE_TABLE_LEVEL)
624 return 1;
852e3c19 625 if (is_large_pte(pte))
776e6633
MT
626 return 1;
627 return 0;
628}
629
d3e328f2
JS
630static bool is_executable_pte(u64 spte)
631{
632 return (spte & (shadow_x_mask | shadow_nx_mask)) == shadow_x_mask;
633}
634
ba049e93 635static kvm_pfn_t spte_to_pfn(u64 pte)
0b49ea86 636{
35149e21 637 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
638}
639
da928521
AK
640static gfn_t pse36_gfn_delta(u32 gpte)
641{
642 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
643
644 return (gpte & PT32_DIR_PSE36_MASK) << shift;
645}
646
603e0651 647#ifdef CONFIG_X86_64
d555c333 648static void __set_spte(u64 *sptep, u64 spte)
e663ee64 649{
b19ee2ff 650 WRITE_ONCE(*sptep, spte);
e663ee64
AK
651}
652
603e0651 653static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 654{
b19ee2ff 655 WRITE_ONCE(*sptep, spte);
603e0651
XG
656}
657
658static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
659{
660 return xchg(sptep, spte);
661}
c2a2ac2b
XG
662
663static u64 __get_spte_lockless(u64 *sptep)
664{
6aa7de05 665 return READ_ONCE(*sptep);
c2a2ac2b 666}
a9221dd5 667#else
603e0651
XG
668union split_spte {
669 struct {
670 u32 spte_low;
671 u32 spte_high;
672 };
673 u64 spte;
674};
a9221dd5 675
c2a2ac2b
XG
676static void count_spte_clear(u64 *sptep, u64 spte)
677{
678 struct kvm_mmu_page *sp = page_header(__pa(sptep));
679
680 if (is_shadow_present_pte(spte))
681 return;
682
683 /* Ensure the spte is completely set before we increase the count */
684 smp_wmb();
685 sp->clear_spte_count++;
686}
687
603e0651
XG
688static void __set_spte(u64 *sptep, u64 spte)
689{
690 union split_spte *ssptep, sspte;
a9221dd5 691
603e0651
XG
692 ssptep = (union split_spte *)sptep;
693 sspte = (union split_spte)spte;
694
695 ssptep->spte_high = sspte.spte_high;
696
697 /*
698 * If we map the spte from nonpresent to present, We should store
699 * the high bits firstly, then set present bit, so cpu can not
700 * fetch this spte while we are setting the spte.
701 */
702 smp_wmb();
703
b19ee2ff 704 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
a9221dd5
AK
705}
706
603e0651
XG
707static void __update_clear_spte_fast(u64 *sptep, u64 spte)
708{
709 union split_spte *ssptep, sspte;
710
711 ssptep = (union split_spte *)sptep;
712 sspte = (union split_spte)spte;
713
b19ee2ff 714 WRITE_ONCE(ssptep->spte_low, sspte.spte_low);
603e0651
XG
715
716 /*
717 * If we map the spte from present to nonpresent, we should clear
718 * present bit firstly to avoid vcpu fetch the old high bits.
719 */
720 smp_wmb();
721
722 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 723 count_spte_clear(sptep, spte);
603e0651
XG
724}
725
726static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
727{
728 union split_spte *ssptep, sspte, orig;
729
730 ssptep = (union split_spte *)sptep;
731 sspte = (union split_spte)spte;
732
733 /* xchg acts as a barrier before the setting of the high bits */
734 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
735 orig.spte_high = ssptep->spte_high;
736 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 737 count_spte_clear(sptep, spte);
603e0651
XG
738
739 return orig.spte;
740}
c2a2ac2b
XG
741
742/*
743 * The idea using the light way get the spte on x86_32 guest is from
39656e83 744 * gup_get_pte (mm/gup.c).
accaefe0
XG
745 *
746 * An spte tlb flush may be pending, because kvm_set_pte_rmapp
747 * coalesces them and we are running out of the MMU lock. Therefore
748 * we need to protect against in-progress updates of the spte.
749 *
750 * Reading the spte while an update is in progress may get the old value
751 * for the high part of the spte. The race is fine for a present->non-present
752 * change (because the high part of the spte is ignored for non-present spte),
753 * but for a present->present change we must reread the spte.
754 *
755 * All such changes are done in two steps (present->non-present and
756 * non-present->present), hence it is enough to count the number of
757 * present->non-present updates: if it changed while reading the spte,
758 * we might have hit the race. This is done using clear_spte_count.
c2a2ac2b
XG
759 */
760static u64 __get_spte_lockless(u64 *sptep)
761{
762 struct kvm_mmu_page *sp = page_header(__pa(sptep));
763 union split_spte spte, *orig = (union split_spte *)sptep;
764 int count;
765
766retry:
767 count = sp->clear_spte_count;
768 smp_rmb();
769
770 spte.spte_low = orig->spte_low;
771 smp_rmb();
772
773 spte.spte_high = orig->spte_high;
774 smp_rmb();
775
776 if (unlikely(spte.spte_low != orig->spte_low ||
777 count != sp->clear_spte_count))
778 goto retry;
779
780 return spte.spte;
781}
603e0651
XG
782#endif
783
ea4114bc 784static bool spte_can_locklessly_be_made_writable(u64 spte)
c7ba5b48 785{
feb3eb70
GN
786 return (spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE)) ==
787 (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE);
c7ba5b48
XG
788}
789
8672b721
XG
790static bool spte_has_volatile_bits(u64 spte)
791{
f160c7b7
JS
792 if (!is_shadow_present_pte(spte))
793 return false;
794
c7ba5b48 795 /*
6a6256f9 796 * Always atomically update spte if it can be updated
c7ba5b48
XG
797 * out of mmu-lock, it can ensure dirty bit is not lost,
798 * also, it can help us to get a stable is_writable_pte()
799 * to ensure tlb flush is not missed.
800 */
f160c7b7
JS
801 if (spte_can_locklessly_be_made_writable(spte) ||
802 is_access_track_spte(spte))
c7ba5b48
XG
803 return true;
804
ac8d57e5 805 if (spte_ad_enabled(spte)) {
f160c7b7
JS
806 if ((spte & shadow_accessed_mask) == 0 ||
807 (is_writable_pte(spte) && (spte & shadow_dirty_mask) == 0))
808 return true;
809 }
8672b721 810
f160c7b7 811 return false;
8672b721
XG
812}
813
83ef6c81 814static bool is_accessed_spte(u64 spte)
4132779b 815{
ac8d57e5
PF
816 u64 accessed_mask = spte_shadow_accessed_mask(spte);
817
818 return accessed_mask ? spte & accessed_mask
819 : !is_access_track_spte(spte);
4132779b
XG
820}
821
83ef6c81 822static bool is_dirty_spte(u64 spte)
7e71a59b 823{
ac8d57e5
PF
824 u64 dirty_mask = spte_shadow_dirty_mask(spte);
825
826 return dirty_mask ? spte & dirty_mask : spte & PT_WRITABLE_MASK;
7e71a59b
KH
827}
828
1df9f2dc
XG
829/* Rules for using mmu_spte_set:
830 * Set the sptep from nonpresent to present.
831 * Note: the sptep being assigned *must* be either not present
832 * or in a state where the hardware will not attempt to update
833 * the spte.
834 */
835static void mmu_spte_set(u64 *sptep, u64 new_spte)
836{
837 WARN_ON(is_shadow_present_pte(*sptep));
838 __set_spte(sptep, new_spte);
839}
840
f39a058d
JS
841/*
842 * Update the SPTE (excluding the PFN), but do not track changes in its
843 * accessed/dirty status.
1df9f2dc 844 */
f39a058d 845static u64 mmu_spte_update_no_track(u64 *sptep, u64 new_spte)
b79b93f9 846{
c7ba5b48 847 u64 old_spte = *sptep;
4132779b 848
afd28fe1 849 WARN_ON(!is_shadow_present_pte(new_spte));
b79b93f9 850
6e7d0354
XG
851 if (!is_shadow_present_pte(old_spte)) {
852 mmu_spte_set(sptep, new_spte);
f39a058d 853 return old_spte;
6e7d0354 854 }
4132779b 855
c7ba5b48 856 if (!spte_has_volatile_bits(old_spte))
603e0651 857 __update_clear_spte_fast(sptep, new_spte);
4132779b 858 else
603e0651 859 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 860
83ef6c81
JS
861 WARN_ON(spte_to_pfn(old_spte) != spte_to_pfn(new_spte));
862
f39a058d
JS
863 return old_spte;
864}
865
866/* Rules for using mmu_spte_update:
867 * Update the state bits, it means the mapped pfn is not changed.
868 *
869 * Whenever we overwrite a writable spte with a read-only one we
870 * should flush remote TLBs. Otherwise rmap_write_protect
871 * will find a read-only spte, even though the writable spte
872 * might be cached on a CPU's TLB, the return value indicates this
873 * case.
874 *
875 * Returns true if the TLB needs to be flushed
876 */
877static bool mmu_spte_update(u64 *sptep, u64 new_spte)
878{
879 bool flush = false;
880 u64 old_spte = mmu_spte_update_no_track(sptep, new_spte);
881
882 if (!is_shadow_present_pte(old_spte))
883 return false;
884
c7ba5b48
XG
885 /*
886 * For the spte updated out of mmu-lock is safe, since
6a6256f9 887 * we always atomically update it, see the comments in
c7ba5b48
XG
888 * spte_has_volatile_bits().
889 */
ea4114bc 890 if (spte_can_locklessly_be_made_writable(old_spte) &&
7f31c959 891 !is_writable_pte(new_spte))
83ef6c81 892 flush = true;
4132779b 893
7e71a59b 894 /*
83ef6c81 895 * Flush TLB when accessed/dirty states are changed in the page tables,
7e71a59b
KH
896 * to guarantee consistency between TLB and page tables.
897 */
7e71a59b 898
83ef6c81
JS
899 if (is_accessed_spte(old_spte) && !is_accessed_spte(new_spte)) {
900 flush = true;
4132779b 901 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
83ef6c81
JS
902 }
903
904 if (is_dirty_spte(old_spte) && !is_dirty_spte(new_spte)) {
905 flush = true;
4132779b 906 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
83ef6c81 907 }
6e7d0354 908
83ef6c81 909 return flush;
b79b93f9
AK
910}
911
1df9f2dc
XG
912/*
913 * Rules for using mmu_spte_clear_track_bits:
914 * It sets the sptep from present to nonpresent, and track the
915 * state bits, it is used to clear the last level sptep.
83ef6c81 916 * Returns non-zero if the PTE was previously valid.
1df9f2dc
XG
917 */
918static int mmu_spte_clear_track_bits(u64 *sptep)
919{
ba049e93 920 kvm_pfn_t pfn;
1df9f2dc
XG
921 u64 old_spte = *sptep;
922
923 if (!spte_has_volatile_bits(old_spte))
603e0651 924 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 925 else
603e0651 926 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc 927
afd28fe1 928 if (!is_shadow_present_pte(old_spte))
1df9f2dc
XG
929 return 0;
930
931 pfn = spte_to_pfn(old_spte);
86fde74c
XG
932
933 /*
934 * KVM does not hold the refcount of the page used by
935 * kvm mmu, before reclaiming the page, we should
936 * unmap it from mmu first.
937 */
bf4bea8e 938 WARN_ON(!kvm_is_reserved_pfn(pfn) && !page_count(pfn_to_page(pfn)));
86fde74c 939
83ef6c81 940 if (is_accessed_spte(old_spte))
1df9f2dc 941 kvm_set_pfn_accessed(pfn);
83ef6c81
JS
942
943 if (is_dirty_spte(old_spte))
1df9f2dc 944 kvm_set_pfn_dirty(pfn);
83ef6c81 945
1df9f2dc
XG
946 return 1;
947}
948
949/*
950 * Rules for using mmu_spte_clear_no_track:
951 * Directly clear spte without caring the state bits of sptep,
952 * it is used to set the upper level spte.
953 */
954static void mmu_spte_clear_no_track(u64 *sptep)
955{
603e0651 956 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
957}
958
c2a2ac2b
XG
959static u64 mmu_spte_get_lockless(u64 *sptep)
960{
961 return __get_spte_lockless(sptep);
962}
963
f160c7b7
JS
964static u64 mark_spte_for_access_track(u64 spte)
965{
ac8d57e5 966 if (spte_ad_enabled(spte))
f160c7b7
JS
967 return spte & ~shadow_accessed_mask;
968
ac8d57e5 969 if (is_access_track_spte(spte))
f160c7b7
JS
970 return spte;
971
972 /*
20d65236
JS
973 * Making an Access Tracking PTE will result in removal of write access
974 * from the PTE. So, verify that we will be able to restore the write
975 * access in the fast page fault path later on.
f160c7b7
JS
976 */
977 WARN_ONCE((spte & PT_WRITABLE_MASK) &&
978 !spte_can_locklessly_be_made_writable(spte),
979 "kvm: Writable SPTE is not locklessly dirty-trackable\n");
980
981 WARN_ONCE(spte & (shadow_acc_track_saved_bits_mask <<
982 shadow_acc_track_saved_bits_shift),
983 "kvm: Access Tracking saved bit locations are not zero\n");
984
985 spte |= (spte & shadow_acc_track_saved_bits_mask) <<
986 shadow_acc_track_saved_bits_shift;
987 spte &= ~shadow_acc_track_mask;
f160c7b7
JS
988
989 return spte;
990}
991
d3e328f2
JS
992/* Restore an acc-track PTE back to a regular PTE */
993static u64 restore_acc_track_spte(u64 spte)
994{
995 u64 new_spte = spte;
996 u64 saved_bits = (spte >> shadow_acc_track_saved_bits_shift)
997 & shadow_acc_track_saved_bits_mask;
998
ac8d57e5 999 WARN_ON_ONCE(spte_ad_enabled(spte));
d3e328f2
JS
1000 WARN_ON_ONCE(!is_access_track_spte(spte));
1001
1002 new_spte &= ~shadow_acc_track_mask;
1003 new_spte &= ~(shadow_acc_track_saved_bits_mask <<
1004 shadow_acc_track_saved_bits_shift);
1005 new_spte |= saved_bits;
1006
1007 return new_spte;
1008}
1009
f160c7b7
JS
1010/* Returns the Accessed status of the PTE and resets it at the same time. */
1011static bool mmu_spte_age(u64 *sptep)
1012{
1013 u64 spte = mmu_spte_get_lockless(sptep);
1014
1015 if (!is_accessed_spte(spte))
1016 return false;
1017
ac8d57e5 1018 if (spte_ad_enabled(spte)) {
f160c7b7
JS
1019 clear_bit((ffs(shadow_accessed_mask) - 1),
1020 (unsigned long *)sptep);
1021 } else {
1022 /*
1023 * Capture the dirty status of the page, so that it doesn't get
1024 * lost when the SPTE is marked for access tracking.
1025 */
1026 if (is_writable_pte(spte))
1027 kvm_set_pfn_dirty(spte_to_pfn(spte));
1028
1029 spte = mark_spte_for_access_track(spte);
1030 mmu_spte_update_no_track(sptep, spte);
1031 }
1032
1033 return true;
1034}
1035
c2a2ac2b
XG
1036static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
1037{
c142786c
AK
1038 /*
1039 * Prevent page table teardown by making any free-er wait during
1040 * kvm_flush_remote_tlbs() IPI to all active vcpus.
1041 */
1042 local_irq_disable();
36ca7e0a 1043
c142786c
AK
1044 /*
1045 * Make sure a following spte read is not reordered ahead of the write
1046 * to vcpu->mode.
1047 */
36ca7e0a 1048 smp_store_mb(vcpu->mode, READING_SHADOW_PAGE_TABLES);
c2a2ac2b
XG
1049}
1050
1051static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
1052{
c142786c
AK
1053 /*
1054 * Make sure the write to vcpu->mode is not reordered in front of
9a984586 1055 * reads to sptes. If it does, kvm_mmu_commit_zap_page() can see us
c142786c
AK
1056 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
1057 */
36ca7e0a 1058 smp_store_release(&vcpu->mode, OUTSIDE_GUEST_MODE);
c142786c 1059 local_irq_enable();
c2a2ac2b
XG
1060}
1061
e2dec939 1062static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 1063 struct kmem_cache *base_cache, int min)
714b93da
AK
1064{
1065 void *obj;
1066
1067 if (cache->nobjs >= min)
e2dec939 1068 return 0;
714b93da 1069 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
254272ce 1070 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL_ACCOUNT);
714b93da 1071 if (!obj)
daefb794 1072 return cache->nobjs >= min ? 0 : -ENOMEM;
714b93da
AK
1073 cache->objects[cache->nobjs++] = obj;
1074 }
e2dec939 1075 return 0;
714b93da
AK
1076}
1077
f759e2b4
XG
1078static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
1079{
1080 return cache->nobjs;
1081}
1082
e8ad9a70
XG
1083static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
1084 struct kmem_cache *cache)
714b93da
AK
1085{
1086 while (mc->nobjs)
e8ad9a70 1087 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
1088}
1089
c1158e63 1090static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 1091 int min)
c1158e63 1092{
842f22ed 1093 void *page;
c1158e63
AK
1094
1095 if (cache->nobjs >= min)
1096 return 0;
1097 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
d97e5e61 1098 page = (void *)__get_free_page(GFP_KERNEL_ACCOUNT);
c1158e63 1099 if (!page)
daefb794 1100 return cache->nobjs >= min ? 0 : -ENOMEM;
842f22ed 1101 cache->objects[cache->nobjs++] = page;
c1158e63
AK
1102 }
1103 return 0;
1104}
1105
1106static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
1107{
1108 while (mc->nobjs)
c4d198d5 1109 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
1110}
1111
2e3e5882 1112static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 1113{
e2dec939
AK
1114 int r;
1115
53c07b18 1116 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 1117 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
1118 if (r)
1119 goto out;
ad312c7c 1120 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
1121 if (r)
1122 goto out;
ad312c7c 1123 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 1124 mmu_page_header_cache, 4);
e2dec939
AK
1125out:
1126 return r;
714b93da
AK
1127}
1128
1129static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1130{
53c07b18
XG
1131 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
1132 pte_list_desc_cache);
ad312c7c 1133 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
1134 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
1135 mmu_page_header_cache);
714b93da
AK
1136}
1137
80feb89a 1138static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
1139{
1140 void *p;
1141
1142 BUG_ON(!mc->nobjs);
1143 p = mc->objects[--mc->nobjs];
714b93da
AK
1144 return p;
1145}
1146
53c07b18 1147static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 1148{
80feb89a 1149 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
1150}
1151
53c07b18 1152static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 1153{
53c07b18 1154 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
1155}
1156
2032a93d
LJ
1157static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
1158{
1159 if (!sp->role.direct)
1160 return sp->gfns[index];
1161
1162 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
1163}
1164
1165static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
1166{
e9f2a760 1167 if (!sp->role.direct) {
2032a93d 1168 sp->gfns[index] = gfn;
e9f2a760
PB
1169 return;
1170 }
1171
1172 if (WARN_ON(gfn != kvm_mmu_page_get_gfn(sp, index)))
1173 pr_err_ratelimited("gfn mismatch under direct page %llx "
1174 "(expected %llx, got %llx)\n",
1175 sp->gfn,
1176 kvm_mmu_page_get_gfn(sp, index), gfn);
2032a93d
LJ
1177}
1178
05da4558 1179/*
d4dbf470
TY
1180 * Return the pointer to the large page information for a given gfn,
1181 * handling slots that are not large page aligned.
05da4558 1182 */
d4dbf470
TY
1183static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
1184 struct kvm_memory_slot *slot,
1185 int level)
05da4558
MT
1186{
1187 unsigned long idx;
1188
fb03cb6f 1189 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 1190 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
1191}
1192
547ffaed
XG
1193static void update_gfn_disallow_lpage_count(struct kvm_memory_slot *slot,
1194 gfn_t gfn, int count)
1195{
1196 struct kvm_lpage_info *linfo;
1197 int i;
1198
1199 for (i = PT_DIRECTORY_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
1200 linfo = lpage_info_slot(gfn, slot, i);
1201 linfo->disallow_lpage += count;
1202 WARN_ON(linfo->disallow_lpage < 0);
1203 }
1204}
1205
1206void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1207{
1208 update_gfn_disallow_lpage_count(slot, gfn, 1);
1209}
1210
1211void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn)
1212{
1213 update_gfn_disallow_lpage_count(slot, gfn, -1);
1214}
1215
3ed1a478 1216static void account_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1217{
699023e2 1218 struct kvm_memslots *slots;
d25797b2 1219 struct kvm_memory_slot *slot;
3ed1a478 1220 gfn_t gfn;
05da4558 1221
56ca57f9 1222 kvm->arch.indirect_shadow_pages++;
3ed1a478 1223 gfn = sp->gfn;
699023e2
PB
1224 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1225 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1226
1227 /* the non-leaf shadow pages are keeping readonly. */
1228 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1229 return kvm_slot_page_track_add_page(kvm, slot, gfn,
1230 KVM_PAGE_TRACK_WRITE);
1231
547ffaed 1232 kvm_mmu_gfn_disallow_lpage(slot, gfn);
05da4558
MT
1233}
1234
b8e8c830
PB
1235static void account_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1236{
1237 if (sp->lpage_disallowed)
1238 return;
1239
1240 ++kvm->stat.nx_lpage_splits;
1aa9b957
JS
1241 list_add_tail(&sp->lpage_disallowed_link,
1242 &kvm->arch.lpage_disallowed_mmu_pages);
b8e8c830
PB
1243 sp->lpage_disallowed = true;
1244}
1245
3ed1a478 1246static void unaccount_shadowed(struct kvm *kvm, struct kvm_mmu_page *sp)
05da4558 1247{
699023e2 1248 struct kvm_memslots *slots;
d25797b2 1249 struct kvm_memory_slot *slot;
3ed1a478 1250 gfn_t gfn;
05da4558 1251
56ca57f9 1252 kvm->arch.indirect_shadow_pages--;
3ed1a478 1253 gfn = sp->gfn;
699023e2
PB
1254 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1255 slot = __gfn_to_memslot(slots, gfn);
56ca57f9
XG
1256 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
1257 return kvm_slot_page_track_remove_page(kvm, slot, gfn,
1258 KVM_PAGE_TRACK_WRITE);
1259
547ffaed 1260 kvm_mmu_gfn_allow_lpage(slot, gfn);
05da4558
MT
1261}
1262
b8e8c830
PB
1263static void unaccount_huge_nx_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1264{
1265 --kvm->stat.nx_lpage_splits;
1266 sp->lpage_disallowed = false;
1aa9b957 1267 list_del(&sp->lpage_disallowed_link);
b8e8c830
PB
1268}
1269
5d163b1c
XG
1270static struct kvm_memory_slot *
1271gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
1272 bool no_dirty_log)
05da4558
MT
1273{
1274 struct kvm_memory_slot *slot;
5d163b1c 1275
54bf36aa 1276 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
91b0d268
PB
1277 if (!slot || slot->flags & KVM_MEMSLOT_INVALID)
1278 return NULL;
1279 if (no_dirty_log && slot->dirty_bitmap)
1280 return NULL;
5d163b1c
XG
1281
1282 return slot;
1283}
1284
290fc38d 1285/*
018aabb5 1286 * About rmap_head encoding:
cd4a4e53 1287 *
018aabb5
TY
1288 * If the bit zero of rmap_head->val is clear, then it points to the only spte
1289 * in this rmap chain. Otherwise, (rmap_head->val & ~1) points to a struct
53c07b18 1290 * pte_list_desc containing more mappings.
018aabb5
TY
1291 */
1292
1293/*
1294 * Returns the number of pointers in the rmap chain, not counting the new one.
cd4a4e53 1295 */
53c07b18 1296static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
018aabb5 1297 struct kvm_rmap_head *rmap_head)
cd4a4e53 1298{
53c07b18 1299 struct pte_list_desc *desc;
53a27b39 1300 int i, count = 0;
cd4a4e53 1301
018aabb5 1302 if (!rmap_head->val) {
53c07b18 1303 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
018aabb5
TY
1304 rmap_head->val = (unsigned long)spte;
1305 } else if (!(rmap_head->val & 1)) {
53c07b18
XG
1306 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
1307 desc = mmu_alloc_pte_list_desc(vcpu);
018aabb5 1308 desc->sptes[0] = (u64 *)rmap_head->val;
d555c333 1309 desc->sptes[1] = spte;
018aabb5 1310 rmap_head->val = (unsigned long)desc | 1;
cb16a7b3 1311 ++count;
cd4a4e53 1312 } else {
53c07b18 1313 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
018aabb5 1314 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
53c07b18 1315 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 1316 desc = desc->more;
53c07b18 1317 count += PTE_LIST_EXT;
53a27b39 1318 }
53c07b18
XG
1319 if (desc->sptes[PTE_LIST_EXT-1]) {
1320 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
1321 desc = desc->more;
1322 }
d555c333 1323 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 1324 ++count;
d555c333 1325 desc->sptes[i] = spte;
cd4a4e53 1326 }
53a27b39 1327 return count;
cd4a4e53
AK
1328}
1329
53c07b18 1330static void
018aabb5
TY
1331pte_list_desc_remove_entry(struct kvm_rmap_head *rmap_head,
1332 struct pte_list_desc *desc, int i,
1333 struct pte_list_desc *prev_desc)
cd4a4e53
AK
1334{
1335 int j;
1336
53c07b18 1337 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 1338 ;
d555c333
AK
1339 desc->sptes[i] = desc->sptes[j];
1340 desc->sptes[j] = NULL;
cd4a4e53
AK
1341 if (j != 0)
1342 return;
1343 if (!prev_desc && !desc->more)
fe3c2b4c 1344 rmap_head->val = 0;
cd4a4e53
AK
1345 else
1346 if (prev_desc)
1347 prev_desc->more = desc->more;
1348 else
018aabb5 1349 rmap_head->val = (unsigned long)desc->more | 1;
53c07b18 1350 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
1351}
1352
8daf3462 1353static void __pte_list_remove(u64 *spte, struct kvm_rmap_head *rmap_head)
cd4a4e53 1354{
53c07b18
XG
1355 struct pte_list_desc *desc;
1356 struct pte_list_desc *prev_desc;
cd4a4e53
AK
1357 int i;
1358
018aabb5 1359 if (!rmap_head->val) {
8daf3462 1360 pr_err("%s: %p 0->BUG\n", __func__, spte);
cd4a4e53 1361 BUG();
018aabb5 1362 } else if (!(rmap_head->val & 1)) {
8daf3462 1363 rmap_printk("%s: %p 1->0\n", __func__, spte);
018aabb5 1364 if ((u64 *)rmap_head->val != spte) {
8daf3462 1365 pr_err("%s: %p 1->BUG\n", __func__, spte);
cd4a4e53
AK
1366 BUG();
1367 }
018aabb5 1368 rmap_head->val = 0;
cd4a4e53 1369 } else {
8daf3462 1370 rmap_printk("%s: %p many->many\n", __func__, spte);
018aabb5 1371 desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
cd4a4e53
AK
1372 prev_desc = NULL;
1373 while (desc) {
018aabb5 1374 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i) {
d555c333 1375 if (desc->sptes[i] == spte) {
018aabb5
TY
1376 pte_list_desc_remove_entry(rmap_head,
1377 desc, i, prev_desc);
cd4a4e53
AK
1378 return;
1379 }
018aabb5 1380 }
cd4a4e53
AK
1381 prev_desc = desc;
1382 desc = desc->more;
1383 }
8daf3462 1384 pr_err("%s: %p many->many\n", __func__, spte);
cd4a4e53
AK
1385 BUG();
1386 }
1387}
1388
e7912386
WY
1389static void pte_list_remove(struct kvm_rmap_head *rmap_head, u64 *sptep)
1390{
1391 mmu_spte_clear_track_bits(sptep);
1392 __pte_list_remove(sptep, rmap_head);
1393}
1394
018aabb5
TY
1395static struct kvm_rmap_head *__gfn_to_rmap(gfn_t gfn, int level,
1396 struct kvm_memory_slot *slot)
53c07b18 1397{
77d11309 1398 unsigned long idx;
53c07b18 1399
77d11309 1400 idx = gfn_to_index(gfn, slot->base_gfn, level);
d89cc617 1401 return &slot->arch.rmap[level - PT_PAGE_TABLE_LEVEL][idx];
53c07b18
XG
1402}
1403
018aabb5
TY
1404static struct kvm_rmap_head *gfn_to_rmap(struct kvm *kvm, gfn_t gfn,
1405 struct kvm_mmu_page *sp)
9b9b1492 1406{
699023e2 1407 struct kvm_memslots *slots;
9b9b1492
TY
1408 struct kvm_memory_slot *slot;
1409
699023e2
PB
1410 slots = kvm_memslots_for_spte_role(kvm, sp->role);
1411 slot = __gfn_to_memslot(slots, gfn);
e4cd1da9 1412 return __gfn_to_rmap(gfn, sp->role.level, slot);
9b9b1492
TY
1413}
1414
f759e2b4
XG
1415static bool rmap_can_add(struct kvm_vcpu *vcpu)
1416{
1417 struct kvm_mmu_memory_cache *cache;
1418
1419 cache = &vcpu->arch.mmu_pte_list_desc_cache;
1420 return mmu_memory_cache_free_objects(cache);
1421}
1422
53c07b18
XG
1423static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1424{
1425 struct kvm_mmu_page *sp;
018aabb5 1426 struct kvm_rmap_head *rmap_head;
53c07b18 1427
53c07b18
XG
1428 sp = page_header(__pa(spte));
1429 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
018aabb5
TY
1430 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
1431 return pte_list_add(vcpu, spte, rmap_head);
53c07b18
XG
1432}
1433
53c07b18
XG
1434static void rmap_remove(struct kvm *kvm, u64 *spte)
1435{
1436 struct kvm_mmu_page *sp;
1437 gfn_t gfn;
018aabb5 1438 struct kvm_rmap_head *rmap_head;
53c07b18
XG
1439
1440 sp = page_header(__pa(spte));
1441 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
018aabb5 1442 rmap_head = gfn_to_rmap(kvm, gfn, sp);
8daf3462 1443 __pte_list_remove(spte, rmap_head);
53c07b18
XG
1444}
1445
1e3f42f0
TY
1446/*
1447 * Used by the following functions to iterate through the sptes linked by a
1448 * rmap. All fields are private and not assumed to be used outside.
1449 */
1450struct rmap_iterator {
1451 /* private fields */
1452 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1453 int pos; /* index of the sptep */
1454};
1455
1456/*
1457 * Iteration must be started by this function. This should also be used after
1458 * removing/dropping sptes from the rmap link because in such cases the
0a03cbda 1459 * information in the iterator may not be valid.
1e3f42f0
TY
1460 *
1461 * Returns sptep if found, NULL otherwise.
1462 */
018aabb5
TY
1463static u64 *rmap_get_first(struct kvm_rmap_head *rmap_head,
1464 struct rmap_iterator *iter)
1e3f42f0 1465{
77fbbbd2
TY
1466 u64 *sptep;
1467
018aabb5 1468 if (!rmap_head->val)
1e3f42f0
TY
1469 return NULL;
1470
018aabb5 1471 if (!(rmap_head->val & 1)) {
1e3f42f0 1472 iter->desc = NULL;
77fbbbd2
TY
1473 sptep = (u64 *)rmap_head->val;
1474 goto out;
1e3f42f0
TY
1475 }
1476
018aabb5 1477 iter->desc = (struct pte_list_desc *)(rmap_head->val & ~1ul);
1e3f42f0 1478 iter->pos = 0;
77fbbbd2
TY
1479 sptep = iter->desc->sptes[iter->pos];
1480out:
1481 BUG_ON(!is_shadow_present_pte(*sptep));
1482 return sptep;
1e3f42f0
TY
1483}
1484
1485/*
1486 * Must be used with a valid iterator: e.g. after rmap_get_first().
1487 *
1488 * Returns sptep if found, NULL otherwise.
1489 */
1490static u64 *rmap_get_next(struct rmap_iterator *iter)
1491{
77fbbbd2
TY
1492 u64 *sptep;
1493
1e3f42f0
TY
1494 if (iter->desc) {
1495 if (iter->pos < PTE_LIST_EXT - 1) {
1e3f42f0
TY
1496 ++iter->pos;
1497 sptep = iter->desc->sptes[iter->pos];
1498 if (sptep)
77fbbbd2 1499 goto out;
1e3f42f0
TY
1500 }
1501
1502 iter->desc = iter->desc->more;
1503
1504 if (iter->desc) {
1505 iter->pos = 0;
1506 /* desc->sptes[0] cannot be NULL */
77fbbbd2
TY
1507 sptep = iter->desc->sptes[iter->pos];
1508 goto out;
1e3f42f0
TY
1509 }
1510 }
1511
1512 return NULL;
77fbbbd2
TY
1513out:
1514 BUG_ON(!is_shadow_present_pte(*sptep));
1515 return sptep;
1e3f42f0
TY
1516}
1517
018aabb5
TY
1518#define for_each_rmap_spte(_rmap_head_, _iter_, _spte_) \
1519 for (_spte_ = rmap_get_first(_rmap_head_, _iter_); \
77fbbbd2 1520 _spte_; _spte_ = rmap_get_next(_iter_))
0d536790 1521
c3707958 1522static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1523{
1df9f2dc 1524 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1525 rmap_remove(kvm, sptep);
be38d276
AK
1526}
1527
8e22f955
XG
1528
1529static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1530{
1531 if (is_large_pte(*sptep)) {
1532 WARN_ON(page_header(__pa(sptep))->role.level ==
1533 PT_PAGE_TABLE_LEVEL);
1534 drop_spte(kvm, sptep);
1535 --kvm->stat.lpages;
1536 return true;
1537 }
1538
1539 return false;
1540}
1541
1542static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1543{
c3134ce2
LT
1544 if (__drop_large_spte(vcpu->kvm, sptep)) {
1545 struct kvm_mmu_page *sp = page_header(__pa(sptep));
1546
1547 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
1548 KVM_PAGES_PER_HPAGE(sp->role.level));
1549 }
8e22f955
XG
1550}
1551
1552/*
49fde340 1553 * Write-protect on the specified @sptep, @pt_protect indicates whether
c126d94f 1554 * spte write-protection is caused by protecting shadow page table.
49fde340 1555 *
b4619660 1556 * Note: write protection is difference between dirty logging and spte
49fde340
XG
1557 * protection:
1558 * - for dirty logging, the spte can be set to writable at anytime if
1559 * its dirty bitmap is properly set.
1560 * - for spte protection, the spte can be writable only after unsync-ing
1561 * shadow page.
8e22f955 1562 *
c126d94f 1563 * Return true if tlb need be flushed.
8e22f955 1564 */
c4f138b4 1565static bool spte_write_protect(u64 *sptep, bool pt_protect)
d13bc5b5
XG
1566{
1567 u64 spte = *sptep;
1568
49fde340 1569 if (!is_writable_pte(spte) &&
ea4114bc 1570 !(pt_protect && spte_can_locklessly_be_made_writable(spte)))
d13bc5b5
XG
1571 return false;
1572
1573 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1574
49fde340
XG
1575 if (pt_protect)
1576 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1577 spte = spte & ~PT_WRITABLE_MASK;
49fde340 1578
c126d94f 1579 return mmu_spte_update(sptep, spte);
d13bc5b5
XG
1580}
1581
018aabb5
TY
1582static bool __rmap_write_protect(struct kvm *kvm,
1583 struct kvm_rmap_head *rmap_head,
245c3912 1584 bool pt_protect)
98348e95 1585{
1e3f42f0
TY
1586 u64 *sptep;
1587 struct rmap_iterator iter;
d13bc5b5 1588 bool flush = false;
374cbac0 1589
018aabb5 1590 for_each_rmap_spte(rmap_head, &iter, sptep)
c4f138b4 1591 flush |= spte_write_protect(sptep, pt_protect);
855149aa 1592
d13bc5b5 1593 return flush;
a0ed4607
TY
1594}
1595
c4f138b4 1596static bool spte_clear_dirty(u64 *sptep)
f4b4b180
KH
1597{
1598 u64 spte = *sptep;
1599
1600 rmap_printk("rmap_clear_dirty: spte %p %llx\n", sptep, *sptep);
1601
1f4e5fc8 1602 MMU_WARN_ON(!spte_ad_enabled(spte));
f4b4b180 1603 spte &= ~shadow_dirty_mask;
f4b4b180
KH
1604 return mmu_spte_update(sptep, spte);
1605}
1606
1f4e5fc8 1607static bool spte_wrprot_for_clear_dirty(u64 *sptep)
ac8d57e5
PF
1608{
1609 bool was_writable = test_and_clear_bit(PT_WRITABLE_SHIFT,
1610 (unsigned long *)sptep);
1f4e5fc8 1611 if (was_writable && !spte_ad_enabled(*sptep))
ac8d57e5
PF
1612 kvm_set_pfn_dirty(spte_to_pfn(*sptep));
1613
1614 return was_writable;
1615}
1616
1617/*
1618 * Gets the GFN ready for another round of dirty logging by clearing the
1619 * - D bit on ad-enabled SPTEs, and
1620 * - W bit on ad-disabled SPTEs.
1621 * Returns true iff any D or W bits were cleared.
1622 */
018aabb5 1623static bool __rmap_clear_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1624{
1625 u64 *sptep;
1626 struct rmap_iterator iter;
1627 bool flush = false;
1628
018aabb5 1629 for_each_rmap_spte(rmap_head, &iter, sptep)
1f4e5fc8
PB
1630 if (spte_ad_need_write_protect(*sptep))
1631 flush |= spte_wrprot_for_clear_dirty(sptep);
ac8d57e5 1632 else
1f4e5fc8 1633 flush |= spte_clear_dirty(sptep);
f4b4b180
KH
1634
1635 return flush;
1636}
1637
c4f138b4 1638static bool spte_set_dirty(u64 *sptep)
f4b4b180
KH
1639{
1640 u64 spte = *sptep;
1641
1642 rmap_printk("rmap_set_dirty: spte %p %llx\n", sptep, *sptep);
1643
1f4e5fc8 1644 /*
afaf0b2f 1645 * Similar to the !kvm_x86_ops.slot_disable_log_dirty case,
1f4e5fc8
PB
1646 * do not bother adding back write access to pages marked
1647 * SPTE_AD_WRPROT_ONLY_MASK.
1648 */
f4b4b180
KH
1649 spte |= shadow_dirty_mask;
1650
1651 return mmu_spte_update(sptep, spte);
1652}
1653
018aabb5 1654static bool __rmap_set_dirty(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
f4b4b180
KH
1655{
1656 u64 *sptep;
1657 struct rmap_iterator iter;
1658 bool flush = false;
1659
018aabb5 1660 for_each_rmap_spte(rmap_head, &iter, sptep)
ac8d57e5
PF
1661 if (spte_ad_enabled(*sptep))
1662 flush |= spte_set_dirty(sptep);
f4b4b180
KH
1663
1664 return flush;
1665}
1666
5dc99b23 1667/**
3b0f1d01 1668 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
5dc99b23
TY
1669 * @kvm: kvm instance
1670 * @slot: slot to protect
1671 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1672 * @mask: indicates which pages we should protect
1673 *
1674 * Used when we do not need to care about huge page mappings: e.g. during dirty
1675 * logging we do not have any such mappings.
1676 */
3b0f1d01 1677static void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
5dc99b23
TY
1678 struct kvm_memory_slot *slot,
1679 gfn_t gfn_offset, unsigned long mask)
a0ed4607 1680{
018aabb5 1681 struct kvm_rmap_head *rmap_head;
a0ed4607 1682
5dc99b23 1683 while (mask) {
018aabb5
TY
1684 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1685 PT_PAGE_TABLE_LEVEL, slot);
1686 __rmap_write_protect(kvm, rmap_head, false);
05da4558 1687
5dc99b23
TY
1688 /* clear the first set bit */
1689 mask &= mask - 1;
1690 }
374cbac0
AK
1691}
1692
f4b4b180 1693/**
ac8d57e5
PF
1694 * kvm_mmu_clear_dirty_pt_masked - clear MMU D-bit for PT level pages, or write
1695 * protect the page if the D-bit isn't supported.
f4b4b180
KH
1696 * @kvm: kvm instance
1697 * @slot: slot to clear D-bit
1698 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1699 * @mask: indicates which pages we should clear D-bit
1700 *
1701 * Used for PML to re-log the dirty GPAs after userspace querying dirty_bitmap.
1702 */
1703void kvm_mmu_clear_dirty_pt_masked(struct kvm *kvm,
1704 struct kvm_memory_slot *slot,
1705 gfn_t gfn_offset, unsigned long mask)
1706{
018aabb5 1707 struct kvm_rmap_head *rmap_head;
f4b4b180
KH
1708
1709 while (mask) {
018aabb5
TY
1710 rmap_head = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1711 PT_PAGE_TABLE_LEVEL, slot);
1712 __rmap_clear_dirty(kvm, rmap_head);
f4b4b180
KH
1713
1714 /* clear the first set bit */
1715 mask &= mask - 1;
1716 }
1717}
1718EXPORT_SYMBOL_GPL(kvm_mmu_clear_dirty_pt_masked);
1719
3b0f1d01
KH
1720/**
1721 * kvm_arch_mmu_enable_log_dirty_pt_masked - enable dirty logging for selected
1722 * PT level pages.
1723 *
1724 * It calls kvm_mmu_write_protect_pt_masked to write protect selected pages to
1725 * enable dirty logging for them.
1726 *
1727 * Used when we do not need to care about huge page mappings: e.g. during dirty
1728 * logging we do not have any such mappings.
1729 */
1730void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1731 struct kvm_memory_slot *slot,
1732 gfn_t gfn_offset, unsigned long mask)
1733{
afaf0b2f
SC
1734 if (kvm_x86_ops.enable_log_dirty_pt_masked)
1735 kvm_x86_ops.enable_log_dirty_pt_masked(kvm, slot, gfn_offset,
88178fd4
KH
1736 mask);
1737 else
1738 kvm_mmu_write_protect_pt_masked(kvm, slot, gfn_offset, mask);
3b0f1d01
KH
1739}
1740
bab4165e
BD
1741/**
1742 * kvm_arch_write_log_dirty - emulate dirty page logging
1743 * @vcpu: Guest mode vcpu
1744 *
1745 * Emulate arch specific page modification logging for the
1746 * nested hypervisor
1747 */
1748int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu)
1749{
afaf0b2f
SC
1750 if (kvm_x86_ops.write_log_dirty)
1751 return kvm_x86_ops.write_log_dirty(vcpu);
bab4165e
BD
1752
1753 return 0;
1754}
1755
aeecee2e
XG
1756bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
1757 struct kvm_memory_slot *slot, u64 gfn)
95d4c16c 1758{
018aabb5 1759 struct kvm_rmap_head *rmap_head;
5dc99b23 1760 int i;
2f84569f 1761 bool write_protected = false;
95d4c16c 1762
8a3d08f1 1763 for (i = PT_PAGE_TABLE_LEVEL; i <= PT_MAX_HUGEPAGE_LEVEL; ++i) {
018aabb5 1764 rmap_head = __gfn_to_rmap(gfn, i, slot);
aeecee2e 1765 write_protected |= __rmap_write_protect(kvm, rmap_head, true);
5dc99b23
TY
1766 }
1767
1768 return write_protected;
95d4c16c
TY
1769}
1770
aeecee2e
XG
1771static bool rmap_write_protect(struct kvm_vcpu *vcpu, u64 gfn)
1772{
1773 struct kvm_memory_slot *slot;
1774
1775 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
1776 return kvm_mmu_slot_gfn_write_protect(vcpu->kvm, slot, gfn);
1777}
1778
018aabb5 1779static bool kvm_zap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head)
e930bffe 1780{
1e3f42f0
TY
1781 u64 *sptep;
1782 struct rmap_iterator iter;
6a49f85c 1783 bool flush = false;
e930bffe 1784
018aabb5 1785 while ((sptep = rmap_get_first(rmap_head, &iter))) {
6a49f85c 1786 rmap_printk("%s: spte %p %llx.\n", __func__, sptep, *sptep);
1e3f42f0 1787
e7912386 1788 pte_list_remove(rmap_head, sptep);
6a49f85c 1789 flush = true;
e930bffe 1790 }
1e3f42f0 1791
6a49f85c
XG
1792 return flush;
1793}
1794
018aabb5 1795static int kvm_unmap_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
6a49f85c
XG
1796 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1797 unsigned long data)
1798{
018aabb5 1799 return kvm_zap_rmapp(kvm, rmap_head);
e930bffe
AA
1800}
1801
018aabb5 1802static int kvm_set_pte_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1803 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1804 unsigned long data)
3da0dd43 1805{
1e3f42f0
TY
1806 u64 *sptep;
1807 struct rmap_iterator iter;
3da0dd43 1808 int need_flush = 0;
1e3f42f0 1809 u64 new_spte;
3da0dd43 1810 pte_t *ptep = (pte_t *)data;
ba049e93 1811 kvm_pfn_t new_pfn;
3da0dd43
IE
1812
1813 WARN_ON(pte_huge(*ptep));
1814 new_pfn = pte_pfn(*ptep);
1e3f42f0 1815
0d536790 1816restart:
018aabb5 1817 for_each_rmap_spte(rmap_head, &iter, sptep) {
8a9522d2 1818 rmap_printk("kvm_set_pte_rmapp: spte %p %llx gfn %llx (%d)\n",
f160c7b7 1819 sptep, *sptep, gfn, level);
1e3f42f0 1820
3da0dd43 1821 need_flush = 1;
1e3f42f0 1822
3da0dd43 1823 if (pte_write(*ptep)) {
e7912386 1824 pte_list_remove(rmap_head, sptep);
0d536790 1825 goto restart;
3da0dd43 1826 } else {
1e3f42f0 1827 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1828 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1829
1830 new_spte &= ~PT_WRITABLE_MASK;
1831 new_spte &= ~SPTE_HOST_WRITEABLE;
f160c7b7
JS
1832
1833 new_spte = mark_spte_for_access_track(new_spte);
1e3f42f0
TY
1834
1835 mmu_spte_clear_track_bits(sptep);
1836 mmu_spte_set(sptep, new_spte);
3da0dd43
IE
1837 }
1838 }
1e3f42f0 1839
3cc5ea94
LT
1840 if (need_flush && kvm_available_flush_tlb_with_range()) {
1841 kvm_flush_remote_tlbs_with_address(kvm, gfn, 1);
1842 return 0;
1843 }
1844
0cf853c5 1845 return need_flush;
3da0dd43
IE
1846}
1847
6ce1f4e2
XG
1848struct slot_rmap_walk_iterator {
1849 /* input fields. */
1850 struct kvm_memory_slot *slot;
1851 gfn_t start_gfn;
1852 gfn_t end_gfn;
1853 int start_level;
1854 int end_level;
1855
1856 /* output fields. */
1857 gfn_t gfn;
018aabb5 1858 struct kvm_rmap_head *rmap;
6ce1f4e2
XG
1859 int level;
1860
1861 /* private field. */
018aabb5 1862 struct kvm_rmap_head *end_rmap;
6ce1f4e2
XG
1863};
1864
1865static void
1866rmap_walk_init_level(struct slot_rmap_walk_iterator *iterator, int level)
1867{
1868 iterator->level = level;
1869 iterator->gfn = iterator->start_gfn;
1870 iterator->rmap = __gfn_to_rmap(iterator->gfn, level, iterator->slot);
1871 iterator->end_rmap = __gfn_to_rmap(iterator->end_gfn, level,
1872 iterator->slot);
1873}
1874
1875static void
1876slot_rmap_walk_init(struct slot_rmap_walk_iterator *iterator,
1877 struct kvm_memory_slot *slot, int start_level,
1878 int end_level, gfn_t start_gfn, gfn_t end_gfn)
1879{
1880 iterator->slot = slot;
1881 iterator->start_level = start_level;
1882 iterator->end_level = end_level;
1883 iterator->start_gfn = start_gfn;
1884 iterator->end_gfn = end_gfn;
1885
1886 rmap_walk_init_level(iterator, iterator->start_level);
1887}
1888
1889static bool slot_rmap_walk_okay(struct slot_rmap_walk_iterator *iterator)
1890{
1891 return !!iterator->rmap;
1892}
1893
1894static void slot_rmap_walk_next(struct slot_rmap_walk_iterator *iterator)
1895{
1896 if (++iterator->rmap <= iterator->end_rmap) {
1897 iterator->gfn += (1UL << KVM_HPAGE_GFN_SHIFT(iterator->level));
1898 return;
1899 }
1900
1901 if (++iterator->level > iterator->end_level) {
1902 iterator->rmap = NULL;
1903 return;
1904 }
1905
1906 rmap_walk_init_level(iterator, iterator->level);
1907}
1908
1909#define for_each_slot_rmap_range(_slot_, _start_level_, _end_level_, \
1910 _start_gfn, _end_gfn, _iter_) \
1911 for (slot_rmap_walk_init(_iter_, _slot_, _start_level_, \
1912 _end_level_, _start_gfn, _end_gfn); \
1913 slot_rmap_walk_okay(_iter_); \
1914 slot_rmap_walk_next(_iter_))
1915
84504ef3
TY
1916static int kvm_handle_hva_range(struct kvm *kvm,
1917 unsigned long start,
1918 unsigned long end,
1919 unsigned long data,
1920 int (*handler)(struct kvm *kvm,
018aabb5 1921 struct kvm_rmap_head *rmap_head,
048212d0 1922 struct kvm_memory_slot *slot,
8a9522d2
ALC
1923 gfn_t gfn,
1924 int level,
84504ef3 1925 unsigned long data))
e930bffe 1926{
bc6678a3 1927 struct kvm_memslots *slots;
be6ba0f0 1928 struct kvm_memory_slot *memslot;
6ce1f4e2
XG
1929 struct slot_rmap_walk_iterator iterator;
1930 int ret = 0;
9da0e4d5 1931 int i;
bc6678a3 1932
9da0e4d5
PB
1933 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
1934 slots = __kvm_memslots(kvm, i);
1935 kvm_for_each_memslot(memslot, slots) {
1936 unsigned long hva_start, hva_end;
1937 gfn_t gfn_start, gfn_end;
e930bffe 1938
9da0e4d5
PB
1939 hva_start = max(start, memslot->userspace_addr);
1940 hva_end = min(end, memslot->userspace_addr +
1941 (memslot->npages << PAGE_SHIFT));
1942 if (hva_start >= hva_end)
1943 continue;
1944 /*
1945 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1946 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1947 */
1948 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
1949 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1950
1951 for_each_slot_rmap_range(memslot, PT_PAGE_TABLE_LEVEL,
1952 PT_MAX_HUGEPAGE_LEVEL,
1953 gfn_start, gfn_end - 1,
1954 &iterator)
1955 ret |= handler(kvm, iterator.rmap, memslot,
1956 iterator.gfn, iterator.level, data);
1957 }
e930bffe
AA
1958 }
1959
f395302e 1960 return ret;
e930bffe
AA
1961}
1962
84504ef3
TY
1963static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1964 unsigned long data,
018aabb5
TY
1965 int (*handler)(struct kvm *kvm,
1966 struct kvm_rmap_head *rmap_head,
048212d0 1967 struct kvm_memory_slot *slot,
8a9522d2 1968 gfn_t gfn, int level,
84504ef3
TY
1969 unsigned long data))
1970{
1971 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1972}
1973
b3ae2096
TY
1974int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1975{
1976 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1977}
1978
748c0e31 1979int kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
3da0dd43 1980{
0cf853c5 1981 return kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1982}
1983
018aabb5 1984static int kvm_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
1985 struct kvm_memory_slot *slot, gfn_t gfn, int level,
1986 unsigned long data)
e930bffe 1987{
1e3f42f0 1988 u64 *sptep;
79f702a6 1989 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1990 int young = 0;
1991
f160c7b7
JS
1992 for_each_rmap_spte(rmap_head, &iter, sptep)
1993 young |= mmu_spte_age(sptep);
0d536790 1994
8a9522d2 1995 trace_kvm_age_page(gfn, level, slot, young);
e930bffe
AA
1996 return young;
1997}
1998
018aabb5 1999static int kvm_test_age_rmapp(struct kvm *kvm, struct kvm_rmap_head *rmap_head,
8a9522d2
ALC
2000 struct kvm_memory_slot *slot, gfn_t gfn,
2001 int level, unsigned long data)
8ee53820 2002{
1e3f42f0
TY
2003 u64 *sptep;
2004 struct rmap_iterator iter;
8ee53820 2005
83ef6c81
JS
2006 for_each_rmap_spte(rmap_head, &iter, sptep)
2007 if (is_accessed_spte(*sptep))
2008 return 1;
83ef6c81 2009 return 0;
8ee53820
AA
2010}
2011
53a27b39
MT
2012#define RMAP_RECYCLE_THRESHOLD 1000
2013
852e3c19 2014static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39 2015{
018aabb5 2016 struct kvm_rmap_head *rmap_head;
852e3c19
JR
2017 struct kvm_mmu_page *sp;
2018
2019 sp = page_header(__pa(spte));
53a27b39 2020
018aabb5 2021 rmap_head = gfn_to_rmap(vcpu->kvm, gfn, sp);
53a27b39 2022
018aabb5 2023 kvm_unmap_rmapp(vcpu->kvm, rmap_head, NULL, gfn, sp->role.level, 0);
c3134ce2
LT
2024 kvm_flush_remote_tlbs_with_address(vcpu->kvm, sp->gfn,
2025 KVM_PAGES_PER_HPAGE(sp->role.level));
53a27b39
MT
2026}
2027
57128468 2028int kvm_age_hva(struct kvm *kvm, unsigned long start, unsigned long end)
e930bffe 2029{
57128468 2030 return kvm_handle_hva_range(kvm, start, end, 0, kvm_age_rmapp);
e930bffe
AA
2031}
2032
8ee53820
AA
2033int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
2034{
2035 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
2036}
2037
d6c69ee9 2038#ifdef MMU_DEBUG
47ad8e68 2039static int is_empty_shadow_page(u64 *spt)
6aa8b732 2040{
139bdb2d
AK
2041 u64 *pos;
2042 u64 *end;
2043
47ad8e68 2044 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 2045 if (is_shadow_present_pte(*pos)) {
b8688d51 2046 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 2047 pos, *pos);
6aa8b732 2048 return 0;
139bdb2d 2049 }
6aa8b732
AK
2050 return 1;
2051}
d6c69ee9 2052#endif
6aa8b732 2053
45221ab6
DH
2054/*
2055 * This value is the sum of all of the kvm instances's
2056 * kvm->arch.n_used_mmu_pages values. We need a global,
2057 * aggregate version in order to make the slab shrinker
2058 * faster
2059 */
bc8a3d89 2060static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, unsigned long nr)
45221ab6
DH
2061{
2062 kvm->arch.n_used_mmu_pages += nr;
2063 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
2064}
2065
834be0d8 2066static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
260746c0 2067{
fa4a2c08 2068 MMU_WARN_ON(!is_empty_shadow_page(sp->spt));
7775834a 2069 hlist_del(&sp->hash_link);
bd4c86ea
XG
2070 list_del(&sp->link);
2071 free_page((unsigned long)sp->spt);
834be0d8
GN
2072 if (!sp->role.direct)
2073 free_page((unsigned long)sp->gfns);
e8ad9a70 2074 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
2075}
2076
cea0f0e7
AK
2077static unsigned kvm_page_table_hashfn(gfn_t gfn)
2078{
114df303 2079 return hash_64(gfn, KVM_MMU_HASH_SHIFT);
cea0f0e7
AK
2080}
2081
714b93da 2082static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 2083 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2084{
cea0f0e7
AK
2085 if (!parent_pte)
2086 return;
cea0f0e7 2087
67052b35 2088 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2089}
2090
4db35314 2091static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
2092 u64 *parent_pte)
2093{
8daf3462 2094 __pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
2095}
2096
bcdd9a93
XG
2097static void drop_parent_pte(struct kvm_mmu_page *sp,
2098 u64 *parent_pte)
2099{
2100 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 2101 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
2102}
2103
47005792 2104static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu, int direct)
ad8cfbe3 2105{
67052b35 2106 struct kvm_mmu_page *sp;
7ddca7e4 2107
80feb89a
TY
2108 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
2109 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2110 if (!direct)
80feb89a 2111 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 2112 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
002c5f73
SC
2113
2114 /*
2115 * active_mmu_pages must be a FIFO list, as kvm_zap_obsolete_pages()
2116 * depends on valid pages being added to the head of the list. See
2117 * comments in kvm_zap_obsolete_pages().
2118 */
ca333add 2119 sp->mmu_valid_gen = vcpu->kvm->arch.mmu_valid_gen;
67052b35 2120 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
67052b35
XG
2121 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
2122 return sp;
ad8cfbe3
MT
2123}
2124
67052b35 2125static void mark_unsync(u64 *spte);
1047df1f 2126static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 2127{
74c4e63a
TY
2128 u64 *sptep;
2129 struct rmap_iterator iter;
2130
2131 for_each_rmap_spte(&sp->parent_ptes, &iter, sptep) {
2132 mark_unsync(sptep);
2133 }
0074ff63
MT
2134}
2135
67052b35 2136static void mark_unsync(u64 *spte)
0074ff63 2137{
67052b35 2138 struct kvm_mmu_page *sp;
1047df1f 2139 unsigned int index;
0074ff63 2140
67052b35 2141 sp = page_header(__pa(spte));
1047df1f
XG
2142 index = spte - sp->spt;
2143 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 2144 return;
1047df1f 2145 if (sp->unsync_children++)
0074ff63 2146 return;
1047df1f 2147 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
2148}
2149
e8bc217a 2150static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 2151 struct kvm_mmu_page *sp)
e8bc217a 2152{
1f50f1b3 2153 return 0;
e8bc217a
MT
2154}
2155
0f53b5b1
XG
2156static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
2157 struct kvm_mmu_page *sp, u64 *spte,
7c562522 2158 const void *pte)
0f53b5b1
XG
2159{
2160 WARN_ON(1);
2161}
2162
60c8aec6
MT
2163#define KVM_PAGE_ARRAY_NR 16
2164
2165struct kvm_mmu_pages {
2166 struct mmu_page_and_offset {
2167 struct kvm_mmu_page *sp;
2168 unsigned int idx;
2169 } page[KVM_PAGE_ARRAY_NR];
2170 unsigned int nr;
2171};
2172
cded19f3
HE
2173static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
2174 int idx)
4731d4c7 2175{
60c8aec6 2176 int i;
4731d4c7 2177
60c8aec6
MT
2178 if (sp->unsync)
2179 for (i=0; i < pvec->nr; i++)
2180 if (pvec->page[i].sp == sp)
2181 return 0;
2182
2183 pvec->page[pvec->nr].sp = sp;
2184 pvec->page[pvec->nr].idx = idx;
2185 pvec->nr++;
2186 return (pvec->nr == KVM_PAGE_ARRAY_NR);
2187}
2188
fd951457
TY
2189static inline void clear_unsync_child_bit(struct kvm_mmu_page *sp, int idx)
2190{
2191 --sp->unsync_children;
2192 WARN_ON((int)sp->unsync_children < 0);
2193 __clear_bit(idx, sp->unsync_child_bitmap);
2194}
2195
60c8aec6
MT
2196static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
2197 struct kvm_mmu_pages *pvec)
2198{
2199 int i, ret, nr_unsync_leaf = 0;
4731d4c7 2200
37178b8b 2201 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 2202 struct kvm_mmu_page *child;
4731d4c7
MT
2203 u64 ent = sp->spt[i];
2204
fd951457
TY
2205 if (!is_shadow_present_pte(ent) || is_large_pte(ent)) {
2206 clear_unsync_child_bit(sp, i);
2207 continue;
2208 }
7a8f1a74
XG
2209
2210 child = page_header(ent & PT64_BASE_ADDR_MASK);
2211
2212 if (child->unsync_children) {
2213 if (mmu_pages_add(pvec, child, i))
2214 return -ENOSPC;
2215
2216 ret = __mmu_unsync_walk(child, pvec);
fd951457
TY
2217 if (!ret) {
2218 clear_unsync_child_bit(sp, i);
2219 continue;
2220 } else if (ret > 0) {
7a8f1a74 2221 nr_unsync_leaf += ret;
fd951457 2222 } else
7a8f1a74
XG
2223 return ret;
2224 } else if (child->unsync) {
2225 nr_unsync_leaf++;
2226 if (mmu_pages_add(pvec, child, i))
2227 return -ENOSPC;
2228 } else
fd951457 2229 clear_unsync_child_bit(sp, i);
4731d4c7
MT
2230 }
2231
60c8aec6
MT
2232 return nr_unsync_leaf;
2233}
2234
e23d3fef
XG
2235#define INVALID_INDEX (-1)
2236
60c8aec6
MT
2237static int mmu_unsync_walk(struct kvm_mmu_page *sp,
2238 struct kvm_mmu_pages *pvec)
2239{
0a47cd85 2240 pvec->nr = 0;
60c8aec6
MT
2241 if (!sp->unsync_children)
2242 return 0;
2243
e23d3fef 2244 mmu_pages_add(pvec, sp, INVALID_INDEX);
60c8aec6 2245 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
2246}
2247
4731d4c7
MT
2248static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
2249{
2250 WARN_ON(!sp->unsync);
5e1b3ddb 2251 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
2252 sp->unsync = 0;
2253 --kvm->stat.mmu_unsync;
2254}
2255
83cdb568
SC
2256static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2257 struct list_head *invalid_list);
7775834a
XG
2258static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2259 struct list_head *invalid_list);
4731d4c7 2260
47c42e6b 2261
f3414bc7 2262#define for_each_valid_sp(_kvm, _sp, _gfn) \
1044b030
TY
2263 hlist_for_each_entry(_sp, \
2264 &(_kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(_gfn)], hash_link) \
fac026da 2265 if (is_obsolete_sp((_kvm), (_sp))) { \
f3414bc7 2266 } else
1044b030
TY
2267
2268#define for_each_gfn_indirect_valid_sp(_kvm, _sp, _gfn) \
f3414bc7
DM
2269 for_each_valid_sp(_kvm, _sp, _gfn) \
2270 if ((_sp)->gfn != (_gfn) || (_sp)->role.direct) {} else
7ae680eb 2271
47c42e6b
SC
2272static inline bool is_ept_sp(struct kvm_mmu_page *sp)
2273{
2274 return sp->role.cr0_wp && sp->role.smap_andnot_wp;
2275}
2276
f918b443 2277/* @sp->gfn should be write-protected at the call site */
1f50f1b3
PB
2278static bool __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
2279 struct list_head *invalid_list)
4731d4c7 2280{
47c42e6b
SC
2281 if ((!is_ept_sp(sp) && sp->role.gpte_is_8_bytes != !!is_pae(vcpu)) ||
2282 vcpu->arch.mmu->sync_page(vcpu, sp) == 0) {
d98ba053 2283 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
1f50f1b3 2284 return false;
4731d4c7
MT
2285 }
2286
1f50f1b3 2287 return true;
4731d4c7
MT
2288}
2289
a2113634
SC
2290static bool kvm_mmu_remote_flush_or_zap(struct kvm *kvm,
2291 struct list_head *invalid_list,
2292 bool remote_flush)
2293{
cfd32acf 2294 if (!remote_flush && list_empty(invalid_list))
a2113634
SC
2295 return false;
2296
2297 if (!list_empty(invalid_list))
2298 kvm_mmu_commit_zap_page(kvm, invalid_list);
2299 else
2300 kvm_flush_remote_tlbs(kvm);
2301 return true;
2302}
2303
35a70510
PB
2304static void kvm_mmu_flush_or_zap(struct kvm_vcpu *vcpu,
2305 struct list_head *invalid_list,
2306 bool remote_flush, bool local_flush)
1d9dc7e0 2307{
a2113634 2308 if (kvm_mmu_remote_flush_or_zap(vcpu->kvm, invalid_list, remote_flush))
35a70510 2309 return;
d98ba053 2310
a2113634 2311 if (local_flush)
35a70510 2312 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1d9dc7e0
XG
2313}
2314
e37fa785
XG
2315#ifdef CONFIG_KVM_MMU_AUDIT
2316#include "mmu_audit.c"
2317#else
2318static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
2319static void mmu_audit_disable(void) { }
2320#endif
2321
002c5f73
SC
2322static bool is_obsolete_sp(struct kvm *kvm, struct kvm_mmu_page *sp)
2323{
fac026da
SC
2324 return sp->role.invalid ||
2325 unlikely(sp->mmu_valid_gen != kvm->arch.mmu_valid_gen);
002c5f73
SC
2326}
2327
1f50f1b3 2328static bool kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 2329 struct list_head *invalid_list)
1d9dc7e0 2330{
9a43c5d9
PB
2331 kvm_unlink_unsync_page(vcpu->kvm, sp);
2332 return __kvm_sync_page(vcpu, sp, invalid_list);
1d9dc7e0
XG
2333}
2334
9f1a122f 2335/* @gfn should be write-protected at the call site */
2a74003a
PB
2336static bool kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn,
2337 struct list_head *invalid_list)
9f1a122f 2338{
9f1a122f 2339 struct kvm_mmu_page *s;
2a74003a 2340 bool ret = false;
9f1a122f 2341
b67bfe0d 2342 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn) {
7ae680eb 2343 if (!s->unsync)
9f1a122f
XG
2344 continue;
2345
2346 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2a74003a 2347 ret |= kvm_sync_page(vcpu, s, invalid_list);
9f1a122f
XG
2348 }
2349
2a74003a 2350 return ret;
9f1a122f
XG
2351}
2352
60c8aec6 2353struct mmu_page_path {
2a7266a8
YZ
2354 struct kvm_mmu_page *parent[PT64_ROOT_MAX_LEVEL];
2355 unsigned int idx[PT64_ROOT_MAX_LEVEL];
4731d4c7
MT
2356};
2357
60c8aec6 2358#define for_each_sp(pvec, sp, parents, i) \
0a47cd85 2359 for (i = mmu_pages_first(&pvec, &parents); \
60c8aec6
MT
2360 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
2361 i = mmu_pages_next(&pvec, &parents, i))
2362
cded19f3
HE
2363static int mmu_pages_next(struct kvm_mmu_pages *pvec,
2364 struct mmu_page_path *parents,
2365 int i)
60c8aec6
MT
2366{
2367 int n;
2368
2369 for (n = i+1; n < pvec->nr; n++) {
2370 struct kvm_mmu_page *sp = pvec->page[n].sp;
0a47cd85
PB
2371 unsigned idx = pvec->page[n].idx;
2372 int level = sp->role.level;
60c8aec6 2373
0a47cd85
PB
2374 parents->idx[level-1] = idx;
2375 if (level == PT_PAGE_TABLE_LEVEL)
2376 break;
60c8aec6 2377
0a47cd85 2378 parents->parent[level-2] = sp;
60c8aec6
MT
2379 }
2380
2381 return n;
2382}
2383
0a47cd85
PB
2384static int mmu_pages_first(struct kvm_mmu_pages *pvec,
2385 struct mmu_page_path *parents)
2386{
2387 struct kvm_mmu_page *sp;
2388 int level;
2389
2390 if (pvec->nr == 0)
2391 return 0;
2392
e23d3fef
XG
2393 WARN_ON(pvec->page[0].idx != INVALID_INDEX);
2394
0a47cd85
PB
2395 sp = pvec->page[0].sp;
2396 level = sp->role.level;
2397 WARN_ON(level == PT_PAGE_TABLE_LEVEL);
2398
2399 parents->parent[level-2] = sp;
2400
2401 /* Also set up a sentinel. Further entries in pvec are all
2402 * children of sp, so this element is never overwritten.
2403 */
2404 parents->parent[level-1] = NULL;
2405 return mmu_pages_next(pvec, parents, 0);
2406}
2407
cded19f3 2408static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 2409{
60c8aec6
MT
2410 struct kvm_mmu_page *sp;
2411 unsigned int level = 0;
2412
2413 do {
2414 unsigned int idx = parents->idx[level];
60c8aec6
MT
2415 sp = parents->parent[level];
2416 if (!sp)
2417 return;
2418
e23d3fef 2419 WARN_ON(idx == INVALID_INDEX);
fd951457 2420 clear_unsync_child_bit(sp, idx);
60c8aec6 2421 level++;
0a47cd85 2422 } while (!sp->unsync_children);
60c8aec6 2423}
4731d4c7 2424
60c8aec6
MT
2425static void mmu_sync_children(struct kvm_vcpu *vcpu,
2426 struct kvm_mmu_page *parent)
2427{
2428 int i;
2429 struct kvm_mmu_page *sp;
2430 struct mmu_page_path parents;
2431 struct kvm_mmu_pages pages;
d98ba053 2432 LIST_HEAD(invalid_list);
50c9e6f3 2433 bool flush = false;
60c8aec6 2434
60c8aec6 2435 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 2436 bool protected = false;
b1a36821
MT
2437
2438 for_each_sp(pages, sp, parents, i)
54bf36aa 2439 protected |= rmap_write_protect(vcpu, sp->gfn);
b1a36821 2440
50c9e6f3 2441 if (protected) {
b1a36821 2442 kvm_flush_remote_tlbs(vcpu->kvm);
50c9e6f3
PB
2443 flush = false;
2444 }
b1a36821 2445
60c8aec6 2446 for_each_sp(pages, sp, parents, i) {
1f50f1b3 2447 flush |= kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
2448 mmu_pages_clear_parents(&parents);
2449 }
50c9e6f3
PB
2450 if (need_resched() || spin_needbreak(&vcpu->kvm->mmu_lock)) {
2451 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
2452 cond_resched_lock(&vcpu->kvm->mmu_lock);
2453 flush = false;
2454 }
60c8aec6 2455 }
50c9e6f3
PB
2456
2457 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
4731d4c7
MT
2458}
2459
a30f47cb
XG
2460static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
2461{
e5691a81 2462 atomic_set(&sp->write_flooding_count, 0);
a30f47cb
XG
2463}
2464
2465static void clear_sp_write_flooding_count(u64 *spte)
2466{
2467 struct kvm_mmu_page *sp = page_header(__pa(spte));
2468
2469 __clear_sp_write_flooding_count(sp);
2470}
2471
cea0f0e7
AK
2472static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
2473 gfn_t gfn,
2474 gva_t gaddr,
2475 unsigned level,
f6e2c02b 2476 int direct,
0a2b64c5 2477 unsigned int access)
cea0f0e7
AK
2478{
2479 union kvm_mmu_page_role role;
cea0f0e7 2480 unsigned quadrant;
9f1a122f 2481 struct kvm_mmu_page *sp;
9f1a122f 2482 bool need_sync = false;
2a74003a 2483 bool flush = false;
f3414bc7 2484 int collisions = 0;
2a74003a 2485 LIST_HEAD(invalid_list);
cea0f0e7 2486
36d9594d 2487 role = vcpu->arch.mmu->mmu_role.base;
cea0f0e7 2488 role.level = level;
f6e2c02b 2489 role.direct = direct;
84b0c8c6 2490 if (role.direct)
47c42e6b 2491 role.gpte_is_8_bytes = true;
41074d07 2492 role.access = access;
44dd3ffa
VK
2493 if (!vcpu->arch.mmu->direct_map
2494 && vcpu->arch.mmu->root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
2495 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
2496 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
2497 role.quadrant = quadrant;
2498 }
f3414bc7
DM
2499 for_each_valid_sp(vcpu->kvm, sp, gfn) {
2500 if (sp->gfn != gfn) {
2501 collisions++;
2502 continue;
2503 }
2504
7ae680eb
XG
2505 if (!need_sync && sp->unsync)
2506 need_sync = true;
4731d4c7 2507
7ae680eb
XG
2508 if (sp->role.word != role.word)
2509 continue;
4731d4c7 2510
2a74003a
PB
2511 if (sp->unsync) {
2512 /* The page is good, but __kvm_sync_page might still end
2513 * up zapping it. If so, break in order to rebuild it.
2514 */
2515 if (!__kvm_sync_page(vcpu, sp, &invalid_list))
2516 break;
2517
2518 WARN_ON(!list_empty(&invalid_list));
2519 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2520 }
e02aa901 2521
98bba238 2522 if (sp->unsync_children)
a8eeb04a 2523 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
e02aa901 2524
a30f47cb 2525 __clear_sp_write_flooding_count(sp);
7ae680eb 2526 trace_kvm_mmu_get_page(sp, false);
f3414bc7 2527 goto out;
7ae680eb 2528 }
47005792 2529
dfc5aa00 2530 ++vcpu->kvm->stat.mmu_cache_miss;
47005792
TY
2531
2532 sp = kvm_mmu_alloc_page(vcpu, direct);
2533
4db35314
AK
2534 sp->gfn = gfn;
2535 sp->role = role;
7ae680eb
XG
2536 hlist_add_head(&sp->hash_link,
2537 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 2538 if (!direct) {
56ca57f9
XG
2539 /*
2540 * we should do write protection before syncing pages
2541 * otherwise the content of the synced shadow page may
2542 * be inconsistent with guest page table.
2543 */
2544 account_shadowed(vcpu->kvm, sp);
2545 if (level == PT_PAGE_TABLE_LEVEL &&
2546 rmap_write_protect(vcpu, gfn))
c3134ce2 2547 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn, 1);
9f1a122f 2548
9f1a122f 2549 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
2a74003a 2550 flush |= kvm_sync_pages(vcpu, gfn, &invalid_list);
4731d4c7 2551 }
77492664 2552 clear_page(sp->spt);
f691fe1d 2553 trace_kvm_mmu_get_page(sp, true);
2a74003a
PB
2554
2555 kvm_mmu_flush_or_zap(vcpu, &invalid_list, false, flush);
f3414bc7
DM
2556out:
2557 if (collisions > vcpu->kvm->stat.max_mmu_page_hash_collisions)
2558 vcpu->kvm->stat.max_mmu_page_hash_collisions = collisions;
4db35314 2559 return sp;
cea0f0e7
AK
2560}
2561
7eb77e9f
JS
2562static void shadow_walk_init_using_root(struct kvm_shadow_walk_iterator *iterator,
2563 struct kvm_vcpu *vcpu, hpa_t root,
2564 u64 addr)
2d11123a
AK
2565{
2566 iterator->addr = addr;
7eb77e9f 2567 iterator->shadow_addr = root;
44dd3ffa 2568 iterator->level = vcpu->arch.mmu->shadow_root_level;
81407ca5 2569
2a7266a8 2570 if (iterator->level == PT64_ROOT_4LEVEL &&
44dd3ffa
VK
2571 vcpu->arch.mmu->root_level < PT64_ROOT_4LEVEL &&
2572 !vcpu->arch.mmu->direct_map)
81407ca5
JR
2573 --iterator->level;
2574
2d11123a 2575 if (iterator->level == PT32E_ROOT_LEVEL) {
7eb77e9f
JS
2576 /*
2577 * prev_root is currently only used for 64-bit hosts. So only
2578 * the active root_hpa is valid here.
2579 */
44dd3ffa 2580 BUG_ON(root != vcpu->arch.mmu->root_hpa);
7eb77e9f 2581
2d11123a 2582 iterator->shadow_addr
44dd3ffa 2583 = vcpu->arch.mmu->pae_root[(addr >> 30) & 3];
2d11123a
AK
2584 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
2585 --iterator->level;
2586 if (!iterator->shadow_addr)
2587 iterator->level = 0;
2588 }
2589}
2590
7eb77e9f
JS
2591static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
2592 struct kvm_vcpu *vcpu, u64 addr)
2593{
44dd3ffa 2594 shadow_walk_init_using_root(iterator, vcpu, vcpu->arch.mmu->root_hpa,
7eb77e9f
JS
2595 addr);
2596}
2597
2d11123a
AK
2598static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
2599{
2600 if (iterator->level < PT_PAGE_TABLE_LEVEL)
2601 return false;
4d88954d 2602
2d11123a
AK
2603 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
2604 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
2605 return true;
2606}
2607
c2a2ac2b
XG
2608static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
2609 u64 spte)
2d11123a 2610{
c2a2ac2b 2611 if (is_last_spte(spte, iterator->level)) {
052331be
XG
2612 iterator->level = 0;
2613 return;
2614 }
2615
c2a2ac2b 2616 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
2617 --iterator->level;
2618}
2619
c2a2ac2b
XG
2620static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
2621{
bb606a9b 2622 __shadow_walk_next(iterator, *iterator->sptep);
c2a2ac2b
XG
2623}
2624
98bba238
TY
2625static void link_shadow_page(struct kvm_vcpu *vcpu, u64 *sptep,
2626 struct kvm_mmu_page *sp)
32ef26a3
AK
2627{
2628 u64 spte;
2629
ffb128c8 2630 BUILD_BUG_ON(VMX_EPT_WRITABLE_MASK != PT_WRITABLE_MASK);
7a1638ce 2631
ffb128c8 2632 spte = __pa(sp->spt) | shadow_present_mask | PT_WRITABLE_MASK |
d0ec49d4 2633 shadow_user_mask | shadow_x_mask | shadow_me_mask;
ac8d57e5
PF
2634
2635 if (sp_ad_disabled(sp))
6eeb4ef0 2636 spte |= SPTE_AD_DISABLED_MASK;
ac8d57e5
PF
2637 else
2638 spte |= shadow_accessed_mask;
24db2734 2639
1df9f2dc 2640 mmu_spte_set(sptep, spte);
98bba238
TY
2641
2642 mmu_page_add_parent_pte(vcpu, sp, sptep);
2643
2644 if (sp->unsync_children || sp->unsync)
2645 mark_unsync(sptep);
32ef26a3
AK
2646}
2647
a357bd22
AK
2648static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
2649 unsigned direct_access)
2650{
2651 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
2652 struct kvm_mmu_page *child;
2653
2654 /*
2655 * For the direct sp, if the guest pte's dirty bit
2656 * changed form clean to dirty, it will corrupt the
2657 * sp's access: allow writable in the read-only sp,
2658 * so we should update the spte at this point to get
2659 * a new sp with the correct access.
2660 */
2661 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
2662 if (child->role.access == direct_access)
2663 return;
2664
bcdd9a93 2665 drop_parent_pte(child, sptep);
c3134ce2 2666 kvm_flush_remote_tlbs_with_address(vcpu->kvm, child->gfn, 1);
a357bd22
AK
2667 }
2668}
2669
505aef8f 2670static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2671 u64 *spte)
2672{
2673 u64 pte;
2674 struct kvm_mmu_page *child;
2675
2676 pte = *spte;
2677 if (is_shadow_present_pte(pte)) {
505aef8f 2678 if (is_last_spte(pte, sp->role.level)) {
c3707958 2679 drop_spte(kvm, spte);
505aef8f
XG
2680 if (is_large_pte(pte))
2681 --kvm->stat.lpages;
2682 } else {
38e3b2b2 2683 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2684 drop_parent_pte(child, spte);
38e3b2b2 2685 }
505aef8f
XG
2686 return true;
2687 }
2688
2689 if (is_mmio_spte(pte))
ce88decf 2690 mmu_spte_clear_no_track(spte);
c3707958 2691
505aef8f 2692 return false;
38e3b2b2
XG
2693}
2694
90cb0529 2695static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2696 struct kvm_mmu_page *sp)
a436036b 2697{
697fe2e2 2698 unsigned i;
697fe2e2 2699
38e3b2b2
XG
2700 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2701 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2702}
2703
31aa2b44 2704static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2705{
1e3f42f0
TY
2706 u64 *sptep;
2707 struct rmap_iterator iter;
a436036b 2708
018aabb5 2709 while ((sptep = rmap_get_first(&sp->parent_ptes, &iter)))
1e3f42f0 2710 drop_parent_pte(sp, sptep);
31aa2b44
AK
2711}
2712
60c8aec6 2713static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2714 struct kvm_mmu_page *parent,
2715 struct list_head *invalid_list)
4731d4c7 2716{
60c8aec6
MT
2717 int i, zapped = 0;
2718 struct mmu_page_path parents;
2719 struct kvm_mmu_pages pages;
4731d4c7 2720
60c8aec6 2721 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2722 return 0;
60c8aec6 2723
60c8aec6
MT
2724 while (mmu_unsync_walk(parent, &pages)) {
2725 struct kvm_mmu_page *sp;
2726
2727 for_each_sp(pages, sp, parents, i) {
7775834a 2728 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2729 mmu_pages_clear_parents(&parents);
77662e00 2730 zapped++;
60c8aec6 2731 }
60c8aec6
MT
2732 }
2733
2734 return zapped;
4731d4c7
MT
2735}
2736
83cdb568
SC
2737static bool __kvm_mmu_prepare_zap_page(struct kvm *kvm,
2738 struct kvm_mmu_page *sp,
2739 struct list_head *invalid_list,
2740 int *nr_zapped)
31aa2b44 2741{
83cdb568 2742 bool list_unstable;
f691fe1d 2743
7775834a 2744 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2745 ++kvm->stat.mmu_shadow_zapped;
83cdb568 2746 *nr_zapped = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2747 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2748 kvm_mmu_unlink_parents(kvm, sp);
5304b8d3 2749
83cdb568
SC
2750 /* Zapping children means active_mmu_pages has become unstable. */
2751 list_unstable = *nr_zapped;
2752
f6e2c02b 2753 if (!sp->role.invalid && !sp->role.direct)
3ed1a478 2754 unaccount_shadowed(kvm, sp);
5304b8d3 2755
4731d4c7
MT
2756 if (sp->unsync)
2757 kvm_unlink_unsync_page(kvm, sp);
4db35314 2758 if (!sp->root_count) {
54a4f023 2759 /* Count self */
83cdb568 2760 (*nr_zapped)++;
7775834a 2761 list_move(&sp->link, invalid_list);
aa6bd187 2762 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2763 } else {
5b5c6a5a 2764 list_move(&sp->link, &kvm->arch.active_mmu_pages);
05988d72 2765
10605204
SC
2766 /*
2767 * Obsolete pages cannot be used on any vCPUs, see the comment
2768 * in kvm_mmu_zap_all_fast(). Note, is_obsolete_sp() also
2769 * treats invalid shadow pages as being obsolete.
2770 */
2771 if (!is_obsolete_sp(kvm, sp))
05988d72 2772 kvm_reload_remote_mmus(kvm);
2e53d63a 2773 }
7775834a 2774
b8e8c830
PB
2775 if (sp->lpage_disallowed)
2776 unaccount_huge_nx_page(kvm, sp);
2777
7775834a 2778 sp->role.invalid = 1;
83cdb568
SC
2779 return list_unstable;
2780}
2781
2782static bool kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2783 struct list_head *invalid_list)
2784{
2785 int nr_zapped;
2786
2787 __kvm_mmu_prepare_zap_page(kvm, sp, invalid_list, &nr_zapped);
2788 return nr_zapped;
a436036b
AK
2789}
2790
7775834a
XG
2791static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2792 struct list_head *invalid_list)
2793{
945315b9 2794 struct kvm_mmu_page *sp, *nsp;
7775834a
XG
2795
2796 if (list_empty(invalid_list))
2797 return;
2798
c142786c 2799 /*
9753f529
LT
2800 * We need to make sure everyone sees our modifications to
2801 * the page tables and see changes to vcpu->mode here. The barrier
2802 * in the kvm_flush_remote_tlbs() achieves this. This pairs
2803 * with vcpu_enter_guest and walk_shadow_page_lockless_begin/end.
2804 *
2805 * In addition, kvm_flush_remote_tlbs waits for all vcpus to exit
2806 * guest mode and/or lockless shadow page table walks.
c142786c
AK
2807 */
2808 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2809
945315b9 2810 list_for_each_entry_safe(sp, nsp, invalid_list, link) {
7775834a 2811 WARN_ON(!sp->role.invalid || sp->root_count);
aa6bd187 2812 kvm_mmu_free_page(sp);
945315b9 2813 }
7775834a
XG
2814}
2815
5da59607
TY
2816static bool prepare_zap_oldest_mmu_page(struct kvm *kvm,
2817 struct list_head *invalid_list)
2818{
2819 struct kvm_mmu_page *sp;
2820
2821 if (list_empty(&kvm->arch.active_mmu_pages))
2822 return false;
2823
d74c0e6b
GT
2824 sp = list_last_entry(&kvm->arch.active_mmu_pages,
2825 struct kvm_mmu_page, link);
42bcbebf 2826 return kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
5da59607
TY
2827}
2828
ba7888dd
SC
2829static int make_mmu_pages_available(struct kvm_vcpu *vcpu)
2830{
2831 LIST_HEAD(invalid_list);
2832
2833 if (likely(kvm_mmu_available_pages(vcpu->kvm) >= KVM_MIN_FREE_MMU_PAGES))
2834 return 0;
2835
2836 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES) {
2837 if (!prepare_zap_oldest_mmu_page(vcpu->kvm, &invalid_list))
2838 break;
2839
2840 ++vcpu->kvm->stat.mmu_recycled;
2841 }
2842 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2843
2844 if (!kvm_mmu_available_pages(vcpu->kvm))
2845 return -ENOSPC;
2846 return 0;
2847}
2848
82ce2c96
IE
2849/*
2850 * Changing the number of mmu pages allocated to the vm
49d5ca26 2851 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2852 */
bc8a3d89 2853void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long goal_nr_mmu_pages)
82ce2c96 2854{
d98ba053 2855 LIST_HEAD(invalid_list);
82ce2c96 2856
b34cb590
TY
2857 spin_lock(&kvm->mmu_lock);
2858
49d5ca26 2859 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
5da59607
TY
2860 /* Need to free some mmu pages to achieve the goal. */
2861 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages)
2862 if (!prepare_zap_oldest_mmu_page(kvm, &invalid_list))
2863 break;
82ce2c96 2864
aa6bd187 2865 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2866 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2867 }
82ce2c96 2868
49d5ca26 2869 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
b34cb590
TY
2870
2871 spin_unlock(&kvm->mmu_lock);
82ce2c96
IE
2872}
2873
1cb3f3ae 2874int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2875{
4db35314 2876 struct kvm_mmu_page *sp;
d98ba053 2877 LIST_HEAD(invalid_list);
a436036b
AK
2878 int r;
2879
9ad17b10 2880 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2881 r = 0;
1cb3f3ae 2882 spin_lock(&kvm->mmu_lock);
b67bfe0d 2883 for_each_gfn_indirect_valid_sp(kvm, sp, gfn) {
9ad17b10 2884 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2885 sp->role.word);
2886 r = 1;
f41d335a 2887 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2888 }
d98ba053 2889 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2890 spin_unlock(&kvm->mmu_lock);
2891
a436036b 2892 return r;
cea0f0e7 2893}
1cb3f3ae 2894EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2895
5c520e90 2896static void kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
9cf5cf5a
XG
2897{
2898 trace_kvm_mmu_unsync_page(sp);
2899 ++vcpu->kvm->stat.mmu_unsync;
2900 sp->unsync = 1;
2901
2902 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2903}
2904
3d0c27ad
XG
2905static bool mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2906 bool can_unsync)
4731d4c7 2907{
5c520e90 2908 struct kvm_mmu_page *sp;
4731d4c7 2909
3d0c27ad
XG
2910 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
2911 return true;
9cf5cf5a 2912
5c520e90 2913 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
36a2e677 2914 if (!can_unsync)
3d0c27ad 2915 return true;
36a2e677 2916
5c520e90
XG
2917 if (sp->unsync)
2918 continue;
9cf5cf5a 2919
5c520e90
XG
2920 WARN_ON(sp->role.level != PT_PAGE_TABLE_LEVEL);
2921 kvm_unsync_page(vcpu, sp);
4731d4c7 2922 }
3d0c27ad 2923
578e1c4d
JS
2924 /*
2925 * We need to ensure that the marking of unsync pages is visible
2926 * before the SPTE is updated to allow writes because
2927 * kvm_mmu_sync_roots() checks the unsync flags without holding
2928 * the MMU lock and so can race with this. If the SPTE was updated
2929 * before the page had been marked as unsync-ed, something like the
2930 * following could happen:
2931 *
2932 * CPU 1 CPU 2
2933 * ---------------------------------------------------------------------
2934 * 1.2 Host updates SPTE
2935 * to be writable
2936 * 2.1 Guest writes a GPTE for GVA X.
2937 * (GPTE being in the guest page table shadowed
2938 * by the SP from CPU 1.)
2939 * This reads SPTE during the page table walk.
2940 * Since SPTE.W is read as 1, there is no
2941 * fault.
2942 *
2943 * 2.2 Guest issues TLB flush.
2944 * That causes a VM Exit.
2945 *
2946 * 2.3 kvm_mmu_sync_pages() reads sp->unsync.
2947 * Since it is false, so it just returns.
2948 *
2949 * 2.4 Guest accesses GVA X.
2950 * Since the mapping in the SP was not updated,
2951 * so the old mapping for GVA X incorrectly
2952 * gets used.
2953 * 1.1 Host marks SP
2954 * as unsync
2955 * (sp->unsync = true)
2956 *
2957 * The write barrier below ensures that 1.1 happens before 1.2 and thus
2958 * the situation in 2.4 does not arise. The implicit barrier in 2.2
2959 * pairs with this write barrier.
2960 */
2961 smp_wmb();
2962
3d0c27ad 2963 return false;
4731d4c7
MT
2964}
2965
ba049e93 2966static bool kvm_is_mmio_pfn(kvm_pfn_t pfn)
d1fe9219
PB
2967{
2968 if (pfn_valid(pfn))
aa2e063a
HZ
2969 return !is_zero_pfn(pfn) && PageReserved(pfn_to_page(pfn)) &&
2970 /*
2971 * Some reserved pages, such as those from NVDIMM
2972 * DAX devices, are not for MMIO, and can be mapped
2973 * with cached memory type for better performance.
2974 * However, the above check misconceives those pages
2975 * as MMIO, and results in KVM mapping them with UC
2976 * memory type, which would hurt the performance.
2977 * Therefore, we check the host memory type in addition
2978 * and only treat UC/UC-/WC pages as MMIO.
2979 */
2980 (!pat_enabled() || pat_pfn_immune_to_uc_mtrr(pfn));
d1fe9219 2981
0c55671f
KA
2982 return !e820__mapped_raw_any(pfn_to_hpa(pfn),
2983 pfn_to_hpa(pfn + 1) - 1,
2984 E820_TYPE_RAM);
d1fe9219
PB
2985}
2986
5ce4786f
JS
2987/* Bits which may be returned by set_spte() */
2988#define SET_SPTE_WRITE_PROTECTED_PT BIT(0)
2989#define SET_SPTE_NEED_REMOTE_TLB_FLUSH BIT(1)
2990
d555c333 2991static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
0a2b64c5 2992 unsigned int pte_access, int level,
ba049e93 2993 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
9bdbba13 2994 bool can_unsync, bool host_writable)
1c4f1fd6 2995{
ffb128c8 2996 u64 spte = 0;
1e73f9dd 2997 int ret = 0;
ac8d57e5 2998 struct kvm_mmu_page *sp;
64d4d521 2999
54bf36aa 3000 if (set_mmio_spte(vcpu, sptep, gfn, pfn, pte_access))
ce88decf
XG
3001 return 0;
3002
ac8d57e5
PF
3003 sp = page_header(__pa(sptep));
3004 if (sp_ad_disabled(sp))
6eeb4ef0 3005 spte |= SPTE_AD_DISABLED_MASK;
1f4e5fc8
PB
3006 else if (kvm_vcpu_ad_need_write_protect(vcpu))
3007 spte |= SPTE_AD_WRPROT_ONLY_MASK;
ac8d57e5 3008
d95c5568
BD
3009 /*
3010 * For the EPT case, shadow_present_mask is 0 if hardware
3011 * supports exec-only page table entries. In that case,
3012 * ACC_USER_MASK and shadow_user_mask are used to represent
3013 * read access. See FNAME(gpte_access) in paging_tmpl.h.
3014 */
ffb128c8 3015 spte |= shadow_present_mask;
947da538 3016 if (!speculative)
ac8d57e5 3017 spte |= spte_shadow_accessed_mask(spte);
640d9b0d 3018
b8e8c830
PB
3019 if (level > PT_PAGE_TABLE_LEVEL && (pte_access & ACC_EXEC_MASK) &&
3020 is_nx_huge_page_enabled()) {
3021 pte_access &= ~ACC_EXEC_MASK;
3022 }
3023
7b52345e
SY
3024 if (pte_access & ACC_EXEC_MASK)
3025 spte |= shadow_x_mask;
3026 else
3027 spte |= shadow_nx_mask;
49fde340 3028
1c4f1fd6 3029 if (pte_access & ACC_USER_MASK)
7b52345e 3030 spte |= shadow_user_mask;
49fde340 3031
852e3c19 3032 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 3033 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 3034 if (tdp_enabled)
afaf0b2f 3035 spte |= kvm_x86_ops.get_mt_mask(vcpu, gfn,
d1fe9219 3036 kvm_is_mmio_pfn(pfn));
1c4f1fd6 3037
9bdbba13 3038 if (host_writable)
1403283a 3039 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
3040 else
3041 pte_access &= ~ACC_WRITE_MASK;
1403283a 3042
daaf216c
TL
3043 if (!kvm_is_mmio_pfn(pfn))
3044 spte |= shadow_me_mask;
3045
35149e21 3046 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6 3047
c2288505 3048 if (pte_access & ACC_WRITE_MASK) {
49fde340 3049 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 3050
ecc5589f
MT
3051 /*
3052 * Optimization: for pte sync, if spte was writable the hash
3053 * lookup is unnecessary (and expensive). Write protection
3054 * is responsibility of mmu_get_page / kvm_sync_page.
3055 * Same reasoning can be applied to dirty page accounting.
3056 */
8dae4445 3057 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
3058 goto set_pte;
3059
4731d4c7 3060 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 3061 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 3062 __func__, gfn);
5ce4786f 3063 ret |= SET_SPTE_WRITE_PROTECTED_PT;
1c4f1fd6 3064 pte_access &= ~ACC_WRITE_MASK;
49fde340 3065 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
3066 }
3067 }
3068
9b51a630 3069 if (pte_access & ACC_WRITE_MASK) {
54bf36aa 3070 kvm_vcpu_mark_page_dirty(vcpu, gfn);
ac8d57e5 3071 spte |= spte_shadow_dirty_mask(spte);
9b51a630 3072 }
1c4f1fd6 3073
f160c7b7
JS
3074 if (speculative)
3075 spte = mark_spte_for_access_track(spte);
3076
38187c83 3077set_pte:
6e7d0354 3078 if (mmu_spte_update(sptep, spte))
5ce4786f 3079 ret |= SET_SPTE_NEED_REMOTE_TLB_FLUSH;
1e73f9dd
MT
3080 return ret;
3081}
3082
0a2b64c5
BG
3083static int mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
3084 unsigned int pte_access, int write_fault, int level,
3085 gfn_t gfn, kvm_pfn_t pfn, bool speculative,
3086 bool host_writable)
1e73f9dd
MT
3087{
3088 int was_rmapped = 0;
53a27b39 3089 int rmap_count;
5ce4786f 3090 int set_spte_ret;
9b8ebbdb 3091 int ret = RET_PF_RETRY;
c2a4eadf 3092 bool flush = false;
1e73f9dd 3093
f7616203
XG
3094 pgprintk("%s: spte %llx write_fault %d gfn %llx\n", __func__,
3095 *sptep, write_fault, gfn);
1e73f9dd 3096
afd28fe1 3097 if (is_shadow_present_pte(*sptep)) {
1e73f9dd
MT
3098 /*
3099 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
3100 * the parent of the now unreachable PTE.
3101 */
852e3c19
JR
3102 if (level > PT_PAGE_TABLE_LEVEL &&
3103 !is_large_pte(*sptep)) {
1e73f9dd 3104 struct kvm_mmu_page *child;
d555c333 3105 u64 pte = *sptep;
1e73f9dd
MT
3106
3107 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 3108 drop_parent_pte(child, sptep);
c2a4eadf 3109 flush = true;
d555c333 3110 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 3111 pgprintk("hfn old %llx new %llx\n",
d555c333 3112 spte_to_pfn(*sptep), pfn);
c3707958 3113 drop_spte(vcpu->kvm, sptep);
c2a4eadf 3114 flush = true;
6bed6b9e
JR
3115 } else
3116 was_rmapped = 1;
1e73f9dd 3117 }
852e3c19 3118
5ce4786f
JS
3119 set_spte_ret = set_spte(vcpu, sptep, pte_access, level, gfn, pfn,
3120 speculative, true, host_writable);
3121 if (set_spte_ret & SET_SPTE_WRITE_PROTECTED_PT) {
1e73f9dd 3122 if (write_fault)
9b8ebbdb 3123 ret = RET_PF_EMULATE;
77c3913b 3124 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
a378b4e6 3125 }
c3134ce2 3126
c2a4eadf 3127 if (set_spte_ret & SET_SPTE_NEED_REMOTE_TLB_FLUSH || flush)
c3134ce2
LT
3128 kvm_flush_remote_tlbs_with_address(vcpu->kvm, gfn,
3129 KVM_PAGES_PER_HPAGE(level));
1e73f9dd 3130
029499b4 3131 if (unlikely(is_mmio_spte(*sptep)))
9b8ebbdb 3132 ret = RET_PF_EMULATE;
ce88decf 3133
d555c333 3134 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
335e192a 3135 trace_kvm_mmu_set_spte(level, gfn, sptep);
d555c333 3136 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
3137 ++vcpu->kvm->stat.lpages;
3138
ffb61bb3 3139 if (is_shadow_present_pte(*sptep)) {
ffb61bb3
XG
3140 if (!was_rmapped) {
3141 rmap_count = rmap_add(vcpu, sptep, gfn);
3142 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
3143 rmap_recycle(vcpu, sptep, gfn);
3144 }
1c4f1fd6 3145 }
cb9aaa30 3146
9b8ebbdb 3147 return ret;
1c4f1fd6
AK
3148}
3149
ba049e93 3150static kvm_pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
957ed9ef
XG
3151 bool no_dirty_log)
3152{
3153 struct kvm_memory_slot *slot;
957ed9ef 3154
5d163b1c 3155 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa 3156 if (!slot)
6c8ee57b 3157 return KVM_PFN_ERR_FAULT;
957ed9ef 3158
037d92dc 3159 return gfn_to_pfn_memslot_atomic(slot, gfn);
957ed9ef
XG
3160}
3161
3162static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
3163 struct kvm_mmu_page *sp,
3164 u64 *start, u64 *end)
3165{
3166 struct page *pages[PTE_PREFETCH_NUM];
d9ef13c2 3167 struct kvm_memory_slot *slot;
0a2b64c5 3168 unsigned int access = sp->role.access;
957ed9ef
XG
3169 int i, ret;
3170 gfn_t gfn;
3171
3172 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
d9ef13c2
PB
3173 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK);
3174 if (!slot)
957ed9ef
XG
3175 return -1;
3176
d9ef13c2 3177 ret = gfn_to_page_many_atomic(slot, gfn, pages, end - start);
957ed9ef
XG
3178 if (ret <= 0)
3179 return -1;
3180
43fdcda9 3181 for (i = 0; i < ret; i++, gfn++, start++) {
029499b4
TY
3182 mmu_set_spte(vcpu, start, access, 0, sp->role.level, gfn,
3183 page_to_pfn(pages[i]), true, true);
43fdcda9
JS
3184 put_page(pages[i]);
3185 }
957ed9ef
XG
3186
3187 return 0;
3188}
3189
3190static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
3191 struct kvm_mmu_page *sp, u64 *sptep)
3192{
3193 u64 *spte, *start = NULL;
3194 int i;
3195
3196 WARN_ON(!sp->role.direct);
3197
3198 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
3199 spte = sp->spt + i;
3200
3201 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 3202 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
3203 if (!start)
3204 continue;
3205 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
3206 break;
3207 start = NULL;
3208 } else if (!start)
3209 start = spte;
3210 }
3211}
3212
3213static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
3214{
3215 struct kvm_mmu_page *sp;
3216
ac8d57e5
PF
3217 sp = page_header(__pa(sptep));
3218
957ed9ef 3219 /*
ac8d57e5
PF
3220 * Without accessed bits, there's no way to distinguish between
3221 * actually accessed translations and prefetched, so disable pte
3222 * prefetch if accessed bits aren't available.
957ed9ef 3223 */
ac8d57e5 3224 if (sp_ad_disabled(sp))
957ed9ef
XG
3225 return;
3226
957ed9ef
XG
3227 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
3228 return;
3229
3230 __direct_pte_prefetch(vcpu, sp, sptep);
3231}
3232
db543216 3233static int host_pfn_mapping_level(struct kvm_vcpu *vcpu, gfn_t gfn,
293e306e 3234 kvm_pfn_t pfn, struct kvm_memory_slot *slot)
db543216 3235{
db543216
SC
3236 unsigned long hva;
3237 pte_t *pte;
3238 int level;
3239
3240 BUILD_BUG_ON(PT_PAGE_TABLE_LEVEL != (int)PG_LEVEL_4K ||
3241 PT_DIRECTORY_LEVEL != (int)PG_LEVEL_2M ||
3242 PT_PDPE_LEVEL != (int)PG_LEVEL_1G);
3243
e851265a 3244 if (!PageCompound(pfn_to_page(pfn)) && !kvm_is_zone_device_pfn(pfn))
db543216
SC
3245 return PT_PAGE_TABLE_LEVEL;
3246
293e306e
SC
3247 /*
3248 * Note, using the already-retrieved memslot and __gfn_to_hva_memslot()
3249 * is not solely for performance, it's also necessary to avoid the
3250 * "writable" check in __gfn_to_hva_many(), which will always fail on
3251 * read-only memslots due to gfn_to_hva() assuming writes. Earlier
3252 * page fault steps have already verified the guest isn't writing a
3253 * read-only memslot.
3254 */
db543216
SC
3255 hva = __gfn_to_hva_memslot(slot, gfn);
3256
3257 pte = lookup_address_in_mm(vcpu->kvm->mm, hva, &level);
3258 if (unlikely(!pte))
3259 return PT_PAGE_TABLE_LEVEL;
3260
3261 return level;
3262}
3263
83f06fa7
SC
3264static int kvm_mmu_hugepage_adjust(struct kvm_vcpu *vcpu, gfn_t gfn,
3265 int max_level, kvm_pfn_t *pfnp)
0885904d 3266{
293e306e 3267 struct kvm_memory_slot *slot;
2c0629f4 3268 struct kvm_lpage_info *linfo;
0885904d 3269 kvm_pfn_t pfn = *pfnp;
17eff019 3270 kvm_pfn_t mask;
83f06fa7 3271 int level;
17eff019 3272
293e306e 3273 if (unlikely(max_level == PT_PAGE_TABLE_LEVEL))
83f06fa7 3274 return PT_PAGE_TABLE_LEVEL;
17eff019 3275
e851265a 3276 if (is_error_noslot_pfn(pfn) || kvm_is_reserved_pfn(pfn))
83f06fa7 3277 return PT_PAGE_TABLE_LEVEL;
17eff019 3278
293e306e
SC
3279 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, true);
3280 if (!slot)
3281 return PT_PAGE_TABLE_LEVEL;
3282
703c335d 3283 max_level = min(max_level, max_page_level);
293e306e 3284 for ( ; max_level > PT_PAGE_TABLE_LEVEL; max_level--) {
2c0629f4
SC
3285 linfo = lpage_info_slot(gfn, slot, max_level);
3286 if (!linfo->disallow_lpage)
293e306e
SC
3287 break;
3288 }
3289
3290 if (max_level == PT_PAGE_TABLE_LEVEL)
3291 return PT_PAGE_TABLE_LEVEL;
3292
3293 level = host_pfn_mapping_level(vcpu, gfn, pfn, slot);
db543216 3294 if (level == PT_PAGE_TABLE_LEVEL)
83f06fa7 3295 return level;
17eff019 3296
db543216 3297 level = min(level, max_level);
0885904d
SC
3298
3299 /*
17eff019
SC
3300 * mmu_notifier_retry() was successful and mmu_lock is held, so
3301 * the pmd can't be split from under us.
0885904d 3302 */
17eff019
SC
3303 mask = KVM_PAGES_PER_HPAGE(level) - 1;
3304 VM_BUG_ON((gfn & mask) != (pfn & mask));
3305 *pfnp = pfn & ~mask;
83f06fa7
SC
3306
3307 return level;
0885904d
SC
3308}
3309
b8e8c830
PB
3310static void disallowed_hugepage_adjust(struct kvm_shadow_walk_iterator it,
3311 gfn_t gfn, kvm_pfn_t *pfnp, int *levelp)
3312{
3313 int level = *levelp;
3314 u64 spte = *it.sptep;
3315
3316 if (it.level == level && level > PT_PAGE_TABLE_LEVEL &&
3317 is_nx_huge_page_enabled() &&
3318 is_shadow_present_pte(spte) &&
3319 !is_large_pte(spte)) {
3320 /*
3321 * A small SPTE exists for this pfn, but FNAME(fetch)
3322 * and __direct_map would like to create a large PTE
3323 * instead: just force them to go down another level,
3324 * patching back for them into pfn the next 9 bits of
3325 * the address.
3326 */
3327 u64 page_mask = KVM_PAGES_PER_HPAGE(level) - KVM_PAGES_PER_HPAGE(level - 1);
3328 *pfnp |= gfn & page_mask;
3329 (*levelp)--;
3330 }
3331}
3332
3fcf2d1b 3333static int __direct_map(struct kvm_vcpu *vcpu, gpa_t gpa, int write,
83f06fa7
SC
3334 int map_writable, int max_level, kvm_pfn_t pfn,
3335 bool prefault, bool account_disallowed_nx_lpage)
140754bc 3336{
3fcf2d1b 3337 struct kvm_shadow_walk_iterator it;
140754bc 3338 struct kvm_mmu_page *sp;
83f06fa7 3339 int level, ret;
3fcf2d1b
PB
3340 gfn_t gfn = gpa >> PAGE_SHIFT;
3341 gfn_t base_gfn = gfn;
6aa8b732 3342
0c7a98e3 3343 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
3fcf2d1b 3344 return RET_PF_RETRY;
989c6b34 3345
83f06fa7 3346 level = kvm_mmu_hugepage_adjust(vcpu, gfn, max_level, &pfn);
4cd071d1 3347
335e192a 3348 trace_kvm_mmu_spte_requested(gpa, level, pfn);
3fcf2d1b 3349 for_each_shadow_entry(vcpu, gpa, it) {
b8e8c830
PB
3350 /*
3351 * We cannot overwrite existing page tables with an NX
3352 * large page, as the leaf could be executable.
3353 */
3354 disallowed_hugepage_adjust(it, gfn, &pfn, &level);
3355
3fcf2d1b
PB
3356 base_gfn = gfn & ~(KVM_PAGES_PER_HPAGE(it.level) - 1);
3357 if (it.level == level)
9f652d21 3358 break;
6aa8b732 3359
3fcf2d1b
PB
3360 drop_large_spte(vcpu, it.sptep);
3361 if (!is_shadow_present_pte(*it.sptep)) {
3362 sp = kvm_mmu_get_page(vcpu, base_gfn, it.addr,
3363 it.level - 1, true, ACC_ALL);
c9fa0b3b 3364
3fcf2d1b 3365 link_shadow_page(vcpu, it.sptep, sp);
2cb70fd4 3366 if (account_disallowed_nx_lpage)
b8e8c830 3367 account_huge_nx_page(vcpu->kvm, sp);
9f652d21
AK
3368 }
3369 }
3fcf2d1b
PB
3370
3371 ret = mmu_set_spte(vcpu, it.sptep, ACC_ALL,
3372 write, level, base_gfn, pfn, prefault,
3373 map_writable);
3374 direct_pte_prefetch(vcpu, it.sptep);
3375 ++vcpu->stat.pf_fixed;
3376 return ret;
6aa8b732
AK
3377}
3378
77db5cbd 3379static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 3380{
585a8b9b 3381 send_sig_mceerr(BUS_MCEERR_AR, (void __user *)address, PAGE_SHIFT, tsk);
bf998156
HY
3382}
3383
ba049e93 3384static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, kvm_pfn_t pfn)
bf998156 3385{
4d8b81ab
XG
3386 /*
3387 * Do not cache the mmio info caused by writing the readonly gfn
3388 * into the spte otherwise read access on readonly gfn also can
3389 * caused mmio page fault and treat it as mmio access.
4d8b81ab
XG
3390 */
3391 if (pfn == KVM_PFN_ERR_RO_FAULT)
9b8ebbdb 3392 return RET_PF_EMULATE;
4d8b81ab 3393
e6c1502b 3394 if (pfn == KVM_PFN_ERR_HWPOISON) {
54bf36aa 3395 kvm_send_hwpoison_signal(kvm_vcpu_gfn_to_hva(vcpu, gfn), current);
9b8ebbdb 3396 return RET_PF_RETRY;
d7c55201 3397 }
edba23e5 3398
2c151b25 3399 return -EFAULT;
bf998156
HY
3400}
3401
d7c55201 3402static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
0a2b64c5
BG
3403 kvm_pfn_t pfn, unsigned int access,
3404 int *ret_val)
d7c55201 3405{
d7c55201 3406 /* The pfn is invalid, report the error! */
81c52c56 3407 if (unlikely(is_error_pfn(pfn))) {
d7c55201 3408 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
798e88b3 3409 return true;
d7c55201
XG
3410 }
3411
ce88decf 3412 if (unlikely(is_noslot_pfn(pfn)))
4af77151
SC
3413 vcpu_cache_mmio_info(vcpu, gva, gfn,
3414 access & shadow_mmio_access_mask);
d7c55201 3415
798e88b3 3416 return false;
d7c55201
XG
3417}
3418
e5552fd2 3419static bool page_fault_can_be_fast(u32 error_code)
c7ba5b48 3420{
1c118b82
XG
3421 /*
3422 * Do not fix the mmio spte with invalid generation number which
3423 * need to be updated by slow page fault path.
3424 */
3425 if (unlikely(error_code & PFERR_RSVD_MASK))
3426 return false;
3427
f160c7b7
JS
3428 /* See if the page fault is due to an NX violation */
3429 if (unlikely(((error_code & (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))
3430 == (PFERR_FETCH_MASK | PFERR_PRESENT_MASK))))
3431 return false;
3432
c7ba5b48 3433 /*
f160c7b7
JS
3434 * #PF can be fast if:
3435 * 1. The shadow page table entry is not present, which could mean that
3436 * the fault is potentially caused by access tracking (if enabled).
3437 * 2. The shadow page table entry is present and the fault
3438 * is caused by write-protect, that means we just need change the W
3439 * bit of the spte which can be done out of mmu-lock.
3440 *
3441 * However, if access tracking is disabled we know that a non-present
3442 * page must be a genuine page fault where we have to create a new SPTE.
3443 * So, if access tracking is disabled, we return true only for write
3444 * accesses to a present page.
c7ba5b48 3445 */
c7ba5b48 3446
f160c7b7
JS
3447 return shadow_acc_track_mask != 0 ||
3448 ((error_code & (PFERR_WRITE_MASK | PFERR_PRESENT_MASK))
3449 == (PFERR_WRITE_MASK | PFERR_PRESENT_MASK));
c7ba5b48
XG
3450}
3451
97dceba2
JS
3452/*
3453 * Returns true if the SPTE was fixed successfully. Otherwise,
3454 * someone else modified the SPTE from its original value.
3455 */
c7ba5b48 3456static bool
92a476cb 3457fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d3e328f2 3458 u64 *sptep, u64 old_spte, u64 new_spte)
c7ba5b48 3459{
c7ba5b48
XG
3460 gfn_t gfn;
3461
3462 WARN_ON(!sp->role.direct);
3463
9b51a630
KH
3464 /*
3465 * Theoretically we could also set dirty bit (and flush TLB) here in
3466 * order to eliminate unnecessary PML logging. See comments in
3467 * set_spte. But fast_page_fault is very unlikely to happen with PML
3468 * enabled, so we do not do this. This might result in the same GPA
3469 * to be logged in PML buffer again when the write really happens, and
3470 * eventually to be called by mark_page_dirty twice. But it's also no
3471 * harm. This also avoids the TLB flush needed after setting dirty bit
3472 * so non-PML cases won't be impacted.
3473 *
3474 * Compare with set_spte where instead shadow_dirty_mask is set.
3475 */
f160c7b7 3476 if (cmpxchg64(sptep, old_spte, new_spte) != old_spte)
97dceba2
JS
3477 return false;
3478
d3e328f2 3479 if (is_writable_pte(new_spte) && !is_writable_pte(old_spte)) {
f160c7b7
JS
3480 /*
3481 * The gfn of direct spte is stable since it is
3482 * calculated by sp->gfn.
3483 */
3484 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
3485 kvm_vcpu_mark_page_dirty(vcpu, gfn);
3486 }
c7ba5b48
XG
3487
3488 return true;
3489}
3490
d3e328f2
JS
3491static bool is_access_allowed(u32 fault_err_code, u64 spte)
3492{
3493 if (fault_err_code & PFERR_FETCH_MASK)
3494 return is_executable_pte(spte);
3495
3496 if (fault_err_code & PFERR_WRITE_MASK)
3497 return is_writable_pte(spte);
3498
3499 /* Fault was on Read access */
3500 return spte & PT_PRESENT_MASK;
3501}
3502
c7ba5b48
XG
3503/*
3504 * Return value:
3505 * - true: let the vcpu to access on the same address again.
3506 * - false: let the real page fault path to fix it.
3507 */
f9fa2509 3508static bool fast_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
c7ba5b48
XG
3509 u32 error_code)
3510{
3511 struct kvm_shadow_walk_iterator iterator;
92a476cb 3512 struct kvm_mmu_page *sp;
97dceba2 3513 bool fault_handled = false;
c7ba5b48 3514 u64 spte = 0ull;
97dceba2 3515 uint retry_count = 0;
c7ba5b48 3516
e5552fd2 3517 if (!page_fault_can_be_fast(error_code))
c7ba5b48
XG
3518 return false;
3519
3520 walk_shadow_page_lockless_begin(vcpu);
c7ba5b48 3521
97dceba2 3522 do {
d3e328f2 3523 u64 new_spte;
c7ba5b48 3524
736c291c 3525 for_each_shadow_entry_lockless(vcpu, cr2_or_gpa, iterator, spte)
f9fa2509 3526 if (!is_shadow_present_pte(spte))
d162f30a
JS
3527 break;
3528
97dceba2
JS
3529 sp = page_header(__pa(iterator.sptep));
3530 if (!is_last_spte(spte, sp->role.level))
3531 break;
c7ba5b48 3532
97dceba2 3533 /*
f160c7b7
JS
3534 * Check whether the memory access that caused the fault would
3535 * still cause it if it were to be performed right now. If not,
3536 * then this is a spurious fault caused by TLB lazily flushed,
3537 * or some other CPU has already fixed the PTE after the
3538 * current CPU took the fault.
97dceba2
JS
3539 *
3540 * Need not check the access of upper level table entries since
3541 * they are always ACC_ALL.
3542 */
d3e328f2
JS
3543 if (is_access_allowed(error_code, spte)) {
3544 fault_handled = true;
3545 break;
3546 }
f160c7b7 3547
d3e328f2
JS
3548 new_spte = spte;
3549
3550 if (is_access_track_spte(spte))
3551 new_spte = restore_acc_track_spte(new_spte);
3552
3553 /*
3554 * Currently, to simplify the code, write-protection can
3555 * be removed in the fast path only if the SPTE was
3556 * write-protected for dirty-logging or access tracking.
3557 */
3558 if ((error_code & PFERR_WRITE_MASK) &&
e6302698 3559 spte_can_locklessly_be_made_writable(spte)) {
d3e328f2 3560 new_spte |= PT_WRITABLE_MASK;
f160c7b7
JS
3561
3562 /*
d3e328f2
JS
3563 * Do not fix write-permission on the large spte. Since
3564 * we only dirty the first page into the dirty-bitmap in
3565 * fast_pf_fix_direct_spte(), other pages are missed
3566 * if its slot has dirty logging enabled.
3567 *
3568 * Instead, we let the slow page fault path create a
3569 * normal spte to fix the access.
3570 *
3571 * See the comments in kvm_arch_commit_memory_region().
f160c7b7 3572 */
d3e328f2 3573 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
f160c7b7 3574 break;
97dceba2 3575 }
c7ba5b48 3576
f160c7b7 3577 /* Verify that the fault can be handled in the fast path */
d3e328f2
JS
3578 if (new_spte == spte ||
3579 !is_access_allowed(error_code, new_spte))
97dceba2
JS
3580 break;
3581
3582 /*
3583 * Currently, fast page fault only works for direct mapping
3584 * since the gfn is not stable for indirect shadow page. See
2f5947df 3585 * Documentation/virt/kvm/locking.txt to get more detail.
97dceba2
JS
3586 */
3587 fault_handled = fast_pf_fix_direct_spte(vcpu, sp,
f160c7b7 3588 iterator.sptep, spte,
d3e328f2 3589 new_spte);
97dceba2
JS
3590 if (fault_handled)
3591 break;
3592
3593 if (++retry_count > 4) {
3594 printk_once(KERN_WARNING
3595 "kvm: Fast #PF retrying more than 4 times.\n");
3596 break;
3597 }
3598
97dceba2 3599 } while (true);
c126d94f 3600
736c291c 3601 trace_fast_page_fault(vcpu, cr2_or_gpa, error_code, iterator.sptep,
97dceba2 3602 spte, fault_handled);
c7ba5b48
XG
3603 walk_shadow_page_lockless_end(vcpu);
3604
97dceba2 3605 return fault_handled;
c7ba5b48
XG
3606}
3607
74b566e6
JS
3608static void mmu_free_root_page(struct kvm *kvm, hpa_t *root_hpa,
3609 struct list_head *invalid_list)
17ac10ad 3610{
4db35314 3611 struct kvm_mmu_page *sp;
17ac10ad 3612
74b566e6 3613 if (!VALID_PAGE(*root_hpa))
7b53aa56 3614 return;
35af577a 3615
74b566e6
JS
3616 sp = page_header(*root_hpa & PT64_BASE_ADDR_MASK);
3617 --sp->root_count;
3618 if (!sp->root_count && sp->role.invalid)
3619 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
17ac10ad 3620
74b566e6
JS
3621 *root_hpa = INVALID_PAGE;
3622}
3623
08fb59d8 3624/* roots_to_free must be some combination of the KVM_MMU_ROOT_* flags */
6a82cd1c
VK
3625void kvm_mmu_free_roots(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
3626 ulong roots_to_free)
74b566e6
JS
3627{
3628 int i;
3629 LIST_HEAD(invalid_list);
08fb59d8 3630 bool free_active_root = roots_to_free & KVM_MMU_ROOT_CURRENT;
74b566e6 3631
b94742c9 3632 BUILD_BUG_ON(KVM_MMU_NUM_PREV_ROOTS >= BITS_PER_LONG);
74b566e6 3633
08fb59d8 3634 /* Before acquiring the MMU lock, see if we need to do any real work. */
b94742c9
JS
3635 if (!(free_active_root && VALID_PAGE(mmu->root_hpa))) {
3636 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3637 if ((roots_to_free & KVM_MMU_ROOT_PREVIOUS(i)) &&
3638 VALID_PAGE(mmu->prev_roots[i].hpa))
3639 break;
3640
3641 if (i == KVM_MMU_NUM_PREV_ROOTS)
3642 return;
3643 }
35af577a
GN
3644
3645 spin_lock(&vcpu->kvm->mmu_lock);
17ac10ad 3646
b94742c9
JS
3647 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
3648 if (roots_to_free & KVM_MMU_ROOT_PREVIOUS(i))
3649 mmu_free_root_page(vcpu->kvm, &mmu->prev_roots[i].hpa,
3650 &invalid_list);
7c390d35 3651
08fb59d8
JS
3652 if (free_active_root) {
3653 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
3654 (mmu->root_level >= PT64_ROOT_4LEVEL || mmu->direct_map)) {
3655 mmu_free_root_page(vcpu->kvm, &mmu->root_hpa,
3656 &invalid_list);
3657 } else {
3658 for (i = 0; i < 4; ++i)
3659 if (mmu->pae_root[i] != 0)
3660 mmu_free_root_page(vcpu->kvm,
3661 &mmu->pae_root[i],
3662 &invalid_list);
3663 mmu->root_hpa = INVALID_PAGE;
3664 }
ad7dc69a 3665 mmu->root_cr3 = 0;
17ac10ad 3666 }
74b566e6 3667
d98ba053 3668 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 3669 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad 3670}
74b566e6 3671EXPORT_SYMBOL_GPL(kvm_mmu_free_roots);
17ac10ad 3672
8986ecc0
MT
3673static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
3674{
3675 int ret = 0;
3676
3677 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 3678 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
3679 ret = 1;
3680 }
3681
3682 return ret;
3683}
3684
651dd37a
JR
3685static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
3686{
3687 struct kvm_mmu_page *sp;
7ebaf15e 3688 unsigned i;
651dd37a 3689
44dd3ffa 3690 if (vcpu->arch.mmu->shadow_root_level >= PT64_ROOT_4LEVEL) {
651dd37a 3691 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3692 if(make_mmu_pages_available(vcpu) < 0) {
3693 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3694 return -ENOSPC;
26eeb53c 3695 }
855feb67 3696 sp = kvm_mmu_get_page(vcpu, 0, 0,
44dd3ffa 3697 vcpu->arch.mmu->shadow_root_level, 1, ACC_ALL);
651dd37a
JR
3698 ++sp->root_count;
3699 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa
VK
3700 vcpu->arch.mmu->root_hpa = __pa(sp->spt);
3701 } else if (vcpu->arch.mmu->shadow_root_level == PT32E_ROOT_LEVEL) {
651dd37a 3702 for (i = 0; i < 4; ++i) {
44dd3ffa 3703 hpa_t root = vcpu->arch.mmu->pae_root[i];
651dd37a 3704
fa4a2c08 3705 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3706 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3707 if (make_mmu_pages_available(vcpu) < 0) {
3708 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3709 return -ENOSPC;
26eeb53c 3710 }
649497d1 3711 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
bb11c6c9 3712 i << 30, PT32_ROOT_LEVEL, 1, ACC_ALL);
651dd37a
JR
3713 root = __pa(sp->spt);
3714 ++sp->root_count;
3715 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3716 vcpu->arch.mmu->pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 3717 }
44dd3ffa 3718 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
651dd37a
JR
3719 } else
3720 BUG();
3651c7fc
SC
3721
3722 /* root_cr3 is ignored for direct MMUs. */
3723 vcpu->arch.mmu->root_cr3 = 0;
651dd37a
JR
3724
3725 return 0;
3726}
3727
3728static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 3729{
4db35314 3730 struct kvm_mmu_page *sp;
81407ca5 3731 u64 pdptr, pm_mask;
ad7dc69a 3732 gfn_t root_gfn, root_cr3;
81407ca5 3733 int i;
3bb65a22 3734
d8dd54e0 3735 root_cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
ad7dc69a 3736 root_gfn = root_cr3 >> PAGE_SHIFT;
17ac10ad 3737
651dd37a
JR
3738 if (mmu_check_root(vcpu, root_gfn))
3739 return 1;
3740
3741 /*
3742 * Do we shadow a long mode page table? If so we need to
3743 * write-protect the guests page table root.
3744 */
44dd3ffa
VK
3745 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3746 hpa_t root = vcpu->arch.mmu->root_hpa;
17ac10ad 3747
fa4a2c08 3748 MMU_WARN_ON(VALID_PAGE(root));
651dd37a 3749
8facbbff 3750 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3751 if (make_mmu_pages_available(vcpu) < 0) {
3752 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3753 return -ENOSPC;
26eeb53c 3754 }
855feb67 3755 sp = kvm_mmu_get_page(vcpu, root_gfn, 0,
44dd3ffa 3756 vcpu->arch.mmu->shadow_root_level, 0, ACC_ALL);
4db35314
AK
3757 root = __pa(sp->spt);
3758 ++sp->root_count;
8facbbff 3759 spin_unlock(&vcpu->kvm->mmu_lock);
44dd3ffa 3760 vcpu->arch.mmu->root_hpa = root;
ad7dc69a 3761 goto set_root_cr3;
17ac10ad 3762 }
f87f9288 3763
651dd37a
JR
3764 /*
3765 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3766 * or a PAE 3-level page table. In either case we need to be aware that
3767 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3768 */
81407ca5 3769 pm_mask = PT_PRESENT_MASK;
44dd3ffa 3770 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL)
81407ca5
JR
3771 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3772
17ac10ad 3773 for (i = 0; i < 4; ++i) {
44dd3ffa 3774 hpa_t root = vcpu->arch.mmu->pae_root[i];
17ac10ad 3775
fa4a2c08 3776 MMU_WARN_ON(VALID_PAGE(root));
44dd3ffa
VK
3777 if (vcpu->arch.mmu->root_level == PT32E_ROOT_LEVEL) {
3778 pdptr = vcpu->arch.mmu->get_pdptr(vcpu, i);
812f30b2 3779 if (!(pdptr & PT_PRESENT_MASK)) {
44dd3ffa 3780 vcpu->arch.mmu->pae_root[i] = 0;
417726a3
AK
3781 continue;
3782 }
6de4f3ad 3783 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3784 if (mmu_check_root(vcpu, root_gfn))
3785 return 1;
5a7388c2 3786 }
8facbbff 3787 spin_lock(&vcpu->kvm->mmu_lock);
26eeb53c
WL
3788 if (make_mmu_pages_available(vcpu) < 0) {
3789 spin_unlock(&vcpu->kvm->mmu_lock);
ed52870f 3790 return -ENOSPC;
26eeb53c 3791 }
bb11c6c9
TY
3792 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30, PT32_ROOT_LEVEL,
3793 0, ACC_ALL);
4db35314
AK
3794 root = __pa(sp->spt);
3795 ++sp->root_count;
8facbbff
AK
3796 spin_unlock(&vcpu->kvm->mmu_lock);
3797
44dd3ffa 3798 vcpu->arch.mmu->pae_root[i] = root | pm_mask;
17ac10ad 3799 }
44dd3ffa 3800 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->pae_root);
81407ca5
JR
3801
3802 /*
3803 * If we shadow a 32 bit page table with a long mode page
3804 * table we enter this path.
3805 */
44dd3ffa
VK
3806 if (vcpu->arch.mmu->shadow_root_level == PT64_ROOT_4LEVEL) {
3807 if (vcpu->arch.mmu->lm_root == NULL) {
81407ca5
JR
3808 /*
3809 * The additional page necessary for this is only
3810 * allocated on demand.
3811 */
3812
3813 u64 *lm_root;
3814
254272ce 3815 lm_root = (void*)get_zeroed_page(GFP_KERNEL_ACCOUNT);
81407ca5
JR
3816 if (lm_root == NULL)
3817 return 1;
3818
44dd3ffa 3819 lm_root[0] = __pa(vcpu->arch.mmu->pae_root) | pm_mask;
81407ca5 3820
44dd3ffa 3821 vcpu->arch.mmu->lm_root = lm_root;
81407ca5
JR
3822 }
3823
44dd3ffa 3824 vcpu->arch.mmu->root_hpa = __pa(vcpu->arch.mmu->lm_root);
81407ca5
JR
3825 }
3826
ad7dc69a
VK
3827set_root_cr3:
3828 vcpu->arch.mmu->root_cr3 = root_cr3;
3829
8986ecc0 3830 return 0;
17ac10ad
AK
3831}
3832
651dd37a
JR
3833static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3834{
44dd3ffa 3835 if (vcpu->arch.mmu->direct_map)
651dd37a
JR
3836 return mmu_alloc_direct_roots(vcpu);
3837 else
3838 return mmu_alloc_shadow_roots(vcpu);
3839}
3840
578e1c4d 3841void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
0ba73cda
MT
3842{
3843 int i;
3844 struct kvm_mmu_page *sp;
3845
44dd3ffa 3846 if (vcpu->arch.mmu->direct_map)
81407ca5
JR
3847 return;
3848
44dd3ffa 3849 if (!VALID_PAGE(vcpu->arch.mmu->root_hpa))
0ba73cda 3850 return;
6903074c 3851
56f17dd3 3852 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
578e1c4d 3853
44dd3ffa
VK
3854 if (vcpu->arch.mmu->root_level >= PT64_ROOT_4LEVEL) {
3855 hpa_t root = vcpu->arch.mmu->root_hpa;
0ba73cda 3856 sp = page_header(root);
578e1c4d
JS
3857
3858 /*
3859 * Even if another CPU was marking the SP as unsync-ed
3860 * simultaneously, any guest page table changes are not
3861 * guaranteed to be visible anyway until this VCPU issues a TLB
3862 * flush strictly after those changes are made. We only need to
3863 * ensure that the other CPU sets these flags before any actual
3864 * changes to the page tables are made. The comments in
3865 * mmu_need_write_protect() describe what could go wrong if this
3866 * requirement isn't satisfied.
3867 */
3868 if (!smp_load_acquire(&sp->unsync) &&
3869 !smp_load_acquire(&sp->unsync_children))
3870 return;
3871
3872 spin_lock(&vcpu->kvm->mmu_lock);
3873 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3874
0ba73cda 3875 mmu_sync_children(vcpu, sp);
578e1c4d 3876
0375f7fa 3877 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
578e1c4d 3878 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3879 return;
3880 }
578e1c4d
JS
3881
3882 spin_lock(&vcpu->kvm->mmu_lock);
3883 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
3884
0ba73cda 3885 for (i = 0; i < 4; ++i) {
44dd3ffa 3886 hpa_t root = vcpu->arch.mmu->pae_root[i];
0ba73cda 3887
8986ecc0 3888 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3889 root &= PT64_BASE_ADDR_MASK;
3890 sp = page_header(root);
3891 mmu_sync_children(vcpu, sp);
3892 }
3893 }
0ba73cda 3894
578e1c4d 3895 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
6cffe8ca 3896 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda 3897}
bfd0a56b 3898EXPORT_SYMBOL_GPL(kvm_mmu_sync_roots);
0ba73cda 3899
736c291c 3900static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313 3901 u32 access, struct x86_exception *exception)
6aa8b732 3902{
ab9ae313
AK
3903 if (exception)
3904 exception->error_code = 0;
6aa8b732
AK
3905 return vaddr;
3906}
3907
736c291c 3908static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gpa_t vaddr,
ab9ae313
AK
3909 u32 access,
3910 struct x86_exception *exception)
6539e738 3911{
ab9ae313
AK
3912 if (exception)
3913 exception->error_code = 0;
54987b7a 3914 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access, exception);
6539e738
JR
3915}
3916
d625b155
XG
3917static bool
3918__is_rsvd_bits_set(struct rsvd_bits_validate *rsvd_check, u64 pte, int level)
3919{
b5c3c1b3 3920 int bit7 = (pte >> 7) & 1;
d625b155 3921
b5c3c1b3 3922 return pte & rsvd_check->rsvd_bits_mask[bit7][level-1];
d625b155
XG
3923}
3924
b5c3c1b3 3925static bool __is_bad_mt_xwr(struct rsvd_bits_validate *rsvd_check, u64 pte)
d625b155 3926{
b5c3c1b3 3927 return rsvd_check->bad_mt_xwr & BIT_ULL(pte & 0x3f);
d625b155
XG
3928}
3929
ded58749 3930static bool mmio_info_in_cache(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf 3931{
9034e6e8
PB
3932 /*
3933 * A nested guest cannot use the MMIO cache if it is using nested
3934 * page tables, because cr2 is a nGPA while the cache stores GPAs.
3935 */
3936 if (mmu_is_nested(vcpu))
3937 return false;
3938
ce88decf
XG
3939 if (direct)
3940 return vcpu_match_mmio_gpa(vcpu, addr);
3941
3942 return vcpu_match_mmio_gva(vcpu, addr);
3943}
3944
47ab8751
XG
3945/* return true if reserved bit is detected on spte. */
3946static bool
3947walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr, u64 *sptep)
ce88decf
XG
3948{
3949 struct kvm_shadow_walk_iterator iterator;
2a7266a8 3950 u64 sptes[PT64_ROOT_MAX_LEVEL], spte = 0ull;
b5c3c1b3 3951 struct rsvd_bits_validate *rsvd_check;
47ab8751
XG
3952 int root, leaf;
3953 bool reserved = false;
ce88decf 3954
b5c3c1b3 3955 rsvd_check = &vcpu->arch.mmu->shadow_zero_check;
37f6a4e2 3956
ce88decf 3957 walk_shadow_page_lockless_begin(vcpu);
47ab8751 3958
29ecd660
PB
3959 for (shadow_walk_init(&iterator, vcpu, addr),
3960 leaf = root = iterator.level;
47ab8751
XG
3961 shadow_walk_okay(&iterator);
3962 __shadow_walk_next(&iterator, spte)) {
47ab8751
XG
3963 spte = mmu_spte_get_lockless(iterator.sptep);
3964
3965 sptes[leaf - 1] = spte;
29ecd660 3966 leaf--;
47ab8751 3967
ce88decf
XG
3968 if (!is_shadow_present_pte(spte))
3969 break;
47ab8751 3970
b5c3c1b3
SC
3971 /*
3972 * Use a bitwise-OR instead of a logical-OR to aggregate the
3973 * reserved bit and EPT's invalid memtype/XWR checks to avoid
3974 * adding a Jcc in the loop.
3975 */
3976 reserved |= __is_bad_mt_xwr(rsvd_check, spte) |
3977 __is_rsvd_bits_set(rsvd_check, spte, iterator.level);
47ab8751
XG
3978 }
3979
ce88decf
XG
3980 walk_shadow_page_lockless_end(vcpu);
3981
47ab8751
XG
3982 if (reserved) {
3983 pr_err("%s: detect reserved bits on spte, addr 0x%llx, dump hierarchy:\n",
3984 __func__, addr);
29ecd660 3985 while (root > leaf) {
47ab8751
XG
3986 pr_err("------ spte 0x%llx level %d.\n",
3987 sptes[root - 1], root);
3988 root--;
3989 }
3990 }
ddce6208 3991
47ab8751
XG
3992 *sptep = spte;
3993 return reserved;
ce88decf
XG
3994}
3995
e08d26f0 3996static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct)
ce88decf
XG
3997{
3998 u64 spte;
47ab8751 3999 bool reserved;
ce88decf 4000
ded58749 4001 if (mmio_info_in_cache(vcpu, addr, direct))
9b8ebbdb 4002 return RET_PF_EMULATE;
ce88decf 4003
47ab8751 4004 reserved = walk_shadow_page_get_mmio_spte(vcpu, addr, &spte);
450869d6 4005 if (WARN_ON(reserved))
9b8ebbdb 4006 return -EINVAL;
ce88decf
XG
4007
4008 if (is_mmio_spte(spte)) {
4009 gfn_t gfn = get_mmio_spte_gfn(spte);
0a2b64c5 4010 unsigned int access = get_mmio_spte_access(spte);
ce88decf 4011
54bf36aa 4012 if (!check_mmio_spte(vcpu, spte))
9b8ebbdb 4013 return RET_PF_INVALID;
f8f55942 4014
ce88decf
XG
4015 if (direct)
4016 addr = 0;
4f022648
XG
4017
4018 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf 4019 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
9b8ebbdb 4020 return RET_PF_EMULATE;
ce88decf
XG
4021 }
4022
ce88decf
XG
4023 /*
4024 * If the page table is zapped by other cpus, let CPU fault again on
4025 * the address.
4026 */
9b8ebbdb 4027 return RET_PF_RETRY;
ce88decf 4028}
ce88decf 4029
3d0c27ad
XG
4030static bool page_fault_handle_page_track(struct kvm_vcpu *vcpu,
4031 u32 error_code, gfn_t gfn)
4032{
4033 if (unlikely(error_code & PFERR_RSVD_MASK))
4034 return false;
4035
4036 if (!(error_code & PFERR_PRESENT_MASK) ||
4037 !(error_code & PFERR_WRITE_MASK))
4038 return false;
4039
4040 /*
4041 * guest is writing the page which is write tracked which can
4042 * not be fixed by page fault handler.
4043 */
4044 if (kvm_page_track_is_active(vcpu, gfn, KVM_PAGE_TRACK_WRITE))
4045 return true;
4046
4047 return false;
4048}
4049
e5691a81
XG
4050static void shadow_page_table_clear_flood(struct kvm_vcpu *vcpu, gva_t addr)
4051{
4052 struct kvm_shadow_walk_iterator iterator;
4053 u64 spte;
4054
e5691a81
XG
4055 walk_shadow_page_lockless_begin(vcpu);
4056 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4057 clear_sp_write_flooding_count(iterator.sptep);
4058 if (!is_shadow_present_pte(spte))
4059 break;
4060 }
4061 walk_shadow_page_lockless_end(vcpu);
4062}
4063
9f1a8526
SC
4064static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
4065 gfn_t gfn)
af585b92
GN
4066{
4067 struct kvm_arch_async_pf arch;
fb67e14f 4068
7c90705b 4069 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 4070 arch.gfn = gfn;
44dd3ffa 4071 arch.direct_map = vcpu->arch.mmu->direct_map;
d8dd54e0 4072 arch.cr3 = vcpu->arch.mmu->get_guest_pgd(vcpu);
af585b92 4073
9f1a8526
SC
4074 return kvm_setup_async_pf(vcpu, cr2_or_gpa,
4075 kvm_vcpu_gfn_to_hva(vcpu, gfn), &arch);
af585b92
GN
4076}
4077
78b2c54a 4078static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
9f1a8526
SC
4079 gpa_t cr2_or_gpa, kvm_pfn_t *pfn, bool write,
4080 bool *writable)
af585b92 4081{
3520469d 4082 struct kvm_memory_slot *slot;
af585b92
GN
4083 bool async;
4084
3a2936de
JM
4085 /*
4086 * Don't expose private memslots to L2.
4087 */
4088 if (is_guest_mode(vcpu) && !kvm_is_visible_gfn(vcpu->kvm, gfn)) {
4089 *pfn = KVM_PFN_NOSLOT;
4090 return false;
4091 }
4092
54bf36aa 4093 slot = kvm_vcpu_gfn_to_memslot(vcpu, gfn);
3520469d
PB
4094 async = false;
4095 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, &async, write, writable);
af585b92
GN
4096 if (!async)
4097 return false; /* *pfn has correct page already */
4098
9bc1f09f 4099 if (!prefault && kvm_can_do_async_pf(vcpu)) {
9f1a8526 4100 trace_kvm_try_async_get_page(cr2_or_gpa, gfn);
af585b92 4101 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
9f1a8526 4102 trace_kvm_async_pf_doublefault(cr2_or_gpa, gfn);
af585b92
GN
4103 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
4104 return true;
9f1a8526 4105 } else if (kvm_arch_setup_async_pf(vcpu, cr2_or_gpa, gfn))
af585b92
GN
4106 return true;
4107 }
4108
3520469d 4109 *pfn = __gfn_to_pfn_memslot(slot, gfn, false, NULL, write, writable);
af585b92
GN
4110 return false;
4111}
4112
0f90e1c1
SC
4113static int direct_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4114 bool prefault, int max_level, bool is_tdp)
6aa8b732 4115{
367fd790 4116 bool write = error_code & PFERR_WRITE_MASK;
367fd790
SC
4117 bool exec = error_code & PFERR_FETCH_MASK;
4118 bool lpage_disallowed = exec && is_nx_huge_page_enabled();
0f90e1c1 4119 bool map_writable;
6aa8b732 4120
0f90e1c1
SC
4121 gfn_t gfn = gpa >> PAGE_SHIFT;
4122 unsigned long mmu_seq;
4123 kvm_pfn_t pfn;
83f06fa7 4124 int r;
ce88decf 4125
3d0c27ad 4126 if (page_fault_handle_page_track(vcpu, error_code, gfn))
9b8ebbdb 4127 return RET_PF_EMULATE;
ce88decf 4128
e2dec939
AK
4129 r = mmu_topup_memory_caches(vcpu);
4130 if (r)
4131 return r;
714b93da 4132
0f90e1c1
SC
4133 if (lpage_disallowed)
4134 max_level = PT_PAGE_TABLE_LEVEL;
367fd790 4135
f9fa2509 4136 if (fast_page_fault(vcpu, gpa, error_code))
367fd790
SC
4137 return RET_PF_RETRY;
4138
4139 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4140 smp_rmb();
4141
4142 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
4143 return RET_PF_RETRY;
4144
0f90e1c1 4145 if (handle_abnormal_pfn(vcpu, is_tdp ? 0 : gpa, gfn, pfn, ACC_ALL, &r))
367fd790 4146 return r;
6aa8b732 4147
367fd790
SC
4148 r = RET_PF_RETRY;
4149 spin_lock(&vcpu->kvm->mmu_lock);
4150 if (mmu_notifier_retry(vcpu->kvm, mmu_seq))
4151 goto out_unlock;
4152 if (make_mmu_pages_available(vcpu) < 0)
4153 goto out_unlock;
83f06fa7 4154 r = __direct_map(vcpu, gpa, write, map_writable, max_level, pfn,
4cd071d1 4155 prefault, is_tdp && lpage_disallowed);
0f90e1c1 4156
367fd790
SC
4157out_unlock:
4158 spin_unlock(&vcpu->kvm->mmu_lock);
4159 kvm_release_pfn_clean(pfn);
4160 return r;
6aa8b732
AK
4161}
4162
0f90e1c1
SC
4163static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa,
4164 u32 error_code, bool prefault)
4165{
4166 pgprintk("%s: gva %lx error %x\n", __func__, gpa, error_code);
4167
4168 /* This path builds a PAE pagetable, we can map 2mb pages at maximum. */
4169 return direct_page_fault(vcpu, gpa & PAGE_MASK, error_code, prefault,
4170 PT_DIRECTORY_LEVEL, false);
4171}
4172
1261bfa3 4173int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
d0006530 4174 u64 fault_address, char *insn, int insn_len)
1261bfa3
WL
4175{
4176 int r = 1;
4177
736c291c
SC
4178#ifndef CONFIG_X86_64
4179 /* A 64-bit CR2 should be impossible on 32-bit KVM. */
4180 if (WARN_ON_ONCE(fault_address >> 32))
4181 return -EFAULT;
4182#endif
4183
c595ceee 4184 vcpu->arch.l1tf_flush_l1d = true;
1261bfa3
WL
4185 switch (vcpu->arch.apf.host_apf_reason) {
4186 default:
4187 trace_kvm_page_fault(fault_address, error_code);
4188
d0006530 4189 if (kvm_event_needs_reinjection(vcpu))
1261bfa3
WL
4190 kvm_mmu_unprotect_page_virt(vcpu, fault_address);
4191 r = kvm_mmu_page_fault(vcpu, fault_address, error_code, insn,
4192 insn_len);
4193 break;
4194 case KVM_PV_REASON_PAGE_NOT_PRESENT:
4195 vcpu->arch.apf.host_apf_reason = 0;
4196 local_irq_disable();
a2b7861b 4197 kvm_async_pf_task_wait(fault_address, 0);
1261bfa3
WL
4198 local_irq_enable();
4199 break;
4200 case KVM_PV_REASON_PAGE_READY:
4201 vcpu->arch.apf.host_apf_reason = 0;
4202 local_irq_disable();
4203 kvm_async_pf_task_wake(fault_address);
4204 local_irq_enable();
4205 break;
4206 }
4207 return r;
4208}
4209EXPORT_SYMBOL_GPL(kvm_handle_page_fault);
4210
7a02674d
SC
4211int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
4212 bool prefault)
fb72d167 4213{
cb9b88c6 4214 int max_level;
fb72d167 4215
cb9b88c6
SC
4216 for (max_level = PT_MAX_HUGEPAGE_LEVEL;
4217 max_level > PT_PAGE_TABLE_LEVEL;
4218 max_level--) {
4219 int page_num = KVM_PAGES_PER_HPAGE(max_level);
0f90e1c1 4220 gfn_t base = (gpa >> PAGE_SHIFT) & ~(page_num - 1);
ce88decf 4221
cb9b88c6
SC
4222 if (kvm_mtrr_check_gfn_range_consistency(vcpu, base, page_num))
4223 break;
fd136902 4224 }
852e3c19 4225
0f90e1c1
SC
4226 return direct_page_fault(vcpu, gpa, error_code, prefault,
4227 max_level, true);
fb72d167
JR
4228}
4229
8a3c1a33
PB
4230static void nonpaging_init_context(struct kvm_vcpu *vcpu,
4231 struct kvm_mmu *context)
6aa8b732 4232{
6aa8b732 4233 context->page_fault = nonpaging_page_fault;
6aa8b732 4234 context->gva_to_gpa = nonpaging_gva_to_gpa;
e8bc217a 4235 context->sync_page = nonpaging_sync_page;
5efac074 4236 context->invlpg = NULL;
0f53b5b1 4237 context->update_pte = nonpaging_update_pte;
cea0f0e7 4238 context->root_level = 0;
6aa8b732 4239 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4240 context->direct_map = true;
2d48a985 4241 context->nx = false;
6aa8b732
AK
4242}
4243
0be44352
SC
4244static inline bool is_root_usable(struct kvm_mmu_root_info *root, gpa_t cr3,
4245 union kvm_mmu_page_role role)
4246{
4247 return (role.direct || cr3 == root->cr3) &&
4248 VALID_PAGE(root->hpa) && page_header(root->hpa) &&
4249 role.word == page_header(root->hpa)->role.word;
4250}
4251
b94742c9
JS
4252/*
4253 * Find out if a previously cached root matching the new CR3/role is available.
4254 * The current root is also inserted into the cache.
4255 * If a matching root was found, it is assigned to kvm_mmu->root_hpa and true is
4256 * returned.
4257 * Otherwise, the LRU root from the cache is assigned to kvm_mmu->root_hpa and
4258 * false is returned. This root should now be freed by the caller.
4259 */
4260static bool cached_root_available(struct kvm_vcpu *vcpu, gpa_t new_cr3,
4261 union kvm_mmu_page_role new_role)
4262{
4263 uint i;
4264 struct kvm_mmu_root_info root;
44dd3ffa 4265 struct kvm_mmu *mmu = vcpu->arch.mmu;
b94742c9 4266
ad7dc69a 4267 root.cr3 = mmu->root_cr3;
b94742c9
JS
4268 root.hpa = mmu->root_hpa;
4269
0be44352
SC
4270 if (is_root_usable(&root, new_cr3, new_role))
4271 return true;
4272
b94742c9
JS
4273 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
4274 swap(root, mmu->prev_roots[i]);
4275
0be44352 4276 if (is_root_usable(&root, new_cr3, new_role))
b94742c9
JS
4277 break;
4278 }
4279
4280 mmu->root_hpa = root.hpa;
ad7dc69a 4281 mmu->root_cr3 = root.cr3;
b94742c9
JS
4282
4283 return i < KVM_MMU_NUM_PREV_ROOTS;
4284}
4285
0aab33e4 4286static bool fast_cr3_switch(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4287 union kvm_mmu_page_role new_role,
4288 bool skip_tlb_flush)
6aa8b732 4289{
44dd3ffa 4290 struct kvm_mmu *mmu = vcpu->arch.mmu;
7c390d35
JS
4291
4292 /*
4293 * For now, limit the fast switch to 64-bit hosts+VMs in order to avoid
4294 * having to deal with PDPTEs. We may add support for 32-bit hosts/VMs
4295 * later if necessary.
4296 */
4297 if (mmu->shadow_root_level >= PT64_ROOT_4LEVEL &&
4298 mmu->root_level >= PT64_ROOT_4LEVEL) {
7c390d35
JS
4299 if (mmu_check_root(vcpu, new_cr3 >> PAGE_SHIFT))
4300 return false;
4301
b94742c9 4302 if (cached_root_available(vcpu, new_cr3, new_role)) {
002c5f73
SC
4303 /*
4304 * It is possible that the cached previous root page is
4305 * obsolete because of a change in the MMU generation
4306 * number. However, changing the generation number is
4307 * accompanied by KVM_REQ_MMU_RELOAD, which will free
4308 * the root set here and allocate a new one.
4309 */
727a7e27 4310 kvm_make_request(KVM_REQ_LOAD_MMU_PGD, vcpu);
956bf353
JS
4311 if (!skip_tlb_flush) {
4312 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
1924242b 4313 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
956bf353
JS
4314 }
4315
4316 /*
4317 * The last MMIO access's GVA and GPA are cached in the
4318 * VCPU. When switching to a new CR3, that GVA->GPA
4319 * mapping may no longer be valid. So clear any cached
4320 * MMIO info even when we don't need to sync the shadow
4321 * page tables.
4322 */
4323 vcpu_clear_mmio_info(vcpu, MMIO_GVA_ANY);
ade61e28 4324
7c390d35
JS
4325 __clear_sp_write_flooding_count(
4326 page_header(mmu->root_hpa));
4327
7c390d35
JS
4328 return true;
4329 }
4330 }
4331
4332 return false;
6aa8b732
AK
4333}
4334
0aab33e4 4335static void __kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3,
ade61e28
JS
4336 union kvm_mmu_page_role new_role,
4337 bool skip_tlb_flush)
6aa8b732 4338{
ade61e28 4339 if (!fast_cr3_switch(vcpu, new_cr3, new_role, skip_tlb_flush))
6a82cd1c
VK
4340 kvm_mmu_free_roots(vcpu, vcpu->arch.mmu,
4341 KVM_MMU_ROOT_CURRENT);
6aa8b732
AK
4342}
4343
ade61e28 4344void kvm_mmu_new_cr3(struct kvm_vcpu *vcpu, gpa_t new_cr3, bool skip_tlb_flush)
0aab33e4 4345{
ade61e28
JS
4346 __kvm_mmu_new_cr3(vcpu, new_cr3, kvm_mmu_calc_root_page_role(vcpu),
4347 skip_tlb_flush);
0aab33e4 4348}
50c28f21 4349EXPORT_SYMBOL_GPL(kvm_mmu_new_cr3);
0aab33e4 4350
5777ed34
JR
4351static unsigned long get_cr3(struct kvm_vcpu *vcpu)
4352{
9f8fe504 4353 return kvm_read_cr3(vcpu);
5777ed34
JR
4354}
4355
54bf36aa 4356static bool sync_mmio_spte(struct kvm_vcpu *vcpu, u64 *sptep, gfn_t gfn,
0a2b64c5 4357 unsigned int access, int *nr_present)
ce88decf
XG
4358{
4359 if (unlikely(is_mmio_spte(*sptep))) {
4360 if (gfn != get_mmio_spte_gfn(*sptep)) {
4361 mmu_spte_clear_no_track(sptep);
4362 return true;
4363 }
4364
4365 (*nr_present)++;
54bf36aa 4366 mark_mmio_spte(vcpu, sptep, gfn, access);
ce88decf
XG
4367 return true;
4368 }
4369
4370 return false;
4371}
4372
6bb69c9b
PB
4373static inline bool is_last_gpte(struct kvm_mmu *mmu,
4374 unsigned level, unsigned gpte)
6fd01b71 4375{
6bb69c9b
PB
4376 /*
4377 * The RHS has bit 7 set iff level < mmu->last_nonleaf_level.
4378 * If it is clear, there are no large pages at this level, so clear
4379 * PT_PAGE_SIZE_MASK in gpte if that is the case.
4380 */
4381 gpte &= level - mmu->last_nonleaf_level;
4382
829ee279
LP
4383 /*
4384 * PT_PAGE_TABLE_LEVEL always terminates. The RHS has bit 7 set
4385 * iff level <= PT_PAGE_TABLE_LEVEL, which for our purpose means
4386 * level == PT_PAGE_TABLE_LEVEL; set PT_PAGE_SIZE_MASK in gpte then.
4387 */
4388 gpte |= level - PT_PAGE_TABLE_LEVEL - 1;
4389
6bb69c9b 4390 return gpte & PT_PAGE_SIZE_MASK;
6fd01b71
AK
4391}
4392
37406aaa
NHE
4393#define PTTYPE_EPT 18 /* arbitrary */
4394#define PTTYPE PTTYPE_EPT
4395#include "paging_tmpl.h"
4396#undef PTTYPE
4397
6aa8b732
AK
4398#define PTTYPE 64
4399#include "paging_tmpl.h"
4400#undef PTTYPE
4401
4402#define PTTYPE 32
4403#include "paging_tmpl.h"
4404#undef PTTYPE
4405
6dc98b86
XG
4406static void
4407__reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4408 struct rsvd_bits_validate *rsvd_check,
4409 int maxphyaddr, int level, bool nx, bool gbpages,
6fec2144 4410 bool pse, bool amd)
82725b20 4411{
82725b20 4412 u64 exb_bit_rsvd = 0;
5f7dde7b 4413 u64 gbpages_bit_rsvd = 0;
a0c0feb5 4414 u64 nonleaf_bit8_rsvd = 0;
82725b20 4415
a0a64f50 4416 rsvd_check->bad_mt_xwr = 0;
25d92081 4417
6dc98b86 4418 if (!nx)
82725b20 4419 exb_bit_rsvd = rsvd_bits(63, 63);
6dc98b86 4420 if (!gbpages)
5f7dde7b 4421 gbpages_bit_rsvd = rsvd_bits(7, 7);
a0c0feb5
PB
4422
4423 /*
4424 * Non-leaf PML4Es and PDPEs reserve bit 8 (which would be the G bit for
4425 * leaf entries) on AMD CPUs only.
4426 */
6fec2144 4427 if (amd)
a0c0feb5
PB
4428 nonleaf_bit8_rsvd = rsvd_bits(8, 8);
4429
6dc98b86 4430 switch (level) {
82725b20
DE
4431 case PT32_ROOT_LEVEL:
4432 /* no rsvd bits for 2 level 4K page table entries */
a0a64f50
XG
4433 rsvd_check->rsvd_bits_mask[0][1] = 0;
4434 rsvd_check->rsvd_bits_mask[0][0] = 0;
4435 rsvd_check->rsvd_bits_mask[1][0] =
4436 rsvd_check->rsvd_bits_mask[0][0];
f815bce8 4437
6dc98b86 4438 if (!pse) {
a0a64f50 4439 rsvd_check->rsvd_bits_mask[1][1] = 0;
f815bce8
XG
4440 break;
4441 }
4442
82725b20
DE
4443 if (is_cpuid_PSE36())
4444 /* 36bits PSE 4MB page */
a0a64f50 4445 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
82725b20
DE
4446 else
4447 /* 32 bits PSE 4MB page */
a0a64f50 4448 rsvd_check->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
4449 break;
4450 case PT32E_ROOT_LEVEL:
a0a64f50 4451 rsvd_check->rsvd_bits_mask[0][2] =
20c466b5 4452 rsvd_bits(maxphyaddr, 63) |
cd9ae5fe 4453 rsvd_bits(5, 8) | rsvd_bits(1, 2); /* PDPTE */
a0a64f50 4454 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 4455 rsvd_bits(maxphyaddr, 62); /* PDE */
a0a64f50 4456 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
82725b20 4457 rsvd_bits(maxphyaddr, 62); /* PTE */
a0a64f50 4458 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
82725b20
DE
4459 rsvd_bits(maxphyaddr, 62) |
4460 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4461 rsvd_check->rsvd_bits_mask[1][0] =
4462 rsvd_check->rsvd_bits_mask[0][0];
82725b20 4463 break;
855feb67
YZ
4464 case PT64_ROOT_5LEVEL:
4465 rsvd_check->rsvd_bits_mask[0][4] = exb_bit_rsvd |
4466 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4467 rsvd_bits(maxphyaddr, 51);
4468 rsvd_check->rsvd_bits_mask[1][4] =
4469 rsvd_check->rsvd_bits_mask[0][4];
b2869f28 4470 /* fall through */
2a7266a8 4471 case PT64_ROOT_4LEVEL:
a0a64f50
XG
4472 rsvd_check->rsvd_bits_mask[0][3] = exb_bit_rsvd |
4473 nonleaf_bit8_rsvd | rsvd_bits(7, 7) |
4c26b4cd 4474 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4475 rsvd_check->rsvd_bits_mask[0][2] = exb_bit_rsvd |
4476 nonleaf_bit8_rsvd | gbpages_bit_rsvd |
82725b20 4477 rsvd_bits(maxphyaddr, 51);
a0a64f50
XG
4478 rsvd_check->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4479 rsvd_bits(maxphyaddr, 51);
4480 rsvd_check->rsvd_bits_mask[0][0] = exb_bit_rsvd |
4481 rsvd_bits(maxphyaddr, 51);
4482 rsvd_check->rsvd_bits_mask[1][3] =
4483 rsvd_check->rsvd_bits_mask[0][3];
4484 rsvd_check->rsvd_bits_mask[1][2] = exb_bit_rsvd |
5f7dde7b 4485 gbpages_bit_rsvd | rsvd_bits(maxphyaddr, 51) |
e04da980 4486 rsvd_bits(13, 29);
a0a64f50 4487 rsvd_check->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
4488 rsvd_bits(maxphyaddr, 51) |
4489 rsvd_bits(13, 20); /* large page */
a0a64f50
XG
4490 rsvd_check->rsvd_bits_mask[1][0] =
4491 rsvd_check->rsvd_bits_mask[0][0];
82725b20
DE
4492 break;
4493 }
4494}
4495
6dc98b86
XG
4496static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4497 struct kvm_mmu *context)
4498{
4499 __reset_rsvds_bits_mask(vcpu, &context->guest_rsvd_check,
4500 cpuid_maxphyaddr(vcpu), context->root_level,
d6321d49
RK
4501 context->nx,
4502 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
23493d0a
SC
4503 is_pse(vcpu),
4504 guest_cpuid_is_amd_or_hygon(vcpu));
6dc98b86
XG
4505}
4506
81b8eebb
XG
4507static void
4508__reset_rsvds_bits_mask_ept(struct rsvd_bits_validate *rsvd_check,
4509 int maxphyaddr, bool execonly)
25d92081 4510{
951f9fd7 4511 u64 bad_mt_xwr;
25d92081 4512
855feb67
YZ
4513 rsvd_check->rsvd_bits_mask[0][4] =
4514 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4515 rsvd_check->rsvd_bits_mask[0][3] =
25d92081 4516 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 7);
a0a64f50 4517 rsvd_check->rsvd_bits_mask[0][2] =
25d92081 4518 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4519 rsvd_check->rsvd_bits_mask[0][1] =
25d92081 4520 rsvd_bits(maxphyaddr, 51) | rsvd_bits(3, 6);
a0a64f50 4521 rsvd_check->rsvd_bits_mask[0][0] = rsvd_bits(maxphyaddr, 51);
25d92081
YZ
4522
4523 /* large page */
855feb67 4524 rsvd_check->rsvd_bits_mask[1][4] = rsvd_check->rsvd_bits_mask[0][4];
a0a64f50
XG
4525 rsvd_check->rsvd_bits_mask[1][3] = rsvd_check->rsvd_bits_mask[0][3];
4526 rsvd_check->rsvd_bits_mask[1][2] =
25d92081 4527 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 29);
a0a64f50 4528 rsvd_check->rsvd_bits_mask[1][1] =
25d92081 4529 rsvd_bits(maxphyaddr, 51) | rsvd_bits(12, 20);
a0a64f50 4530 rsvd_check->rsvd_bits_mask[1][0] = rsvd_check->rsvd_bits_mask[0][0];
25d92081 4531
951f9fd7
PB
4532 bad_mt_xwr = 0xFFull << (2 * 8); /* bits 3..5 must not be 2 */
4533 bad_mt_xwr |= 0xFFull << (3 * 8); /* bits 3..5 must not be 3 */
4534 bad_mt_xwr |= 0xFFull << (7 * 8); /* bits 3..5 must not be 7 */
4535 bad_mt_xwr |= REPEAT_BYTE(1ull << 2); /* bits 0..2 must not be 010 */
4536 bad_mt_xwr |= REPEAT_BYTE(1ull << 6); /* bits 0..2 must not be 110 */
4537 if (!execonly) {
4538 /* bits 0..2 must not be 100 unless VMX capabilities allow it */
4539 bad_mt_xwr |= REPEAT_BYTE(1ull << 4);
25d92081 4540 }
951f9fd7 4541 rsvd_check->bad_mt_xwr = bad_mt_xwr;
25d92081
YZ
4542}
4543
81b8eebb
XG
4544static void reset_rsvds_bits_mask_ept(struct kvm_vcpu *vcpu,
4545 struct kvm_mmu *context, bool execonly)
4546{
4547 __reset_rsvds_bits_mask_ept(&context->guest_rsvd_check,
4548 cpuid_maxphyaddr(vcpu), execonly);
4549}
4550
c258b62b
XG
4551/*
4552 * the page table on host is the shadow page table for the page
4553 * table in guest or amd nested guest, its mmu features completely
4554 * follow the features in guest.
4555 */
4556void
4557reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
4558{
36d9594d
VK
4559 bool uses_nx = context->nx ||
4560 context->mmu_role.base.smep_andnot_wp;
ea2800dd
BS
4561 struct rsvd_bits_validate *shadow_zero_check;
4562 int i;
5f0b8199 4563
6fec2144
PB
4564 /*
4565 * Passing "true" to the last argument is okay; it adds a check
4566 * on bit 8 of the SPTEs which KVM doesn't use anyway.
4567 */
ea2800dd
BS
4568 shadow_zero_check = &context->shadow_zero_check;
4569 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4570 shadow_phys_bits,
5f0b8199 4571 context->shadow_root_level, uses_nx,
d6321d49
RK
4572 guest_cpuid_has(vcpu, X86_FEATURE_GBPAGES),
4573 is_pse(vcpu), true);
ea2800dd
BS
4574
4575 if (!shadow_me_mask)
4576 return;
4577
4578 for (i = context->shadow_root_level; --i >= 0;) {
4579 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4580 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4581 }
4582
c258b62b
XG
4583}
4584EXPORT_SYMBOL_GPL(reset_shadow_zero_bits_mask);
4585
6fec2144
PB
4586static inline bool boot_cpu_is_amd(void)
4587{
4588 WARN_ON_ONCE(!tdp_enabled);
4589 return shadow_x_mask == 0;
4590}
4591
c258b62b
XG
4592/*
4593 * the direct page table on host, use as much mmu features as
4594 * possible, however, kvm currently does not do execution-protection.
4595 */
4596static void
4597reset_tdp_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4598 struct kvm_mmu *context)
4599{
ea2800dd
BS
4600 struct rsvd_bits_validate *shadow_zero_check;
4601 int i;
4602
4603 shadow_zero_check = &context->shadow_zero_check;
4604
6fec2144 4605 if (boot_cpu_is_amd())
ea2800dd 4606 __reset_rsvds_bits_mask(vcpu, shadow_zero_check,
f3ecb59d 4607 shadow_phys_bits,
c258b62b 4608 context->shadow_root_level, false,
b8291adc
BP
4609 boot_cpu_has(X86_FEATURE_GBPAGES),
4610 true, true);
c258b62b 4611 else
ea2800dd 4612 __reset_rsvds_bits_mask_ept(shadow_zero_check,
f3ecb59d 4613 shadow_phys_bits,
c258b62b
XG
4614 false);
4615
ea2800dd
BS
4616 if (!shadow_me_mask)
4617 return;
4618
4619 for (i = context->shadow_root_level; --i >= 0;) {
4620 shadow_zero_check->rsvd_bits_mask[0][i] &= ~shadow_me_mask;
4621 shadow_zero_check->rsvd_bits_mask[1][i] &= ~shadow_me_mask;
4622 }
c258b62b
XG
4623}
4624
4625/*
4626 * as the comments in reset_shadow_zero_bits_mask() except it
4627 * is the shadow page table for intel nested guest.
4628 */
4629static void
4630reset_ept_shadow_zero_bits_mask(struct kvm_vcpu *vcpu,
4631 struct kvm_mmu *context, bool execonly)
4632{
4633 __reset_rsvds_bits_mask_ept(&context->shadow_zero_check,
f3ecb59d 4634 shadow_phys_bits, execonly);
c258b62b
XG
4635}
4636
09f037aa
PB
4637#define BYTE_MASK(access) \
4638 ((1 & (access) ? 2 : 0) | \
4639 (2 & (access) ? 4 : 0) | \
4640 (3 & (access) ? 8 : 0) | \
4641 (4 & (access) ? 16 : 0) | \
4642 (5 & (access) ? 32 : 0) | \
4643 (6 & (access) ? 64 : 0) | \
4644 (7 & (access) ? 128 : 0))
4645
4646
edc90b7d
XG
4647static void update_permission_bitmask(struct kvm_vcpu *vcpu,
4648 struct kvm_mmu *mmu, bool ept)
97d64b78 4649{
09f037aa
PB
4650 unsigned byte;
4651
4652 const u8 x = BYTE_MASK(ACC_EXEC_MASK);
4653 const u8 w = BYTE_MASK(ACC_WRITE_MASK);
4654 const u8 u = BYTE_MASK(ACC_USER_MASK);
4655
4656 bool cr4_smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP) != 0;
4657 bool cr4_smap = kvm_read_cr4_bits(vcpu, X86_CR4_SMAP) != 0;
4658 bool cr0_wp = is_write_protection(vcpu);
97d64b78 4659
97d64b78 4660 for (byte = 0; byte < ARRAY_SIZE(mmu->permissions); ++byte) {
09f037aa
PB
4661 unsigned pfec = byte << 1;
4662
97ec8c06 4663 /*
09f037aa
PB
4664 * Each "*f" variable has a 1 bit for each UWX value
4665 * that causes a fault with the given PFEC.
97ec8c06 4666 */
97d64b78 4667
09f037aa 4668 /* Faults from writes to non-writable pages */
a6a6d3b1 4669 u8 wf = (pfec & PFERR_WRITE_MASK) ? (u8)~w : 0;
09f037aa 4670 /* Faults from user mode accesses to supervisor pages */
a6a6d3b1 4671 u8 uf = (pfec & PFERR_USER_MASK) ? (u8)~u : 0;
09f037aa 4672 /* Faults from fetches of non-executable pages*/
a6a6d3b1 4673 u8 ff = (pfec & PFERR_FETCH_MASK) ? (u8)~x : 0;
09f037aa
PB
4674 /* Faults from kernel mode fetches of user pages */
4675 u8 smepf = 0;
4676 /* Faults from kernel mode accesses of user pages */
4677 u8 smapf = 0;
4678
4679 if (!ept) {
4680 /* Faults from kernel mode accesses to user pages */
4681 u8 kf = (pfec & PFERR_USER_MASK) ? 0 : u;
4682
4683 /* Not really needed: !nx will cause pte.nx to fault */
4684 if (!mmu->nx)
4685 ff = 0;
4686
4687 /* Allow supervisor writes if !cr0.wp */
4688 if (!cr0_wp)
4689 wf = (pfec & PFERR_USER_MASK) ? wf : 0;
4690
4691 /* Disallow supervisor fetches of user code if cr4.smep */
4692 if (cr4_smep)
4693 smepf = (pfec & PFERR_FETCH_MASK) ? kf : 0;
4694
4695 /*
4696 * SMAP:kernel-mode data accesses from user-mode
4697 * mappings should fault. A fault is considered
4698 * as a SMAP violation if all of the following
39337ad1 4699 * conditions are true:
09f037aa
PB
4700 * - X86_CR4_SMAP is set in CR4
4701 * - A user page is accessed
4702 * - The access is not a fetch
4703 * - Page fault in kernel mode
4704 * - if CPL = 3 or X86_EFLAGS_AC is clear
4705 *
4706 * Here, we cover the first three conditions.
4707 * The fourth is computed dynamically in permission_fault();
4708 * PFERR_RSVD_MASK bit will be set in PFEC if the access is
4709 * *not* subject to SMAP restrictions.
4710 */
4711 if (cr4_smap)
4712 smapf = (pfec & (PFERR_RSVD_MASK|PFERR_FETCH_MASK)) ? 0 : kf;
97d64b78 4713 }
09f037aa
PB
4714
4715 mmu->permissions[byte] = ff | uf | wf | smepf | smapf;
97d64b78
AK
4716 }
4717}
4718
2d344105
HH
4719/*
4720* PKU is an additional mechanism by which the paging controls access to
4721* user-mode addresses based on the value in the PKRU register. Protection
4722* key violations are reported through a bit in the page fault error code.
4723* Unlike other bits of the error code, the PK bit is not known at the
4724* call site of e.g. gva_to_gpa; it must be computed directly in
4725* permission_fault based on two bits of PKRU, on some machine state (CR4,
4726* CR0, EFER, CPL), and on other bits of the error code and the page tables.
4727*
4728* In particular the following conditions come from the error code, the
4729* page tables and the machine state:
4730* - PK is always zero unless CR4.PKE=1 and EFER.LMA=1
4731* - PK is always zero if RSVD=1 (reserved bit set) or F=1 (instruction fetch)
4732* - PK is always zero if U=0 in the page tables
4733* - PKRU.WD is ignored if CR0.WP=0 and the access is a supervisor access.
4734*
4735* The PKRU bitmask caches the result of these four conditions. The error
4736* code (minus the P bit) and the page table's U bit form an index into the
4737* PKRU bitmask. Two bits of the PKRU bitmask are then extracted and ANDed
4738* with the two bits of the PKRU register corresponding to the protection key.
4739* For the first three conditions above the bits will be 00, thus masking
4740* away both AD and WD. For all reads or if the last condition holds, WD
4741* only will be masked away.
4742*/
4743static void update_pkru_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
4744 bool ept)
4745{
4746 unsigned bit;
4747 bool wp;
4748
4749 if (ept) {
4750 mmu->pkru_mask = 0;
4751 return;
4752 }
4753
4754 /* PKEY is enabled only if CR4.PKE and EFER.LMA are both set. */
4755 if (!kvm_read_cr4_bits(vcpu, X86_CR4_PKE) || !is_long_mode(vcpu)) {
4756 mmu->pkru_mask = 0;
4757 return;
4758 }
4759
4760 wp = is_write_protection(vcpu);
4761
4762 for (bit = 0; bit < ARRAY_SIZE(mmu->permissions); ++bit) {
4763 unsigned pfec, pkey_bits;
4764 bool check_pkey, check_write, ff, uf, wf, pte_user;
4765
4766 pfec = bit << 1;
4767 ff = pfec & PFERR_FETCH_MASK;
4768 uf = pfec & PFERR_USER_MASK;
4769 wf = pfec & PFERR_WRITE_MASK;
4770
4771 /* PFEC.RSVD is replaced by ACC_USER_MASK. */
4772 pte_user = pfec & PFERR_RSVD_MASK;
4773
4774 /*
4775 * Only need to check the access which is not an
4776 * instruction fetch and is to a user page.
4777 */
4778 check_pkey = (!ff && pte_user);
4779 /*
4780 * write access is controlled by PKRU if it is a
4781 * user access or CR0.WP = 1.
4782 */
4783 check_write = check_pkey && wf && (uf || wp);
4784
4785 /* PKRU.AD stops both read and write access. */
4786 pkey_bits = !!check_pkey;
4787 /* PKRU.WD stops write access. */
4788 pkey_bits |= (!!check_write) << 1;
4789
4790 mmu->pkru_mask |= (pkey_bits & 3) << pfec;
4791 }
4792}
4793
6bb69c9b 4794static void update_last_nonleaf_level(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6fd01b71 4795{
6bb69c9b
PB
4796 unsigned root_level = mmu->root_level;
4797
4798 mmu->last_nonleaf_level = root_level;
4799 if (root_level == PT32_ROOT_LEVEL && is_pse(vcpu))
4800 mmu->last_nonleaf_level++;
6fd01b71
AK
4801}
4802
8a3c1a33
PB
4803static void paging64_init_context_common(struct kvm_vcpu *vcpu,
4804 struct kvm_mmu *context,
4805 int level)
6aa8b732 4806{
2d48a985 4807 context->nx = is_nx(vcpu);
4d6931c3 4808 context->root_level = level;
2d48a985 4809
4d6931c3 4810 reset_rsvds_bits_mask(vcpu, context);
25d92081 4811 update_permission_bitmask(vcpu, context, false);
2d344105 4812 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4813 update_last_nonleaf_level(vcpu, context);
6aa8b732 4814
fa4a2c08 4815 MMU_WARN_ON(!is_pae(vcpu));
6aa8b732 4816 context->page_fault = paging64_page_fault;
6aa8b732 4817 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 4818 context->sync_page = paging64_sync_page;
a7052897 4819 context->invlpg = paging64_invlpg;
0f53b5b1 4820 context->update_pte = paging64_update_pte;
17ac10ad 4821 context->shadow_root_level = level;
c5a78f2b 4822 context->direct_map = false;
6aa8b732
AK
4823}
4824
8a3c1a33
PB
4825static void paging64_init_context(struct kvm_vcpu *vcpu,
4826 struct kvm_mmu *context)
17ac10ad 4827{
855feb67
YZ
4828 int root_level = is_la57_mode(vcpu) ?
4829 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4830
4831 paging64_init_context_common(vcpu, context, root_level);
17ac10ad
AK
4832}
4833
8a3c1a33
PB
4834static void paging32_init_context(struct kvm_vcpu *vcpu,
4835 struct kvm_mmu *context)
6aa8b732 4836{
2d48a985 4837 context->nx = false;
4d6931c3 4838 context->root_level = PT32_ROOT_LEVEL;
2d48a985 4839
4d6931c3 4840 reset_rsvds_bits_mask(vcpu, context);
25d92081 4841 update_permission_bitmask(vcpu, context, false);
2d344105 4842 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4843 update_last_nonleaf_level(vcpu, context);
6aa8b732 4844
6aa8b732 4845 context->page_fault = paging32_page_fault;
6aa8b732 4846 context->gva_to_gpa = paging32_gva_to_gpa;
e8bc217a 4847 context->sync_page = paging32_sync_page;
a7052897 4848 context->invlpg = paging32_invlpg;
0f53b5b1 4849 context->update_pte = paging32_update_pte;
6aa8b732 4850 context->shadow_root_level = PT32E_ROOT_LEVEL;
c5a78f2b 4851 context->direct_map = false;
6aa8b732
AK
4852}
4853
8a3c1a33
PB
4854static void paging32E_init_context(struct kvm_vcpu *vcpu,
4855 struct kvm_mmu *context)
6aa8b732 4856{
8a3c1a33 4857 paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
4858}
4859
a336282d
VK
4860static union kvm_mmu_extended_role kvm_calc_mmu_role_ext(struct kvm_vcpu *vcpu)
4861{
4862 union kvm_mmu_extended_role ext = {0};
4863
7dcd5755 4864 ext.cr0_pg = !!is_paging(vcpu);
0699c64a 4865 ext.cr4_pae = !!is_pae(vcpu);
a336282d
VK
4866 ext.cr4_smep = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
4867 ext.cr4_smap = !!kvm_read_cr4_bits(vcpu, X86_CR4_SMAP);
4868 ext.cr4_pse = !!is_pse(vcpu);
4869 ext.cr4_pke = !!kvm_read_cr4_bits(vcpu, X86_CR4_PKE);
de3ccd26 4870 ext.maxphyaddr = cpuid_maxphyaddr(vcpu);
a336282d
VK
4871
4872 ext.valid = 1;
4873
4874 return ext;
4875}
4876
7dcd5755
VK
4877static union kvm_mmu_role kvm_calc_mmu_role_common(struct kvm_vcpu *vcpu,
4878 bool base_only)
4879{
4880 union kvm_mmu_role role = {0};
4881
4882 role.base.access = ACC_ALL;
4883 role.base.nxe = !!is_nx(vcpu);
7dcd5755
VK
4884 role.base.cr0_wp = is_write_protection(vcpu);
4885 role.base.smm = is_smm(vcpu);
4886 role.base.guest_mode = is_guest_mode(vcpu);
4887
4888 if (base_only)
4889 return role;
4890
4891 role.ext = kvm_calc_mmu_role_ext(vcpu);
4892
4893 return role;
4894}
4895
4896static union kvm_mmu_role
4897kvm_calc_tdp_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
9fa72119 4898{
7dcd5755 4899 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
9fa72119 4900
7dcd5755 4901 role.base.ad_disabled = (shadow_accessed_mask == 0);
afaf0b2f 4902 role.base.level = kvm_x86_ops.get_tdp_level(vcpu);
7dcd5755 4903 role.base.direct = true;
47c42e6b 4904 role.base.gpte_is_8_bytes = true;
9fa72119
JS
4905
4906 return role;
4907}
4908
8a3c1a33 4909static void init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
fb72d167 4910{
44dd3ffa 4911 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4912 union kvm_mmu_role new_role =
4913 kvm_calc_tdp_mmu_root_page_role(vcpu, false);
fb72d167 4914
7dcd5755
VK
4915 if (new_role.as_u64 == context->mmu_role.as_u64)
4916 return;
4917
4918 context->mmu_role.as_u64 = new_role.as_u64;
7a02674d 4919 context->page_fault = kvm_tdp_page_fault;
e8bc217a 4920 context->sync_page = nonpaging_sync_page;
5efac074 4921 context->invlpg = NULL;
0f53b5b1 4922 context->update_pte = nonpaging_update_pte;
afaf0b2f 4923 context->shadow_root_level = kvm_x86_ops.get_tdp_level(vcpu);
c5a78f2b 4924 context->direct_map = true;
d8dd54e0 4925 context->get_guest_pgd = get_cr3;
e4e517b4 4926 context->get_pdptr = kvm_pdptr_read;
cb659db8 4927 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
4928
4929 if (!is_paging(vcpu)) {
2d48a985 4930 context->nx = false;
fb72d167
JR
4931 context->gva_to_gpa = nonpaging_gva_to_gpa;
4932 context->root_level = 0;
4933 } else if (is_long_mode(vcpu)) {
2d48a985 4934 context->nx = is_nx(vcpu);
855feb67
YZ
4935 context->root_level = is_la57_mode(vcpu) ?
4936 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3
DB
4937 reset_rsvds_bits_mask(vcpu, context);
4938 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4939 } else if (is_pae(vcpu)) {
2d48a985 4940 context->nx = is_nx(vcpu);
fb72d167 4941 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
4942 reset_rsvds_bits_mask(vcpu, context);
4943 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 4944 } else {
2d48a985 4945 context->nx = false;
fb72d167 4946 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
4947 reset_rsvds_bits_mask(vcpu, context);
4948 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
4949 }
4950
25d92081 4951 update_permission_bitmask(vcpu, context, false);
2d344105 4952 update_pkru_bitmask(vcpu, context, false);
6bb69c9b 4953 update_last_nonleaf_level(vcpu, context);
c258b62b 4954 reset_tdp_shadow_zero_bits_mask(vcpu, context);
fb72d167
JR
4955}
4956
7dcd5755
VK
4957static union kvm_mmu_role
4958kvm_calc_shadow_mmu_root_page_role(struct kvm_vcpu *vcpu, bool base_only)
4959{
4960 union kvm_mmu_role role = kvm_calc_mmu_role_common(vcpu, base_only);
4961
4962 role.base.smep_andnot_wp = role.ext.cr4_smep &&
4963 !is_write_protection(vcpu);
4964 role.base.smap_andnot_wp = role.ext.cr4_smap &&
4965 !is_write_protection(vcpu);
4966 role.base.direct = !is_paging(vcpu);
47c42e6b 4967 role.base.gpte_is_8_bytes = !!is_pae(vcpu);
9fa72119
JS
4968
4969 if (!is_long_mode(vcpu))
7dcd5755 4970 role.base.level = PT32E_ROOT_LEVEL;
9fa72119 4971 else if (is_la57_mode(vcpu))
7dcd5755 4972 role.base.level = PT64_ROOT_5LEVEL;
9fa72119 4973 else
7dcd5755 4974 role.base.level = PT64_ROOT_4LEVEL;
9fa72119
JS
4975
4976 return role;
4977}
4978
4979void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu)
4980{
44dd3ffa 4981 struct kvm_mmu *context = vcpu->arch.mmu;
7dcd5755
VK
4982 union kvm_mmu_role new_role =
4983 kvm_calc_shadow_mmu_root_page_role(vcpu, false);
4984
7dcd5755
VK
4985 if (new_role.as_u64 == context->mmu_role.as_u64)
4986 return;
6aa8b732
AK
4987
4988 if (!is_paging(vcpu))
8a3c1a33 4989 nonpaging_init_context(vcpu, context);
a9058ecd 4990 else if (is_long_mode(vcpu))
8a3c1a33 4991 paging64_init_context(vcpu, context);
6aa8b732 4992 else if (is_pae(vcpu))
8a3c1a33 4993 paging32E_init_context(vcpu, context);
6aa8b732 4994 else
8a3c1a33 4995 paging32_init_context(vcpu, context);
a770f6f2 4996
7dcd5755 4997 context->mmu_role.as_u64 = new_role.as_u64;
c258b62b 4998 reset_shadow_zero_bits_mask(vcpu, context);
52fde8df
JR
4999}
5000EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
5001
a336282d
VK
5002static union kvm_mmu_role
5003kvm_calc_shadow_ept_root_page_role(struct kvm_vcpu *vcpu, bool accessed_dirty,
bb1fcc70 5004 bool execonly, u8 level)
9fa72119 5005{
552c69b1 5006 union kvm_mmu_role role = {0};
14c07ad8 5007
47c42e6b
SC
5008 /* SMM flag is inherited from root_mmu */
5009 role.base.smm = vcpu->arch.root_mmu.mmu_role.base.smm;
9fa72119 5010
bb1fcc70 5011 role.base.level = level;
47c42e6b 5012 role.base.gpte_is_8_bytes = true;
a336282d
VK
5013 role.base.direct = false;
5014 role.base.ad_disabled = !accessed_dirty;
5015 role.base.guest_mode = true;
5016 role.base.access = ACC_ALL;
9fa72119 5017
47c42e6b
SC
5018 /*
5019 * WP=1 and NOT_WP=1 is an impossible combination, use WP and the
5020 * SMAP variation to denote shadow EPT entries.
5021 */
5022 role.base.cr0_wp = true;
5023 role.base.smap_andnot_wp = true;
5024
552c69b1 5025 role.ext = kvm_calc_mmu_role_ext(vcpu);
a336282d 5026 role.ext.execonly = execonly;
9fa72119
JS
5027
5028 return role;
5029}
5030
ae1e2d10 5031void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
50c28f21 5032 bool accessed_dirty, gpa_t new_eptp)
155a97a3 5033{
44dd3ffa 5034 struct kvm_mmu *context = vcpu->arch.mmu;
bb1fcc70 5035 u8 level = vmx_eptp_page_walk_level(new_eptp);
a336282d
VK
5036 union kvm_mmu_role new_role =
5037 kvm_calc_shadow_ept_root_page_role(vcpu, accessed_dirty,
bb1fcc70 5038 execonly, level);
a336282d
VK
5039
5040 __kvm_mmu_new_cr3(vcpu, new_eptp, new_role.base, false);
5041
a336282d
VK
5042 if (new_role.as_u64 == context->mmu_role.as_u64)
5043 return;
ad896af0 5044
bb1fcc70 5045 context->shadow_root_level = level;
155a97a3
NHE
5046
5047 context->nx = true;
ae1e2d10 5048 context->ept_ad = accessed_dirty;
155a97a3
NHE
5049 context->page_fault = ept_page_fault;
5050 context->gva_to_gpa = ept_gva_to_gpa;
5051 context->sync_page = ept_sync_page;
5052 context->invlpg = ept_invlpg;
5053 context->update_pte = ept_update_pte;
bb1fcc70 5054 context->root_level = level;
155a97a3 5055 context->direct_map = false;
a336282d 5056 context->mmu_role.as_u64 = new_role.as_u64;
3dc773e7 5057
155a97a3 5058 update_permission_bitmask(vcpu, context, true);
2d344105 5059 update_pkru_bitmask(vcpu, context, true);
fd19d3b4 5060 update_last_nonleaf_level(vcpu, context);
155a97a3 5061 reset_rsvds_bits_mask_ept(vcpu, context, execonly);
c258b62b 5062 reset_ept_shadow_zero_bits_mask(vcpu, context, execonly);
155a97a3
NHE
5063}
5064EXPORT_SYMBOL_GPL(kvm_init_shadow_ept_mmu);
5065
8a3c1a33 5066static void init_kvm_softmmu(struct kvm_vcpu *vcpu)
52fde8df 5067{
44dd3ffa 5068 struct kvm_mmu *context = vcpu->arch.mmu;
ad896af0
PB
5069
5070 kvm_init_shadow_mmu(vcpu);
d8dd54e0 5071 context->get_guest_pgd = get_cr3;
ad896af0
PB
5072 context->get_pdptr = kvm_pdptr_read;
5073 context->inject_page_fault = kvm_inject_page_fault;
6aa8b732
AK
5074}
5075
8a3c1a33 5076static void init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
02f59dc9 5077{
bf627a92 5078 union kvm_mmu_role new_role = kvm_calc_mmu_role_common(vcpu, false);
02f59dc9
JR
5079 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
5080
bf627a92
VK
5081 if (new_role.as_u64 == g_context->mmu_role.as_u64)
5082 return;
5083
5084 g_context->mmu_role.as_u64 = new_role.as_u64;
d8dd54e0 5085 g_context->get_guest_pgd = get_cr3;
e4e517b4 5086 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
5087 g_context->inject_page_fault = kvm_inject_page_fault;
5088
5efac074
PB
5089 /*
5090 * L2 page tables are never shadowed, so there is no need to sync
5091 * SPTEs.
5092 */
5093 g_context->invlpg = NULL;
5094
02f59dc9 5095 /*
44dd3ffa 5096 * Note that arch.mmu->gva_to_gpa translates l2_gpa to l1_gpa using
0af2593b
DM
5097 * L1's nested page tables (e.g. EPT12). The nested translation
5098 * of l2_gva to l1_gpa is done by arch.nested_mmu.gva_to_gpa using
5099 * L2's page tables as the first level of translation and L1's
5100 * nested page tables as the second level of translation. Basically
5101 * the gva_to_gpa functions between mmu and nested_mmu are swapped.
02f59dc9
JR
5102 */
5103 if (!is_paging(vcpu)) {
2d48a985 5104 g_context->nx = false;
02f59dc9
JR
5105 g_context->root_level = 0;
5106 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
5107 } else if (is_long_mode(vcpu)) {
2d48a985 5108 g_context->nx = is_nx(vcpu);
855feb67
YZ
5109 g_context->root_level = is_la57_mode(vcpu) ?
5110 PT64_ROOT_5LEVEL : PT64_ROOT_4LEVEL;
4d6931c3 5111 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5112 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5113 } else if (is_pae(vcpu)) {
2d48a985 5114 g_context->nx = is_nx(vcpu);
02f59dc9 5115 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 5116 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5117 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
5118 } else {
2d48a985 5119 g_context->nx = false;
02f59dc9 5120 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 5121 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
5122 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
5123 }
5124
25d92081 5125 update_permission_bitmask(vcpu, g_context, false);
2d344105 5126 update_pkru_bitmask(vcpu, g_context, false);
6bb69c9b 5127 update_last_nonleaf_level(vcpu, g_context);
02f59dc9
JR
5128}
5129
1c53da3f 5130void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots)
fb72d167 5131{
1c53da3f 5132 if (reset_roots) {
b94742c9
JS
5133 uint i;
5134
44dd3ffa 5135 vcpu->arch.mmu->root_hpa = INVALID_PAGE;
b94742c9
JS
5136
5137 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5138 vcpu->arch.mmu->prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
1c53da3f
JS
5139 }
5140
02f59dc9 5141 if (mmu_is_nested(vcpu))
e0c6db3e 5142 init_kvm_nested_mmu(vcpu);
02f59dc9 5143 else if (tdp_enabled)
e0c6db3e 5144 init_kvm_tdp_mmu(vcpu);
fb72d167 5145 else
e0c6db3e 5146 init_kvm_softmmu(vcpu);
fb72d167 5147}
1c53da3f 5148EXPORT_SYMBOL_GPL(kvm_init_mmu);
fb72d167 5149
9fa72119
JS
5150static union kvm_mmu_page_role
5151kvm_mmu_calc_root_page_role(struct kvm_vcpu *vcpu)
5152{
7dcd5755
VK
5153 union kvm_mmu_role role;
5154
9fa72119 5155 if (tdp_enabled)
7dcd5755 5156 role = kvm_calc_tdp_mmu_root_page_role(vcpu, true);
9fa72119 5157 else
7dcd5755
VK
5158 role = kvm_calc_shadow_mmu_root_page_role(vcpu, true);
5159
5160 return role.base;
9fa72119 5161}
fb72d167 5162
8a3c1a33 5163void kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
6aa8b732 5164{
95f93af4 5165 kvm_mmu_unload(vcpu);
1c53da3f 5166 kvm_init_mmu(vcpu, true);
17c3ba9d 5167}
8668a3c4 5168EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
5169
5170int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 5171{
714b93da
AK
5172 int r;
5173
e2dec939 5174 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
5175 if (r)
5176 goto out;
8986ecc0 5177 r = mmu_alloc_roots(vcpu);
e2858b4a 5178 kvm_mmu_sync_roots(vcpu);
8986ecc0
MT
5179 if (r)
5180 goto out;
727a7e27 5181 kvm_mmu_load_pgd(vcpu);
afaf0b2f 5182 kvm_x86_ops.tlb_flush(vcpu, true);
714b93da
AK
5183out:
5184 return r;
6aa8b732 5185}
17c3ba9d
AK
5186EXPORT_SYMBOL_GPL(kvm_mmu_load);
5187
5188void kvm_mmu_unload(struct kvm_vcpu *vcpu)
5189{
14c07ad8
VK
5190 kvm_mmu_free_roots(vcpu, &vcpu->arch.root_mmu, KVM_MMU_ROOTS_ALL);
5191 WARN_ON(VALID_PAGE(vcpu->arch.root_mmu.root_hpa));
5192 kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5193 WARN_ON(VALID_PAGE(vcpu->arch.guest_mmu.root_hpa));
17c3ba9d 5194}
4b16184c 5195EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 5196
0028425f 5197static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
5198 struct kvm_mmu_page *sp, u64 *spte,
5199 const void *new)
0028425f 5200{
30945387 5201 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
5202 ++vcpu->kvm->stat.mmu_pde_zapped;
5203 return;
30945387 5204 }
0028425f 5205
4cee5764 5206 ++vcpu->kvm->stat.mmu_pte_updated;
44dd3ffa 5207 vcpu->arch.mmu->update_pte(vcpu, sp, spte, new);
0028425f
AK
5208}
5209
79539cec
AK
5210static bool need_remote_flush(u64 old, u64 new)
5211{
5212 if (!is_shadow_present_pte(old))
5213 return false;
5214 if (!is_shadow_present_pte(new))
5215 return true;
5216 if ((old ^ new) & PT64_BASE_ADDR_MASK)
5217 return true;
53166229
GN
5218 old ^= shadow_nx_mask;
5219 new ^= shadow_nx_mask;
79539cec
AK
5220 return (old & ~new & PT64_PERM_MASK) != 0;
5221}
5222
889e5cbc 5223static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
0e0fee5c 5224 int *bytes)
da4a00f0 5225{
0e0fee5c 5226 u64 gentry = 0;
889e5cbc 5227 int r;
72016f3a 5228
72016f3a
AK
5229 /*
5230 * Assume that the pte write on a page table of the same type
49b26e26
XG
5231 * as the current vcpu paging mode since we update the sptes only
5232 * when they have the same mode.
72016f3a 5233 */
889e5cbc 5234 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 5235 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
5236 *gpa &= ~(gpa_t)7;
5237 *bytes = 8;
08e850c6
AK
5238 }
5239
0e0fee5c
JS
5240 if (*bytes == 4 || *bytes == 8) {
5241 r = kvm_vcpu_read_guest_atomic(vcpu, *gpa, &gentry, *bytes);
5242 if (r)
5243 gentry = 0;
72016f3a
AK
5244 }
5245
889e5cbc
XG
5246 return gentry;
5247}
5248
5249/*
5250 * If we're seeing too many writes to a page, it may no longer be a page table,
5251 * or we may be forking, in which case it is better to unmap the page.
5252 */
a138fe75 5253static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 5254{
a30f47cb
XG
5255 /*
5256 * Skip write-flooding detected for the sp whose level is 1, because
5257 * it can become unsync, then the guest page is not write-protected.
5258 */
f71fa31f 5259 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 5260 return false;
3246af0e 5261
e5691a81
XG
5262 atomic_inc(&sp->write_flooding_count);
5263 return atomic_read(&sp->write_flooding_count) >= 3;
889e5cbc
XG
5264}
5265
5266/*
5267 * Misaligned accesses are too much trouble to fix up; also, they usually
5268 * indicate a page is not used as a page table.
5269 */
5270static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
5271 int bytes)
5272{
5273 unsigned offset, pte_size, misaligned;
5274
5275 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
5276 gpa, bytes, sp->role.word);
5277
5278 offset = offset_in_page(gpa);
47c42e6b 5279 pte_size = sp->role.gpte_is_8_bytes ? 8 : 4;
5d9ca30e
XG
5280
5281 /*
5282 * Sometimes, the OS only writes the last one bytes to update status
5283 * bits, for example, in linux, andb instruction is used in clear_bit().
5284 */
5285 if (!(offset & (pte_size - 1)) && bytes == 1)
5286 return false;
5287
889e5cbc
XG
5288 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
5289 misaligned |= bytes < 4;
5290
5291 return misaligned;
5292}
5293
5294static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
5295{
5296 unsigned page_offset, quadrant;
5297 u64 *spte;
5298 int level;
5299
5300 page_offset = offset_in_page(gpa);
5301 level = sp->role.level;
5302 *nspte = 1;
47c42e6b 5303 if (!sp->role.gpte_is_8_bytes) {
889e5cbc
XG
5304 page_offset <<= 1; /* 32->64 */
5305 /*
5306 * A 32-bit pde maps 4MB while the shadow pdes map
5307 * only 2MB. So we need to double the offset again
5308 * and zap two pdes instead of one.
5309 */
5310 if (level == PT32_ROOT_LEVEL) {
5311 page_offset &= ~7; /* kill rounding error */
5312 page_offset <<= 1;
5313 *nspte = 2;
5314 }
5315 quadrant = page_offset >> PAGE_SHIFT;
5316 page_offset &= ~PAGE_MASK;
5317 if (quadrant != sp->role.quadrant)
5318 return NULL;
5319 }
5320
5321 spte = &sp->spt[page_offset / sizeof(*spte)];
5322 return spte;
5323}
5324
a102a674
SC
5325/*
5326 * Ignore various flags when determining if a SPTE can be immediately
5327 * overwritten for the current MMU.
5328 * - level: explicitly checked in mmu_pte_write_new_pte(), and will never
5329 * match the current MMU role, as MMU's level tracks the root level.
5330 * - access: updated based on the new guest PTE
5331 * - quadrant: handled by get_written_sptes()
5332 * - invalid: always false (loop only walks valid shadow pages)
5333 */
5334static const union kvm_mmu_page_role role_ign = {
5335 .level = 0xf,
5336 .access = 0x7,
5337 .quadrant = 0x3,
5338 .invalid = 0x1,
5339};
5340
13d268ca 5341static void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
d126363d
JS
5342 const u8 *new, int bytes,
5343 struct kvm_page_track_notifier_node *node)
889e5cbc
XG
5344{
5345 gfn_t gfn = gpa >> PAGE_SHIFT;
889e5cbc 5346 struct kvm_mmu_page *sp;
889e5cbc
XG
5347 LIST_HEAD(invalid_list);
5348 u64 entry, gentry, *spte;
5349 int npte;
b8c67b7a 5350 bool remote_flush, local_flush;
889e5cbc
XG
5351
5352 /*
5353 * If we don't have indirect shadow pages, it means no page is
5354 * write-protected, so we can exit simply.
5355 */
6aa7de05 5356 if (!READ_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
889e5cbc
XG
5357 return;
5358
b8c67b7a 5359 remote_flush = local_flush = false;
889e5cbc
XG
5360
5361 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
5362
889e5cbc
XG
5363 /*
5364 * No need to care whether allocation memory is successful
5365 * or not since pte prefetch is skiped if it does not have
5366 * enough objects in the cache.
5367 */
5368 mmu_topup_memory_caches(vcpu);
5369
5370 spin_lock(&vcpu->kvm->mmu_lock);
0e0fee5c
JS
5371
5372 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, &bytes);
5373
889e5cbc 5374 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 5375 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 5376
b67bfe0d 5377 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn) {
a30f47cb 5378 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 5379 detect_write_flooding(sp)) {
b8c67b7a 5380 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 5381 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
5382 continue;
5383 }
889e5cbc
XG
5384
5385 spte = get_written_sptes(sp, gpa, &npte);
5386 if (!spte)
5387 continue;
5388
0671a8e7 5389 local_flush = true;
ac1b714e 5390 while (npte--) {
36d9594d
VK
5391 u32 base_role = vcpu->arch.mmu->mmu_role.base.word;
5392
79539cec 5393 entry = *spte;
38e3b2b2 5394 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf 5395 if (gentry &&
a102a674
SC
5396 !((sp->role.word ^ base_role) & ~role_ign.word) &&
5397 rmap_can_add(vcpu))
7c562522 5398 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
9bb4f6b1 5399 if (need_remote_flush(entry, *spte))
0671a8e7 5400 remote_flush = true;
ac1b714e 5401 ++spte;
9b7a0325 5402 }
9b7a0325 5403 }
b8c67b7a 5404 kvm_mmu_flush_or_zap(vcpu, &invalid_list, remote_flush, local_flush);
0375f7fa 5405 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 5406 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
5407}
5408
a436036b
AK
5409int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
5410{
10589a46
MT
5411 gpa_t gpa;
5412 int r;
a436036b 5413
44dd3ffa 5414 if (vcpu->arch.mmu->direct_map)
60f24784
AK
5415 return 0;
5416
1871c602 5417 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 5418
10589a46 5419 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 5420
10589a46 5421 return r;
a436036b 5422}
577bdc49 5423EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 5424
736c291c 5425int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
dc25e89e 5426 void *insn, int insn_len)
3067714c 5427{
92daa48b 5428 int r, emulation_type = EMULTYPE_PF;
44dd3ffa 5429 bool direct = vcpu->arch.mmu->direct_map;
3067714c 5430
6948199a 5431 if (WARN_ON(!VALID_PAGE(vcpu->arch.mmu->root_hpa)))
ddce6208
SC
5432 return RET_PF_RETRY;
5433
9b8ebbdb 5434 r = RET_PF_INVALID;
e9ee956e 5435 if (unlikely(error_code & PFERR_RSVD_MASK)) {
736c291c 5436 r = handle_mmio_page_fault(vcpu, cr2_or_gpa, direct);
472faffa 5437 if (r == RET_PF_EMULATE)
e9ee956e 5438 goto emulate;
e9ee956e 5439 }
3067714c 5440
9b8ebbdb 5441 if (r == RET_PF_INVALID) {
7a02674d
SC
5442 r = kvm_mmu_do_page_fault(vcpu, cr2_or_gpa,
5443 lower_32_bits(error_code), false);
9b8ebbdb
PB
5444 WARN_ON(r == RET_PF_INVALID);
5445 }
5446
5447 if (r == RET_PF_RETRY)
5448 return 1;
3067714c 5449 if (r < 0)
e9ee956e 5450 return r;
3067714c 5451
14727754
TL
5452 /*
5453 * Before emulating the instruction, check if the error code
5454 * was due to a RO violation while translating the guest page.
5455 * This can occur when using nested virtualization with nested
5456 * paging in both guests. If true, we simply unprotect the page
5457 * and resume the guest.
14727754 5458 */
44dd3ffa 5459 if (vcpu->arch.mmu->direct_map &&
eebed243 5460 (error_code & PFERR_NESTED_GUEST_PAGE) == PFERR_NESTED_GUEST_PAGE) {
736c291c 5461 kvm_mmu_unprotect_page(vcpu->kvm, gpa_to_gfn(cr2_or_gpa));
14727754
TL
5462 return 1;
5463 }
5464
472faffa
SC
5465 /*
5466 * vcpu->arch.mmu.page_fault returned RET_PF_EMULATE, but we can still
5467 * optimistically try to just unprotect the page and let the processor
5468 * re-execute the instruction that caused the page fault. Do not allow
5469 * retrying MMIO emulation, as it's not only pointless but could also
5470 * cause us to enter an infinite loop because the processor will keep
6c3dfeb6
SC
5471 * faulting on the non-existent MMIO address. Retrying an instruction
5472 * from a nested guest is also pointless and dangerous as we are only
5473 * explicitly shadowing L1's page tables, i.e. unprotecting something
5474 * for L1 isn't going to magically fix whatever issue cause L2 to fail.
472faffa 5475 */
736c291c 5476 if (!mmio_info_in_cache(vcpu, cr2_or_gpa, direct) && !is_guest_mode(vcpu))
92daa48b 5477 emulation_type |= EMULTYPE_ALLOW_RETRY_PF;
e9ee956e 5478emulate:
00b10fe1
BS
5479 /*
5480 * On AMD platforms, under certain conditions insn_len may be zero on #NPF.
5481 * This can happen if a guest gets a page-fault on data access but the HW
5482 * table walker is not able to read the instruction page (e.g instruction
5483 * page is not present in memory). In those cases we simply restart the
05d5a486 5484 * guest, with the exception of AMD Erratum 1096 which is unrecoverable.
00b10fe1 5485 */
05d5a486 5486 if (unlikely(insn && !insn_len)) {
afaf0b2f 5487 if (!kvm_x86_ops.need_emulation_on_page_fault(vcpu))
05d5a486
SB
5488 return 1;
5489 }
00b10fe1 5490
736c291c 5491 return x86_emulate_instruction(vcpu, cr2_or_gpa, emulation_type, insn,
60fc3d02 5492 insn_len);
3067714c
AK
5493}
5494EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
5495
5efac074
PB
5496void kvm_mmu_invalidate_gva(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
5497 gva_t gva, hpa_t root_hpa)
a7052897 5498{
b94742c9 5499 int i;
7eb77e9f 5500
5efac074
PB
5501 /* It's actually a GPA for vcpu->arch.guest_mmu. */
5502 if (mmu != &vcpu->arch.guest_mmu) {
5503 /* INVLPG on a non-canonical address is a NOP according to the SDM. */
5504 if (is_noncanonical_address(gva, vcpu))
5505 return;
5506
5507 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
5508 }
5509
5510 if (!mmu->invlpg)
faff8758
JS
5511 return;
5512
5efac074
PB
5513 if (root_hpa == INVALID_PAGE) {
5514 mmu->invlpg(vcpu, gva, mmu->root_hpa);
956bf353 5515
5efac074
PB
5516 /*
5517 * INVLPG is required to invalidate any global mappings for the VA,
5518 * irrespective of PCID. Since it would take us roughly similar amount
5519 * of work to determine whether any of the prev_root mappings of the VA
5520 * is marked global, or to just sync it blindly, so we might as well
5521 * just always sync it.
5522 *
5523 * Mappings not reachable via the current cr3 or the prev_roots will be
5524 * synced when switching to that cr3, so nothing needs to be done here
5525 * for them.
5526 */
5527 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5528 if (VALID_PAGE(mmu->prev_roots[i].hpa))
5529 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5530 } else {
5531 mmu->invlpg(vcpu, gva, root_hpa);
5532 }
5533}
5534EXPORT_SYMBOL_GPL(kvm_mmu_invalidate_gva);
956bf353 5535
5efac074
PB
5536void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
5537{
5538 kvm_mmu_invalidate_gva(vcpu, vcpu->arch.mmu, gva, INVALID_PAGE);
a7052897
MT
5539 ++vcpu->stat.invlpg;
5540}
5541EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
5542
5efac074 5543
eb4b248e
JS
5544void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid)
5545{
44dd3ffa 5546 struct kvm_mmu *mmu = vcpu->arch.mmu;
faff8758 5547 bool tlb_flush = false;
b94742c9 5548 uint i;
eb4b248e
JS
5549
5550 if (pcid == kvm_get_active_pcid(vcpu)) {
7eb77e9f 5551 mmu->invlpg(vcpu, gva, mmu->root_hpa);
faff8758 5552 tlb_flush = true;
eb4b248e
JS
5553 }
5554
b94742c9
JS
5555 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5556 if (VALID_PAGE(mmu->prev_roots[i].hpa) &&
5557 pcid == kvm_get_pcid(vcpu, mmu->prev_roots[i].cr3)) {
5558 mmu->invlpg(vcpu, gva, mmu->prev_roots[i].hpa);
5559 tlb_flush = true;
5560 }
956bf353 5561 }
ade61e28 5562
faff8758 5563 if (tlb_flush)
afaf0b2f 5564 kvm_x86_ops.tlb_flush_gva(vcpu, gva);
faff8758 5565
eb4b248e
JS
5566 ++vcpu->stat.invlpg;
5567
5568 /*
b94742c9
JS
5569 * Mappings not reachable via the current cr3 or the prev_roots will be
5570 * synced when switching to that cr3, so nothing needs to be done here
5571 * for them.
eb4b248e
JS
5572 */
5573}
5574EXPORT_SYMBOL_GPL(kvm_mmu_invpcid_gva);
5575
703c335d 5576void kvm_configure_mmu(bool enable_tdp, int tdp_page_level)
18552672 5577{
bde77235 5578 tdp_enabled = enable_tdp;
703c335d
SC
5579
5580 /*
5581 * max_page_level reflects the capabilities of KVM's MMU irrespective
5582 * of kernel support, e.g. KVM may be capable of using 1GB pages when
5583 * the kernel is not. But, KVM never creates a page size greater than
5584 * what is used by the kernel for any given HVA, i.e. the kernel's
5585 * capabilities are ultimately consulted by kvm_mmu_hugepage_adjust().
5586 */
5587 if (tdp_enabled)
5588 max_page_level = tdp_page_level;
5589 else if (boot_cpu_has(X86_FEATURE_GBPAGES))
5590 max_page_level = PT_PDPE_LEVEL;
5591 else
5592 max_page_level = PT_DIRECTORY_LEVEL;
18552672 5593}
bde77235 5594EXPORT_SYMBOL_GPL(kvm_configure_mmu);
85875a13
SC
5595
5596/* The return value indicates if tlb flush on all vcpus is needed. */
5597typedef bool (*slot_level_handler) (struct kvm *kvm, struct kvm_rmap_head *rmap_head);
5598
5599/* The caller should hold mmu-lock before calling this function. */
5600static __always_inline bool
5601slot_handle_level_range(struct kvm *kvm, struct kvm_memory_slot *memslot,
5602 slot_level_handler fn, int start_level, int end_level,
5603 gfn_t start_gfn, gfn_t end_gfn, bool lock_flush_tlb)
5604{
5605 struct slot_rmap_walk_iterator iterator;
5606 bool flush = false;
5607
5608 for_each_slot_rmap_range(memslot, start_level, end_level, start_gfn,
5609 end_gfn, &iterator) {
5610 if (iterator.rmap)
5611 flush |= fn(kvm, iterator.rmap);
5612
5613 if (need_resched() || spin_needbreak(&kvm->mmu_lock)) {
5614 if (flush && lock_flush_tlb) {
f285c633
BG
5615 kvm_flush_remote_tlbs_with_address(kvm,
5616 start_gfn,
5617 iterator.gfn - start_gfn + 1);
85875a13
SC
5618 flush = false;
5619 }
5620 cond_resched_lock(&kvm->mmu_lock);
5621 }
5622 }
5623
5624 if (flush && lock_flush_tlb) {
f285c633
BG
5625 kvm_flush_remote_tlbs_with_address(kvm, start_gfn,
5626 end_gfn - start_gfn + 1);
85875a13
SC
5627 flush = false;
5628 }
5629
5630 return flush;
5631}
5632
5633static __always_inline bool
5634slot_handle_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5635 slot_level_handler fn, int start_level, int end_level,
5636 bool lock_flush_tlb)
5637{
5638 return slot_handle_level_range(kvm, memslot, fn, start_level,
5639 end_level, memslot->base_gfn,
5640 memslot->base_gfn + memslot->npages - 1,
5641 lock_flush_tlb);
5642}
5643
5644static __always_inline bool
5645slot_handle_all_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5646 slot_level_handler fn, bool lock_flush_tlb)
5647{
5648 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5649 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5650}
5651
5652static __always_inline bool
5653slot_handle_large_level(struct kvm *kvm, struct kvm_memory_slot *memslot,
5654 slot_level_handler fn, bool lock_flush_tlb)
5655{
5656 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL + 1,
5657 PT_MAX_HUGEPAGE_LEVEL, lock_flush_tlb);
5658}
5659
5660static __always_inline bool
5661slot_handle_leaf(struct kvm *kvm, struct kvm_memory_slot *memslot,
5662 slot_level_handler fn, bool lock_flush_tlb)
5663{
5664 return slot_handle_level(kvm, memslot, fn, PT_PAGE_TABLE_LEVEL,
5665 PT_PAGE_TABLE_LEVEL, lock_flush_tlb);
5666}
5667
1cfff4d9 5668static void free_mmu_pages(struct kvm_mmu *mmu)
6aa8b732 5669{
1cfff4d9
JP
5670 free_page((unsigned long)mmu->pae_root);
5671 free_page((unsigned long)mmu->lm_root);
6aa8b732
AK
5672}
5673
1cfff4d9 5674static int alloc_mmu_pages(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu)
6aa8b732 5675{
17ac10ad 5676 struct page *page;
6aa8b732
AK
5677 int i;
5678
17ac10ad 5679 /*
b6b80c78
SC
5680 * When using PAE paging, the four PDPTEs are treated as 'root' pages,
5681 * while the PDP table is a per-vCPU construct that's allocated at MMU
5682 * creation. When emulating 32-bit mode, cr3 is only 32 bits even on
5683 * x86_64. Therefore we need to allocate the PDP table in the first
5684 * 4GB of memory, which happens to fit the DMA32 zone. Except for
5685 * SVM's 32-bit NPT support, TDP paging doesn't use PAE paging and can
5686 * skip allocating the PDP table.
17ac10ad 5687 */
afaf0b2f 5688 if (tdp_enabled && kvm_x86_ops.get_tdp_level(vcpu) > PT32E_ROOT_LEVEL)
b6b80c78
SC
5689 return 0;
5690
254272ce 5691 page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_DMA32);
17ac10ad 5692 if (!page)
d7fa6ab2
WY
5693 return -ENOMEM;
5694
1cfff4d9 5695 mmu->pae_root = page_address(page);
17ac10ad 5696 for (i = 0; i < 4; ++i)
1cfff4d9 5697 mmu->pae_root[i] = INVALID_PAGE;
17ac10ad 5698
6aa8b732 5699 return 0;
6aa8b732
AK
5700}
5701
8018c27b 5702int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 5703{
b94742c9 5704 uint i;
1cfff4d9 5705 int ret;
b94742c9 5706
44dd3ffa
VK
5707 vcpu->arch.mmu = &vcpu->arch.root_mmu;
5708 vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
6aa8b732 5709
44dd3ffa 5710 vcpu->arch.root_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5711 vcpu->arch.root_mmu.root_cr3 = 0;
44dd3ffa 5712 vcpu->arch.root_mmu.translate_gpa = translate_gpa;
b94742c9 5713 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
44dd3ffa 5714 vcpu->arch.root_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
6aa8b732 5715
14c07ad8 5716 vcpu->arch.guest_mmu.root_hpa = INVALID_PAGE;
ad7dc69a 5717 vcpu->arch.guest_mmu.root_cr3 = 0;
14c07ad8
VK
5718 vcpu->arch.guest_mmu.translate_gpa = translate_gpa;
5719 for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++)
5720 vcpu->arch.guest_mmu.prev_roots[i] = KVM_MMU_ROOT_INFO_INVALID;
2c264957 5721
14c07ad8 5722 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
1cfff4d9
JP
5723
5724 ret = alloc_mmu_pages(vcpu, &vcpu->arch.guest_mmu);
5725 if (ret)
5726 return ret;
5727
5728 ret = alloc_mmu_pages(vcpu, &vcpu->arch.root_mmu);
5729 if (ret)
5730 goto fail_allocate_root;
5731
5732 return ret;
5733 fail_allocate_root:
5734 free_mmu_pages(&vcpu->arch.guest_mmu);
5735 return ret;
6aa8b732
AK
5736}
5737
fbb158cb 5738#define BATCH_ZAP_PAGES 10
002c5f73
SC
5739static void kvm_zap_obsolete_pages(struct kvm *kvm)
5740{
5741 struct kvm_mmu_page *sp, *node;
fbb158cb 5742 int nr_zapped, batch = 0;
002c5f73
SC
5743
5744restart:
5745 list_for_each_entry_safe_reverse(sp, node,
5746 &kvm->arch.active_mmu_pages, link) {
5747 /*
5748 * No obsolete valid page exists before a newly created page
5749 * since active_mmu_pages is a FIFO list.
5750 */
5751 if (!is_obsolete_sp(kvm, sp))
5752 break;
5753
5754 /*
9a5c034c
SC
5755 * Skip invalid pages with a non-zero root count, zapping pages
5756 * with a non-zero root count will never succeed, i.e. the page
5757 * will get thrown back on active_mmu_pages and we'll get stuck
5758 * in an infinite loop.
002c5f73 5759 */
9a5c034c 5760 if (sp->role.invalid && sp->root_count)
002c5f73
SC
5761 continue;
5762
4506ecf4
SC
5763 /*
5764 * No need to flush the TLB since we're only zapping shadow
5765 * pages with an obsolete generation number and all vCPUS have
5766 * loaded a new root, i.e. the shadow pages being zapped cannot
5767 * be in active use by the guest.
5768 */
fbb158cb 5769 if (batch >= BATCH_ZAP_PAGES &&
4506ecf4 5770 cond_resched_lock(&kvm->mmu_lock)) {
fbb158cb 5771 batch = 0;
002c5f73
SC
5772 goto restart;
5773 }
5774
10605204
SC
5775 if (__kvm_mmu_prepare_zap_page(kvm, sp,
5776 &kvm->arch.zapped_obsolete_pages, &nr_zapped)) {
fbb158cb 5777 batch += nr_zapped;
002c5f73 5778 goto restart;
fbb158cb 5779 }
002c5f73
SC
5780 }
5781
4506ecf4
SC
5782 /*
5783 * Trigger a remote TLB flush before freeing the page tables to ensure
5784 * KVM is not in the middle of a lockless shadow page table walk, which
5785 * may reference the pages.
5786 */
10605204 5787 kvm_mmu_commit_zap_page(kvm, &kvm->arch.zapped_obsolete_pages);
002c5f73
SC
5788}
5789
5790/*
5791 * Fast invalidate all shadow pages and use lock-break technique
5792 * to zap obsolete pages.
5793 *
5794 * It's required when memslot is being deleted or VM is being
5795 * destroyed, in these cases, we should ensure that KVM MMU does
5796 * not use any resource of the being-deleted slot or all slots
5797 * after calling the function.
5798 */
5799static void kvm_mmu_zap_all_fast(struct kvm *kvm)
5800{
ca333add
SC
5801 lockdep_assert_held(&kvm->slots_lock);
5802
002c5f73 5803 spin_lock(&kvm->mmu_lock);
14a3c4f4 5804 trace_kvm_mmu_zap_all_fast(kvm);
ca333add
SC
5805
5806 /*
5807 * Toggle mmu_valid_gen between '0' and '1'. Because slots_lock is
5808 * held for the entire duration of zapping obsolete pages, it's
5809 * impossible for there to be multiple invalid generations associated
5810 * with *valid* shadow pages at any given time, i.e. there is exactly
5811 * one valid generation and (at most) one invalid generation.
5812 */
5813 kvm->arch.mmu_valid_gen = kvm->arch.mmu_valid_gen ? 0 : 1;
002c5f73 5814
4506ecf4
SC
5815 /*
5816 * Notify all vcpus to reload its shadow page table and flush TLB.
5817 * Then all vcpus will switch to new shadow page table with the new
5818 * mmu_valid_gen.
5819 *
5820 * Note: we need to do this under the protection of mmu_lock,
5821 * otherwise, vcpu would purge shadow page but miss tlb flush.
5822 */
5823 kvm_reload_remote_mmus(kvm);
5824
002c5f73
SC
5825 kvm_zap_obsolete_pages(kvm);
5826 spin_unlock(&kvm->mmu_lock);
5827}
5828
10605204
SC
5829static bool kvm_has_zapped_obsolete_pages(struct kvm *kvm)
5830{
5831 return unlikely(!list_empty_careful(&kvm->arch.zapped_obsolete_pages));
5832}
5833
b5f5fdca 5834static void kvm_mmu_invalidate_zap_pages_in_memslot(struct kvm *kvm,
d126363d
JS
5835 struct kvm_memory_slot *slot,
5836 struct kvm_page_track_notifier_node *node)
b5f5fdca 5837{
002c5f73 5838 kvm_mmu_zap_all_fast(kvm);
1bad2b2a
XG
5839}
5840
13d268ca 5841void kvm_mmu_init_vm(struct kvm *kvm)
1bad2b2a 5842{
13d268ca 5843 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5844
13d268ca 5845 node->track_write = kvm_mmu_pte_write;
b5f5fdca 5846 node->track_flush_slot = kvm_mmu_invalidate_zap_pages_in_memslot;
13d268ca 5847 kvm_page_track_register_notifier(kvm, node);
1bad2b2a
XG
5848}
5849
13d268ca 5850void kvm_mmu_uninit_vm(struct kvm *kvm)
1bad2b2a 5851{
13d268ca 5852 struct kvm_page_track_notifier_node *node = &kvm->arch.mmu_sp_tracker;
1bad2b2a 5853
13d268ca 5854 kvm_page_track_unregister_notifier(kvm, node);
1bad2b2a
XG
5855}
5856
efdfe536
XG
5857void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end)
5858{
5859 struct kvm_memslots *slots;
5860 struct kvm_memory_slot *memslot;
9da0e4d5 5861 int i;
efdfe536
XG
5862
5863 spin_lock(&kvm->mmu_lock);
9da0e4d5
PB
5864 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
5865 slots = __kvm_memslots(kvm, i);
5866 kvm_for_each_memslot(memslot, slots) {
5867 gfn_t start, end;
5868
5869 start = max(gfn_start, memslot->base_gfn);
5870 end = min(gfn_end, memslot->base_gfn + memslot->npages);
5871 if (start >= end)
5872 continue;
efdfe536 5873
92da008f
BG
5874 slot_handle_level_range(kvm, memslot, kvm_zap_rmapp,
5875 PT_PAGE_TABLE_LEVEL, PT_MAX_HUGEPAGE_LEVEL,
5876 start, end - 1, true);
9da0e4d5 5877 }
efdfe536
XG
5878 }
5879
5880 spin_unlock(&kvm->mmu_lock);
5881}
5882
018aabb5
TY
5883static bool slot_rmap_write_protect(struct kvm *kvm,
5884 struct kvm_rmap_head *rmap_head)
d77aa73c 5885{
018aabb5 5886 return __rmap_write_protect(kvm, rmap_head, false);
d77aa73c
XG
5887}
5888
1c91cad4 5889void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
3c9bd400
JZ
5890 struct kvm_memory_slot *memslot,
5891 int start_level)
6aa8b732 5892{
d77aa73c 5893 bool flush;
6aa8b732 5894
9d1beefb 5895 spin_lock(&kvm->mmu_lock);
3c9bd400
JZ
5896 flush = slot_handle_level(kvm, memslot, slot_rmap_write_protect,
5897 start_level, PT_MAX_HUGEPAGE_LEVEL, false);
9d1beefb 5898 spin_unlock(&kvm->mmu_lock);
198c74f4 5899
198c74f4
XG
5900 /*
5901 * We can flush all the TLBs out of the mmu lock without TLB
5902 * corruption since we just change the spte from writable to
5903 * readonly so that we only need to care the case of changing
5904 * spte from present to present (changing the spte from present
5905 * to nonpresent will flush all the TLBs immediately), in other
5906 * words, the only case we care is mmu_spte_update() where we
bdd303cb 5907 * have checked SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE
198c74f4
XG
5908 * instead of PT_WRITABLE_MASK, that means it does not depend
5909 * on PT_WRITABLE_MASK anymore.
5910 */
d91ffee9 5911 if (flush)
7f42aa76 5912 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
6aa8b732 5913}
37a7d8b0 5914
3ea3b7fa 5915static bool kvm_mmu_zap_collapsible_spte(struct kvm *kvm,
018aabb5 5916 struct kvm_rmap_head *rmap_head)
3ea3b7fa
WL
5917{
5918 u64 *sptep;
5919 struct rmap_iterator iter;
5920 int need_tlb_flush = 0;
ba049e93 5921 kvm_pfn_t pfn;
3ea3b7fa
WL
5922 struct kvm_mmu_page *sp;
5923
0d536790 5924restart:
018aabb5 5925 for_each_rmap_spte(rmap_head, &iter, sptep) {
3ea3b7fa
WL
5926 sp = page_header(__pa(sptep));
5927 pfn = spte_to_pfn(*sptep);
5928
5929 /*
decf6333
XG
5930 * We cannot do huge page mapping for indirect shadow pages,
5931 * which are found on the last rmap (level = 1) when not using
5932 * tdp; such shadow pages are synced with the page table in
5933 * the guest, and the guest page table is using 4K page size
5934 * mapping if the indirect sp has level = 1.
3ea3b7fa 5935 */
a78986aa 5936 if (sp->role.direct && !kvm_is_reserved_pfn(pfn) &&
e851265a
SC
5937 (kvm_is_zone_device_pfn(pfn) ||
5938 PageCompound(pfn_to_page(pfn)))) {
e7912386 5939 pte_list_remove(rmap_head, sptep);
40ef75a7
LT
5940
5941 if (kvm_available_flush_tlb_with_range())
5942 kvm_flush_remote_tlbs_with_address(kvm, sp->gfn,
5943 KVM_PAGES_PER_HPAGE(sp->role.level));
5944 else
5945 need_tlb_flush = 1;
5946
0d536790
XG
5947 goto restart;
5948 }
3ea3b7fa
WL
5949 }
5950
5951 return need_tlb_flush;
5952}
5953
5954void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
f36f3f28 5955 const struct kvm_memory_slot *memslot)
3ea3b7fa 5956{
f36f3f28 5957 /* FIXME: const-ify all uses of struct kvm_memory_slot. */
3ea3b7fa 5958 spin_lock(&kvm->mmu_lock);
f36f3f28
PB
5959 slot_handle_leaf(kvm, (struct kvm_memory_slot *)memslot,
5960 kvm_mmu_zap_collapsible_spte, true);
3ea3b7fa
WL
5961 spin_unlock(&kvm->mmu_lock);
5962}
5963
b3594ffb
SC
5964void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
5965 struct kvm_memory_slot *memslot)
5966{
5967 /*
7f42aa76
SC
5968 * All current use cases for flushing the TLBs for a specific memslot
5969 * are related to dirty logging, and do the TLB flush out of mmu_lock.
5970 * The interaction between the various operations on memslot must be
5971 * serialized by slots_locks to ensure the TLB flush from one operation
5972 * is observed by any other operation on the same memslot.
b3594ffb
SC
5973 */
5974 lockdep_assert_held(&kvm->slots_lock);
cec37648
SC
5975 kvm_flush_remote_tlbs_with_address(kvm, memslot->base_gfn,
5976 memslot->npages);
b3594ffb
SC
5977}
5978
f4b4b180
KH
5979void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
5980 struct kvm_memory_slot *memslot)
5981{
d77aa73c 5982 bool flush;
f4b4b180
KH
5983
5984 spin_lock(&kvm->mmu_lock);
d77aa73c 5985 flush = slot_handle_leaf(kvm, memslot, __rmap_clear_dirty, false);
f4b4b180
KH
5986 spin_unlock(&kvm->mmu_lock);
5987
f4b4b180
KH
5988 /*
5989 * It's also safe to flush TLBs out of mmu lock here as currently this
5990 * function is only used for dirty logging, in which case flushing TLB
5991 * out of mmu lock also guarantees no dirty pages will be lost in
5992 * dirty_bitmap.
5993 */
5994 if (flush)
7f42aa76 5995 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
5996}
5997EXPORT_SYMBOL_GPL(kvm_mmu_slot_leaf_clear_dirty);
5998
5999void kvm_mmu_slot_largepage_remove_write_access(struct kvm *kvm,
6000 struct kvm_memory_slot *memslot)
6001{
d77aa73c 6002 bool flush;
f4b4b180
KH
6003
6004 spin_lock(&kvm->mmu_lock);
d77aa73c
XG
6005 flush = slot_handle_large_level(kvm, memslot, slot_rmap_write_protect,
6006 false);
f4b4b180
KH
6007 spin_unlock(&kvm->mmu_lock);
6008
f4b4b180 6009 if (flush)
7f42aa76 6010 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6011}
6012EXPORT_SYMBOL_GPL(kvm_mmu_slot_largepage_remove_write_access);
6013
6014void kvm_mmu_slot_set_dirty(struct kvm *kvm,
6015 struct kvm_memory_slot *memslot)
6016{
d77aa73c 6017 bool flush;
f4b4b180
KH
6018
6019 spin_lock(&kvm->mmu_lock);
d77aa73c 6020 flush = slot_handle_all_level(kvm, memslot, __rmap_set_dirty, false);
f4b4b180
KH
6021 spin_unlock(&kvm->mmu_lock);
6022
f4b4b180 6023 if (flush)
7f42aa76 6024 kvm_arch_flush_remote_tlbs_memslot(kvm, memslot);
f4b4b180
KH
6025}
6026EXPORT_SYMBOL_GPL(kvm_mmu_slot_set_dirty);
6027
92f58b5c 6028void kvm_mmu_zap_all(struct kvm *kvm)
5304b8d3
XG
6029{
6030 struct kvm_mmu_page *sp, *node;
7390de1e 6031 LIST_HEAD(invalid_list);
83cdb568 6032 int ign;
5304b8d3 6033
7390de1e 6034 spin_lock(&kvm->mmu_lock);
5304b8d3 6035restart:
8a674adc 6036 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link) {
8ab3c471 6037 if (sp->role.invalid && sp->root_count)
4771450c 6038 continue;
92f58b5c 6039 if (__kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list, &ign))
5304b8d3 6040 goto restart;
24efe61f 6041 if (cond_resched_lock(&kvm->mmu_lock))
5304b8d3
XG
6042 goto restart;
6043 }
6044
4771450c 6045 kvm_mmu_commit_zap_page(kvm, &invalid_list);
5304b8d3
XG
6046 spin_unlock(&kvm->mmu_lock);
6047}
6048
15248258 6049void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen)
f8f55942 6050{
164bf7e5 6051 WARN_ON(gen & KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS);
e1359e2b 6052
164bf7e5 6053 gen &= MMIO_SPTE_GEN_MASK;
e1359e2b 6054
f8f55942 6055 /*
e1359e2b
SC
6056 * Generation numbers are incremented in multiples of the number of
6057 * address spaces in order to provide unique generations across all
6058 * address spaces. Strip what is effectively the address space
6059 * modifier prior to checking for a wrap of the MMIO generation so
6060 * that a wrap in any address space is detected.
6061 */
6062 gen &= ~((u64)KVM_ADDRESS_SPACE_NUM - 1);
6063
f8f55942 6064 /*
e1359e2b 6065 * The very rare case: if the MMIO generation number has wrapped,
f8f55942 6066 * zap all shadow pages.
f8f55942 6067 */
e1359e2b 6068 if (unlikely(gen == 0)) {
ae0f5499 6069 kvm_debug_ratelimited("kvm: zapping shadow pages for mmio generation wraparound\n");
92f58b5c 6070 kvm_mmu_zap_all_fast(kvm);
7a2e8aaf 6071 }
f8f55942
XG
6072}
6073
70534a73
DC
6074static unsigned long
6075mmu_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
6076{
6077 struct kvm *kvm;
1495f230 6078 int nr_to_scan = sc->nr_to_scan;
70534a73 6079 unsigned long freed = 0;
3ee16c81 6080
0d9ce162 6081 mutex_lock(&kvm_lock);
3ee16c81
IE
6082
6083 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 6084 int idx;
d98ba053 6085 LIST_HEAD(invalid_list);
3ee16c81 6086
35f2d16b
TY
6087 /*
6088 * Never scan more than sc->nr_to_scan VM instances.
6089 * Will not hit this condition practically since we do not try
6090 * to shrink more than one VM and it is very unlikely to see
6091 * !n_used_mmu_pages so many times.
6092 */
6093 if (!nr_to_scan--)
6094 break;
19526396
GN
6095 /*
6096 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
6097 * here. We may skip a VM instance errorneosly, but we do not
6098 * want to shrink a VM that only started to populate its MMU
6099 * anyway.
6100 */
10605204
SC
6101 if (!kvm->arch.n_used_mmu_pages &&
6102 !kvm_has_zapped_obsolete_pages(kvm))
19526396 6103 continue;
19526396 6104
f656ce01 6105 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 6106 spin_lock(&kvm->mmu_lock);
3ee16c81 6107
10605204
SC
6108 if (kvm_has_zapped_obsolete_pages(kvm)) {
6109 kvm_mmu_commit_zap_page(kvm,
6110 &kvm->arch.zapped_obsolete_pages);
6111 goto unlock;
6112 }
6113
70534a73
DC
6114 if (prepare_zap_oldest_mmu_page(kvm, &invalid_list))
6115 freed++;
d98ba053 6116 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 6117
10605204 6118unlock:
3ee16c81 6119 spin_unlock(&kvm->mmu_lock);
f656ce01 6120 srcu_read_unlock(&kvm->srcu, idx);
19526396 6121
70534a73
DC
6122 /*
6123 * unfair on small ones
6124 * per-vm shrinkers cry out
6125 * sadness comes quickly
6126 */
19526396
GN
6127 list_move_tail(&kvm->vm_list, &vm_list);
6128 break;
3ee16c81 6129 }
3ee16c81 6130
0d9ce162 6131 mutex_unlock(&kvm_lock);
70534a73 6132 return freed;
70534a73
DC
6133}
6134
6135static unsigned long
6136mmu_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
6137{
45221ab6 6138 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
6139}
6140
6141static struct shrinker mmu_shrinker = {
70534a73
DC
6142 .count_objects = mmu_shrink_count,
6143 .scan_objects = mmu_shrink_scan,
3ee16c81
IE
6144 .seeks = DEFAULT_SEEKS * 10,
6145};
6146
2ddfd20e 6147static void mmu_destroy_caches(void)
b5a33a75 6148{
c1bd743e
TH
6149 kmem_cache_destroy(pte_list_desc_cache);
6150 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
6151}
6152
7b6f8a06
KH
6153static void kvm_set_mmio_spte_mask(void)
6154{
6155 u64 mask;
7b6f8a06
KH
6156
6157 /*
6158 * Set the reserved bits and the present bit of an paging-structure
6159 * entry to generate page fault with PFER.RSV = 1.
6160 */
6161
6162 /*
6163 * Mask the uppermost physical address bit, which would be reserved as
6164 * long as the supported physical address width is less than 52.
6165 */
6166 mask = 1ull << 51;
6167
6168 /* Set the present bit. */
6169 mask |= 1ull;
6170
6171 /*
6172 * If reserved bit is not supported, clear the present bit to disable
6173 * mmio page fault.
6174 */
e30a7d62 6175 if (shadow_phys_bits == 52)
7b6f8a06
KH
6176 mask &= ~1ull;
6177
4af77151 6178 kvm_mmu_set_mmio_spte_mask(mask, mask, ACC_WRITE_MASK | ACC_USER_MASK);
7b6f8a06
KH
6179}
6180
b8e8c830
PB
6181static bool get_nx_auto_mode(void)
6182{
6183 /* Return true when CPU has the bug, and mitigations are ON */
6184 return boot_cpu_has_bug(X86_BUG_ITLB_MULTIHIT) && !cpu_mitigations_off();
6185}
6186
6187static void __set_nx_huge_pages(bool val)
6188{
6189 nx_huge_pages = itlb_multihit_kvm_mitigation = val;
6190}
6191
6192static int set_nx_huge_pages(const char *val, const struct kernel_param *kp)
6193{
6194 bool old_val = nx_huge_pages;
6195 bool new_val;
6196
6197 /* In "auto" mode deploy workaround only if CPU has the bug. */
6198 if (sysfs_streq(val, "off"))
6199 new_val = 0;
6200 else if (sysfs_streq(val, "force"))
6201 new_val = 1;
6202 else if (sysfs_streq(val, "auto"))
6203 new_val = get_nx_auto_mode();
6204 else if (strtobool(val, &new_val) < 0)
6205 return -EINVAL;
6206
6207 __set_nx_huge_pages(new_val);
6208
6209 if (new_val != old_val) {
6210 struct kvm *kvm;
b8e8c830
PB
6211
6212 mutex_lock(&kvm_lock);
6213
6214 list_for_each_entry(kvm, &vm_list, vm_list) {
ed69a6cb 6215 mutex_lock(&kvm->slots_lock);
b8e8c830 6216 kvm_mmu_zap_all_fast(kvm);
ed69a6cb 6217 mutex_unlock(&kvm->slots_lock);
1aa9b957
JS
6218
6219 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
b8e8c830
PB
6220 }
6221 mutex_unlock(&kvm_lock);
6222 }
6223
6224 return 0;
6225}
6226
b5a33a75
AK
6227int kvm_mmu_module_init(void)
6228{
ab271bd4
AB
6229 int ret = -ENOMEM;
6230
b8e8c830
PB
6231 if (nx_huge_pages == -1)
6232 __set_nx_huge_pages(get_nx_auto_mode());
6233
36d9594d
VK
6234 /*
6235 * MMU roles use union aliasing which is, generally speaking, an
6236 * undefined behavior. However, we supposedly know how compilers behave
6237 * and the current status quo is unlikely to change. Guardians below are
6238 * supposed to let us know if the assumption becomes false.
6239 */
6240 BUILD_BUG_ON(sizeof(union kvm_mmu_page_role) != sizeof(u32));
6241 BUILD_BUG_ON(sizeof(union kvm_mmu_extended_role) != sizeof(u32));
6242 BUILD_BUG_ON(sizeof(union kvm_mmu_role) != sizeof(u64));
6243
28a1f3ac 6244 kvm_mmu_reset_all_pte_masks();
f160c7b7 6245
7b6f8a06
KH
6246 kvm_set_mmio_spte_mask();
6247
53c07b18
XG
6248 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
6249 sizeof(struct pte_list_desc),
46bea48a 6250 0, SLAB_ACCOUNT, NULL);
53c07b18 6251 if (!pte_list_desc_cache)
ab271bd4 6252 goto out;
b5a33a75 6253
d3d25b04
AK
6254 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
6255 sizeof(struct kvm_mmu_page),
46bea48a 6256 0, SLAB_ACCOUNT, NULL);
d3d25b04 6257 if (!mmu_page_header_cache)
ab271bd4 6258 goto out;
d3d25b04 6259
908c7f19 6260 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0, GFP_KERNEL))
ab271bd4 6261 goto out;
45bf21a8 6262
ab271bd4
AB
6263 ret = register_shrinker(&mmu_shrinker);
6264 if (ret)
6265 goto out;
3ee16c81 6266
b5a33a75
AK
6267 return 0;
6268
ab271bd4 6269out:
3ee16c81 6270 mmu_destroy_caches();
ab271bd4 6271 return ret;
b5a33a75
AK
6272}
6273
3ad82a7e 6274/*
39337ad1 6275 * Calculate mmu pages needed for kvm.
3ad82a7e 6276 */
bc8a3d89 6277unsigned long kvm_mmu_calculate_default_mmu_pages(struct kvm *kvm)
3ad82a7e 6278{
bc8a3d89
BG
6279 unsigned long nr_mmu_pages;
6280 unsigned long nr_pages = 0;
bc6678a3 6281 struct kvm_memslots *slots;
be6ba0f0 6282 struct kvm_memory_slot *memslot;
9da0e4d5 6283 int i;
3ad82a7e 6284
9da0e4d5
PB
6285 for (i = 0; i < KVM_ADDRESS_SPACE_NUM; i++) {
6286 slots = __kvm_memslots(kvm, i);
90d83dc3 6287
9da0e4d5
PB
6288 kvm_for_each_memslot(memslot, slots)
6289 nr_pages += memslot->npages;
6290 }
3ad82a7e
ZX
6291
6292 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
bc8a3d89 6293 nr_mmu_pages = max(nr_mmu_pages, KVM_MIN_ALLOC_MMU_PAGES);
3ad82a7e
ZX
6294
6295 return nr_mmu_pages;
6296}
6297
c42fffe3
XG
6298void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
6299{
95f93af4 6300 kvm_mmu_unload(vcpu);
1cfff4d9
JP
6301 free_mmu_pages(&vcpu->arch.root_mmu);
6302 free_mmu_pages(&vcpu->arch.guest_mmu);
c42fffe3 6303 mmu_free_memory_caches(vcpu);
b034cf01
XG
6304}
6305
b034cf01
XG
6306void kvm_mmu_module_exit(void)
6307{
6308 mmu_destroy_caches();
6309 percpu_counter_destroy(&kvm_total_used_mmu_pages);
6310 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
6311 mmu_audit_disable();
6312}
1aa9b957
JS
6313
6314static int set_nx_huge_pages_recovery_ratio(const char *val, const struct kernel_param *kp)
6315{
6316 unsigned int old_val;
6317 int err;
6318
6319 old_val = nx_huge_pages_recovery_ratio;
6320 err = param_set_uint(val, kp);
6321 if (err)
6322 return err;
6323
6324 if (READ_ONCE(nx_huge_pages) &&
6325 !old_val && nx_huge_pages_recovery_ratio) {
6326 struct kvm *kvm;
6327
6328 mutex_lock(&kvm_lock);
6329
6330 list_for_each_entry(kvm, &vm_list, vm_list)
6331 wake_up_process(kvm->arch.nx_lpage_recovery_thread);
6332
6333 mutex_unlock(&kvm_lock);
6334 }
6335
6336 return err;
6337}
6338
6339static void kvm_recover_nx_lpages(struct kvm *kvm)
6340{
6341 int rcu_idx;
6342 struct kvm_mmu_page *sp;
6343 unsigned int ratio;
6344 LIST_HEAD(invalid_list);
6345 ulong to_zap;
6346
6347 rcu_idx = srcu_read_lock(&kvm->srcu);
6348 spin_lock(&kvm->mmu_lock);
6349
6350 ratio = READ_ONCE(nx_huge_pages_recovery_ratio);
6351 to_zap = ratio ? DIV_ROUND_UP(kvm->stat.nx_lpage_splits, ratio) : 0;
6352 while (to_zap && !list_empty(&kvm->arch.lpage_disallowed_mmu_pages)) {
6353 /*
6354 * We use a separate list instead of just using active_mmu_pages
6355 * because the number of lpage_disallowed pages is expected to
6356 * be relatively small compared to the total.
6357 */
6358 sp = list_first_entry(&kvm->arch.lpage_disallowed_mmu_pages,
6359 struct kvm_mmu_page,
6360 lpage_disallowed_link);
6361 WARN_ON_ONCE(!sp->lpage_disallowed);
6362 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
6363 WARN_ON_ONCE(sp->lpage_disallowed);
6364
6365 if (!--to_zap || need_resched() || spin_needbreak(&kvm->mmu_lock)) {
6366 kvm_mmu_commit_zap_page(kvm, &invalid_list);
6367 if (to_zap)
6368 cond_resched_lock(&kvm->mmu_lock);
6369 }
6370 }
6371
6372 spin_unlock(&kvm->mmu_lock);
6373 srcu_read_unlock(&kvm->srcu, rcu_idx);
6374}
6375
6376static long get_nx_lpage_recovery_timeout(u64 start_time)
6377{
6378 return READ_ONCE(nx_huge_pages) && READ_ONCE(nx_huge_pages_recovery_ratio)
6379 ? start_time + 60 * HZ - get_jiffies_64()
6380 : MAX_SCHEDULE_TIMEOUT;
6381}
6382
6383static int kvm_nx_lpage_recovery_worker(struct kvm *kvm, uintptr_t data)
6384{
6385 u64 start_time;
6386 long remaining_time;
6387
6388 while (true) {
6389 start_time = get_jiffies_64();
6390 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6391
6392 set_current_state(TASK_INTERRUPTIBLE);
6393 while (!kthread_should_stop() && remaining_time > 0) {
6394 schedule_timeout(remaining_time);
6395 remaining_time = get_nx_lpage_recovery_timeout(start_time);
6396 set_current_state(TASK_INTERRUPTIBLE);
6397 }
6398
6399 set_current_state(TASK_RUNNING);
6400
6401 if (kthread_should_stop())
6402 return 0;
6403
6404 kvm_recover_nx_lpages(kvm);
6405 }
6406}
6407
6408int kvm_mmu_post_init_vm(struct kvm *kvm)
6409{
6410 int err;
6411
6412 err = kvm_vm_create_worker_thread(kvm, kvm_nx_lpage_recovery_worker, 0,
6413 "kvm-nx-lpage-recovery",
6414 &kvm->arch.nx_lpage_recovery_thread);
6415 if (!err)
6416 kthread_unpark(kvm->arch.nx_lpage_recovery_thread);
6417
6418 return err;
6419}
6420
6421void kvm_mmu_pre_destroy_vm(struct kvm *kvm)
6422{
6423 if (kvm->arch.nx_lpage_recovery_thread)
6424 kthread_stop(kvm->arch.nx_lpage_recovery_thread);
6425}